1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/dax.h> 27 #include <linux/quotaops.h> 28 #include <linux/string.h> 29 #include <linux/buffer_head.h> 30 #include <linux/writeback.h> 31 #include <linux/pagevec.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/uio.h> 35 #include <linux/bio.h> 36 #include <linux/workqueue.h> 37 #include <linux/kernel.h> 38 #include <linux/printk.h> 39 #include <linux/slab.h> 40 #include <linux/bitops.h> 41 #include <linux/iomap.h> 42 43 #include "ext4_jbd2.h" 44 #include "xattr.h" 45 #include "acl.h" 46 #include "truncate.h" 47 48 #include <trace/events/ext4.h> 49 50 #define MPAGE_DA_EXTENT_TAIL 0x01 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u32 csum; 57 __u16 dummy_csum = 0; 58 int offset = offsetof(struct ext4_inode, i_checksum_lo); 59 unsigned int csum_size = sizeof(dummy_csum); 60 61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 63 offset += csum_size; 64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 65 EXT4_GOOD_OLD_INODE_SIZE - offset); 66 67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 68 offset = offsetof(struct ext4_inode, i_checksum_hi); 69 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 70 EXT4_GOOD_OLD_INODE_SIZE, 71 offset - EXT4_GOOD_OLD_INODE_SIZE); 72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 74 csum_size); 75 offset += csum_size; 76 } 77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 78 EXT4_INODE_SIZE(inode->i_sb) - offset); 79 } 80 81 return csum; 82 } 83 84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 85 struct ext4_inode_info *ei) 86 { 87 __u32 provided, calculated; 88 89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 90 cpu_to_le32(EXT4_OS_LINUX) || 91 !ext4_has_metadata_csum(inode->i_sb)) 92 return 1; 93 94 provided = le16_to_cpu(raw->i_checksum_lo); 95 calculated = ext4_inode_csum(inode, raw, ei); 96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 99 else 100 calculated &= 0xFFFF; 101 102 return provided == calculated; 103 } 104 105 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 106 struct ext4_inode_info *ei) 107 { 108 __u32 csum; 109 110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 111 cpu_to_le32(EXT4_OS_LINUX) || 112 !ext4_has_metadata_csum(inode->i_sb)) 113 return; 114 115 csum = ext4_inode_csum(inode, raw, ei); 116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 119 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 120 } 121 122 static inline int ext4_begin_ordered_truncate(struct inode *inode, 123 loff_t new_size) 124 { 125 trace_ext4_begin_ordered_truncate(inode, new_size); 126 /* 127 * If jinode is zero, then we never opened the file for 128 * writing, so there's no need to call 129 * jbd2_journal_begin_ordered_truncate() since there's no 130 * outstanding writes we need to flush. 131 */ 132 if (!EXT4_I(inode)->jinode) 133 return 0; 134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 135 EXT4_I(inode)->jinode, 136 new_size); 137 } 138 139 static void ext4_invalidatepage(struct page *page, unsigned int offset, 140 unsigned int length); 141 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 142 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 143 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 144 int pextents); 145 146 /* 147 * Test whether an inode is a fast symlink. 148 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 149 */ 150 int ext4_inode_is_fast_symlink(struct inode *inode) 151 { 152 return S_ISLNK(inode->i_mode) && inode->i_size && 153 (inode->i_size < EXT4_N_BLOCKS * 4); 154 } 155 156 /* 157 * Restart the transaction associated with *handle. This does a commit, 158 * so before we call here everything must be consistently dirtied against 159 * this transaction. 160 */ 161 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 162 int nblocks) 163 { 164 int ret; 165 166 /* 167 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 168 * moment, get_block can be called only for blocks inside i_size since 169 * page cache has been already dropped and writes are blocked by 170 * i_mutex. So we can safely drop the i_data_sem here. 171 */ 172 BUG_ON(EXT4_JOURNAL(inode) == NULL); 173 jbd_debug(2, "restarting handle %p\n", handle); 174 up_write(&EXT4_I(inode)->i_data_sem); 175 ret = ext4_journal_restart(handle, nblocks); 176 down_write(&EXT4_I(inode)->i_data_sem); 177 ext4_discard_preallocations(inode); 178 179 return ret; 180 } 181 182 /* 183 * Called at the last iput() if i_nlink is zero. 184 */ 185 void ext4_evict_inode(struct inode *inode) 186 { 187 handle_t *handle; 188 int err; 189 int extra_credits = 3; 190 struct ext4_xattr_inode_array *ea_inode_array = NULL; 191 192 trace_ext4_evict_inode(inode); 193 194 if (inode->i_nlink) { 195 /* 196 * When journalling data dirty buffers are tracked only in the 197 * journal. So although mm thinks everything is clean and 198 * ready for reaping the inode might still have some pages to 199 * write in the running transaction or waiting to be 200 * checkpointed. Thus calling jbd2_journal_invalidatepage() 201 * (via truncate_inode_pages()) to discard these buffers can 202 * cause data loss. Also even if we did not discard these 203 * buffers, we would have no way to find them after the inode 204 * is reaped and thus user could see stale data if he tries to 205 * read them before the transaction is checkpointed. So be 206 * careful and force everything to disk here... We use 207 * ei->i_datasync_tid to store the newest transaction 208 * containing inode's data. 209 * 210 * Note that directories do not have this problem because they 211 * don't use page cache. 212 */ 213 if (inode->i_ino != EXT4_JOURNAL_INO && 214 ext4_should_journal_data(inode) && 215 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 216 inode->i_data.nrpages) { 217 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 218 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 219 220 jbd2_complete_transaction(journal, commit_tid); 221 filemap_write_and_wait(&inode->i_data); 222 } 223 truncate_inode_pages_final(&inode->i_data); 224 225 goto no_delete; 226 } 227 228 if (is_bad_inode(inode)) 229 goto no_delete; 230 dquot_initialize(inode); 231 232 if (ext4_should_order_data(inode)) 233 ext4_begin_ordered_truncate(inode, 0); 234 truncate_inode_pages_final(&inode->i_data); 235 236 /* 237 * Protect us against freezing - iput() caller didn't have to have any 238 * protection against it 239 */ 240 sb_start_intwrite(inode->i_sb); 241 242 if (!IS_NOQUOTA(inode)) 243 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 244 245 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 246 ext4_blocks_for_truncate(inode)+extra_credits); 247 if (IS_ERR(handle)) { 248 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 249 /* 250 * If we're going to skip the normal cleanup, we still need to 251 * make sure that the in-core orphan linked list is properly 252 * cleaned up. 253 */ 254 ext4_orphan_del(NULL, inode); 255 sb_end_intwrite(inode->i_sb); 256 goto no_delete; 257 } 258 259 if (IS_SYNC(inode)) 260 ext4_handle_sync(handle); 261 262 /* 263 * Set inode->i_size to 0 before calling ext4_truncate(). We need 264 * special handling of symlinks here because i_size is used to 265 * determine whether ext4_inode_info->i_data contains symlink data or 266 * block mappings. Setting i_size to 0 will remove its fast symlink 267 * status. Erase i_data so that it becomes a valid empty block map. 268 */ 269 if (ext4_inode_is_fast_symlink(inode)) 270 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 271 inode->i_size = 0; 272 err = ext4_mark_inode_dirty(handle, inode); 273 if (err) { 274 ext4_warning(inode->i_sb, 275 "couldn't mark inode dirty (err %d)", err); 276 goto stop_handle; 277 } 278 if (inode->i_blocks) { 279 err = ext4_truncate(inode); 280 if (err) { 281 ext4_error(inode->i_sb, 282 "couldn't truncate inode %lu (err %d)", 283 inode->i_ino, err); 284 goto stop_handle; 285 } 286 } 287 288 /* Remove xattr references. */ 289 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 290 extra_credits); 291 if (err) { 292 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 293 stop_handle: 294 ext4_journal_stop(handle); 295 ext4_orphan_del(NULL, inode); 296 sb_end_intwrite(inode->i_sb); 297 ext4_xattr_inode_array_free(ea_inode_array); 298 goto no_delete; 299 } 300 301 /* 302 * Kill off the orphan record which ext4_truncate created. 303 * AKPM: I think this can be inside the above `if'. 304 * Note that ext4_orphan_del() has to be able to cope with the 305 * deletion of a non-existent orphan - this is because we don't 306 * know if ext4_truncate() actually created an orphan record. 307 * (Well, we could do this if we need to, but heck - it works) 308 */ 309 ext4_orphan_del(handle, inode); 310 EXT4_I(inode)->i_dtime = get_seconds(); 311 312 /* 313 * One subtle ordering requirement: if anything has gone wrong 314 * (transaction abort, IO errors, whatever), then we can still 315 * do these next steps (the fs will already have been marked as 316 * having errors), but we can't free the inode if the mark_dirty 317 * fails. 318 */ 319 if (ext4_mark_inode_dirty(handle, inode)) 320 /* If that failed, just do the required in-core inode clear. */ 321 ext4_clear_inode(inode); 322 else 323 ext4_free_inode(handle, inode); 324 ext4_journal_stop(handle); 325 sb_end_intwrite(inode->i_sb); 326 ext4_xattr_inode_array_free(ea_inode_array); 327 return; 328 no_delete: 329 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 330 } 331 332 #ifdef CONFIG_QUOTA 333 qsize_t *ext4_get_reserved_space(struct inode *inode) 334 { 335 return &EXT4_I(inode)->i_reserved_quota; 336 } 337 #endif 338 339 /* 340 * Called with i_data_sem down, which is important since we can call 341 * ext4_discard_preallocations() from here. 342 */ 343 void ext4_da_update_reserve_space(struct inode *inode, 344 int used, int quota_claim) 345 { 346 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 347 struct ext4_inode_info *ei = EXT4_I(inode); 348 349 spin_lock(&ei->i_block_reservation_lock); 350 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 351 if (unlikely(used > ei->i_reserved_data_blocks)) { 352 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 353 "with only %d reserved data blocks", 354 __func__, inode->i_ino, used, 355 ei->i_reserved_data_blocks); 356 WARN_ON(1); 357 used = ei->i_reserved_data_blocks; 358 } 359 360 /* Update per-inode reservations */ 361 ei->i_reserved_data_blocks -= used; 362 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 363 364 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 365 366 /* Update quota subsystem for data blocks */ 367 if (quota_claim) 368 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 369 else { 370 /* 371 * We did fallocate with an offset that is already delayed 372 * allocated. So on delayed allocated writeback we should 373 * not re-claim the quota for fallocated blocks. 374 */ 375 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 376 } 377 378 /* 379 * If we have done all the pending block allocations and if 380 * there aren't any writers on the inode, we can discard the 381 * inode's preallocations. 382 */ 383 if ((ei->i_reserved_data_blocks == 0) && 384 (atomic_read(&inode->i_writecount) == 0)) 385 ext4_discard_preallocations(inode); 386 } 387 388 static int __check_block_validity(struct inode *inode, const char *func, 389 unsigned int line, 390 struct ext4_map_blocks *map) 391 { 392 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 393 map->m_len)) { 394 ext4_error_inode(inode, func, line, map->m_pblk, 395 "lblock %lu mapped to illegal pblock " 396 "(length %d)", (unsigned long) map->m_lblk, 397 map->m_len); 398 return -EFSCORRUPTED; 399 } 400 return 0; 401 } 402 403 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 404 ext4_lblk_t len) 405 { 406 int ret; 407 408 if (ext4_encrypted_inode(inode)) 409 return fscrypt_zeroout_range(inode, lblk, pblk, len); 410 411 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 412 if (ret > 0) 413 ret = 0; 414 415 return ret; 416 } 417 418 #define check_block_validity(inode, map) \ 419 __check_block_validity((inode), __func__, __LINE__, (map)) 420 421 #ifdef ES_AGGRESSIVE_TEST 422 static void ext4_map_blocks_es_recheck(handle_t *handle, 423 struct inode *inode, 424 struct ext4_map_blocks *es_map, 425 struct ext4_map_blocks *map, 426 int flags) 427 { 428 int retval; 429 430 map->m_flags = 0; 431 /* 432 * There is a race window that the result is not the same. 433 * e.g. xfstests #223 when dioread_nolock enables. The reason 434 * is that we lookup a block mapping in extent status tree with 435 * out taking i_data_sem. So at the time the unwritten extent 436 * could be converted. 437 */ 438 down_read(&EXT4_I(inode)->i_data_sem); 439 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 440 retval = ext4_ext_map_blocks(handle, inode, map, flags & 441 EXT4_GET_BLOCKS_KEEP_SIZE); 442 } else { 443 retval = ext4_ind_map_blocks(handle, inode, map, flags & 444 EXT4_GET_BLOCKS_KEEP_SIZE); 445 } 446 up_read((&EXT4_I(inode)->i_data_sem)); 447 448 /* 449 * We don't check m_len because extent will be collpased in status 450 * tree. So the m_len might not equal. 451 */ 452 if (es_map->m_lblk != map->m_lblk || 453 es_map->m_flags != map->m_flags || 454 es_map->m_pblk != map->m_pblk) { 455 printk("ES cache assertion failed for inode: %lu " 456 "es_cached ex [%d/%d/%llu/%x] != " 457 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 458 inode->i_ino, es_map->m_lblk, es_map->m_len, 459 es_map->m_pblk, es_map->m_flags, map->m_lblk, 460 map->m_len, map->m_pblk, map->m_flags, 461 retval, flags); 462 } 463 } 464 #endif /* ES_AGGRESSIVE_TEST */ 465 466 /* 467 * The ext4_map_blocks() function tries to look up the requested blocks, 468 * and returns if the blocks are already mapped. 469 * 470 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 471 * and store the allocated blocks in the result buffer head and mark it 472 * mapped. 473 * 474 * If file type is extents based, it will call ext4_ext_map_blocks(), 475 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 476 * based files 477 * 478 * On success, it returns the number of blocks being mapped or allocated. if 479 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 480 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 481 * 482 * It returns 0 if plain look up failed (blocks have not been allocated), in 483 * that case, @map is returned as unmapped but we still do fill map->m_len to 484 * indicate the length of a hole starting at map->m_lblk. 485 * 486 * It returns the error in case of allocation failure. 487 */ 488 int ext4_map_blocks(handle_t *handle, struct inode *inode, 489 struct ext4_map_blocks *map, int flags) 490 { 491 struct extent_status es; 492 int retval; 493 int ret = 0; 494 #ifdef ES_AGGRESSIVE_TEST 495 struct ext4_map_blocks orig_map; 496 497 memcpy(&orig_map, map, sizeof(*map)); 498 #endif 499 500 map->m_flags = 0; 501 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 502 "logical block %lu\n", inode->i_ino, flags, map->m_len, 503 (unsigned long) map->m_lblk); 504 505 /* 506 * ext4_map_blocks returns an int, and m_len is an unsigned int 507 */ 508 if (unlikely(map->m_len > INT_MAX)) 509 map->m_len = INT_MAX; 510 511 /* We can handle the block number less than EXT_MAX_BLOCKS */ 512 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 513 return -EFSCORRUPTED; 514 515 /* Lookup extent status tree firstly */ 516 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 517 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 518 map->m_pblk = ext4_es_pblock(&es) + 519 map->m_lblk - es.es_lblk; 520 map->m_flags |= ext4_es_is_written(&es) ? 521 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 522 retval = es.es_len - (map->m_lblk - es.es_lblk); 523 if (retval > map->m_len) 524 retval = map->m_len; 525 map->m_len = retval; 526 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 527 map->m_pblk = 0; 528 retval = es.es_len - (map->m_lblk - es.es_lblk); 529 if (retval > map->m_len) 530 retval = map->m_len; 531 map->m_len = retval; 532 retval = 0; 533 } else { 534 BUG_ON(1); 535 } 536 #ifdef ES_AGGRESSIVE_TEST 537 ext4_map_blocks_es_recheck(handle, inode, map, 538 &orig_map, flags); 539 #endif 540 goto found; 541 } 542 543 /* 544 * Try to see if we can get the block without requesting a new 545 * file system block. 546 */ 547 down_read(&EXT4_I(inode)->i_data_sem); 548 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 549 retval = ext4_ext_map_blocks(handle, inode, map, flags & 550 EXT4_GET_BLOCKS_KEEP_SIZE); 551 } else { 552 retval = ext4_ind_map_blocks(handle, inode, map, flags & 553 EXT4_GET_BLOCKS_KEEP_SIZE); 554 } 555 if (retval > 0) { 556 unsigned int status; 557 558 if (unlikely(retval != map->m_len)) { 559 ext4_warning(inode->i_sb, 560 "ES len assertion failed for inode " 561 "%lu: retval %d != map->m_len %d", 562 inode->i_ino, retval, map->m_len); 563 WARN_ON(1); 564 } 565 566 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 567 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 568 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 569 !(status & EXTENT_STATUS_WRITTEN) && 570 ext4_find_delalloc_range(inode, map->m_lblk, 571 map->m_lblk + map->m_len - 1)) 572 status |= EXTENT_STATUS_DELAYED; 573 ret = ext4_es_insert_extent(inode, map->m_lblk, 574 map->m_len, map->m_pblk, status); 575 if (ret < 0) 576 retval = ret; 577 } 578 up_read((&EXT4_I(inode)->i_data_sem)); 579 580 found: 581 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 582 ret = check_block_validity(inode, map); 583 if (ret != 0) 584 return ret; 585 } 586 587 /* If it is only a block(s) look up */ 588 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 589 return retval; 590 591 /* 592 * Returns if the blocks have already allocated 593 * 594 * Note that if blocks have been preallocated 595 * ext4_ext_get_block() returns the create = 0 596 * with buffer head unmapped. 597 */ 598 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 599 /* 600 * If we need to convert extent to unwritten 601 * we continue and do the actual work in 602 * ext4_ext_map_blocks() 603 */ 604 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 605 return retval; 606 607 /* 608 * Here we clear m_flags because after allocating an new extent, 609 * it will be set again. 610 */ 611 map->m_flags &= ~EXT4_MAP_FLAGS; 612 613 /* 614 * New blocks allocate and/or writing to unwritten extent 615 * will possibly result in updating i_data, so we take 616 * the write lock of i_data_sem, and call get_block() 617 * with create == 1 flag. 618 */ 619 down_write(&EXT4_I(inode)->i_data_sem); 620 621 /* 622 * We need to check for EXT4 here because migrate 623 * could have changed the inode type in between 624 */ 625 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 626 retval = ext4_ext_map_blocks(handle, inode, map, flags); 627 } else { 628 retval = ext4_ind_map_blocks(handle, inode, map, flags); 629 630 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 631 /* 632 * We allocated new blocks which will result in 633 * i_data's format changing. Force the migrate 634 * to fail by clearing migrate flags 635 */ 636 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 637 } 638 639 /* 640 * Update reserved blocks/metadata blocks after successful 641 * block allocation which had been deferred till now. We don't 642 * support fallocate for non extent files. So we can update 643 * reserve space here. 644 */ 645 if ((retval > 0) && 646 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 647 ext4_da_update_reserve_space(inode, retval, 1); 648 } 649 650 if (retval > 0) { 651 unsigned int status; 652 653 if (unlikely(retval != map->m_len)) { 654 ext4_warning(inode->i_sb, 655 "ES len assertion failed for inode " 656 "%lu: retval %d != map->m_len %d", 657 inode->i_ino, retval, map->m_len); 658 WARN_ON(1); 659 } 660 661 /* 662 * We have to zeroout blocks before inserting them into extent 663 * status tree. Otherwise someone could look them up there and 664 * use them before they are really zeroed. We also have to 665 * unmap metadata before zeroing as otherwise writeback can 666 * overwrite zeros with stale data from block device. 667 */ 668 if (flags & EXT4_GET_BLOCKS_ZERO && 669 map->m_flags & EXT4_MAP_MAPPED && 670 map->m_flags & EXT4_MAP_NEW) { 671 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk, 672 map->m_len); 673 ret = ext4_issue_zeroout(inode, map->m_lblk, 674 map->m_pblk, map->m_len); 675 if (ret) { 676 retval = ret; 677 goto out_sem; 678 } 679 } 680 681 /* 682 * If the extent has been zeroed out, we don't need to update 683 * extent status tree. 684 */ 685 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 686 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 687 if (ext4_es_is_written(&es)) 688 goto out_sem; 689 } 690 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 691 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 692 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 693 !(status & EXTENT_STATUS_WRITTEN) && 694 ext4_find_delalloc_range(inode, map->m_lblk, 695 map->m_lblk + map->m_len - 1)) 696 status |= EXTENT_STATUS_DELAYED; 697 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 698 map->m_pblk, status); 699 if (ret < 0) { 700 retval = ret; 701 goto out_sem; 702 } 703 } 704 705 out_sem: 706 up_write((&EXT4_I(inode)->i_data_sem)); 707 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 708 ret = check_block_validity(inode, map); 709 if (ret != 0) 710 return ret; 711 712 /* 713 * Inodes with freshly allocated blocks where contents will be 714 * visible after transaction commit must be on transaction's 715 * ordered data list. 716 */ 717 if (map->m_flags & EXT4_MAP_NEW && 718 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 719 !(flags & EXT4_GET_BLOCKS_ZERO) && 720 !ext4_is_quota_file(inode) && 721 ext4_should_order_data(inode)) { 722 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 723 ret = ext4_jbd2_inode_add_wait(handle, inode); 724 else 725 ret = ext4_jbd2_inode_add_write(handle, inode); 726 if (ret) 727 return ret; 728 } 729 } 730 return retval; 731 } 732 733 /* 734 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 735 * we have to be careful as someone else may be manipulating b_state as well. 736 */ 737 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 738 { 739 unsigned long old_state; 740 unsigned long new_state; 741 742 flags &= EXT4_MAP_FLAGS; 743 744 /* Dummy buffer_head? Set non-atomically. */ 745 if (!bh->b_page) { 746 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 747 return; 748 } 749 /* 750 * Someone else may be modifying b_state. Be careful! This is ugly but 751 * once we get rid of using bh as a container for mapping information 752 * to pass to / from get_block functions, this can go away. 753 */ 754 do { 755 old_state = READ_ONCE(bh->b_state); 756 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 757 } while (unlikely( 758 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 759 } 760 761 static int _ext4_get_block(struct inode *inode, sector_t iblock, 762 struct buffer_head *bh, int flags) 763 { 764 struct ext4_map_blocks map; 765 int ret = 0; 766 767 if (ext4_has_inline_data(inode)) 768 return -ERANGE; 769 770 map.m_lblk = iblock; 771 map.m_len = bh->b_size >> inode->i_blkbits; 772 773 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 774 flags); 775 if (ret > 0) { 776 map_bh(bh, inode->i_sb, map.m_pblk); 777 ext4_update_bh_state(bh, map.m_flags); 778 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 779 ret = 0; 780 } else if (ret == 0) { 781 /* hole case, need to fill in bh->b_size */ 782 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 783 } 784 return ret; 785 } 786 787 int ext4_get_block(struct inode *inode, sector_t iblock, 788 struct buffer_head *bh, int create) 789 { 790 return _ext4_get_block(inode, iblock, bh, 791 create ? EXT4_GET_BLOCKS_CREATE : 0); 792 } 793 794 /* 795 * Get block function used when preparing for buffered write if we require 796 * creating an unwritten extent if blocks haven't been allocated. The extent 797 * will be converted to written after the IO is complete. 798 */ 799 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 800 struct buffer_head *bh_result, int create) 801 { 802 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 803 inode->i_ino, create); 804 return _ext4_get_block(inode, iblock, bh_result, 805 EXT4_GET_BLOCKS_IO_CREATE_EXT); 806 } 807 808 /* Maximum number of blocks we map for direct IO at once. */ 809 #define DIO_MAX_BLOCKS 4096 810 811 /* 812 * Get blocks function for the cases that need to start a transaction - 813 * generally difference cases of direct IO and DAX IO. It also handles retries 814 * in case of ENOSPC. 815 */ 816 static int ext4_get_block_trans(struct inode *inode, sector_t iblock, 817 struct buffer_head *bh_result, int flags) 818 { 819 int dio_credits; 820 handle_t *handle; 821 int retries = 0; 822 int ret; 823 824 /* Trim mapping request to maximum we can map at once for DIO */ 825 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS) 826 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits; 827 dio_credits = ext4_chunk_trans_blocks(inode, 828 bh_result->b_size >> inode->i_blkbits); 829 retry: 830 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 831 if (IS_ERR(handle)) 832 return PTR_ERR(handle); 833 834 ret = _ext4_get_block(inode, iblock, bh_result, flags); 835 ext4_journal_stop(handle); 836 837 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 838 goto retry; 839 return ret; 840 } 841 842 /* Get block function for DIO reads and writes to inodes without extents */ 843 int ext4_dio_get_block(struct inode *inode, sector_t iblock, 844 struct buffer_head *bh, int create) 845 { 846 /* We don't expect handle for direct IO */ 847 WARN_ON_ONCE(ext4_journal_current_handle()); 848 849 if (!create) 850 return _ext4_get_block(inode, iblock, bh, 0); 851 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE); 852 } 853 854 /* 855 * Get block function for AIO DIO writes when we create unwritten extent if 856 * blocks are not allocated yet. The extent will be converted to written 857 * after IO is complete. 858 */ 859 static int ext4_dio_get_block_unwritten_async(struct inode *inode, 860 sector_t iblock, struct buffer_head *bh_result, int create) 861 { 862 int ret; 863 864 /* We don't expect handle for direct IO */ 865 WARN_ON_ONCE(ext4_journal_current_handle()); 866 867 ret = ext4_get_block_trans(inode, iblock, bh_result, 868 EXT4_GET_BLOCKS_IO_CREATE_EXT); 869 870 /* 871 * When doing DIO using unwritten extents, we need io_end to convert 872 * unwritten extents to written on IO completion. We allocate io_end 873 * once we spot unwritten extent and store it in b_private. Generic 874 * DIO code keeps b_private set and furthermore passes the value to 875 * our completion callback in 'private' argument. 876 */ 877 if (!ret && buffer_unwritten(bh_result)) { 878 if (!bh_result->b_private) { 879 ext4_io_end_t *io_end; 880 881 io_end = ext4_init_io_end(inode, GFP_KERNEL); 882 if (!io_end) 883 return -ENOMEM; 884 bh_result->b_private = io_end; 885 ext4_set_io_unwritten_flag(inode, io_end); 886 } 887 set_buffer_defer_completion(bh_result); 888 } 889 890 return ret; 891 } 892 893 /* 894 * Get block function for non-AIO DIO writes when we create unwritten extent if 895 * blocks are not allocated yet. The extent will be converted to written 896 * after IO is complete by ext4_direct_IO_write(). 897 */ 898 static int ext4_dio_get_block_unwritten_sync(struct inode *inode, 899 sector_t iblock, struct buffer_head *bh_result, int create) 900 { 901 int ret; 902 903 /* We don't expect handle for direct IO */ 904 WARN_ON_ONCE(ext4_journal_current_handle()); 905 906 ret = ext4_get_block_trans(inode, iblock, bh_result, 907 EXT4_GET_BLOCKS_IO_CREATE_EXT); 908 909 /* 910 * Mark inode as having pending DIO writes to unwritten extents. 911 * ext4_direct_IO_write() checks this flag and converts extents to 912 * written. 913 */ 914 if (!ret && buffer_unwritten(bh_result)) 915 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 916 917 return ret; 918 } 919 920 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock, 921 struct buffer_head *bh_result, int create) 922 { 923 int ret; 924 925 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n", 926 inode->i_ino, create); 927 /* We don't expect handle for direct IO */ 928 WARN_ON_ONCE(ext4_journal_current_handle()); 929 930 ret = _ext4_get_block(inode, iblock, bh_result, 0); 931 /* 932 * Blocks should have been preallocated! ext4_file_write_iter() checks 933 * that. 934 */ 935 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result)); 936 937 return ret; 938 } 939 940 941 /* 942 * `handle' can be NULL if create is zero 943 */ 944 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 945 ext4_lblk_t block, int map_flags) 946 { 947 struct ext4_map_blocks map; 948 struct buffer_head *bh; 949 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 950 int err; 951 952 J_ASSERT(handle != NULL || create == 0); 953 954 map.m_lblk = block; 955 map.m_len = 1; 956 err = ext4_map_blocks(handle, inode, &map, map_flags); 957 958 if (err == 0) 959 return create ? ERR_PTR(-ENOSPC) : NULL; 960 if (err < 0) 961 return ERR_PTR(err); 962 963 bh = sb_getblk(inode->i_sb, map.m_pblk); 964 if (unlikely(!bh)) 965 return ERR_PTR(-ENOMEM); 966 if (map.m_flags & EXT4_MAP_NEW) { 967 J_ASSERT(create != 0); 968 J_ASSERT(handle != NULL); 969 970 /* 971 * Now that we do not always journal data, we should 972 * keep in mind whether this should always journal the 973 * new buffer as metadata. For now, regular file 974 * writes use ext4_get_block instead, so it's not a 975 * problem. 976 */ 977 lock_buffer(bh); 978 BUFFER_TRACE(bh, "call get_create_access"); 979 err = ext4_journal_get_create_access(handle, bh); 980 if (unlikely(err)) { 981 unlock_buffer(bh); 982 goto errout; 983 } 984 if (!buffer_uptodate(bh)) { 985 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 986 set_buffer_uptodate(bh); 987 } 988 unlock_buffer(bh); 989 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 990 err = ext4_handle_dirty_metadata(handle, inode, bh); 991 if (unlikely(err)) 992 goto errout; 993 } else 994 BUFFER_TRACE(bh, "not a new buffer"); 995 return bh; 996 errout: 997 brelse(bh); 998 return ERR_PTR(err); 999 } 1000 1001 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1002 ext4_lblk_t block, int map_flags) 1003 { 1004 struct buffer_head *bh; 1005 1006 bh = ext4_getblk(handle, inode, block, map_flags); 1007 if (IS_ERR(bh)) 1008 return bh; 1009 if (!bh || buffer_uptodate(bh)) 1010 return bh; 1011 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh); 1012 wait_on_buffer(bh); 1013 if (buffer_uptodate(bh)) 1014 return bh; 1015 put_bh(bh); 1016 return ERR_PTR(-EIO); 1017 } 1018 1019 /* Read a contiguous batch of blocks. */ 1020 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 1021 bool wait, struct buffer_head **bhs) 1022 { 1023 int i, err; 1024 1025 for (i = 0; i < bh_count; i++) { 1026 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 1027 if (IS_ERR(bhs[i])) { 1028 err = PTR_ERR(bhs[i]); 1029 bh_count = i; 1030 goto out_brelse; 1031 } 1032 } 1033 1034 for (i = 0; i < bh_count; i++) 1035 /* Note that NULL bhs[i] is valid because of holes. */ 1036 if (bhs[i] && !buffer_uptodate(bhs[i])) 1037 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, 1038 &bhs[i]); 1039 1040 if (!wait) 1041 return 0; 1042 1043 for (i = 0; i < bh_count; i++) 1044 if (bhs[i]) 1045 wait_on_buffer(bhs[i]); 1046 1047 for (i = 0; i < bh_count; i++) { 1048 if (bhs[i] && !buffer_uptodate(bhs[i])) { 1049 err = -EIO; 1050 goto out_brelse; 1051 } 1052 } 1053 return 0; 1054 1055 out_brelse: 1056 for (i = 0; i < bh_count; i++) { 1057 brelse(bhs[i]); 1058 bhs[i] = NULL; 1059 } 1060 return err; 1061 } 1062 1063 int ext4_walk_page_buffers(handle_t *handle, 1064 struct buffer_head *head, 1065 unsigned from, 1066 unsigned to, 1067 int *partial, 1068 int (*fn)(handle_t *handle, 1069 struct buffer_head *bh)) 1070 { 1071 struct buffer_head *bh; 1072 unsigned block_start, block_end; 1073 unsigned blocksize = head->b_size; 1074 int err, ret = 0; 1075 struct buffer_head *next; 1076 1077 for (bh = head, block_start = 0; 1078 ret == 0 && (bh != head || !block_start); 1079 block_start = block_end, bh = next) { 1080 next = bh->b_this_page; 1081 block_end = block_start + blocksize; 1082 if (block_end <= from || block_start >= to) { 1083 if (partial && !buffer_uptodate(bh)) 1084 *partial = 1; 1085 continue; 1086 } 1087 err = (*fn)(handle, bh); 1088 if (!ret) 1089 ret = err; 1090 } 1091 return ret; 1092 } 1093 1094 /* 1095 * To preserve ordering, it is essential that the hole instantiation and 1096 * the data write be encapsulated in a single transaction. We cannot 1097 * close off a transaction and start a new one between the ext4_get_block() 1098 * and the commit_write(). So doing the jbd2_journal_start at the start of 1099 * prepare_write() is the right place. 1100 * 1101 * Also, this function can nest inside ext4_writepage(). In that case, we 1102 * *know* that ext4_writepage() has generated enough buffer credits to do the 1103 * whole page. So we won't block on the journal in that case, which is good, 1104 * because the caller may be PF_MEMALLOC. 1105 * 1106 * By accident, ext4 can be reentered when a transaction is open via 1107 * quota file writes. If we were to commit the transaction while thus 1108 * reentered, there can be a deadlock - we would be holding a quota 1109 * lock, and the commit would never complete if another thread had a 1110 * transaction open and was blocking on the quota lock - a ranking 1111 * violation. 1112 * 1113 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1114 * will _not_ run commit under these circumstances because handle->h_ref 1115 * is elevated. We'll still have enough credits for the tiny quotafile 1116 * write. 1117 */ 1118 int do_journal_get_write_access(handle_t *handle, 1119 struct buffer_head *bh) 1120 { 1121 int dirty = buffer_dirty(bh); 1122 int ret; 1123 1124 if (!buffer_mapped(bh) || buffer_freed(bh)) 1125 return 0; 1126 /* 1127 * __block_write_begin() could have dirtied some buffers. Clean 1128 * the dirty bit as jbd2_journal_get_write_access() could complain 1129 * otherwise about fs integrity issues. Setting of the dirty bit 1130 * by __block_write_begin() isn't a real problem here as we clear 1131 * the bit before releasing a page lock and thus writeback cannot 1132 * ever write the buffer. 1133 */ 1134 if (dirty) 1135 clear_buffer_dirty(bh); 1136 BUFFER_TRACE(bh, "get write access"); 1137 ret = ext4_journal_get_write_access(handle, bh); 1138 if (!ret && dirty) 1139 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1140 return ret; 1141 } 1142 1143 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1144 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1145 get_block_t *get_block) 1146 { 1147 unsigned from = pos & (PAGE_SIZE - 1); 1148 unsigned to = from + len; 1149 struct inode *inode = page->mapping->host; 1150 unsigned block_start, block_end; 1151 sector_t block; 1152 int err = 0; 1153 unsigned blocksize = inode->i_sb->s_blocksize; 1154 unsigned bbits; 1155 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; 1156 bool decrypt = false; 1157 1158 BUG_ON(!PageLocked(page)); 1159 BUG_ON(from > PAGE_SIZE); 1160 BUG_ON(to > PAGE_SIZE); 1161 BUG_ON(from > to); 1162 1163 if (!page_has_buffers(page)) 1164 create_empty_buffers(page, blocksize, 0); 1165 head = page_buffers(page); 1166 bbits = ilog2(blocksize); 1167 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1168 1169 for (bh = head, block_start = 0; bh != head || !block_start; 1170 block++, block_start = block_end, bh = bh->b_this_page) { 1171 block_end = block_start + blocksize; 1172 if (block_end <= from || block_start >= to) { 1173 if (PageUptodate(page)) { 1174 if (!buffer_uptodate(bh)) 1175 set_buffer_uptodate(bh); 1176 } 1177 continue; 1178 } 1179 if (buffer_new(bh)) 1180 clear_buffer_new(bh); 1181 if (!buffer_mapped(bh)) { 1182 WARN_ON(bh->b_size != blocksize); 1183 err = get_block(inode, block, bh, 1); 1184 if (err) 1185 break; 1186 if (buffer_new(bh)) { 1187 clean_bdev_bh_alias(bh); 1188 if (PageUptodate(page)) { 1189 clear_buffer_new(bh); 1190 set_buffer_uptodate(bh); 1191 mark_buffer_dirty(bh); 1192 continue; 1193 } 1194 if (block_end > to || block_start < from) 1195 zero_user_segments(page, to, block_end, 1196 block_start, from); 1197 continue; 1198 } 1199 } 1200 if (PageUptodate(page)) { 1201 if (!buffer_uptodate(bh)) 1202 set_buffer_uptodate(bh); 1203 continue; 1204 } 1205 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1206 !buffer_unwritten(bh) && 1207 (block_start < from || block_end > to)) { 1208 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1209 *wait_bh++ = bh; 1210 decrypt = ext4_encrypted_inode(inode) && 1211 S_ISREG(inode->i_mode); 1212 } 1213 } 1214 /* 1215 * If we issued read requests, let them complete. 1216 */ 1217 while (wait_bh > wait) { 1218 wait_on_buffer(*--wait_bh); 1219 if (!buffer_uptodate(*wait_bh)) 1220 err = -EIO; 1221 } 1222 if (unlikely(err)) 1223 page_zero_new_buffers(page, from, to); 1224 else if (decrypt) 1225 err = fscrypt_decrypt_page(page->mapping->host, page, 1226 PAGE_SIZE, 0, page->index); 1227 return err; 1228 } 1229 #endif 1230 1231 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1232 loff_t pos, unsigned len, unsigned flags, 1233 struct page **pagep, void **fsdata) 1234 { 1235 struct inode *inode = mapping->host; 1236 int ret, needed_blocks; 1237 handle_t *handle; 1238 int retries = 0; 1239 struct page *page; 1240 pgoff_t index; 1241 unsigned from, to; 1242 1243 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1244 return -EIO; 1245 1246 trace_ext4_write_begin(inode, pos, len, flags); 1247 /* 1248 * Reserve one block more for addition to orphan list in case 1249 * we allocate blocks but write fails for some reason 1250 */ 1251 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1252 index = pos >> PAGE_SHIFT; 1253 from = pos & (PAGE_SIZE - 1); 1254 to = from + len; 1255 1256 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1257 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1258 flags, pagep); 1259 if (ret < 0) 1260 return ret; 1261 if (ret == 1) 1262 return 0; 1263 } 1264 1265 /* 1266 * grab_cache_page_write_begin() can take a long time if the 1267 * system is thrashing due to memory pressure, or if the page 1268 * is being written back. So grab it first before we start 1269 * the transaction handle. This also allows us to allocate 1270 * the page (if needed) without using GFP_NOFS. 1271 */ 1272 retry_grab: 1273 page = grab_cache_page_write_begin(mapping, index, flags); 1274 if (!page) 1275 return -ENOMEM; 1276 unlock_page(page); 1277 1278 retry_journal: 1279 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1280 if (IS_ERR(handle)) { 1281 put_page(page); 1282 return PTR_ERR(handle); 1283 } 1284 1285 lock_page(page); 1286 if (page->mapping != mapping) { 1287 /* The page got truncated from under us */ 1288 unlock_page(page); 1289 put_page(page); 1290 ext4_journal_stop(handle); 1291 goto retry_grab; 1292 } 1293 /* In case writeback began while the page was unlocked */ 1294 wait_for_stable_page(page); 1295 1296 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1297 if (ext4_should_dioread_nolock(inode)) 1298 ret = ext4_block_write_begin(page, pos, len, 1299 ext4_get_block_unwritten); 1300 else 1301 ret = ext4_block_write_begin(page, pos, len, 1302 ext4_get_block); 1303 #else 1304 if (ext4_should_dioread_nolock(inode)) 1305 ret = __block_write_begin(page, pos, len, 1306 ext4_get_block_unwritten); 1307 else 1308 ret = __block_write_begin(page, pos, len, ext4_get_block); 1309 #endif 1310 if (!ret && ext4_should_journal_data(inode)) { 1311 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1312 from, to, NULL, 1313 do_journal_get_write_access); 1314 } 1315 1316 if (ret) { 1317 unlock_page(page); 1318 /* 1319 * __block_write_begin may have instantiated a few blocks 1320 * outside i_size. Trim these off again. Don't need 1321 * i_size_read because we hold i_mutex. 1322 * 1323 * Add inode to orphan list in case we crash before 1324 * truncate finishes 1325 */ 1326 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1327 ext4_orphan_add(handle, inode); 1328 1329 ext4_journal_stop(handle); 1330 if (pos + len > inode->i_size) { 1331 ext4_truncate_failed_write(inode); 1332 /* 1333 * If truncate failed early the inode might 1334 * still be on the orphan list; we need to 1335 * make sure the inode is removed from the 1336 * orphan list in that case. 1337 */ 1338 if (inode->i_nlink) 1339 ext4_orphan_del(NULL, inode); 1340 } 1341 1342 if (ret == -ENOSPC && 1343 ext4_should_retry_alloc(inode->i_sb, &retries)) 1344 goto retry_journal; 1345 put_page(page); 1346 return ret; 1347 } 1348 *pagep = page; 1349 return ret; 1350 } 1351 1352 /* For write_end() in data=journal mode */ 1353 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1354 { 1355 int ret; 1356 if (!buffer_mapped(bh) || buffer_freed(bh)) 1357 return 0; 1358 set_buffer_uptodate(bh); 1359 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1360 clear_buffer_meta(bh); 1361 clear_buffer_prio(bh); 1362 return ret; 1363 } 1364 1365 /* 1366 * We need to pick up the new inode size which generic_commit_write gave us 1367 * `file' can be NULL - eg, when called from page_symlink(). 1368 * 1369 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1370 * buffers are managed internally. 1371 */ 1372 static int ext4_write_end(struct file *file, 1373 struct address_space *mapping, 1374 loff_t pos, unsigned len, unsigned copied, 1375 struct page *page, void *fsdata) 1376 { 1377 handle_t *handle = ext4_journal_current_handle(); 1378 struct inode *inode = mapping->host; 1379 loff_t old_size = inode->i_size; 1380 int ret = 0, ret2; 1381 int i_size_changed = 0; 1382 1383 trace_ext4_write_end(inode, pos, len, copied); 1384 if (ext4_has_inline_data(inode)) { 1385 ret = ext4_write_inline_data_end(inode, pos, len, 1386 copied, page); 1387 if (ret < 0) { 1388 unlock_page(page); 1389 put_page(page); 1390 goto errout; 1391 } 1392 copied = ret; 1393 } else 1394 copied = block_write_end(file, mapping, pos, 1395 len, copied, page, fsdata); 1396 /* 1397 * it's important to update i_size while still holding page lock: 1398 * page writeout could otherwise come in and zero beyond i_size. 1399 */ 1400 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1401 unlock_page(page); 1402 put_page(page); 1403 1404 if (old_size < pos) 1405 pagecache_isize_extended(inode, old_size, pos); 1406 /* 1407 * Don't mark the inode dirty under page lock. First, it unnecessarily 1408 * makes the holding time of page lock longer. Second, it forces lock 1409 * ordering of page lock and transaction start for journaling 1410 * filesystems. 1411 */ 1412 if (i_size_changed) 1413 ext4_mark_inode_dirty(handle, inode); 1414 1415 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1416 /* if we have allocated more blocks and copied 1417 * less. We will have blocks allocated outside 1418 * inode->i_size. So truncate them 1419 */ 1420 ext4_orphan_add(handle, inode); 1421 errout: 1422 ret2 = ext4_journal_stop(handle); 1423 if (!ret) 1424 ret = ret2; 1425 1426 if (pos + len > inode->i_size) { 1427 ext4_truncate_failed_write(inode); 1428 /* 1429 * If truncate failed early the inode might still be 1430 * on the orphan list; we need to make sure the inode 1431 * is removed from the orphan list in that case. 1432 */ 1433 if (inode->i_nlink) 1434 ext4_orphan_del(NULL, inode); 1435 } 1436 1437 return ret ? ret : copied; 1438 } 1439 1440 /* 1441 * This is a private version of page_zero_new_buffers() which doesn't 1442 * set the buffer to be dirty, since in data=journalled mode we need 1443 * to call ext4_handle_dirty_metadata() instead. 1444 */ 1445 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1446 struct page *page, 1447 unsigned from, unsigned to) 1448 { 1449 unsigned int block_start = 0, block_end; 1450 struct buffer_head *head, *bh; 1451 1452 bh = head = page_buffers(page); 1453 do { 1454 block_end = block_start + bh->b_size; 1455 if (buffer_new(bh)) { 1456 if (block_end > from && block_start < to) { 1457 if (!PageUptodate(page)) { 1458 unsigned start, size; 1459 1460 start = max(from, block_start); 1461 size = min(to, block_end) - start; 1462 1463 zero_user(page, start, size); 1464 write_end_fn(handle, bh); 1465 } 1466 clear_buffer_new(bh); 1467 } 1468 } 1469 block_start = block_end; 1470 bh = bh->b_this_page; 1471 } while (bh != head); 1472 } 1473 1474 static int ext4_journalled_write_end(struct file *file, 1475 struct address_space *mapping, 1476 loff_t pos, unsigned len, unsigned copied, 1477 struct page *page, void *fsdata) 1478 { 1479 handle_t *handle = ext4_journal_current_handle(); 1480 struct inode *inode = mapping->host; 1481 loff_t old_size = inode->i_size; 1482 int ret = 0, ret2; 1483 int partial = 0; 1484 unsigned from, to; 1485 int size_changed = 0; 1486 1487 trace_ext4_journalled_write_end(inode, pos, len, copied); 1488 from = pos & (PAGE_SIZE - 1); 1489 to = from + len; 1490 1491 BUG_ON(!ext4_handle_valid(handle)); 1492 1493 if (ext4_has_inline_data(inode)) { 1494 ret = ext4_write_inline_data_end(inode, pos, len, 1495 copied, page); 1496 if (ret < 0) { 1497 unlock_page(page); 1498 put_page(page); 1499 goto errout; 1500 } 1501 copied = ret; 1502 } else if (unlikely(copied < len) && !PageUptodate(page)) { 1503 copied = 0; 1504 ext4_journalled_zero_new_buffers(handle, page, from, to); 1505 } else { 1506 if (unlikely(copied < len)) 1507 ext4_journalled_zero_new_buffers(handle, page, 1508 from + copied, to); 1509 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1510 from + copied, &partial, 1511 write_end_fn); 1512 if (!partial) 1513 SetPageUptodate(page); 1514 } 1515 size_changed = ext4_update_inode_size(inode, pos + copied); 1516 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1517 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1518 unlock_page(page); 1519 put_page(page); 1520 1521 if (old_size < pos) 1522 pagecache_isize_extended(inode, old_size, pos); 1523 1524 if (size_changed) { 1525 ret2 = ext4_mark_inode_dirty(handle, inode); 1526 if (!ret) 1527 ret = ret2; 1528 } 1529 1530 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1531 /* if we have allocated more blocks and copied 1532 * less. We will have blocks allocated outside 1533 * inode->i_size. So truncate them 1534 */ 1535 ext4_orphan_add(handle, inode); 1536 1537 errout: 1538 ret2 = ext4_journal_stop(handle); 1539 if (!ret) 1540 ret = ret2; 1541 if (pos + len > inode->i_size) { 1542 ext4_truncate_failed_write(inode); 1543 /* 1544 * If truncate failed early the inode might still be 1545 * on the orphan list; we need to make sure the inode 1546 * is removed from the orphan list in that case. 1547 */ 1548 if (inode->i_nlink) 1549 ext4_orphan_del(NULL, inode); 1550 } 1551 1552 return ret ? ret : copied; 1553 } 1554 1555 /* 1556 * Reserve space for a single cluster 1557 */ 1558 static int ext4_da_reserve_space(struct inode *inode) 1559 { 1560 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1561 struct ext4_inode_info *ei = EXT4_I(inode); 1562 int ret; 1563 1564 /* 1565 * We will charge metadata quota at writeout time; this saves 1566 * us from metadata over-estimation, though we may go over by 1567 * a small amount in the end. Here we just reserve for data. 1568 */ 1569 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1570 if (ret) 1571 return ret; 1572 1573 spin_lock(&ei->i_block_reservation_lock); 1574 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1575 spin_unlock(&ei->i_block_reservation_lock); 1576 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1577 return -ENOSPC; 1578 } 1579 ei->i_reserved_data_blocks++; 1580 trace_ext4_da_reserve_space(inode); 1581 spin_unlock(&ei->i_block_reservation_lock); 1582 1583 return 0; /* success */ 1584 } 1585 1586 static void ext4_da_release_space(struct inode *inode, int to_free) 1587 { 1588 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1589 struct ext4_inode_info *ei = EXT4_I(inode); 1590 1591 if (!to_free) 1592 return; /* Nothing to release, exit */ 1593 1594 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1595 1596 trace_ext4_da_release_space(inode, to_free); 1597 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1598 /* 1599 * if there aren't enough reserved blocks, then the 1600 * counter is messed up somewhere. Since this 1601 * function is called from invalidate page, it's 1602 * harmless to return without any action. 1603 */ 1604 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1605 "ino %lu, to_free %d with only %d reserved " 1606 "data blocks", inode->i_ino, to_free, 1607 ei->i_reserved_data_blocks); 1608 WARN_ON(1); 1609 to_free = ei->i_reserved_data_blocks; 1610 } 1611 ei->i_reserved_data_blocks -= to_free; 1612 1613 /* update fs dirty data blocks counter */ 1614 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1615 1616 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1617 1618 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1619 } 1620 1621 static void ext4_da_page_release_reservation(struct page *page, 1622 unsigned int offset, 1623 unsigned int length) 1624 { 1625 int to_release = 0, contiguous_blks = 0; 1626 struct buffer_head *head, *bh; 1627 unsigned int curr_off = 0; 1628 struct inode *inode = page->mapping->host; 1629 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1630 unsigned int stop = offset + length; 1631 int num_clusters; 1632 ext4_fsblk_t lblk; 1633 1634 BUG_ON(stop > PAGE_SIZE || stop < length); 1635 1636 head = page_buffers(page); 1637 bh = head; 1638 do { 1639 unsigned int next_off = curr_off + bh->b_size; 1640 1641 if (next_off > stop) 1642 break; 1643 1644 if ((offset <= curr_off) && (buffer_delay(bh))) { 1645 to_release++; 1646 contiguous_blks++; 1647 clear_buffer_delay(bh); 1648 } else if (contiguous_blks) { 1649 lblk = page->index << 1650 (PAGE_SHIFT - inode->i_blkbits); 1651 lblk += (curr_off >> inode->i_blkbits) - 1652 contiguous_blks; 1653 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1654 contiguous_blks = 0; 1655 } 1656 curr_off = next_off; 1657 } while ((bh = bh->b_this_page) != head); 1658 1659 if (contiguous_blks) { 1660 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits); 1661 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks; 1662 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1663 } 1664 1665 /* If we have released all the blocks belonging to a cluster, then we 1666 * need to release the reserved space for that cluster. */ 1667 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1668 while (num_clusters > 0) { 1669 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) + 1670 ((num_clusters - 1) << sbi->s_cluster_bits); 1671 if (sbi->s_cluster_ratio == 1 || 1672 !ext4_find_delalloc_cluster(inode, lblk)) 1673 ext4_da_release_space(inode, 1); 1674 1675 num_clusters--; 1676 } 1677 } 1678 1679 /* 1680 * Delayed allocation stuff 1681 */ 1682 1683 struct mpage_da_data { 1684 struct inode *inode; 1685 struct writeback_control *wbc; 1686 1687 pgoff_t first_page; /* The first page to write */ 1688 pgoff_t next_page; /* Current page to examine */ 1689 pgoff_t last_page; /* Last page to examine */ 1690 /* 1691 * Extent to map - this can be after first_page because that can be 1692 * fully mapped. We somewhat abuse m_flags to store whether the extent 1693 * is delalloc or unwritten. 1694 */ 1695 struct ext4_map_blocks map; 1696 struct ext4_io_submit io_submit; /* IO submission data */ 1697 unsigned int do_map:1; 1698 }; 1699 1700 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1701 bool invalidate) 1702 { 1703 int nr_pages, i; 1704 pgoff_t index, end; 1705 struct pagevec pvec; 1706 struct inode *inode = mpd->inode; 1707 struct address_space *mapping = inode->i_mapping; 1708 1709 /* This is necessary when next_page == 0. */ 1710 if (mpd->first_page >= mpd->next_page) 1711 return; 1712 1713 index = mpd->first_page; 1714 end = mpd->next_page - 1; 1715 if (invalidate) { 1716 ext4_lblk_t start, last; 1717 start = index << (PAGE_SHIFT - inode->i_blkbits); 1718 last = end << (PAGE_SHIFT - inode->i_blkbits); 1719 ext4_es_remove_extent(inode, start, last - start + 1); 1720 } 1721 1722 pagevec_init(&pvec, 0); 1723 while (index <= end) { 1724 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end); 1725 if (nr_pages == 0) 1726 break; 1727 for (i = 0; i < nr_pages; i++) { 1728 struct page *page = pvec.pages[i]; 1729 1730 BUG_ON(!PageLocked(page)); 1731 BUG_ON(PageWriteback(page)); 1732 if (invalidate) { 1733 if (page_mapped(page)) 1734 clear_page_dirty_for_io(page); 1735 block_invalidatepage(page, 0, PAGE_SIZE); 1736 ClearPageUptodate(page); 1737 } 1738 unlock_page(page); 1739 } 1740 pagevec_release(&pvec); 1741 } 1742 } 1743 1744 static void ext4_print_free_blocks(struct inode *inode) 1745 { 1746 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1747 struct super_block *sb = inode->i_sb; 1748 struct ext4_inode_info *ei = EXT4_I(inode); 1749 1750 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1751 EXT4_C2B(EXT4_SB(inode->i_sb), 1752 ext4_count_free_clusters(sb))); 1753 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1754 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1755 (long long) EXT4_C2B(EXT4_SB(sb), 1756 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1757 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1758 (long long) EXT4_C2B(EXT4_SB(sb), 1759 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1760 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1761 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1762 ei->i_reserved_data_blocks); 1763 return; 1764 } 1765 1766 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1767 { 1768 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1769 } 1770 1771 /* 1772 * This function is grabs code from the very beginning of 1773 * ext4_map_blocks, but assumes that the caller is from delayed write 1774 * time. This function looks up the requested blocks and sets the 1775 * buffer delay bit under the protection of i_data_sem. 1776 */ 1777 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1778 struct ext4_map_blocks *map, 1779 struct buffer_head *bh) 1780 { 1781 struct extent_status es; 1782 int retval; 1783 sector_t invalid_block = ~((sector_t) 0xffff); 1784 #ifdef ES_AGGRESSIVE_TEST 1785 struct ext4_map_blocks orig_map; 1786 1787 memcpy(&orig_map, map, sizeof(*map)); 1788 #endif 1789 1790 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1791 invalid_block = ~0; 1792 1793 map->m_flags = 0; 1794 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1795 "logical block %lu\n", inode->i_ino, map->m_len, 1796 (unsigned long) map->m_lblk); 1797 1798 /* Lookup extent status tree firstly */ 1799 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1800 if (ext4_es_is_hole(&es)) { 1801 retval = 0; 1802 down_read(&EXT4_I(inode)->i_data_sem); 1803 goto add_delayed; 1804 } 1805 1806 /* 1807 * Delayed extent could be allocated by fallocate. 1808 * So we need to check it. 1809 */ 1810 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1811 map_bh(bh, inode->i_sb, invalid_block); 1812 set_buffer_new(bh); 1813 set_buffer_delay(bh); 1814 return 0; 1815 } 1816 1817 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1818 retval = es.es_len - (iblock - es.es_lblk); 1819 if (retval > map->m_len) 1820 retval = map->m_len; 1821 map->m_len = retval; 1822 if (ext4_es_is_written(&es)) 1823 map->m_flags |= EXT4_MAP_MAPPED; 1824 else if (ext4_es_is_unwritten(&es)) 1825 map->m_flags |= EXT4_MAP_UNWRITTEN; 1826 else 1827 BUG_ON(1); 1828 1829 #ifdef ES_AGGRESSIVE_TEST 1830 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1831 #endif 1832 return retval; 1833 } 1834 1835 /* 1836 * Try to see if we can get the block without requesting a new 1837 * file system block. 1838 */ 1839 down_read(&EXT4_I(inode)->i_data_sem); 1840 if (ext4_has_inline_data(inode)) 1841 retval = 0; 1842 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1843 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1844 else 1845 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1846 1847 add_delayed: 1848 if (retval == 0) { 1849 int ret; 1850 /* 1851 * XXX: __block_prepare_write() unmaps passed block, 1852 * is it OK? 1853 */ 1854 /* 1855 * If the block was allocated from previously allocated cluster, 1856 * then we don't need to reserve it again. However we still need 1857 * to reserve metadata for every block we're going to write. 1858 */ 1859 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 || 1860 !ext4_find_delalloc_cluster(inode, map->m_lblk)) { 1861 ret = ext4_da_reserve_space(inode); 1862 if (ret) { 1863 /* not enough space to reserve */ 1864 retval = ret; 1865 goto out_unlock; 1866 } 1867 } 1868 1869 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1870 ~0, EXTENT_STATUS_DELAYED); 1871 if (ret) { 1872 retval = ret; 1873 goto out_unlock; 1874 } 1875 1876 map_bh(bh, inode->i_sb, invalid_block); 1877 set_buffer_new(bh); 1878 set_buffer_delay(bh); 1879 } else if (retval > 0) { 1880 int ret; 1881 unsigned int status; 1882 1883 if (unlikely(retval != map->m_len)) { 1884 ext4_warning(inode->i_sb, 1885 "ES len assertion failed for inode " 1886 "%lu: retval %d != map->m_len %d", 1887 inode->i_ino, retval, map->m_len); 1888 WARN_ON(1); 1889 } 1890 1891 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1892 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1893 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1894 map->m_pblk, status); 1895 if (ret != 0) 1896 retval = ret; 1897 } 1898 1899 out_unlock: 1900 up_read((&EXT4_I(inode)->i_data_sem)); 1901 1902 return retval; 1903 } 1904 1905 /* 1906 * This is a special get_block_t callback which is used by 1907 * ext4_da_write_begin(). It will either return mapped block or 1908 * reserve space for a single block. 1909 * 1910 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1911 * We also have b_blocknr = -1 and b_bdev initialized properly 1912 * 1913 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1914 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1915 * initialized properly. 1916 */ 1917 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1918 struct buffer_head *bh, int create) 1919 { 1920 struct ext4_map_blocks map; 1921 int ret = 0; 1922 1923 BUG_ON(create == 0); 1924 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1925 1926 map.m_lblk = iblock; 1927 map.m_len = 1; 1928 1929 /* 1930 * first, we need to know whether the block is allocated already 1931 * preallocated blocks are unmapped but should treated 1932 * the same as allocated blocks. 1933 */ 1934 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1935 if (ret <= 0) 1936 return ret; 1937 1938 map_bh(bh, inode->i_sb, map.m_pblk); 1939 ext4_update_bh_state(bh, map.m_flags); 1940 1941 if (buffer_unwritten(bh)) { 1942 /* A delayed write to unwritten bh should be marked 1943 * new and mapped. Mapped ensures that we don't do 1944 * get_block multiple times when we write to the same 1945 * offset and new ensures that we do proper zero out 1946 * for partial write. 1947 */ 1948 set_buffer_new(bh); 1949 set_buffer_mapped(bh); 1950 } 1951 return 0; 1952 } 1953 1954 static int bget_one(handle_t *handle, struct buffer_head *bh) 1955 { 1956 get_bh(bh); 1957 return 0; 1958 } 1959 1960 static int bput_one(handle_t *handle, struct buffer_head *bh) 1961 { 1962 put_bh(bh); 1963 return 0; 1964 } 1965 1966 static int __ext4_journalled_writepage(struct page *page, 1967 unsigned int len) 1968 { 1969 struct address_space *mapping = page->mapping; 1970 struct inode *inode = mapping->host; 1971 struct buffer_head *page_bufs = NULL; 1972 handle_t *handle = NULL; 1973 int ret = 0, err = 0; 1974 int inline_data = ext4_has_inline_data(inode); 1975 struct buffer_head *inode_bh = NULL; 1976 1977 ClearPageChecked(page); 1978 1979 if (inline_data) { 1980 BUG_ON(page->index != 0); 1981 BUG_ON(len > ext4_get_max_inline_size(inode)); 1982 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1983 if (inode_bh == NULL) 1984 goto out; 1985 } else { 1986 page_bufs = page_buffers(page); 1987 if (!page_bufs) { 1988 BUG(); 1989 goto out; 1990 } 1991 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1992 NULL, bget_one); 1993 } 1994 /* 1995 * We need to release the page lock before we start the 1996 * journal, so grab a reference so the page won't disappear 1997 * out from under us. 1998 */ 1999 get_page(page); 2000 unlock_page(page); 2001 2002 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2003 ext4_writepage_trans_blocks(inode)); 2004 if (IS_ERR(handle)) { 2005 ret = PTR_ERR(handle); 2006 put_page(page); 2007 goto out_no_pagelock; 2008 } 2009 BUG_ON(!ext4_handle_valid(handle)); 2010 2011 lock_page(page); 2012 put_page(page); 2013 if (page->mapping != mapping) { 2014 /* The page got truncated from under us */ 2015 ext4_journal_stop(handle); 2016 ret = 0; 2017 goto out; 2018 } 2019 2020 if (inline_data) { 2021 BUFFER_TRACE(inode_bh, "get write access"); 2022 ret = ext4_journal_get_write_access(handle, inode_bh); 2023 2024 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 2025 2026 } else { 2027 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2028 do_journal_get_write_access); 2029 2030 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2031 write_end_fn); 2032 } 2033 if (ret == 0) 2034 ret = err; 2035 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2036 err = ext4_journal_stop(handle); 2037 if (!ret) 2038 ret = err; 2039 2040 if (!ext4_has_inline_data(inode)) 2041 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 2042 NULL, bput_one); 2043 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 2044 out: 2045 unlock_page(page); 2046 out_no_pagelock: 2047 brelse(inode_bh); 2048 return ret; 2049 } 2050 2051 /* 2052 * Note that we don't need to start a transaction unless we're journaling data 2053 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2054 * need to file the inode to the transaction's list in ordered mode because if 2055 * we are writing back data added by write(), the inode is already there and if 2056 * we are writing back data modified via mmap(), no one guarantees in which 2057 * transaction the data will hit the disk. In case we are journaling data, we 2058 * cannot start transaction directly because transaction start ranks above page 2059 * lock so we have to do some magic. 2060 * 2061 * This function can get called via... 2062 * - ext4_writepages after taking page lock (have journal handle) 2063 * - journal_submit_inode_data_buffers (no journal handle) 2064 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 2065 * - grab_page_cache when doing write_begin (have journal handle) 2066 * 2067 * We don't do any block allocation in this function. If we have page with 2068 * multiple blocks we need to write those buffer_heads that are mapped. This 2069 * is important for mmaped based write. So if we do with blocksize 1K 2070 * truncate(f, 1024); 2071 * a = mmap(f, 0, 4096); 2072 * a[0] = 'a'; 2073 * truncate(f, 4096); 2074 * we have in the page first buffer_head mapped via page_mkwrite call back 2075 * but other buffer_heads would be unmapped but dirty (dirty done via the 2076 * do_wp_page). So writepage should write the first block. If we modify 2077 * the mmap area beyond 1024 we will again get a page_fault and the 2078 * page_mkwrite callback will do the block allocation and mark the 2079 * buffer_heads mapped. 2080 * 2081 * We redirty the page if we have any buffer_heads that is either delay or 2082 * unwritten in the page. 2083 * 2084 * We can get recursively called as show below. 2085 * 2086 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2087 * ext4_writepage() 2088 * 2089 * But since we don't do any block allocation we should not deadlock. 2090 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2091 */ 2092 static int ext4_writepage(struct page *page, 2093 struct writeback_control *wbc) 2094 { 2095 int ret = 0; 2096 loff_t size; 2097 unsigned int len; 2098 struct buffer_head *page_bufs = NULL; 2099 struct inode *inode = page->mapping->host; 2100 struct ext4_io_submit io_submit; 2101 bool keep_towrite = false; 2102 2103 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 2104 ext4_invalidatepage(page, 0, PAGE_SIZE); 2105 unlock_page(page); 2106 return -EIO; 2107 } 2108 2109 trace_ext4_writepage(page); 2110 size = i_size_read(inode); 2111 if (page->index == size >> PAGE_SHIFT) 2112 len = size & ~PAGE_MASK; 2113 else 2114 len = PAGE_SIZE; 2115 2116 page_bufs = page_buffers(page); 2117 /* 2118 * We cannot do block allocation or other extent handling in this 2119 * function. If there are buffers needing that, we have to redirty 2120 * the page. But we may reach here when we do a journal commit via 2121 * journal_submit_inode_data_buffers() and in that case we must write 2122 * allocated buffers to achieve data=ordered mode guarantees. 2123 * 2124 * Also, if there is only one buffer per page (the fs block 2125 * size == the page size), if one buffer needs block 2126 * allocation or needs to modify the extent tree to clear the 2127 * unwritten flag, we know that the page can't be written at 2128 * all, so we might as well refuse the write immediately. 2129 * Unfortunately if the block size != page size, we can't as 2130 * easily detect this case using ext4_walk_page_buffers(), but 2131 * for the extremely common case, this is an optimization that 2132 * skips a useless round trip through ext4_bio_write_page(). 2133 */ 2134 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2135 ext4_bh_delay_or_unwritten)) { 2136 redirty_page_for_writepage(wbc, page); 2137 if ((current->flags & PF_MEMALLOC) || 2138 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2139 /* 2140 * For memory cleaning there's no point in writing only 2141 * some buffers. So just bail out. Warn if we came here 2142 * from direct reclaim. 2143 */ 2144 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2145 == PF_MEMALLOC); 2146 unlock_page(page); 2147 return 0; 2148 } 2149 keep_towrite = true; 2150 } 2151 2152 if (PageChecked(page) && ext4_should_journal_data(inode)) 2153 /* 2154 * It's mmapped pagecache. Add buffers and journal it. There 2155 * doesn't seem much point in redirtying the page here. 2156 */ 2157 return __ext4_journalled_writepage(page, len); 2158 2159 ext4_io_submit_init(&io_submit, wbc); 2160 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2161 if (!io_submit.io_end) { 2162 redirty_page_for_writepage(wbc, page); 2163 unlock_page(page); 2164 return -ENOMEM; 2165 } 2166 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 2167 ext4_io_submit(&io_submit); 2168 /* Drop io_end reference we got from init */ 2169 ext4_put_io_end_defer(io_submit.io_end); 2170 return ret; 2171 } 2172 2173 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2174 { 2175 int len; 2176 loff_t size; 2177 int err; 2178 2179 BUG_ON(page->index != mpd->first_page); 2180 clear_page_dirty_for_io(page); 2181 /* 2182 * We have to be very careful here! Nothing protects writeback path 2183 * against i_size changes and the page can be writeably mapped into 2184 * page tables. So an application can be growing i_size and writing 2185 * data through mmap while writeback runs. clear_page_dirty_for_io() 2186 * write-protects our page in page tables and the page cannot get 2187 * written to again until we release page lock. So only after 2188 * clear_page_dirty_for_io() we are safe to sample i_size for 2189 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2190 * on the barrier provided by TestClearPageDirty in 2191 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2192 * after page tables are updated. 2193 */ 2194 size = i_size_read(mpd->inode); 2195 if (page->index == size >> PAGE_SHIFT) 2196 len = size & ~PAGE_MASK; 2197 else 2198 len = PAGE_SIZE; 2199 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 2200 if (!err) 2201 mpd->wbc->nr_to_write--; 2202 mpd->first_page++; 2203 2204 return err; 2205 } 2206 2207 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 2208 2209 /* 2210 * mballoc gives us at most this number of blocks... 2211 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2212 * The rest of mballoc seems to handle chunks up to full group size. 2213 */ 2214 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2215 2216 /* 2217 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2218 * 2219 * @mpd - extent of blocks 2220 * @lblk - logical number of the block in the file 2221 * @bh - buffer head we want to add to the extent 2222 * 2223 * The function is used to collect contig. blocks in the same state. If the 2224 * buffer doesn't require mapping for writeback and we haven't started the 2225 * extent of buffers to map yet, the function returns 'true' immediately - the 2226 * caller can write the buffer right away. Otherwise the function returns true 2227 * if the block has been added to the extent, false if the block couldn't be 2228 * added. 2229 */ 2230 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2231 struct buffer_head *bh) 2232 { 2233 struct ext4_map_blocks *map = &mpd->map; 2234 2235 /* Buffer that doesn't need mapping for writeback? */ 2236 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2237 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2238 /* So far no extent to map => we write the buffer right away */ 2239 if (map->m_len == 0) 2240 return true; 2241 return false; 2242 } 2243 2244 /* First block in the extent? */ 2245 if (map->m_len == 0) { 2246 /* We cannot map unless handle is started... */ 2247 if (!mpd->do_map) 2248 return false; 2249 map->m_lblk = lblk; 2250 map->m_len = 1; 2251 map->m_flags = bh->b_state & BH_FLAGS; 2252 return true; 2253 } 2254 2255 /* Don't go larger than mballoc is willing to allocate */ 2256 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2257 return false; 2258 2259 /* Can we merge the block to our big extent? */ 2260 if (lblk == map->m_lblk + map->m_len && 2261 (bh->b_state & BH_FLAGS) == map->m_flags) { 2262 map->m_len++; 2263 return true; 2264 } 2265 return false; 2266 } 2267 2268 /* 2269 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2270 * 2271 * @mpd - extent of blocks for mapping 2272 * @head - the first buffer in the page 2273 * @bh - buffer we should start processing from 2274 * @lblk - logical number of the block in the file corresponding to @bh 2275 * 2276 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2277 * the page for IO if all buffers in this page were mapped and there's no 2278 * accumulated extent of buffers to map or add buffers in the page to the 2279 * extent of buffers to map. The function returns 1 if the caller can continue 2280 * by processing the next page, 0 if it should stop adding buffers to the 2281 * extent to map because we cannot extend it anymore. It can also return value 2282 * < 0 in case of error during IO submission. 2283 */ 2284 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2285 struct buffer_head *head, 2286 struct buffer_head *bh, 2287 ext4_lblk_t lblk) 2288 { 2289 struct inode *inode = mpd->inode; 2290 int err; 2291 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2292 >> inode->i_blkbits; 2293 2294 do { 2295 BUG_ON(buffer_locked(bh)); 2296 2297 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2298 /* Found extent to map? */ 2299 if (mpd->map.m_len) 2300 return 0; 2301 /* Buffer needs mapping and handle is not started? */ 2302 if (!mpd->do_map) 2303 return 0; 2304 /* Everything mapped so far and we hit EOF */ 2305 break; 2306 } 2307 } while (lblk++, (bh = bh->b_this_page) != head); 2308 /* So far everything mapped? Submit the page for IO. */ 2309 if (mpd->map.m_len == 0) { 2310 err = mpage_submit_page(mpd, head->b_page); 2311 if (err < 0) 2312 return err; 2313 } 2314 return lblk < blocks; 2315 } 2316 2317 /* 2318 * mpage_map_buffers - update buffers corresponding to changed extent and 2319 * submit fully mapped pages for IO 2320 * 2321 * @mpd - description of extent to map, on return next extent to map 2322 * 2323 * Scan buffers corresponding to changed extent (we expect corresponding pages 2324 * to be already locked) and update buffer state according to new extent state. 2325 * We map delalloc buffers to their physical location, clear unwritten bits, 2326 * and mark buffers as uninit when we perform writes to unwritten extents 2327 * and do extent conversion after IO is finished. If the last page is not fully 2328 * mapped, we update @map to the next extent in the last page that needs 2329 * mapping. Otherwise we submit the page for IO. 2330 */ 2331 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2332 { 2333 struct pagevec pvec; 2334 int nr_pages, i; 2335 struct inode *inode = mpd->inode; 2336 struct buffer_head *head, *bh; 2337 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2338 pgoff_t start, end; 2339 ext4_lblk_t lblk; 2340 sector_t pblock; 2341 int err; 2342 2343 start = mpd->map.m_lblk >> bpp_bits; 2344 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2345 lblk = start << bpp_bits; 2346 pblock = mpd->map.m_pblk; 2347 2348 pagevec_init(&pvec, 0); 2349 while (start <= end) { 2350 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, 2351 &start, end); 2352 if (nr_pages == 0) 2353 break; 2354 for (i = 0; i < nr_pages; i++) { 2355 struct page *page = pvec.pages[i]; 2356 2357 bh = head = page_buffers(page); 2358 do { 2359 if (lblk < mpd->map.m_lblk) 2360 continue; 2361 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2362 /* 2363 * Buffer after end of mapped extent. 2364 * Find next buffer in the page to map. 2365 */ 2366 mpd->map.m_len = 0; 2367 mpd->map.m_flags = 0; 2368 /* 2369 * FIXME: If dioread_nolock supports 2370 * blocksize < pagesize, we need to make 2371 * sure we add size mapped so far to 2372 * io_end->size as the following call 2373 * can submit the page for IO. 2374 */ 2375 err = mpage_process_page_bufs(mpd, head, 2376 bh, lblk); 2377 pagevec_release(&pvec); 2378 if (err > 0) 2379 err = 0; 2380 return err; 2381 } 2382 if (buffer_delay(bh)) { 2383 clear_buffer_delay(bh); 2384 bh->b_blocknr = pblock++; 2385 } 2386 clear_buffer_unwritten(bh); 2387 } while (lblk++, (bh = bh->b_this_page) != head); 2388 2389 /* 2390 * FIXME: This is going to break if dioread_nolock 2391 * supports blocksize < pagesize as we will try to 2392 * convert potentially unmapped parts of inode. 2393 */ 2394 mpd->io_submit.io_end->size += PAGE_SIZE; 2395 /* Page fully mapped - let IO run! */ 2396 err = mpage_submit_page(mpd, page); 2397 if (err < 0) { 2398 pagevec_release(&pvec); 2399 return err; 2400 } 2401 } 2402 pagevec_release(&pvec); 2403 } 2404 /* Extent fully mapped and matches with page boundary. We are done. */ 2405 mpd->map.m_len = 0; 2406 mpd->map.m_flags = 0; 2407 return 0; 2408 } 2409 2410 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2411 { 2412 struct inode *inode = mpd->inode; 2413 struct ext4_map_blocks *map = &mpd->map; 2414 int get_blocks_flags; 2415 int err, dioread_nolock; 2416 2417 trace_ext4_da_write_pages_extent(inode, map); 2418 /* 2419 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2420 * to convert an unwritten extent to be initialized (in the case 2421 * where we have written into one or more preallocated blocks). It is 2422 * possible that we're going to need more metadata blocks than 2423 * previously reserved. However we must not fail because we're in 2424 * writeback and there is nothing we can do about it so it might result 2425 * in data loss. So use reserved blocks to allocate metadata if 2426 * possible. 2427 * 2428 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2429 * the blocks in question are delalloc blocks. This indicates 2430 * that the blocks and quotas has already been checked when 2431 * the data was copied into the page cache. 2432 */ 2433 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2434 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2435 EXT4_GET_BLOCKS_IO_SUBMIT; 2436 dioread_nolock = ext4_should_dioread_nolock(inode); 2437 if (dioread_nolock) 2438 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2439 if (map->m_flags & (1 << BH_Delay)) 2440 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2441 2442 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2443 if (err < 0) 2444 return err; 2445 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2446 if (!mpd->io_submit.io_end->handle && 2447 ext4_handle_valid(handle)) { 2448 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2449 handle->h_rsv_handle = NULL; 2450 } 2451 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2452 } 2453 2454 BUG_ON(map->m_len == 0); 2455 if (map->m_flags & EXT4_MAP_NEW) { 2456 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk, 2457 map->m_len); 2458 } 2459 return 0; 2460 } 2461 2462 /* 2463 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2464 * mpd->len and submit pages underlying it for IO 2465 * 2466 * @handle - handle for journal operations 2467 * @mpd - extent to map 2468 * @give_up_on_write - we set this to true iff there is a fatal error and there 2469 * is no hope of writing the data. The caller should discard 2470 * dirty pages to avoid infinite loops. 2471 * 2472 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2473 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2474 * them to initialized or split the described range from larger unwritten 2475 * extent. Note that we need not map all the described range since allocation 2476 * can return less blocks or the range is covered by more unwritten extents. We 2477 * cannot map more because we are limited by reserved transaction credits. On 2478 * the other hand we always make sure that the last touched page is fully 2479 * mapped so that it can be written out (and thus forward progress is 2480 * guaranteed). After mapping we submit all mapped pages for IO. 2481 */ 2482 static int mpage_map_and_submit_extent(handle_t *handle, 2483 struct mpage_da_data *mpd, 2484 bool *give_up_on_write) 2485 { 2486 struct inode *inode = mpd->inode; 2487 struct ext4_map_blocks *map = &mpd->map; 2488 int err; 2489 loff_t disksize; 2490 int progress = 0; 2491 2492 mpd->io_submit.io_end->offset = 2493 ((loff_t)map->m_lblk) << inode->i_blkbits; 2494 do { 2495 err = mpage_map_one_extent(handle, mpd); 2496 if (err < 0) { 2497 struct super_block *sb = inode->i_sb; 2498 2499 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2500 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2501 goto invalidate_dirty_pages; 2502 /* 2503 * Let the uper layers retry transient errors. 2504 * In the case of ENOSPC, if ext4_count_free_blocks() 2505 * is non-zero, a commit should free up blocks. 2506 */ 2507 if ((err == -ENOMEM) || 2508 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2509 if (progress) 2510 goto update_disksize; 2511 return err; 2512 } 2513 ext4_msg(sb, KERN_CRIT, 2514 "Delayed block allocation failed for " 2515 "inode %lu at logical offset %llu with" 2516 " max blocks %u with error %d", 2517 inode->i_ino, 2518 (unsigned long long)map->m_lblk, 2519 (unsigned)map->m_len, -err); 2520 ext4_msg(sb, KERN_CRIT, 2521 "This should not happen!! Data will " 2522 "be lost\n"); 2523 if (err == -ENOSPC) 2524 ext4_print_free_blocks(inode); 2525 invalidate_dirty_pages: 2526 *give_up_on_write = true; 2527 return err; 2528 } 2529 progress = 1; 2530 /* 2531 * Update buffer state, submit mapped pages, and get us new 2532 * extent to map 2533 */ 2534 err = mpage_map_and_submit_buffers(mpd); 2535 if (err < 0) 2536 goto update_disksize; 2537 } while (map->m_len); 2538 2539 update_disksize: 2540 /* 2541 * Update on-disk size after IO is submitted. Races with 2542 * truncate are avoided by checking i_size under i_data_sem. 2543 */ 2544 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2545 if (disksize > EXT4_I(inode)->i_disksize) { 2546 int err2; 2547 loff_t i_size; 2548 2549 down_write(&EXT4_I(inode)->i_data_sem); 2550 i_size = i_size_read(inode); 2551 if (disksize > i_size) 2552 disksize = i_size; 2553 if (disksize > EXT4_I(inode)->i_disksize) 2554 EXT4_I(inode)->i_disksize = disksize; 2555 up_write(&EXT4_I(inode)->i_data_sem); 2556 err2 = ext4_mark_inode_dirty(handle, inode); 2557 if (err2) 2558 ext4_error(inode->i_sb, 2559 "Failed to mark inode %lu dirty", 2560 inode->i_ino); 2561 if (!err) 2562 err = err2; 2563 } 2564 return err; 2565 } 2566 2567 /* 2568 * Calculate the total number of credits to reserve for one writepages 2569 * iteration. This is called from ext4_writepages(). We map an extent of 2570 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2571 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2572 * bpp - 1 blocks in bpp different extents. 2573 */ 2574 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2575 { 2576 int bpp = ext4_journal_blocks_per_page(inode); 2577 2578 return ext4_meta_trans_blocks(inode, 2579 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2580 } 2581 2582 /* 2583 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2584 * and underlying extent to map 2585 * 2586 * @mpd - where to look for pages 2587 * 2588 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2589 * IO immediately. When we find a page which isn't mapped we start accumulating 2590 * extent of buffers underlying these pages that needs mapping (formed by 2591 * either delayed or unwritten buffers). We also lock the pages containing 2592 * these buffers. The extent found is returned in @mpd structure (starting at 2593 * mpd->lblk with length mpd->len blocks). 2594 * 2595 * Note that this function can attach bios to one io_end structure which are 2596 * neither logically nor physically contiguous. Although it may seem as an 2597 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2598 * case as we need to track IO to all buffers underlying a page in one io_end. 2599 */ 2600 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2601 { 2602 struct address_space *mapping = mpd->inode->i_mapping; 2603 struct pagevec pvec; 2604 unsigned int nr_pages; 2605 long left = mpd->wbc->nr_to_write; 2606 pgoff_t index = mpd->first_page; 2607 pgoff_t end = mpd->last_page; 2608 int tag; 2609 int i, err = 0; 2610 int blkbits = mpd->inode->i_blkbits; 2611 ext4_lblk_t lblk; 2612 struct buffer_head *head; 2613 2614 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2615 tag = PAGECACHE_TAG_TOWRITE; 2616 else 2617 tag = PAGECACHE_TAG_DIRTY; 2618 2619 pagevec_init(&pvec, 0); 2620 mpd->map.m_len = 0; 2621 mpd->next_page = index; 2622 while (index <= end) { 2623 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2624 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2625 if (nr_pages == 0) 2626 goto out; 2627 2628 for (i = 0; i < nr_pages; i++) { 2629 struct page *page = pvec.pages[i]; 2630 2631 /* 2632 * At this point, the page may be truncated or 2633 * invalidated (changing page->mapping to NULL), or 2634 * even swizzled back from swapper_space to tmpfs file 2635 * mapping. However, page->index will not change 2636 * because we have a reference on the page. 2637 */ 2638 if (page->index > end) 2639 goto out; 2640 2641 /* 2642 * Accumulated enough dirty pages? This doesn't apply 2643 * to WB_SYNC_ALL mode. For integrity sync we have to 2644 * keep going because someone may be concurrently 2645 * dirtying pages, and we might have synced a lot of 2646 * newly appeared dirty pages, but have not synced all 2647 * of the old dirty pages. 2648 */ 2649 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2650 goto out; 2651 2652 /* If we can't merge this page, we are done. */ 2653 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2654 goto out; 2655 2656 lock_page(page); 2657 /* 2658 * If the page is no longer dirty, or its mapping no 2659 * longer corresponds to inode we are writing (which 2660 * means it has been truncated or invalidated), or the 2661 * page is already under writeback and we are not doing 2662 * a data integrity writeback, skip the page 2663 */ 2664 if (!PageDirty(page) || 2665 (PageWriteback(page) && 2666 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2667 unlikely(page->mapping != mapping)) { 2668 unlock_page(page); 2669 continue; 2670 } 2671 2672 wait_on_page_writeback(page); 2673 BUG_ON(PageWriteback(page)); 2674 2675 if (mpd->map.m_len == 0) 2676 mpd->first_page = page->index; 2677 mpd->next_page = page->index + 1; 2678 /* Add all dirty buffers to mpd */ 2679 lblk = ((ext4_lblk_t)page->index) << 2680 (PAGE_SHIFT - blkbits); 2681 head = page_buffers(page); 2682 err = mpage_process_page_bufs(mpd, head, head, lblk); 2683 if (err <= 0) 2684 goto out; 2685 err = 0; 2686 left--; 2687 } 2688 pagevec_release(&pvec); 2689 cond_resched(); 2690 } 2691 return 0; 2692 out: 2693 pagevec_release(&pvec); 2694 return err; 2695 } 2696 2697 static int __writepage(struct page *page, struct writeback_control *wbc, 2698 void *data) 2699 { 2700 struct address_space *mapping = data; 2701 int ret = ext4_writepage(page, wbc); 2702 mapping_set_error(mapping, ret); 2703 return ret; 2704 } 2705 2706 static int ext4_writepages(struct address_space *mapping, 2707 struct writeback_control *wbc) 2708 { 2709 pgoff_t writeback_index = 0; 2710 long nr_to_write = wbc->nr_to_write; 2711 int range_whole = 0; 2712 int cycled = 1; 2713 handle_t *handle = NULL; 2714 struct mpage_da_data mpd; 2715 struct inode *inode = mapping->host; 2716 int needed_blocks, rsv_blocks = 0, ret = 0; 2717 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2718 bool done; 2719 struct blk_plug plug; 2720 bool give_up_on_write = false; 2721 2722 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2723 return -EIO; 2724 2725 percpu_down_read(&sbi->s_journal_flag_rwsem); 2726 trace_ext4_writepages(inode, wbc); 2727 2728 if (dax_mapping(mapping)) { 2729 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, 2730 wbc); 2731 goto out_writepages; 2732 } 2733 2734 /* 2735 * No pages to write? This is mainly a kludge to avoid starting 2736 * a transaction for special inodes like journal inode on last iput() 2737 * because that could violate lock ordering on umount 2738 */ 2739 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2740 goto out_writepages; 2741 2742 if (ext4_should_journal_data(inode)) { 2743 struct blk_plug plug; 2744 2745 blk_start_plug(&plug); 2746 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2747 blk_finish_plug(&plug); 2748 goto out_writepages; 2749 } 2750 2751 /* 2752 * If the filesystem has aborted, it is read-only, so return 2753 * right away instead of dumping stack traces later on that 2754 * will obscure the real source of the problem. We test 2755 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2756 * the latter could be true if the filesystem is mounted 2757 * read-only, and in that case, ext4_writepages should 2758 * *never* be called, so if that ever happens, we would want 2759 * the stack trace. 2760 */ 2761 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2762 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2763 ret = -EROFS; 2764 goto out_writepages; 2765 } 2766 2767 if (ext4_should_dioread_nolock(inode)) { 2768 /* 2769 * We may need to convert up to one extent per block in 2770 * the page and we may dirty the inode. 2771 */ 2772 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits); 2773 } 2774 2775 /* 2776 * If we have inline data and arrive here, it means that 2777 * we will soon create the block for the 1st page, so 2778 * we'd better clear the inline data here. 2779 */ 2780 if (ext4_has_inline_data(inode)) { 2781 /* Just inode will be modified... */ 2782 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2783 if (IS_ERR(handle)) { 2784 ret = PTR_ERR(handle); 2785 goto out_writepages; 2786 } 2787 BUG_ON(ext4_test_inode_state(inode, 2788 EXT4_STATE_MAY_INLINE_DATA)); 2789 ext4_destroy_inline_data(handle, inode); 2790 ext4_journal_stop(handle); 2791 } 2792 2793 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2794 range_whole = 1; 2795 2796 if (wbc->range_cyclic) { 2797 writeback_index = mapping->writeback_index; 2798 if (writeback_index) 2799 cycled = 0; 2800 mpd.first_page = writeback_index; 2801 mpd.last_page = -1; 2802 } else { 2803 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2804 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2805 } 2806 2807 mpd.inode = inode; 2808 mpd.wbc = wbc; 2809 ext4_io_submit_init(&mpd.io_submit, wbc); 2810 retry: 2811 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2812 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2813 done = false; 2814 blk_start_plug(&plug); 2815 2816 /* 2817 * First writeback pages that don't need mapping - we can avoid 2818 * starting a transaction unnecessarily and also avoid being blocked 2819 * in the block layer on device congestion while having transaction 2820 * started. 2821 */ 2822 mpd.do_map = 0; 2823 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2824 if (!mpd.io_submit.io_end) { 2825 ret = -ENOMEM; 2826 goto unplug; 2827 } 2828 ret = mpage_prepare_extent_to_map(&mpd); 2829 /* Submit prepared bio */ 2830 ext4_io_submit(&mpd.io_submit); 2831 ext4_put_io_end_defer(mpd.io_submit.io_end); 2832 mpd.io_submit.io_end = NULL; 2833 /* Unlock pages we didn't use */ 2834 mpage_release_unused_pages(&mpd, false); 2835 if (ret < 0) 2836 goto unplug; 2837 2838 while (!done && mpd.first_page <= mpd.last_page) { 2839 /* For each extent of pages we use new io_end */ 2840 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2841 if (!mpd.io_submit.io_end) { 2842 ret = -ENOMEM; 2843 break; 2844 } 2845 2846 /* 2847 * We have two constraints: We find one extent to map and we 2848 * must always write out whole page (makes a difference when 2849 * blocksize < pagesize) so that we don't block on IO when we 2850 * try to write out the rest of the page. Journalled mode is 2851 * not supported by delalloc. 2852 */ 2853 BUG_ON(ext4_should_journal_data(inode)); 2854 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2855 2856 /* start a new transaction */ 2857 handle = ext4_journal_start_with_reserve(inode, 2858 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2859 if (IS_ERR(handle)) { 2860 ret = PTR_ERR(handle); 2861 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2862 "%ld pages, ino %lu; err %d", __func__, 2863 wbc->nr_to_write, inode->i_ino, ret); 2864 /* Release allocated io_end */ 2865 ext4_put_io_end(mpd.io_submit.io_end); 2866 mpd.io_submit.io_end = NULL; 2867 break; 2868 } 2869 mpd.do_map = 1; 2870 2871 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2872 ret = mpage_prepare_extent_to_map(&mpd); 2873 if (!ret) { 2874 if (mpd.map.m_len) 2875 ret = mpage_map_and_submit_extent(handle, &mpd, 2876 &give_up_on_write); 2877 else { 2878 /* 2879 * We scanned the whole range (or exhausted 2880 * nr_to_write), submitted what was mapped and 2881 * didn't find anything needing mapping. We are 2882 * done. 2883 */ 2884 done = true; 2885 } 2886 } 2887 /* 2888 * Caution: If the handle is synchronous, 2889 * ext4_journal_stop() can wait for transaction commit 2890 * to finish which may depend on writeback of pages to 2891 * complete or on page lock to be released. In that 2892 * case, we have to wait until after after we have 2893 * submitted all the IO, released page locks we hold, 2894 * and dropped io_end reference (for extent conversion 2895 * to be able to complete) before stopping the handle. 2896 */ 2897 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2898 ext4_journal_stop(handle); 2899 handle = NULL; 2900 mpd.do_map = 0; 2901 } 2902 /* Submit prepared bio */ 2903 ext4_io_submit(&mpd.io_submit); 2904 /* Unlock pages we didn't use */ 2905 mpage_release_unused_pages(&mpd, give_up_on_write); 2906 /* 2907 * Drop our io_end reference we got from init. We have 2908 * to be careful and use deferred io_end finishing if 2909 * we are still holding the transaction as we can 2910 * release the last reference to io_end which may end 2911 * up doing unwritten extent conversion. 2912 */ 2913 if (handle) { 2914 ext4_put_io_end_defer(mpd.io_submit.io_end); 2915 ext4_journal_stop(handle); 2916 } else 2917 ext4_put_io_end(mpd.io_submit.io_end); 2918 mpd.io_submit.io_end = NULL; 2919 2920 if (ret == -ENOSPC && sbi->s_journal) { 2921 /* 2922 * Commit the transaction which would 2923 * free blocks released in the transaction 2924 * and try again 2925 */ 2926 jbd2_journal_force_commit_nested(sbi->s_journal); 2927 ret = 0; 2928 continue; 2929 } 2930 /* Fatal error - ENOMEM, EIO... */ 2931 if (ret) 2932 break; 2933 } 2934 unplug: 2935 blk_finish_plug(&plug); 2936 if (!ret && !cycled && wbc->nr_to_write > 0) { 2937 cycled = 1; 2938 mpd.last_page = writeback_index - 1; 2939 mpd.first_page = 0; 2940 goto retry; 2941 } 2942 2943 /* Update index */ 2944 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2945 /* 2946 * Set the writeback_index so that range_cyclic 2947 * mode will write it back later 2948 */ 2949 mapping->writeback_index = mpd.first_page; 2950 2951 out_writepages: 2952 trace_ext4_writepages_result(inode, wbc, ret, 2953 nr_to_write - wbc->nr_to_write); 2954 percpu_up_read(&sbi->s_journal_flag_rwsem); 2955 return ret; 2956 } 2957 2958 static int ext4_nonda_switch(struct super_block *sb) 2959 { 2960 s64 free_clusters, dirty_clusters; 2961 struct ext4_sb_info *sbi = EXT4_SB(sb); 2962 2963 /* 2964 * switch to non delalloc mode if we are running low 2965 * on free block. The free block accounting via percpu 2966 * counters can get slightly wrong with percpu_counter_batch getting 2967 * accumulated on each CPU without updating global counters 2968 * Delalloc need an accurate free block accounting. So switch 2969 * to non delalloc when we are near to error range. 2970 */ 2971 free_clusters = 2972 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2973 dirty_clusters = 2974 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2975 /* 2976 * Start pushing delalloc when 1/2 of free blocks are dirty. 2977 */ 2978 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2979 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2980 2981 if (2 * free_clusters < 3 * dirty_clusters || 2982 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2983 /* 2984 * free block count is less than 150% of dirty blocks 2985 * or free blocks is less than watermark 2986 */ 2987 return 1; 2988 } 2989 return 0; 2990 } 2991 2992 /* We always reserve for an inode update; the superblock could be there too */ 2993 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2994 { 2995 if (likely(ext4_has_feature_large_file(inode->i_sb))) 2996 return 1; 2997 2998 if (pos + len <= 0x7fffffffULL) 2999 return 1; 3000 3001 /* We might need to update the superblock to set LARGE_FILE */ 3002 return 2; 3003 } 3004 3005 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 3006 loff_t pos, unsigned len, unsigned flags, 3007 struct page **pagep, void **fsdata) 3008 { 3009 int ret, retries = 0; 3010 struct page *page; 3011 pgoff_t index; 3012 struct inode *inode = mapping->host; 3013 handle_t *handle; 3014 3015 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 3016 return -EIO; 3017 3018 index = pos >> PAGE_SHIFT; 3019 3020 if (ext4_nonda_switch(inode->i_sb) || 3021 S_ISLNK(inode->i_mode)) { 3022 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 3023 return ext4_write_begin(file, mapping, pos, 3024 len, flags, pagep, fsdata); 3025 } 3026 *fsdata = (void *)0; 3027 trace_ext4_da_write_begin(inode, pos, len, flags); 3028 3029 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 3030 ret = ext4_da_write_inline_data_begin(mapping, inode, 3031 pos, len, flags, 3032 pagep, fsdata); 3033 if (ret < 0) 3034 return ret; 3035 if (ret == 1) 3036 return 0; 3037 } 3038 3039 /* 3040 * grab_cache_page_write_begin() can take a long time if the 3041 * system is thrashing due to memory pressure, or if the page 3042 * is being written back. So grab it first before we start 3043 * the transaction handle. This also allows us to allocate 3044 * the page (if needed) without using GFP_NOFS. 3045 */ 3046 retry_grab: 3047 page = grab_cache_page_write_begin(mapping, index, flags); 3048 if (!page) 3049 return -ENOMEM; 3050 unlock_page(page); 3051 3052 /* 3053 * With delayed allocation, we don't log the i_disksize update 3054 * if there is delayed block allocation. But we still need 3055 * to journalling the i_disksize update if writes to the end 3056 * of file which has an already mapped buffer. 3057 */ 3058 retry_journal: 3059 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 3060 ext4_da_write_credits(inode, pos, len)); 3061 if (IS_ERR(handle)) { 3062 put_page(page); 3063 return PTR_ERR(handle); 3064 } 3065 3066 lock_page(page); 3067 if (page->mapping != mapping) { 3068 /* The page got truncated from under us */ 3069 unlock_page(page); 3070 put_page(page); 3071 ext4_journal_stop(handle); 3072 goto retry_grab; 3073 } 3074 /* In case writeback began while the page was unlocked */ 3075 wait_for_stable_page(page); 3076 3077 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3078 ret = ext4_block_write_begin(page, pos, len, 3079 ext4_da_get_block_prep); 3080 #else 3081 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3082 #endif 3083 if (ret < 0) { 3084 unlock_page(page); 3085 ext4_journal_stop(handle); 3086 /* 3087 * block_write_begin may have instantiated a few blocks 3088 * outside i_size. Trim these off again. Don't need 3089 * i_size_read because we hold i_mutex. 3090 */ 3091 if (pos + len > inode->i_size) 3092 ext4_truncate_failed_write(inode); 3093 3094 if (ret == -ENOSPC && 3095 ext4_should_retry_alloc(inode->i_sb, &retries)) 3096 goto retry_journal; 3097 3098 put_page(page); 3099 return ret; 3100 } 3101 3102 *pagep = page; 3103 return ret; 3104 } 3105 3106 /* 3107 * Check if we should update i_disksize 3108 * when write to the end of file but not require block allocation 3109 */ 3110 static int ext4_da_should_update_i_disksize(struct page *page, 3111 unsigned long offset) 3112 { 3113 struct buffer_head *bh; 3114 struct inode *inode = page->mapping->host; 3115 unsigned int idx; 3116 int i; 3117 3118 bh = page_buffers(page); 3119 idx = offset >> inode->i_blkbits; 3120 3121 for (i = 0; i < idx; i++) 3122 bh = bh->b_this_page; 3123 3124 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3125 return 0; 3126 return 1; 3127 } 3128 3129 static int ext4_da_write_end(struct file *file, 3130 struct address_space *mapping, 3131 loff_t pos, unsigned len, unsigned copied, 3132 struct page *page, void *fsdata) 3133 { 3134 struct inode *inode = mapping->host; 3135 int ret = 0, ret2; 3136 handle_t *handle = ext4_journal_current_handle(); 3137 loff_t new_i_size; 3138 unsigned long start, end; 3139 int write_mode = (int)(unsigned long)fsdata; 3140 3141 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3142 return ext4_write_end(file, mapping, pos, 3143 len, copied, page, fsdata); 3144 3145 trace_ext4_da_write_end(inode, pos, len, copied); 3146 start = pos & (PAGE_SIZE - 1); 3147 end = start + copied - 1; 3148 3149 /* 3150 * generic_write_end() will run mark_inode_dirty() if i_size 3151 * changes. So let's piggyback the i_disksize mark_inode_dirty 3152 * into that. 3153 */ 3154 new_i_size = pos + copied; 3155 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 3156 if (ext4_has_inline_data(inode) || 3157 ext4_da_should_update_i_disksize(page, end)) { 3158 ext4_update_i_disksize(inode, new_i_size); 3159 /* We need to mark inode dirty even if 3160 * new_i_size is less that inode->i_size 3161 * bu greater than i_disksize.(hint delalloc) 3162 */ 3163 ext4_mark_inode_dirty(handle, inode); 3164 } 3165 } 3166 3167 if (write_mode != CONVERT_INLINE_DATA && 3168 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3169 ext4_has_inline_data(inode)) 3170 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 3171 page); 3172 else 3173 ret2 = generic_write_end(file, mapping, pos, len, copied, 3174 page, fsdata); 3175 3176 copied = ret2; 3177 if (ret2 < 0) 3178 ret = ret2; 3179 ret2 = ext4_journal_stop(handle); 3180 if (!ret) 3181 ret = ret2; 3182 3183 return ret ? ret : copied; 3184 } 3185 3186 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 3187 unsigned int length) 3188 { 3189 /* 3190 * Drop reserved blocks 3191 */ 3192 BUG_ON(!PageLocked(page)); 3193 if (!page_has_buffers(page)) 3194 goto out; 3195 3196 ext4_da_page_release_reservation(page, offset, length); 3197 3198 out: 3199 ext4_invalidatepage(page, offset, length); 3200 3201 return; 3202 } 3203 3204 /* 3205 * Force all delayed allocation blocks to be allocated for a given inode. 3206 */ 3207 int ext4_alloc_da_blocks(struct inode *inode) 3208 { 3209 trace_ext4_alloc_da_blocks(inode); 3210 3211 if (!EXT4_I(inode)->i_reserved_data_blocks) 3212 return 0; 3213 3214 /* 3215 * We do something simple for now. The filemap_flush() will 3216 * also start triggering a write of the data blocks, which is 3217 * not strictly speaking necessary (and for users of 3218 * laptop_mode, not even desirable). However, to do otherwise 3219 * would require replicating code paths in: 3220 * 3221 * ext4_writepages() -> 3222 * write_cache_pages() ---> (via passed in callback function) 3223 * __mpage_da_writepage() --> 3224 * mpage_add_bh_to_extent() 3225 * mpage_da_map_blocks() 3226 * 3227 * The problem is that write_cache_pages(), located in 3228 * mm/page-writeback.c, marks pages clean in preparation for 3229 * doing I/O, which is not desirable if we're not planning on 3230 * doing I/O at all. 3231 * 3232 * We could call write_cache_pages(), and then redirty all of 3233 * the pages by calling redirty_page_for_writepage() but that 3234 * would be ugly in the extreme. So instead we would need to 3235 * replicate parts of the code in the above functions, 3236 * simplifying them because we wouldn't actually intend to 3237 * write out the pages, but rather only collect contiguous 3238 * logical block extents, call the multi-block allocator, and 3239 * then update the buffer heads with the block allocations. 3240 * 3241 * For now, though, we'll cheat by calling filemap_flush(), 3242 * which will map the blocks, and start the I/O, but not 3243 * actually wait for the I/O to complete. 3244 */ 3245 return filemap_flush(inode->i_mapping); 3246 } 3247 3248 /* 3249 * bmap() is special. It gets used by applications such as lilo and by 3250 * the swapper to find the on-disk block of a specific piece of data. 3251 * 3252 * Naturally, this is dangerous if the block concerned is still in the 3253 * journal. If somebody makes a swapfile on an ext4 data-journaling 3254 * filesystem and enables swap, then they may get a nasty shock when the 3255 * data getting swapped to that swapfile suddenly gets overwritten by 3256 * the original zero's written out previously to the journal and 3257 * awaiting writeback in the kernel's buffer cache. 3258 * 3259 * So, if we see any bmap calls here on a modified, data-journaled file, 3260 * take extra steps to flush any blocks which might be in the cache. 3261 */ 3262 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3263 { 3264 struct inode *inode = mapping->host; 3265 journal_t *journal; 3266 int err; 3267 3268 /* 3269 * We can get here for an inline file via the FIBMAP ioctl 3270 */ 3271 if (ext4_has_inline_data(inode)) 3272 return 0; 3273 3274 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3275 test_opt(inode->i_sb, DELALLOC)) { 3276 /* 3277 * With delalloc we want to sync the file 3278 * so that we can make sure we allocate 3279 * blocks for file 3280 */ 3281 filemap_write_and_wait(mapping); 3282 } 3283 3284 if (EXT4_JOURNAL(inode) && 3285 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3286 /* 3287 * This is a REALLY heavyweight approach, but the use of 3288 * bmap on dirty files is expected to be extremely rare: 3289 * only if we run lilo or swapon on a freshly made file 3290 * do we expect this to happen. 3291 * 3292 * (bmap requires CAP_SYS_RAWIO so this does not 3293 * represent an unprivileged user DOS attack --- we'd be 3294 * in trouble if mortal users could trigger this path at 3295 * will.) 3296 * 3297 * NB. EXT4_STATE_JDATA is not set on files other than 3298 * regular files. If somebody wants to bmap a directory 3299 * or symlink and gets confused because the buffer 3300 * hasn't yet been flushed to disk, they deserve 3301 * everything they get. 3302 */ 3303 3304 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3305 journal = EXT4_JOURNAL(inode); 3306 jbd2_journal_lock_updates(journal); 3307 err = jbd2_journal_flush(journal); 3308 jbd2_journal_unlock_updates(journal); 3309 3310 if (err) 3311 return 0; 3312 } 3313 3314 return generic_block_bmap(mapping, block, ext4_get_block); 3315 } 3316 3317 static int ext4_readpage(struct file *file, struct page *page) 3318 { 3319 int ret = -EAGAIN; 3320 struct inode *inode = page->mapping->host; 3321 3322 trace_ext4_readpage(page); 3323 3324 if (ext4_has_inline_data(inode)) 3325 ret = ext4_readpage_inline(inode, page); 3326 3327 if (ret == -EAGAIN) 3328 return ext4_mpage_readpages(page->mapping, NULL, page, 1); 3329 3330 return ret; 3331 } 3332 3333 static int 3334 ext4_readpages(struct file *file, struct address_space *mapping, 3335 struct list_head *pages, unsigned nr_pages) 3336 { 3337 struct inode *inode = mapping->host; 3338 3339 /* If the file has inline data, no need to do readpages. */ 3340 if (ext4_has_inline_data(inode)) 3341 return 0; 3342 3343 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages); 3344 } 3345 3346 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3347 unsigned int length) 3348 { 3349 trace_ext4_invalidatepage(page, offset, length); 3350 3351 /* No journalling happens on data buffers when this function is used */ 3352 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3353 3354 block_invalidatepage(page, offset, length); 3355 } 3356 3357 static int __ext4_journalled_invalidatepage(struct page *page, 3358 unsigned int offset, 3359 unsigned int length) 3360 { 3361 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3362 3363 trace_ext4_journalled_invalidatepage(page, offset, length); 3364 3365 /* 3366 * If it's a full truncate we just forget about the pending dirtying 3367 */ 3368 if (offset == 0 && length == PAGE_SIZE) 3369 ClearPageChecked(page); 3370 3371 return jbd2_journal_invalidatepage(journal, page, offset, length); 3372 } 3373 3374 /* Wrapper for aops... */ 3375 static void ext4_journalled_invalidatepage(struct page *page, 3376 unsigned int offset, 3377 unsigned int length) 3378 { 3379 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3380 } 3381 3382 static int ext4_releasepage(struct page *page, gfp_t wait) 3383 { 3384 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3385 3386 trace_ext4_releasepage(page); 3387 3388 /* Page has dirty journalled data -> cannot release */ 3389 if (PageChecked(page)) 3390 return 0; 3391 if (journal) 3392 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3393 else 3394 return try_to_free_buffers(page); 3395 } 3396 3397 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3398 unsigned flags, struct iomap *iomap) 3399 { 3400 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3401 unsigned int blkbits = inode->i_blkbits; 3402 unsigned long first_block = offset >> blkbits; 3403 unsigned long last_block = (offset + length - 1) >> blkbits; 3404 struct ext4_map_blocks map; 3405 bool delalloc = false; 3406 int ret; 3407 3408 3409 if (flags & IOMAP_REPORT) { 3410 if (ext4_has_inline_data(inode)) { 3411 ret = ext4_inline_data_iomap(inode, iomap); 3412 if (ret != -EAGAIN) { 3413 if (ret == 0 && offset >= iomap->length) 3414 ret = -ENOENT; 3415 return ret; 3416 } 3417 } 3418 } else { 3419 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3420 return -ERANGE; 3421 } 3422 3423 map.m_lblk = first_block; 3424 map.m_len = last_block - first_block + 1; 3425 3426 if (flags & IOMAP_REPORT) { 3427 ret = ext4_map_blocks(NULL, inode, &map, 0); 3428 if (ret < 0) 3429 return ret; 3430 3431 if (ret == 0) { 3432 ext4_lblk_t end = map.m_lblk + map.m_len - 1; 3433 struct extent_status es; 3434 3435 ext4_es_find_delayed_extent_range(inode, map.m_lblk, end, &es); 3436 3437 if (!es.es_len || es.es_lblk > end) { 3438 /* entire range is a hole */ 3439 } else if (es.es_lblk > map.m_lblk) { 3440 /* range starts with a hole */ 3441 map.m_len = es.es_lblk - map.m_lblk; 3442 } else { 3443 ext4_lblk_t offs = 0; 3444 3445 if (es.es_lblk < map.m_lblk) 3446 offs = map.m_lblk - es.es_lblk; 3447 map.m_lblk = es.es_lblk + offs; 3448 map.m_len = es.es_len - offs; 3449 delalloc = true; 3450 } 3451 } 3452 } else if (flags & IOMAP_WRITE) { 3453 int dio_credits; 3454 handle_t *handle; 3455 int retries = 0; 3456 3457 /* Trim mapping request to maximum we can map at once for DIO */ 3458 if (map.m_len > DIO_MAX_BLOCKS) 3459 map.m_len = DIO_MAX_BLOCKS; 3460 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 3461 retry: 3462 /* 3463 * Either we allocate blocks and then we don't get unwritten 3464 * extent so we have reserved enough credits, or the blocks 3465 * are already allocated and unwritten and in that case 3466 * extent conversion fits in the credits as well. 3467 */ 3468 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 3469 dio_credits); 3470 if (IS_ERR(handle)) 3471 return PTR_ERR(handle); 3472 3473 ret = ext4_map_blocks(handle, inode, &map, 3474 EXT4_GET_BLOCKS_CREATE_ZERO); 3475 if (ret < 0) { 3476 ext4_journal_stop(handle); 3477 if (ret == -ENOSPC && 3478 ext4_should_retry_alloc(inode->i_sb, &retries)) 3479 goto retry; 3480 return ret; 3481 } 3482 3483 /* 3484 * If we added blocks beyond i_size, we need to make sure they 3485 * will get truncated if we crash before updating i_size in 3486 * ext4_iomap_end(). For faults we don't need to do that (and 3487 * even cannot because for orphan list operations inode_lock is 3488 * required) - if we happen to instantiate block beyond i_size, 3489 * it is because we race with truncate which has already added 3490 * the inode to the orphan list. 3491 */ 3492 if (!(flags & IOMAP_FAULT) && first_block + map.m_len > 3493 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) { 3494 int err; 3495 3496 err = ext4_orphan_add(handle, inode); 3497 if (err < 0) { 3498 ext4_journal_stop(handle); 3499 return err; 3500 } 3501 } 3502 ext4_journal_stop(handle); 3503 } else { 3504 ret = ext4_map_blocks(NULL, inode, &map, 0); 3505 if (ret < 0) 3506 return ret; 3507 } 3508 3509 iomap->flags = 0; 3510 iomap->bdev = inode->i_sb->s_bdev; 3511 iomap->dax_dev = sbi->s_daxdev; 3512 iomap->offset = first_block << blkbits; 3513 iomap->length = (u64)map.m_len << blkbits; 3514 3515 if (ret == 0) { 3516 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE; 3517 iomap->addr = IOMAP_NULL_ADDR; 3518 } else { 3519 if (map.m_flags & EXT4_MAP_MAPPED) { 3520 iomap->type = IOMAP_MAPPED; 3521 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) { 3522 iomap->type = IOMAP_UNWRITTEN; 3523 } else { 3524 WARN_ON_ONCE(1); 3525 return -EIO; 3526 } 3527 iomap->addr = (u64)map.m_pblk << blkbits; 3528 } 3529 3530 if (map.m_flags & EXT4_MAP_NEW) 3531 iomap->flags |= IOMAP_F_NEW; 3532 3533 return 0; 3534 } 3535 3536 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3537 ssize_t written, unsigned flags, struct iomap *iomap) 3538 { 3539 int ret = 0; 3540 handle_t *handle; 3541 int blkbits = inode->i_blkbits; 3542 bool truncate = false; 3543 3544 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT)) 3545 return 0; 3546 3547 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3548 if (IS_ERR(handle)) { 3549 ret = PTR_ERR(handle); 3550 goto orphan_del; 3551 } 3552 if (ext4_update_inode_size(inode, offset + written)) 3553 ext4_mark_inode_dirty(handle, inode); 3554 /* 3555 * We may need to truncate allocated but not written blocks beyond EOF. 3556 */ 3557 if (iomap->offset + iomap->length > 3558 ALIGN(inode->i_size, 1 << blkbits)) { 3559 ext4_lblk_t written_blk, end_blk; 3560 3561 written_blk = (offset + written) >> blkbits; 3562 end_blk = (offset + length) >> blkbits; 3563 if (written_blk < end_blk && ext4_can_truncate(inode)) 3564 truncate = true; 3565 } 3566 /* 3567 * Remove inode from orphan list if we were extending a inode and 3568 * everything went fine. 3569 */ 3570 if (!truncate && inode->i_nlink && 3571 !list_empty(&EXT4_I(inode)->i_orphan)) 3572 ext4_orphan_del(handle, inode); 3573 ext4_journal_stop(handle); 3574 if (truncate) { 3575 ext4_truncate_failed_write(inode); 3576 orphan_del: 3577 /* 3578 * If truncate failed early the inode might still be on the 3579 * orphan list; we need to make sure the inode is removed from 3580 * the orphan list in that case. 3581 */ 3582 if (inode->i_nlink) 3583 ext4_orphan_del(NULL, inode); 3584 } 3585 return ret; 3586 } 3587 3588 const struct iomap_ops ext4_iomap_ops = { 3589 .iomap_begin = ext4_iomap_begin, 3590 .iomap_end = ext4_iomap_end, 3591 }; 3592 3593 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3594 ssize_t size, void *private) 3595 { 3596 ext4_io_end_t *io_end = private; 3597 3598 /* if not async direct IO just return */ 3599 if (!io_end) 3600 return 0; 3601 3602 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3603 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3604 io_end, io_end->inode->i_ino, iocb, offset, size); 3605 3606 /* 3607 * Error during AIO DIO. We cannot convert unwritten extents as the 3608 * data was not written. Just clear the unwritten flag and drop io_end. 3609 */ 3610 if (size <= 0) { 3611 ext4_clear_io_unwritten_flag(io_end); 3612 size = 0; 3613 } 3614 io_end->offset = offset; 3615 io_end->size = size; 3616 ext4_put_io_end(io_end); 3617 3618 return 0; 3619 } 3620 3621 /* 3622 * Handling of direct IO writes. 3623 * 3624 * For ext4 extent files, ext4 will do direct-io write even to holes, 3625 * preallocated extents, and those write extend the file, no need to 3626 * fall back to buffered IO. 3627 * 3628 * For holes, we fallocate those blocks, mark them as unwritten 3629 * If those blocks were preallocated, we mark sure they are split, but 3630 * still keep the range to write as unwritten. 3631 * 3632 * The unwritten extents will be converted to written when DIO is completed. 3633 * For async direct IO, since the IO may still pending when return, we 3634 * set up an end_io call back function, which will do the conversion 3635 * when async direct IO completed. 3636 * 3637 * If the O_DIRECT write will extend the file then add this inode to the 3638 * orphan list. So recovery will truncate it back to the original size 3639 * if the machine crashes during the write. 3640 * 3641 */ 3642 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter) 3643 { 3644 struct file *file = iocb->ki_filp; 3645 struct inode *inode = file->f_mapping->host; 3646 struct ext4_inode_info *ei = EXT4_I(inode); 3647 ssize_t ret; 3648 loff_t offset = iocb->ki_pos; 3649 size_t count = iov_iter_count(iter); 3650 int overwrite = 0; 3651 get_block_t *get_block_func = NULL; 3652 int dio_flags = 0; 3653 loff_t final_size = offset + count; 3654 int orphan = 0; 3655 handle_t *handle; 3656 3657 if (final_size > inode->i_size) { 3658 /* Credits for sb + inode write */ 3659 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3660 if (IS_ERR(handle)) { 3661 ret = PTR_ERR(handle); 3662 goto out; 3663 } 3664 ret = ext4_orphan_add(handle, inode); 3665 if (ret) { 3666 ext4_journal_stop(handle); 3667 goto out; 3668 } 3669 orphan = 1; 3670 ei->i_disksize = inode->i_size; 3671 ext4_journal_stop(handle); 3672 } 3673 3674 BUG_ON(iocb->private == NULL); 3675 3676 /* 3677 * Make all waiters for direct IO properly wait also for extent 3678 * conversion. This also disallows race between truncate() and 3679 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3680 */ 3681 inode_dio_begin(inode); 3682 3683 /* If we do a overwrite dio, i_mutex locking can be released */ 3684 overwrite = *((int *)iocb->private); 3685 3686 if (overwrite) 3687 inode_unlock(inode); 3688 3689 /* 3690 * For extent mapped files we could direct write to holes and fallocate. 3691 * 3692 * Allocated blocks to fill the hole are marked as unwritten to prevent 3693 * parallel buffered read to expose the stale data before DIO complete 3694 * the data IO. 3695 * 3696 * As to previously fallocated extents, ext4 get_block will just simply 3697 * mark the buffer mapped but still keep the extents unwritten. 3698 * 3699 * For non AIO case, we will convert those unwritten extents to written 3700 * after return back from blockdev_direct_IO. That way we save us from 3701 * allocating io_end structure and also the overhead of offloading 3702 * the extent convertion to a workqueue. 3703 * 3704 * For async DIO, the conversion needs to be deferred when the 3705 * IO is completed. The ext4 end_io callback function will be 3706 * called to take care of the conversion work. Here for async 3707 * case, we allocate an io_end structure to hook to the iocb. 3708 */ 3709 iocb->private = NULL; 3710 if (overwrite) 3711 get_block_func = ext4_dio_get_block_overwrite; 3712 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) || 3713 round_down(offset, i_blocksize(inode)) >= inode->i_size) { 3714 get_block_func = ext4_dio_get_block; 3715 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES; 3716 } else if (is_sync_kiocb(iocb)) { 3717 get_block_func = ext4_dio_get_block_unwritten_sync; 3718 dio_flags = DIO_LOCKING; 3719 } else { 3720 get_block_func = ext4_dio_get_block_unwritten_async; 3721 dio_flags = DIO_LOCKING; 3722 } 3723 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 3724 get_block_func, ext4_end_io_dio, NULL, 3725 dio_flags); 3726 3727 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3728 EXT4_STATE_DIO_UNWRITTEN)) { 3729 int err; 3730 /* 3731 * for non AIO case, since the IO is already 3732 * completed, we could do the conversion right here 3733 */ 3734 err = ext4_convert_unwritten_extents(NULL, inode, 3735 offset, ret); 3736 if (err < 0) 3737 ret = err; 3738 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3739 } 3740 3741 inode_dio_end(inode); 3742 /* take i_mutex locking again if we do a ovewrite dio */ 3743 if (overwrite) 3744 inode_lock(inode); 3745 3746 if (ret < 0 && final_size > inode->i_size) 3747 ext4_truncate_failed_write(inode); 3748 3749 /* Handle extending of i_size after direct IO write */ 3750 if (orphan) { 3751 int err; 3752 3753 /* Credits for sb + inode write */ 3754 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3755 if (IS_ERR(handle)) { 3756 /* This is really bad luck. We've written the data 3757 * but cannot extend i_size. Bail out and pretend 3758 * the write failed... */ 3759 ret = PTR_ERR(handle); 3760 if (inode->i_nlink) 3761 ext4_orphan_del(NULL, inode); 3762 3763 goto out; 3764 } 3765 if (inode->i_nlink) 3766 ext4_orphan_del(handle, inode); 3767 if (ret > 0) { 3768 loff_t end = offset + ret; 3769 if (end > inode->i_size) { 3770 ei->i_disksize = end; 3771 i_size_write(inode, end); 3772 /* 3773 * We're going to return a positive `ret' 3774 * here due to non-zero-length I/O, so there's 3775 * no way of reporting error returns from 3776 * ext4_mark_inode_dirty() to userspace. So 3777 * ignore it. 3778 */ 3779 ext4_mark_inode_dirty(handle, inode); 3780 } 3781 } 3782 err = ext4_journal_stop(handle); 3783 if (ret == 0) 3784 ret = err; 3785 } 3786 out: 3787 return ret; 3788 } 3789 3790 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter) 3791 { 3792 struct address_space *mapping = iocb->ki_filp->f_mapping; 3793 struct inode *inode = mapping->host; 3794 size_t count = iov_iter_count(iter); 3795 ssize_t ret; 3796 3797 /* 3798 * Shared inode_lock is enough for us - it protects against concurrent 3799 * writes & truncates and since we take care of writing back page cache, 3800 * we are protected against page writeback as well. 3801 */ 3802 inode_lock_shared(inode); 3803 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos, 3804 iocb->ki_pos + count - 1); 3805 if (ret) 3806 goto out_unlock; 3807 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 3808 iter, ext4_dio_get_block, NULL, NULL, 0); 3809 out_unlock: 3810 inode_unlock_shared(inode); 3811 return ret; 3812 } 3813 3814 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3815 { 3816 struct file *file = iocb->ki_filp; 3817 struct inode *inode = file->f_mapping->host; 3818 size_t count = iov_iter_count(iter); 3819 loff_t offset = iocb->ki_pos; 3820 ssize_t ret; 3821 3822 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3823 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 3824 return 0; 3825 #endif 3826 3827 /* 3828 * If we are doing data journalling we don't support O_DIRECT 3829 */ 3830 if (ext4_should_journal_data(inode)) 3831 return 0; 3832 3833 /* Let buffer I/O handle the inline data case. */ 3834 if (ext4_has_inline_data(inode)) 3835 return 0; 3836 3837 /* DAX uses iomap path now */ 3838 if (WARN_ON_ONCE(IS_DAX(inode))) 3839 return 0; 3840 3841 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 3842 if (iov_iter_rw(iter) == READ) 3843 ret = ext4_direct_IO_read(iocb, iter); 3844 else 3845 ret = ext4_direct_IO_write(iocb, iter); 3846 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); 3847 return ret; 3848 } 3849 3850 /* 3851 * Pages can be marked dirty completely asynchronously from ext4's journalling 3852 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3853 * much here because ->set_page_dirty is called under VFS locks. The page is 3854 * not necessarily locked. 3855 * 3856 * We cannot just dirty the page and leave attached buffers clean, because the 3857 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3858 * or jbddirty because all the journalling code will explode. 3859 * 3860 * So what we do is to mark the page "pending dirty" and next time writepage 3861 * is called, propagate that into the buffers appropriately. 3862 */ 3863 static int ext4_journalled_set_page_dirty(struct page *page) 3864 { 3865 SetPageChecked(page); 3866 return __set_page_dirty_nobuffers(page); 3867 } 3868 3869 static int ext4_set_page_dirty(struct page *page) 3870 { 3871 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page)); 3872 WARN_ON_ONCE(!page_has_buffers(page)); 3873 return __set_page_dirty_buffers(page); 3874 } 3875 3876 static const struct address_space_operations ext4_aops = { 3877 .readpage = ext4_readpage, 3878 .readpages = ext4_readpages, 3879 .writepage = ext4_writepage, 3880 .writepages = ext4_writepages, 3881 .write_begin = ext4_write_begin, 3882 .write_end = ext4_write_end, 3883 .set_page_dirty = ext4_set_page_dirty, 3884 .bmap = ext4_bmap, 3885 .invalidatepage = ext4_invalidatepage, 3886 .releasepage = ext4_releasepage, 3887 .direct_IO = ext4_direct_IO, 3888 .migratepage = buffer_migrate_page, 3889 .is_partially_uptodate = block_is_partially_uptodate, 3890 .error_remove_page = generic_error_remove_page, 3891 }; 3892 3893 static const struct address_space_operations ext4_journalled_aops = { 3894 .readpage = ext4_readpage, 3895 .readpages = ext4_readpages, 3896 .writepage = ext4_writepage, 3897 .writepages = ext4_writepages, 3898 .write_begin = ext4_write_begin, 3899 .write_end = ext4_journalled_write_end, 3900 .set_page_dirty = ext4_journalled_set_page_dirty, 3901 .bmap = ext4_bmap, 3902 .invalidatepage = ext4_journalled_invalidatepage, 3903 .releasepage = ext4_releasepage, 3904 .direct_IO = ext4_direct_IO, 3905 .is_partially_uptodate = block_is_partially_uptodate, 3906 .error_remove_page = generic_error_remove_page, 3907 }; 3908 3909 static const struct address_space_operations ext4_da_aops = { 3910 .readpage = ext4_readpage, 3911 .readpages = ext4_readpages, 3912 .writepage = ext4_writepage, 3913 .writepages = ext4_writepages, 3914 .write_begin = ext4_da_write_begin, 3915 .write_end = ext4_da_write_end, 3916 .set_page_dirty = ext4_set_page_dirty, 3917 .bmap = ext4_bmap, 3918 .invalidatepage = ext4_da_invalidatepage, 3919 .releasepage = ext4_releasepage, 3920 .direct_IO = ext4_direct_IO, 3921 .migratepage = buffer_migrate_page, 3922 .is_partially_uptodate = block_is_partially_uptodate, 3923 .error_remove_page = generic_error_remove_page, 3924 }; 3925 3926 void ext4_set_aops(struct inode *inode) 3927 { 3928 switch (ext4_inode_journal_mode(inode)) { 3929 case EXT4_INODE_ORDERED_DATA_MODE: 3930 case EXT4_INODE_WRITEBACK_DATA_MODE: 3931 break; 3932 case EXT4_INODE_JOURNAL_DATA_MODE: 3933 inode->i_mapping->a_ops = &ext4_journalled_aops; 3934 return; 3935 default: 3936 BUG(); 3937 } 3938 if (test_opt(inode->i_sb, DELALLOC)) 3939 inode->i_mapping->a_ops = &ext4_da_aops; 3940 else 3941 inode->i_mapping->a_ops = &ext4_aops; 3942 } 3943 3944 static int __ext4_block_zero_page_range(handle_t *handle, 3945 struct address_space *mapping, loff_t from, loff_t length) 3946 { 3947 ext4_fsblk_t index = from >> PAGE_SHIFT; 3948 unsigned offset = from & (PAGE_SIZE-1); 3949 unsigned blocksize, pos; 3950 ext4_lblk_t iblock; 3951 struct inode *inode = mapping->host; 3952 struct buffer_head *bh; 3953 struct page *page; 3954 int err = 0; 3955 3956 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3957 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3958 if (!page) 3959 return -ENOMEM; 3960 3961 blocksize = inode->i_sb->s_blocksize; 3962 3963 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3964 3965 if (!page_has_buffers(page)) 3966 create_empty_buffers(page, blocksize, 0); 3967 3968 /* Find the buffer that contains "offset" */ 3969 bh = page_buffers(page); 3970 pos = blocksize; 3971 while (offset >= pos) { 3972 bh = bh->b_this_page; 3973 iblock++; 3974 pos += blocksize; 3975 } 3976 if (buffer_freed(bh)) { 3977 BUFFER_TRACE(bh, "freed: skip"); 3978 goto unlock; 3979 } 3980 if (!buffer_mapped(bh)) { 3981 BUFFER_TRACE(bh, "unmapped"); 3982 ext4_get_block(inode, iblock, bh, 0); 3983 /* unmapped? It's a hole - nothing to do */ 3984 if (!buffer_mapped(bh)) { 3985 BUFFER_TRACE(bh, "still unmapped"); 3986 goto unlock; 3987 } 3988 } 3989 3990 /* Ok, it's mapped. Make sure it's up-to-date */ 3991 if (PageUptodate(page)) 3992 set_buffer_uptodate(bh); 3993 3994 if (!buffer_uptodate(bh)) { 3995 err = -EIO; 3996 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 3997 wait_on_buffer(bh); 3998 /* Uhhuh. Read error. Complain and punt. */ 3999 if (!buffer_uptodate(bh)) 4000 goto unlock; 4001 if (S_ISREG(inode->i_mode) && 4002 ext4_encrypted_inode(inode)) { 4003 /* We expect the key to be set. */ 4004 BUG_ON(!fscrypt_has_encryption_key(inode)); 4005 BUG_ON(blocksize != PAGE_SIZE); 4006 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host, 4007 page, PAGE_SIZE, 0, page->index)); 4008 } 4009 } 4010 if (ext4_should_journal_data(inode)) { 4011 BUFFER_TRACE(bh, "get write access"); 4012 err = ext4_journal_get_write_access(handle, bh); 4013 if (err) 4014 goto unlock; 4015 } 4016 zero_user(page, offset, length); 4017 BUFFER_TRACE(bh, "zeroed end of block"); 4018 4019 if (ext4_should_journal_data(inode)) { 4020 err = ext4_handle_dirty_metadata(handle, inode, bh); 4021 } else { 4022 err = 0; 4023 mark_buffer_dirty(bh); 4024 if (ext4_should_order_data(inode)) 4025 err = ext4_jbd2_inode_add_write(handle, inode); 4026 } 4027 4028 unlock: 4029 unlock_page(page); 4030 put_page(page); 4031 return err; 4032 } 4033 4034 /* 4035 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 4036 * starting from file offset 'from'. The range to be zero'd must 4037 * be contained with in one block. If the specified range exceeds 4038 * the end of the block it will be shortened to end of the block 4039 * that cooresponds to 'from' 4040 */ 4041 static int ext4_block_zero_page_range(handle_t *handle, 4042 struct address_space *mapping, loff_t from, loff_t length) 4043 { 4044 struct inode *inode = mapping->host; 4045 unsigned offset = from & (PAGE_SIZE-1); 4046 unsigned blocksize = inode->i_sb->s_blocksize; 4047 unsigned max = blocksize - (offset & (blocksize - 1)); 4048 4049 /* 4050 * correct length if it does not fall between 4051 * 'from' and the end of the block 4052 */ 4053 if (length > max || length < 0) 4054 length = max; 4055 4056 if (IS_DAX(inode)) { 4057 return iomap_zero_range(inode, from, length, NULL, 4058 &ext4_iomap_ops); 4059 } 4060 return __ext4_block_zero_page_range(handle, mapping, from, length); 4061 } 4062 4063 /* 4064 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 4065 * up to the end of the block which corresponds to `from'. 4066 * This required during truncate. We need to physically zero the tail end 4067 * of that block so it doesn't yield old data if the file is later grown. 4068 */ 4069 static int ext4_block_truncate_page(handle_t *handle, 4070 struct address_space *mapping, loff_t from) 4071 { 4072 unsigned offset = from & (PAGE_SIZE-1); 4073 unsigned length; 4074 unsigned blocksize; 4075 struct inode *inode = mapping->host; 4076 4077 /* If we are processing an encrypted inode during orphan list handling */ 4078 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode)) 4079 return 0; 4080 4081 blocksize = inode->i_sb->s_blocksize; 4082 length = blocksize - (offset & (blocksize - 1)); 4083 4084 return ext4_block_zero_page_range(handle, mapping, from, length); 4085 } 4086 4087 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 4088 loff_t lstart, loff_t length) 4089 { 4090 struct super_block *sb = inode->i_sb; 4091 struct address_space *mapping = inode->i_mapping; 4092 unsigned partial_start, partial_end; 4093 ext4_fsblk_t start, end; 4094 loff_t byte_end = (lstart + length - 1); 4095 int err = 0; 4096 4097 partial_start = lstart & (sb->s_blocksize - 1); 4098 partial_end = byte_end & (sb->s_blocksize - 1); 4099 4100 start = lstart >> sb->s_blocksize_bits; 4101 end = byte_end >> sb->s_blocksize_bits; 4102 4103 /* Handle partial zero within the single block */ 4104 if (start == end && 4105 (partial_start || (partial_end != sb->s_blocksize - 1))) { 4106 err = ext4_block_zero_page_range(handle, mapping, 4107 lstart, length); 4108 return err; 4109 } 4110 /* Handle partial zero out on the start of the range */ 4111 if (partial_start) { 4112 err = ext4_block_zero_page_range(handle, mapping, 4113 lstart, sb->s_blocksize); 4114 if (err) 4115 return err; 4116 } 4117 /* Handle partial zero out on the end of the range */ 4118 if (partial_end != sb->s_blocksize - 1) 4119 err = ext4_block_zero_page_range(handle, mapping, 4120 byte_end - partial_end, 4121 partial_end + 1); 4122 return err; 4123 } 4124 4125 int ext4_can_truncate(struct inode *inode) 4126 { 4127 if (S_ISREG(inode->i_mode)) 4128 return 1; 4129 if (S_ISDIR(inode->i_mode)) 4130 return 1; 4131 if (S_ISLNK(inode->i_mode)) 4132 return !ext4_inode_is_fast_symlink(inode); 4133 return 0; 4134 } 4135 4136 /* 4137 * We have to make sure i_disksize gets properly updated before we truncate 4138 * page cache due to hole punching or zero range. Otherwise i_disksize update 4139 * can get lost as it may have been postponed to submission of writeback but 4140 * that will never happen after we truncate page cache. 4141 */ 4142 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 4143 loff_t len) 4144 { 4145 handle_t *handle; 4146 loff_t size = i_size_read(inode); 4147 4148 WARN_ON(!inode_is_locked(inode)); 4149 if (offset > size || offset + len < size) 4150 return 0; 4151 4152 if (EXT4_I(inode)->i_disksize >= size) 4153 return 0; 4154 4155 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 4156 if (IS_ERR(handle)) 4157 return PTR_ERR(handle); 4158 ext4_update_i_disksize(inode, size); 4159 ext4_mark_inode_dirty(handle, inode); 4160 ext4_journal_stop(handle); 4161 4162 return 0; 4163 } 4164 4165 /* 4166 * ext4_punch_hole: punches a hole in a file by releasing the blocks 4167 * associated with the given offset and length 4168 * 4169 * @inode: File inode 4170 * @offset: The offset where the hole will begin 4171 * @len: The length of the hole 4172 * 4173 * Returns: 0 on success or negative on failure 4174 */ 4175 4176 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 4177 { 4178 struct super_block *sb = inode->i_sb; 4179 ext4_lblk_t first_block, stop_block; 4180 struct address_space *mapping = inode->i_mapping; 4181 loff_t first_block_offset, last_block_offset; 4182 handle_t *handle; 4183 unsigned int credits; 4184 int ret = 0; 4185 4186 if (!S_ISREG(inode->i_mode)) 4187 return -EOPNOTSUPP; 4188 4189 trace_ext4_punch_hole(inode, offset, length, 0); 4190 4191 /* 4192 * Write out all dirty pages to avoid race conditions 4193 * Then release them. 4194 */ 4195 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4196 ret = filemap_write_and_wait_range(mapping, offset, 4197 offset + length - 1); 4198 if (ret) 4199 return ret; 4200 } 4201 4202 inode_lock(inode); 4203 4204 /* No need to punch hole beyond i_size */ 4205 if (offset >= inode->i_size) 4206 goto out_mutex; 4207 4208 /* 4209 * If the hole extends beyond i_size, set the hole 4210 * to end after the page that contains i_size 4211 */ 4212 if (offset + length > inode->i_size) { 4213 length = inode->i_size + 4214 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 4215 offset; 4216 } 4217 4218 if (offset & (sb->s_blocksize - 1) || 4219 (offset + length) & (sb->s_blocksize - 1)) { 4220 /* 4221 * Attach jinode to inode for jbd2 if we do any zeroing of 4222 * partial block 4223 */ 4224 ret = ext4_inode_attach_jinode(inode); 4225 if (ret < 0) 4226 goto out_mutex; 4227 4228 } 4229 4230 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4231 ext4_inode_block_unlocked_dio(inode); 4232 inode_dio_wait(inode); 4233 4234 /* 4235 * Prevent page faults from reinstantiating pages we have released from 4236 * page cache. 4237 */ 4238 down_write(&EXT4_I(inode)->i_mmap_sem); 4239 first_block_offset = round_up(offset, sb->s_blocksize); 4240 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4241 4242 /* Now release the pages and zero block aligned part of pages*/ 4243 if (last_block_offset > first_block_offset) { 4244 ret = ext4_update_disksize_before_punch(inode, offset, length); 4245 if (ret) 4246 goto out_dio; 4247 truncate_pagecache_range(inode, first_block_offset, 4248 last_block_offset); 4249 } 4250 4251 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4252 credits = ext4_writepage_trans_blocks(inode); 4253 else 4254 credits = ext4_blocks_for_truncate(inode); 4255 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4256 if (IS_ERR(handle)) { 4257 ret = PTR_ERR(handle); 4258 ext4_std_error(sb, ret); 4259 goto out_dio; 4260 } 4261 4262 ret = ext4_zero_partial_blocks(handle, inode, offset, 4263 length); 4264 if (ret) 4265 goto out_stop; 4266 4267 first_block = (offset + sb->s_blocksize - 1) >> 4268 EXT4_BLOCK_SIZE_BITS(sb); 4269 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4270 4271 /* If there are no blocks to remove, return now */ 4272 if (first_block >= stop_block) 4273 goto out_stop; 4274 4275 down_write(&EXT4_I(inode)->i_data_sem); 4276 ext4_discard_preallocations(inode); 4277 4278 ret = ext4_es_remove_extent(inode, first_block, 4279 stop_block - first_block); 4280 if (ret) { 4281 up_write(&EXT4_I(inode)->i_data_sem); 4282 goto out_stop; 4283 } 4284 4285 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4286 ret = ext4_ext_remove_space(inode, first_block, 4287 stop_block - 1); 4288 else 4289 ret = ext4_ind_remove_space(handle, inode, first_block, 4290 stop_block); 4291 4292 up_write(&EXT4_I(inode)->i_data_sem); 4293 if (IS_SYNC(inode)) 4294 ext4_handle_sync(handle); 4295 4296 inode->i_mtime = inode->i_ctime = current_time(inode); 4297 ext4_mark_inode_dirty(handle, inode); 4298 if (ret >= 0) 4299 ext4_update_inode_fsync_trans(handle, inode, 1); 4300 out_stop: 4301 ext4_journal_stop(handle); 4302 out_dio: 4303 up_write(&EXT4_I(inode)->i_mmap_sem); 4304 ext4_inode_resume_unlocked_dio(inode); 4305 out_mutex: 4306 inode_unlock(inode); 4307 return ret; 4308 } 4309 4310 int ext4_inode_attach_jinode(struct inode *inode) 4311 { 4312 struct ext4_inode_info *ei = EXT4_I(inode); 4313 struct jbd2_inode *jinode; 4314 4315 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4316 return 0; 4317 4318 jinode = jbd2_alloc_inode(GFP_KERNEL); 4319 spin_lock(&inode->i_lock); 4320 if (!ei->jinode) { 4321 if (!jinode) { 4322 spin_unlock(&inode->i_lock); 4323 return -ENOMEM; 4324 } 4325 ei->jinode = jinode; 4326 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4327 jinode = NULL; 4328 } 4329 spin_unlock(&inode->i_lock); 4330 if (unlikely(jinode != NULL)) 4331 jbd2_free_inode(jinode); 4332 return 0; 4333 } 4334 4335 /* 4336 * ext4_truncate() 4337 * 4338 * We block out ext4_get_block() block instantiations across the entire 4339 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4340 * simultaneously on behalf of the same inode. 4341 * 4342 * As we work through the truncate and commit bits of it to the journal there 4343 * is one core, guiding principle: the file's tree must always be consistent on 4344 * disk. We must be able to restart the truncate after a crash. 4345 * 4346 * The file's tree may be transiently inconsistent in memory (although it 4347 * probably isn't), but whenever we close off and commit a journal transaction, 4348 * the contents of (the filesystem + the journal) must be consistent and 4349 * restartable. It's pretty simple, really: bottom up, right to left (although 4350 * left-to-right works OK too). 4351 * 4352 * Note that at recovery time, journal replay occurs *before* the restart of 4353 * truncate against the orphan inode list. 4354 * 4355 * The committed inode has the new, desired i_size (which is the same as 4356 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4357 * that this inode's truncate did not complete and it will again call 4358 * ext4_truncate() to have another go. So there will be instantiated blocks 4359 * to the right of the truncation point in a crashed ext4 filesystem. But 4360 * that's fine - as long as they are linked from the inode, the post-crash 4361 * ext4_truncate() run will find them and release them. 4362 */ 4363 int ext4_truncate(struct inode *inode) 4364 { 4365 struct ext4_inode_info *ei = EXT4_I(inode); 4366 unsigned int credits; 4367 int err = 0; 4368 handle_t *handle; 4369 struct address_space *mapping = inode->i_mapping; 4370 4371 /* 4372 * There is a possibility that we're either freeing the inode 4373 * or it's a completely new inode. In those cases we might not 4374 * have i_mutex locked because it's not necessary. 4375 */ 4376 if (!(inode->i_state & (I_NEW|I_FREEING))) 4377 WARN_ON(!inode_is_locked(inode)); 4378 trace_ext4_truncate_enter(inode); 4379 4380 if (!ext4_can_truncate(inode)) 4381 return 0; 4382 4383 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4384 4385 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4386 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4387 4388 if (ext4_has_inline_data(inode)) { 4389 int has_inline = 1; 4390 4391 err = ext4_inline_data_truncate(inode, &has_inline); 4392 if (err) 4393 return err; 4394 if (has_inline) 4395 return 0; 4396 } 4397 4398 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4399 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4400 if (ext4_inode_attach_jinode(inode) < 0) 4401 return 0; 4402 } 4403 4404 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4405 credits = ext4_writepage_trans_blocks(inode); 4406 else 4407 credits = ext4_blocks_for_truncate(inode); 4408 4409 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4410 if (IS_ERR(handle)) 4411 return PTR_ERR(handle); 4412 4413 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4414 ext4_block_truncate_page(handle, mapping, inode->i_size); 4415 4416 /* 4417 * We add the inode to the orphan list, so that if this 4418 * truncate spans multiple transactions, and we crash, we will 4419 * resume the truncate when the filesystem recovers. It also 4420 * marks the inode dirty, to catch the new size. 4421 * 4422 * Implication: the file must always be in a sane, consistent 4423 * truncatable state while each transaction commits. 4424 */ 4425 err = ext4_orphan_add(handle, inode); 4426 if (err) 4427 goto out_stop; 4428 4429 down_write(&EXT4_I(inode)->i_data_sem); 4430 4431 ext4_discard_preallocations(inode); 4432 4433 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4434 err = ext4_ext_truncate(handle, inode); 4435 else 4436 ext4_ind_truncate(handle, inode); 4437 4438 up_write(&ei->i_data_sem); 4439 if (err) 4440 goto out_stop; 4441 4442 if (IS_SYNC(inode)) 4443 ext4_handle_sync(handle); 4444 4445 out_stop: 4446 /* 4447 * If this was a simple ftruncate() and the file will remain alive, 4448 * then we need to clear up the orphan record which we created above. 4449 * However, if this was a real unlink then we were called by 4450 * ext4_evict_inode(), and we allow that function to clean up the 4451 * orphan info for us. 4452 */ 4453 if (inode->i_nlink) 4454 ext4_orphan_del(handle, inode); 4455 4456 inode->i_mtime = inode->i_ctime = current_time(inode); 4457 ext4_mark_inode_dirty(handle, inode); 4458 ext4_journal_stop(handle); 4459 4460 trace_ext4_truncate_exit(inode); 4461 return err; 4462 } 4463 4464 /* 4465 * ext4_get_inode_loc returns with an extra refcount against the inode's 4466 * underlying buffer_head on success. If 'in_mem' is true, we have all 4467 * data in memory that is needed to recreate the on-disk version of this 4468 * inode. 4469 */ 4470 static int __ext4_get_inode_loc(struct inode *inode, 4471 struct ext4_iloc *iloc, int in_mem) 4472 { 4473 struct ext4_group_desc *gdp; 4474 struct buffer_head *bh; 4475 struct super_block *sb = inode->i_sb; 4476 ext4_fsblk_t block; 4477 int inodes_per_block, inode_offset; 4478 4479 iloc->bh = NULL; 4480 if (!ext4_valid_inum(sb, inode->i_ino)) 4481 return -EFSCORRUPTED; 4482 4483 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4484 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4485 if (!gdp) 4486 return -EIO; 4487 4488 /* 4489 * Figure out the offset within the block group inode table 4490 */ 4491 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4492 inode_offset = ((inode->i_ino - 1) % 4493 EXT4_INODES_PER_GROUP(sb)); 4494 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4495 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4496 4497 bh = sb_getblk(sb, block); 4498 if (unlikely(!bh)) 4499 return -ENOMEM; 4500 if (!buffer_uptodate(bh)) { 4501 lock_buffer(bh); 4502 4503 /* 4504 * If the buffer has the write error flag, we have failed 4505 * to write out another inode in the same block. In this 4506 * case, we don't have to read the block because we may 4507 * read the old inode data successfully. 4508 */ 4509 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4510 set_buffer_uptodate(bh); 4511 4512 if (buffer_uptodate(bh)) { 4513 /* someone brought it uptodate while we waited */ 4514 unlock_buffer(bh); 4515 goto has_buffer; 4516 } 4517 4518 /* 4519 * If we have all information of the inode in memory and this 4520 * is the only valid inode in the block, we need not read the 4521 * block. 4522 */ 4523 if (in_mem) { 4524 struct buffer_head *bitmap_bh; 4525 int i, start; 4526 4527 start = inode_offset & ~(inodes_per_block - 1); 4528 4529 /* Is the inode bitmap in cache? */ 4530 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4531 if (unlikely(!bitmap_bh)) 4532 goto make_io; 4533 4534 /* 4535 * If the inode bitmap isn't in cache then the 4536 * optimisation may end up performing two reads instead 4537 * of one, so skip it. 4538 */ 4539 if (!buffer_uptodate(bitmap_bh)) { 4540 brelse(bitmap_bh); 4541 goto make_io; 4542 } 4543 for (i = start; i < start + inodes_per_block; i++) { 4544 if (i == inode_offset) 4545 continue; 4546 if (ext4_test_bit(i, bitmap_bh->b_data)) 4547 break; 4548 } 4549 brelse(bitmap_bh); 4550 if (i == start + inodes_per_block) { 4551 /* all other inodes are free, so skip I/O */ 4552 memset(bh->b_data, 0, bh->b_size); 4553 set_buffer_uptodate(bh); 4554 unlock_buffer(bh); 4555 goto has_buffer; 4556 } 4557 } 4558 4559 make_io: 4560 /* 4561 * If we need to do any I/O, try to pre-readahead extra 4562 * blocks from the inode table. 4563 */ 4564 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4565 ext4_fsblk_t b, end, table; 4566 unsigned num; 4567 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4568 4569 table = ext4_inode_table(sb, gdp); 4570 /* s_inode_readahead_blks is always a power of 2 */ 4571 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4572 if (table > b) 4573 b = table; 4574 end = b + ra_blks; 4575 num = EXT4_INODES_PER_GROUP(sb); 4576 if (ext4_has_group_desc_csum(sb)) 4577 num -= ext4_itable_unused_count(sb, gdp); 4578 table += num / inodes_per_block; 4579 if (end > table) 4580 end = table; 4581 while (b <= end) 4582 sb_breadahead(sb, b++); 4583 } 4584 4585 /* 4586 * There are other valid inodes in the buffer, this inode 4587 * has in-inode xattrs, or we don't have this inode in memory. 4588 * Read the block from disk. 4589 */ 4590 trace_ext4_load_inode(inode); 4591 get_bh(bh); 4592 bh->b_end_io = end_buffer_read_sync; 4593 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 4594 wait_on_buffer(bh); 4595 if (!buffer_uptodate(bh)) { 4596 EXT4_ERROR_INODE_BLOCK(inode, block, 4597 "unable to read itable block"); 4598 brelse(bh); 4599 return -EIO; 4600 } 4601 } 4602 has_buffer: 4603 iloc->bh = bh; 4604 return 0; 4605 } 4606 4607 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4608 { 4609 /* We have all inode data except xattrs in memory here. */ 4610 return __ext4_get_inode_loc(inode, iloc, 4611 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4612 } 4613 4614 static bool ext4_should_use_dax(struct inode *inode) 4615 { 4616 if (!test_opt(inode->i_sb, DAX)) 4617 return false; 4618 if (!S_ISREG(inode->i_mode)) 4619 return false; 4620 if (ext4_should_journal_data(inode)) 4621 return false; 4622 if (ext4_has_inline_data(inode)) 4623 return false; 4624 if (ext4_encrypted_inode(inode)) 4625 return false; 4626 return true; 4627 } 4628 4629 void ext4_set_inode_flags(struct inode *inode) 4630 { 4631 unsigned int flags = EXT4_I(inode)->i_flags; 4632 unsigned int new_fl = 0; 4633 4634 if (flags & EXT4_SYNC_FL) 4635 new_fl |= S_SYNC; 4636 if (flags & EXT4_APPEND_FL) 4637 new_fl |= S_APPEND; 4638 if (flags & EXT4_IMMUTABLE_FL) 4639 new_fl |= S_IMMUTABLE; 4640 if (flags & EXT4_NOATIME_FL) 4641 new_fl |= S_NOATIME; 4642 if (flags & EXT4_DIRSYNC_FL) 4643 new_fl |= S_DIRSYNC; 4644 if (ext4_should_use_dax(inode)) 4645 new_fl |= S_DAX; 4646 if (flags & EXT4_ENCRYPT_FL) 4647 new_fl |= S_ENCRYPTED; 4648 inode_set_flags(inode, new_fl, 4649 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4650 S_ENCRYPTED); 4651 } 4652 4653 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4654 struct ext4_inode_info *ei) 4655 { 4656 blkcnt_t i_blocks ; 4657 struct inode *inode = &(ei->vfs_inode); 4658 struct super_block *sb = inode->i_sb; 4659 4660 if (ext4_has_feature_huge_file(sb)) { 4661 /* we are using combined 48 bit field */ 4662 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4663 le32_to_cpu(raw_inode->i_blocks_lo); 4664 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4665 /* i_blocks represent file system block size */ 4666 return i_blocks << (inode->i_blkbits - 9); 4667 } else { 4668 return i_blocks; 4669 } 4670 } else { 4671 return le32_to_cpu(raw_inode->i_blocks_lo); 4672 } 4673 } 4674 4675 static inline void ext4_iget_extra_inode(struct inode *inode, 4676 struct ext4_inode *raw_inode, 4677 struct ext4_inode_info *ei) 4678 { 4679 __le32 *magic = (void *)raw_inode + 4680 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4681 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <= 4682 EXT4_INODE_SIZE(inode->i_sb) && 4683 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4684 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4685 ext4_find_inline_data_nolock(inode); 4686 } else 4687 EXT4_I(inode)->i_inline_off = 0; 4688 } 4689 4690 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4691 { 4692 if (!ext4_has_feature_project(inode->i_sb)) 4693 return -EOPNOTSUPP; 4694 *projid = EXT4_I(inode)->i_projid; 4695 return 0; 4696 } 4697 4698 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4699 { 4700 struct ext4_iloc iloc; 4701 struct ext4_inode *raw_inode; 4702 struct ext4_inode_info *ei; 4703 struct inode *inode; 4704 journal_t *journal = EXT4_SB(sb)->s_journal; 4705 long ret; 4706 loff_t size; 4707 int block; 4708 uid_t i_uid; 4709 gid_t i_gid; 4710 projid_t i_projid; 4711 4712 inode = iget_locked(sb, ino); 4713 if (!inode) 4714 return ERR_PTR(-ENOMEM); 4715 if (!(inode->i_state & I_NEW)) 4716 return inode; 4717 4718 ei = EXT4_I(inode); 4719 iloc.bh = NULL; 4720 4721 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4722 if (ret < 0) 4723 goto bad_inode; 4724 raw_inode = ext4_raw_inode(&iloc); 4725 4726 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4727 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4728 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4729 EXT4_INODE_SIZE(inode->i_sb) || 4730 (ei->i_extra_isize & 3)) { 4731 EXT4_ERROR_INODE(inode, 4732 "bad extra_isize %u (inode size %u)", 4733 ei->i_extra_isize, 4734 EXT4_INODE_SIZE(inode->i_sb)); 4735 ret = -EFSCORRUPTED; 4736 goto bad_inode; 4737 } 4738 } else 4739 ei->i_extra_isize = 0; 4740 4741 /* Precompute checksum seed for inode metadata */ 4742 if (ext4_has_metadata_csum(sb)) { 4743 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4744 __u32 csum; 4745 __le32 inum = cpu_to_le32(inode->i_ino); 4746 __le32 gen = raw_inode->i_generation; 4747 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4748 sizeof(inum)); 4749 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4750 sizeof(gen)); 4751 } 4752 4753 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4754 EXT4_ERROR_INODE(inode, "checksum invalid"); 4755 ret = -EFSBADCRC; 4756 goto bad_inode; 4757 } 4758 4759 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4760 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4761 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4762 if (ext4_has_feature_project(sb) && 4763 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4764 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4765 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4766 else 4767 i_projid = EXT4_DEF_PROJID; 4768 4769 if (!(test_opt(inode->i_sb, NO_UID32))) { 4770 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4771 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4772 } 4773 i_uid_write(inode, i_uid); 4774 i_gid_write(inode, i_gid); 4775 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4776 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4777 4778 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4779 ei->i_inline_off = 0; 4780 ei->i_dir_start_lookup = 0; 4781 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4782 /* We now have enough fields to check if the inode was active or not. 4783 * This is needed because nfsd might try to access dead inodes 4784 * the test is that same one that e2fsck uses 4785 * NeilBrown 1999oct15 4786 */ 4787 if (inode->i_nlink == 0) { 4788 if ((inode->i_mode == 0 || 4789 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4790 ino != EXT4_BOOT_LOADER_INO) { 4791 /* this inode is deleted */ 4792 ret = -ESTALE; 4793 goto bad_inode; 4794 } 4795 /* The only unlinked inodes we let through here have 4796 * valid i_mode and are being read by the orphan 4797 * recovery code: that's fine, we're about to complete 4798 * the process of deleting those. 4799 * OR it is the EXT4_BOOT_LOADER_INO which is 4800 * not initialized on a new filesystem. */ 4801 } 4802 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4803 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4804 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4805 if (ext4_has_feature_64bit(sb)) 4806 ei->i_file_acl |= 4807 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4808 inode->i_size = ext4_isize(sb, raw_inode); 4809 if ((size = i_size_read(inode)) < 0) { 4810 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size); 4811 ret = -EFSCORRUPTED; 4812 goto bad_inode; 4813 } 4814 ei->i_disksize = inode->i_size; 4815 #ifdef CONFIG_QUOTA 4816 ei->i_reserved_quota = 0; 4817 #endif 4818 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4819 ei->i_block_group = iloc.block_group; 4820 ei->i_last_alloc_group = ~0; 4821 /* 4822 * NOTE! The in-memory inode i_data array is in little-endian order 4823 * even on big-endian machines: we do NOT byteswap the block numbers! 4824 */ 4825 for (block = 0; block < EXT4_N_BLOCKS; block++) 4826 ei->i_data[block] = raw_inode->i_block[block]; 4827 INIT_LIST_HEAD(&ei->i_orphan); 4828 4829 /* 4830 * Set transaction id's of transactions that have to be committed 4831 * to finish f[data]sync. We set them to currently running transaction 4832 * as we cannot be sure that the inode or some of its metadata isn't 4833 * part of the transaction - the inode could have been reclaimed and 4834 * now it is reread from disk. 4835 */ 4836 if (journal) { 4837 transaction_t *transaction; 4838 tid_t tid; 4839 4840 read_lock(&journal->j_state_lock); 4841 if (journal->j_running_transaction) 4842 transaction = journal->j_running_transaction; 4843 else 4844 transaction = journal->j_committing_transaction; 4845 if (transaction) 4846 tid = transaction->t_tid; 4847 else 4848 tid = journal->j_commit_sequence; 4849 read_unlock(&journal->j_state_lock); 4850 ei->i_sync_tid = tid; 4851 ei->i_datasync_tid = tid; 4852 } 4853 4854 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4855 if (ei->i_extra_isize == 0) { 4856 /* The extra space is currently unused. Use it. */ 4857 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4858 ei->i_extra_isize = sizeof(struct ext4_inode) - 4859 EXT4_GOOD_OLD_INODE_SIZE; 4860 } else { 4861 ext4_iget_extra_inode(inode, raw_inode, ei); 4862 } 4863 } 4864 4865 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4866 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4867 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4868 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4869 4870 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4871 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4872 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4873 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4874 inode->i_version |= 4875 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4876 } 4877 } 4878 4879 ret = 0; 4880 if (ei->i_file_acl && 4881 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4882 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4883 ei->i_file_acl); 4884 ret = -EFSCORRUPTED; 4885 goto bad_inode; 4886 } else if (!ext4_has_inline_data(inode)) { 4887 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4888 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4889 (S_ISLNK(inode->i_mode) && 4890 !ext4_inode_is_fast_symlink(inode)))) 4891 /* Validate extent which is part of inode */ 4892 ret = ext4_ext_check_inode(inode); 4893 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4894 (S_ISLNK(inode->i_mode) && 4895 !ext4_inode_is_fast_symlink(inode))) { 4896 /* Validate block references which are part of inode */ 4897 ret = ext4_ind_check_inode(inode); 4898 } 4899 } 4900 if (ret) 4901 goto bad_inode; 4902 4903 if (S_ISREG(inode->i_mode)) { 4904 inode->i_op = &ext4_file_inode_operations; 4905 inode->i_fop = &ext4_file_operations; 4906 ext4_set_aops(inode); 4907 } else if (S_ISDIR(inode->i_mode)) { 4908 inode->i_op = &ext4_dir_inode_operations; 4909 inode->i_fop = &ext4_dir_operations; 4910 } else if (S_ISLNK(inode->i_mode)) { 4911 if (ext4_encrypted_inode(inode)) { 4912 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4913 ext4_set_aops(inode); 4914 } else if (ext4_inode_is_fast_symlink(inode)) { 4915 inode->i_link = (char *)ei->i_data; 4916 inode->i_op = &ext4_fast_symlink_inode_operations; 4917 nd_terminate_link(ei->i_data, inode->i_size, 4918 sizeof(ei->i_data) - 1); 4919 } else { 4920 inode->i_op = &ext4_symlink_inode_operations; 4921 ext4_set_aops(inode); 4922 } 4923 inode_nohighmem(inode); 4924 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4925 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4926 inode->i_op = &ext4_special_inode_operations; 4927 if (raw_inode->i_block[0]) 4928 init_special_inode(inode, inode->i_mode, 4929 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4930 else 4931 init_special_inode(inode, inode->i_mode, 4932 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4933 } else if (ino == EXT4_BOOT_LOADER_INO) { 4934 make_bad_inode(inode); 4935 } else { 4936 ret = -EFSCORRUPTED; 4937 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4938 goto bad_inode; 4939 } 4940 brelse(iloc.bh); 4941 ext4_set_inode_flags(inode); 4942 4943 unlock_new_inode(inode); 4944 return inode; 4945 4946 bad_inode: 4947 brelse(iloc.bh); 4948 iget_failed(inode); 4949 return ERR_PTR(ret); 4950 } 4951 4952 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino) 4953 { 4954 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 4955 return ERR_PTR(-EFSCORRUPTED); 4956 return ext4_iget(sb, ino); 4957 } 4958 4959 static int ext4_inode_blocks_set(handle_t *handle, 4960 struct ext4_inode *raw_inode, 4961 struct ext4_inode_info *ei) 4962 { 4963 struct inode *inode = &(ei->vfs_inode); 4964 u64 i_blocks = inode->i_blocks; 4965 struct super_block *sb = inode->i_sb; 4966 4967 if (i_blocks <= ~0U) { 4968 /* 4969 * i_blocks can be represented in a 32 bit variable 4970 * as multiple of 512 bytes 4971 */ 4972 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4973 raw_inode->i_blocks_high = 0; 4974 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4975 return 0; 4976 } 4977 if (!ext4_has_feature_huge_file(sb)) 4978 return -EFBIG; 4979 4980 if (i_blocks <= 0xffffffffffffULL) { 4981 /* 4982 * i_blocks can be represented in a 48 bit variable 4983 * as multiple of 512 bytes 4984 */ 4985 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4986 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4987 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4988 } else { 4989 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4990 /* i_block is stored in file system block size */ 4991 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4992 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4993 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4994 } 4995 return 0; 4996 } 4997 4998 struct other_inode { 4999 unsigned long orig_ino; 5000 struct ext4_inode *raw_inode; 5001 }; 5002 5003 static int other_inode_match(struct inode * inode, unsigned long ino, 5004 void *data) 5005 { 5006 struct other_inode *oi = (struct other_inode *) data; 5007 5008 if ((inode->i_ino != ino) || 5009 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 5010 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) || 5011 ((inode->i_state & I_DIRTY_TIME) == 0)) 5012 return 0; 5013 spin_lock(&inode->i_lock); 5014 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 5015 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) && 5016 (inode->i_state & I_DIRTY_TIME)) { 5017 struct ext4_inode_info *ei = EXT4_I(inode); 5018 5019 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 5020 spin_unlock(&inode->i_lock); 5021 5022 spin_lock(&ei->i_raw_lock); 5023 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 5024 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 5025 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 5026 ext4_inode_csum_set(inode, oi->raw_inode, ei); 5027 spin_unlock(&ei->i_raw_lock); 5028 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 5029 return -1; 5030 } 5031 spin_unlock(&inode->i_lock); 5032 return -1; 5033 } 5034 5035 /* 5036 * Opportunistically update the other time fields for other inodes in 5037 * the same inode table block. 5038 */ 5039 static void ext4_update_other_inodes_time(struct super_block *sb, 5040 unsigned long orig_ino, char *buf) 5041 { 5042 struct other_inode oi; 5043 unsigned long ino; 5044 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5045 int inode_size = EXT4_INODE_SIZE(sb); 5046 5047 oi.orig_ino = orig_ino; 5048 /* 5049 * Calculate the first inode in the inode table block. Inode 5050 * numbers are one-based. That is, the first inode in a block 5051 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5052 */ 5053 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5054 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5055 if (ino == orig_ino) 5056 continue; 5057 oi.raw_inode = (struct ext4_inode *) buf; 5058 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 5059 } 5060 } 5061 5062 /* 5063 * Post the struct inode info into an on-disk inode location in the 5064 * buffer-cache. This gobbles the caller's reference to the 5065 * buffer_head in the inode location struct. 5066 * 5067 * The caller must have write access to iloc->bh. 5068 */ 5069 static int ext4_do_update_inode(handle_t *handle, 5070 struct inode *inode, 5071 struct ext4_iloc *iloc) 5072 { 5073 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5074 struct ext4_inode_info *ei = EXT4_I(inode); 5075 struct buffer_head *bh = iloc->bh; 5076 struct super_block *sb = inode->i_sb; 5077 int err = 0, rc, block; 5078 int need_datasync = 0, set_large_file = 0; 5079 uid_t i_uid; 5080 gid_t i_gid; 5081 projid_t i_projid; 5082 5083 spin_lock(&ei->i_raw_lock); 5084 5085 /* For fields not tracked in the in-memory inode, 5086 * initialise them to zero for new inodes. */ 5087 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5088 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5089 5090 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 5091 i_uid = i_uid_read(inode); 5092 i_gid = i_gid_read(inode); 5093 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 5094 if (!(test_opt(inode->i_sb, NO_UID32))) { 5095 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 5096 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 5097 /* 5098 * Fix up interoperability with old kernels. Otherwise, old inodes get 5099 * re-used with the upper 16 bits of the uid/gid intact 5100 */ 5101 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 5102 raw_inode->i_uid_high = 0; 5103 raw_inode->i_gid_high = 0; 5104 } else { 5105 raw_inode->i_uid_high = 5106 cpu_to_le16(high_16_bits(i_uid)); 5107 raw_inode->i_gid_high = 5108 cpu_to_le16(high_16_bits(i_gid)); 5109 } 5110 } else { 5111 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 5112 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 5113 raw_inode->i_uid_high = 0; 5114 raw_inode->i_gid_high = 0; 5115 } 5116 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5117 5118 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5119 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5120 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5121 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5122 5123 err = ext4_inode_blocks_set(handle, raw_inode, ei); 5124 if (err) { 5125 spin_unlock(&ei->i_raw_lock); 5126 goto out_brelse; 5127 } 5128 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5129 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 5130 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 5131 raw_inode->i_file_acl_high = 5132 cpu_to_le16(ei->i_file_acl >> 32); 5133 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5134 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) { 5135 ext4_isize_set(raw_inode, ei->i_disksize); 5136 need_datasync = 1; 5137 } 5138 if (ei->i_disksize > 0x7fffffffULL) { 5139 if (!ext4_has_feature_large_file(sb) || 5140 EXT4_SB(sb)->s_es->s_rev_level == 5141 cpu_to_le32(EXT4_GOOD_OLD_REV)) 5142 set_large_file = 1; 5143 } 5144 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5145 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5146 if (old_valid_dev(inode->i_rdev)) { 5147 raw_inode->i_block[0] = 5148 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5149 raw_inode->i_block[1] = 0; 5150 } else { 5151 raw_inode->i_block[0] = 0; 5152 raw_inode->i_block[1] = 5153 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5154 raw_inode->i_block[2] = 0; 5155 } 5156 } else if (!ext4_has_inline_data(inode)) { 5157 for (block = 0; block < EXT4_N_BLOCKS; block++) 5158 raw_inode->i_block[block] = ei->i_data[block]; 5159 } 5160 5161 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5162 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 5163 if (ei->i_extra_isize) { 5164 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5165 raw_inode->i_version_hi = 5166 cpu_to_le32(inode->i_version >> 32); 5167 raw_inode->i_extra_isize = 5168 cpu_to_le16(ei->i_extra_isize); 5169 } 5170 } 5171 5172 BUG_ON(!ext4_has_feature_project(inode->i_sb) && 5173 i_projid != EXT4_DEF_PROJID); 5174 5175 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 5176 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 5177 raw_inode->i_projid = cpu_to_le32(i_projid); 5178 5179 ext4_inode_csum_set(inode, raw_inode, ei); 5180 spin_unlock(&ei->i_raw_lock); 5181 if (inode->i_sb->s_flags & MS_LAZYTIME) 5182 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5183 bh->b_data); 5184 5185 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5186 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 5187 if (!err) 5188 err = rc; 5189 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5190 if (set_large_file) { 5191 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5192 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 5193 if (err) 5194 goto out_brelse; 5195 ext4_update_dynamic_rev(sb); 5196 ext4_set_feature_large_file(sb); 5197 ext4_handle_sync(handle); 5198 err = ext4_handle_dirty_super(handle, sb); 5199 } 5200 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5201 out_brelse: 5202 brelse(bh); 5203 ext4_std_error(inode->i_sb, err); 5204 return err; 5205 } 5206 5207 /* 5208 * ext4_write_inode() 5209 * 5210 * We are called from a few places: 5211 * 5212 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5213 * Here, there will be no transaction running. We wait for any running 5214 * transaction to commit. 5215 * 5216 * - Within flush work (sys_sync(), kupdate and such). 5217 * We wait on commit, if told to. 5218 * 5219 * - Within iput_final() -> write_inode_now() 5220 * We wait on commit, if told to. 5221 * 5222 * In all cases it is actually safe for us to return without doing anything, 5223 * because the inode has been copied into a raw inode buffer in 5224 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5225 * writeback. 5226 * 5227 * Note that we are absolutely dependent upon all inode dirtiers doing the 5228 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5229 * which we are interested. 5230 * 5231 * It would be a bug for them to not do this. The code: 5232 * 5233 * mark_inode_dirty(inode) 5234 * stuff(); 5235 * inode->i_size = expr; 5236 * 5237 * is in error because write_inode() could occur while `stuff()' is running, 5238 * and the new i_size will be lost. Plus the inode will no longer be on the 5239 * superblock's dirty inode list. 5240 */ 5241 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5242 { 5243 int err; 5244 5245 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 5246 return 0; 5247 5248 if (EXT4_SB(inode->i_sb)->s_journal) { 5249 if (ext4_journal_current_handle()) { 5250 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5251 dump_stack(); 5252 return -EIO; 5253 } 5254 5255 /* 5256 * No need to force transaction in WB_SYNC_NONE mode. Also 5257 * ext4_sync_fs() will force the commit after everything is 5258 * written. 5259 */ 5260 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5261 return 0; 5262 5263 err = ext4_force_commit(inode->i_sb); 5264 } else { 5265 struct ext4_iloc iloc; 5266 5267 err = __ext4_get_inode_loc(inode, &iloc, 0); 5268 if (err) 5269 return err; 5270 /* 5271 * sync(2) will flush the whole buffer cache. No need to do 5272 * it here separately for each inode. 5273 */ 5274 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5275 sync_dirty_buffer(iloc.bh); 5276 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5277 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 5278 "IO error syncing inode"); 5279 err = -EIO; 5280 } 5281 brelse(iloc.bh); 5282 } 5283 return err; 5284 } 5285 5286 /* 5287 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 5288 * buffers that are attached to a page stradding i_size and are undergoing 5289 * commit. In that case we have to wait for commit to finish and try again. 5290 */ 5291 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5292 { 5293 struct page *page; 5294 unsigned offset; 5295 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5296 tid_t commit_tid = 0; 5297 int ret; 5298 5299 offset = inode->i_size & (PAGE_SIZE - 1); 5300 /* 5301 * All buffers in the last page remain valid? Then there's nothing to 5302 * do. We do the check mainly to optimize the common PAGE_SIZE == 5303 * blocksize case 5304 */ 5305 if (offset > PAGE_SIZE - i_blocksize(inode)) 5306 return; 5307 while (1) { 5308 page = find_lock_page(inode->i_mapping, 5309 inode->i_size >> PAGE_SHIFT); 5310 if (!page) 5311 return; 5312 ret = __ext4_journalled_invalidatepage(page, offset, 5313 PAGE_SIZE - offset); 5314 unlock_page(page); 5315 put_page(page); 5316 if (ret != -EBUSY) 5317 return; 5318 commit_tid = 0; 5319 read_lock(&journal->j_state_lock); 5320 if (journal->j_committing_transaction) 5321 commit_tid = journal->j_committing_transaction->t_tid; 5322 read_unlock(&journal->j_state_lock); 5323 if (commit_tid) 5324 jbd2_log_wait_commit(journal, commit_tid); 5325 } 5326 } 5327 5328 /* 5329 * ext4_setattr() 5330 * 5331 * Called from notify_change. 5332 * 5333 * We want to trap VFS attempts to truncate the file as soon as 5334 * possible. In particular, we want to make sure that when the VFS 5335 * shrinks i_size, we put the inode on the orphan list and modify 5336 * i_disksize immediately, so that during the subsequent flushing of 5337 * dirty pages and freeing of disk blocks, we can guarantee that any 5338 * commit will leave the blocks being flushed in an unused state on 5339 * disk. (On recovery, the inode will get truncated and the blocks will 5340 * be freed, so we have a strong guarantee that no future commit will 5341 * leave these blocks visible to the user.) 5342 * 5343 * Another thing we have to assure is that if we are in ordered mode 5344 * and inode is still attached to the committing transaction, we must 5345 * we start writeout of all the dirty pages which are being truncated. 5346 * This way we are sure that all the data written in the previous 5347 * transaction are already on disk (truncate waits for pages under 5348 * writeback). 5349 * 5350 * Called with inode->i_mutex down. 5351 */ 5352 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5353 { 5354 struct inode *inode = d_inode(dentry); 5355 int error, rc = 0; 5356 int orphan = 0; 5357 const unsigned int ia_valid = attr->ia_valid; 5358 5359 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5360 return -EIO; 5361 5362 error = setattr_prepare(dentry, attr); 5363 if (error) 5364 return error; 5365 5366 error = fscrypt_prepare_setattr(dentry, attr); 5367 if (error) 5368 return error; 5369 5370 if (is_quota_modification(inode, attr)) { 5371 error = dquot_initialize(inode); 5372 if (error) 5373 return error; 5374 } 5375 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5376 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5377 handle_t *handle; 5378 5379 /* (user+group)*(old+new) structure, inode write (sb, 5380 * inode block, ? - but truncate inode update has it) */ 5381 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5382 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5383 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5384 if (IS_ERR(handle)) { 5385 error = PTR_ERR(handle); 5386 goto err_out; 5387 } 5388 5389 /* dquot_transfer() calls back ext4_get_inode_usage() which 5390 * counts xattr inode references. 5391 */ 5392 down_read(&EXT4_I(inode)->xattr_sem); 5393 error = dquot_transfer(inode, attr); 5394 up_read(&EXT4_I(inode)->xattr_sem); 5395 5396 if (error) { 5397 ext4_journal_stop(handle); 5398 return error; 5399 } 5400 /* Update corresponding info in inode so that everything is in 5401 * one transaction */ 5402 if (attr->ia_valid & ATTR_UID) 5403 inode->i_uid = attr->ia_uid; 5404 if (attr->ia_valid & ATTR_GID) 5405 inode->i_gid = attr->ia_gid; 5406 error = ext4_mark_inode_dirty(handle, inode); 5407 ext4_journal_stop(handle); 5408 } 5409 5410 if (attr->ia_valid & ATTR_SIZE) { 5411 handle_t *handle; 5412 loff_t oldsize = inode->i_size; 5413 int shrink = (attr->ia_size <= inode->i_size); 5414 5415 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5416 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5417 5418 if (attr->ia_size > sbi->s_bitmap_maxbytes) 5419 return -EFBIG; 5420 } 5421 if (!S_ISREG(inode->i_mode)) 5422 return -EINVAL; 5423 5424 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5425 inode_inc_iversion(inode); 5426 5427 if (ext4_should_order_data(inode) && 5428 (attr->ia_size < inode->i_size)) { 5429 error = ext4_begin_ordered_truncate(inode, 5430 attr->ia_size); 5431 if (error) 5432 goto err_out; 5433 } 5434 if (attr->ia_size != inode->i_size) { 5435 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5436 if (IS_ERR(handle)) { 5437 error = PTR_ERR(handle); 5438 goto err_out; 5439 } 5440 if (ext4_handle_valid(handle) && shrink) { 5441 error = ext4_orphan_add(handle, inode); 5442 orphan = 1; 5443 } 5444 /* 5445 * Update c/mtime on truncate up, ext4_truncate() will 5446 * update c/mtime in shrink case below 5447 */ 5448 if (!shrink) { 5449 inode->i_mtime = current_time(inode); 5450 inode->i_ctime = inode->i_mtime; 5451 } 5452 down_write(&EXT4_I(inode)->i_data_sem); 5453 EXT4_I(inode)->i_disksize = attr->ia_size; 5454 rc = ext4_mark_inode_dirty(handle, inode); 5455 if (!error) 5456 error = rc; 5457 /* 5458 * We have to update i_size under i_data_sem together 5459 * with i_disksize to avoid races with writeback code 5460 * running ext4_wb_update_i_disksize(). 5461 */ 5462 if (!error) 5463 i_size_write(inode, attr->ia_size); 5464 up_write(&EXT4_I(inode)->i_data_sem); 5465 ext4_journal_stop(handle); 5466 if (error) { 5467 if (orphan) 5468 ext4_orphan_del(NULL, inode); 5469 goto err_out; 5470 } 5471 } 5472 if (!shrink) 5473 pagecache_isize_extended(inode, oldsize, inode->i_size); 5474 5475 /* 5476 * Blocks are going to be removed from the inode. Wait 5477 * for dio in flight. Temporarily disable 5478 * dioread_nolock to prevent livelock. 5479 */ 5480 if (orphan) { 5481 if (!ext4_should_journal_data(inode)) { 5482 ext4_inode_block_unlocked_dio(inode); 5483 inode_dio_wait(inode); 5484 ext4_inode_resume_unlocked_dio(inode); 5485 } else 5486 ext4_wait_for_tail_page_commit(inode); 5487 } 5488 down_write(&EXT4_I(inode)->i_mmap_sem); 5489 /* 5490 * Truncate pagecache after we've waited for commit 5491 * in data=journal mode to make pages freeable. 5492 */ 5493 truncate_pagecache(inode, inode->i_size); 5494 if (shrink) { 5495 rc = ext4_truncate(inode); 5496 if (rc) 5497 error = rc; 5498 } 5499 up_write(&EXT4_I(inode)->i_mmap_sem); 5500 } 5501 5502 if (!error) { 5503 setattr_copy(inode, attr); 5504 mark_inode_dirty(inode); 5505 } 5506 5507 /* 5508 * If the call to ext4_truncate failed to get a transaction handle at 5509 * all, we need to clean up the in-core orphan list manually. 5510 */ 5511 if (orphan && inode->i_nlink) 5512 ext4_orphan_del(NULL, inode); 5513 5514 if (!error && (ia_valid & ATTR_MODE)) 5515 rc = posix_acl_chmod(inode, inode->i_mode); 5516 5517 err_out: 5518 ext4_std_error(inode->i_sb, error); 5519 if (!error) 5520 error = rc; 5521 return error; 5522 } 5523 5524 int ext4_getattr(const struct path *path, struct kstat *stat, 5525 u32 request_mask, unsigned int query_flags) 5526 { 5527 struct inode *inode = d_inode(path->dentry); 5528 struct ext4_inode *raw_inode; 5529 struct ext4_inode_info *ei = EXT4_I(inode); 5530 unsigned int flags; 5531 5532 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5533 stat->result_mask |= STATX_BTIME; 5534 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5535 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5536 } 5537 5538 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5539 if (flags & EXT4_APPEND_FL) 5540 stat->attributes |= STATX_ATTR_APPEND; 5541 if (flags & EXT4_COMPR_FL) 5542 stat->attributes |= STATX_ATTR_COMPRESSED; 5543 if (flags & EXT4_ENCRYPT_FL) 5544 stat->attributes |= STATX_ATTR_ENCRYPTED; 5545 if (flags & EXT4_IMMUTABLE_FL) 5546 stat->attributes |= STATX_ATTR_IMMUTABLE; 5547 if (flags & EXT4_NODUMP_FL) 5548 stat->attributes |= STATX_ATTR_NODUMP; 5549 5550 stat->attributes_mask |= (STATX_ATTR_APPEND | 5551 STATX_ATTR_COMPRESSED | 5552 STATX_ATTR_ENCRYPTED | 5553 STATX_ATTR_IMMUTABLE | 5554 STATX_ATTR_NODUMP); 5555 5556 generic_fillattr(inode, stat); 5557 return 0; 5558 } 5559 5560 int ext4_file_getattr(const struct path *path, struct kstat *stat, 5561 u32 request_mask, unsigned int query_flags) 5562 { 5563 struct inode *inode = d_inode(path->dentry); 5564 u64 delalloc_blocks; 5565 5566 ext4_getattr(path, stat, request_mask, query_flags); 5567 5568 /* 5569 * If there is inline data in the inode, the inode will normally not 5570 * have data blocks allocated (it may have an external xattr block). 5571 * Report at least one sector for such files, so tools like tar, rsync, 5572 * others don't incorrectly think the file is completely sparse. 5573 */ 5574 if (unlikely(ext4_has_inline_data(inode))) 5575 stat->blocks += (stat->size + 511) >> 9; 5576 5577 /* 5578 * We can't update i_blocks if the block allocation is delayed 5579 * otherwise in the case of system crash before the real block 5580 * allocation is done, we will have i_blocks inconsistent with 5581 * on-disk file blocks. 5582 * We always keep i_blocks updated together with real 5583 * allocation. But to not confuse with user, stat 5584 * will return the blocks that include the delayed allocation 5585 * blocks for this file. 5586 */ 5587 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5588 EXT4_I(inode)->i_reserved_data_blocks); 5589 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5590 return 0; 5591 } 5592 5593 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5594 int pextents) 5595 { 5596 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5597 return ext4_ind_trans_blocks(inode, lblocks); 5598 return ext4_ext_index_trans_blocks(inode, pextents); 5599 } 5600 5601 /* 5602 * Account for index blocks, block groups bitmaps and block group 5603 * descriptor blocks if modify datablocks and index blocks 5604 * worse case, the indexs blocks spread over different block groups 5605 * 5606 * If datablocks are discontiguous, they are possible to spread over 5607 * different block groups too. If they are contiguous, with flexbg, 5608 * they could still across block group boundary. 5609 * 5610 * Also account for superblock, inode, quota and xattr blocks 5611 */ 5612 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5613 int pextents) 5614 { 5615 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5616 int gdpblocks; 5617 int idxblocks; 5618 int ret = 0; 5619 5620 /* 5621 * How many index blocks need to touch to map @lblocks logical blocks 5622 * to @pextents physical extents? 5623 */ 5624 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5625 5626 ret = idxblocks; 5627 5628 /* 5629 * Now let's see how many group bitmaps and group descriptors need 5630 * to account 5631 */ 5632 groups = idxblocks + pextents; 5633 gdpblocks = groups; 5634 if (groups > ngroups) 5635 groups = ngroups; 5636 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5637 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5638 5639 /* bitmaps and block group descriptor blocks */ 5640 ret += groups + gdpblocks; 5641 5642 /* Blocks for super block, inode, quota and xattr blocks */ 5643 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5644 5645 return ret; 5646 } 5647 5648 /* 5649 * Calculate the total number of credits to reserve to fit 5650 * the modification of a single pages into a single transaction, 5651 * which may include multiple chunks of block allocations. 5652 * 5653 * This could be called via ext4_write_begin() 5654 * 5655 * We need to consider the worse case, when 5656 * one new block per extent. 5657 */ 5658 int ext4_writepage_trans_blocks(struct inode *inode) 5659 { 5660 int bpp = ext4_journal_blocks_per_page(inode); 5661 int ret; 5662 5663 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5664 5665 /* Account for data blocks for journalled mode */ 5666 if (ext4_should_journal_data(inode)) 5667 ret += bpp; 5668 return ret; 5669 } 5670 5671 /* 5672 * Calculate the journal credits for a chunk of data modification. 5673 * 5674 * This is called from DIO, fallocate or whoever calling 5675 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5676 * 5677 * journal buffers for data blocks are not included here, as DIO 5678 * and fallocate do no need to journal data buffers. 5679 */ 5680 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5681 { 5682 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5683 } 5684 5685 /* 5686 * The caller must have previously called ext4_reserve_inode_write(). 5687 * Give this, we know that the caller already has write access to iloc->bh. 5688 */ 5689 int ext4_mark_iloc_dirty(handle_t *handle, 5690 struct inode *inode, struct ext4_iloc *iloc) 5691 { 5692 int err = 0; 5693 5694 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5695 return -EIO; 5696 5697 if (IS_I_VERSION(inode)) 5698 inode_inc_iversion(inode); 5699 5700 /* the do_update_inode consumes one bh->b_count */ 5701 get_bh(iloc->bh); 5702 5703 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5704 err = ext4_do_update_inode(handle, inode, iloc); 5705 put_bh(iloc->bh); 5706 return err; 5707 } 5708 5709 /* 5710 * On success, We end up with an outstanding reference count against 5711 * iloc->bh. This _must_ be cleaned up later. 5712 */ 5713 5714 int 5715 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5716 struct ext4_iloc *iloc) 5717 { 5718 int err; 5719 5720 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5721 return -EIO; 5722 5723 err = ext4_get_inode_loc(inode, iloc); 5724 if (!err) { 5725 BUFFER_TRACE(iloc->bh, "get_write_access"); 5726 err = ext4_journal_get_write_access(handle, iloc->bh); 5727 if (err) { 5728 brelse(iloc->bh); 5729 iloc->bh = NULL; 5730 } 5731 } 5732 ext4_std_error(inode->i_sb, err); 5733 return err; 5734 } 5735 5736 static int __ext4_expand_extra_isize(struct inode *inode, 5737 unsigned int new_extra_isize, 5738 struct ext4_iloc *iloc, 5739 handle_t *handle, int *no_expand) 5740 { 5741 struct ext4_inode *raw_inode; 5742 struct ext4_xattr_ibody_header *header; 5743 int error; 5744 5745 raw_inode = ext4_raw_inode(iloc); 5746 5747 header = IHDR(inode, raw_inode); 5748 5749 /* No extended attributes present */ 5750 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5751 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5752 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5753 EXT4_I(inode)->i_extra_isize, 0, 5754 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5755 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5756 return 0; 5757 } 5758 5759 /* try to expand with EAs present */ 5760 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5761 raw_inode, handle); 5762 if (error) { 5763 /* 5764 * Inode size expansion failed; don't try again 5765 */ 5766 *no_expand = 1; 5767 } 5768 5769 return error; 5770 } 5771 5772 /* 5773 * Expand an inode by new_extra_isize bytes. 5774 * Returns 0 on success or negative error number on failure. 5775 */ 5776 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5777 unsigned int new_extra_isize, 5778 struct ext4_iloc iloc, 5779 handle_t *handle) 5780 { 5781 int no_expand; 5782 int error; 5783 5784 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5785 return -EOVERFLOW; 5786 5787 /* 5788 * In nojournal mode, we can immediately attempt to expand 5789 * the inode. When journaled, we first need to obtain extra 5790 * buffer credits since we may write into the EA block 5791 * with this same handle. If journal_extend fails, then it will 5792 * only result in a minor loss of functionality for that inode. 5793 * If this is felt to be critical, then e2fsck should be run to 5794 * force a large enough s_min_extra_isize. 5795 */ 5796 if (ext4_handle_valid(handle) && 5797 jbd2_journal_extend(handle, 5798 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0) 5799 return -ENOSPC; 5800 5801 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5802 return -EBUSY; 5803 5804 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5805 handle, &no_expand); 5806 ext4_write_unlock_xattr(inode, &no_expand); 5807 5808 return error; 5809 } 5810 5811 int ext4_expand_extra_isize(struct inode *inode, 5812 unsigned int new_extra_isize, 5813 struct ext4_iloc *iloc) 5814 { 5815 handle_t *handle; 5816 int no_expand; 5817 int error, rc; 5818 5819 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5820 brelse(iloc->bh); 5821 return -EOVERFLOW; 5822 } 5823 5824 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5825 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5826 if (IS_ERR(handle)) { 5827 error = PTR_ERR(handle); 5828 brelse(iloc->bh); 5829 return error; 5830 } 5831 5832 ext4_write_lock_xattr(inode, &no_expand); 5833 5834 BUFFER_TRACE(iloc.bh, "get_write_access"); 5835 error = ext4_journal_get_write_access(handle, iloc->bh); 5836 if (error) { 5837 brelse(iloc->bh); 5838 goto out_stop; 5839 } 5840 5841 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5842 handle, &no_expand); 5843 5844 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5845 if (!error) 5846 error = rc; 5847 5848 ext4_write_unlock_xattr(inode, &no_expand); 5849 out_stop: 5850 ext4_journal_stop(handle); 5851 return error; 5852 } 5853 5854 /* 5855 * What we do here is to mark the in-core inode as clean with respect to inode 5856 * dirtiness (it may still be data-dirty). 5857 * This means that the in-core inode may be reaped by prune_icache 5858 * without having to perform any I/O. This is a very good thing, 5859 * because *any* task may call prune_icache - even ones which 5860 * have a transaction open against a different journal. 5861 * 5862 * Is this cheating? Not really. Sure, we haven't written the 5863 * inode out, but prune_icache isn't a user-visible syncing function. 5864 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5865 * we start and wait on commits. 5866 */ 5867 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5868 { 5869 struct ext4_iloc iloc; 5870 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5871 int err; 5872 5873 might_sleep(); 5874 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5875 err = ext4_reserve_inode_write(handle, inode, &iloc); 5876 if (err) 5877 return err; 5878 5879 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5880 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5881 iloc, handle); 5882 5883 return ext4_mark_iloc_dirty(handle, inode, &iloc); 5884 } 5885 5886 /* 5887 * ext4_dirty_inode() is called from __mark_inode_dirty() 5888 * 5889 * We're really interested in the case where a file is being extended. 5890 * i_size has been changed by generic_commit_write() and we thus need 5891 * to include the updated inode in the current transaction. 5892 * 5893 * Also, dquot_alloc_block() will always dirty the inode when blocks 5894 * are allocated to the file. 5895 * 5896 * If the inode is marked synchronous, we don't honour that here - doing 5897 * so would cause a commit on atime updates, which we don't bother doing. 5898 * We handle synchronous inodes at the highest possible level. 5899 * 5900 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 5901 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 5902 * to copy into the on-disk inode structure are the timestamp files. 5903 */ 5904 void ext4_dirty_inode(struct inode *inode, int flags) 5905 { 5906 handle_t *handle; 5907 5908 if (flags == I_DIRTY_TIME) 5909 return; 5910 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5911 if (IS_ERR(handle)) 5912 goto out; 5913 5914 ext4_mark_inode_dirty(handle, inode); 5915 5916 ext4_journal_stop(handle); 5917 out: 5918 return; 5919 } 5920 5921 #if 0 5922 /* 5923 * Bind an inode's backing buffer_head into this transaction, to prevent 5924 * it from being flushed to disk early. Unlike 5925 * ext4_reserve_inode_write, this leaves behind no bh reference and 5926 * returns no iloc structure, so the caller needs to repeat the iloc 5927 * lookup to mark the inode dirty later. 5928 */ 5929 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5930 { 5931 struct ext4_iloc iloc; 5932 5933 int err = 0; 5934 if (handle) { 5935 err = ext4_get_inode_loc(inode, &iloc); 5936 if (!err) { 5937 BUFFER_TRACE(iloc.bh, "get_write_access"); 5938 err = jbd2_journal_get_write_access(handle, iloc.bh); 5939 if (!err) 5940 err = ext4_handle_dirty_metadata(handle, 5941 NULL, 5942 iloc.bh); 5943 brelse(iloc.bh); 5944 } 5945 } 5946 ext4_std_error(inode->i_sb, err); 5947 return err; 5948 } 5949 #endif 5950 5951 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5952 { 5953 journal_t *journal; 5954 handle_t *handle; 5955 int err; 5956 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5957 5958 /* 5959 * We have to be very careful here: changing a data block's 5960 * journaling status dynamically is dangerous. If we write a 5961 * data block to the journal, change the status and then delete 5962 * that block, we risk forgetting to revoke the old log record 5963 * from the journal and so a subsequent replay can corrupt data. 5964 * So, first we make sure that the journal is empty and that 5965 * nobody is changing anything. 5966 */ 5967 5968 journal = EXT4_JOURNAL(inode); 5969 if (!journal) 5970 return 0; 5971 if (is_journal_aborted(journal)) 5972 return -EROFS; 5973 5974 /* Wait for all existing dio workers */ 5975 ext4_inode_block_unlocked_dio(inode); 5976 inode_dio_wait(inode); 5977 5978 /* 5979 * Before flushing the journal and switching inode's aops, we have 5980 * to flush all dirty data the inode has. There can be outstanding 5981 * delayed allocations, there can be unwritten extents created by 5982 * fallocate or buffered writes in dioread_nolock mode covered by 5983 * dirty data which can be converted only after flushing the dirty 5984 * data (and journalled aops don't know how to handle these cases). 5985 */ 5986 if (val) { 5987 down_write(&EXT4_I(inode)->i_mmap_sem); 5988 err = filemap_write_and_wait(inode->i_mapping); 5989 if (err < 0) { 5990 up_write(&EXT4_I(inode)->i_mmap_sem); 5991 ext4_inode_resume_unlocked_dio(inode); 5992 return err; 5993 } 5994 } 5995 5996 percpu_down_write(&sbi->s_journal_flag_rwsem); 5997 jbd2_journal_lock_updates(journal); 5998 5999 /* 6000 * OK, there are no updates running now, and all cached data is 6001 * synced to disk. We are now in a completely consistent state 6002 * which doesn't have anything in the journal, and we know that 6003 * no filesystem updates are running, so it is safe to modify 6004 * the inode's in-core data-journaling state flag now. 6005 */ 6006 6007 if (val) 6008 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6009 else { 6010 err = jbd2_journal_flush(journal); 6011 if (err < 0) { 6012 jbd2_journal_unlock_updates(journal); 6013 percpu_up_write(&sbi->s_journal_flag_rwsem); 6014 ext4_inode_resume_unlocked_dio(inode); 6015 return err; 6016 } 6017 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6018 } 6019 ext4_set_aops(inode); 6020 6021 jbd2_journal_unlock_updates(journal); 6022 percpu_up_write(&sbi->s_journal_flag_rwsem); 6023 6024 if (val) 6025 up_write(&EXT4_I(inode)->i_mmap_sem); 6026 ext4_inode_resume_unlocked_dio(inode); 6027 6028 /* Finally we can mark the inode as dirty. */ 6029 6030 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6031 if (IS_ERR(handle)) 6032 return PTR_ERR(handle); 6033 6034 err = ext4_mark_inode_dirty(handle, inode); 6035 ext4_handle_sync(handle); 6036 ext4_journal_stop(handle); 6037 ext4_std_error(inode->i_sb, err); 6038 6039 return err; 6040 } 6041 6042 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 6043 { 6044 return !buffer_mapped(bh); 6045 } 6046 6047 int ext4_page_mkwrite(struct vm_fault *vmf) 6048 { 6049 struct vm_area_struct *vma = vmf->vma; 6050 struct page *page = vmf->page; 6051 loff_t size; 6052 unsigned long len; 6053 int ret; 6054 struct file *file = vma->vm_file; 6055 struct inode *inode = file_inode(file); 6056 struct address_space *mapping = inode->i_mapping; 6057 handle_t *handle; 6058 get_block_t *get_block; 6059 int retries = 0; 6060 6061 sb_start_pagefault(inode->i_sb); 6062 file_update_time(vma->vm_file); 6063 6064 down_read(&EXT4_I(inode)->i_mmap_sem); 6065 6066 ret = ext4_convert_inline_data(inode); 6067 if (ret) 6068 goto out_ret; 6069 6070 /* Delalloc case is easy... */ 6071 if (test_opt(inode->i_sb, DELALLOC) && 6072 !ext4_should_journal_data(inode) && 6073 !ext4_nonda_switch(inode->i_sb)) { 6074 do { 6075 ret = block_page_mkwrite(vma, vmf, 6076 ext4_da_get_block_prep); 6077 } while (ret == -ENOSPC && 6078 ext4_should_retry_alloc(inode->i_sb, &retries)); 6079 goto out_ret; 6080 } 6081 6082 lock_page(page); 6083 size = i_size_read(inode); 6084 /* Page got truncated from under us? */ 6085 if (page->mapping != mapping || page_offset(page) > size) { 6086 unlock_page(page); 6087 ret = VM_FAULT_NOPAGE; 6088 goto out; 6089 } 6090 6091 if (page->index == size >> PAGE_SHIFT) 6092 len = size & ~PAGE_MASK; 6093 else 6094 len = PAGE_SIZE; 6095 /* 6096 * Return if we have all the buffers mapped. This avoids the need to do 6097 * journal_start/journal_stop which can block and take a long time 6098 */ 6099 if (page_has_buffers(page)) { 6100 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 6101 0, len, NULL, 6102 ext4_bh_unmapped)) { 6103 /* Wait so that we don't change page under IO */ 6104 wait_for_stable_page(page); 6105 ret = VM_FAULT_LOCKED; 6106 goto out; 6107 } 6108 } 6109 unlock_page(page); 6110 /* OK, we need to fill the hole... */ 6111 if (ext4_should_dioread_nolock(inode)) 6112 get_block = ext4_get_block_unwritten; 6113 else 6114 get_block = ext4_get_block; 6115 retry_alloc: 6116 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6117 ext4_writepage_trans_blocks(inode)); 6118 if (IS_ERR(handle)) { 6119 ret = VM_FAULT_SIGBUS; 6120 goto out; 6121 } 6122 ret = block_page_mkwrite(vma, vmf, get_block); 6123 if (!ret && ext4_should_journal_data(inode)) { 6124 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 6125 PAGE_SIZE, NULL, do_journal_get_write_access)) { 6126 unlock_page(page); 6127 ret = VM_FAULT_SIGBUS; 6128 ext4_journal_stop(handle); 6129 goto out; 6130 } 6131 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 6132 } 6133 ext4_journal_stop(handle); 6134 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6135 goto retry_alloc; 6136 out_ret: 6137 ret = block_page_mkwrite_return(ret); 6138 out: 6139 up_read(&EXT4_I(inode)->i_mmap_sem); 6140 sb_end_pagefault(inode->i_sb); 6141 return ret; 6142 } 6143 6144 int ext4_filemap_fault(struct vm_fault *vmf) 6145 { 6146 struct inode *inode = file_inode(vmf->vma->vm_file); 6147 int err; 6148 6149 down_read(&EXT4_I(inode)->i_mmap_sem); 6150 err = filemap_fault(vmf); 6151 up_read(&EXT4_I(inode)->i_mmap_sem); 6152 6153 return err; 6154 } 6155