1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/time.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/string.h> 30 #include <linux/buffer_head.h> 31 #include <linux/writeback.h> 32 #include <linux/pagevec.h> 33 #include <linux/mpage.h> 34 #include <linux/rmap.h> 35 #include <linux/namei.h> 36 #include <linux/uio.h> 37 #include <linux/bio.h> 38 #include <linux/workqueue.h> 39 #include <linux/kernel.h> 40 #include <linux/printk.h> 41 #include <linux/slab.h> 42 #include <linux/bitops.h> 43 #include <linux/iomap.h> 44 #include <linux/iversion.h> 45 46 #include "ext4_jbd2.h" 47 #include "xattr.h" 48 #include "acl.h" 49 #include "truncate.h" 50 51 #include <trace/events/ext4.h> 52 53 static void ext4_journalled_zero_new_buffers(handle_t *handle, 54 struct inode *inode, 55 struct folio *folio, 56 unsigned from, unsigned to); 57 58 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 59 struct ext4_inode_info *ei) 60 { 61 __u32 csum; 62 __u16 dummy_csum = 0; 63 int offset = offsetof(struct ext4_inode, i_checksum_lo); 64 unsigned int csum_size = sizeof(dummy_csum); 65 66 csum = ext4_chksum(ei->i_csum_seed, (__u8 *)raw, offset); 67 csum = ext4_chksum(csum, (__u8 *)&dummy_csum, csum_size); 68 offset += csum_size; 69 csum = ext4_chksum(csum, (__u8 *)raw + offset, 70 EXT4_GOOD_OLD_INODE_SIZE - offset); 71 72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 73 offset = offsetof(struct ext4_inode, i_checksum_hi); 74 csum = ext4_chksum(csum, (__u8 *)raw + EXT4_GOOD_OLD_INODE_SIZE, 75 offset - EXT4_GOOD_OLD_INODE_SIZE); 76 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 77 csum = ext4_chksum(csum, (__u8 *)&dummy_csum, 78 csum_size); 79 offset += csum_size; 80 } 81 csum = ext4_chksum(csum, (__u8 *)raw + offset, 82 EXT4_INODE_SIZE(inode->i_sb) - offset); 83 } 84 85 return csum; 86 } 87 88 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 89 struct ext4_inode_info *ei) 90 { 91 __u32 provided, calculated; 92 93 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 94 cpu_to_le32(EXT4_OS_LINUX) || 95 !ext4_has_feature_metadata_csum(inode->i_sb)) 96 return 1; 97 98 provided = le16_to_cpu(raw->i_checksum_lo); 99 calculated = ext4_inode_csum(inode, raw, ei); 100 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 101 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 102 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 103 else 104 calculated &= 0xFFFF; 105 106 return provided == calculated; 107 } 108 109 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 110 struct ext4_inode_info *ei) 111 { 112 __u32 csum; 113 114 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 115 cpu_to_le32(EXT4_OS_LINUX) || 116 !ext4_has_feature_metadata_csum(inode->i_sb)) 117 return; 118 119 csum = ext4_inode_csum(inode, raw, ei); 120 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 121 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 122 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 123 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 124 } 125 126 static inline int ext4_begin_ordered_truncate(struct inode *inode, 127 loff_t new_size) 128 { 129 trace_ext4_begin_ordered_truncate(inode, new_size); 130 /* 131 * If jinode is zero, then we never opened the file for 132 * writing, so there's no need to call 133 * jbd2_journal_begin_ordered_truncate() since there's no 134 * outstanding writes we need to flush. 135 */ 136 if (!EXT4_I(inode)->jinode) 137 return 0; 138 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 139 EXT4_I(inode)->jinode, 140 new_size); 141 } 142 143 /* 144 * Test whether an inode is a fast symlink. 145 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 146 */ 147 int ext4_inode_is_fast_symlink(struct inode *inode) 148 { 149 if (!ext4_has_feature_ea_inode(inode->i_sb)) { 150 int ea_blocks = EXT4_I(inode)->i_file_acl ? 151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 152 153 if (ext4_has_inline_data(inode)) 154 return 0; 155 156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 157 } 158 return S_ISLNK(inode->i_mode) && inode->i_size && 159 (inode->i_size < EXT4_N_BLOCKS * 4); 160 } 161 162 /* 163 * Called at the last iput() if i_nlink is zero. 164 */ 165 void ext4_evict_inode(struct inode *inode) 166 { 167 handle_t *handle; 168 int err; 169 /* 170 * Credits for final inode cleanup and freeing: 171 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 172 * (xattr block freeing), bitmap, group descriptor (inode freeing) 173 */ 174 int extra_credits = 6; 175 struct ext4_xattr_inode_array *ea_inode_array = NULL; 176 bool freeze_protected = false; 177 178 trace_ext4_evict_inode(inode); 179 180 dax_break_layout_final(inode); 181 182 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL) 183 ext4_evict_ea_inode(inode); 184 if (inode->i_nlink) { 185 truncate_inode_pages_final(&inode->i_data); 186 187 goto no_delete; 188 } 189 190 if (is_bad_inode(inode)) 191 goto no_delete; 192 dquot_initialize(inode); 193 194 if (ext4_should_order_data(inode)) 195 ext4_begin_ordered_truncate(inode, 0); 196 truncate_inode_pages_final(&inode->i_data); 197 198 /* 199 * For inodes with journalled data, transaction commit could have 200 * dirtied the inode. And for inodes with dioread_nolock, unwritten 201 * extents converting worker could merge extents and also have dirtied 202 * the inode. Flush worker is ignoring it because of I_FREEING flag but 203 * we still need to remove the inode from the writeback lists. 204 */ 205 if (!list_empty_careful(&inode->i_io_list)) 206 inode_io_list_del(inode); 207 208 /* 209 * Protect us against freezing - iput() caller didn't have to have any 210 * protection against it. When we are in a running transaction though, 211 * we are already protected against freezing and we cannot grab further 212 * protection due to lock ordering constraints. 213 */ 214 if (!ext4_journal_current_handle()) { 215 sb_start_intwrite(inode->i_sb); 216 freeze_protected = true; 217 } 218 219 if (!IS_NOQUOTA(inode)) 220 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 221 222 /* 223 * Block bitmap, group descriptor, and inode are accounted in both 224 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 225 */ 226 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 227 ext4_blocks_for_truncate(inode) + extra_credits - 3); 228 if (IS_ERR(handle)) { 229 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 230 /* 231 * If we're going to skip the normal cleanup, we still need to 232 * make sure that the in-core orphan linked list is properly 233 * cleaned up. 234 */ 235 ext4_orphan_del(NULL, inode); 236 if (freeze_protected) 237 sb_end_intwrite(inode->i_sb); 238 goto no_delete; 239 } 240 241 if (IS_SYNC(inode)) 242 ext4_handle_sync(handle); 243 244 /* 245 * Set inode->i_size to 0 before calling ext4_truncate(). We need 246 * special handling of symlinks here because i_size is used to 247 * determine whether ext4_inode_info->i_data contains symlink data or 248 * block mappings. Setting i_size to 0 will remove its fast symlink 249 * status. Erase i_data so that it becomes a valid empty block map. 250 */ 251 if (ext4_inode_is_fast_symlink(inode)) 252 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 253 inode->i_size = 0; 254 err = ext4_mark_inode_dirty(handle, inode); 255 if (err) { 256 ext4_warning(inode->i_sb, 257 "couldn't mark inode dirty (err %d)", err); 258 goto stop_handle; 259 } 260 if (inode->i_blocks) { 261 err = ext4_truncate(inode); 262 if (err) { 263 ext4_error_err(inode->i_sb, -err, 264 "couldn't truncate inode %lu (err %d)", 265 inode->i_ino, err); 266 goto stop_handle; 267 } 268 } 269 270 /* Remove xattr references. */ 271 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 272 extra_credits); 273 if (err) { 274 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 275 stop_handle: 276 ext4_journal_stop(handle); 277 ext4_orphan_del(NULL, inode); 278 if (freeze_protected) 279 sb_end_intwrite(inode->i_sb); 280 ext4_xattr_inode_array_free(ea_inode_array); 281 goto no_delete; 282 } 283 284 /* 285 * Kill off the orphan record which ext4_truncate created. 286 * AKPM: I think this can be inside the above `if'. 287 * Note that ext4_orphan_del() has to be able to cope with the 288 * deletion of a non-existent orphan - this is because we don't 289 * know if ext4_truncate() actually created an orphan record. 290 * (Well, we could do this if we need to, but heck - it works) 291 */ 292 ext4_orphan_del(handle, inode); 293 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 294 295 /* 296 * One subtle ordering requirement: if anything has gone wrong 297 * (transaction abort, IO errors, whatever), then we can still 298 * do these next steps (the fs will already have been marked as 299 * having errors), but we can't free the inode if the mark_dirty 300 * fails. 301 */ 302 if (ext4_mark_inode_dirty(handle, inode)) 303 /* If that failed, just do the required in-core inode clear. */ 304 ext4_clear_inode(inode); 305 else 306 ext4_free_inode(handle, inode); 307 ext4_journal_stop(handle); 308 if (freeze_protected) 309 sb_end_intwrite(inode->i_sb); 310 ext4_xattr_inode_array_free(ea_inode_array); 311 return; 312 no_delete: 313 /* 314 * Check out some where else accidentally dirty the evicting inode, 315 * which may probably cause inode use-after-free issues later. 316 */ 317 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list)); 318 319 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 320 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL); 321 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 322 } 323 324 #ifdef CONFIG_QUOTA 325 qsize_t *ext4_get_reserved_space(struct inode *inode) 326 { 327 return &EXT4_I(inode)->i_reserved_quota; 328 } 329 #endif 330 331 /* 332 * Called with i_data_sem down, which is important since we can call 333 * ext4_discard_preallocations() from here. 334 */ 335 void ext4_da_update_reserve_space(struct inode *inode, 336 int used, int quota_claim) 337 { 338 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 339 struct ext4_inode_info *ei = EXT4_I(inode); 340 341 spin_lock(&ei->i_block_reservation_lock); 342 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 343 if (unlikely(used > ei->i_reserved_data_blocks)) { 344 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 345 "with only %d reserved data blocks", 346 __func__, inode->i_ino, used, 347 ei->i_reserved_data_blocks); 348 WARN_ON(1); 349 used = ei->i_reserved_data_blocks; 350 } 351 352 /* Update per-inode reservations */ 353 ei->i_reserved_data_blocks -= used; 354 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 355 356 spin_unlock(&ei->i_block_reservation_lock); 357 358 /* Update quota subsystem for data blocks */ 359 if (quota_claim) 360 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 361 else { 362 /* 363 * We did fallocate with an offset that is already delayed 364 * allocated. So on delayed allocated writeback we should 365 * not re-claim the quota for fallocated blocks. 366 */ 367 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 368 } 369 370 /* 371 * If we have done all the pending block allocations and if 372 * there aren't any writers on the inode, we can discard the 373 * inode's preallocations. 374 */ 375 if ((ei->i_reserved_data_blocks == 0) && 376 !inode_is_open_for_write(inode)) 377 ext4_discard_preallocations(inode); 378 } 379 380 static int __check_block_validity(struct inode *inode, const char *func, 381 unsigned int line, 382 struct ext4_map_blocks *map) 383 { 384 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 385 386 if (journal && inode == journal->j_inode) 387 return 0; 388 389 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 390 ext4_error_inode(inode, func, line, map->m_pblk, 391 "lblock %lu mapped to illegal pblock %llu " 392 "(length %d)", (unsigned long) map->m_lblk, 393 map->m_pblk, map->m_len); 394 return -EFSCORRUPTED; 395 } 396 return 0; 397 } 398 399 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 400 ext4_lblk_t len) 401 { 402 int ret; 403 404 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 405 return fscrypt_zeroout_range(inode, lblk, pblk, len); 406 407 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 408 if (ret > 0) 409 ret = 0; 410 411 return ret; 412 } 413 414 /* 415 * For generic regular files, when updating the extent tree, Ext4 should 416 * hold the i_rwsem and invalidate_lock exclusively. This ensures 417 * exclusion against concurrent page faults, as well as reads and writes. 418 */ 419 #ifdef CONFIG_EXT4_DEBUG 420 void ext4_check_map_extents_env(struct inode *inode) 421 { 422 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 423 return; 424 425 if (!S_ISREG(inode->i_mode) || 426 IS_NOQUOTA(inode) || IS_VERITY(inode) || 427 is_special_ino(inode->i_sb, inode->i_ino) || 428 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) || 429 ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE) || 430 ext4_verity_in_progress(inode)) 431 return; 432 433 WARN_ON_ONCE(!inode_is_locked(inode) && 434 !rwsem_is_locked(&inode->i_mapping->invalidate_lock)); 435 } 436 #else 437 void ext4_check_map_extents_env(struct inode *inode) {} 438 #endif 439 440 #define check_block_validity(inode, map) \ 441 __check_block_validity((inode), __func__, __LINE__, (map)) 442 443 #ifdef ES_AGGRESSIVE_TEST 444 static void ext4_map_blocks_es_recheck(handle_t *handle, 445 struct inode *inode, 446 struct ext4_map_blocks *es_map, 447 struct ext4_map_blocks *map, 448 int flags) 449 { 450 int retval; 451 452 map->m_flags = 0; 453 /* 454 * There is a race window that the result is not the same. 455 * e.g. xfstests #223 when dioread_nolock enables. The reason 456 * is that we lookup a block mapping in extent status tree with 457 * out taking i_data_sem. So at the time the unwritten extent 458 * could be converted. 459 */ 460 down_read(&EXT4_I(inode)->i_data_sem); 461 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 462 retval = ext4_ext_map_blocks(handle, inode, map, 0); 463 } else { 464 retval = ext4_ind_map_blocks(handle, inode, map, 0); 465 } 466 up_read((&EXT4_I(inode)->i_data_sem)); 467 468 /* 469 * We don't check m_len because extent will be collpased in status 470 * tree. So the m_len might not equal. 471 */ 472 if (es_map->m_lblk != map->m_lblk || 473 es_map->m_flags != map->m_flags || 474 es_map->m_pblk != map->m_pblk) { 475 printk("ES cache assertion failed for inode: %lu " 476 "es_cached ex [%d/%d/%llu/%x] != " 477 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 478 inode->i_ino, es_map->m_lblk, es_map->m_len, 479 es_map->m_pblk, es_map->m_flags, map->m_lblk, 480 map->m_len, map->m_pblk, map->m_flags, 481 retval, flags); 482 } 483 } 484 #endif /* ES_AGGRESSIVE_TEST */ 485 486 static int ext4_map_query_blocks_next_in_leaf(handle_t *handle, 487 struct inode *inode, struct ext4_map_blocks *map, 488 unsigned int orig_mlen) 489 { 490 struct ext4_map_blocks map2; 491 unsigned int status, status2; 492 int retval; 493 494 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 495 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 496 497 WARN_ON_ONCE(!(map->m_flags & EXT4_MAP_QUERY_LAST_IN_LEAF)); 498 WARN_ON_ONCE(orig_mlen <= map->m_len); 499 500 /* Prepare map2 for lookup in next leaf block */ 501 map2.m_lblk = map->m_lblk + map->m_len; 502 map2.m_len = orig_mlen - map->m_len; 503 map2.m_flags = 0; 504 retval = ext4_ext_map_blocks(handle, inode, &map2, 0); 505 506 if (retval <= 0) { 507 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 508 map->m_pblk, status, false); 509 return map->m_len; 510 } 511 512 if (unlikely(retval != map2.m_len)) { 513 ext4_warning(inode->i_sb, 514 "ES len assertion failed for inode " 515 "%lu: retval %d != map->m_len %d", 516 inode->i_ino, retval, map2.m_len); 517 WARN_ON(1); 518 } 519 520 status2 = map2.m_flags & EXT4_MAP_UNWRITTEN ? 521 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 522 523 /* 524 * If map2 is contiguous with map, then let's insert it as a single 525 * extent in es cache and return the combined length of both the maps. 526 */ 527 if (map->m_pblk + map->m_len == map2.m_pblk && 528 status == status2) { 529 ext4_es_insert_extent(inode, map->m_lblk, 530 map->m_len + map2.m_len, map->m_pblk, 531 status, false); 532 map->m_len += map2.m_len; 533 } else { 534 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 535 map->m_pblk, status, false); 536 } 537 538 return map->m_len; 539 } 540 541 static int ext4_map_query_blocks(handle_t *handle, struct inode *inode, 542 struct ext4_map_blocks *map, int flags) 543 { 544 unsigned int status; 545 int retval; 546 unsigned int orig_mlen = map->m_len; 547 548 flags &= EXT4_EX_QUERY_FILTER; 549 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 550 retval = ext4_ext_map_blocks(handle, inode, map, flags); 551 else 552 retval = ext4_ind_map_blocks(handle, inode, map, flags); 553 if (retval < 0) 554 return retval; 555 556 /* A hole? */ 557 if (retval == 0) 558 goto out; 559 560 if (unlikely(retval != map->m_len)) { 561 ext4_warning(inode->i_sb, 562 "ES len assertion failed for inode " 563 "%lu: retval %d != map->m_len %d", 564 inode->i_ino, retval, map->m_len); 565 WARN_ON(1); 566 } 567 568 /* 569 * No need to query next in leaf: 570 * - if returned extent is not last in leaf or 571 * - if the last in leaf is the full requested range 572 */ 573 if (!(map->m_flags & EXT4_MAP_QUERY_LAST_IN_LEAF) || 574 map->m_len == orig_mlen) { 575 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 576 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 577 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 578 map->m_pblk, status, false); 579 } else { 580 retval = ext4_map_query_blocks_next_in_leaf(handle, inode, map, 581 orig_mlen); 582 } 583 out: 584 map->m_seq = READ_ONCE(EXT4_I(inode)->i_es_seq); 585 return retval; 586 } 587 588 static int ext4_map_create_blocks(handle_t *handle, struct inode *inode, 589 struct ext4_map_blocks *map, int flags) 590 { 591 struct extent_status es; 592 unsigned int status; 593 int err, retval = 0; 594 595 /* 596 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE 597 * indicates that the blocks and quotas has already been 598 * checked when the data was copied into the page cache. 599 */ 600 if (map->m_flags & EXT4_MAP_DELAYED) 601 flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 602 603 /* 604 * Here we clear m_flags because after allocating an new extent, 605 * it will be set again. 606 */ 607 map->m_flags &= ~EXT4_MAP_FLAGS; 608 609 /* 610 * We need to check for EXT4 here because migrate could have 611 * changed the inode type in between. 612 */ 613 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 614 retval = ext4_ext_map_blocks(handle, inode, map, flags); 615 } else { 616 retval = ext4_ind_map_blocks(handle, inode, map, flags); 617 618 /* 619 * We allocated new blocks which will result in i_data's 620 * format changing. Force the migrate to fail by clearing 621 * migrate flags. 622 */ 623 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) 624 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 625 } 626 if (retval <= 0) 627 return retval; 628 629 if (unlikely(retval != map->m_len)) { 630 ext4_warning(inode->i_sb, 631 "ES len assertion failed for inode %lu: " 632 "retval %d != map->m_len %d", 633 inode->i_ino, retval, map->m_len); 634 WARN_ON(1); 635 } 636 637 /* 638 * We have to zeroout blocks before inserting them into extent 639 * status tree. Otherwise someone could look them up there and 640 * use them before they are really zeroed. We also have to 641 * unmap metadata before zeroing as otherwise writeback can 642 * overwrite zeros with stale data from block device. 643 */ 644 if (flags & EXT4_GET_BLOCKS_ZERO && 645 map->m_flags & EXT4_MAP_MAPPED && map->m_flags & EXT4_MAP_NEW) { 646 err = ext4_issue_zeroout(inode, map->m_lblk, map->m_pblk, 647 map->m_len); 648 if (err) 649 return err; 650 } 651 652 /* 653 * If the extent has been zeroed out, we don't need to update 654 * extent status tree. 655 */ 656 if (flags & EXT4_GET_BLOCKS_SPLIT_NOMERGE && 657 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es, &map->m_seq)) { 658 if (ext4_es_is_written(&es)) 659 return retval; 660 } 661 662 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 663 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 664 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, map->m_pblk, 665 status, flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE); 666 map->m_seq = READ_ONCE(EXT4_I(inode)->i_es_seq); 667 668 return retval; 669 } 670 671 /* 672 * The ext4_map_blocks() function tries to look up the requested blocks, 673 * and returns if the blocks are already mapped. 674 * 675 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 676 * and store the allocated blocks in the result buffer head and mark it 677 * mapped. 678 * 679 * If file type is extents based, it will call ext4_ext_map_blocks(), 680 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 681 * based files 682 * 683 * On success, it returns the number of blocks being mapped or allocated. 684 * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are 685 * pre-allocated and unwritten, the resulting @map is marked as unwritten. 686 * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped. 687 * 688 * It returns 0 if plain look up failed (blocks have not been allocated), in 689 * that case, @map is returned as unmapped but we still do fill map->m_len to 690 * indicate the length of a hole starting at map->m_lblk. 691 * 692 * It returns the error in case of allocation failure. 693 */ 694 int ext4_map_blocks(handle_t *handle, struct inode *inode, 695 struct ext4_map_blocks *map, int flags) 696 { 697 struct extent_status es; 698 int retval; 699 int ret = 0; 700 unsigned int orig_mlen = map->m_len; 701 #ifdef ES_AGGRESSIVE_TEST 702 struct ext4_map_blocks orig_map; 703 704 memcpy(&orig_map, map, sizeof(*map)); 705 #endif 706 707 map->m_flags = 0; 708 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 709 flags, map->m_len, (unsigned long) map->m_lblk); 710 711 /* 712 * ext4_map_blocks returns an int, and m_len is an unsigned int 713 */ 714 if (unlikely(map->m_len > INT_MAX)) 715 map->m_len = INT_MAX; 716 717 /* We can handle the block number less than EXT_MAX_BLOCKS */ 718 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 719 return -EFSCORRUPTED; 720 721 /* 722 * Callers from the context of data submission are the only exceptions 723 * for regular files that do not hold the i_rwsem or invalidate_lock. 724 * However, caching unrelated ranges is not permitted. 725 */ 726 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 727 WARN_ON_ONCE(!(flags & EXT4_EX_NOCACHE)); 728 else 729 ext4_check_map_extents_env(inode); 730 731 /* Lookup extent status tree firstly */ 732 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es, &map->m_seq)) { 733 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 734 map->m_pblk = ext4_es_pblock(&es) + 735 map->m_lblk - es.es_lblk; 736 map->m_flags |= ext4_es_is_written(&es) ? 737 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 738 retval = es.es_len - (map->m_lblk - es.es_lblk); 739 if (retval > map->m_len) 740 retval = map->m_len; 741 map->m_len = retval; 742 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 743 map->m_pblk = 0; 744 map->m_flags |= ext4_es_is_delayed(&es) ? 745 EXT4_MAP_DELAYED : 0; 746 retval = es.es_len - (map->m_lblk - es.es_lblk); 747 if (retval > map->m_len) 748 retval = map->m_len; 749 map->m_len = retval; 750 retval = 0; 751 } else { 752 BUG(); 753 } 754 755 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 756 return retval; 757 #ifdef ES_AGGRESSIVE_TEST 758 ext4_map_blocks_es_recheck(handle, inode, map, 759 &orig_map, flags); 760 #endif 761 if (!(flags & EXT4_GET_BLOCKS_QUERY_LAST_IN_LEAF) || 762 orig_mlen == map->m_len) 763 goto found; 764 765 map->m_len = orig_mlen; 766 } 767 /* 768 * In the query cache no-wait mode, nothing we can do more if we 769 * cannot find extent in the cache. 770 */ 771 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 772 return 0; 773 774 /* 775 * Try to see if we can get the block without requesting a new 776 * file system block. 777 */ 778 down_read(&EXT4_I(inode)->i_data_sem); 779 retval = ext4_map_query_blocks(handle, inode, map, flags); 780 up_read((&EXT4_I(inode)->i_data_sem)); 781 782 found: 783 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 784 ret = check_block_validity(inode, map); 785 if (ret != 0) 786 return ret; 787 } 788 789 /* If it is only a block(s) look up */ 790 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 791 return retval; 792 793 /* 794 * Returns if the blocks have already allocated 795 * 796 * Note that if blocks have been preallocated 797 * ext4_ext_map_blocks() returns with buffer head unmapped 798 */ 799 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 800 /* 801 * If we need to convert extent to unwritten 802 * we continue and do the actual work in 803 * ext4_ext_map_blocks() 804 */ 805 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 806 return retval; 807 808 809 ext4_fc_track_inode(handle, inode); 810 /* 811 * New blocks allocate and/or writing to unwritten extent 812 * will possibly result in updating i_data, so we take 813 * the write lock of i_data_sem, and call get_block() 814 * with create == 1 flag. 815 */ 816 down_write(&EXT4_I(inode)->i_data_sem); 817 retval = ext4_map_create_blocks(handle, inode, map, flags); 818 up_write((&EXT4_I(inode)->i_data_sem)); 819 820 if (retval < 0) 821 ext_debug(inode, "failed with err %d\n", retval); 822 if (retval <= 0) 823 return retval; 824 825 if (map->m_flags & EXT4_MAP_MAPPED) { 826 ret = check_block_validity(inode, map); 827 if (ret != 0) 828 return ret; 829 830 /* 831 * Inodes with freshly allocated blocks where contents will be 832 * visible after transaction commit must be on transaction's 833 * ordered data list. 834 */ 835 if (map->m_flags & EXT4_MAP_NEW && 836 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 837 !(flags & EXT4_GET_BLOCKS_ZERO) && 838 !ext4_is_quota_file(inode) && 839 ext4_should_order_data(inode)) { 840 loff_t start_byte = 841 (loff_t)map->m_lblk << inode->i_blkbits; 842 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 843 844 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 845 ret = ext4_jbd2_inode_add_wait(handle, inode, 846 start_byte, length); 847 else 848 ret = ext4_jbd2_inode_add_write(handle, inode, 849 start_byte, length); 850 if (ret) 851 return ret; 852 } 853 } 854 ext4_fc_track_range(handle, inode, map->m_lblk, map->m_lblk + 855 map->m_len - 1); 856 return retval; 857 } 858 859 /* 860 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 861 * we have to be careful as someone else may be manipulating b_state as well. 862 */ 863 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 864 { 865 unsigned long old_state; 866 unsigned long new_state; 867 868 flags &= EXT4_MAP_FLAGS; 869 870 /* Dummy buffer_head? Set non-atomically. */ 871 if (!bh->b_folio) { 872 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 873 return; 874 } 875 /* 876 * Someone else may be modifying b_state. Be careful! This is ugly but 877 * once we get rid of using bh as a container for mapping information 878 * to pass to / from get_block functions, this can go away. 879 */ 880 old_state = READ_ONCE(bh->b_state); 881 do { 882 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 883 } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state))); 884 } 885 886 /* 887 * Make sure that the current journal transaction has enough credits to map 888 * one extent. Return -EAGAIN if it cannot extend the current running 889 * transaction. 890 */ 891 static inline int ext4_journal_ensure_extent_credits(handle_t *handle, 892 struct inode *inode) 893 { 894 int credits; 895 int ret; 896 897 /* Called from ext4_da_write_begin() which has no handle started? */ 898 if (!handle) 899 return 0; 900 901 credits = ext4_chunk_trans_blocks(inode, 1); 902 ret = __ext4_journal_ensure_credits(handle, credits, credits, 0); 903 return ret <= 0 ? ret : -EAGAIN; 904 } 905 906 static int _ext4_get_block(struct inode *inode, sector_t iblock, 907 struct buffer_head *bh, int flags) 908 { 909 struct ext4_map_blocks map; 910 int ret = 0; 911 912 if (ext4_has_inline_data(inode)) 913 return -ERANGE; 914 915 map.m_lblk = iblock; 916 map.m_len = bh->b_size >> inode->i_blkbits; 917 918 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 919 flags); 920 if (ret > 0) { 921 map_bh(bh, inode->i_sb, map.m_pblk); 922 ext4_update_bh_state(bh, map.m_flags); 923 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 924 ret = 0; 925 } else if (ret == 0) { 926 /* hole case, need to fill in bh->b_size */ 927 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 928 } 929 return ret; 930 } 931 932 int ext4_get_block(struct inode *inode, sector_t iblock, 933 struct buffer_head *bh, int create) 934 { 935 return _ext4_get_block(inode, iblock, bh, 936 create ? EXT4_GET_BLOCKS_CREATE : 0); 937 } 938 939 /* 940 * Get block function used when preparing for buffered write if we require 941 * creating an unwritten extent if blocks haven't been allocated. The extent 942 * will be converted to written after the IO is complete. 943 */ 944 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 945 struct buffer_head *bh_result, int create) 946 { 947 int ret = 0; 948 949 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 950 inode->i_ino, create); 951 ret = _ext4_get_block(inode, iblock, bh_result, 952 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT); 953 954 /* 955 * If the buffer is marked unwritten, mark it as new to make sure it is 956 * zeroed out correctly in case of partial writes. Otherwise, there is 957 * a chance of stale data getting exposed. 958 */ 959 if (ret == 0 && buffer_unwritten(bh_result)) 960 set_buffer_new(bh_result); 961 962 return ret; 963 } 964 965 /* Maximum number of blocks we map for direct IO at once. */ 966 #define DIO_MAX_BLOCKS 4096 967 968 /* 969 * `handle' can be NULL if create is zero 970 */ 971 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 972 ext4_lblk_t block, int map_flags) 973 { 974 struct ext4_map_blocks map; 975 struct buffer_head *bh; 976 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 977 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT; 978 int err; 979 980 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 981 || handle != NULL || create == 0); 982 ASSERT(create == 0 || !nowait); 983 984 map.m_lblk = block; 985 map.m_len = 1; 986 err = ext4_map_blocks(handle, inode, &map, map_flags); 987 988 if (err == 0) 989 return create ? ERR_PTR(-ENOSPC) : NULL; 990 if (err < 0) 991 return ERR_PTR(err); 992 993 if (nowait) 994 return sb_find_get_block(inode->i_sb, map.m_pblk); 995 996 /* 997 * Since bh could introduce extra ref count such as referred by 998 * journal_head etc. Try to avoid using __GFP_MOVABLE here 999 * as it may fail the migration when journal_head remains. 1000 */ 1001 bh = getblk_unmovable(inode->i_sb->s_bdev, map.m_pblk, 1002 inode->i_sb->s_blocksize); 1003 1004 if (unlikely(!bh)) 1005 return ERR_PTR(-ENOMEM); 1006 if (map.m_flags & EXT4_MAP_NEW) { 1007 ASSERT(create != 0); 1008 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 1009 || (handle != NULL)); 1010 1011 /* 1012 * Now that we do not always journal data, we should 1013 * keep in mind whether this should always journal the 1014 * new buffer as metadata. For now, regular file 1015 * writes use ext4_get_block instead, so it's not a 1016 * problem. 1017 */ 1018 lock_buffer(bh); 1019 BUFFER_TRACE(bh, "call get_create_access"); 1020 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 1021 EXT4_JTR_NONE); 1022 if (unlikely(err)) { 1023 unlock_buffer(bh); 1024 goto errout; 1025 } 1026 if (!buffer_uptodate(bh)) { 1027 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1028 set_buffer_uptodate(bh); 1029 } 1030 unlock_buffer(bh); 1031 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 1032 err = ext4_handle_dirty_metadata(handle, inode, bh); 1033 if (unlikely(err)) 1034 goto errout; 1035 } else 1036 BUFFER_TRACE(bh, "not a new buffer"); 1037 return bh; 1038 errout: 1039 brelse(bh); 1040 return ERR_PTR(err); 1041 } 1042 1043 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1044 ext4_lblk_t block, int map_flags) 1045 { 1046 struct buffer_head *bh; 1047 int ret; 1048 1049 bh = ext4_getblk(handle, inode, block, map_flags); 1050 if (IS_ERR(bh)) 1051 return bh; 1052 if (!bh || ext4_buffer_uptodate(bh)) 1053 return bh; 1054 1055 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 1056 if (ret) { 1057 put_bh(bh); 1058 return ERR_PTR(ret); 1059 } 1060 return bh; 1061 } 1062 1063 /* Read a contiguous batch of blocks. */ 1064 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 1065 bool wait, struct buffer_head **bhs) 1066 { 1067 int i, err; 1068 1069 for (i = 0; i < bh_count; i++) { 1070 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 1071 if (IS_ERR(bhs[i])) { 1072 err = PTR_ERR(bhs[i]); 1073 bh_count = i; 1074 goto out_brelse; 1075 } 1076 } 1077 1078 for (i = 0; i < bh_count; i++) 1079 /* Note that NULL bhs[i] is valid because of holes. */ 1080 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 1081 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 1082 1083 if (!wait) 1084 return 0; 1085 1086 for (i = 0; i < bh_count; i++) 1087 if (bhs[i]) 1088 wait_on_buffer(bhs[i]); 1089 1090 for (i = 0; i < bh_count; i++) { 1091 if (bhs[i] && !buffer_uptodate(bhs[i])) { 1092 err = -EIO; 1093 goto out_brelse; 1094 } 1095 } 1096 return 0; 1097 1098 out_brelse: 1099 for (i = 0; i < bh_count; i++) { 1100 brelse(bhs[i]); 1101 bhs[i] = NULL; 1102 } 1103 return err; 1104 } 1105 1106 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, 1107 struct buffer_head *head, 1108 unsigned from, 1109 unsigned to, 1110 int *partial, 1111 int (*fn)(handle_t *handle, struct inode *inode, 1112 struct buffer_head *bh)) 1113 { 1114 struct buffer_head *bh; 1115 unsigned block_start, block_end; 1116 unsigned blocksize = head->b_size; 1117 int err, ret = 0; 1118 struct buffer_head *next; 1119 1120 for (bh = head, block_start = 0; 1121 ret == 0 && (bh != head || !block_start); 1122 block_start = block_end, bh = next) { 1123 next = bh->b_this_page; 1124 block_end = block_start + blocksize; 1125 if (block_end <= from || block_start >= to) { 1126 if (partial && !buffer_uptodate(bh)) 1127 *partial = 1; 1128 continue; 1129 } 1130 err = (*fn)(handle, inode, bh); 1131 if (!ret) 1132 ret = err; 1133 } 1134 return ret; 1135 } 1136 1137 /* 1138 * Helper for handling dirtying of journalled data. We also mark the folio as 1139 * dirty so that writeback code knows about this page (and inode) contains 1140 * dirty data. ext4_writepages() then commits appropriate transaction to 1141 * make data stable. 1142 */ 1143 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh) 1144 { 1145 struct folio *folio = bh->b_folio; 1146 struct inode *inode = folio->mapping->host; 1147 1148 /* only regular files have a_ops */ 1149 if (S_ISREG(inode->i_mode)) 1150 folio_mark_dirty(folio); 1151 return ext4_handle_dirty_metadata(handle, NULL, bh); 1152 } 1153 1154 int do_journal_get_write_access(handle_t *handle, struct inode *inode, 1155 struct buffer_head *bh) 1156 { 1157 if (!buffer_mapped(bh) || buffer_freed(bh)) 1158 return 0; 1159 BUFFER_TRACE(bh, "get write access"); 1160 return ext4_journal_get_write_access(handle, inode->i_sb, bh, 1161 EXT4_JTR_NONE); 1162 } 1163 1164 int ext4_block_write_begin(handle_t *handle, struct folio *folio, 1165 loff_t pos, unsigned len, 1166 get_block_t *get_block) 1167 { 1168 unsigned int from = offset_in_folio(folio, pos); 1169 unsigned to = from + len; 1170 struct inode *inode = folio->mapping->host; 1171 unsigned block_start, block_end; 1172 sector_t block; 1173 int err = 0; 1174 unsigned blocksize = inode->i_sb->s_blocksize; 1175 unsigned bbits; 1176 struct buffer_head *bh, *head, *wait[2]; 1177 int nr_wait = 0; 1178 int i; 1179 bool should_journal_data = ext4_should_journal_data(inode); 1180 1181 BUG_ON(!folio_test_locked(folio)); 1182 BUG_ON(to > folio_size(folio)); 1183 BUG_ON(from > to); 1184 1185 head = folio_buffers(folio); 1186 if (!head) 1187 head = create_empty_buffers(folio, blocksize, 0); 1188 bbits = ilog2(blocksize); 1189 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 1190 1191 for (bh = head, block_start = 0; bh != head || !block_start; 1192 block++, block_start = block_end, bh = bh->b_this_page) { 1193 block_end = block_start + blocksize; 1194 if (block_end <= from || block_start >= to) { 1195 if (folio_test_uptodate(folio)) { 1196 set_buffer_uptodate(bh); 1197 } 1198 continue; 1199 } 1200 if (WARN_ON_ONCE(buffer_new(bh))) 1201 clear_buffer_new(bh); 1202 if (!buffer_mapped(bh)) { 1203 WARN_ON(bh->b_size != blocksize); 1204 err = ext4_journal_ensure_extent_credits(handle, inode); 1205 if (!err) 1206 err = get_block(inode, block, bh, 1); 1207 if (err) 1208 break; 1209 if (buffer_new(bh)) { 1210 /* 1211 * We may be zeroing partial buffers or all new 1212 * buffers in case of failure. Prepare JBD2 for 1213 * that. 1214 */ 1215 if (should_journal_data) 1216 do_journal_get_write_access(handle, 1217 inode, bh); 1218 if (folio_test_uptodate(folio)) { 1219 /* 1220 * Unlike __block_write_begin() we leave 1221 * dirtying of new uptodate buffers to 1222 * ->write_end() time or 1223 * folio_zero_new_buffers(). 1224 */ 1225 set_buffer_uptodate(bh); 1226 continue; 1227 } 1228 if (block_end > to || block_start < from) 1229 folio_zero_segments(folio, to, 1230 block_end, 1231 block_start, from); 1232 continue; 1233 } 1234 } 1235 if (folio_test_uptodate(folio)) { 1236 set_buffer_uptodate(bh); 1237 continue; 1238 } 1239 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1240 !buffer_unwritten(bh) && 1241 (block_start < from || block_end > to)) { 1242 ext4_read_bh_lock(bh, 0, false); 1243 wait[nr_wait++] = bh; 1244 } 1245 } 1246 /* 1247 * If we issued read requests, let them complete. 1248 */ 1249 for (i = 0; i < nr_wait; i++) { 1250 wait_on_buffer(wait[i]); 1251 if (!buffer_uptodate(wait[i])) 1252 err = -EIO; 1253 } 1254 if (unlikely(err)) { 1255 if (should_journal_data) 1256 ext4_journalled_zero_new_buffers(handle, inode, folio, 1257 from, to); 1258 else 1259 folio_zero_new_buffers(folio, from, to); 1260 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1261 for (i = 0; i < nr_wait; i++) { 1262 int err2; 1263 1264 err2 = fscrypt_decrypt_pagecache_blocks(folio, 1265 blocksize, bh_offset(wait[i])); 1266 if (err2) { 1267 clear_buffer_uptodate(wait[i]); 1268 err = err2; 1269 } 1270 } 1271 } 1272 1273 return err; 1274 } 1275 1276 /* 1277 * To preserve ordering, it is essential that the hole instantiation and 1278 * the data write be encapsulated in a single transaction. We cannot 1279 * close off a transaction and start a new one between the ext4_get_block() 1280 * and the ext4_write_end(). So doing the jbd2_journal_start at the start of 1281 * ext4_write_begin() is the right place. 1282 */ 1283 static int ext4_write_begin(const struct kiocb *iocb, 1284 struct address_space *mapping, 1285 loff_t pos, unsigned len, 1286 struct folio **foliop, void **fsdata) 1287 { 1288 struct inode *inode = mapping->host; 1289 int ret, needed_blocks; 1290 handle_t *handle; 1291 int retries = 0; 1292 struct folio *folio; 1293 pgoff_t index; 1294 unsigned from, to; 1295 1296 ret = ext4_emergency_state(inode->i_sb); 1297 if (unlikely(ret)) 1298 return ret; 1299 1300 trace_ext4_write_begin(inode, pos, len); 1301 /* 1302 * Reserve one block more for addition to orphan list in case 1303 * we allocate blocks but write fails for some reason 1304 */ 1305 needed_blocks = ext4_chunk_trans_extent(inode, 1306 ext4_journal_blocks_per_folio(inode)) + 1; 1307 index = pos >> PAGE_SHIFT; 1308 1309 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1310 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1311 foliop); 1312 if (ret < 0) 1313 return ret; 1314 if (ret == 1) 1315 return 0; 1316 } 1317 1318 /* 1319 * write_begin_get_folio() can take a long time if the 1320 * system is thrashing due to memory pressure, or if the folio 1321 * is being written back. So grab it first before we start 1322 * the transaction handle. This also allows us to allocate 1323 * the folio (if needed) without using GFP_NOFS. 1324 */ 1325 retry_grab: 1326 folio = write_begin_get_folio(iocb, mapping, index, len); 1327 if (IS_ERR(folio)) 1328 return PTR_ERR(folio); 1329 1330 if (pos + len > folio_pos(folio) + folio_size(folio)) 1331 len = folio_pos(folio) + folio_size(folio) - pos; 1332 1333 from = offset_in_folio(folio, pos); 1334 to = from + len; 1335 1336 /* 1337 * The same as page allocation, we prealloc buffer heads before 1338 * starting the handle. 1339 */ 1340 if (!folio_buffers(folio)) 1341 create_empty_buffers(folio, inode->i_sb->s_blocksize, 0); 1342 1343 folio_unlock(folio); 1344 1345 retry_journal: 1346 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1347 if (IS_ERR(handle)) { 1348 folio_put(folio); 1349 return PTR_ERR(handle); 1350 } 1351 1352 folio_lock(folio); 1353 if (folio->mapping != mapping) { 1354 /* The folio got truncated from under us */ 1355 folio_unlock(folio); 1356 folio_put(folio); 1357 ext4_journal_stop(handle); 1358 goto retry_grab; 1359 } 1360 /* In case writeback began while the folio was unlocked */ 1361 folio_wait_stable(folio); 1362 1363 if (ext4_should_dioread_nolock(inode)) 1364 ret = ext4_block_write_begin(handle, folio, pos, len, 1365 ext4_get_block_unwritten); 1366 else 1367 ret = ext4_block_write_begin(handle, folio, pos, len, 1368 ext4_get_block); 1369 if (!ret && ext4_should_journal_data(inode)) { 1370 ret = ext4_walk_page_buffers(handle, inode, 1371 folio_buffers(folio), from, to, 1372 NULL, do_journal_get_write_access); 1373 } 1374 1375 if (ret) { 1376 bool extended = (pos + len > inode->i_size) && 1377 !ext4_verity_in_progress(inode); 1378 1379 folio_unlock(folio); 1380 /* 1381 * ext4_block_write_begin may have instantiated a few blocks 1382 * outside i_size. Trim these off again. Don't need 1383 * i_size_read because we hold i_rwsem. 1384 * 1385 * Add inode to orphan list in case we crash before 1386 * truncate finishes 1387 */ 1388 if (extended && ext4_can_truncate(inode)) 1389 ext4_orphan_add(handle, inode); 1390 1391 ext4_journal_stop(handle); 1392 if (extended) { 1393 ext4_truncate_failed_write(inode); 1394 /* 1395 * If truncate failed early the inode might 1396 * still be on the orphan list; we need to 1397 * make sure the inode is removed from the 1398 * orphan list in that case. 1399 */ 1400 if (inode->i_nlink) 1401 ext4_orphan_del(NULL, inode); 1402 } 1403 1404 if (ret == -EAGAIN || 1405 (ret == -ENOSPC && 1406 ext4_should_retry_alloc(inode->i_sb, &retries))) 1407 goto retry_journal; 1408 folio_put(folio); 1409 return ret; 1410 } 1411 *foliop = folio; 1412 return ret; 1413 } 1414 1415 /* For write_end() in data=journal mode */ 1416 static int write_end_fn(handle_t *handle, struct inode *inode, 1417 struct buffer_head *bh) 1418 { 1419 int ret; 1420 if (!buffer_mapped(bh) || buffer_freed(bh)) 1421 return 0; 1422 set_buffer_uptodate(bh); 1423 ret = ext4_dirty_journalled_data(handle, bh); 1424 clear_buffer_meta(bh); 1425 clear_buffer_prio(bh); 1426 clear_buffer_new(bh); 1427 return ret; 1428 } 1429 1430 /* 1431 * We need to pick up the new inode size which generic_commit_write gave us 1432 * `iocb` can be NULL - eg, when called from page_symlink(). 1433 * 1434 * ext4 never places buffers on inode->i_mapping->i_private_list. metadata 1435 * buffers are managed internally. 1436 */ 1437 static int ext4_write_end(const struct kiocb *iocb, 1438 struct address_space *mapping, 1439 loff_t pos, unsigned len, unsigned copied, 1440 struct folio *folio, void *fsdata) 1441 { 1442 handle_t *handle = ext4_journal_current_handle(); 1443 struct inode *inode = mapping->host; 1444 loff_t old_size = inode->i_size; 1445 int ret = 0, ret2; 1446 int i_size_changed = 0; 1447 bool verity = ext4_verity_in_progress(inode); 1448 1449 trace_ext4_write_end(inode, pos, len, copied); 1450 1451 if (ext4_has_inline_data(inode) && 1452 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) 1453 return ext4_write_inline_data_end(inode, pos, len, copied, 1454 folio); 1455 1456 copied = block_write_end(pos, len, copied, folio); 1457 /* 1458 * it's important to update i_size while still holding folio lock: 1459 * page writeout could otherwise come in and zero beyond i_size. 1460 * 1461 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1462 * blocks are being written past EOF, so skip the i_size update. 1463 */ 1464 if (!verity) 1465 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1466 folio_unlock(folio); 1467 folio_put(folio); 1468 1469 if (old_size < pos && !verity) { 1470 pagecache_isize_extended(inode, old_size, pos); 1471 ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size); 1472 } 1473 /* 1474 * Don't mark the inode dirty under folio lock. First, it unnecessarily 1475 * makes the holding time of folio lock longer. Second, it forces lock 1476 * ordering of folio lock and transaction start for journaling 1477 * filesystems. 1478 */ 1479 if (i_size_changed) 1480 ret = ext4_mark_inode_dirty(handle, inode); 1481 1482 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1483 /* if we have allocated more blocks and copied 1484 * less. We will have blocks allocated outside 1485 * inode->i_size. So truncate them 1486 */ 1487 ext4_orphan_add(handle, inode); 1488 1489 ret2 = ext4_journal_stop(handle); 1490 if (!ret) 1491 ret = ret2; 1492 1493 if (pos + len > inode->i_size && !verity) { 1494 ext4_truncate_failed_write(inode); 1495 /* 1496 * If truncate failed early the inode might still be 1497 * on the orphan list; we need to make sure the inode 1498 * is removed from the orphan list in that case. 1499 */ 1500 if (inode->i_nlink) 1501 ext4_orphan_del(NULL, inode); 1502 } 1503 1504 return ret ? ret : copied; 1505 } 1506 1507 /* 1508 * This is a private version of folio_zero_new_buffers() which doesn't 1509 * set the buffer to be dirty, since in data=journalled mode we need 1510 * to call ext4_dirty_journalled_data() instead. 1511 */ 1512 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1513 struct inode *inode, 1514 struct folio *folio, 1515 unsigned from, unsigned to) 1516 { 1517 unsigned int block_start = 0, block_end; 1518 struct buffer_head *head, *bh; 1519 1520 bh = head = folio_buffers(folio); 1521 do { 1522 block_end = block_start + bh->b_size; 1523 if (buffer_new(bh)) { 1524 if (block_end > from && block_start < to) { 1525 if (!folio_test_uptodate(folio)) { 1526 unsigned start, size; 1527 1528 start = max(from, block_start); 1529 size = min(to, block_end) - start; 1530 1531 folio_zero_range(folio, start, size); 1532 } 1533 clear_buffer_new(bh); 1534 write_end_fn(handle, inode, bh); 1535 } 1536 } 1537 block_start = block_end; 1538 bh = bh->b_this_page; 1539 } while (bh != head); 1540 } 1541 1542 static int ext4_journalled_write_end(const struct kiocb *iocb, 1543 struct address_space *mapping, 1544 loff_t pos, unsigned len, unsigned copied, 1545 struct folio *folio, void *fsdata) 1546 { 1547 handle_t *handle = ext4_journal_current_handle(); 1548 struct inode *inode = mapping->host; 1549 loff_t old_size = inode->i_size; 1550 int ret = 0, ret2; 1551 int partial = 0; 1552 unsigned from, to; 1553 int size_changed = 0; 1554 bool verity = ext4_verity_in_progress(inode); 1555 1556 trace_ext4_journalled_write_end(inode, pos, len, copied); 1557 from = pos & (PAGE_SIZE - 1); 1558 to = from + len; 1559 1560 BUG_ON(!ext4_handle_valid(handle)); 1561 1562 if (ext4_has_inline_data(inode)) 1563 return ext4_write_inline_data_end(inode, pos, len, copied, 1564 folio); 1565 1566 if (unlikely(copied < len) && !folio_test_uptodate(folio)) { 1567 copied = 0; 1568 ext4_journalled_zero_new_buffers(handle, inode, folio, 1569 from, to); 1570 } else { 1571 if (unlikely(copied < len)) 1572 ext4_journalled_zero_new_buffers(handle, inode, folio, 1573 from + copied, to); 1574 ret = ext4_walk_page_buffers(handle, inode, 1575 folio_buffers(folio), 1576 from, from + copied, &partial, 1577 write_end_fn); 1578 if (!partial) 1579 folio_mark_uptodate(folio); 1580 } 1581 if (!verity) 1582 size_changed = ext4_update_inode_size(inode, pos + copied); 1583 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1584 folio_unlock(folio); 1585 folio_put(folio); 1586 1587 if (old_size < pos && !verity) { 1588 pagecache_isize_extended(inode, old_size, pos); 1589 ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size); 1590 } 1591 1592 if (size_changed) { 1593 ret2 = ext4_mark_inode_dirty(handle, inode); 1594 if (!ret) 1595 ret = ret2; 1596 } 1597 1598 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1599 /* if we have allocated more blocks and copied 1600 * less. We will have blocks allocated outside 1601 * inode->i_size. So truncate them 1602 */ 1603 ext4_orphan_add(handle, inode); 1604 1605 ret2 = ext4_journal_stop(handle); 1606 if (!ret) 1607 ret = ret2; 1608 if (pos + len > inode->i_size && !verity) { 1609 ext4_truncate_failed_write(inode); 1610 /* 1611 * If truncate failed early the inode might still be 1612 * on the orphan list; we need to make sure the inode 1613 * is removed from the orphan list in that case. 1614 */ 1615 if (inode->i_nlink) 1616 ext4_orphan_del(NULL, inode); 1617 } 1618 1619 return ret ? ret : copied; 1620 } 1621 1622 /* 1623 * Reserve space for 'nr_resv' clusters 1624 */ 1625 static int ext4_da_reserve_space(struct inode *inode, int nr_resv) 1626 { 1627 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1628 struct ext4_inode_info *ei = EXT4_I(inode); 1629 int ret; 1630 1631 /* 1632 * We will charge metadata quota at writeout time; this saves 1633 * us from metadata over-estimation, though we may go over by 1634 * a small amount in the end. Here we just reserve for data. 1635 */ 1636 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv)); 1637 if (ret) 1638 return ret; 1639 1640 spin_lock(&ei->i_block_reservation_lock); 1641 if (ext4_claim_free_clusters(sbi, nr_resv, 0)) { 1642 spin_unlock(&ei->i_block_reservation_lock); 1643 dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv)); 1644 return -ENOSPC; 1645 } 1646 ei->i_reserved_data_blocks += nr_resv; 1647 trace_ext4_da_reserve_space(inode, nr_resv); 1648 spin_unlock(&ei->i_block_reservation_lock); 1649 1650 return 0; /* success */ 1651 } 1652 1653 void ext4_da_release_space(struct inode *inode, int to_free) 1654 { 1655 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1656 struct ext4_inode_info *ei = EXT4_I(inode); 1657 1658 if (!to_free) 1659 return; /* Nothing to release, exit */ 1660 1661 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1662 1663 trace_ext4_da_release_space(inode, to_free); 1664 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1665 /* 1666 * if there aren't enough reserved blocks, then the 1667 * counter is messed up somewhere. Since this 1668 * function is called from invalidate page, it's 1669 * harmless to return without any action. 1670 */ 1671 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1672 "ino %lu, to_free %d with only %d reserved " 1673 "data blocks", inode->i_ino, to_free, 1674 ei->i_reserved_data_blocks); 1675 WARN_ON(1); 1676 to_free = ei->i_reserved_data_blocks; 1677 } 1678 ei->i_reserved_data_blocks -= to_free; 1679 1680 /* update fs dirty data blocks counter */ 1681 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1682 1683 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1684 1685 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1686 } 1687 1688 /* 1689 * Delayed allocation stuff 1690 */ 1691 1692 struct mpage_da_data { 1693 /* These are input fields for ext4_do_writepages() */ 1694 struct inode *inode; 1695 struct writeback_control *wbc; 1696 unsigned int can_map:1; /* Can writepages call map blocks? */ 1697 1698 /* These are internal state of ext4_do_writepages() */ 1699 loff_t start_pos; /* The start pos to write */ 1700 loff_t next_pos; /* Current pos to examine */ 1701 loff_t end_pos; /* Last pos to examine */ 1702 1703 /* 1704 * Extent to map - this can be after start_pos because that can be 1705 * fully mapped. We somewhat abuse m_flags to store whether the extent 1706 * is delalloc or unwritten. 1707 */ 1708 struct ext4_map_blocks map; 1709 struct ext4_io_submit io_submit; /* IO submission data */ 1710 unsigned int do_map:1; 1711 unsigned int scanned_until_end:1; 1712 unsigned int journalled_more_data:1; 1713 }; 1714 1715 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1716 bool invalidate) 1717 { 1718 unsigned nr, i; 1719 pgoff_t index, end; 1720 struct folio_batch fbatch; 1721 struct inode *inode = mpd->inode; 1722 struct address_space *mapping = inode->i_mapping; 1723 1724 /* This is necessary when next_pos == 0. */ 1725 if (mpd->start_pos >= mpd->next_pos) 1726 return; 1727 1728 mpd->scanned_until_end = 0; 1729 if (invalidate) { 1730 ext4_lblk_t start, last; 1731 start = EXT4_B_TO_LBLK(inode, mpd->start_pos); 1732 last = mpd->next_pos >> inode->i_blkbits; 1733 1734 /* 1735 * avoid racing with extent status tree scans made by 1736 * ext4_insert_delayed_block() 1737 */ 1738 down_write(&EXT4_I(inode)->i_data_sem); 1739 ext4_es_remove_extent(inode, start, last - start); 1740 up_write(&EXT4_I(inode)->i_data_sem); 1741 } 1742 1743 folio_batch_init(&fbatch); 1744 index = mpd->start_pos >> PAGE_SHIFT; 1745 end = mpd->next_pos >> PAGE_SHIFT; 1746 while (index < end) { 1747 nr = filemap_get_folios(mapping, &index, end - 1, &fbatch); 1748 if (nr == 0) 1749 break; 1750 for (i = 0; i < nr; i++) { 1751 struct folio *folio = fbatch.folios[i]; 1752 1753 if (folio_pos(folio) < mpd->start_pos) 1754 continue; 1755 if (folio_next_index(folio) > end) 1756 continue; 1757 BUG_ON(!folio_test_locked(folio)); 1758 BUG_ON(folio_test_writeback(folio)); 1759 if (invalidate) { 1760 if (folio_mapped(folio)) 1761 folio_clear_dirty_for_io(folio); 1762 block_invalidate_folio(folio, 0, 1763 folio_size(folio)); 1764 folio_clear_uptodate(folio); 1765 } 1766 folio_unlock(folio); 1767 } 1768 folio_batch_release(&fbatch); 1769 } 1770 } 1771 1772 static void ext4_print_free_blocks(struct inode *inode) 1773 { 1774 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1775 struct super_block *sb = inode->i_sb; 1776 struct ext4_inode_info *ei = EXT4_I(inode); 1777 1778 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1779 EXT4_C2B(EXT4_SB(inode->i_sb), 1780 ext4_count_free_clusters(sb))); 1781 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1782 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1783 (long long) EXT4_C2B(EXT4_SB(sb), 1784 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1785 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1786 (long long) EXT4_C2B(EXT4_SB(sb), 1787 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1788 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1789 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1790 ei->i_reserved_data_blocks); 1791 return; 1792 } 1793 1794 /* 1795 * Check whether the cluster containing lblk has been allocated or has 1796 * delalloc reservation. 1797 * 1798 * Returns 0 if the cluster doesn't have either, 1 if it has delalloc 1799 * reservation, 2 if it's already been allocated, negative error code on 1800 * failure. 1801 */ 1802 static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk) 1803 { 1804 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1805 int ret; 1806 1807 /* Has delalloc reservation? */ 1808 if (ext4_es_scan_clu(inode, &ext4_es_is_delayed, lblk)) 1809 return 1; 1810 1811 /* Already been allocated? */ 1812 if (ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk)) 1813 return 2; 1814 ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk)); 1815 if (ret < 0) 1816 return ret; 1817 if (ret > 0) 1818 return 2; 1819 1820 return 0; 1821 } 1822 1823 /* 1824 * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents 1825 * status tree, incrementing the reserved 1826 * cluster/block count or making pending 1827 * reservations where needed 1828 * 1829 * @inode - file containing the newly added block 1830 * @lblk - start logical block to be added 1831 * @len - length of blocks to be added 1832 * 1833 * Returns 0 on success, negative error code on failure. 1834 */ 1835 static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk, 1836 ext4_lblk_t len) 1837 { 1838 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1839 int ret; 1840 bool lclu_allocated = false; 1841 bool end_allocated = false; 1842 ext4_lblk_t resv_clu; 1843 ext4_lblk_t end = lblk + len - 1; 1844 1845 /* 1846 * If the cluster containing lblk or end is shared with a delayed, 1847 * written, or unwritten extent in a bigalloc file system, it's 1848 * already been accounted for and does not need to be reserved. 1849 * A pending reservation must be made for the cluster if it's 1850 * shared with a written or unwritten extent and doesn't already 1851 * have one. Written and unwritten extents can be purged from the 1852 * extents status tree if the system is under memory pressure, so 1853 * it's necessary to examine the extent tree if a search of the 1854 * extents status tree doesn't get a match. 1855 */ 1856 if (sbi->s_cluster_ratio == 1) { 1857 ret = ext4_da_reserve_space(inode, len); 1858 if (ret != 0) /* ENOSPC */ 1859 return ret; 1860 } else { /* bigalloc */ 1861 resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1; 1862 1863 ret = ext4_clu_alloc_state(inode, lblk); 1864 if (ret < 0) 1865 return ret; 1866 if (ret > 0) { 1867 resv_clu--; 1868 lclu_allocated = (ret == 2); 1869 } 1870 1871 if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) { 1872 ret = ext4_clu_alloc_state(inode, end); 1873 if (ret < 0) 1874 return ret; 1875 if (ret > 0) { 1876 resv_clu--; 1877 end_allocated = (ret == 2); 1878 } 1879 } 1880 1881 if (resv_clu) { 1882 ret = ext4_da_reserve_space(inode, resv_clu); 1883 if (ret != 0) /* ENOSPC */ 1884 return ret; 1885 } 1886 } 1887 1888 ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated, 1889 end_allocated); 1890 return 0; 1891 } 1892 1893 /* 1894 * Looks up the requested blocks and sets the delalloc extent map. 1895 * First try to look up for the extent entry that contains the requested 1896 * blocks in the extent status tree without i_data_sem, then try to look 1897 * up for the ondisk extent mapping with i_data_sem in read mode, 1898 * finally hold i_data_sem in write mode, looks up again and add a 1899 * delalloc extent entry if it still couldn't find any extent. Pass out 1900 * the mapped extent through @map and return 0 on success. 1901 */ 1902 static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map) 1903 { 1904 struct extent_status es; 1905 int retval; 1906 #ifdef ES_AGGRESSIVE_TEST 1907 struct ext4_map_blocks orig_map; 1908 1909 memcpy(&orig_map, map, sizeof(*map)); 1910 #endif 1911 1912 map->m_flags = 0; 1913 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1914 (unsigned long) map->m_lblk); 1915 1916 ext4_check_map_extents_env(inode); 1917 1918 /* Lookup extent status tree firstly */ 1919 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es, NULL)) { 1920 map->m_len = min_t(unsigned int, map->m_len, 1921 es.es_len - (map->m_lblk - es.es_lblk)); 1922 1923 if (ext4_es_is_hole(&es)) 1924 goto add_delayed; 1925 1926 found: 1927 /* 1928 * Delayed extent could be allocated by fallocate. 1929 * So we need to check it. 1930 */ 1931 if (ext4_es_is_delayed(&es)) { 1932 map->m_flags |= EXT4_MAP_DELAYED; 1933 return 0; 1934 } 1935 1936 map->m_pblk = ext4_es_pblock(&es) + map->m_lblk - es.es_lblk; 1937 if (ext4_es_is_written(&es)) 1938 map->m_flags |= EXT4_MAP_MAPPED; 1939 else if (ext4_es_is_unwritten(&es)) 1940 map->m_flags |= EXT4_MAP_UNWRITTEN; 1941 else 1942 BUG(); 1943 1944 #ifdef ES_AGGRESSIVE_TEST 1945 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1946 #endif 1947 return 0; 1948 } 1949 1950 /* 1951 * Try to see if we can get the block without requesting a new 1952 * file system block. 1953 */ 1954 down_read(&EXT4_I(inode)->i_data_sem); 1955 if (ext4_has_inline_data(inode)) 1956 retval = 0; 1957 else 1958 retval = ext4_map_query_blocks(NULL, inode, map, 0); 1959 up_read(&EXT4_I(inode)->i_data_sem); 1960 if (retval) 1961 return retval < 0 ? retval : 0; 1962 1963 add_delayed: 1964 down_write(&EXT4_I(inode)->i_data_sem); 1965 /* 1966 * Page fault path (ext4_page_mkwrite does not take i_rwsem) 1967 * and fallocate path (no folio lock) can race. Make sure we 1968 * lookup the extent status tree here again while i_data_sem 1969 * is held in write mode, before inserting a new da entry in 1970 * the extent status tree. 1971 */ 1972 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es, NULL)) { 1973 map->m_len = min_t(unsigned int, map->m_len, 1974 es.es_len - (map->m_lblk - es.es_lblk)); 1975 1976 if (!ext4_es_is_hole(&es)) { 1977 up_write(&EXT4_I(inode)->i_data_sem); 1978 goto found; 1979 } 1980 } else if (!ext4_has_inline_data(inode)) { 1981 retval = ext4_map_query_blocks(NULL, inode, map, 0); 1982 if (retval) { 1983 up_write(&EXT4_I(inode)->i_data_sem); 1984 return retval < 0 ? retval : 0; 1985 } 1986 } 1987 1988 map->m_flags |= EXT4_MAP_DELAYED; 1989 retval = ext4_insert_delayed_blocks(inode, map->m_lblk, map->m_len); 1990 if (!retval) 1991 map->m_seq = READ_ONCE(EXT4_I(inode)->i_es_seq); 1992 up_write(&EXT4_I(inode)->i_data_sem); 1993 1994 return retval; 1995 } 1996 1997 /* 1998 * This is a special get_block_t callback which is used by 1999 * ext4_da_write_begin(). It will either return mapped block or 2000 * reserve space for a single block. 2001 * 2002 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 2003 * We also have b_blocknr = -1 and b_bdev initialized properly 2004 * 2005 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 2006 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 2007 * initialized properly. 2008 */ 2009 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 2010 struct buffer_head *bh, int create) 2011 { 2012 struct ext4_map_blocks map; 2013 sector_t invalid_block = ~((sector_t) 0xffff); 2014 int ret = 0; 2015 2016 BUG_ON(create == 0); 2017 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 2018 2019 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 2020 invalid_block = ~0; 2021 2022 map.m_lblk = iblock; 2023 map.m_len = 1; 2024 2025 /* 2026 * first, we need to know whether the block is allocated already 2027 * preallocated blocks are unmapped but should treated 2028 * the same as allocated blocks. 2029 */ 2030 ret = ext4_da_map_blocks(inode, &map); 2031 if (ret < 0) 2032 return ret; 2033 2034 if (map.m_flags & EXT4_MAP_DELAYED) { 2035 map_bh(bh, inode->i_sb, invalid_block); 2036 set_buffer_new(bh); 2037 set_buffer_delay(bh); 2038 return 0; 2039 } 2040 2041 map_bh(bh, inode->i_sb, map.m_pblk); 2042 ext4_update_bh_state(bh, map.m_flags); 2043 2044 if (buffer_unwritten(bh)) { 2045 /* A delayed write to unwritten bh should be marked 2046 * new and mapped. Mapped ensures that we don't do 2047 * get_block multiple times when we write to the same 2048 * offset and new ensures that we do proper zero out 2049 * for partial write. 2050 */ 2051 set_buffer_new(bh); 2052 set_buffer_mapped(bh); 2053 } 2054 return 0; 2055 } 2056 2057 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio) 2058 { 2059 mpd->start_pos += folio_size(folio); 2060 mpd->wbc->nr_to_write -= folio_nr_pages(folio); 2061 folio_unlock(folio); 2062 } 2063 2064 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio) 2065 { 2066 size_t len; 2067 loff_t size; 2068 int err; 2069 2070 WARN_ON_ONCE(folio_pos(folio) != mpd->start_pos); 2071 folio_clear_dirty_for_io(folio); 2072 /* 2073 * We have to be very careful here! Nothing protects writeback path 2074 * against i_size changes and the page can be writeably mapped into 2075 * page tables. So an application can be growing i_size and writing 2076 * data through mmap while writeback runs. folio_clear_dirty_for_io() 2077 * write-protects our page in page tables and the page cannot get 2078 * written to again until we release folio lock. So only after 2079 * folio_clear_dirty_for_io() we are safe to sample i_size for 2080 * ext4_bio_write_folio() to zero-out tail of the written page. We rely 2081 * on the barrier provided by folio_test_clear_dirty() in 2082 * folio_clear_dirty_for_io() to make sure i_size is really sampled only 2083 * after page tables are updated. 2084 */ 2085 size = i_size_read(mpd->inode); 2086 len = folio_size(folio); 2087 if (folio_pos(folio) + len > size && 2088 !ext4_verity_in_progress(mpd->inode)) 2089 len = size & (len - 1); 2090 err = ext4_bio_write_folio(&mpd->io_submit, folio, len); 2091 2092 return err; 2093 } 2094 2095 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 2096 2097 /* 2098 * mballoc gives us at most this number of blocks... 2099 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2100 * The rest of mballoc seems to handle chunks up to full group size. 2101 */ 2102 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2103 2104 /* 2105 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2106 * 2107 * @mpd - extent of blocks 2108 * @lblk - logical number of the block in the file 2109 * @bh - buffer head we want to add to the extent 2110 * 2111 * The function is used to collect contig. blocks in the same state. If the 2112 * buffer doesn't require mapping for writeback and we haven't started the 2113 * extent of buffers to map yet, the function returns 'true' immediately - the 2114 * caller can write the buffer right away. Otherwise the function returns true 2115 * if the block has been added to the extent, false if the block couldn't be 2116 * added. 2117 */ 2118 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2119 struct buffer_head *bh) 2120 { 2121 struct ext4_map_blocks *map = &mpd->map; 2122 2123 /* Buffer that doesn't need mapping for writeback? */ 2124 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2125 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2126 /* So far no extent to map => we write the buffer right away */ 2127 if (map->m_len == 0) 2128 return true; 2129 return false; 2130 } 2131 2132 /* First block in the extent? */ 2133 if (map->m_len == 0) { 2134 /* We cannot map unless handle is started... */ 2135 if (!mpd->do_map) 2136 return false; 2137 map->m_lblk = lblk; 2138 map->m_len = 1; 2139 map->m_flags = bh->b_state & BH_FLAGS; 2140 return true; 2141 } 2142 2143 /* Don't go larger than mballoc is willing to allocate */ 2144 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2145 return false; 2146 2147 /* Can we merge the block to our big extent? */ 2148 if (lblk == map->m_lblk + map->m_len && 2149 (bh->b_state & BH_FLAGS) == map->m_flags) { 2150 map->m_len++; 2151 return true; 2152 } 2153 return false; 2154 } 2155 2156 /* 2157 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2158 * 2159 * @mpd - extent of blocks for mapping 2160 * @head - the first buffer in the page 2161 * @bh - buffer we should start processing from 2162 * @lblk - logical number of the block in the file corresponding to @bh 2163 * 2164 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2165 * the page for IO if all buffers in this page were mapped and there's no 2166 * accumulated extent of buffers to map or add buffers in the page to the 2167 * extent of buffers to map. The function returns 1 if the caller can continue 2168 * by processing the next page, 0 if it should stop adding buffers to the 2169 * extent to map because we cannot extend it anymore. It can also return value 2170 * < 0 in case of error during IO submission. 2171 */ 2172 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2173 struct buffer_head *head, 2174 struct buffer_head *bh, 2175 ext4_lblk_t lblk) 2176 { 2177 struct inode *inode = mpd->inode; 2178 int err; 2179 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2180 >> inode->i_blkbits; 2181 2182 if (ext4_verity_in_progress(inode)) 2183 blocks = EXT_MAX_BLOCKS; 2184 2185 do { 2186 BUG_ON(buffer_locked(bh)); 2187 2188 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2189 /* Found extent to map? */ 2190 if (mpd->map.m_len) 2191 return 0; 2192 /* Buffer needs mapping and handle is not started? */ 2193 if (!mpd->do_map) 2194 return 0; 2195 /* Everything mapped so far and we hit EOF */ 2196 break; 2197 } 2198 } while (lblk++, (bh = bh->b_this_page) != head); 2199 /* So far everything mapped? Submit the page for IO. */ 2200 if (mpd->map.m_len == 0) { 2201 err = mpage_submit_folio(mpd, head->b_folio); 2202 if (err < 0) 2203 return err; 2204 mpage_folio_done(mpd, head->b_folio); 2205 } 2206 if (lblk >= blocks) { 2207 mpd->scanned_until_end = 1; 2208 return 0; 2209 } 2210 return 1; 2211 } 2212 2213 /* 2214 * mpage_process_folio - update folio buffers corresponding to changed extent 2215 * and may submit fully mapped page for IO 2216 * @mpd: description of extent to map, on return next extent to map 2217 * @folio: Contains these buffers. 2218 * @m_lblk: logical block mapping. 2219 * @m_pblk: corresponding physical mapping. 2220 * @map_bh: determines on return whether this page requires any further 2221 * mapping or not. 2222 * 2223 * Scan given folio buffers corresponding to changed extent and update buffer 2224 * state according to new extent state. 2225 * We map delalloc buffers to their physical location, clear unwritten bits. 2226 * If the given folio is not fully mapped, we update @mpd to the next extent in 2227 * the given folio that needs mapping & return @map_bh as true. 2228 */ 2229 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio, 2230 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2231 bool *map_bh) 2232 { 2233 struct buffer_head *head, *bh; 2234 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2235 ext4_lblk_t lblk = *m_lblk; 2236 ext4_fsblk_t pblock = *m_pblk; 2237 int err = 0; 2238 int blkbits = mpd->inode->i_blkbits; 2239 ssize_t io_end_size = 0; 2240 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2241 2242 bh = head = folio_buffers(folio); 2243 do { 2244 if (lblk < mpd->map.m_lblk) 2245 continue; 2246 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2247 /* 2248 * Buffer after end of mapped extent. 2249 * Find next buffer in the folio to map. 2250 */ 2251 mpd->map.m_len = 0; 2252 mpd->map.m_flags = 0; 2253 io_end_vec->size += io_end_size; 2254 2255 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2256 if (err > 0) 2257 err = 0; 2258 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2259 io_end_vec = ext4_alloc_io_end_vec(io_end); 2260 if (IS_ERR(io_end_vec)) { 2261 err = PTR_ERR(io_end_vec); 2262 goto out; 2263 } 2264 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2265 } 2266 *map_bh = true; 2267 goto out; 2268 } 2269 if (buffer_delay(bh)) { 2270 clear_buffer_delay(bh); 2271 bh->b_blocknr = pblock++; 2272 } 2273 clear_buffer_unwritten(bh); 2274 io_end_size += (1 << blkbits); 2275 } while (lblk++, (bh = bh->b_this_page) != head); 2276 2277 io_end_vec->size += io_end_size; 2278 *map_bh = false; 2279 out: 2280 *m_lblk = lblk; 2281 *m_pblk = pblock; 2282 return err; 2283 } 2284 2285 /* 2286 * mpage_map_buffers - update buffers corresponding to changed extent and 2287 * submit fully mapped pages for IO 2288 * 2289 * @mpd - description of extent to map, on return next extent to map 2290 * 2291 * Scan buffers corresponding to changed extent (we expect corresponding pages 2292 * to be already locked) and update buffer state according to new extent state. 2293 * We map delalloc buffers to their physical location, clear unwritten bits, 2294 * and mark buffers as uninit when we perform writes to unwritten extents 2295 * and do extent conversion after IO is finished. If the last page is not fully 2296 * mapped, we update @map to the next extent in the last page that needs 2297 * mapping. Otherwise we submit the page for IO. 2298 */ 2299 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2300 { 2301 struct folio_batch fbatch; 2302 unsigned nr, i; 2303 struct inode *inode = mpd->inode; 2304 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2305 pgoff_t start, end; 2306 ext4_lblk_t lblk; 2307 ext4_fsblk_t pblock; 2308 int err; 2309 bool map_bh = false; 2310 2311 start = mpd->map.m_lblk >> bpp_bits; 2312 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2313 pblock = mpd->map.m_pblk; 2314 2315 folio_batch_init(&fbatch); 2316 while (start <= end) { 2317 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch); 2318 if (nr == 0) 2319 break; 2320 for (i = 0; i < nr; i++) { 2321 struct folio *folio = fbatch.folios[i]; 2322 2323 lblk = folio->index << bpp_bits; 2324 err = mpage_process_folio(mpd, folio, &lblk, &pblock, 2325 &map_bh); 2326 /* 2327 * If map_bh is true, means page may require further bh 2328 * mapping, or maybe the page was submitted for IO. 2329 * So we return to call further extent mapping. 2330 */ 2331 if (err < 0 || map_bh) 2332 goto out; 2333 /* Page fully mapped - let IO run! */ 2334 err = mpage_submit_folio(mpd, folio); 2335 if (err < 0) 2336 goto out; 2337 mpage_folio_done(mpd, folio); 2338 } 2339 folio_batch_release(&fbatch); 2340 } 2341 /* Extent fully mapped and matches with page boundary. We are done. */ 2342 mpd->map.m_len = 0; 2343 mpd->map.m_flags = 0; 2344 return 0; 2345 out: 2346 folio_batch_release(&fbatch); 2347 return err; 2348 } 2349 2350 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2351 { 2352 struct inode *inode = mpd->inode; 2353 struct ext4_map_blocks *map = &mpd->map; 2354 int get_blocks_flags; 2355 int err, dioread_nolock; 2356 2357 /* Make sure transaction has enough credits for this extent */ 2358 err = ext4_journal_ensure_extent_credits(handle, inode); 2359 if (err < 0) 2360 return err; 2361 2362 trace_ext4_da_write_pages_extent(inode, map); 2363 /* 2364 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2365 * to convert an unwritten extent to be initialized (in the case 2366 * where we have written into one or more preallocated blocks). It is 2367 * possible that we're going to need more metadata blocks than 2368 * previously reserved. However we must not fail because we're in 2369 * writeback and there is nothing we can do about it so it might result 2370 * in data loss. So use reserved blocks to allocate metadata if 2371 * possible. In addition, do not cache any unrelated extents, as it 2372 * only holds the folio lock but does not hold the i_rwsem or 2373 * invalidate_lock, which could corrupt the extent status tree. 2374 */ 2375 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2376 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2377 EXT4_GET_BLOCKS_IO_SUBMIT | 2378 EXT4_EX_NOCACHE; 2379 2380 dioread_nolock = ext4_should_dioread_nolock(inode); 2381 if (dioread_nolock) 2382 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2383 2384 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2385 if (err < 0) 2386 return err; 2387 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2388 if (!mpd->io_submit.io_end->handle && 2389 ext4_handle_valid(handle)) { 2390 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2391 handle->h_rsv_handle = NULL; 2392 } 2393 ext4_set_io_unwritten_flag(mpd->io_submit.io_end); 2394 } 2395 2396 BUG_ON(map->m_len == 0); 2397 return 0; 2398 } 2399 2400 /* 2401 * This is used to submit mapped buffers in a single folio that is not fully 2402 * mapped for various reasons, such as insufficient space or journal credits. 2403 */ 2404 static int mpage_submit_partial_folio(struct mpage_da_data *mpd) 2405 { 2406 struct inode *inode = mpd->inode; 2407 struct folio *folio; 2408 loff_t pos; 2409 int ret; 2410 2411 folio = filemap_get_folio(inode->i_mapping, 2412 mpd->start_pos >> PAGE_SHIFT); 2413 if (IS_ERR(folio)) 2414 return PTR_ERR(folio); 2415 /* 2416 * The mapped position should be within the current processing folio 2417 * but must not be the folio start position. 2418 */ 2419 pos = ((loff_t)mpd->map.m_lblk) << inode->i_blkbits; 2420 if (WARN_ON_ONCE((folio_pos(folio) == pos) || 2421 !folio_contains(folio, pos >> PAGE_SHIFT))) 2422 return -EINVAL; 2423 2424 ret = mpage_submit_folio(mpd, folio); 2425 if (ret) 2426 goto out; 2427 /* 2428 * Update start_pos to prevent this folio from being released in 2429 * mpage_release_unused_pages(), it will be reset to the aligned folio 2430 * pos when this folio is written again in the next round. Additionally, 2431 * do not update wbc->nr_to_write here, as it will be updated once the 2432 * entire folio has finished processing. 2433 */ 2434 mpd->start_pos = pos; 2435 out: 2436 folio_unlock(folio); 2437 folio_put(folio); 2438 return ret; 2439 } 2440 2441 /* 2442 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2443 * mpd->len and submit pages underlying it for IO 2444 * 2445 * @handle - handle for journal operations 2446 * @mpd - extent to map 2447 * @give_up_on_write - we set this to true iff there is a fatal error and there 2448 * is no hope of writing the data. The caller should discard 2449 * dirty pages to avoid infinite loops. 2450 * 2451 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2452 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2453 * them to initialized or split the described range from larger unwritten 2454 * extent. Note that we need not map all the described range since allocation 2455 * can return less blocks or the range is covered by more unwritten extents. We 2456 * cannot map more because we are limited by reserved transaction credits. On 2457 * the other hand we always make sure that the last touched page is fully 2458 * mapped so that it can be written out (and thus forward progress is 2459 * guaranteed). After mapping we submit all mapped pages for IO. 2460 */ 2461 static int mpage_map_and_submit_extent(handle_t *handle, 2462 struct mpage_da_data *mpd, 2463 bool *give_up_on_write) 2464 { 2465 struct inode *inode = mpd->inode; 2466 struct ext4_map_blocks *map = &mpd->map; 2467 int err; 2468 loff_t disksize; 2469 int progress = 0; 2470 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2471 struct ext4_io_end_vec *io_end_vec; 2472 2473 io_end_vec = ext4_alloc_io_end_vec(io_end); 2474 if (IS_ERR(io_end_vec)) 2475 return PTR_ERR(io_end_vec); 2476 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2477 do { 2478 err = mpage_map_one_extent(handle, mpd); 2479 if (err < 0) { 2480 struct super_block *sb = inode->i_sb; 2481 2482 if (ext4_emergency_state(sb)) 2483 goto invalidate_dirty_pages; 2484 /* 2485 * Let the uper layers retry transient errors. 2486 * In the case of ENOSPC, if ext4_count_free_blocks() 2487 * is non-zero, a commit should free up blocks. 2488 */ 2489 if ((err == -ENOMEM) || (err == -EAGAIN) || 2490 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2491 /* 2492 * We may have already allocated extents for 2493 * some bhs inside the folio, issue the 2494 * corresponding data to prevent stale data. 2495 */ 2496 if (progress) { 2497 if (mpage_submit_partial_folio(mpd)) 2498 goto invalidate_dirty_pages; 2499 goto update_disksize; 2500 } 2501 return err; 2502 } 2503 ext4_msg(sb, KERN_CRIT, 2504 "Delayed block allocation failed for " 2505 "inode %lu at logical offset %llu with" 2506 " max blocks %u with error %d", 2507 inode->i_ino, 2508 (unsigned long long)map->m_lblk, 2509 (unsigned)map->m_len, -err); 2510 ext4_msg(sb, KERN_CRIT, 2511 "This should not happen!! Data will " 2512 "be lost\n"); 2513 if (err == -ENOSPC) 2514 ext4_print_free_blocks(inode); 2515 invalidate_dirty_pages: 2516 *give_up_on_write = true; 2517 return err; 2518 } 2519 progress = 1; 2520 /* 2521 * Update buffer state, submit mapped pages, and get us new 2522 * extent to map 2523 */ 2524 err = mpage_map_and_submit_buffers(mpd); 2525 if (err < 0) 2526 goto update_disksize; 2527 } while (map->m_len); 2528 2529 update_disksize: 2530 /* 2531 * Update on-disk size after IO is submitted. Races with 2532 * truncate are avoided by checking i_size under i_data_sem. 2533 */ 2534 disksize = mpd->start_pos; 2535 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2536 int err2; 2537 loff_t i_size; 2538 2539 down_write(&EXT4_I(inode)->i_data_sem); 2540 i_size = i_size_read(inode); 2541 if (disksize > i_size) 2542 disksize = i_size; 2543 if (disksize > EXT4_I(inode)->i_disksize) 2544 EXT4_I(inode)->i_disksize = disksize; 2545 up_write(&EXT4_I(inode)->i_data_sem); 2546 err2 = ext4_mark_inode_dirty(handle, inode); 2547 if (err2) { 2548 ext4_error_err(inode->i_sb, -err2, 2549 "Failed to mark inode %lu dirty", 2550 inode->i_ino); 2551 } 2552 if (!err) 2553 err = err2; 2554 } 2555 return err; 2556 } 2557 2558 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio, 2559 size_t len) 2560 { 2561 struct buffer_head *page_bufs = folio_buffers(folio); 2562 struct inode *inode = folio->mapping->host; 2563 int ret, err; 2564 2565 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2566 NULL, do_journal_get_write_access); 2567 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2568 NULL, write_end_fn); 2569 if (ret == 0) 2570 ret = err; 2571 err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len); 2572 if (ret == 0) 2573 ret = err; 2574 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2575 2576 return ret; 2577 } 2578 2579 static int mpage_journal_page_buffers(handle_t *handle, 2580 struct mpage_da_data *mpd, 2581 struct folio *folio) 2582 { 2583 struct inode *inode = mpd->inode; 2584 loff_t size = i_size_read(inode); 2585 size_t len = folio_size(folio); 2586 2587 folio_clear_checked(folio); 2588 mpd->wbc->nr_to_write -= folio_nr_pages(folio); 2589 2590 if (folio_pos(folio) + len > size && 2591 !ext4_verity_in_progress(inode)) 2592 len = size & (len - 1); 2593 2594 return ext4_journal_folio_buffers(handle, folio, len); 2595 } 2596 2597 /* 2598 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2599 * needing mapping, submit mapped pages 2600 * 2601 * @mpd - where to look for pages 2602 * 2603 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2604 * IO immediately. If we cannot map blocks, we submit just already mapped 2605 * buffers in the page for IO and keep page dirty. When we can map blocks and 2606 * we find a page which isn't mapped we start accumulating extent of buffers 2607 * underlying these pages that needs mapping (formed by either delayed or 2608 * unwritten buffers). We also lock the pages containing these buffers. The 2609 * extent found is returned in @mpd structure (starting at mpd->lblk with 2610 * length mpd->len blocks). 2611 * 2612 * Note that this function can attach bios to one io_end structure which are 2613 * neither logically nor physically contiguous. Although it may seem as an 2614 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2615 * case as we need to track IO to all buffers underlying a page in one io_end. 2616 */ 2617 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2618 { 2619 struct address_space *mapping = mpd->inode->i_mapping; 2620 struct folio_batch fbatch; 2621 unsigned int nr_folios; 2622 pgoff_t index = mpd->start_pos >> PAGE_SHIFT; 2623 pgoff_t end = mpd->end_pos >> PAGE_SHIFT; 2624 xa_mark_t tag; 2625 int i, err = 0; 2626 int blkbits = mpd->inode->i_blkbits; 2627 ext4_lblk_t lblk; 2628 struct buffer_head *head; 2629 handle_t *handle = NULL; 2630 int bpp = ext4_journal_blocks_per_folio(mpd->inode); 2631 2632 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2633 tag = PAGECACHE_TAG_TOWRITE; 2634 else 2635 tag = PAGECACHE_TAG_DIRTY; 2636 2637 mpd->map.m_len = 0; 2638 mpd->next_pos = mpd->start_pos; 2639 if (ext4_should_journal_data(mpd->inode)) { 2640 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE, 2641 bpp); 2642 if (IS_ERR(handle)) 2643 return PTR_ERR(handle); 2644 } 2645 folio_batch_init(&fbatch); 2646 while (index <= end) { 2647 nr_folios = filemap_get_folios_tag(mapping, &index, end, 2648 tag, &fbatch); 2649 if (nr_folios == 0) 2650 break; 2651 2652 for (i = 0; i < nr_folios; i++) { 2653 struct folio *folio = fbatch.folios[i]; 2654 2655 /* 2656 * Accumulated enough dirty pages? This doesn't apply 2657 * to WB_SYNC_ALL mode. For integrity sync we have to 2658 * keep going because someone may be concurrently 2659 * dirtying pages, and we might have synced a lot of 2660 * newly appeared dirty pages, but have not synced all 2661 * of the old dirty pages. 2662 */ 2663 if (mpd->wbc->sync_mode == WB_SYNC_NONE && 2664 mpd->wbc->nr_to_write <= 2665 mpd->map.m_len >> (PAGE_SHIFT - blkbits)) 2666 goto out; 2667 2668 /* If we can't merge this page, we are done. */ 2669 if (mpd->map.m_len > 0 && 2670 mpd->next_pos != folio_pos(folio)) 2671 goto out; 2672 2673 if (handle) { 2674 err = ext4_journal_ensure_credits(handle, bpp, 2675 0); 2676 if (err < 0) 2677 goto out; 2678 } 2679 2680 folio_lock(folio); 2681 /* 2682 * If the page is no longer dirty, or its mapping no 2683 * longer corresponds to inode we are writing (which 2684 * means it has been truncated or invalidated), or the 2685 * page is already under writeback and we are not doing 2686 * a data integrity writeback, skip the page 2687 */ 2688 if (!folio_test_dirty(folio) || 2689 (folio_test_writeback(folio) && 2690 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2691 unlikely(folio->mapping != mapping)) { 2692 folio_unlock(folio); 2693 continue; 2694 } 2695 2696 folio_wait_writeback(folio); 2697 BUG_ON(folio_test_writeback(folio)); 2698 2699 /* 2700 * Should never happen but for buggy code in 2701 * other subsystems that call 2702 * set_page_dirty() without properly warning 2703 * the file system first. See [1] for more 2704 * information. 2705 * 2706 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz 2707 */ 2708 if (!folio_buffers(folio)) { 2709 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index); 2710 folio_clear_dirty(folio); 2711 folio_unlock(folio); 2712 continue; 2713 } 2714 2715 if (mpd->map.m_len == 0) 2716 mpd->start_pos = folio_pos(folio); 2717 mpd->next_pos = folio_pos(folio) + folio_size(folio); 2718 /* 2719 * Writeout when we cannot modify metadata is simple. 2720 * Just submit the page. For data=journal mode we 2721 * first handle writeout of the page for checkpoint and 2722 * only after that handle delayed page dirtying. This 2723 * makes sure current data is checkpointed to the final 2724 * location before possibly journalling it again which 2725 * is desirable when the page is frequently dirtied 2726 * through a pin. 2727 */ 2728 if (!mpd->can_map) { 2729 err = mpage_submit_folio(mpd, folio); 2730 if (err < 0) 2731 goto out; 2732 /* Pending dirtying of journalled data? */ 2733 if (folio_test_checked(folio)) { 2734 err = mpage_journal_page_buffers(handle, 2735 mpd, folio); 2736 if (err < 0) 2737 goto out; 2738 mpd->journalled_more_data = 1; 2739 } 2740 mpage_folio_done(mpd, folio); 2741 } else { 2742 /* Add all dirty buffers to mpd */ 2743 lblk = ((ext4_lblk_t)folio->index) << 2744 (PAGE_SHIFT - blkbits); 2745 head = folio_buffers(folio); 2746 err = mpage_process_page_bufs(mpd, head, head, 2747 lblk); 2748 if (err <= 0) 2749 goto out; 2750 err = 0; 2751 } 2752 } 2753 folio_batch_release(&fbatch); 2754 cond_resched(); 2755 } 2756 mpd->scanned_until_end = 1; 2757 if (handle) 2758 ext4_journal_stop(handle); 2759 return 0; 2760 out: 2761 folio_batch_release(&fbatch); 2762 if (handle) 2763 ext4_journal_stop(handle); 2764 return err; 2765 } 2766 2767 static int ext4_do_writepages(struct mpage_da_data *mpd) 2768 { 2769 struct writeback_control *wbc = mpd->wbc; 2770 pgoff_t writeback_index = 0; 2771 long nr_to_write = wbc->nr_to_write; 2772 int range_whole = 0; 2773 int cycled = 1; 2774 handle_t *handle = NULL; 2775 struct inode *inode = mpd->inode; 2776 struct address_space *mapping = inode->i_mapping; 2777 int needed_blocks, rsv_blocks = 0, ret = 0; 2778 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2779 struct blk_plug plug; 2780 bool give_up_on_write = false; 2781 2782 trace_ext4_writepages(inode, wbc); 2783 2784 /* 2785 * No pages to write? This is mainly a kludge to avoid starting 2786 * a transaction for special inodes like journal inode on last iput() 2787 * because that could violate lock ordering on umount 2788 */ 2789 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2790 goto out_writepages; 2791 2792 /* 2793 * If the filesystem has aborted, it is read-only, so return 2794 * right away instead of dumping stack traces later on that 2795 * will obscure the real source of the problem. We test 2796 * fs shutdown state instead of sb->s_flag's SB_RDONLY because 2797 * the latter could be true if the filesystem is mounted 2798 * read-only, and in that case, ext4_writepages should 2799 * *never* be called, so if that ever happens, we would want 2800 * the stack trace. 2801 */ 2802 ret = ext4_emergency_state(mapping->host->i_sb); 2803 if (unlikely(ret)) 2804 goto out_writepages; 2805 2806 /* 2807 * If we have inline data and arrive here, it means that 2808 * we will soon create the block for the 1st page, so 2809 * we'd better clear the inline data here. 2810 */ 2811 if (ext4_has_inline_data(inode)) { 2812 /* Just inode will be modified... */ 2813 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2814 if (IS_ERR(handle)) { 2815 ret = PTR_ERR(handle); 2816 goto out_writepages; 2817 } 2818 BUG_ON(ext4_test_inode_state(inode, 2819 EXT4_STATE_MAY_INLINE_DATA)); 2820 ext4_destroy_inline_data(handle, inode); 2821 ext4_journal_stop(handle); 2822 } 2823 2824 /* 2825 * data=journal mode does not do delalloc so we just need to writeout / 2826 * journal already mapped buffers. On the other hand we need to commit 2827 * transaction to make data stable. We expect all the data to be 2828 * already in the journal (the only exception are DMA pinned pages 2829 * dirtied behind our back) so we commit transaction here and run the 2830 * writeback loop to checkpoint them. The checkpointing is not actually 2831 * necessary to make data persistent *but* quite a few places (extent 2832 * shifting operations, fsverity, ...) depend on being able to drop 2833 * pagecache pages after calling filemap_write_and_wait() and for that 2834 * checkpointing needs to happen. 2835 */ 2836 if (ext4_should_journal_data(inode)) { 2837 mpd->can_map = 0; 2838 if (wbc->sync_mode == WB_SYNC_ALL) 2839 ext4_fc_commit(sbi->s_journal, 2840 EXT4_I(inode)->i_datasync_tid); 2841 } 2842 mpd->journalled_more_data = 0; 2843 2844 if (ext4_should_dioread_nolock(inode)) { 2845 int bpf = ext4_journal_blocks_per_folio(inode); 2846 /* 2847 * We may need to convert up to one extent per block in 2848 * the folio and we may dirty the inode. 2849 */ 2850 rsv_blocks = 1 + ext4_ext_index_trans_blocks(inode, bpf); 2851 } 2852 2853 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2854 range_whole = 1; 2855 2856 if (wbc->range_cyclic) { 2857 writeback_index = mapping->writeback_index; 2858 if (writeback_index) 2859 cycled = 0; 2860 mpd->start_pos = writeback_index << PAGE_SHIFT; 2861 mpd->end_pos = LLONG_MAX; 2862 } else { 2863 mpd->start_pos = wbc->range_start; 2864 mpd->end_pos = wbc->range_end; 2865 } 2866 2867 ext4_io_submit_init(&mpd->io_submit, wbc); 2868 retry: 2869 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2870 tag_pages_for_writeback(mapping, mpd->start_pos >> PAGE_SHIFT, 2871 mpd->end_pos >> PAGE_SHIFT); 2872 blk_start_plug(&plug); 2873 2874 /* 2875 * First writeback pages that don't need mapping - we can avoid 2876 * starting a transaction unnecessarily and also avoid being blocked 2877 * in the block layer on device congestion while having transaction 2878 * started. 2879 */ 2880 mpd->do_map = 0; 2881 mpd->scanned_until_end = 0; 2882 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2883 if (!mpd->io_submit.io_end) { 2884 ret = -ENOMEM; 2885 goto unplug; 2886 } 2887 ret = mpage_prepare_extent_to_map(mpd); 2888 /* Unlock pages we didn't use */ 2889 mpage_release_unused_pages(mpd, false); 2890 /* Submit prepared bio */ 2891 ext4_io_submit(&mpd->io_submit); 2892 ext4_put_io_end_defer(mpd->io_submit.io_end); 2893 mpd->io_submit.io_end = NULL; 2894 if (ret < 0) 2895 goto unplug; 2896 2897 while (!mpd->scanned_until_end && wbc->nr_to_write > 0) { 2898 /* For each extent of pages we use new io_end */ 2899 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2900 if (!mpd->io_submit.io_end) { 2901 ret = -ENOMEM; 2902 break; 2903 } 2904 2905 WARN_ON_ONCE(!mpd->can_map); 2906 /* 2907 * We have two constraints: We find one extent to map and we 2908 * must always write out whole page (makes a difference when 2909 * blocksize < pagesize) so that we don't block on IO when we 2910 * try to write out the rest of the page. Journalled mode is 2911 * not supported by delalloc. 2912 */ 2913 BUG_ON(ext4_should_journal_data(inode)); 2914 /* 2915 * Calculate the number of credits needed to reserve for one 2916 * extent of up to MAX_WRITEPAGES_EXTENT_LEN blocks. It will 2917 * attempt to extend the transaction or start a new iteration 2918 * if the reserved credits are insufficient. 2919 */ 2920 needed_blocks = ext4_chunk_trans_blocks(inode, 2921 MAX_WRITEPAGES_EXTENT_LEN); 2922 /* start a new transaction */ 2923 handle = ext4_journal_start_with_reserve(inode, 2924 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2925 if (IS_ERR(handle)) { 2926 ret = PTR_ERR(handle); 2927 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2928 "%ld pages, ino %lu; err %d", __func__, 2929 wbc->nr_to_write, inode->i_ino, ret); 2930 /* Release allocated io_end */ 2931 ext4_put_io_end(mpd->io_submit.io_end); 2932 mpd->io_submit.io_end = NULL; 2933 break; 2934 } 2935 mpd->do_map = 1; 2936 2937 trace_ext4_da_write_folios_start(inode, mpd->start_pos, 2938 mpd->next_pos, wbc); 2939 ret = mpage_prepare_extent_to_map(mpd); 2940 if (!ret && mpd->map.m_len) 2941 ret = mpage_map_and_submit_extent(handle, mpd, 2942 &give_up_on_write); 2943 /* 2944 * Caution: If the handle is synchronous, 2945 * ext4_journal_stop() can wait for transaction commit 2946 * to finish which may depend on writeback of pages to 2947 * complete or on page lock to be released. In that 2948 * case, we have to wait until after we have 2949 * submitted all the IO, released page locks we hold, 2950 * and dropped io_end reference (for extent conversion 2951 * to be able to complete) before stopping the handle. 2952 */ 2953 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2954 ext4_journal_stop(handle); 2955 handle = NULL; 2956 mpd->do_map = 0; 2957 } 2958 /* Unlock pages we didn't use */ 2959 mpage_release_unused_pages(mpd, give_up_on_write); 2960 /* Submit prepared bio */ 2961 ext4_io_submit(&mpd->io_submit); 2962 2963 /* 2964 * Drop our io_end reference we got from init. We have 2965 * to be careful and use deferred io_end finishing if 2966 * we are still holding the transaction as we can 2967 * release the last reference to io_end which may end 2968 * up doing unwritten extent conversion. 2969 */ 2970 if (handle) { 2971 ext4_put_io_end_defer(mpd->io_submit.io_end); 2972 ext4_journal_stop(handle); 2973 } else 2974 ext4_put_io_end(mpd->io_submit.io_end); 2975 mpd->io_submit.io_end = NULL; 2976 trace_ext4_da_write_folios_end(inode, mpd->start_pos, 2977 mpd->next_pos, wbc, ret); 2978 2979 if (ret == -ENOSPC && sbi->s_journal) { 2980 /* 2981 * Commit the transaction which would 2982 * free blocks released in the transaction 2983 * and try again 2984 */ 2985 jbd2_journal_force_commit_nested(sbi->s_journal); 2986 ret = 0; 2987 continue; 2988 } 2989 if (ret == -EAGAIN) 2990 ret = 0; 2991 /* Fatal error - ENOMEM, EIO... */ 2992 if (ret) 2993 break; 2994 } 2995 unplug: 2996 blk_finish_plug(&plug); 2997 if (!ret && !cycled && wbc->nr_to_write > 0) { 2998 cycled = 1; 2999 mpd->end_pos = (writeback_index << PAGE_SHIFT) - 1; 3000 mpd->start_pos = 0; 3001 goto retry; 3002 } 3003 3004 /* Update index */ 3005 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3006 /* 3007 * Set the writeback_index so that range_cyclic 3008 * mode will write it back later 3009 */ 3010 mapping->writeback_index = mpd->start_pos >> PAGE_SHIFT; 3011 3012 out_writepages: 3013 trace_ext4_writepages_result(inode, wbc, ret, 3014 nr_to_write - wbc->nr_to_write); 3015 return ret; 3016 } 3017 3018 static int ext4_writepages(struct address_space *mapping, 3019 struct writeback_control *wbc) 3020 { 3021 struct super_block *sb = mapping->host->i_sb; 3022 struct mpage_da_data mpd = { 3023 .inode = mapping->host, 3024 .wbc = wbc, 3025 .can_map = 1, 3026 }; 3027 int ret; 3028 int alloc_ctx; 3029 3030 ret = ext4_emergency_state(sb); 3031 if (unlikely(ret)) 3032 return ret; 3033 3034 alloc_ctx = ext4_writepages_down_read(sb); 3035 ret = ext4_do_writepages(&mpd); 3036 /* 3037 * For data=journal writeback we could have come across pages marked 3038 * for delayed dirtying (PageChecked) which were just added to the 3039 * running transaction. Try once more to get them to stable storage. 3040 */ 3041 if (!ret && mpd.journalled_more_data) 3042 ret = ext4_do_writepages(&mpd); 3043 ext4_writepages_up_read(sb, alloc_ctx); 3044 3045 return ret; 3046 } 3047 3048 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode) 3049 { 3050 struct writeback_control wbc = { 3051 .sync_mode = WB_SYNC_ALL, 3052 .nr_to_write = LONG_MAX, 3053 .range_start = jinode->i_dirty_start, 3054 .range_end = jinode->i_dirty_end, 3055 }; 3056 struct mpage_da_data mpd = { 3057 .inode = jinode->i_vfs_inode, 3058 .wbc = &wbc, 3059 .can_map = 0, 3060 }; 3061 return ext4_do_writepages(&mpd); 3062 } 3063 3064 static int ext4_dax_writepages(struct address_space *mapping, 3065 struct writeback_control *wbc) 3066 { 3067 int ret; 3068 long nr_to_write = wbc->nr_to_write; 3069 struct inode *inode = mapping->host; 3070 int alloc_ctx; 3071 3072 ret = ext4_emergency_state(inode->i_sb); 3073 if (unlikely(ret)) 3074 return ret; 3075 3076 alloc_ctx = ext4_writepages_down_read(inode->i_sb); 3077 trace_ext4_writepages(inode, wbc); 3078 3079 ret = dax_writeback_mapping_range(mapping, 3080 EXT4_SB(inode->i_sb)->s_daxdev, wbc); 3081 trace_ext4_writepages_result(inode, wbc, ret, 3082 nr_to_write - wbc->nr_to_write); 3083 ext4_writepages_up_read(inode->i_sb, alloc_ctx); 3084 return ret; 3085 } 3086 3087 static int ext4_nonda_switch(struct super_block *sb) 3088 { 3089 s64 free_clusters, dirty_clusters; 3090 struct ext4_sb_info *sbi = EXT4_SB(sb); 3091 3092 /* 3093 * switch to non delalloc mode if we are running low 3094 * on free block. The free block accounting via percpu 3095 * counters can get slightly wrong with percpu_counter_batch getting 3096 * accumulated on each CPU without updating global counters 3097 * Delalloc need an accurate free block accounting. So switch 3098 * to non delalloc when we are near to error range. 3099 */ 3100 free_clusters = 3101 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 3102 dirty_clusters = 3103 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 3104 /* 3105 * Start pushing delalloc when 1/2 of free blocks are dirty. 3106 */ 3107 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 3108 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 3109 3110 if (2 * free_clusters < 3 * dirty_clusters || 3111 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 3112 /* 3113 * free block count is less than 150% of dirty blocks 3114 * or free blocks is less than watermark 3115 */ 3116 return 1; 3117 } 3118 return 0; 3119 } 3120 3121 static int ext4_da_write_begin(const struct kiocb *iocb, 3122 struct address_space *mapping, 3123 loff_t pos, unsigned len, 3124 struct folio **foliop, void **fsdata) 3125 { 3126 int ret, retries = 0; 3127 struct folio *folio; 3128 pgoff_t index; 3129 struct inode *inode = mapping->host; 3130 3131 ret = ext4_emergency_state(inode->i_sb); 3132 if (unlikely(ret)) 3133 return ret; 3134 3135 index = pos >> PAGE_SHIFT; 3136 3137 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) { 3138 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 3139 return ext4_write_begin(iocb, mapping, pos, 3140 len, foliop, fsdata); 3141 } 3142 *fsdata = (void *)0; 3143 trace_ext4_da_write_begin(inode, pos, len); 3144 3145 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 3146 ret = ext4_generic_write_inline_data(mapping, inode, pos, len, 3147 foliop, fsdata, true); 3148 if (ret < 0) 3149 return ret; 3150 if (ret == 1) 3151 return 0; 3152 } 3153 3154 retry: 3155 folio = write_begin_get_folio(iocb, mapping, index, len); 3156 if (IS_ERR(folio)) 3157 return PTR_ERR(folio); 3158 3159 if (pos + len > folio_pos(folio) + folio_size(folio)) 3160 len = folio_pos(folio) + folio_size(folio) - pos; 3161 3162 ret = ext4_block_write_begin(NULL, folio, pos, len, 3163 ext4_da_get_block_prep); 3164 if (ret < 0) { 3165 folio_unlock(folio); 3166 folio_put(folio); 3167 /* 3168 * ext4_block_write_begin may have instantiated a few blocks 3169 * outside i_size. Trim these off again. Don't need 3170 * i_size_read because we hold inode lock. 3171 */ 3172 if (pos + len > inode->i_size) 3173 ext4_truncate_failed_write(inode); 3174 3175 if (ret == -ENOSPC && 3176 ext4_should_retry_alloc(inode->i_sb, &retries)) 3177 goto retry; 3178 return ret; 3179 } 3180 3181 *foliop = folio; 3182 return ret; 3183 } 3184 3185 /* 3186 * Check if we should update i_disksize 3187 * when write to the end of file but not require block allocation 3188 */ 3189 static int ext4_da_should_update_i_disksize(struct folio *folio, 3190 unsigned long offset) 3191 { 3192 struct buffer_head *bh; 3193 struct inode *inode = folio->mapping->host; 3194 unsigned int idx; 3195 int i; 3196 3197 bh = folio_buffers(folio); 3198 idx = offset >> inode->i_blkbits; 3199 3200 for (i = 0; i < idx; i++) 3201 bh = bh->b_this_page; 3202 3203 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3204 return 0; 3205 return 1; 3206 } 3207 3208 static int ext4_da_do_write_end(struct address_space *mapping, 3209 loff_t pos, unsigned len, unsigned copied, 3210 struct folio *folio) 3211 { 3212 struct inode *inode = mapping->host; 3213 loff_t old_size = inode->i_size; 3214 bool disksize_changed = false; 3215 loff_t new_i_size, zero_len = 0; 3216 handle_t *handle; 3217 3218 if (unlikely(!folio_buffers(folio))) { 3219 folio_unlock(folio); 3220 folio_put(folio); 3221 return -EIO; 3222 } 3223 /* 3224 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES 3225 * flag, which all that's needed to trigger page writeback. 3226 */ 3227 copied = block_write_end(pos, len, copied, folio); 3228 new_i_size = pos + copied; 3229 3230 /* 3231 * It's important to update i_size while still holding folio lock, 3232 * because folio writeout could otherwise come in and zero beyond 3233 * i_size. 3234 * 3235 * Since we are holding inode lock, we are sure i_disksize <= 3236 * i_size. We also know that if i_disksize < i_size, there are 3237 * delalloc writes pending in the range up to i_size. If the end of 3238 * the current write is <= i_size, there's no need to touch 3239 * i_disksize since writeback will push i_disksize up to i_size 3240 * eventually. If the end of the current write is > i_size and 3241 * inside an allocated block which ext4_da_should_update_i_disksize() 3242 * checked, we need to update i_disksize here as certain 3243 * ext4_writepages() paths not allocating blocks and update i_disksize. 3244 */ 3245 if (new_i_size > inode->i_size) { 3246 unsigned long end; 3247 3248 i_size_write(inode, new_i_size); 3249 end = offset_in_folio(folio, new_i_size - 1); 3250 if (copied && ext4_da_should_update_i_disksize(folio, end)) { 3251 ext4_update_i_disksize(inode, new_i_size); 3252 disksize_changed = true; 3253 } 3254 } 3255 3256 folio_unlock(folio); 3257 folio_put(folio); 3258 3259 if (pos > old_size) { 3260 pagecache_isize_extended(inode, old_size, pos); 3261 zero_len = pos - old_size; 3262 } 3263 3264 if (!disksize_changed && !zero_len) 3265 return copied; 3266 3267 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3268 if (IS_ERR(handle)) 3269 return PTR_ERR(handle); 3270 if (zero_len) 3271 ext4_zero_partial_blocks(handle, inode, old_size, zero_len); 3272 ext4_mark_inode_dirty(handle, inode); 3273 ext4_journal_stop(handle); 3274 3275 return copied; 3276 } 3277 3278 static int ext4_da_write_end(const struct kiocb *iocb, 3279 struct address_space *mapping, 3280 loff_t pos, unsigned len, unsigned copied, 3281 struct folio *folio, void *fsdata) 3282 { 3283 struct inode *inode = mapping->host; 3284 int write_mode = (int)(unsigned long)fsdata; 3285 3286 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3287 return ext4_write_end(iocb, mapping, pos, 3288 len, copied, folio, fsdata); 3289 3290 trace_ext4_da_write_end(inode, pos, len, copied); 3291 3292 if (write_mode != CONVERT_INLINE_DATA && 3293 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3294 ext4_has_inline_data(inode)) 3295 return ext4_write_inline_data_end(inode, pos, len, copied, 3296 folio); 3297 3298 if (unlikely(copied < len) && !folio_test_uptodate(folio)) 3299 copied = 0; 3300 3301 return ext4_da_do_write_end(mapping, pos, len, copied, folio); 3302 } 3303 3304 /* 3305 * Force all delayed allocation blocks to be allocated for a given inode. 3306 */ 3307 int ext4_alloc_da_blocks(struct inode *inode) 3308 { 3309 trace_ext4_alloc_da_blocks(inode); 3310 3311 if (!EXT4_I(inode)->i_reserved_data_blocks) 3312 return 0; 3313 3314 /* 3315 * We do something simple for now. The filemap_flush() will 3316 * also start triggering a write of the data blocks, which is 3317 * not strictly speaking necessary (and for users of 3318 * laptop_mode, not even desirable). However, to do otherwise 3319 * would require replicating code paths in: 3320 * 3321 * ext4_writepages() -> 3322 * write_cache_pages() ---> (via passed in callback function) 3323 * __mpage_da_writepage() --> 3324 * mpage_add_bh_to_extent() 3325 * mpage_da_map_blocks() 3326 * 3327 * The problem is that write_cache_pages(), located in 3328 * mm/page-writeback.c, marks pages clean in preparation for 3329 * doing I/O, which is not desirable if we're not planning on 3330 * doing I/O at all. 3331 * 3332 * We could call write_cache_pages(), and then redirty all of 3333 * the pages by calling redirty_page_for_writepage() but that 3334 * would be ugly in the extreme. So instead we would need to 3335 * replicate parts of the code in the above functions, 3336 * simplifying them because we wouldn't actually intend to 3337 * write out the pages, but rather only collect contiguous 3338 * logical block extents, call the multi-block allocator, and 3339 * then update the buffer heads with the block allocations. 3340 * 3341 * For now, though, we'll cheat by calling filemap_flush(), 3342 * which will map the blocks, and start the I/O, but not 3343 * actually wait for the I/O to complete. 3344 */ 3345 return filemap_flush(inode->i_mapping); 3346 } 3347 3348 /* 3349 * bmap() is special. It gets used by applications such as lilo and by 3350 * the swapper to find the on-disk block of a specific piece of data. 3351 * 3352 * Naturally, this is dangerous if the block concerned is still in the 3353 * journal. If somebody makes a swapfile on an ext4 data-journaling 3354 * filesystem and enables swap, then they may get a nasty shock when the 3355 * data getting swapped to that swapfile suddenly gets overwritten by 3356 * the original zero's written out previously to the journal and 3357 * awaiting writeback in the kernel's buffer cache. 3358 * 3359 * So, if we see any bmap calls here on a modified, data-journaled file, 3360 * take extra steps to flush any blocks which might be in the cache. 3361 */ 3362 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3363 { 3364 struct inode *inode = mapping->host; 3365 sector_t ret = 0; 3366 3367 inode_lock_shared(inode); 3368 /* 3369 * We can get here for an inline file via the FIBMAP ioctl 3370 */ 3371 if (ext4_has_inline_data(inode)) 3372 goto out; 3373 3374 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3375 (test_opt(inode->i_sb, DELALLOC) || 3376 ext4_should_journal_data(inode))) { 3377 /* 3378 * With delalloc or journalled data we want to sync the file so 3379 * that we can make sure we allocate blocks for file and data 3380 * is in place for the user to see it 3381 */ 3382 filemap_write_and_wait(mapping); 3383 } 3384 3385 ret = iomap_bmap(mapping, block, &ext4_iomap_ops); 3386 3387 out: 3388 inode_unlock_shared(inode); 3389 return ret; 3390 } 3391 3392 static int ext4_read_folio(struct file *file, struct folio *folio) 3393 { 3394 int ret = -EAGAIN; 3395 struct inode *inode = folio->mapping->host; 3396 3397 trace_ext4_read_folio(inode, folio); 3398 3399 if (ext4_has_inline_data(inode)) 3400 ret = ext4_readpage_inline(inode, folio); 3401 3402 if (ret == -EAGAIN) 3403 return ext4_mpage_readpages(inode, NULL, folio); 3404 3405 return ret; 3406 } 3407 3408 static void ext4_readahead(struct readahead_control *rac) 3409 { 3410 struct inode *inode = rac->mapping->host; 3411 3412 /* If the file has inline data, no need to do readahead. */ 3413 if (ext4_has_inline_data(inode)) 3414 return; 3415 3416 ext4_mpage_readpages(inode, rac, NULL); 3417 } 3418 3419 static void ext4_invalidate_folio(struct folio *folio, size_t offset, 3420 size_t length) 3421 { 3422 trace_ext4_invalidate_folio(folio, offset, length); 3423 3424 /* No journalling happens on data buffers when this function is used */ 3425 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio))); 3426 3427 block_invalidate_folio(folio, offset, length); 3428 } 3429 3430 static int __ext4_journalled_invalidate_folio(struct folio *folio, 3431 size_t offset, size_t length) 3432 { 3433 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3434 3435 trace_ext4_journalled_invalidate_folio(folio, offset, length); 3436 3437 /* 3438 * If it's a full truncate we just forget about the pending dirtying 3439 */ 3440 if (offset == 0 && length == folio_size(folio)) 3441 folio_clear_checked(folio); 3442 3443 return jbd2_journal_invalidate_folio(journal, folio, offset, length); 3444 } 3445 3446 /* Wrapper for aops... */ 3447 static void ext4_journalled_invalidate_folio(struct folio *folio, 3448 size_t offset, 3449 size_t length) 3450 { 3451 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0); 3452 } 3453 3454 static bool ext4_release_folio(struct folio *folio, gfp_t wait) 3455 { 3456 struct inode *inode = folio->mapping->host; 3457 journal_t *journal = EXT4_JOURNAL(inode); 3458 3459 trace_ext4_release_folio(inode, folio); 3460 3461 /* Page has dirty journalled data -> cannot release */ 3462 if (folio_test_checked(folio)) 3463 return false; 3464 if (journal) 3465 return jbd2_journal_try_to_free_buffers(journal, folio); 3466 else 3467 return try_to_free_buffers(folio); 3468 } 3469 3470 static bool ext4_inode_datasync_dirty(struct inode *inode) 3471 { 3472 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3473 3474 if (journal) { 3475 if (jbd2_transaction_committed(journal, 3476 EXT4_I(inode)->i_datasync_tid)) 3477 return false; 3478 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3479 return !list_empty(&EXT4_I(inode)->i_fc_list); 3480 return true; 3481 } 3482 3483 /* Any metadata buffers to write? */ 3484 if (!list_empty(&inode->i_mapping->i_private_list)) 3485 return true; 3486 return inode->i_state & I_DIRTY_DATASYNC; 3487 } 3488 3489 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3490 struct ext4_map_blocks *map, loff_t offset, 3491 loff_t length, unsigned int flags) 3492 { 3493 u8 blkbits = inode->i_blkbits; 3494 3495 /* 3496 * Writes that span EOF might trigger an I/O size update on completion, 3497 * so consider them to be dirty for the purpose of O_DSYNC, even if 3498 * there is no other metadata changes being made or are pending. 3499 */ 3500 iomap->flags = 0; 3501 if (ext4_inode_datasync_dirty(inode) || 3502 offset + length > i_size_read(inode)) 3503 iomap->flags |= IOMAP_F_DIRTY; 3504 3505 if (map->m_flags & EXT4_MAP_NEW) 3506 iomap->flags |= IOMAP_F_NEW; 3507 3508 /* HW-offload atomics are always used */ 3509 if (flags & IOMAP_ATOMIC) 3510 iomap->flags |= IOMAP_F_ATOMIC_BIO; 3511 3512 if (flags & IOMAP_DAX) 3513 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3514 else 3515 iomap->bdev = inode->i_sb->s_bdev; 3516 iomap->offset = (u64) map->m_lblk << blkbits; 3517 iomap->length = (u64) map->m_len << blkbits; 3518 3519 if ((map->m_flags & EXT4_MAP_MAPPED) && 3520 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3521 iomap->flags |= IOMAP_F_MERGED; 3522 3523 /* 3524 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3525 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3526 * set. In order for any allocated unwritten extents to be converted 3527 * into written extents correctly within the ->end_io() handler, we 3528 * need to ensure that the iomap->type is set appropriately. Hence, the 3529 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3530 * been set first. 3531 */ 3532 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3533 iomap->type = IOMAP_UNWRITTEN; 3534 iomap->addr = (u64) map->m_pblk << blkbits; 3535 if (flags & IOMAP_DAX) 3536 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3537 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3538 iomap->type = IOMAP_MAPPED; 3539 iomap->addr = (u64) map->m_pblk << blkbits; 3540 if (flags & IOMAP_DAX) 3541 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3542 } else if (map->m_flags & EXT4_MAP_DELAYED) { 3543 iomap->type = IOMAP_DELALLOC; 3544 iomap->addr = IOMAP_NULL_ADDR; 3545 } else { 3546 iomap->type = IOMAP_HOLE; 3547 iomap->addr = IOMAP_NULL_ADDR; 3548 } 3549 } 3550 3551 static int ext4_map_blocks_atomic_write_slow(handle_t *handle, 3552 struct inode *inode, struct ext4_map_blocks *map) 3553 { 3554 ext4_lblk_t m_lblk = map->m_lblk; 3555 unsigned int m_len = map->m_len; 3556 unsigned int mapped_len = 0, m_flags = 0; 3557 ext4_fsblk_t next_pblk = 0; 3558 bool check_next_pblk = false; 3559 int ret = 0; 3560 3561 WARN_ON_ONCE(!ext4_has_feature_bigalloc(inode->i_sb)); 3562 3563 /* 3564 * This is a slow path in case of mixed mapping. We use 3565 * EXT4_GET_BLOCKS_CREATE_ZERO flag here to make sure we get a single 3566 * contiguous mapped mapping. This will ensure any unwritten or hole 3567 * regions within the requested range is zeroed out and we return 3568 * a single contiguous mapped extent. 3569 */ 3570 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3571 3572 do { 3573 ret = ext4_map_blocks(handle, inode, map, m_flags); 3574 if (ret < 0 && ret != -ENOSPC) 3575 goto out_err; 3576 /* 3577 * This should never happen, but let's return an error code to 3578 * avoid an infinite loop in here. 3579 */ 3580 if (ret == 0) { 3581 ret = -EFSCORRUPTED; 3582 ext4_warning_inode(inode, 3583 "ext4_map_blocks() couldn't allocate blocks m_flags: 0x%x, ret:%d", 3584 m_flags, ret); 3585 goto out_err; 3586 } 3587 /* 3588 * With bigalloc we should never get ENOSPC nor discontiguous 3589 * physical extents. 3590 */ 3591 if ((check_next_pblk && next_pblk != map->m_pblk) || 3592 ret == -ENOSPC) { 3593 ext4_warning_inode(inode, 3594 "Non-contiguous allocation detected: expected %llu, got %llu, " 3595 "or ext4_map_blocks() returned out of space ret: %d", 3596 next_pblk, map->m_pblk, ret); 3597 ret = -EFSCORRUPTED; 3598 goto out_err; 3599 } 3600 next_pblk = map->m_pblk + map->m_len; 3601 check_next_pblk = true; 3602 3603 mapped_len += map->m_len; 3604 map->m_lblk += map->m_len; 3605 map->m_len = m_len - mapped_len; 3606 } while (mapped_len < m_len); 3607 3608 /* 3609 * We might have done some work in above loop, so we need to query the 3610 * start of the physical extent, based on the origin m_lblk and m_len. 3611 * Let's also ensure we were able to allocate the required range for 3612 * mixed mapping case. 3613 */ 3614 map->m_lblk = m_lblk; 3615 map->m_len = m_len; 3616 map->m_flags = 0; 3617 3618 ret = ext4_map_blocks(handle, inode, map, 3619 EXT4_GET_BLOCKS_QUERY_LAST_IN_LEAF); 3620 if (ret != m_len) { 3621 ext4_warning_inode(inode, 3622 "allocation failed for atomic write request m_lblk:%u, m_len:%u, ret:%d\n", 3623 m_lblk, m_len, ret); 3624 ret = -EINVAL; 3625 } 3626 return ret; 3627 3628 out_err: 3629 /* reset map before returning an error */ 3630 map->m_lblk = m_lblk; 3631 map->m_len = m_len; 3632 map->m_flags = 0; 3633 return ret; 3634 } 3635 3636 /* 3637 * ext4_map_blocks_atomic: Helper routine to ensure the entire requested 3638 * range in @map [lblk, lblk + len) is one single contiguous extent with no 3639 * mixed mappings. 3640 * 3641 * We first use m_flags passed to us by our caller (ext4_iomap_alloc()). 3642 * We only call EXT4_GET_BLOCKS_ZERO in the slow path, when the underlying 3643 * physical extent for the requested range does not have a single contiguous 3644 * mapping type i.e. (Hole, Mapped, or Unwritten) throughout. 3645 * In that case we will loop over the requested range to allocate and zero out 3646 * the unwritten / holes in between, to get a single mapped extent from 3647 * [m_lblk, m_lblk + m_len). Note that this is only possible because we know 3648 * this can be called only with bigalloc enabled filesystem where the underlying 3649 * cluster is already allocated. This avoids allocating discontiguous extents 3650 * in the slow path due to multiple calls to ext4_map_blocks(). 3651 * The slow path is mostly non-performance critical path, so it should be ok to 3652 * loop using ext4_map_blocks() with appropriate flags to allocate & zero the 3653 * underlying short holes/unwritten extents within the requested range. 3654 */ 3655 static int ext4_map_blocks_atomic_write(handle_t *handle, struct inode *inode, 3656 struct ext4_map_blocks *map, int m_flags, 3657 bool *force_commit) 3658 { 3659 ext4_lblk_t m_lblk = map->m_lblk; 3660 unsigned int m_len = map->m_len; 3661 int ret = 0; 3662 3663 WARN_ON_ONCE(m_len > 1 && !ext4_has_feature_bigalloc(inode->i_sb)); 3664 3665 ret = ext4_map_blocks(handle, inode, map, m_flags); 3666 if (ret < 0 || ret == m_len) 3667 goto out; 3668 /* 3669 * This is a mixed mapping case where we were not able to allocate 3670 * a single contiguous extent. In that case let's reset requested 3671 * mapping and call the slow path. 3672 */ 3673 map->m_lblk = m_lblk; 3674 map->m_len = m_len; 3675 map->m_flags = 0; 3676 3677 /* 3678 * slow path means we have mixed mapping, that means we will need 3679 * to force txn commit. 3680 */ 3681 *force_commit = true; 3682 return ext4_map_blocks_atomic_write_slow(handle, inode, map); 3683 out: 3684 return ret; 3685 } 3686 3687 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3688 unsigned int flags) 3689 { 3690 handle_t *handle; 3691 u8 blkbits = inode->i_blkbits; 3692 int ret, dio_credits, m_flags = 0, retries = 0; 3693 bool force_commit = false; 3694 3695 /* 3696 * Trim the mapping request to the maximum value that we can map at 3697 * once for direct I/O. 3698 */ 3699 if (map->m_len > DIO_MAX_BLOCKS) 3700 map->m_len = DIO_MAX_BLOCKS; 3701 3702 /* 3703 * journal credits estimation for atomic writes. We call 3704 * ext4_map_blocks(), to find if there could be a mixed mapping. If yes, 3705 * then let's assume the no. of pextents required can be m_len i.e. 3706 * every alternate block can be unwritten and hole. 3707 */ 3708 if (flags & IOMAP_ATOMIC) { 3709 unsigned int orig_mlen = map->m_len; 3710 3711 ret = ext4_map_blocks(NULL, inode, map, 0); 3712 if (ret < 0) 3713 return ret; 3714 if (map->m_len < orig_mlen) { 3715 map->m_len = orig_mlen; 3716 dio_credits = ext4_meta_trans_blocks(inode, orig_mlen, 3717 map->m_len); 3718 } else { 3719 dio_credits = ext4_chunk_trans_blocks(inode, 3720 map->m_len); 3721 } 3722 } else { 3723 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3724 } 3725 3726 retry: 3727 /* 3728 * Either we allocate blocks and then don't get an unwritten extent, so 3729 * in that case we have reserved enough credits. Or, the blocks are 3730 * already allocated and unwritten. In that case, the extent conversion 3731 * fits into the credits as well. 3732 */ 3733 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3734 if (IS_ERR(handle)) 3735 return PTR_ERR(handle); 3736 3737 /* 3738 * DAX and direct I/O are the only two operations that are currently 3739 * supported with IOMAP_WRITE. 3740 */ 3741 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT))); 3742 if (flags & IOMAP_DAX) 3743 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3744 /* 3745 * We use i_size instead of i_disksize here because delalloc writeback 3746 * can complete at any point during the I/O and subsequently push the 3747 * i_disksize out to i_size. This could be beyond where direct I/O is 3748 * happening and thus expose allocated blocks to direct I/O reads. 3749 */ 3750 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode)) 3751 m_flags = EXT4_GET_BLOCKS_CREATE; 3752 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3753 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3754 3755 if (flags & IOMAP_ATOMIC) 3756 ret = ext4_map_blocks_atomic_write(handle, inode, map, m_flags, 3757 &force_commit); 3758 else 3759 ret = ext4_map_blocks(handle, inode, map, m_flags); 3760 3761 /* 3762 * We cannot fill holes in indirect tree based inodes as that could 3763 * expose stale data in the case of a crash. Use the magic error code 3764 * to fallback to buffered I/O. 3765 */ 3766 if (!m_flags && !ret) 3767 ret = -ENOTBLK; 3768 3769 ext4_journal_stop(handle); 3770 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3771 goto retry; 3772 3773 /* 3774 * Force commit the current transaction if the allocation spans a mixed 3775 * mapping range. This ensures any pending metadata updates (like 3776 * unwritten to written extents conversion) in this range are in 3777 * consistent state with the file data blocks, before performing the 3778 * actual write I/O. If the commit fails, the whole I/O must be aborted 3779 * to prevent any possible torn writes. 3780 */ 3781 if (ret > 0 && force_commit) { 3782 int ret2; 3783 3784 ret2 = ext4_force_commit(inode->i_sb); 3785 if (ret2) 3786 return ret2; 3787 } 3788 3789 return ret; 3790 } 3791 3792 3793 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3794 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3795 { 3796 int ret; 3797 struct ext4_map_blocks map; 3798 u8 blkbits = inode->i_blkbits; 3799 unsigned int orig_mlen; 3800 3801 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3802 return -EINVAL; 3803 3804 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3805 return -ERANGE; 3806 3807 /* 3808 * Calculate the first and last logical blocks respectively. 3809 */ 3810 map.m_lblk = offset >> blkbits; 3811 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3812 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3813 orig_mlen = map.m_len; 3814 3815 if (flags & IOMAP_WRITE) { 3816 /* 3817 * We check here if the blocks are already allocated, then we 3818 * don't need to start a journal txn and we can directly return 3819 * the mapping information. This could boost performance 3820 * especially in multi-threaded overwrite requests. 3821 */ 3822 if (offset + length <= i_size_read(inode)) { 3823 ret = ext4_map_blocks(NULL, inode, &map, 0); 3824 /* 3825 * For atomic writes the entire requested length should 3826 * be mapped. 3827 */ 3828 if (map.m_flags & EXT4_MAP_MAPPED) { 3829 if ((!(flags & IOMAP_ATOMIC) && ret > 0) || 3830 (flags & IOMAP_ATOMIC && ret >= orig_mlen)) 3831 goto out; 3832 } 3833 map.m_len = orig_mlen; 3834 } 3835 ret = ext4_iomap_alloc(inode, &map, flags); 3836 } else { 3837 /* 3838 * This can be called for overwrites path from 3839 * ext4_iomap_overwrite_begin(). 3840 */ 3841 ret = ext4_map_blocks(NULL, inode, &map, 0); 3842 } 3843 3844 if (ret < 0) 3845 return ret; 3846 out: 3847 /* 3848 * When inline encryption is enabled, sometimes I/O to an encrypted file 3849 * has to be broken up to guarantee DUN contiguity. Handle this by 3850 * limiting the length of the mapping returned. 3851 */ 3852 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 3853 3854 /* 3855 * Before returning to iomap, let's ensure the allocated mapping 3856 * covers the entire requested length for atomic writes. 3857 */ 3858 if (flags & IOMAP_ATOMIC) { 3859 if (map.m_len < (length >> blkbits)) { 3860 WARN_ON_ONCE(1); 3861 return -EINVAL; 3862 } 3863 } 3864 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3865 3866 return 0; 3867 } 3868 3869 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3870 loff_t length, unsigned flags, struct iomap *iomap, 3871 struct iomap *srcmap) 3872 { 3873 int ret; 3874 3875 /* 3876 * Even for writes we don't need to allocate blocks, so just pretend 3877 * we are reading to save overhead of starting a transaction. 3878 */ 3879 flags &= ~IOMAP_WRITE; 3880 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3881 WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED); 3882 return ret; 3883 } 3884 3885 const struct iomap_ops ext4_iomap_ops = { 3886 .iomap_begin = ext4_iomap_begin, 3887 }; 3888 3889 const struct iomap_ops ext4_iomap_overwrite_ops = { 3890 .iomap_begin = ext4_iomap_overwrite_begin, 3891 }; 3892 3893 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3894 loff_t length, unsigned int flags, 3895 struct iomap *iomap, struct iomap *srcmap) 3896 { 3897 int ret; 3898 struct ext4_map_blocks map; 3899 u8 blkbits = inode->i_blkbits; 3900 3901 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3902 return -EINVAL; 3903 3904 if (ext4_has_inline_data(inode)) { 3905 ret = ext4_inline_data_iomap(inode, iomap); 3906 if (ret != -EAGAIN) { 3907 if (ret == 0 && offset >= iomap->length) 3908 ret = -ENOENT; 3909 return ret; 3910 } 3911 } 3912 3913 /* 3914 * Calculate the first and last logical block respectively. 3915 */ 3916 map.m_lblk = offset >> blkbits; 3917 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3918 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3919 3920 /* 3921 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3922 * So handle it here itself instead of querying ext4_map_blocks(). 3923 * Since ext4_map_blocks() will warn about it and will return 3924 * -EIO error. 3925 */ 3926 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3927 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3928 3929 if (offset >= sbi->s_bitmap_maxbytes) { 3930 map.m_flags = 0; 3931 goto set_iomap; 3932 } 3933 } 3934 3935 ret = ext4_map_blocks(NULL, inode, &map, 0); 3936 if (ret < 0) 3937 return ret; 3938 set_iomap: 3939 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3940 3941 return 0; 3942 } 3943 3944 const struct iomap_ops ext4_iomap_report_ops = { 3945 .iomap_begin = ext4_iomap_begin_report, 3946 }; 3947 3948 /* 3949 * For data=journal mode, folio should be marked dirty only when it was 3950 * writeably mapped. When that happens, it was already attached to the 3951 * transaction and marked as jbddirty (we take care of this in 3952 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings 3953 * so we should have nothing to do here, except for the case when someone 3954 * had the page pinned and dirtied the page through this pin (e.g. by doing 3955 * direct IO to it). In that case we'd need to attach buffers here to the 3956 * transaction but we cannot due to lock ordering. We cannot just dirty the 3957 * folio and leave attached buffers clean, because the buffers' dirty state is 3958 * "definitive". We cannot just set the buffers dirty or jbddirty because all 3959 * the journalling code will explode. So what we do is to mark the folio 3960 * "pending dirty" and next time ext4_writepages() is called, attach buffers 3961 * to the transaction appropriately. 3962 */ 3963 static bool ext4_journalled_dirty_folio(struct address_space *mapping, 3964 struct folio *folio) 3965 { 3966 WARN_ON_ONCE(!folio_buffers(folio)); 3967 if (folio_maybe_dma_pinned(folio)) 3968 folio_set_checked(folio); 3969 return filemap_dirty_folio(mapping, folio); 3970 } 3971 3972 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio) 3973 { 3974 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio)); 3975 WARN_ON_ONCE(!folio_buffers(folio)); 3976 return block_dirty_folio(mapping, folio); 3977 } 3978 3979 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3980 struct file *file, sector_t *span) 3981 { 3982 return iomap_swapfile_activate(sis, file, span, 3983 &ext4_iomap_report_ops); 3984 } 3985 3986 static const struct address_space_operations ext4_aops = { 3987 .read_folio = ext4_read_folio, 3988 .readahead = ext4_readahead, 3989 .writepages = ext4_writepages, 3990 .write_begin = ext4_write_begin, 3991 .write_end = ext4_write_end, 3992 .dirty_folio = ext4_dirty_folio, 3993 .bmap = ext4_bmap, 3994 .invalidate_folio = ext4_invalidate_folio, 3995 .release_folio = ext4_release_folio, 3996 .migrate_folio = buffer_migrate_folio, 3997 .is_partially_uptodate = block_is_partially_uptodate, 3998 .error_remove_folio = generic_error_remove_folio, 3999 .swap_activate = ext4_iomap_swap_activate, 4000 }; 4001 4002 static const struct address_space_operations ext4_journalled_aops = { 4003 .read_folio = ext4_read_folio, 4004 .readahead = ext4_readahead, 4005 .writepages = ext4_writepages, 4006 .write_begin = ext4_write_begin, 4007 .write_end = ext4_journalled_write_end, 4008 .dirty_folio = ext4_journalled_dirty_folio, 4009 .bmap = ext4_bmap, 4010 .invalidate_folio = ext4_journalled_invalidate_folio, 4011 .release_folio = ext4_release_folio, 4012 .migrate_folio = buffer_migrate_folio_norefs, 4013 .is_partially_uptodate = block_is_partially_uptodate, 4014 .error_remove_folio = generic_error_remove_folio, 4015 .swap_activate = ext4_iomap_swap_activate, 4016 }; 4017 4018 static const struct address_space_operations ext4_da_aops = { 4019 .read_folio = ext4_read_folio, 4020 .readahead = ext4_readahead, 4021 .writepages = ext4_writepages, 4022 .write_begin = ext4_da_write_begin, 4023 .write_end = ext4_da_write_end, 4024 .dirty_folio = ext4_dirty_folio, 4025 .bmap = ext4_bmap, 4026 .invalidate_folio = ext4_invalidate_folio, 4027 .release_folio = ext4_release_folio, 4028 .migrate_folio = buffer_migrate_folio, 4029 .is_partially_uptodate = block_is_partially_uptodate, 4030 .error_remove_folio = generic_error_remove_folio, 4031 .swap_activate = ext4_iomap_swap_activate, 4032 }; 4033 4034 static const struct address_space_operations ext4_dax_aops = { 4035 .writepages = ext4_dax_writepages, 4036 .dirty_folio = noop_dirty_folio, 4037 .bmap = ext4_bmap, 4038 .swap_activate = ext4_iomap_swap_activate, 4039 }; 4040 4041 void ext4_set_aops(struct inode *inode) 4042 { 4043 switch (ext4_inode_journal_mode(inode)) { 4044 case EXT4_INODE_ORDERED_DATA_MODE: 4045 case EXT4_INODE_WRITEBACK_DATA_MODE: 4046 break; 4047 case EXT4_INODE_JOURNAL_DATA_MODE: 4048 inode->i_mapping->a_ops = &ext4_journalled_aops; 4049 return; 4050 default: 4051 BUG(); 4052 } 4053 if (IS_DAX(inode)) 4054 inode->i_mapping->a_ops = &ext4_dax_aops; 4055 else if (test_opt(inode->i_sb, DELALLOC)) 4056 inode->i_mapping->a_ops = &ext4_da_aops; 4057 else 4058 inode->i_mapping->a_ops = &ext4_aops; 4059 } 4060 4061 /* 4062 * Here we can't skip an unwritten buffer even though it usually reads zero 4063 * because it might have data in pagecache (eg, if called from ext4_zero_range, 4064 * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a 4065 * racing writeback can come later and flush the stale pagecache to disk. 4066 */ 4067 static int __ext4_block_zero_page_range(handle_t *handle, 4068 struct address_space *mapping, loff_t from, loff_t length) 4069 { 4070 unsigned int offset, blocksize, pos; 4071 ext4_lblk_t iblock; 4072 struct inode *inode = mapping->host; 4073 struct buffer_head *bh; 4074 struct folio *folio; 4075 int err = 0; 4076 4077 folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT, 4078 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 4079 mapping_gfp_constraint(mapping, ~__GFP_FS)); 4080 if (IS_ERR(folio)) 4081 return PTR_ERR(folio); 4082 4083 blocksize = inode->i_sb->s_blocksize; 4084 4085 iblock = folio->index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 4086 4087 bh = folio_buffers(folio); 4088 if (!bh) 4089 bh = create_empty_buffers(folio, blocksize, 0); 4090 4091 /* Find the buffer that contains "offset" */ 4092 offset = offset_in_folio(folio, from); 4093 pos = blocksize; 4094 while (offset >= pos) { 4095 bh = bh->b_this_page; 4096 iblock++; 4097 pos += blocksize; 4098 } 4099 if (buffer_freed(bh)) { 4100 BUFFER_TRACE(bh, "freed: skip"); 4101 goto unlock; 4102 } 4103 if (!buffer_mapped(bh)) { 4104 BUFFER_TRACE(bh, "unmapped"); 4105 ext4_get_block(inode, iblock, bh, 0); 4106 /* unmapped? It's a hole - nothing to do */ 4107 if (!buffer_mapped(bh)) { 4108 BUFFER_TRACE(bh, "still unmapped"); 4109 goto unlock; 4110 } 4111 } 4112 4113 /* Ok, it's mapped. Make sure it's up-to-date */ 4114 if (folio_test_uptodate(folio)) 4115 set_buffer_uptodate(bh); 4116 4117 if (!buffer_uptodate(bh)) { 4118 err = ext4_read_bh_lock(bh, 0, true); 4119 if (err) 4120 goto unlock; 4121 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 4122 /* We expect the key to be set. */ 4123 BUG_ON(!fscrypt_has_encryption_key(inode)); 4124 err = fscrypt_decrypt_pagecache_blocks(folio, 4125 blocksize, 4126 bh_offset(bh)); 4127 if (err) { 4128 clear_buffer_uptodate(bh); 4129 goto unlock; 4130 } 4131 } 4132 } 4133 if (ext4_should_journal_data(inode)) { 4134 BUFFER_TRACE(bh, "get write access"); 4135 err = ext4_journal_get_write_access(handle, inode->i_sb, bh, 4136 EXT4_JTR_NONE); 4137 if (err) 4138 goto unlock; 4139 } 4140 folio_zero_range(folio, offset, length); 4141 BUFFER_TRACE(bh, "zeroed end of block"); 4142 4143 if (ext4_should_journal_data(inode)) { 4144 err = ext4_dirty_journalled_data(handle, bh); 4145 } else { 4146 err = 0; 4147 mark_buffer_dirty(bh); 4148 if (ext4_should_order_data(inode)) 4149 err = ext4_jbd2_inode_add_write(handle, inode, from, 4150 length); 4151 } 4152 4153 unlock: 4154 folio_unlock(folio); 4155 folio_put(folio); 4156 return err; 4157 } 4158 4159 /* 4160 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 4161 * starting from file offset 'from'. The range to be zero'd must 4162 * be contained with in one block. If the specified range exceeds 4163 * the end of the block it will be shortened to end of the block 4164 * that corresponds to 'from' 4165 */ 4166 static int ext4_block_zero_page_range(handle_t *handle, 4167 struct address_space *mapping, loff_t from, loff_t length) 4168 { 4169 struct inode *inode = mapping->host; 4170 unsigned offset = from & (PAGE_SIZE-1); 4171 unsigned blocksize = inode->i_sb->s_blocksize; 4172 unsigned max = blocksize - (offset & (blocksize - 1)); 4173 4174 /* 4175 * correct length if it does not fall between 4176 * 'from' and the end of the block 4177 */ 4178 if (length > max || length < 0) 4179 length = max; 4180 4181 if (IS_DAX(inode)) { 4182 return dax_zero_range(inode, from, length, NULL, 4183 &ext4_iomap_ops); 4184 } 4185 return __ext4_block_zero_page_range(handle, mapping, from, length); 4186 } 4187 4188 /* 4189 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 4190 * up to the end of the block which corresponds to `from'. 4191 * This required during truncate. We need to physically zero the tail end 4192 * of that block so it doesn't yield old data if the file is later grown. 4193 */ 4194 static int ext4_block_truncate_page(handle_t *handle, 4195 struct address_space *mapping, loff_t from) 4196 { 4197 unsigned offset = from & (PAGE_SIZE-1); 4198 unsigned length; 4199 unsigned blocksize; 4200 struct inode *inode = mapping->host; 4201 4202 /* If we are processing an encrypted inode during orphan list handling */ 4203 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 4204 return 0; 4205 4206 blocksize = inode->i_sb->s_blocksize; 4207 length = blocksize - (offset & (blocksize - 1)); 4208 4209 return ext4_block_zero_page_range(handle, mapping, from, length); 4210 } 4211 4212 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 4213 loff_t lstart, loff_t length) 4214 { 4215 struct super_block *sb = inode->i_sb; 4216 struct address_space *mapping = inode->i_mapping; 4217 unsigned partial_start, partial_end; 4218 ext4_fsblk_t start, end; 4219 loff_t byte_end = (lstart + length - 1); 4220 int err = 0; 4221 4222 partial_start = lstart & (sb->s_blocksize - 1); 4223 partial_end = byte_end & (sb->s_blocksize - 1); 4224 4225 start = lstart >> sb->s_blocksize_bits; 4226 end = byte_end >> sb->s_blocksize_bits; 4227 4228 /* Handle partial zero within the single block */ 4229 if (start == end && 4230 (partial_start || (partial_end != sb->s_blocksize - 1))) { 4231 err = ext4_block_zero_page_range(handle, mapping, 4232 lstart, length); 4233 return err; 4234 } 4235 /* Handle partial zero out on the start of the range */ 4236 if (partial_start) { 4237 err = ext4_block_zero_page_range(handle, mapping, 4238 lstart, sb->s_blocksize); 4239 if (err) 4240 return err; 4241 } 4242 /* Handle partial zero out on the end of the range */ 4243 if (partial_end != sb->s_blocksize - 1) 4244 err = ext4_block_zero_page_range(handle, mapping, 4245 byte_end - partial_end, 4246 partial_end + 1); 4247 return err; 4248 } 4249 4250 int ext4_can_truncate(struct inode *inode) 4251 { 4252 if (S_ISREG(inode->i_mode)) 4253 return 1; 4254 if (S_ISDIR(inode->i_mode)) 4255 return 1; 4256 if (S_ISLNK(inode->i_mode)) 4257 return !ext4_inode_is_fast_symlink(inode); 4258 return 0; 4259 } 4260 4261 /* 4262 * We have to make sure i_disksize gets properly updated before we truncate 4263 * page cache due to hole punching or zero range. Otherwise i_disksize update 4264 * can get lost as it may have been postponed to submission of writeback but 4265 * that will never happen if we remove the folio containing i_size from the 4266 * page cache. Also if we punch hole within i_size but above i_disksize, 4267 * following ext4_page_mkwrite() may mistakenly allocate written blocks over 4268 * the hole and thus introduce allocated blocks beyond i_disksize which is 4269 * not allowed (e2fsck would complain in case of crash). 4270 */ 4271 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 4272 loff_t len) 4273 { 4274 handle_t *handle; 4275 int ret; 4276 4277 loff_t size = i_size_read(inode); 4278 4279 WARN_ON(!inode_is_locked(inode)); 4280 if (offset > size) 4281 return 0; 4282 4283 if (offset + len < size) 4284 size = offset + len; 4285 if (EXT4_I(inode)->i_disksize >= size) 4286 return 0; 4287 4288 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 4289 if (IS_ERR(handle)) 4290 return PTR_ERR(handle); 4291 ext4_update_i_disksize(inode, size); 4292 ret = ext4_mark_inode_dirty(handle, inode); 4293 ext4_journal_stop(handle); 4294 4295 return ret; 4296 } 4297 4298 static inline void ext4_truncate_folio(struct inode *inode, 4299 loff_t start, loff_t end) 4300 { 4301 unsigned long blocksize = i_blocksize(inode); 4302 struct folio *folio; 4303 4304 /* Nothing to be done if no complete block needs to be truncated. */ 4305 if (round_up(start, blocksize) >= round_down(end, blocksize)) 4306 return; 4307 4308 folio = filemap_lock_folio(inode->i_mapping, start >> PAGE_SHIFT); 4309 if (IS_ERR(folio)) 4310 return; 4311 4312 if (folio_mkclean(folio)) 4313 folio_mark_dirty(folio); 4314 folio_unlock(folio); 4315 folio_put(folio); 4316 } 4317 4318 int ext4_truncate_page_cache_block_range(struct inode *inode, 4319 loff_t start, loff_t end) 4320 { 4321 unsigned long blocksize = i_blocksize(inode); 4322 int ret; 4323 4324 /* 4325 * For journalled data we need to write (and checkpoint) pages 4326 * before discarding page cache to avoid inconsitent data on disk 4327 * in case of crash before freeing or unwritten converting trans 4328 * is committed. 4329 */ 4330 if (ext4_should_journal_data(inode)) { 4331 ret = filemap_write_and_wait_range(inode->i_mapping, start, 4332 end - 1); 4333 if (ret) 4334 return ret; 4335 goto truncate_pagecache; 4336 } 4337 4338 /* 4339 * If the block size is less than the page size, the file's mapped 4340 * blocks within one page could be freed or converted to unwritten. 4341 * So it's necessary to remove writable userspace mappings, and then 4342 * ext4_page_mkwrite() can be called during subsequent write access 4343 * to these partial folios. 4344 */ 4345 if (!IS_ALIGNED(start | end, PAGE_SIZE) && 4346 blocksize < PAGE_SIZE && start < inode->i_size) { 4347 loff_t page_boundary = round_up(start, PAGE_SIZE); 4348 4349 ext4_truncate_folio(inode, start, min(page_boundary, end)); 4350 if (end > page_boundary) 4351 ext4_truncate_folio(inode, 4352 round_down(end, PAGE_SIZE), end); 4353 } 4354 4355 truncate_pagecache: 4356 truncate_pagecache_range(inode, start, end - 1); 4357 return 0; 4358 } 4359 4360 static void ext4_wait_dax_page(struct inode *inode) 4361 { 4362 filemap_invalidate_unlock(inode->i_mapping); 4363 schedule(); 4364 filemap_invalidate_lock(inode->i_mapping); 4365 } 4366 4367 int ext4_break_layouts(struct inode *inode) 4368 { 4369 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock))) 4370 return -EINVAL; 4371 4372 return dax_break_layout_inode(inode, ext4_wait_dax_page); 4373 } 4374 4375 /* 4376 * ext4_punch_hole: punches a hole in a file by releasing the blocks 4377 * associated with the given offset and length 4378 * 4379 * @inode: File inode 4380 * @offset: The offset where the hole will begin 4381 * @len: The length of the hole 4382 * 4383 * Returns: 0 on success or negative on failure 4384 */ 4385 4386 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 4387 { 4388 struct inode *inode = file_inode(file); 4389 struct super_block *sb = inode->i_sb; 4390 ext4_lblk_t start_lblk, end_lblk; 4391 loff_t max_end = sb->s_maxbytes; 4392 loff_t end = offset + length; 4393 handle_t *handle; 4394 unsigned int credits; 4395 int ret; 4396 4397 trace_ext4_punch_hole(inode, offset, length, 0); 4398 WARN_ON_ONCE(!inode_is_locked(inode)); 4399 4400 /* 4401 * For indirect-block based inodes, make sure that the hole within 4402 * one block before last range. 4403 */ 4404 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4405 max_end = EXT4_SB(sb)->s_bitmap_maxbytes - sb->s_blocksize; 4406 4407 /* No need to punch hole beyond i_size */ 4408 if (offset >= inode->i_size || offset >= max_end) 4409 return 0; 4410 4411 /* 4412 * If the hole extends beyond i_size, set the hole to end after 4413 * the page that contains i_size. 4414 */ 4415 if (end > inode->i_size) 4416 end = round_up(inode->i_size, PAGE_SIZE); 4417 if (end > max_end) 4418 end = max_end; 4419 length = end - offset; 4420 4421 /* 4422 * Attach jinode to inode for jbd2 if we do any zeroing of partial 4423 * block. 4424 */ 4425 if (!IS_ALIGNED(offset | end, sb->s_blocksize)) { 4426 ret = ext4_inode_attach_jinode(inode); 4427 if (ret < 0) 4428 return ret; 4429 } 4430 4431 4432 ret = ext4_update_disksize_before_punch(inode, offset, length); 4433 if (ret) 4434 return ret; 4435 4436 /* Now release the pages and zero block aligned part of pages*/ 4437 ret = ext4_truncate_page_cache_block_range(inode, offset, end); 4438 if (ret) 4439 return ret; 4440 4441 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4442 credits = ext4_chunk_trans_extent(inode, 2); 4443 else 4444 credits = ext4_blocks_for_truncate(inode); 4445 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4446 if (IS_ERR(handle)) { 4447 ret = PTR_ERR(handle); 4448 ext4_std_error(sb, ret); 4449 return ret; 4450 } 4451 4452 ret = ext4_zero_partial_blocks(handle, inode, offset, length); 4453 if (ret) 4454 goto out_handle; 4455 4456 /* If there are blocks to remove, do it */ 4457 start_lblk = EXT4_B_TO_LBLK(inode, offset); 4458 end_lblk = end >> inode->i_blkbits; 4459 4460 if (end_lblk > start_lblk) { 4461 ext4_lblk_t hole_len = end_lblk - start_lblk; 4462 4463 ext4_fc_track_inode(handle, inode); 4464 ext4_check_map_extents_env(inode); 4465 down_write(&EXT4_I(inode)->i_data_sem); 4466 ext4_discard_preallocations(inode); 4467 4468 ext4_es_remove_extent(inode, start_lblk, hole_len); 4469 4470 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4471 ret = ext4_ext_remove_space(inode, start_lblk, 4472 end_lblk - 1); 4473 else 4474 ret = ext4_ind_remove_space(handle, inode, start_lblk, 4475 end_lblk); 4476 if (ret) { 4477 up_write(&EXT4_I(inode)->i_data_sem); 4478 goto out_handle; 4479 } 4480 4481 ext4_es_insert_extent(inode, start_lblk, hole_len, ~0, 4482 EXTENT_STATUS_HOLE, 0); 4483 up_write(&EXT4_I(inode)->i_data_sem); 4484 } 4485 ext4_fc_track_range(handle, inode, start_lblk, end_lblk); 4486 4487 ret = ext4_mark_inode_dirty(handle, inode); 4488 if (unlikely(ret)) 4489 goto out_handle; 4490 4491 ext4_update_inode_fsync_trans(handle, inode, 1); 4492 if (IS_SYNC(inode)) 4493 ext4_handle_sync(handle); 4494 out_handle: 4495 ext4_journal_stop(handle); 4496 return ret; 4497 } 4498 4499 int ext4_inode_attach_jinode(struct inode *inode) 4500 { 4501 struct ext4_inode_info *ei = EXT4_I(inode); 4502 struct jbd2_inode *jinode; 4503 4504 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4505 return 0; 4506 4507 jinode = jbd2_alloc_inode(GFP_KERNEL); 4508 spin_lock(&inode->i_lock); 4509 if (!ei->jinode) { 4510 if (!jinode) { 4511 spin_unlock(&inode->i_lock); 4512 return -ENOMEM; 4513 } 4514 ei->jinode = jinode; 4515 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4516 jinode = NULL; 4517 } 4518 spin_unlock(&inode->i_lock); 4519 if (unlikely(jinode != NULL)) 4520 jbd2_free_inode(jinode); 4521 return 0; 4522 } 4523 4524 /* 4525 * ext4_truncate() 4526 * 4527 * We block out ext4_get_block() block instantiations across the entire 4528 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4529 * simultaneously on behalf of the same inode. 4530 * 4531 * As we work through the truncate and commit bits of it to the journal there 4532 * is one core, guiding principle: the file's tree must always be consistent on 4533 * disk. We must be able to restart the truncate after a crash. 4534 * 4535 * The file's tree may be transiently inconsistent in memory (although it 4536 * probably isn't), but whenever we close off and commit a journal transaction, 4537 * the contents of (the filesystem + the journal) must be consistent and 4538 * restartable. It's pretty simple, really: bottom up, right to left (although 4539 * left-to-right works OK too). 4540 * 4541 * Note that at recovery time, journal replay occurs *before* the restart of 4542 * truncate against the orphan inode list. 4543 * 4544 * The committed inode has the new, desired i_size (which is the same as 4545 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4546 * that this inode's truncate did not complete and it will again call 4547 * ext4_truncate() to have another go. So there will be instantiated blocks 4548 * to the right of the truncation point in a crashed ext4 filesystem. But 4549 * that's fine - as long as they are linked from the inode, the post-crash 4550 * ext4_truncate() run will find them and release them. 4551 */ 4552 int ext4_truncate(struct inode *inode) 4553 { 4554 struct ext4_inode_info *ei = EXT4_I(inode); 4555 unsigned int credits; 4556 int err = 0, err2; 4557 handle_t *handle; 4558 struct address_space *mapping = inode->i_mapping; 4559 4560 /* 4561 * There is a possibility that we're either freeing the inode 4562 * or it's a completely new inode. In those cases we might not 4563 * have i_rwsem locked because it's not necessary. 4564 */ 4565 if (!(inode->i_state & (I_NEW|I_FREEING))) 4566 WARN_ON(!inode_is_locked(inode)); 4567 trace_ext4_truncate_enter(inode); 4568 4569 if (!ext4_can_truncate(inode)) 4570 goto out_trace; 4571 4572 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4573 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4574 4575 if (ext4_has_inline_data(inode)) { 4576 int has_inline = 1; 4577 4578 err = ext4_inline_data_truncate(inode, &has_inline); 4579 if (err || has_inline) 4580 goto out_trace; 4581 } 4582 4583 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4584 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4585 err = ext4_inode_attach_jinode(inode); 4586 if (err) 4587 goto out_trace; 4588 } 4589 4590 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4591 credits = ext4_chunk_trans_extent(inode, 1); 4592 else 4593 credits = ext4_blocks_for_truncate(inode); 4594 4595 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4596 if (IS_ERR(handle)) { 4597 err = PTR_ERR(handle); 4598 goto out_trace; 4599 } 4600 4601 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4602 ext4_block_truncate_page(handle, mapping, inode->i_size); 4603 4604 /* 4605 * We add the inode to the orphan list, so that if this 4606 * truncate spans multiple transactions, and we crash, we will 4607 * resume the truncate when the filesystem recovers. It also 4608 * marks the inode dirty, to catch the new size. 4609 * 4610 * Implication: the file must always be in a sane, consistent 4611 * truncatable state while each transaction commits. 4612 */ 4613 err = ext4_orphan_add(handle, inode); 4614 if (err) 4615 goto out_stop; 4616 4617 ext4_fc_track_inode(handle, inode); 4618 ext4_check_map_extents_env(inode); 4619 4620 down_write(&EXT4_I(inode)->i_data_sem); 4621 ext4_discard_preallocations(inode); 4622 4623 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4624 err = ext4_ext_truncate(handle, inode); 4625 else 4626 ext4_ind_truncate(handle, inode); 4627 4628 up_write(&ei->i_data_sem); 4629 if (err) 4630 goto out_stop; 4631 4632 if (IS_SYNC(inode)) 4633 ext4_handle_sync(handle); 4634 4635 out_stop: 4636 /* 4637 * If this was a simple ftruncate() and the file will remain alive, 4638 * then we need to clear up the orphan record which we created above. 4639 * However, if this was a real unlink then we were called by 4640 * ext4_evict_inode(), and we allow that function to clean up the 4641 * orphan info for us. 4642 */ 4643 if (inode->i_nlink) 4644 ext4_orphan_del(handle, inode); 4645 4646 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 4647 err2 = ext4_mark_inode_dirty(handle, inode); 4648 if (unlikely(err2 && !err)) 4649 err = err2; 4650 ext4_journal_stop(handle); 4651 4652 out_trace: 4653 trace_ext4_truncate_exit(inode); 4654 return err; 4655 } 4656 4657 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4658 { 4659 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4660 return inode_peek_iversion_raw(inode); 4661 else 4662 return inode_peek_iversion(inode); 4663 } 4664 4665 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode, 4666 struct ext4_inode_info *ei) 4667 { 4668 struct inode *inode = &(ei->vfs_inode); 4669 u64 i_blocks = READ_ONCE(inode->i_blocks); 4670 struct super_block *sb = inode->i_sb; 4671 4672 if (i_blocks <= ~0U) { 4673 /* 4674 * i_blocks can be represented in a 32 bit variable 4675 * as multiple of 512 bytes 4676 */ 4677 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4678 raw_inode->i_blocks_high = 0; 4679 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4680 return 0; 4681 } 4682 4683 /* 4684 * This should never happen since sb->s_maxbytes should not have 4685 * allowed this, sb->s_maxbytes was set according to the huge_file 4686 * feature in ext4_fill_super(). 4687 */ 4688 if (!ext4_has_feature_huge_file(sb)) 4689 return -EFSCORRUPTED; 4690 4691 if (i_blocks <= 0xffffffffffffULL) { 4692 /* 4693 * i_blocks can be represented in a 48 bit variable 4694 * as multiple of 512 bytes 4695 */ 4696 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4697 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4698 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4699 } else { 4700 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4701 /* i_block is stored in file system block size */ 4702 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4703 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4704 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4705 } 4706 return 0; 4707 } 4708 4709 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode) 4710 { 4711 struct ext4_inode_info *ei = EXT4_I(inode); 4712 uid_t i_uid; 4713 gid_t i_gid; 4714 projid_t i_projid; 4715 int block; 4716 int err; 4717 4718 err = ext4_inode_blocks_set(raw_inode, ei); 4719 4720 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4721 i_uid = i_uid_read(inode); 4722 i_gid = i_gid_read(inode); 4723 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4724 if (!(test_opt(inode->i_sb, NO_UID32))) { 4725 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4726 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4727 /* 4728 * Fix up interoperability with old kernels. Otherwise, 4729 * old inodes get re-used with the upper 16 bits of the 4730 * uid/gid intact. 4731 */ 4732 if (ei->i_dtime && !ext4_inode_orphan_tracked(inode)) { 4733 raw_inode->i_uid_high = 0; 4734 raw_inode->i_gid_high = 0; 4735 } else { 4736 raw_inode->i_uid_high = 4737 cpu_to_le16(high_16_bits(i_uid)); 4738 raw_inode->i_gid_high = 4739 cpu_to_le16(high_16_bits(i_gid)); 4740 } 4741 } else { 4742 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4743 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4744 raw_inode->i_uid_high = 0; 4745 raw_inode->i_gid_high = 0; 4746 } 4747 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4748 4749 EXT4_INODE_SET_CTIME(inode, raw_inode); 4750 EXT4_INODE_SET_MTIME(inode, raw_inode); 4751 EXT4_INODE_SET_ATIME(inode, raw_inode); 4752 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4753 4754 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4755 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4756 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4757 raw_inode->i_file_acl_high = 4758 cpu_to_le16(ei->i_file_acl >> 32); 4759 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4760 ext4_isize_set(raw_inode, ei->i_disksize); 4761 4762 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4763 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4764 if (old_valid_dev(inode->i_rdev)) { 4765 raw_inode->i_block[0] = 4766 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4767 raw_inode->i_block[1] = 0; 4768 } else { 4769 raw_inode->i_block[0] = 0; 4770 raw_inode->i_block[1] = 4771 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4772 raw_inode->i_block[2] = 0; 4773 } 4774 } else if (!ext4_has_inline_data(inode)) { 4775 for (block = 0; block < EXT4_N_BLOCKS; block++) 4776 raw_inode->i_block[block] = ei->i_data[block]; 4777 } 4778 4779 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4780 u64 ivers = ext4_inode_peek_iversion(inode); 4781 4782 raw_inode->i_disk_version = cpu_to_le32(ivers); 4783 if (ei->i_extra_isize) { 4784 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4785 raw_inode->i_version_hi = 4786 cpu_to_le32(ivers >> 32); 4787 raw_inode->i_extra_isize = 4788 cpu_to_le16(ei->i_extra_isize); 4789 } 4790 } 4791 4792 if (i_projid != EXT4_DEF_PROJID && 4793 !ext4_has_feature_project(inode->i_sb)) 4794 err = err ?: -EFSCORRUPTED; 4795 4796 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4797 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4798 raw_inode->i_projid = cpu_to_le32(i_projid); 4799 4800 ext4_inode_csum_set(inode, raw_inode, ei); 4801 return err; 4802 } 4803 4804 /* 4805 * ext4_get_inode_loc returns with an extra refcount against the inode's 4806 * underlying buffer_head on success. If we pass 'inode' and it does not 4807 * have in-inode xattr, we have all inode data in memory that is needed 4808 * to recreate the on-disk version of this inode. 4809 */ 4810 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4811 struct inode *inode, struct ext4_iloc *iloc, 4812 ext4_fsblk_t *ret_block) 4813 { 4814 struct ext4_group_desc *gdp; 4815 struct buffer_head *bh; 4816 ext4_fsblk_t block; 4817 struct blk_plug plug; 4818 int inodes_per_block, inode_offset; 4819 4820 iloc->bh = NULL; 4821 if (ino < EXT4_ROOT_INO || 4822 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4823 return -EFSCORRUPTED; 4824 4825 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4826 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4827 if (!gdp) 4828 return -EIO; 4829 4830 /* 4831 * Figure out the offset within the block group inode table 4832 */ 4833 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4834 inode_offset = ((ino - 1) % 4835 EXT4_INODES_PER_GROUP(sb)); 4836 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4837 4838 block = ext4_inode_table(sb, gdp); 4839 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) || 4840 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) { 4841 ext4_error(sb, "Invalid inode table block %llu in " 4842 "block_group %u", block, iloc->block_group); 4843 return -EFSCORRUPTED; 4844 } 4845 block += (inode_offset / inodes_per_block); 4846 4847 bh = sb_getblk(sb, block); 4848 if (unlikely(!bh)) 4849 return -ENOMEM; 4850 if (ext4_buffer_uptodate(bh)) 4851 goto has_buffer; 4852 4853 lock_buffer(bh); 4854 if (ext4_buffer_uptodate(bh)) { 4855 /* Someone brought it uptodate while we waited */ 4856 unlock_buffer(bh); 4857 goto has_buffer; 4858 } 4859 4860 /* 4861 * If we have all information of the inode in memory and this 4862 * is the only valid inode in the block, we need not read the 4863 * block. 4864 */ 4865 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4866 struct buffer_head *bitmap_bh; 4867 int i, start; 4868 4869 start = inode_offset & ~(inodes_per_block - 1); 4870 4871 /* Is the inode bitmap in cache? */ 4872 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4873 if (unlikely(!bitmap_bh)) 4874 goto make_io; 4875 4876 /* 4877 * If the inode bitmap isn't in cache then the 4878 * optimisation may end up performing two reads instead 4879 * of one, so skip it. 4880 */ 4881 if (!buffer_uptodate(bitmap_bh)) { 4882 brelse(bitmap_bh); 4883 goto make_io; 4884 } 4885 for (i = start; i < start + inodes_per_block; i++) { 4886 if (i == inode_offset) 4887 continue; 4888 if (ext4_test_bit(i, bitmap_bh->b_data)) 4889 break; 4890 } 4891 brelse(bitmap_bh); 4892 if (i == start + inodes_per_block) { 4893 struct ext4_inode *raw_inode = 4894 (struct ext4_inode *) (bh->b_data + iloc->offset); 4895 4896 /* all other inodes are free, so skip I/O */ 4897 memset(bh->b_data, 0, bh->b_size); 4898 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4899 ext4_fill_raw_inode(inode, raw_inode); 4900 set_buffer_uptodate(bh); 4901 unlock_buffer(bh); 4902 goto has_buffer; 4903 } 4904 } 4905 4906 make_io: 4907 /* 4908 * If we need to do any I/O, try to pre-readahead extra 4909 * blocks from the inode table. 4910 */ 4911 blk_start_plug(&plug); 4912 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4913 ext4_fsblk_t b, end, table; 4914 unsigned num; 4915 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4916 4917 table = ext4_inode_table(sb, gdp); 4918 /* s_inode_readahead_blks is always a power of 2 */ 4919 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4920 if (table > b) 4921 b = table; 4922 end = b + ra_blks; 4923 num = EXT4_INODES_PER_GROUP(sb); 4924 if (ext4_has_group_desc_csum(sb)) 4925 num -= ext4_itable_unused_count(sb, gdp); 4926 table += num / inodes_per_block; 4927 if (end > table) 4928 end = table; 4929 while (b <= end) 4930 ext4_sb_breadahead_unmovable(sb, b++); 4931 } 4932 4933 /* 4934 * There are other valid inodes in the buffer, this inode 4935 * has in-inode xattrs, or we don't have this inode in memory. 4936 * Read the block from disk. 4937 */ 4938 trace_ext4_load_inode(sb, ino); 4939 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL, 4940 ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO)); 4941 blk_finish_plug(&plug); 4942 wait_on_buffer(bh); 4943 if (!buffer_uptodate(bh)) { 4944 if (ret_block) 4945 *ret_block = block; 4946 brelse(bh); 4947 return -EIO; 4948 } 4949 has_buffer: 4950 iloc->bh = bh; 4951 return 0; 4952 } 4953 4954 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4955 struct ext4_iloc *iloc) 4956 { 4957 ext4_fsblk_t err_blk = 0; 4958 int ret; 4959 4960 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc, 4961 &err_blk); 4962 4963 if (ret == -EIO) 4964 ext4_error_inode_block(inode, err_blk, EIO, 4965 "unable to read itable block"); 4966 4967 return ret; 4968 } 4969 4970 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4971 { 4972 ext4_fsblk_t err_blk = 0; 4973 int ret; 4974 4975 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc, 4976 &err_blk); 4977 4978 if (ret == -EIO) 4979 ext4_error_inode_block(inode, err_blk, EIO, 4980 "unable to read itable block"); 4981 4982 return ret; 4983 } 4984 4985 4986 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4987 struct ext4_iloc *iloc) 4988 { 4989 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL); 4990 } 4991 4992 static bool ext4_should_enable_dax(struct inode *inode) 4993 { 4994 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4995 4996 if (test_opt2(inode->i_sb, DAX_NEVER)) 4997 return false; 4998 if (!S_ISREG(inode->i_mode)) 4999 return false; 5000 if (ext4_should_journal_data(inode)) 5001 return false; 5002 if (ext4_has_inline_data(inode)) 5003 return false; 5004 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 5005 return false; 5006 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 5007 return false; 5008 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 5009 return false; 5010 if (test_opt(inode->i_sb, DAX_ALWAYS)) 5011 return true; 5012 5013 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 5014 } 5015 5016 void ext4_set_inode_flags(struct inode *inode, bool init) 5017 { 5018 unsigned int flags = EXT4_I(inode)->i_flags; 5019 unsigned int new_fl = 0; 5020 5021 WARN_ON_ONCE(IS_DAX(inode) && init); 5022 5023 if (flags & EXT4_SYNC_FL) 5024 new_fl |= S_SYNC; 5025 if (flags & EXT4_APPEND_FL) 5026 new_fl |= S_APPEND; 5027 if (flags & EXT4_IMMUTABLE_FL) 5028 new_fl |= S_IMMUTABLE; 5029 if (flags & EXT4_NOATIME_FL) 5030 new_fl |= S_NOATIME; 5031 if (flags & EXT4_DIRSYNC_FL) 5032 new_fl |= S_DIRSYNC; 5033 5034 /* Because of the way inode_set_flags() works we must preserve S_DAX 5035 * here if already set. */ 5036 new_fl |= (inode->i_flags & S_DAX); 5037 if (init && ext4_should_enable_dax(inode)) 5038 new_fl |= S_DAX; 5039 5040 if (flags & EXT4_ENCRYPT_FL) 5041 new_fl |= S_ENCRYPTED; 5042 if (flags & EXT4_CASEFOLD_FL) 5043 new_fl |= S_CASEFOLD; 5044 if (flags & EXT4_VERITY_FL) 5045 new_fl |= S_VERITY; 5046 inode_set_flags(inode, new_fl, 5047 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 5048 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 5049 } 5050 5051 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 5052 struct ext4_inode_info *ei) 5053 { 5054 blkcnt_t i_blocks ; 5055 struct inode *inode = &(ei->vfs_inode); 5056 struct super_block *sb = inode->i_sb; 5057 5058 if (ext4_has_feature_huge_file(sb)) { 5059 /* we are using combined 48 bit field */ 5060 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 5061 le32_to_cpu(raw_inode->i_blocks_lo); 5062 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 5063 /* i_blocks represent file system block size */ 5064 return i_blocks << (inode->i_blkbits - 9); 5065 } else { 5066 return i_blocks; 5067 } 5068 } else { 5069 return le32_to_cpu(raw_inode->i_blocks_lo); 5070 } 5071 } 5072 5073 static inline int ext4_iget_extra_inode(struct inode *inode, 5074 struct ext4_inode *raw_inode, 5075 struct ext4_inode_info *ei) 5076 { 5077 __le32 *magic = (void *)raw_inode + 5078 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 5079 5080 if (EXT4_INODE_HAS_XATTR_SPACE(inode) && 5081 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 5082 int err; 5083 5084 err = xattr_check_inode(inode, IHDR(inode, raw_inode), 5085 ITAIL(inode, raw_inode)); 5086 if (err) 5087 return err; 5088 5089 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 5090 err = ext4_find_inline_data_nolock(inode); 5091 if (!err && ext4_has_inline_data(inode)) 5092 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 5093 return err; 5094 } else 5095 EXT4_I(inode)->i_inline_off = 0; 5096 return 0; 5097 } 5098 5099 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 5100 { 5101 if (!ext4_has_feature_project(inode->i_sb)) 5102 return -EOPNOTSUPP; 5103 *projid = EXT4_I(inode)->i_projid; 5104 return 0; 5105 } 5106 5107 /* 5108 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 5109 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 5110 * set. 5111 */ 5112 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 5113 { 5114 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 5115 inode_set_iversion_raw(inode, val); 5116 else 5117 inode_set_iversion_queried(inode, val); 5118 } 5119 5120 static int check_igot_inode(struct inode *inode, ext4_iget_flags flags, 5121 const char *function, unsigned int line) 5122 { 5123 const char *err_str; 5124 5125 if (flags & EXT4_IGET_EA_INODE) { 5126 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 5127 err_str = "missing EA_INODE flag"; 5128 goto error; 5129 } 5130 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5131 EXT4_I(inode)->i_file_acl) { 5132 err_str = "ea_inode with extended attributes"; 5133 goto error; 5134 } 5135 } else { 5136 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 5137 /* 5138 * open_by_handle_at() could provide an old inode number 5139 * that has since been reused for an ea_inode; this does 5140 * not indicate filesystem corruption 5141 */ 5142 if (flags & EXT4_IGET_HANDLE) 5143 return -ESTALE; 5144 err_str = "unexpected EA_INODE flag"; 5145 goto error; 5146 } 5147 } 5148 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) { 5149 err_str = "unexpected bad inode w/o EXT4_IGET_BAD"; 5150 goto error; 5151 } 5152 return 0; 5153 5154 error: 5155 ext4_error_inode(inode, function, line, 0, "%s", err_str); 5156 return -EFSCORRUPTED; 5157 } 5158 5159 static bool ext4_should_enable_large_folio(struct inode *inode) 5160 { 5161 struct super_block *sb = inode->i_sb; 5162 5163 if (!S_ISREG(inode->i_mode)) 5164 return false; 5165 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA || 5166 ext4_test_inode_flag(inode, EXT4_INODE_JOURNAL_DATA)) 5167 return false; 5168 if (ext4_has_feature_verity(sb)) 5169 return false; 5170 if (ext4_has_feature_encrypt(sb)) 5171 return false; 5172 5173 return true; 5174 } 5175 5176 /* 5177 * Limit the maximum folio order to 2048 blocks to prevent overestimation 5178 * of reserve handle credits during the folio writeback in environments 5179 * where the PAGE_SIZE exceeds 4KB. 5180 */ 5181 #define EXT4_MAX_PAGECACHE_ORDER(i) \ 5182 umin(MAX_PAGECACHE_ORDER, (11 + (i)->i_blkbits - PAGE_SHIFT)) 5183 void ext4_set_inode_mapping_order(struct inode *inode) 5184 { 5185 if (!ext4_should_enable_large_folio(inode)) 5186 return; 5187 5188 mapping_set_folio_order_range(inode->i_mapping, 0, 5189 EXT4_MAX_PAGECACHE_ORDER(inode)); 5190 } 5191 5192 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 5193 ext4_iget_flags flags, const char *function, 5194 unsigned int line) 5195 { 5196 struct ext4_iloc iloc; 5197 struct ext4_inode *raw_inode; 5198 struct ext4_inode_info *ei; 5199 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 5200 struct inode *inode; 5201 journal_t *journal = EXT4_SB(sb)->s_journal; 5202 long ret; 5203 loff_t size; 5204 int block; 5205 uid_t i_uid; 5206 gid_t i_gid; 5207 projid_t i_projid; 5208 5209 if ((!(flags & EXT4_IGET_SPECIAL) && is_special_ino(sb, ino)) || 5210 (ino < EXT4_ROOT_INO) || 5211 (ino > le32_to_cpu(es->s_inodes_count))) { 5212 if (flags & EXT4_IGET_HANDLE) 5213 return ERR_PTR(-ESTALE); 5214 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 5215 "inode #%lu: comm %s: iget: illegal inode #", 5216 ino, current->comm); 5217 return ERR_PTR(-EFSCORRUPTED); 5218 } 5219 5220 inode = iget_locked(sb, ino); 5221 if (!inode) 5222 return ERR_PTR(-ENOMEM); 5223 if (!(inode->i_state & I_NEW)) { 5224 ret = check_igot_inode(inode, flags, function, line); 5225 if (ret) { 5226 iput(inode); 5227 return ERR_PTR(ret); 5228 } 5229 return inode; 5230 } 5231 5232 ei = EXT4_I(inode); 5233 iloc.bh = NULL; 5234 5235 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 5236 if (ret < 0) 5237 goto bad_inode; 5238 raw_inode = ext4_raw_inode(&iloc); 5239 5240 if ((flags & EXT4_IGET_HANDLE) && 5241 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 5242 ret = -ESTALE; 5243 goto bad_inode; 5244 } 5245 5246 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5247 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 5248 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 5249 EXT4_INODE_SIZE(inode->i_sb) || 5250 (ei->i_extra_isize & 3)) { 5251 ext4_error_inode(inode, function, line, 0, 5252 "iget: bad extra_isize %u " 5253 "(inode size %u)", 5254 ei->i_extra_isize, 5255 EXT4_INODE_SIZE(inode->i_sb)); 5256 ret = -EFSCORRUPTED; 5257 goto bad_inode; 5258 } 5259 } else 5260 ei->i_extra_isize = 0; 5261 5262 /* Precompute checksum seed for inode metadata */ 5263 if (ext4_has_feature_metadata_csum(sb)) { 5264 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5265 __u32 csum; 5266 __le32 inum = cpu_to_le32(inode->i_ino); 5267 __le32 gen = raw_inode->i_generation; 5268 csum = ext4_chksum(sbi->s_csum_seed, (__u8 *)&inum, 5269 sizeof(inum)); 5270 ei->i_csum_seed = ext4_chksum(csum, (__u8 *)&gen, sizeof(gen)); 5271 } 5272 5273 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 5274 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 5275 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 5276 ext4_error_inode_err(inode, function, line, 0, 5277 EFSBADCRC, "iget: checksum invalid"); 5278 ret = -EFSBADCRC; 5279 goto bad_inode; 5280 } 5281 5282 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 5283 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 5284 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 5285 if (ext4_has_feature_project(sb) && 5286 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 5287 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 5288 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 5289 else 5290 i_projid = EXT4_DEF_PROJID; 5291 5292 if (!(test_opt(inode->i_sb, NO_UID32))) { 5293 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 5294 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 5295 } 5296 i_uid_write(inode, i_uid); 5297 i_gid_write(inode, i_gid); 5298 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 5299 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 5300 5301 ei->i_inline_off = 0; 5302 ei->i_dir_start_lookup = 0; 5303 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 5304 /* We now have enough fields to check if the inode was active or not. 5305 * This is needed because nfsd might try to access dead inodes 5306 * the test is that same one that e2fsck uses 5307 * NeilBrown 1999oct15 5308 */ 5309 if (inode->i_nlink == 0) { 5310 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL || 5311 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 5312 ino != EXT4_BOOT_LOADER_INO) { 5313 /* this inode is deleted or unallocated */ 5314 if (flags & EXT4_IGET_SPECIAL) { 5315 ext4_error_inode(inode, function, line, 0, 5316 "iget: special inode unallocated"); 5317 ret = -EFSCORRUPTED; 5318 } else 5319 ret = -ESTALE; 5320 goto bad_inode; 5321 } 5322 /* The only unlinked inodes we let through here have 5323 * valid i_mode and are being read by the orphan 5324 * recovery code: that's fine, we're about to complete 5325 * the process of deleting those. 5326 * OR it is the EXT4_BOOT_LOADER_INO which is 5327 * not initialized on a new filesystem. */ 5328 } 5329 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 5330 ext4_set_inode_flags(inode, true); 5331 /* Detect invalid flag combination - can't have both inline data and extents */ 5332 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA) && 5333 ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5334 ext4_error_inode(inode, function, line, 0, 5335 "inode has both inline data and extents flags"); 5336 ret = -EFSCORRUPTED; 5337 goto bad_inode; 5338 } 5339 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 5340 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 5341 if (ext4_has_feature_64bit(sb)) 5342 ei->i_file_acl |= 5343 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 5344 inode->i_size = ext4_isize(sb, raw_inode); 5345 size = i_size_read(inode); 5346 if (size < 0 || size > ext4_get_maxbytes(inode)) { 5347 ext4_error_inode(inode, function, line, 0, 5348 "iget: bad i_size value: %lld", size); 5349 ret = -EFSCORRUPTED; 5350 goto bad_inode; 5351 } 5352 /* 5353 * If dir_index is not enabled but there's dir with INDEX flag set, 5354 * we'd normally treat htree data as empty space. But with metadata 5355 * checksumming that corrupts checksums so forbid that. 5356 */ 5357 if (!ext4_has_feature_dir_index(sb) && 5358 ext4_has_feature_metadata_csum(sb) && 5359 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 5360 ext4_error_inode(inode, function, line, 0, 5361 "iget: Dir with htree data on filesystem without dir_index feature."); 5362 ret = -EFSCORRUPTED; 5363 goto bad_inode; 5364 } 5365 ei->i_disksize = inode->i_size; 5366 #ifdef CONFIG_QUOTA 5367 ei->i_reserved_quota = 0; 5368 #endif 5369 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 5370 ei->i_block_group = iloc.block_group; 5371 ei->i_last_alloc_group = ~0; 5372 /* 5373 * NOTE! The in-memory inode i_data array is in little-endian order 5374 * even on big-endian machines: we do NOT byteswap the block numbers! 5375 */ 5376 for (block = 0; block < EXT4_N_BLOCKS; block++) 5377 ei->i_data[block] = raw_inode->i_block[block]; 5378 INIT_LIST_HEAD(&ei->i_orphan); 5379 ext4_fc_init_inode(&ei->vfs_inode); 5380 5381 /* 5382 * Set transaction id's of transactions that have to be committed 5383 * to finish f[data]sync. We set them to currently running transaction 5384 * as we cannot be sure that the inode or some of its metadata isn't 5385 * part of the transaction - the inode could have been reclaimed and 5386 * now it is reread from disk. 5387 */ 5388 if (journal) { 5389 transaction_t *transaction; 5390 tid_t tid; 5391 5392 read_lock(&journal->j_state_lock); 5393 if (journal->j_running_transaction) 5394 transaction = journal->j_running_transaction; 5395 else 5396 transaction = journal->j_committing_transaction; 5397 if (transaction) 5398 tid = transaction->t_tid; 5399 else 5400 tid = journal->j_commit_sequence; 5401 read_unlock(&journal->j_state_lock); 5402 ei->i_sync_tid = tid; 5403 ei->i_datasync_tid = tid; 5404 } 5405 5406 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5407 if (ei->i_extra_isize == 0) { 5408 /* The extra space is currently unused. Use it. */ 5409 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 5410 ei->i_extra_isize = sizeof(struct ext4_inode) - 5411 EXT4_GOOD_OLD_INODE_SIZE; 5412 } else { 5413 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 5414 if (ret) 5415 goto bad_inode; 5416 } 5417 } 5418 5419 EXT4_INODE_GET_CTIME(inode, raw_inode); 5420 EXT4_INODE_GET_ATIME(inode, raw_inode); 5421 EXT4_INODE_GET_MTIME(inode, raw_inode); 5422 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 5423 5424 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5425 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 5426 5427 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5428 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5429 ivers |= 5430 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 5431 } 5432 ext4_inode_set_iversion_queried(inode, ivers); 5433 } 5434 5435 ret = 0; 5436 if (ei->i_file_acl && 5437 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 5438 ext4_error_inode(inode, function, line, 0, 5439 "iget: bad extended attribute block %llu", 5440 ei->i_file_acl); 5441 ret = -EFSCORRUPTED; 5442 goto bad_inode; 5443 } else if (!ext4_has_inline_data(inode)) { 5444 /* validate the block references in the inode */ 5445 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 5446 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 5447 (S_ISLNK(inode->i_mode) && 5448 !ext4_inode_is_fast_symlink(inode)))) { 5449 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5450 ret = ext4_ext_check_inode(inode); 5451 else 5452 ret = ext4_ind_check_inode(inode); 5453 } 5454 } 5455 if (ret) 5456 goto bad_inode; 5457 5458 if (S_ISREG(inode->i_mode)) { 5459 inode->i_op = &ext4_file_inode_operations; 5460 inode->i_fop = &ext4_file_operations; 5461 ext4_set_aops(inode); 5462 } else if (S_ISDIR(inode->i_mode)) { 5463 inode->i_op = &ext4_dir_inode_operations; 5464 inode->i_fop = &ext4_dir_operations; 5465 } else if (S_ISLNK(inode->i_mode)) { 5466 /* VFS does not allow setting these so must be corruption */ 5467 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 5468 ext4_error_inode(inode, function, line, 0, 5469 "iget: immutable or append flags " 5470 "not allowed on symlinks"); 5471 ret = -EFSCORRUPTED; 5472 goto bad_inode; 5473 } 5474 if (IS_ENCRYPTED(inode)) { 5475 inode->i_op = &ext4_encrypted_symlink_inode_operations; 5476 } else if (ext4_inode_is_fast_symlink(inode)) { 5477 inode->i_op = &ext4_fast_symlink_inode_operations; 5478 if (inode->i_size == 0 || 5479 inode->i_size >= sizeof(ei->i_data) || 5480 strnlen((char *)ei->i_data, inode->i_size + 1) != 5481 inode->i_size) { 5482 ext4_error_inode(inode, function, line, 0, 5483 "invalid fast symlink length %llu", 5484 (unsigned long long)inode->i_size); 5485 ret = -EFSCORRUPTED; 5486 goto bad_inode; 5487 } 5488 inode_set_cached_link(inode, (char *)ei->i_data, 5489 inode->i_size); 5490 } else { 5491 inode->i_op = &ext4_symlink_inode_operations; 5492 } 5493 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 5494 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 5495 inode->i_op = &ext4_special_inode_operations; 5496 if (raw_inode->i_block[0]) 5497 init_special_inode(inode, inode->i_mode, 5498 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 5499 else 5500 init_special_inode(inode, inode->i_mode, 5501 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 5502 } else if (ino == EXT4_BOOT_LOADER_INO) { 5503 make_bad_inode(inode); 5504 } else { 5505 ret = -EFSCORRUPTED; 5506 ext4_error_inode(inode, function, line, 0, 5507 "iget: bogus i_mode (%o)", inode->i_mode); 5508 goto bad_inode; 5509 } 5510 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) { 5511 ext4_error_inode(inode, function, line, 0, 5512 "casefold flag without casefold feature"); 5513 ret = -EFSCORRUPTED; 5514 goto bad_inode; 5515 } 5516 5517 ext4_set_inode_mapping_order(inode); 5518 5519 ret = check_igot_inode(inode, flags, function, line); 5520 /* 5521 * -ESTALE here means there is nothing inherently wrong with the inode, 5522 * it's just not an inode we can return for an fhandle lookup. 5523 */ 5524 if (ret == -ESTALE) { 5525 brelse(iloc.bh); 5526 unlock_new_inode(inode); 5527 iput(inode); 5528 return ERR_PTR(-ESTALE); 5529 } 5530 if (ret) 5531 goto bad_inode; 5532 brelse(iloc.bh); 5533 5534 unlock_new_inode(inode); 5535 return inode; 5536 5537 bad_inode: 5538 brelse(iloc.bh); 5539 iget_failed(inode); 5540 return ERR_PTR(ret); 5541 } 5542 5543 static void __ext4_update_other_inode_time(struct super_block *sb, 5544 unsigned long orig_ino, 5545 unsigned long ino, 5546 struct ext4_inode *raw_inode) 5547 { 5548 struct inode *inode; 5549 5550 inode = find_inode_by_ino_rcu(sb, ino); 5551 if (!inode) 5552 return; 5553 5554 if (!inode_is_dirtytime_only(inode)) 5555 return; 5556 5557 spin_lock(&inode->i_lock); 5558 if (inode_is_dirtytime_only(inode)) { 5559 struct ext4_inode_info *ei = EXT4_I(inode); 5560 5561 inode->i_state &= ~I_DIRTY_TIME; 5562 spin_unlock(&inode->i_lock); 5563 5564 spin_lock(&ei->i_raw_lock); 5565 EXT4_INODE_SET_CTIME(inode, raw_inode); 5566 EXT4_INODE_SET_MTIME(inode, raw_inode); 5567 EXT4_INODE_SET_ATIME(inode, raw_inode); 5568 ext4_inode_csum_set(inode, raw_inode, ei); 5569 spin_unlock(&ei->i_raw_lock); 5570 trace_ext4_other_inode_update_time(inode, orig_ino); 5571 return; 5572 } 5573 spin_unlock(&inode->i_lock); 5574 } 5575 5576 /* 5577 * Opportunistically update the other time fields for other inodes in 5578 * the same inode table block. 5579 */ 5580 static void ext4_update_other_inodes_time(struct super_block *sb, 5581 unsigned long orig_ino, char *buf) 5582 { 5583 unsigned long ino; 5584 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5585 int inode_size = EXT4_INODE_SIZE(sb); 5586 5587 /* 5588 * Calculate the first inode in the inode table block. Inode 5589 * numbers are one-based. That is, the first inode in a block 5590 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5591 */ 5592 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5593 rcu_read_lock(); 5594 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5595 if (ino == orig_ino) 5596 continue; 5597 __ext4_update_other_inode_time(sb, orig_ino, ino, 5598 (struct ext4_inode *)buf); 5599 } 5600 rcu_read_unlock(); 5601 } 5602 5603 /* 5604 * Post the struct inode info into an on-disk inode location in the 5605 * buffer-cache. This gobbles the caller's reference to the 5606 * buffer_head in the inode location struct. 5607 * 5608 * The caller must have write access to iloc->bh. 5609 */ 5610 static int ext4_do_update_inode(handle_t *handle, 5611 struct inode *inode, 5612 struct ext4_iloc *iloc) 5613 { 5614 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5615 struct ext4_inode_info *ei = EXT4_I(inode); 5616 struct buffer_head *bh = iloc->bh; 5617 struct super_block *sb = inode->i_sb; 5618 int err; 5619 int need_datasync = 0, set_large_file = 0; 5620 5621 spin_lock(&ei->i_raw_lock); 5622 5623 /* 5624 * For fields not tracked in the in-memory inode, initialise them 5625 * to zero for new inodes. 5626 */ 5627 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5628 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5629 5630 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) 5631 need_datasync = 1; 5632 if (ei->i_disksize > 0x7fffffffULL) { 5633 if (!ext4_has_feature_large_file(sb) || 5634 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV)) 5635 set_large_file = 1; 5636 } 5637 5638 err = ext4_fill_raw_inode(inode, raw_inode); 5639 spin_unlock(&ei->i_raw_lock); 5640 if (err) { 5641 EXT4_ERROR_INODE(inode, "corrupted inode contents"); 5642 goto out_brelse; 5643 } 5644 5645 if (inode->i_sb->s_flags & SB_LAZYTIME) 5646 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5647 bh->b_data); 5648 5649 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5650 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5651 if (err) 5652 goto out_error; 5653 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5654 if (set_large_file) { 5655 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5656 err = ext4_journal_get_write_access(handle, sb, 5657 EXT4_SB(sb)->s_sbh, 5658 EXT4_JTR_NONE); 5659 if (err) 5660 goto out_error; 5661 lock_buffer(EXT4_SB(sb)->s_sbh); 5662 ext4_set_feature_large_file(sb); 5663 ext4_superblock_csum_set(sb); 5664 unlock_buffer(EXT4_SB(sb)->s_sbh); 5665 ext4_handle_sync(handle); 5666 err = ext4_handle_dirty_metadata(handle, NULL, 5667 EXT4_SB(sb)->s_sbh); 5668 } 5669 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5670 out_error: 5671 ext4_std_error(inode->i_sb, err); 5672 out_brelse: 5673 brelse(bh); 5674 return err; 5675 } 5676 5677 /* 5678 * ext4_write_inode() 5679 * 5680 * We are called from a few places: 5681 * 5682 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5683 * Here, there will be no transaction running. We wait for any running 5684 * transaction to commit. 5685 * 5686 * - Within flush work (sys_sync(), kupdate and such). 5687 * We wait on commit, if told to. 5688 * 5689 * - Within iput_final() -> write_inode_now() 5690 * We wait on commit, if told to. 5691 * 5692 * In all cases it is actually safe for us to return without doing anything, 5693 * because the inode has been copied into a raw inode buffer in 5694 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5695 * writeback. 5696 * 5697 * Note that we are absolutely dependent upon all inode dirtiers doing the 5698 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5699 * which we are interested. 5700 * 5701 * It would be a bug for them to not do this. The code: 5702 * 5703 * mark_inode_dirty(inode) 5704 * stuff(); 5705 * inode->i_size = expr; 5706 * 5707 * is in error because write_inode() could occur while `stuff()' is running, 5708 * and the new i_size will be lost. Plus the inode will no longer be on the 5709 * superblock's dirty inode list. 5710 */ 5711 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5712 { 5713 int err; 5714 5715 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 5716 return 0; 5717 5718 err = ext4_emergency_state(inode->i_sb); 5719 if (unlikely(err)) 5720 return err; 5721 5722 if (EXT4_SB(inode->i_sb)->s_journal) { 5723 if (ext4_journal_current_handle()) { 5724 ext4_debug("called recursively, non-PF_MEMALLOC!\n"); 5725 dump_stack(); 5726 return -EIO; 5727 } 5728 5729 /* 5730 * No need to force transaction in WB_SYNC_NONE mode. Also 5731 * ext4_sync_fs() will force the commit after everything is 5732 * written. 5733 */ 5734 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5735 return 0; 5736 5737 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5738 EXT4_I(inode)->i_sync_tid); 5739 } else { 5740 struct ext4_iloc iloc; 5741 5742 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5743 if (err) 5744 return err; 5745 /* 5746 * sync(2) will flush the whole buffer cache. No need to do 5747 * it here separately for each inode. 5748 */ 5749 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5750 sync_dirty_buffer(iloc.bh); 5751 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5752 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5753 "IO error syncing inode"); 5754 err = -EIO; 5755 } 5756 brelse(iloc.bh); 5757 } 5758 return err; 5759 } 5760 5761 /* 5762 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate 5763 * buffers that are attached to a folio straddling i_size and are undergoing 5764 * commit. In that case we have to wait for commit to finish and try again. 5765 */ 5766 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5767 { 5768 unsigned offset; 5769 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5770 tid_t commit_tid; 5771 int ret; 5772 bool has_transaction; 5773 5774 offset = inode->i_size & (PAGE_SIZE - 1); 5775 /* 5776 * If the folio is fully truncated, we don't need to wait for any commit 5777 * (and we even should not as __ext4_journalled_invalidate_folio() may 5778 * strip all buffers from the folio but keep the folio dirty which can then 5779 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without 5780 * buffers). Also we don't need to wait for any commit if all buffers in 5781 * the folio remain valid. This is most beneficial for the common case of 5782 * blocksize == PAGESIZE. 5783 */ 5784 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5785 return; 5786 while (1) { 5787 struct folio *folio = filemap_lock_folio(inode->i_mapping, 5788 inode->i_size >> PAGE_SHIFT); 5789 if (IS_ERR(folio)) 5790 return; 5791 ret = __ext4_journalled_invalidate_folio(folio, offset, 5792 folio_size(folio) - offset); 5793 folio_unlock(folio); 5794 folio_put(folio); 5795 if (ret != -EBUSY) 5796 return; 5797 has_transaction = false; 5798 read_lock(&journal->j_state_lock); 5799 if (journal->j_committing_transaction) { 5800 commit_tid = journal->j_committing_transaction->t_tid; 5801 has_transaction = true; 5802 } 5803 read_unlock(&journal->j_state_lock); 5804 if (has_transaction) 5805 jbd2_log_wait_commit(journal, commit_tid); 5806 } 5807 } 5808 5809 /* 5810 * ext4_setattr() 5811 * 5812 * Called from notify_change. 5813 * 5814 * We want to trap VFS attempts to truncate the file as soon as 5815 * possible. In particular, we want to make sure that when the VFS 5816 * shrinks i_size, we put the inode on the orphan list and modify 5817 * i_disksize immediately, so that during the subsequent flushing of 5818 * dirty pages and freeing of disk blocks, we can guarantee that any 5819 * commit will leave the blocks being flushed in an unused state on 5820 * disk. (On recovery, the inode will get truncated and the blocks will 5821 * be freed, so we have a strong guarantee that no future commit will 5822 * leave these blocks visible to the user.) 5823 * 5824 * Another thing we have to assure is that if we are in ordered mode 5825 * and inode is still attached to the committing transaction, we must 5826 * we start writeout of all the dirty pages which are being truncated. 5827 * This way we are sure that all the data written in the previous 5828 * transaction are already on disk (truncate waits for pages under 5829 * writeback). 5830 * 5831 * Called with inode->i_rwsem down. 5832 */ 5833 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5834 struct iattr *attr) 5835 { 5836 struct inode *inode = d_inode(dentry); 5837 int error, rc = 0; 5838 int orphan = 0; 5839 const unsigned int ia_valid = attr->ia_valid; 5840 bool inc_ivers = true; 5841 5842 error = ext4_emergency_state(inode->i_sb); 5843 if (unlikely(error)) 5844 return error; 5845 5846 if (unlikely(IS_IMMUTABLE(inode))) 5847 return -EPERM; 5848 5849 if (unlikely(IS_APPEND(inode) && 5850 (ia_valid & (ATTR_MODE | ATTR_UID | 5851 ATTR_GID | ATTR_TIMES_SET)))) 5852 return -EPERM; 5853 5854 error = setattr_prepare(idmap, dentry, attr); 5855 if (error) 5856 return error; 5857 5858 error = fscrypt_prepare_setattr(dentry, attr); 5859 if (error) 5860 return error; 5861 5862 error = fsverity_prepare_setattr(dentry, attr); 5863 if (error) 5864 return error; 5865 5866 if (is_quota_modification(idmap, inode, attr)) { 5867 error = dquot_initialize(inode); 5868 if (error) 5869 return error; 5870 } 5871 5872 if (i_uid_needs_update(idmap, attr, inode) || 5873 i_gid_needs_update(idmap, attr, inode)) { 5874 handle_t *handle; 5875 5876 /* (user+group)*(old+new) structure, inode write (sb, 5877 * inode block, ? - but truncate inode update has it) */ 5878 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5879 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5880 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5881 if (IS_ERR(handle)) { 5882 error = PTR_ERR(handle); 5883 goto err_out; 5884 } 5885 5886 /* dquot_transfer() calls back ext4_get_inode_usage() which 5887 * counts xattr inode references. 5888 */ 5889 down_read(&EXT4_I(inode)->xattr_sem); 5890 error = dquot_transfer(idmap, inode, attr); 5891 up_read(&EXT4_I(inode)->xattr_sem); 5892 5893 if (error) { 5894 ext4_journal_stop(handle); 5895 return error; 5896 } 5897 /* Update corresponding info in inode so that everything is in 5898 * one transaction */ 5899 i_uid_update(idmap, attr, inode); 5900 i_gid_update(idmap, attr, inode); 5901 error = ext4_mark_inode_dirty(handle, inode); 5902 ext4_journal_stop(handle); 5903 if (unlikely(error)) { 5904 return error; 5905 } 5906 } 5907 5908 if (attr->ia_valid & ATTR_SIZE) { 5909 handle_t *handle; 5910 loff_t oldsize = inode->i_size; 5911 loff_t old_disksize; 5912 int shrink = (attr->ia_size < inode->i_size); 5913 5914 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5915 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5916 5917 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5918 return -EFBIG; 5919 } 5920 } 5921 if (!S_ISREG(inode->i_mode)) { 5922 return -EINVAL; 5923 } 5924 5925 if (attr->ia_size == inode->i_size) 5926 inc_ivers = false; 5927 5928 if (shrink) { 5929 if (ext4_should_order_data(inode)) { 5930 error = ext4_begin_ordered_truncate(inode, 5931 attr->ia_size); 5932 if (error) 5933 goto err_out; 5934 } 5935 /* 5936 * Blocks are going to be removed from the inode. Wait 5937 * for dio in flight. 5938 */ 5939 inode_dio_wait(inode); 5940 } 5941 5942 filemap_invalidate_lock(inode->i_mapping); 5943 5944 rc = ext4_break_layouts(inode); 5945 if (rc) { 5946 filemap_invalidate_unlock(inode->i_mapping); 5947 goto err_out; 5948 } 5949 5950 if (attr->ia_size != inode->i_size) { 5951 /* attach jbd2 jinode for EOF folio tail zeroing */ 5952 if (attr->ia_size & (inode->i_sb->s_blocksize - 1) || 5953 oldsize & (inode->i_sb->s_blocksize - 1)) { 5954 error = ext4_inode_attach_jinode(inode); 5955 if (error) 5956 goto out_mmap_sem; 5957 } 5958 5959 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5960 if (IS_ERR(handle)) { 5961 error = PTR_ERR(handle); 5962 goto out_mmap_sem; 5963 } 5964 if (ext4_handle_valid(handle) && shrink) { 5965 error = ext4_orphan_add(handle, inode); 5966 orphan = 1; 5967 } 5968 /* 5969 * Update c/mtime and tail zero the EOF folio on 5970 * truncate up. ext4_truncate() handles the shrink case 5971 * below. 5972 */ 5973 if (!shrink) { 5974 inode_set_mtime_to_ts(inode, 5975 inode_set_ctime_current(inode)); 5976 if (oldsize & (inode->i_sb->s_blocksize - 1)) 5977 ext4_block_truncate_page(handle, 5978 inode->i_mapping, oldsize); 5979 } 5980 5981 if (shrink) 5982 ext4_fc_track_range(handle, inode, 5983 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5984 inode->i_sb->s_blocksize_bits, 5985 EXT_MAX_BLOCKS - 1); 5986 else 5987 ext4_fc_track_range( 5988 handle, inode, 5989 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5990 inode->i_sb->s_blocksize_bits, 5991 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5992 inode->i_sb->s_blocksize_bits); 5993 5994 down_write(&EXT4_I(inode)->i_data_sem); 5995 old_disksize = EXT4_I(inode)->i_disksize; 5996 EXT4_I(inode)->i_disksize = attr->ia_size; 5997 5998 /* 5999 * We have to update i_size under i_data_sem together 6000 * with i_disksize to avoid races with writeback code 6001 * running ext4_wb_update_i_disksize(). 6002 */ 6003 if (!error) 6004 i_size_write(inode, attr->ia_size); 6005 else 6006 EXT4_I(inode)->i_disksize = old_disksize; 6007 up_write(&EXT4_I(inode)->i_data_sem); 6008 rc = ext4_mark_inode_dirty(handle, inode); 6009 if (!error) 6010 error = rc; 6011 ext4_journal_stop(handle); 6012 if (error) 6013 goto out_mmap_sem; 6014 if (!shrink) { 6015 pagecache_isize_extended(inode, oldsize, 6016 inode->i_size); 6017 } else if (ext4_should_journal_data(inode)) { 6018 ext4_wait_for_tail_page_commit(inode); 6019 } 6020 } 6021 6022 /* 6023 * Truncate pagecache after we've waited for commit 6024 * in data=journal mode to make pages freeable. 6025 */ 6026 truncate_pagecache(inode, inode->i_size); 6027 /* 6028 * Call ext4_truncate() even if i_size didn't change to 6029 * truncate possible preallocated blocks. 6030 */ 6031 if (attr->ia_size <= oldsize) { 6032 rc = ext4_truncate(inode); 6033 if (rc) 6034 error = rc; 6035 } 6036 out_mmap_sem: 6037 filemap_invalidate_unlock(inode->i_mapping); 6038 } 6039 6040 if (!error) { 6041 if (inc_ivers) 6042 inode_inc_iversion(inode); 6043 setattr_copy(idmap, inode, attr); 6044 mark_inode_dirty(inode); 6045 } 6046 6047 /* 6048 * If the call to ext4_truncate failed to get a transaction handle at 6049 * all, we need to clean up the in-core orphan list manually. 6050 */ 6051 if (orphan && inode->i_nlink) 6052 ext4_orphan_del(NULL, inode); 6053 6054 if (!error && (ia_valid & ATTR_MODE)) 6055 rc = posix_acl_chmod(idmap, dentry, inode->i_mode); 6056 6057 err_out: 6058 if (error) 6059 ext4_std_error(inode->i_sb, error); 6060 if (!error) 6061 error = rc; 6062 return error; 6063 } 6064 6065 u32 ext4_dio_alignment(struct inode *inode) 6066 { 6067 if (fsverity_active(inode)) 6068 return 0; 6069 if (ext4_should_journal_data(inode)) 6070 return 0; 6071 if (ext4_has_inline_data(inode)) 6072 return 0; 6073 if (IS_ENCRYPTED(inode)) { 6074 if (!fscrypt_dio_supported(inode)) 6075 return 0; 6076 return i_blocksize(inode); 6077 } 6078 return 1; /* use the iomap defaults */ 6079 } 6080 6081 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path, 6082 struct kstat *stat, u32 request_mask, unsigned int query_flags) 6083 { 6084 struct inode *inode = d_inode(path->dentry); 6085 struct ext4_inode *raw_inode; 6086 struct ext4_inode_info *ei = EXT4_I(inode); 6087 unsigned int flags; 6088 6089 if ((request_mask & STATX_BTIME) && 6090 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 6091 stat->result_mask |= STATX_BTIME; 6092 stat->btime.tv_sec = ei->i_crtime.tv_sec; 6093 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 6094 } 6095 6096 /* 6097 * Return the DIO alignment restrictions if requested. We only return 6098 * this information when requested, since on encrypted files it might 6099 * take a fair bit of work to get if the file wasn't opened recently. 6100 */ 6101 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 6102 u32 dio_align = ext4_dio_alignment(inode); 6103 6104 stat->result_mask |= STATX_DIOALIGN; 6105 if (dio_align == 1) { 6106 struct block_device *bdev = inode->i_sb->s_bdev; 6107 6108 /* iomap defaults */ 6109 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1; 6110 stat->dio_offset_align = bdev_logical_block_size(bdev); 6111 } else { 6112 stat->dio_mem_align = dio_align; 6113 stat->dio_offset_align = dio_align; 6114 } 6115 } 6116 6117 if ((request_mask & STATX_WRITE_ATOMIC) && S_ISREG(inode->i_mode)) { 6118 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 6119 unsigned int awu_min = 0, awu_max = 0; 6120 6121 if (ext4_inode_can_atomic_write(inode)) { 6122 awu_min = sbi->s_awu_min; 6123 awu_max = sbi->s_awu_max; 6124 } 6125 6126 generic_fill_statx_atomic_writes(stat, awu_min, awu_max, 0); 6127 } 6128 6129 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 6130 if (flags & EXT4_APPEND_FL) 6131 stat->attributes |= STATX_ATTR_APPEND; 6132 if (flags & EXT4_COMPR_FL) 6133 stat->attributes |= STATX_ATTR_COMPRESSED; 6134 if (flags & EXT4_ENCRYPT_FL) 6135 stat->attributes |= STATX_ATTR_ENCRYPTED; 6136 if (flags & EXT4_IMMUTABLE_FL) 6137 stat->attributes |= STATX_ATTR_IMMUTABLE; 6138 if (flags & EXT4_NODUMP_FL) 6139 stat->attributes |= STATX_ATTR_NODUMP; 6140 if (flags & EXT4_VERITY_FL) 6141 stat->attributes |= STATX_ATTR_VERITY; 6142 6143 stat->attributes_mask |= (STATX_ATTR_APPEND | 6144 STATX_ATTR_COMPRESSED | 6145 STATX_ATTR_ENCRYPTED | 6146 STATX_ATTR_IMMUTABLE | 6147 STATX_ATTR_NODUMP | 6148 STATX_ATTR_VERITY); 6149 6150 generic_fillattr(idmap, request_mask, inode, stat); 6151 return 0; 6152 } 6153 6154 int ext4_file_getattr(struct mnt_idmap *idmap, 6155 const struct path *path, struct kstat *stat, 6156 u32 request_mask, unsigned int query_flags) 6157 { 6158 struct inode *inode = d_inode(path->dentry); 6159 u64 delalloc_blocks; 6160 6161 ext4_getattr(idmap, path, stat, request_mask, query_flags); 6162 6163 /* 6164 * If there is inline data in the inode, the inode will normally not 6165 * have data blocks allocated (it may have an external xattr block). 6166 * Report at least one sector for such files, so tools like tar, rsync, 6167 * others don't incorrectly think the file is completely sparse. 6168 */ 6169 if (unlikely(ext4_has_inline_data(inode))) 6170 stat->blocks += (stat->size + 511) >> 9; 6171 6172 /* 6173 * We can't update i_blocks if the block allocation is delayed 6174 * otherwise in the case of system crash before the real block 6175 * allocation is done, we will have i_blocks inconsistent with 6176 * on-disk file blocks. 6177 * We always keep i_blocks updated together with real 6178 * allocation. But to not confuse with user, stat 6179 * will return the blocks that include the delayed allocation 6180 * blocks for this file. 6181 */ 6182 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 6183 EXT4_I(inode)->i_reserved_data_blocks); 6184 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 6185 return 0; 6186 } 6187 6188 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 6189 int pextents) 6190 { 6191 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 6192 return ext4_ind_trans_blocks(inode, lblocks); 6193 return ext4_ext_index_trans_blocks(inode, pextents); 6194 } 6195 6196 /* 6197 * Account for index blocks, block groups bitmaps and block group 6198 * descriptor blocks if modify datablocks and index blocks 6199 * worse case, the indexs blocks spread over different block groups 6200 * 6201 * If datablocks are discontiguous, they are possible to spread over 6202 * different block groups too. If they are contiguous, with flexbg, 6203 * they could still across block group boundary. 6204 * 6205 * Also account for superblock, inode, quota and xattr blocks 6206 */ 6207 int ext4_meta_trans_blocks(struct inode *inode, int lblocks, int pextents) 6208 { 6209 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 6210 int gdpblocks; 6211 int idxblocks; 6212 int ret; 6213 6214 /* 6215 * How many index and leaf blocks need to touch to map @lblocks 6216 * logical blocks to @pextents physical extents? 6217 */ 6218 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 6219 6220 /* 6221 * Now let's see how many group bitmaps and group descriptors need 6222 * to account 6223 */ 6224 groups = idxblocks + pextents; 6225 gdpblocks = groups; 6226 if (groups > ngroups) 6227 groups = ngroups; 6228 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 6229 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 6230 6231 /* bitmaps and block group descriptor blocks */ 6232 ret = idxblocks + groups + gdpblocks; 6233 6234 /* Blocks for super block, inode, quota and xattr blocks */ 6235 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 6236 6237 return ret; 6238 } 6239 6240 /* 6241 * Calculate the journal credits for modifying the number of blocks 6242 * in a single extent within one transaction. 'nrblocks' is used only 6243 * for non-extent inodes. For extent type inodes, 'nrblocks' can be 6244 * zero if the exact number of blocks is unknown. 6245 */ 6246 int ext4_chunk_trans_extent(struct inode *inode, int nrblocks) 6247 { 6248 int ret; 6249 6250 ret = ext4_meta_trans_blocks(inode, nrblocks, 1); 6251 /* Account for data blocks for journalled mode */ 6252 if (ext4_should_journal_data(inode)) 6253 ret += nrblocks; 6254 return ret; 6255 } 6256 6257 /* 6258 * Calculate the journal credits for a chunk of data modification. 6259 * 6260 * This is called from DIO, fallocate or whoever calling 6261 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 6262 * 6263 * journal buffers for data blocks are not included here, as DIO 6264 * and fallocate do no need to journal data buffers. 6265 */ 6266 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 6267 { 6268 return ext4_meta_trans_blocks(inode, nrblocks, 1); 6269 } 6270 6271 /* 6272 * The caller must have previously called ext4_reserve_inode_write(). 6273 * Give this, we know that the caller already has write access to iloc->bh. 6274 */ 6275 int ext4_mark_iloc_dirty(handle_t *handle, 6276 struct inode *inode, struct ext4_iloc *iloc) 6277 { 6278 int err = 0; 6279 6280 err = ext4_emergency_state(inode->i_sb); 6281 if (unlikely(err)) { 6282 put_bh(iloc->bh); 6283 return err; 6284 } 6285 ext4_fc_track_inode(handle, inode); 6286 6287 /* the do_update_inode consumes one bh->b_count */ 6288 get_bh(iloc->bh); 6289 6290 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 6291 err = ext4_do_update_inode(handle, inode, iloc); 6292 put_bh(iloc->bh); 6293 return err; 6294 } 6295 6296 /* 6297 * On success, We end up with an outstanding reference count against 6298 * iloc->bh. This _must_ be cleaned up later. 6299 */ 6300 6301 int 6302 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 6303 struct ext4_iloc *iloc) 6304 { 6305 int err; 6306 6307 err = ext4_emergency_state(inode->i_sb); 6308 if (unlikely(err)) 6309 return err; 6310 6311 err = ext4_get_inode_loc(inode, iloc); 6312 if (!err) { 6313 BUFFER_TRACE(iloc->bh, "get_write_access"); 6314 err = ext4_journal_get_write_access(handle, inode->i_sb, 6315 iloc->bh, EXT4_JTR_NONE); 6316 if (err) { 6317 brelse(iloc->bh); 6318 iloc->bh = NULL; 6319 } 6320 ext4_fc_track_inode(handle, inode); 6321 } 6322 ext4_std_error(inode->i_sb, err); 6323 return err; 6324 } 6325 6326 static int __ext4_expand_extra_isize(struct inode *inode, 6327 unsigned int new_extra_isize, 6328 struct ext4_iloc *iloc, 6329 handle_t *handle, int *no_expand) 6330 { 6331 struct ext4_inode *raw_inode; 6332 struct ext4_xattr_ibody_header *header; 6333 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 6334 struct ext4_inode_info *ei = EXT4_I(inode); 6335 int error; 6336 6337 /* this was checked at iget time, but double check for good measure */ 6338 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 6339 (ei->i_extra_isize & 3)) { 6340 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 6341 ei->i_extra_isize, 6342 EXT4_INODE_SIZE(inode->i_sb)); 6343 return -EFSCORRUPTED; 6344 } 6345 if ((new_extra_isize < ei->i_extra_isize) || 6346 (new_extra_isize < 4) || 6347 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 6348 return -EINVAL; /* Should never happen */ 6349 6350 raw_inode = ext4_raw_inode(iloc); 6351 6352 header = IHDR(inode, raw_inode); 6353 6354 /* No extended attributes present */ 6355 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 6356 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 6357 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 6358 EXT4_I(inode)->i_extra_isize, 0, 6359 new_extra_isize - EXT4_I(inode)->i_extra_isize); 6360 EXT4_I(inode)->i_extra_isize = new_extra_isize; 6361 return 0; 6362 } 6363 6364 /* 6365 * We may need to allocate external xattr block so we need quotas 6366 * initialized. Here we can be called with various locks held so we 6367 * cannot affort to initialize quotas ourselves. So just bail. 6368 */ 6369 if (dquot_initialize_needed(inode)) 6370 return -EAGAIN; 6371 6372 /* try to expand with EAs present */ 6373 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 6374 raw_inode, handle); 6375 if (error) { 6376 /* 6377 * Inode size expansion failed; don't try again 6378 */ 6379 *no_expand = 1; 6380 } 6381 6382 return error; 6383 } 6384 6385 /* 6386 * Expand an inode by new_extra_isize bytes. 6387 * Returns 0 on success or negative error number on failure. 6388 */ 6389 static int ext4_try_to_expand_extra_isize(struct inode *inode, 6390 unsigned int new_extra_isize, 6391 struct ext4_iloc iloc, 6392 handle_t *handle) 6393 { 6394 int no_expand; 6395 int error; 6396 6397 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 6398 return -EOVERFLOW; 6399 6400 /* 6401 * In nojournal mode, we can immediately attempt to expand 6402 * the inode. When journaled, we first need to obtain extra 6403 * buffer credits since we may write into the EA block 6404 * with this same handle. If journal_extend fails, then it will 6405 * only result in a minor loss of functionality for that inode. 6406 * If this is felt to be critical, then e2fsck should be run to 6407 * force a large enough s_min_extra_isize. 6408 */ 6409 if (ext4_journal_extend(handle, 6410 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 6411 return -ENOSPC; 6412 6413 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 6414 return -EBUSY; 6415 6416 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 6417 handle, &no_expand); 6418 ext4_write_unlock_xattr(inode, &no_expand); 6419 6420 return error; 6421 } 6422 6423 int ext4_expand_extra_isize(struct inode *inode, 6424 unsigned int new_extra_isize, 6425 struct ext4_iloc *iloc) 6426 { 6427 handle_t *handle; 6428 int no_expand; 6429 int error, rc; 6430 6431 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 6432 brelse(iloc->bh); 6433 return -EOVERFLOW; 6434 } 6435 6436 handle = ext4_journal_start(inode, EXT4_HT_INODE, 6437 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 6438 if (IS_ERR(handle)) { 6439 error = PTR_ERR(handle); 6440 brelse(iloc->bh); 6441 return error; 6442 } 6443 6444 ext4_write_lock_xattr(inode, &no_expand); 6445 6446 BUFFER_TRACE(iloc->bh, "get_write_access"); 6447 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh, 6448 EXT4_JTR_NONE); 6449 if (error) { 6450 brelse(iloc->bh); 6451 goto out_unlock; 6452 } 6453 6454 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 6455 handle, &no_expand); 6456 6457 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 6458 if (!error) 6459 error = rc; 6460 6461 out_unlock: 6462 ext4_write_unlock_xattr(inode, &no_expand); 6463 ext4_journal_stop(handle); 6464 return error; 6465 } 6466 6467 /* 6468 * What we do here is to mark the in-core inode as clean with respect to inode 6469 * dirtiness (it may still be data-dirty). 6470 * This means that the in-core inode may be reaped by prune_icache 6471 * without having to perform any I/O. This is a very good thing, 6472 * because *any* task may call prune_icache - even ones which 6473 * have a transaction open against a different journal. 6474 * 6475 * Is this cheating? Not really. Sure, we haven't written the 6476 * inode out, but prune_icache isn't a user-visible syncing function. 6477 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 6478 * we start and wait on commits. 6479 */ 6480 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 6481 const char *func, unsigned int line) 6482 { 6483 struct ext4_iloc iloc; 6484 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 6485 int err; 6486 6487 might_sleep(); 6488 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 6489 err = ext4_reserve_inode_write(handle, inode, &iloc); 6490 if (err) 6491 goto out; 6492 6493 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 6494 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 6495 iloc, handle); 6496 6497 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 6498 out: 6499 if (unlikely(err)) 6500 ext4_error_inode_err(inode, func, line, 0, err, 6501 "mark_inode_dirty error"); 6502 return err; 6503 } 6504 6505 /* 6506 * ext4_dirty_inode() is called from __mark_inode_dirty() 6507 * 6508 * We're really interested in the case where a file is being extended. 6509 * i_size has been changed by generic_commit_write() and we thus need 6510 * to include the updated inode in the current transaction. 6511 * 6512 * Also, dquot_alloc_block() will always dirty the inode when blocks 6513 * are allocated to the file. 6514 * 6515 * If the inode is marked synchronous, we don't honour that here - doing 6516 * so would cause a commit on atime updates, which we don't bother doing. 6517 * We handle synchronous inodes at the highest possible level. 6518 */ 6519 void ext4_dirty_inode(struct inode *inode, int flags) 6520 { 6521 handle_t *handle; 6522 6523 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 6524 if (IS_ERR(handle)) 6525 return; 6526 ext4_mark_inode_dirty(handle, inode); 6527 ext4_journal_stop(handle); 6528 } 6529 6530 int ext4_change_inode_journal_flag(struct inode *inode, int val) 6531 { 6532 journal_t *journal; 6533 handle_t *handle; 6534 int err; 6535 int alloc_ctx; 6536 6537 /* 6538 * We have to be very careful here: changing a data block's 6539 * journaling status dynamically is dangerous. If we write a 6540 * data block to the journal, change the status and then delete 6541 * that block, we risk forgetting to revoke the old log record 6542 * from the journal and so a subsequent replay can corrupt data. 6543 * So, first we make sure that the journal is empty and that 6544 * nobody is changing anything. 6545 */ 6546 6547 journal = EXT4_JOURNAL(inode); 6548 if (!journal) 6549 return 0; 6550 if (is_journal_aborted(journal)) 6551 return -EROFS; 6552 6553 /* Wait for all existing dio workers */ 6554 inode_dio_wait(inode); 6555 6556 /* 6557 * Before flushing the journal and switching inode's aops, we have 6558 * to flush all dirty data the inode has. There can be outstanding 6559 * delayed allocations, there can be unwritten extents created by 6560 * fallocate or buffered writes in dioread_nolock mode covered by 6561 * dirty data which can be converted only after flushing the dirty 6562 * data (and journalled aops don't know how to handle these cases). 6563 */ 6564 if (val) { 6565 filemap_invalidate_lock(inode->i_mapping); 6566 err = filemap_write_and_wait(inode->i_mapping); 6567 if (err < 0) { 6568 filemap_invalidate_unlock(inode->i_mapping); 6569 return err; 6570 } 6571 } 6572 6573 alloc_ctx = ext4_writepages_down_write(inode->i_sb); 6574 jbd2_journal_lock_updates(journal); 6575 6576 /* 6577 * OK, there are no updates running now, and all cached data is 6578 * synced to disk. We are now in a completely consistent state 6579 * which doesn't have anything in the journal, and we know that 6580 * no filesystem updates are running, so it is safe to modify 6581 * the inode's in-core data-journaling state flag now. 6582 */ 6583 6584 if (val) 6585 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6586 else { 6587 err = jbd2_journal_flush(journal, 0); 6588 if (err < 0) { 6589 jbd2_journal_unlock_updates(journal); 6590 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6591 return err; 6592 } 6593 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6594 } 6595 ext4_set_aops(inode); 6596 6597 jbd2_journal_unlock_updates(journal); 6598 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6599 6600 if (val) 6601 filemap_invalidate_unlock(inode->i_mapping); 6602 6603 /* Finally we can mark the inode as dirty. */ 6604 6605 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6606 if (IS_ERR(handle)) 6607 return PTR_ERR(handle); 6608 6609 ext4_fc_mark_ineligible(inode->i_sb, 6610 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle); 6611 err = ext4_mark_inode_dirty(handle, inode); 6612 ext4_handle_sync(handle); 6613 ext4_journal_stop(handle); 6614 ext4_std_error(inode->i_sb, err); 6615 6616 return err; 6617 } 6618 6619 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode, 6620 struct buffer_head *bh) 6621 { 6622 return !buffer_mapped(bh); 6623 } 6624 6625 static int ext4_block_page_mkwrite(struct inode *inode, struct folio *folio, 6626 get_block_t get_block) 6627 { 6628 handle_t *handle; 6629 loff_t size; 6630 unsigned long len; 6631 int credits; 6632 int ret; 6633 6634 credits = ext4_chunk_trans_extent(inode, 6635 ext4_journal_blocks_per_folio(inode)); 6636 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, credits); 6637 if (IS_ERR(handle)) 6638 return PTR_ERR(handle); 6639 6640 folio_lock(folio); 6641 size = i_size_read(inode); 6642 /* Page got truncated from under us? */ 6643 if (folio->mapping != inode->i_mapping || folio_pos(folio) > size) { 6644 ret = -EFAULT; 6645 goto out_error; 6646 } 6647 6648 len = folio_size(folio); 6649 if (folio_pos(folio) + len > size) 6650 len = size - folio_pos(folio); 6651 6652 ret = ext4_block_write_begin(handle, folio, 0, len, get_block); 6653 if (ret) 6654 goto out_error; 6655 6656 if (!ext4_should_journal_data(inode)) { 6657 block_commit_write(folio, 0, len); 6658 folio_mark_dirty(folio); 6659 } else { 6660 ret = ext4_journal_folio_buffers(handle, folio, len); 6661 if (ret) 6662 goto out_error; 6663 } 6664 ext4_journal_stop(handle); 6665 folio_wait_stable(folio); 6666 return ret; 6667 6668 out_error: 6669 folio_unlock(folio); 6670 ext4_journal_stop(handle); 6671 return ret; 6672 } 6673 6674 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6675 { 6676 struct vm_area_struct *vma = vmf->vma; 6677 struct folio *folio = page_folio(vmf->page); 6678 loff_t size; 6679 unsigned long len; 6680 int err; 6681 vm_fault_t ret; 6682 struct file *file = vma->vm_file; 6683 struct inode *inode = file_inode(file); 6684 struct address_space *mapping = inode->i_mapping; 6685 get_block_t *get_block = ext4_get_block; 6686 int retries = 0; 6687 6688 if (unlikely(IS_IMMUTABLE(inode))) 6689 return VM_FAULT_SIGBUS; 6690 6691 sb_start_pagefault(inode->i_sb); 6692 file_update_time(vma->vm_file); 6693 6694 filemap_invalidate_lock_shared(mapping); 6695 6696 err = ext4_convert_inline_data(inode); 6697 if (err) 6698 goto out_ret; 6699 6700 /* 6701 * On data journalling we skip straight to the transaction handle: 6702 * there's no delalloc; page truncated will be checked later; the 6703 * early return w/ all buffers mapped (calculates size/len) can't 6704 * be used; and there's no dioread_nolock, so only ext4_get_block. 6705 */ 6706 if (ext4_should_journal_data(inode)) 6707 goto retry_alloc; 6708 6709 /* Delalloc case is easy... */ 6710 if (test_opt(inode->i_sb, DELALLOC) && 6711 !ext4_nonda_switch(inode->i_sb)) { 6712 do { 6713 err = block_page_mkwrite(vma, vmf, 6714 ext4_da_get_block_prep); 6715 } while (err == -ENOSPC && 6716 ext4_should_retry_alloc(inode->i_sb, &retries)); 6717 goto out_ret; 6718 } 6719 6720 folio_lock(folio); 6721 size = i_size_read(inode); 6722 /* Page got truncated from under us? */ 6723 if (folio->mapping != mapping || folio_pos(folio) > size) { 6724 folio_unlock(folio); 6725 ret = VM_FAULT_NOPAGE; 6726 goto out; 6727 } 6728 6729 len = folio_size(folio); 6730 if (folio_pos(folio) + len > size) 6731 len = size - folio_pos(folio); 6732 /* 6733 * Return if we have all the buffers mapped. This avoids the need to do 6734 * journal_start/journal_stop which can block and take a long time 6735 * 6736 * This cannot be done for data journalling, as we have to add the 6737 * inode to the transaction's list to writeprotect pages on commit. 6738 */ 6739 if (folio_buffers(folio)) { 6740 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio), 6741 0, len, NULL, 6742 ext4_bh_unmapped)) { 6743 /* Wait so that we don't change page under IO */ 6744 folio_wait_stable(folio); 6745 ret = VM_FAULT_LOCKED; 6746 goto out; 6747 } 6748 } 6749 folio_unlock(folio); 6750 /* OK, we need to fill the hole... */ 6751 if (ext4_should_dioread_nolock(inode)) 6752 get_block = ext4_get_block_unwritten; 6753 retry_alloc: 6754 /* Start journal and allocate blocks */ 6755 err = ext4_block_page_mkwrite(inode, folio, get_block); 6756 if (err == -EAGAIN || 6757 (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))) 6758 goto retry_alloc; 6759 out_ret: 6760 ret = vmf_fs_error(err); 6761 out: 6762 filemap_invalidate_unlock_shared(mapping); 6763 sb_end_pagefault(inode->i_sb); 6764 return ret; 6765 } 6766