1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/highuid.h> 24 #include <linux/pagemap.h> 25 #include <linux/dax.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/bitops.h> 40 #include <linux/iomap.h> 41 42 #include "ext4_jbd2.h" 43 #include "xattr.h" 44 #include "acl.h" 45 #include "truncate.h" 46 47 #include <trace/events/ext4.h> 48 49 #define MPAGE_DA_EXTENT_TAIL 0x01 50 51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 52 struct ext4_inode_info *ei) 53 { 54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 55 __u32 csum; 56 __u16 dummy_csum = 0; 57 int offset = offsetof(struct ext4_inode, i_checksum_lo); 58 unsigned int csum_size = sizeof(dummy_csum); 59 60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 62 offset += csum_size; 63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 64 EXT4_GOOD_OLD_INODE_SIZE - offset); 65 66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 67 offset = offsetof(struct ext4_inode, i_checksum_hi); 68 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 69 EXT4_GOOD_OLD_INODE_SIZE, 70 offset - EXT4_GOOD_OLD_INODE_SIZE); 71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 73 csum_size); 74 offset += csum_size; 75 } 76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 77 EXT4_INODE_SIZE(inode->i_sb) - offset); 78 } 79 80 return csum; 81 } 82 83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 84 struct ext4_inode_info *ei) 85 { 86 __u32 provided, calculated; 87 88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 89 cpu_to_le32(EXT4_OS_LINUX) || 90 !ext4_has_metadata_csum(inode->i_sb)) 91 return 1; 92 93 provided = le16_to_cpu(raw->i_checksum_lo); 94 calculated = ext4_inode_csum(inode, raw, ei); 95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 98 else 99 calculated &= 0xFFFF; 100 101 return provided == calculated; 102 } 103 104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 105 struct ext4_inode_info *ei) 106 { 107 __u32 csum; 108 109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 110 cpu_to_le32(EXT4_OS_LINUX) || 111 !ext4_has_metadata_csum(inode->i_sb)) 112 return; 113 114 csum = ext4_inode_csum(inode, raw, ei); 115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 118 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 119 } 120 121 static inline int ext4_begin_ordered_truncate(struct inode *inode, 122 loff_t new_size) 123 { 124 trace_ext4_begin_ordered_truncate(inode, new_size); 125 /* 126 * If jinode is zero, then we never opened the file for 127 * writing, so there's no need to call 128 * jbd2_journal_begin_ordered_truncate() since there's no 129 * outstanding writes we need to flush. 130 */ 131 if (!EXT4_I(inode)->jinode) 132 return 0; 133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 134 EXT4_I(inode)->jinode, 135 new_size); 136 } 137 138 static void ext4_invalidatepage(struct page *page, unsigned int offset, 139 unsigned int length); 140 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 143 int pextents); 144 145 /* 146 * Test whether an inode is a fast symlink. 147 */ 148 int ext4_inode_is_fast_symlink(struct inode *inode) 149 { 150 int ea_blocks = EXT4_I(inode)->i_file_acl ? 151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 152 153 if (ext4_has_inline_data(inode)) 154 return 0; 155 156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 157 } 158 159 /* 160 * Restart the transaction associated with *handle. This does a commit, 161 * so before we call here everything must be consistently dirtied against 162 * this transaction. 163 */ 164 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 165 int nblocks) 166 { 167 int ret; 168 169 /* 170 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 171 * moment, get_block can be called only for blocks inside i_size since 172 * page cache has been already dropped and writes are blocked by 173 * i_mutex. So we can safely drop the i_data_sem here. 174 */ 175 BUG_ON(EXT4_JOURNAL(inode) == NULL); 176 jbd_debug(2, "restarting handle %p\n", handle); 177 up_write(&EXT4_I(inode)->i_data_sem); 178 ret = ext4_journal_restart(handle, nblocks); 179 down_write(&EXT4_I(inode)->i_data_sem); 180 ext4_discard_preallocations(inode); 181 182 return ret; 183 } 184 185 /* 186 * Called at the last iput() if i_nlink is zero. 187 */ 188 void ext4_evict_inode(struct inode *inode) 189 { 190 handle_t *handle; 191 int err; 192 193 trace_ext4_evict_inode(inode); 194 195 if (inode->i_nlink) { 196 /* 197 * When journalling data dirty buffers are tracked only in the 198 * journal. So although mm thinks everything is clean and 199 * ready for reaping the inode might still have some pages to 200 * write in the running transaction or waiting to be 201 * checkpointed. Thus calling jbd2_journal_invalidatepage() 202 * (via truncate_inode_pages()) to discard these buffers can 203 * cause data loss. Also even if we did not discard these 204 * buffers, we would have no way to find them after the inode 205 * is reaped and thus user could see stale data if he tries to 206 * read them before the transaction is checkpointed. So be 207 * careful and force everything to disk here... We use 208 * ei->i_datasync_tid to store the newest transaction 209 * containing inode's data. 210 * 211 * Note that directories do not have this problem because they 212 * don't use page cache. 213 */ 214 if (inode->i_ino != EXT4_JOURNAL_INO && 215 ext4_should_journal_data(inode) && 216 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) { 217 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 218 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 219 220 jbd2_complete_transaction(journal, commit_tid); 221 filemap_write_and_wait(&inode->i_data); 222 } 223 truncate_inode_pages_final(&inode->i_data); 224 225 goto no_delete; 226 } 227 228 if (is_bad_inode(inode)) 229 goto no_delete; 230 dquot_initialize(inode); 231 232 if (ext4_should_order_data(inode)) 233 ext4_begin_ordered_truncate(inode, 0); 234 truncate_inode_pages_final(&inode->i_data); 235 236 /* 237 * Protect us against freezing - iput() caller didn't have to have any 238 * protection against it 239 */ 240 sb_start_intwrite(inode->i_sb); 241 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 242 ext4_blocks_for_truncate(inode)+3); 243 if (IS_ERR(handle)) { 244 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 245 /* 246 * If we're going to skip the normal cleanup, we still need to 247 * make sure that the in-core orphan linked list is properly 248 * cleaned up. 249 */ 250 ext4_orphan_del(NULL, inode); 251 sb_end_intwrite(inode->i_sb); 252 goto no_delete; 253 } 254 255 if (IS_SYNC(inode)) 256 ext4_handle_sync(handle); 257 inode->i_size = 0; 258 err = ext4_mark_inode_dirty(handle, inode); 259 if (err) { 260 ext4_warning(inode->i_sb, 261 "couldn't mark inode dirty (err %d)", err); 262 goto stop_handle; 263 } 264 if (inode->i_blocks) { 265 err = ext4_truncate(inode); 266 if (err) { 267 ext4_error(inode->i_sb, 268 "couldn't truncate inode %lu (err %d)", 269 inode->i_ino, err); 270 goto stop_handle; 271 } 272 } 273 274 /* 275 * ext4_ext_truncate() doesn't reserve any slop when it 276 * restarts journal transactions; therefore there may not be 277 * enough credits left in the handle to remove the inode from 278 * the orphan list and set the dtime field. 279 */ 280 if (!ext4_handle_has_enough_credits(handle, 3)) { 281 err = ext4_journal_extend(handle, 3); 282 if (err > 0) 283 err = ext4_journal_restart(handle, 3); 284 if (err != 0) { 285 ext4_warning(inode->i_sb, 286 "couldn't extend journal (err %d)", err); 287 stop_handle: 288 ext4_journal_stop(handle); 289 ext4_orphan_del(NULL, inode); 290 sb_end_intwrite(inode->i_sb); 291 goto no_delete; 292 } 293 } 294 295 /* 296 * Kill off the orphan record which ext4_truncate created. 297 * AKPM: I think this can be inside the above `if'. 298 * Note that ext4_orphan_del() has to be able to cope with the 299 * deletion of a non-existent orphan - this is because we don't 300 * know if ext4_truncate() actually created an orphan record. 301 * (Well, we could do this if we need to, but heck - it works) 302 */ 303 ext4_orphan_del(handle, inode); 304 EXT4_I(inode)->i_dtime = get_seconds(); 305 306 /* 307 * One subtle ordering requirement: if anything has gone wrong 308 * (transaction abort, IO errors, whatever), then we can still 309 * do these next steps (the fs will already have been marked as 310 * having errors), but we can't free the inode if the mark_dirty 311 * fails. 312 */ 313 if (ext4_mark_inode_dirty(handle, inode)) 314 /* If that failed, just do the required in-core inode clear. */ 315 ext4_clear_inode(inode); 316 else 317 ext4_free_inode(handle, inode); 318 ext4_journal_stop(handle); 319 sb_end_intwrite(inode->i_sb); 320 return; 321 no_delete: 322 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 323 } 324 325 #ifdef CONFIG_QUOTA 326 qsize_t *ext4_get_reserved_space(struct inode *inode) 327 { 328 return &EXT4_I(inode)->i_reserved_quota; 329 } 330 #endif 331 332 /* 333 * Called with i_data_sem down, which is important since we can call 334 * ext4_discard_preallocations() from here. 335 */ 336 void ext4_da_update_reserve_space(struct inode *inode, 337 int used, int quota_claim) 338 { 339 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 340 struct ext4_inode_info *ei = EXT4_I(inode); 341 342 spin_lock(&ei->i_block_reservation_lock); 343 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 344 if (unlikely(used > ei->i_reserved_data_blocks)) { 345 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 346 "with only %d reserved data blocks", 347 __func__, inode->i_ino, used, 348 ei->i_reserved_data_blocks); 349 WARN_ON(1); 350 used = ei->i_reserved_data_blocks; 351 } 352 353 /* Update per-inode reservations */ 354 ei->i_reserved_data_blocks -= used; 355 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 356 357 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 358 359 /* Update quota subsystem for data blocks */ 360 if (quota_claim) 361 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 362 else { 363 /* 364 * We did fallocate with an offset that is already delayed 365 * allocated. So on delayed allocated writeback we should 366 * not re-claim the quota for fallocated blocks. 367 */ 368 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 369 } 370 371 /* 372 * If we have done all the pending block allocations and if 373 * there aren't any writers on the inode, we can discard the 374 * inode's preallocations. 375 */ 376 if ((ei->i_reserved_data_blocks == 0) && 377 (atomic_read(&inode->i_writecount) == 0)) 378 ext4_discard_preallocations(inode); 379 } 380 381 static int __check_block_validity(struct inode *inode, const char *func, 382 unsigned int line, 383 struct ext4_map_blocks *map) 384 { 385 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 386 map->m_len)) { 387 ext4_error_inode(inode, func, line, map->m_pblk, 388 "lblock %lu mapped to illegal pblock " 389 "(length %d)", (unsigned long) map->m_lblk, 390 map->m_len); 391 return -EFSCORRUPTED; 392 } 393 return 0; 394 } 395 396 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 397 ext4_lblk_t len) 398 { 399 int ret; 400 401 if (ext4_encrypted_inode(inode)) 402 return fscrypt_zeroout_range(inode, lblk, pblk, len); 403 404 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 405 if (ret > 0) 406 ret = 0; 407 408 return ret; 409 } 410 411 #define check_block_validity(inode, map) \ 412 __check_block_validity((inode), __func__, __LINE__, (map)) 413 414 #ifdef ES_AGGRESSIVE_TEST 415 static void ext4_map_blocks_es_recheck(handle_t *handle, 416 struct inode *inode, 417 struct ext4_map_blocks *es_map, 418 struct ext4_map_blocks *map, 419 int flags) 420 { 421 int retval; 422 423 map->m_flags = 0; 424 /* 425 * There is a race window that the result is not the same. 426 * e.g. xfstests #223 when dioread_nolock enables. The reason 427 * is that we lookup a block mapping in extent status tree with 428 * out taking i_data_sem. So at the time the unwritten extent 429 * could be converted. 430 */ 431 down_read(&EXT4_I(inode)->i_data_sem); 432 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 433 retval = ext4_ext_map_blocks(handle, inode, map, flags & 434 EXT4_GET_BLOCKS_KEEP_SIZE); 435 } else { 436 retval = ext4_ind_map_blocks(handle, inode, map, flags & 437 EXT4_GET_BLOCKS_KEEP_SIZE); 438 } 439 up_read((&EXT4_I(inode)->i_data_sem)); 440 441 /* 442 * We don't check m_len because extent will be collpased in status 443 * tree. So the m_len might not equal. 444 */ 445 if (es_map->m_lblk != map->m_lblk || 446 es_map->m_flags != map->m_flags || 447 es_map->m_pblk != map->m_pblk) { 448 printk("ES cache assertion failed for inode: %lu " 449 "es_cached ex [%d/%d/%llu/%x] != " 450 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 451 inode->i_ino, es_map->m_lblk, es_map->m_len, 452 es_map->m_pblk, es_map->m_flags, map->m_lblk, 453 map->m_len, map->m_pblk, map->m_flags, 454 retval, flags); 455 } 456 } 457 #endif /* ES_AGGRESSIVE_TEST */ 458 459 /* 460 * The ext4_map_blocks() function tries to look up the requested blocks, 461 * and returns if the blocks are already mapped. 462 * 463 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 464 * and store the allocated blocks in the result buffer head and mark it 465 * mapped. 466 * 467 * If file type is extents based, it will call ext4_ext_map_blocks(), 468 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 469 * based files 470 * 471 * On success, it returns the number of blocks being mapped or allocated. if 472 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 473 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 474 * 475 * It returns 0 if plain look up failed (blocks have not been allocated), in 476 * that case, @map is returned as unmapped but we still do fill map->m_len to 477 * indicate the length of a hole starting at map->m_lblk. 478 * 479 * It returns the error in case of allocation failure. 480 */ 481 int ext4_map_blocks(handle_t *handle, struct inode *inode, 482 struct ext4_map_blocks *map, int flags) 483 { 484 struct extent_status es; 485 int retval; 486 int ret = 0; 487 #ifdef ES_AGGRESSIVE_TEST 488 struct ext4_map_blocks orig_map; 489 490 memcpy(&orig_map, map, sizeof(*map)); 491 #endif 492 493 map->m_flags = 0; 494 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 495 "logical block %lu\n", inode->i_ino, flags, map->m_len, 496 (unsigned long) map->m_lblk); 497 498 /* 499 * ext4_map_blocks returns an int, and m_len is an unsigned int 500 */ 501 if (unlikely(map->m_len > INT_MAX)) 502 map->m_len = INT_MAX; 503 504 /* We can handle the block number less than EXT_MAX_BLOCKS */ 505 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 506 return -EFSCORRUPTED; 507 508 /* Lookup extent status tree firstly */ 509 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 510 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 511 map->m_pblk = ext4_es_pblock(&es) + 512 map->m_lblk - es.es_lblk; 513 map->m_flags |= ext4_es_is_written(&es) ? 514 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 515 retval = es.es_len - (map->m_lblk - es.es_lblk); 516 if (retval > map->m_len) 517 retval = map->m_len; 518 map->m_len = retval; 519 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 520 map->m_pblk = 0; 521 retval = es.es_len - (map->m_lblk - es.es_lblk); 522 if (retval > map->m_len) 523 retval = map->m_len; 524 map->m_len = retval; 525 retval = 0; 526 } else { 527 BUG_ON(1); 528 } 529 #ifdef ES_AGGRESSIVE_TEST 530 ext4_map_blocks_es_recheck(handle, inode, map, 531 &orig_map, flags); 532 #endif 533 goto found; 534 } 535 536 /* 537 * Try to see if we can get the block without requesting a new 538 * file system block. 539 */ 540 down_read(&EXT4_I(inode)->i_data_sem); 541 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 542 retval = ext4_ext_map_blocks(handle, inode, map, flags & 543 EXT4_GET_BLOCKS_KEEP_SIZE); 544 } else { 545 retval = ext4_ind_map_blocks(handle, inode, map, flags & 546 EXT4_GET_BLOCKS_KEEP_SIZE); 547 } 548 if (retval > 0) { 549 unsigned int status; 550 551 if (unlikely(retval != map->m_len)) { 552 ext4_warning(inode->i_sb, 553 "ES len assertion failed for inode " 554 "%lu: retval %d != map->m_len %d", 555 inode->i_ino, retval, map->m_len); 556 WARN_ON(1); 557 } 558 559 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 560 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 561 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 562 !(status & EXTENT_STATUS_WRITTEN) && 563 ext4_find_delalloc_range(inode, map->m_lblk, 564 map->m_lblk + map->m_len - 1)) 565 status |= EXTENT_STATUS_DELAYED; 566 ret = ext4_es_insert_extent(inode, map->m_lblk, 567 map->m_len, map->m_pblk, status); 568 if (ret < 0) 569 retval = ret; 570 } 571 up_read((&EXT4_I(inode)->i_data_sem)); 572 573 found: 574 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 575 ret = check_block_validity(inode, map); 576 if (ret != 0) 577 return ret; 578 } 579 580 /* If it is only a block(s) look up */ 581 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 582 return retval; 583 584 /* 585 * Returns if the blocks have already allocated 586 * 587 * Note that if blocks have been preallocated 588 * ext4_ext_get_block() returns the create = 0 589 * with buffer head unmapped. 590 */ 591 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 592 /* 593 * If we need to convert extent to unwritten 594 * we continue and do the actual work in 595 * ext4_ext_map_blocks() 596 */ 597 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 598 return retval; 599 600 /* 601 * Here we clear m_flags because after allocating an new extent, 602 * it will be set again. 603 */ 604 map->m_flags &= ~EXT4_MAP_FLAGS; 605 606 /* 607 * New blocks allocate and/or writing to unwritten extent 608 * will possibly result in updating i_data, so we take 609 * the write lock of i_data_sem, and call get_block() 610 * with create == 1 flag. 611 */ 612 down_write(&EXT4_I(inode)->i_data_sem); 613 614 /* 615 * We need to check for EXT4 here because migrate 616 * could have changed the inode type in between 617 */ 618 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 619 retval = ext4_ext_map_blocks(handle, inode, map, flags); 620 } else { 621 retval = ext4_ind_map_blocks(handle, inode, map, flags); 622 623 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 624 /* 625 * We allocated new blocks which will result in 626 * i_data's format changing. Force the migrate 627 * to fail by clearing migrate flags 628 */ 629 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 630 } 631 632 /* 633 * Update reserved blocks/metadata blocks after successful 634 * block allocation which had been deferred till now. We don't 635 * support fallocate for non extent files. So we can update 636 * reserve space here. 637 */ 638 if ((retval > 0) && 639 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 640 ext4_da_update_reserve_space(inode, retval, 1); 641 } 642 643 if (retval > 0) { 644 unsigned int status; 645 646 if (unlikely(retval != map->m_len)) { 647 ext4_warning(inode->i_sb, 648 "ES len assertion failed for inode " 649 "%lu: retval %d != map->m_len %d", 650 inode->i_ino, retval, map->m_len); 651 WARN_ON(1); 652 } 653 654 /* 655 * We have to zeroout blocks before inserting them into extent 656 * status tree. Otherwise someone could look them up there and 657 * use them before they are really zeroed. We also have to 658 * unmap metadata before zeroing as otherwise writeback can 659 * overwrite zeros with stale data from block device. 660 */ 661 if (flags & EXT4_GET_BLOCKS_ZERO && 662 map->m_flags & EXT4_MAP_MAPPED && 663 map->m_flags & EXT4_MAP_NEW) { 664 ext4_lblk_t i; 665 666 for (i = 0; i < map->m_len; i++) { 667 unmap_underlying_metadata(inode->i_sb->s_bdev, 668 map->m_pblk + i); 669 } 670 ret = ext4_issue_zeroout(inode, map->m_lblk, 671 map->m_pblk, map->m_len); 672 if (ret) { 673 retval = ret; 674 goto out_sem; 675 } 676 } 677 678 /* 679 * If the extent has been zeroed out, we don't need to update 680 * extent status tree. 681 */ 682 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 683 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 684 if (ext4_es_is_written(&es)) 685 goto out_sem; 686 } 687 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 688 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 689 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 690 !(status & EXTENT_STATUS_WRITTEN) && 691 ext4_find_delalloc_range(inode, map->m_lblk, 692 map->m_lblk + map->m_len - 1)) 693 status |= EXTENT_STATUS_DELAYED; 694 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 695 map->m_pblk, status); 696 if (ret < 0) { 697 retval = ret; 698 goto out_sem; 699 } 700 } 701 702 out_sem: 703 up_write((&EXT4_I(inode)->i_data_sem)); 704 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 705 ret = check_block_validity(inode, map); 706 if (ret != 0) 707 return ret; 708 709 /* 710 * Inodes with freshly allocated blocks where contents will be 711 * visible after transaction commit must be on transaction's 712 * ordered data list. 713 */ 714 if (map->m_flags & EXT4_MAP_NEW && 715 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 716 !(flags & EXT4_GET_BLOCKS_ZERO) && 717 !IS_NOQUOTA(inode) && 718 ext4_should_order_data(inode)) { 719 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 720 ret = ext4_jbd2_inode_add_wait(handle, inode); 721 else 722 ret = ext4_jbd2_inode_add_write(handle, inode); 723 if (ret) 724 return ret; 725 } 726 } 727 return retval; 728 } 729 730 /* 731 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 732 * we have to be careful as someone else may be manipulating b_state as well. 733 */ 734 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 735 { 736 unsigned long old_state; 737 unsigned long new_state; 738 739 flags &= EXT4_MAP_FLAGS; 740 741 /* Dummy buffer_head? Set non-atomically. */ 742 if (!bh->b_page) { 743 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 744 return; 745 } 746 /* 747 * Someone else may be modifying b_state. Be careful! This is ugly but 748 * once we get rid of using bh as a container for mapping information 749 * to pass to / from get_block functions, this can go away. 750 */ 751 do { 752 old_state = READ_ONCE(bh->b_state); 753 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 754 } while (unlikely( 755 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 756 } 757 758 static int _ext4_get_block(struct inode *inode, sector_t iblock, 759 struct buffer_head *bh, int flags) 760 { 761 struct ext4_map_blocks map; 762 int ret = 0; 763 764 if (ext4_has_inline_data(inode)) 765 return -ERANGE; 766 767 map.m_lblk = iblock; 768 map.m_len = bh->b_size >> inode->i_blkbits; 769 770 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 771 flags); 772 if (ret > 0) { 773 map_bh(bh, inode->i_sb, map.m_pblk); 774 ext4_update_bh_state(bh, map.m_flags); 775 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 776 ret = 0; 777 } else if (ret == 0) { 778 /* hole case, need to fill in bh->b_size */ 779 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 780 } 781 return ret; 782 } 783 784 int ext4_get_block(struct inode *inode, sector_t iblock, 785 struct buffer_head *bh, int create) 786 { 787 return _ext4_get_block(inode, iblock, bh, 788 create ? EXT4_GET_BLOCKS_CREATE : 0); 789 } 790 791 /* 792 * Get block function used when preparing for buffered write if we require 793 * creating an unwritten extent if blocks haven't been allocated. The extent 794 * will be converted to written after the IO is complete. 795 */ 796 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 797 struct buffer_head *bh_result, int create) 798 { 799 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 800 inode->i_ino, create); 801 return _ext4_get_block(inode, iblock, bh_result, 802 EXT4_GET_BLOCKS_IO_CREATE_EXT); 803 } 804 805 /* Maximum number of blocks we map for direct IO at once. */ 806 #define DIO_MAX_BLOCKS 4096 807 808 /* 809 * Get blocks function for the cases that need to start a transaction - 810 * generally difference cases of direct IO and DAX IO. It also handles retries 811 * in case of ENOSPC. 812 */ 813 static int ext4_get_block_trans(struct inode *inode, sector_t iblock, 814 struct buffer_head *bh_result, int flags) 815 { 816 int dio_credits; 817 handle_t *handle; 818 int retries = 0; 819 int ret; 820 821 /* Trim mapping request to maximum we can map at once for DIO */ 822 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS) 823 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits; 824 dio_credits = ext4_chunk_trans_blocks(inode, 825 bh_result->b_size >> inode->i_blkbits); 826 retry: 827 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 828 if (IS_ERR(handle)) 829 return PTR_ERR(handle); 830 831 ret = _ext4_get_block(inode, iblock, bh_result, flags); 832 ext4_journal_stop(handle); 833 834 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 835 goto retry; 836 return ret; 837 } 838 839 /* Get block function for DIO reads and writes to inodes without extents */ 840 int ext4_dio_get_block(struct inode *inode, sector_t iblock, 841 struct buffer_head *bh, int create) 842 { 843 /* We don't expect handle for direct IO */ 844 WARN_ON_ONCE(ext4_journal_current_handle()); 845 846 if (!create) 847 return _ext4_get_block(inode, iblock, bh, 0); 848 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE); 849 } 850 851 /* 852 * Get block function for AIO DIO writes when we create unwritten extent if 853 * blocks are not allocated yet. The extent will be converted to written 854 * after IO is complete. 855 */ 856 static int ext4_dio_get_block_unwritten_async(struct inode *inode, 857 sector_t iblock, struct buffer_head *bh_result, int create) 858 { 859 int ret; 860 861 /* We don't expect handle for direct IO */ 862 WARN_ON_ONCE(ext4_journal_current_handle()); 863 864 ret = ext4_get_block_trans(inode, iblock, bh_result, 865 EXT4_GET_BLOCKS_IO_CREATE_EXT); 866 867 /* 868 * When doing DIO using unwritten extents, we need io_end to convert 869 * unwritten extents to written on IO completion. We allocate io_end 870 * once we spot unwritten extent and store it in b_private. Generic 871 * DIO code keeps b_private set and furthermore passes the value to 872 * our completion callback in 'private' argument. 873 */ 874 if (!ret && buffer_unwritten(bh_result)) { 875 if (!bh_result->b_private) { 876 ext4_io_end_t *io_end; 877 878 io_end = ext4_init_io_end(inode, GFP_KERNEL); 879 if (!io_end) 880 return -ENOMEM; 881 bh_result->b_private = io_end; 882 ext4_set_io_unwritten_flag(inode, io_end); 883 } 884 set_buffer_defer_completion(bh_result); 885 } 886 887 return ret; 888 } 889 890 /* 891 * Get block function for non-AIO DIO writes when we create unwritten extent if 892 * blocks are not allocated yet. The extent will be converted to written 893 * after IO is complete from ext4_ext_direct_IO() function. 894 */ 895 static int ext4_dio_get_block_unwritten_sync(struct inode *inode, 896 sector_t iblock, struct buffer_head *bh_result, int create) 897 { 898 int ret; 899 900 /* We don't expect handle for direct IO */ 901 WARN_ON_ONCE(ext4_journal_current_handle()); 902 903 ret = ext4_get_block_trans(inode, iblock, bh_result, 904 EXT4_GET_BLOCKS_IO_CREATE_EXT); 905 906 /* 907 * Mark inode as having pending DIO writes to unwritten extents. 908 * ext4_ext_direct_IO() checks this flag and converts extents to 909 * written. 910 */ 911 if (!ret && buffer_unwritten(bh_result)) 912 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 913 914 return ret; 915 } 916 917 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock, 918 struct buffer_head *bh_result, int create) 919 { 920 int ret; 921 922 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n", 923 inode->i_ino, create); 924 /* We don't expect handle for direct IO */ 925 WARN_ON_ONCE(ext4_journal_current_handle()); 926 927 ret = _ext4_get_block(inode, iblock, bh_result, 0); 928 /* 929 * Blocks should have been preallocated! ext4_file_write_iter() checks 930 * that. 931 */ 932 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result)); 933 934 return ret; 935 } 936 937 938 /* 939 * `handle' can be NULL if create is zero 940 */ 941 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 942 ext4_lblk_t block, int map_flags) 943 { 944 struct ext4_map_blocks map; 945 struct buffer_head *bh; 946 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 947 int err; 948 949 J_ASSERT(handle != NULL || create == 0); 950 951 map.m_lblk = block; 952 map.m_len = 1; 953 err = ext4_map_blocks(handle, inode, &map, map_flags); 954 955 if (err == 0) 956 return create ? ERR_PTR(-ENOSPC) : NULL; 957 if (err < 0) 958 return ERR_PTR(err); 959 960 bh = sb_getblk(inode->i_sb, map.m_pblk); 961 if (unlikely(!bh)) 962 return ERR_PTR(-ENOMEM); 963 if (map.m_flags & EXT4_MAP_NEW) { 964 J_ASSERT(create != 0); 965 J_ASSERT(handle != NULL); 966 967 /* 968 * Now that we do not always journal data, we should 969 * keep in mind whether this should always journal the 970 * new buffer as metadata. For now, regular file 971 * writes use ext4_get_block instead, so it's not a 972 * problem. 973 */ 974 lock_buffer(bh); 975 BUFFER_TRACE(bh, "call get_create_access"); 976 err = ext4_journal_get_create_access(handle, bh); 977 if (unlikely(err)) { 978 unlock_buffer(bh); 979 goto errout; 980 } 981 if (!buffer_uptodate(bh)) { 982 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 983 set_buffer_uptodate(bh); 984 } 985 unlock_buffer(bh); 986 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 987 err = ext4_handle_dirty_metadata(handle, inode, bh); 988 if (unlikely(err)) 989 goto errout; 990 } else 991 BUFFER_TRACE(bh, "not a new buffer"); 992 return bh; 993 errout: 994 brelse(bh); 995 return ERR_PTR(err); 996 } 997 998 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 999 ext4_lblk_t block, int map_flags) 1000 { 1001 struct buffer_head *bh; 1002 1003 bh = ext4_getblk(handle, inode, block, map_flags); 1004 if (IS_ERR(bh)) 1005 return bh; 1006 if (!bh || buffer_uptodate(bh)) 1007 return bh; 1008 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh); 1009 wait_on_buffer(bh); 1010 if (buffer_uptodate(bh)) 1011 return bh; 1012 put_bh(bh); 1013 return ERR_PTR(-EIO); 1014 } 1015 1016 int ext4_walk_page_buffers(handle_t *handle, 1017 struct buffer_head *head, 1018 unsigned from, 1019 unsigned to, 1020 int *partial, 1021 int (*fn)(handle_t *handle, 1022 struct buffer_head *bh)) 1023 { 1024 struct buffer_head *bh; 1025 unsigned block_start, block_end; 1026 unsigned blocksize = head->b_size; 1027 int err, ret = 0; 1028 struct buffer_head *next; 1029 1030 for (bh = head, block_start = 0; 1031 ret == 0 && (bh != head || !block_start); 1032 block_start = block_end, bh = next) { 1033 next = bh->b_this_page; 1034 block_end = block_start + blocksize; 1035 if (block_end <= from || block_start >= to) { 1036 if (partial && !buffer_uptodate(bh)) 1037 *partial = 1; 1038 continue; 1039 } 1040 err = (*fn)(handle, bh); 1041 if (!ret) 1042 ret = err; 1043 } 1044 return ret; 1045 } 1046 1047 /* 1048 * To preserve ordering, it is essential that the hole instantiation and 1049 * the data write be encapsulated in a single transaction. We cannot 1050 * close off a transaction and start a new one between the ext4_get_block() 1051 * and the commit_write(). So doing the jbd2_journal_start at the start of 1052 * prepare_write() is the right place. 1053 * 1054 * Also, this function can nest inside ext4_writepage(). In that case, we 1055 * *know* that ext4_writepage() has generated enough buffer credits to do the 1056 * whole page. So we won't block on the journal in that case, which is good, 1057 * because the caller may be PF_MEMALLOC. 1058 * 1059 * By accident, ext4 can be reentered when a transaction is open via 1060 * quota file writes. If we were to commit the transaction while thus 1061 * reentered, there can be a deadlock - we would be holding a quota 1062 * lock, and the commit would never complete if another thread had a 1063 * transaction open and was blocking on the quota lock - a ranking 1064 * violation. 1065 * 1066 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1067 * will _not_ run commit under these circumstances because handle->h_ref 1068 * is elevated. We'll still have enough credits for the tiny quotafile 1069 * write. 1070 */ 1071 int do_journal_get_write_access(handle_t *handle, 1072 struct buffer_head *bh) 1073 { 1074 int dirty = buffer_dirty(bh); 1075 int ret; 1076 1077 if (!buffer_mapped(bh) || buffer_freed(bh)) 1078 return 0; 1079 /* 1080 * __block_write_begin() could have dirtied some buffers. Clean 1081 * the dirty bit as jbd2_journal_get_write_access() could complain 1082 * otherwise about fs integrity issues. Setting of the dirty bit 1083 * by __block_write_begin() isn't a real problem here as we clear 1084 * the bit before releasing a page lock and thus writeback cannot 1085 * ever write the buffer. 1086 */ 1087 if (dirty) 1088 clear_buffer_dirty(bh); 1089 BUFFER_TRACE(bh, "get write access"); 1090 ret = ext4_journal_get_write_access(handle, bh); 1091 if (!ret && dirty) 1092 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1093 return ret; 1094 } 1095 1096 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1097 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1098 get_block_t *get_block) 1099 { 1100 unsigned from = pos & (PAGE_SIZE - 1); 1101 unsigned to = from + len; 1102 struct inode *inode = page->mapping->host; 1103 unsigned block_start, block_end; 1104 sector_t block; 1105 int err = 0; 1106 unsigned blocksize = inode->i_sb->s_blocksize; 1107 unsigned bbits; 1108 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; 1109 bool decrypt = false; 1110 1111 BUG_ON(!PageLocked(page)); 1112 BUG_ON(from > PAGE_SIZE); 1113 BUG_ON(to > PAGE_SIZE); 1114 BUG_ON(from > to); 1115 1116 if (!page_has_buffers(page)) 1117 create_empty_buffers(page, blocksize, 0); 1118 head = page_buffers(page); 1119 bbits = ilog2(blocksize); 1120 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1121 1122 for (bh = head, block_start = 0; bh != head || !block_start; 1123 block++, block_start = block_end, bh = bh->b_this_page) { 1124 block_end = block_start + blocksize; 1125 if (block_end <= from || block_start >= to) { 1126 if (PageUptodate(page)) { 1127 if (!buffer_uptodate(bh)) 1128 set_buffer_uptodate(bh); 1129 } 1130 continue; 1131 } 1132 if (buffer_new(bh)) 1133 clear_buffer_new(bh); 1134 if (!buffer_mapped(bh)) { 1135 WARN_ON(bh->b_size != blocksize); 1136 err = get_block(inode, block, bh, 1); 1137 if (err) 1138 break; 1139 if (buffer_new(bh)) { 1140 unmap_underlying_metadata(bh->b_bdev, 1141 bh->b_blocknr); 1142 if (PageUptodate(page)) { 1143 clear_buffer_new(bh); 1144 set_buffer_uptodate(bh); 1145 mark_buffer_dirty(bh); 1146 continue; 1147 } 1148 if (block_end > to || block_start < from) 1149 zero_user_segments(page, to, block_end, 1150 block_start, from); 1151 continue; 1152 } 1153 } 1154 if (PageUptodate(page)) { 1155 if (!buffer_uptodate(bh)) 1156 set_buffer_uptodate(bh); 1157 continue; 1158 } 1159 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1160 !buffer_unwritten(bh) && 1161 (block_start < from || block_end > to)) { 1162 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1163 *wait_bh++ = bh; 1164 decrypt = ext4_encrypted_inode(inode) && 1165 S_ISREG(inode->i_mode); 1166 } 1167 } 1168 /* 1169 * If we issued read requests, let them complete. 1170 */ 1171 while (wait_bh > wait) { 1172 wait_on_buffer(*--wait_bh); 1173 if (!buffer_uptodate(*wait_bh)) 1174 err = -EIO; 1175 } 1176 if (unlikely(err)) 1177 page_zero_new_buffers(page, from, to); 1178 else if (decrypt) 1179 err = fscrypt_decrypt_page(page->mapping->host, page, 1180 PAGE_SIZE, 0, page->index); 1181 return err; 1182 } 1183 #endif 1184 1185 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1186 loff_t pos, unsigned len, unsigned flags, 1187 struct page **pagep, void **fsdata) 1188 { 1189 struct inode *inode = mapping->host; 1190 int ret, needed_blocks; 1191 handle_t *handle; 1192 int retries = 0; 1193 struct page *page; 1194 pgoff_t index; 1195 unsigned from, to; 1196 1197 trace_ext4_write_begin(inode, pos, len, flags); 1198 /* 1199 * Reserve one block more for addition to orphan list in case 1200 * we allocate blocks but write fails for some reason 1201 */ 1202 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1203 index = pos >> PAGE_SHIFT; 1204 from = pos & (PAGE_SIZE - 1); 1205 to = from + len; 1206 1207 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1208 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1209 flags, pagep); 1210 if (ret < 0) 1211 return ret; 1212 if (ret == 1) 1213 return 0; 1214 } 1215 1216 /* 1217 * grab_cache_page_write_begin() can take a long time if the 1218 * system is thrashing due to memory pressure, or if the page 1219 * is being written back. So grab it first before we start 1220 * the transaction handle. This also allows us to allocate 1221 * the page (if needed) without using GFP_NOFS. 1222 */ 1223 retry_grab: 1224 page = grab_cache_page_write_begin(mapping, index, flags); 1225 if (!page) 1226 return -ENOMEM; 1227 unlock_page(page); 1228 1229 retry_journal: 1230 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1231 if (IS_ERR(handle)) { 1232 put_page(page); 1233 return PTR_ERR(handle); 1234 } 1235 1236 lock_page(page); 1237 if (page->mapping != mapping) { 1238 /* The page got truncated from under us */ 1239 unlock_page(page); 1240 put_page(page); 1241 ext4_journal_stop(handle); 1242 goto retry_grab; 1243 } 1244 /* In case writeback began while the page was unlocked */ 1245 wait_for_stable_page(page); 1246 1247 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1248 if (ext4_should_dioread_nolock(inode)) 1249 ret = ext4_block_write_begin(page, pos, len, 1250 ext4_get_block_unwritten); 1251 else 1252 ret = ext4_block_write_begin(page, pos, len, 1253 ext4_get_block); 1254 #else 1255 if (ext4_should_dioread_nolock(inode)) 1256 ret = __block_write_begin(page, pos, len, 1257 ext4_get_block_unwritten); 1258 else 1259 ret = __block_write_begin(page, pos, len, ext4_get_block); 1260 #endif 1261 if (!ret && ext4_should_journal_data(inode)) { 1262 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1263 from, to, NULL, 1264 do_journal_get_write_access); 1265 } 1266 1267 if (ret) { 1268 unlock_page(page); 1269 /* 1270 * __block_write_begin may have instantiated a few blocks 1271 * outside i_size. Trim these off again. Don't need 1272 * i_size_read because we hold i_mutex. 1273 * 1274 * Add inode to orphan list in case we crash before 1275 * truncate finishes 1276 */ 1277 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1278 ext4_orphan_add(handle, inode); 1279 1280 ext4_journal_stop(handle); 1281 if (pos + len > inode->i_size) { 1282 ext4_truncate_failed_write(inode); 1283 /* 1284 * If truncate failed early the inode might 1285 * still be on the orphan list; we need to 1286 * make sure the inode is removed from the 1287 * orphan list in that case. 1288 */ 1289 if (inode->i_nlink) 1290 ext4_orphan_del(NULL, inode); 1291 } 1292 1293 if (ret == -ENOSPC && 1294 ext4_should_retry_alloc(inode->i_sb, &retries)) 1295 goto retry_journal; 1296 put_page(page); 1297 return ret; 1298 } 1299 *pagep = page; 1300 return ret; 1301 } 1302 1303 /* For write_end() in data=journal mode */ 1304 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1305 { 1306 int ret; 1307 if (!buffer_mapped(bh) || buffer_freed(bh)) 1308 return 0; 1309 set_buffer_uptodate(bh); 1310 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1311 clear_buffer_meta(bh); 1312 clear_buffer_prio(bh); 1313 return ret; 1314 } 1315 1316 /* 1317 * We need to pick up the new inode size which generic_commit_write gave us 1318 * `file' can be NULL - eg, when called from page_symlink(). 1319 * 1320 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1321 * buffers are managed internally. 1322 */ 1323 static int ext4_write_end(struct file *file, 1324 struct address_space *mapping, 1325 loff_t pos, unsigned len, unsigned copied, 1326 struct page *page, void *fsdata) 1327 { 1328 handle_t *handle = ext4_journal_current_handle(); 1329 struct inode *inode = mapping->host; 1330 loff_t old_size = inode->i_size; 1331 int ret = 0, ret2; 1332 int i_size_changed = 0; 1333 1334 trace_ext4_write_end(inode, pos, len, copied); 1335 if (ext4_has_inline_data(inode)) { 1336 ret = ext4_write_inline_data_end(inode, pos, len, 1337 copied, page); 1338 if (ret < 0) 1339 goto errout; 1340 copied = ret; 1341 } else 1342 copied = block_write_end(file, mapping, pos, 1343 len, copied, page, fsdata); 1344 /* 1345 * it's important to update i_size while still holding page lock: 1346 * page writeout could otherwise come in and zero beyond i_size. 1347 */ 1348 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1349 unlock_page(page); 1350 put_page(page); 1351 1352 if (old_size < pos) 1353 pagecache_isize_extended(inode, old_size, pos); 1354 /* 1355 * Don't mark the inode dirty under page lock. First, it unnecessarily 1356 * makes the holding time of page lock longer. Second, it forces lock 1357 * ordering of page lock and transaction start for journaling 1358 * filesystems. 1359 */ 1360 if (i_size_changed) 1361 ext4_mark_inode_dirty(handle, inode); 1362 1363 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1364 /* if we have allocated more blocks and copied 1365 * less. We will have blocks allocated outside 1366 * inode->i_size. So truncate them 1367 */ 1368 ext4_orphan_add(handle, inode); 1369 errout: 1370 ret2 = ext4_journal_stop(handle); 1371 if (!ret) 1372 ret = ret2; 1373 1374 if (pos + len > inode->i_size) { 1375 ext4_truncate_failed_write(inode); 1376 /* 1377 * If truncate failed early the inode might still be 1378 * on the orphan list; we need to make sure the inode 1379 * is removed from the orphan list in that case. 1380 */ 1381 if (inode->i_nlink) 1382 ext4_orphan_del(NULL, inode); 1383 } 1384 1385 return ret ? ret : copied; 1386 } 1387 1388 /* 1389 * This is a private version of page_zero_new_buffers() which doesn't 1390 * set the buffer to be dirty, since in data=journalled mode we need 1391 * to call ext4_handle_dirty_metadata() instead. 1392 */ 1393 static void zero_new_buffers(struct page *page, unsigned from, unsigned to) 1394 { 1395 unsigned int block_start = 0, block_end; 1396 struct buffer_head *head, *bh; 1397 1398 bh = head = page_buffers(page); 1399 do { 1400 block_end = block_start + bh->b_size; 1401 if (buffer_new(bh)) { 1402 if (block_end > from && block_start < to) { 1403 if (!PageUptodate(page)) { 1404 unsigned start, size; 1405 1406 start = max(from, block_start); 1407 size = min(to, block_end) - start; 1408 1409 zero_user(page, start, size); 1410 set_buffer_uptodate(bh); 1411 } 1412 clear_buffer_new(bh); 1413 } 1414 } 1415 block_start = block_end; 1416 bh = bh->b_this_page; 1417 } while (bh != head); 1418 } 1419 1420 static int ext4_journalled_write_end(struct file *file, 1421 struct address_space *mapping, 1422 loff_t pos, unsigned len, unsigned copied, 1423 struct page *page, void *fsdata) 1424 { 1425 handle_t *handle = ext4_journal_current_handle(); 1426 struct inode *inode = mapping->host; 1427 loff_t old_size = inode->i_size; 1428 int ret = 0, ret2; 1429 int partial = 0; 1430 unsigned from, to; 1431 int size_changed = 0; 1432 1433 trace_ext4_journalled_write_end(inode, pos, len, copied); 1434 from = pos & (PAGE_SIZE - 1); 1435 to = from + len; 1436 1437 BUG_ON(!ext4_handle_valid(handle)); 1438 1439 if (ext4_has_inline_data(inode)) 1440 copied = ext4_write_inline_data_end(inode, pos, len, 1441 copied, page); 1442 else { 1443 if (copied < len) { 1444 if (!PageUptodate(page)) 1445 copied = 0; 1446 zero_new_buffers(page, from+copied, to); 1447 } 1448 1449 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1450 to, &partial, write_end_fn); 1451 if (!partial) 1452 SetPageUptodate(page); 1453 } 1454 size_changed = ext4_update_inode_size(inode, pos + copied); 1455 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1456 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1457 unlock_page(page); 1458 put_page(page); 1459 1460 if (old_size < pos) 1461 pagecache_isize_extended(inode, old_size, pos); 1462 1463 if (size_changed) { 1464 ret2 = ext4_mark_inode_dirty(handle, inode); 1465 if (!ret) 1466 ret = ret2; 1467 } 1468 1469 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1470 /* if we have allocated more blocks and copied 1471 * less. We will have blocks allocated outside 1472 * inode->i_size. So truncate them 1473 */ 1474 ext4_orphan_add(handle, inode); 1475 1476 ret2 = ext4_journal_stop(handle); 1477 if (!ret) 1478 ret = ret2; 1479 if (pos + len > inode->i_size) { 1480 ext4_truncate_failed_write(inode); 1481 /* 1482 * If truncate failed early the inode might still be 1483 * on the orphan list; we need to make sure the inode 1484 * is removed from the orphan list in that case. 1485 */ 1486 if (inode->i_nlink) 1487 ext4_orphan_del(NULL, inode); 1488 } 1489 1490 return ret ? ret : copied; 1491 } 1492 1493 /* 1494 * Reserve space for a single cluster 1495 */ 1496 static int ext4_da_reserve_space(struct inode *inode) 1497 { 1498 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1499 struct ext4_inode_info *ei = EXT4_I(inode); 1500 int ret; 1501 1502 /* 1503 * We will charge metadata quota at writeout time; this saves 1504 * us from metadata over-estimation, though we may go over by 1505 * a small amount in the end. Here we just reserve for data. 1506 */ 1507 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1508 if (ret) 1509 return ret; 1510 1511 spin_lock(&ei->i_block_reservation_lock); 1512 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1513 spin_unlock(&ei->i_block_reservation_lock); 1514 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1515 return -ENOSPC; 1516 } 1517 ei->i_reserved_data_blocks++; 1518 trace_ext4_da_reserve_space(inode); 1519 spin_unlock(&ei->i_block_reservation_lock); 1520 1521 return 0; /* success */ 1522 } 1523 1524 static void ext4_da_release_space(struct inode *inode, int to_free) 1525 { 1526 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1527 struct ext4_inode_info *ei = EXT4_I(inode); 1528 1529 if (!to_free) 1530 return; /* Nothing to release, exit */ 1531 1532 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1533 1534 trace_ext4_da_release_space(inode, to_free); 1535 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1536 /* 1537 * if there aren't enough reserved blocks, then the 1538 * counter is messed up somewhere. Since this 1539 * function is called from invalidate page, it's 1540 * harmless to return without any action. 1541 */ 1542 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1543 "ino %lu, to_free %d with only %d reserved " 1544 "data blocks", inode->i_ino, to_free, 1545 ei->i_reserved_data_blocks); 1546 WARN_ON(1); 1547 to_free = ei->i_reserved_data_blocks; 1548 } 1549 ei->i_reserved_data_blocks -= to_free; 1550 1551 /* update fs dirty data blocks counter */ 1552 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1553 1554 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1555 1556 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1557 } 1558 1559 static void ext4_da_page_release_reservation(struct page *page, 1560 unsigned int offset, 1561 unsigned int length) 1562 { 1563 int to_release = 0, contiguous_blks = 0; 1564 struct buffer_head *head, *bh; 1565 unsigned int curr_off = 0; 1566 struct inode *inode = page->mapping->host; 1567 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1568 unsigned int stop = offset + length; 1569 int num_clusters; 1570 ext4_fsblk_t lblk; 1571 1572 BUG_ON(stop > PAGE_SIZE || stop < length); 1573 1574 head = page_buffers(page); 1575 bh = head; 1576 do { 1577 unsigned int next_off = curr_off + bh->b_size; 1578 1579 if (next_off > stop) 1580 break; 1581 1582 if ((offset <= curr_off) && (buffer_delay(bh))) { 1583 to_release++; 1584 contiguous_blks++; 1585 clear_buffer_delay(bh); 1586 } else if (contiguous_blks) { 1587 lblk = page->index << 1588 (PAGE_SHIFT - inode->i_blkbits); 1589 lblk += (curr_off >> inode->i_blkbits) - 1590 contiguous_blks; 1591 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1592 contiguous_blks = 0; 1593 } 1594 curr_off = next_off; 1595 } while ((bh = bh->b_this_page) != head); 1596 1597 if (contiguous_blks) { 1598 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits); 1599 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks; 1600 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1601 } 1602 1603 /* If we have released all the blocks belonging to a cluster, then we 1604 * need to release the reserved space for that cluster. */ 1605 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1606 while (num_clusters > 0) { 1607 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) + 1608 ((num_clusters - 1) << sbi->s_cluster_bits); 1609 if (sbi->s_cluster_ratio == 1 || 1610 !ext4_find_delalloc_cluster(inode, lblk)) 1611 ext4_da_release_space(inode, 1); 1612 1613 num_clusters--; 1614 } 1615 } 1616 1617 /* 1618 * Delayed allocation stuff 1619 */ 1620 1621 struct mpage_da_data { 1622 struct inode *inode; 1623 struct writeback_control *wbc; 1624 1625 pgoff_t first_page; /* The first page to write */ 1626 pgoff_t next_page; /* Current page to examine */ 1627 pgoff_t last_page; /* Last page to examine */ 1628 /* 1629 * Extent to map - this can be after first_page because that can be 1630 * fully mapped. We somewhat abuse m_flags to store whether the extent 1631 * is delalloc or unwritten. 1632 */ 1633 struct ext4_map_blocks map; 1634 struct ext4_io_submit io_submit; /* IO submission data */ 1635 }; 1636 1637 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1638 bool invalidate) 1639 { 1640 int nr_pages, i; 1641 pgoff_t index, end; 1642 struct pagevec pvec; 1643 struct inode *inode = mpd->inode; 1644 struct address_space *mapping = inode->i_mapping; 1645 1646 /* This is necessary when next_page == 0. */ 1647 if (mpd->first_page >= mpd->next_page) 1648 return; 1649 1650 index = mpd->first_page; 1651 end = mpd->next_page - 1; 1652 if (invalidate) { 1653 ext4_lblk_t start, last; 1654 start = index << (PAGE_SHIFT - inode->i_blkbits); 1655 last = end << (PAGE_SHIFT - inode->i_blkbits); 1656 ext4_es_remove_extent(inode, start, last - start + 1); 1657 } 1658 1659 pagevec_init(&pvec, 0); 1660 while (index <= end) { 1661 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1662 if (nr_pages == 0) 1663 break; 1664 for (i = 0; i < nr_pages; i++) { 1665 struct page *page = pvec.pages[i]; 1666 if (page->index > end) 1667 break; 1668 BUG_ON(!PageLocked(page)); 1669 BUG_ON(PageWriteback(page)); 1670 if (invalidate) { 1671 if (page_mapped(page)) 1672 clear_page_dirty_for_io(page); 1673 block_invalidatepage(page, 0, PAGE_SIZE); 1674 ClearPageUptodate(page); 1675 } 1676 unlock_page(page); 1677 } 1678 index = pvec.pages[nr_pages - 1]->index + 1; 1679 pagevec_release(&pvec); 1680 } 1681 } 1682 1683 static void ext4_print_free_blocks(struct inode *inode) 1684 { 1685 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1686 struct super_block *sb = inode->i_sb; 1687 struct ext4_inode_info *ei = EXT4_I(inode); 1688 1689 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1690 EXT4_C2B(EXT4_SB(inode->i_sb), 1691 ext4_count_free_clusters(sb))); 1692 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1693 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1694 (long long) EXT4_C2B(EXT4_SB(sb), 1695 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1696 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1697 (long long) EXT4_C2B(EXT4_SB(sb), 1698 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1699 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1700 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1701 ei->i_reserved_data_blocks); 1702 return; 1703 } 1704 1705 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1706 { 1707 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1708 } 1709 1710 /* 1711 * This function is grabs code from the very beginning of 1712 * ext4_map_blocks, but assumes that the caller is from delayed write 1713 * time. This function looks up the requested blocks and sets the 1714 * buffer delay bit under the protection of i_data_sem. 1715 */ 1716 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1717 struct ext4_map_blocks *map, 1718 struct buffer_head *bh) 1719 { 1720 struct extent_status es; 1721 int retval; 1722 sector_t invalid_block = ~((sector_t) 0xffff); 1723 #ifdef ES_AGGRESSIVE_TEST 1724 struct ext4_map_blocks orig_map; 1725 1726 memcpy(&orig_map, map, sizeof(*map)); 1727 #endif 1728 1729 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1730 invalid_block = ~0; 1731 1732 map->m_flags = 0; 1733 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1734 "logical block %lu\n", inode->i_ino, map->m_len, 1735 (unsigned long) map->m_lblk); 1736 1737 /* Lookup extent status tree firstly */ 1738 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1739 if (ext4_es_is_hole(&es)) { 1740 retval = 0; 1741 down_read(&EXT4_I(inode)->i_data_sem); 1742 goto add_delayed; 1743 } 1744 1745 /* 1746 * Delayed extent could be allocated by fallocate. 1747 * So we need to check it. 1748 */ 1749 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1750 map_bh(bh, inode->i_sb, invalid_block); 1751 set_buffer_new(bh); 1752 set_buffer_delay(bh); 1753 return 0; 1754 } 1755 1756 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1757 retval = es.es_len - (iblock - es.es_lblk); 1758 if (retval > map->m_len) 1759 retval = map->m_len; 1760 map->m_len = retval; 1761 if (ext4_es_is_written(&es)) 1762 map->m_flags |= EXT4_MAP_MAPPED; 1763 else if (ext4_es_is_unwritten(&es)) 1764 map->m_flags |= EXT4_MAP_UNWRITTEN; 1765 else 1766 BUG_ON(1); 1767 1768 #ifdef ES_AGGRESSIVE_TEST 1769 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1770 #endif 1771 return retval; 1772 } 1773 1774 /* 1775 * Try to see if we can get the block without requesting a new 1776 * file system block. 1777 */ 1778 down_read(&EXT4_I(inode)->i_data_sem); 1779 if (ext4_has_inline_data(inode)) 1780 retval = 0; 1781 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1782 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1783 else 1784 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1785 1786 add_delayed: 1787 if (retval == 0) { 1788 int ret; 1789 /* 1790 * XXX: __block_prepare_write() unmaps passed block, 1791 * is it OK? 1792 */ 1793 /* 1794 * If the block was allocated from previously allocated cluster, 1795 * then we don't need to reserve it again. However we still need 1796 * to reserve metadata for every block we're going to write. 1797 */ 1798 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 || 1799 !ext4_find_delalloc_cluster(inode, map->m_lblk)) { 1800 ret = ext4_da_reserve_space(inode); 1801 if (ret) { 1802 /* not enough space to reserve */ 1803 retval = ret; 1804 goto out_unlock; 1805 } 1806 } 1807 1808 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1809 ~0, EXTENT_STATUS_DELAYED); 1810 if (ret) { 1811 retval = ret; 1812 goto out_unlock; 1813 } 1814 1815 map_bh(bh, inode->i_sb, invalid_block); 1816 set_buffer_new(bh); 1817 set_buffer_delay(bh); 1818 } else if (retval > 0) { 1819 int ret; 1820 unsigned int status; 1821 1822 if (unlikely(retval != map->m_len)) { 1823 ext4_warning(inode->i_sb, 1824 "ES len assertion failed for inode " 1825 "%lu: retval %d != map->m_len %d", 1826 inode->i_ino, retval, map->m_len); 1827 WARN_ON(1); 1828 } 1829 1830 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1831 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1832 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1833 map->m_pblk, status); 1834 if (ret != 0) 1835 retval = ret; 1836 } 1837 1838 out_unlock: 1839 up_read((&EXT4_I(inode)->i_data_sem)); 1840 1841 return retval; 1842 } 1843 1844 /* 1845 * This is a special get_block_t callback which is used by 1846 * ext4_da_write_begin(). It will either return mapped block or 1847 * reserve space for a single block. 1848 * 1849 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1850 * We also have b_blocknr = -1 and b_bdev initialized properly 1851 * 1852 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1853 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1854 * initialized properly. 1855 */ 1856 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1857 struct buffer_head *bh, int create) 1858 { 1859 struct ext4_map_blocks map; 1860 int ret = 0; 1861 1862 BUG_ON(create == 0); 1863 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1864 1865 map.m_lblk = iblock; 1866 map.m_len = 1; 1867 1868 /* 1869 * first, we need to know whether the block is allocated already 1870 * preallocated blocks are unmapped but should treated 1871 * the same as allocated blocks. 1872 */ 1873 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1874 if (ret <= 0) 1875 return ret; 1876 1877 map_bh(bh, inode->i_sb, map.m_pblk); 1878 ext4_update_bh_state(bh, map.m_flags); 1879 1880 if (buffer_unwritten(bh)) { 1881 /* A delayed write to unwritten bh should be marked 1882 * new and mapped. Mapped ensures that we don't do 1883 * get_block multiple times when we write to the same 1884 * offset and new ensures that we do proper zero out 1885 * for partial write. 1886 */ 1887 set_buffer_new(bh); 1888 set_buffer_mapped(bh); 1889 } 1890 return 0; 1891 } 1892 1893 static int bget_one(handle_t *handle, struct buffer_head *bh) 1894 { 1895 get_bh(bh); 1896 return 0; 1897 } 1898 1899 static int bput_one(handle_t *handle, struct buffer_head *bh) 1900 { 1901 put_bh(bh); 1902 return 0; 1903 } 1904 1905 static int __ext4_journalled_writepage(struct page *page, 1906 unsigned int len) 1907 { 1908 struct address_space *mapping = page->mapping; 1909 struct inode *inode = mapping->host; 1910 struct buffer_head *page_bufs = NULL; 1911 handle_t *handle = NULL; 1912 int ret = 0, err = 0; 1913 int inline_data = ext4_has_inline_data(inode); 1914 struct buffer_head *inode_bh = NULL; 1915 1916 ClearPageChecked(page); 1917 1918 if (inline_data) { 1919 BUG_ON(page->index != 0); 1920 BUG_ON(len > ext4_get_max_inline_size(inode)); 1921 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1922 if (inode_bh == NULL) 1923 goto out; 1924 } else { 1925 page_bufs = page_buffers(page); 1926 if (!page_bufs) { 1927 BUG(); 1928 goto out; 1929 } 1930 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1931 NULL, bget_one); 1932 } 1933 /* 1934 * We need to release the page lock before we start the 1935 * journal, so grab a reference so the page won't disappear 1936 * out from under us. 1937 */ 1938 get_page(page); 1939 unlock_page(page); 1940 1941 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1942 ext4_writepage_trans_blocks(inode)); 1943 if (IS_ERR(handle)) { 1944 ret = PTR_ERR(handle); 1945 put_page(page); 1946 goto out_no_pagelock; 1947 } 1948 BUG_ON(!ext4_handle_valid(handle)); 1949 1950 lock_page(page); 1951 put_page(page); 1952 if (page->mapping != mapping) { 1953 /* The page got truncated from under us */ 1954 ext4_journal_stop(handle); 1955 ret = 0; 1956 goto out; 1957 } 1958 1959 if (inline_data) { 1960 BUFFER_TRACE(inode_bh, "get write access"); 1961 ret = ext4_journal_get_write_access(handle, inode_bh); 1962 1963 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 1964 1965 } else { 1966 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1967 do_journal_get_write_access); 1968 1969 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1970 write_end_fn); 1971 } 1972 if (ret == 0) 1973 ret = err; 1974 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1975 err = ext4_journal_stop(handle); 1976 if (!ret) 1977 ret = err; 1978 1979 if (!ext4_has_inline_data(inode)) 1980 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1981 NULL, bput_one); 1982 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1983 out: 1984 unlock_page(page); 1985 out_no_pagelock: 1986 brelse(inode_bh); 1987 return ret; 1988 } 1989 1990 /* 1991 * Note that we don't need to start a transaction unless we're journaling data 1992 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1993 * need to file the inode to the transaction's list in ordered mode because if 1994 * we are writing back data added by write(), the inode is already there and if 1995 * we are writing back data modified via mmap(), no one guarantees in which 1996 * transaction the data will hit the disk. In case we are journaling data, we 1997 * cannot start transaction directly because transaction start ranks above page 1998 * lock so we have to do some magic. 1999 * 2000 * This function can get called via... 2001 * - ext4_writepages after taking page lock (have journal handle) 2002 * - journal_submit_inode_data_buffers (no journal handle) 2003 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 2004 * - grab_page_cache when doing write_begin (have journal handle) 2005 * 2006 * We don't do any block allocation in this function. If we have page with 2007 * multiple blocks we need to write those buffer_heads that are mapped. This 2008 * is important for mmaped based write. So if we do with blocksize 1K 2009 * truncate(f, 1024); 2010 * a = mmap(f, 0, 4096); 2011 * a[0] = 'a'; 2012 * truncate(f, 4096); 2013 * we have in the page first buffer_head mapped via page_mkwrite call back 2014 * but other buffer_heads would be unmapped but dirty (dirty done via the 2015 * do_wp_page). So writepage should write the first block. If we modify 2016 * the mmap area beyond 1024 we will again get a page_fault and the 2017 * page_mkwrite callback will do the block allocation and mark the 2018 * buffer_heads mapped. 2019 * 2020 * We redirty the page if we have any buffer_heads that is either delay or 2021 * unwritten in the page. 2022 * 2023 * We can get recursively called as show below. 2024 * 2025 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2026 * ext4_writepage() 2027 * 2028 * But since we don't do any block allocation we should not deadlock. 2029 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2030 */ 2031 static int ext4_writepage(struct page *page, 2032 struct writeback_control *wbc) 2033 { 2034 int ret = 0; 2035 loff_t size; 2036 unsigned int len; 2037 struct buffer_head *page_bufs = NULL; 2038 struct inode *inode = page->mapping->host; 2039 struct ext4_io_submit io_submit; 2040 bool keep_towrite = false; 2041 2042 trace_ext4_writepage(page); 2043 size = i_size_read(inode); 2044 if (page->index == size >> PAGE_SHIFT) 2045 len = size & ~PAGE_MASK; 2046 else 2047 len = PAGE_SIZE; 2048 2049 page_bufs = page_buffers(page); 2050 /* 2051 * We cannot do block allocation or other extent handling in this 2052 * function. If there are buffers needing that, we have to redirty 2053 * the page. But we may reach here when we do a journal commit via 2054 * journal_submit_inode_data_buffers() and in that case we must write 2055 * allocated buffers to achieve data=ordered mode guarantees. 2056 * 2057 * Also, if there is only one buffer per page (the fs block 2058 * size == the page size), if one buffer needs block 2059 * allocation or needs to modify the extent tree to clear the 2060 * unwritten flag, we know that the page can't be written at 2061 * all, so we might as well refuse the write immediately. 2062 * Unfortunately if the block size != page size, we can't as 2063 * easily detect this case using ext4_walk_page_buffers(), but 2064 * for the extremely common case, this is an optimization that 2065 * skips a useless round trip through ext4_bio_write_page(). 2066 */ 2067 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2068 ext4_bh_delay_or_unwritten)) { 2069 redirty_page_for_writepage(wbc, page); 2070 if ((current->flags & PF_MEMALLOC) || 2071 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2072 /* 2073 * For memory cleaning there's no point in writing only 2074 * some buffers. So just bail out. Warn if we came here 2075 * from direct reclaim. 2076 */ 2077 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2078 == PF_MEMALLOC); 2079 unlock_page(page); 2080 return 0; 2081 } 2082 keep_towrite = true; 2083 } 2084 2085 if (PageChecked(page) && ext4_should_journal_data(inode)) 2086 /* 2087 * It's mmapped pagecache. Add buffers and journal it. There 2088 * doesn't seem much point in redirtying the page here. 2089 */ 2090 return __ext4_journalled_writepage(page, len); 2091 2092 ext4_io_submit_init(&io_submit, wbc); 2093 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2094 if (!io_submit.io_end) { 2095 redirty_page_for_writepage(wbc, page); 2096 unlock_page(page); 2097 return -ENOMEM; 2098 } 2099 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 2100 ext4_io_submit(&io_submit); 2101 /* Drop io_end reference we got from init */ 2102 ext4_put_io_end_defer(io_submit.io_end); 2103 return ret; 2104 } 2105 2106 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2107 { 2108 int len; 2109 loff_t size = i_size_read(mpd->inode); 2110 int err; 2111 2112 BUG_ON(page->index != mpd->first_page); 2113 if (page->index == size >> PAGE_SHIFT) 2114 len = size & ~PAGE_MASK; 2115 else 2116 len = PAGE_SIZE; 2117 clear_page_dirty_for_io(page); 2118 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 2119 if (!err) 2120 mpd->wbc->nr_to_write--; 2121 mpd->first_page++; 2122 2123 return err; 2124 } 2125 2126 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 2127 2128 /* 2129 * mballoc gives us at most this number of blocks... 2130 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2131 * The rest of mballoc seems to handle chunks up to full group size. 2132 */ 2133 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2134 2135 /* 2136 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2137 * 2138 * @mpd - extent of blocks 2139 * @lblk - logical number of the block in the file 2140 * @bh - buffer head we want to add to the extent 2141 * 2142 * The function is used to collect contig. blocks in the same state. If the 2143 * buffer doesn't require mapping for writeback and we haven't started the 2144 * extent of buffers to map yet, the function returns 'true' immediately - the 2145 * caller can write the buffer right away. Otherwise the function returns true 2146 * if the block has been added to the extent, false if the block couldn't be 2147 * added. 2148 */ 2149 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2150 struct buffer_head *bh) 2151 { 2152 struct ext4_map_blocks *map = &mpd->map; 2153 2154 /* Buffer that doesn't need mapping for writeback? */ 2155 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2156 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2157 /* So far no extent to map => we write the buffer right away */ 2158 if (map->m_len == 0) 2159 return true; 2160 return false; 2161 } 2162 2163 /* First block in the extent? */ 2164 if (map->m_len == 0) { 2165 map->m_lblk = lblk; 2166 map->m_len = 1; 2167 map->m_flags = bh->b_state & BH_FLAGS; 2168 return true; 2169 } 2170 2171 /* Don't go larger than mballoc is willing to allocate */ 2172 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2173 return false; 2174 2175 /* Can we merge the block to our big extent? */ 2176 if (lblk == map->m_lblk + map->m_len && 2177 (bh->b_state & BH_FLAGS) == map->m_flags) { 2178 map->m_len++; 2179 return true; 2180 } 2181 return false; 2182 } 2183 2184 /* 2185 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2186 * 2187 * @mpd - extent of blocks for mapping 2188 * @head - the first buffer in the page 2189 * @bh - buffer we should start processing from 2190 * @lblk - logical number of the block in the file corresponding to @bh 2191 * 2192 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2193 * the page for IO if all buffers in this page were mapped and there's no 2194 * accumulated extent of buffers to map or add buffers in the page to the 2195 * extent of buffers to map. The function returns 1 if the caller can continue 2196 * by processing the next page, 0 if it should stop adding buffers to the 2197 * extent to map because we cannot extend it anymore. It can also return value 2198 * < 0 in case of error during IO submission. 2199 */ 2200 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2201 struct buffer_head *head, 2202 struct buffer_head *bh, 2203 ext4_lblk_t lblk) 2204 { 2205 struct inode *inode = mpd->inode; 2206 int err; 2207 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) 2208 >> inode->i_blkbits; 2209 2210 do { 2211 BUG_ON(buffer_locked(bh)); 2212 2213 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2214 /* Found extent to map? */ 2215 if (mpd->map.m_len) 2216 return 0; 2217 /* Everything mapped so far and we hit EOF */ 2218 break; 2219 } 2220 } while (lblk++, (bh = bh->b_this_page) != head); 2221 /* So far everything mapped? Submit the page for IO. */ 2222 if (mpd->map.m_len == 0) { 2223 err = mpage_submit_page(mpd, head->b_page); 2224 if (err < 0) 2225 return err; 2226 } 2227 return lblk < blocks; 2228 } 2229 2230 /* 2231 * mpage_map_buffers - update buffers corresponding to changed extent and 2232 * submit fully mapped pages for IO 2233 * 2234 * @mpd - description of extent to map, on return next extent to map 2235 * 2236 * Scan buffers corresponding to changed extent (we expect corresponding pages 2237 * to be already locked) and update buffer state according to new extent state. 2238 * We map delalloc buffers to their physical location, clear unwritten bits, 2239 * and mark buffers as uninit when we perform writes to unwritten extents 2240 * and do extent conversion after IO is finished. If the last page is not fully 2241 * mapped, we update @map to the next extent in the last page that needs 2242 * mapping. Otherwise we submit the page for IO. 2243 */ 2244 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2245 { 2246 struct pagevec pvec; 2247 int nr_pages, i; 2248 struct inode *inode = mpd->inode; 2249 struct buffer_head *head, *bh; 2250 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2251 pgoff_t start, end; 2252 ext4_lblk_t lblk; 2253 sector_t pblock; 2254 int err; 2255 2256 start = mpd->map.m_lblk >> bpp_bits; 2257 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2258 lblk = start << bpp_bits; 2259 pblock = mpd->map.m_pblk; 2260 2261 pagevec_init(&pvec, 0); 2262 while (start <= end) { 2263 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, 2264 PAGEVEC_SIZE); 2265 if (nr_pages == 0) 2266 break; 2267 for (i = 0; i < nr_pages; i++) { 2268 struct page *page = pvec.pages[i]; 2269 2270 if (page->index > end) 2271 break; 2272 /* Up to 'end' pages must be contiguous */ 2273 BUG_ON(page->index != start); 2274 bh = head = page_buffers(page); 2275 do { 2276 if (lblk < mpd->map.m_lblk) 2277 continue; 2278 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2279 /* 2280 * Buffer after end of mapped extent. 2281 * Find next buffer in the page to map. 2282 */ 2283 mpd->map.m_len = 0; 2284 mpd->map.m_flags = 0; 2285 /* 2286 * FIXME: If dioread_nolock supports 2287 * blocksize < pagesize, we need to make 2288 * sure we add size mapped so far to 2289 * io_end->size as the following call 2290 * can submit the page for IO. 2291 */ 2292 err = mpage_process_page_bufs(mpd, head, 2293 bh, lblk); 2294 pagevec_release(&pvec); 2295 if (err > 0) 2296 err = 0; 2297 return err; 2298 } 2299 if (buffer_delay(bh)) { 2300 clear_buffer_delay(bh); 2301 bh->b_blocknr = pblock++; 2302 } 2303 clear_buffer_unwritten(bh); 2304 } while (lblk++, (bh = bh->b_this_page) != head); 2305 2306 /* 2307 * FIXME: This is going to break if dioread_nolock 2308 * supports blocksize < pagesize as we will try to 2309 * convert potentially unmapped parts of inode. 2310 */ 2311 mpd->io_submit.io_end->size += PAGE_SIZE; 2312 /* Page fully mapped - let IO run! */ 2313 err = mpage_submit_page(mpd, page); 2314 if (err < 0) { 2315 pagevec_release(&pvec); 2316 return err; 2317 } 2318 start++; 2319 } 2320 pagevec_release(&pvec); 2321 } 2322 /* Extent fully mapped and matches with page boundary. We are done. */ 2323 mpd->map.m_len = 0; 2324 mpd->map.m_flags = 0; 2325 return 0; 2326 } 2327 2328 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2329 { 2330 struct inode *inode = mpd->inode; 2331 struct ext4_map_blocks *map = &mpd->map; 2332 int get_blocks_flags; 2333 int err, dioread_nolock; 2334 2335 trace_ext4_da_write_pages_extent(inode, map); 2336 /* 2337 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2338 * to convert an unwritten extent to be initialized (in the case 2339 * where we have written into one or more preallocated blocks). It is 2340 * possible that we're going to need more metadata blocks than 2341 * previously reserved. However we must not fail because we're in 2342 * writeback and there is nothing we can do about it so it might result 2343 * in data loss. So use reserved blocks to allocate metadata if 2344 * possible. 2345 * 2346 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2347 * the blocks in question are delalloc blocks. This indicates 2348 * that the blocks and quotas has already been checked when 2349 * the data was copied into the page cache. 2350 */ 2351 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2352 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2353 EXT4_GET_BLOCKS_IO_SUBMIT; 2354 dioread_nolock = ext4_should_dioread_nolock(inode); 2355 if (dioread_nolock) 2356 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2357 if (map->m_flags & (1 << BH_Delay)) 2358 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2359 2360 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2361 if (err < 0) 2362 return err; 2363 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2364 if (!mpd->io_submit.io_end->handle && 2365 ext4_handle_valid(handle)) { 2366 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2367 handle->h_rsv_handle = NULL; 2368 } 2369 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2370 } 2371 2372 BUG_ON(map->m_len == 0); 2373 if (map->m_flags & EXT4_MAP_NEW) { 2374 struct block_device *bdev = inode->i_sb->s_bdev; 2375 int i; 2376 2377 for (i = 0; i < map->m_len; i++) 2378 unmap_underlying_metadata(bdev, map->m_pblk + i); 2379 } 2380 return 0; 2381 } 2382 2383 /* 2384 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2385 * mpd->len and submit pages underlying it for IO 2386 * 2387 * @handle - handle for journal operations 2388 * @mpd - extent to map 2389 * @give_up_on_write - we set this to true iff there is a fatal error and there 2390 * is no hope of writing the data. The caller should discard 2391 * dirty pages to avoid infinite loops. 2392 * 2393 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2394 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2395 * them to initialized or split the described range from larger unwritten 2396 * extent. Note that we need not map all the described range since allocation 2397 * can return less blocks or the range is covered by more unwritten extents. We 2398 * cannot map more because we are limited by reserved transaction credits. On 2399 * the other hand we always make sure that the last touched page is fully 2400 * mapped so that it can be written out (and thus forward progress is 2401 * guaranteed). After mapping we submit all mapped pages for IO. 2402 */ 2403 static int mpage_map_and_submit_extent(handle_t *handle, 2404 struct mpage_da_data *mpd, 2405 bool *give_up_on_write) 2406 { 2407 struct inode *inode = mpd->inode; 2408 struct ext4_map_blocks *map = &mpd->map; 2409 int err; 2410 loff_t disksize; 2411 int progress = 0; 2412 2413 mpd->io_submit.io_end->offset = 2414 ((loff_t)map->m_lblk) << inode->i_blkbits; 2415 do { 2416 err = mpage_map_one_extent(handle, mpd); 2417 if (err < 0) { 2418 struct super_block *sb = inode->i_sb; 2419 2420 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2421 goto invalidate_dirty_pages; 2422 /* 2423 * Let the uper layers retry transient errors. 2424 * In the case of ENOSPC, if ext4_count_free_blocks() 2425 * is non-zero, a commit should free up blocks. 2426 */ 2427 if ((err == -ENOMEM) || 2428 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2429 if (progress) 2430 goto update_disksize; 2431 return err; 2432 } 2433 ext4_msg(sb, KERN_CRIT, 2434 "Delayed block allocation failed for " 2435 "inode %lu at logical offset %llu with" 2436 " max blocks %u with error %d", 2437 inode->i_ino, 2438 (unsigned long long)map->m_lblk, 2439 (unsigned)map->m_len, -err); 2440 ext4_msg(sb, KERN_CRIT, 2441 "This should not happen!! Data will " 2442 "be lost\n"); 2443 if (err == -ENOSPC) 2444 ext4_print_free_blocks(inode); 2445 invalidate_dirty_pages: 2446 *give_up_on_write = true; 2447 return err; 2448 } 2449 progress = 1; 2450 /* 2451 * Update buffer state, submit mapped pages, and get us new 2452 * extent to map 2453 */ 2454 err = mpage_map_and_submit_buffers(mpd); 2455 if (err < 0) 2456 goto update_disksize; 2457 } while (map->m_len); 2458 2459 update_disksize: 2460 /* 2461 * Update on-disk size after IO is submitted. Races with 2462 * truncate are avoided by checking i_size under i_data_sem. 2463 */ 2464 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2465 if (disksize > EXT4_I(inode)->i_disksize) { 2466 int err2; 2467 loff_t i_size; 2468 2469 down_write(&EXT4_I(inode)->i_data_sem); 2470 i_size = i_size_read(inode); 2471 if (disksize > i_size) 2472 disksize = i_size; 2473 if (disksize > EXT4_I(inode)->i_disksize) 2474 EXT4_I(inode)->i_disksize = disksize; 2475 err2 = ext4_mark_inode_dirty(handle, inode); 2476 up_write(&EXT4_I(inode)->i_data_sem); 2477 if (err2) 2478 ext4_error(inode->i_sb, 2479 "Failed to mark inode %lu dirty", 2480 inode->i_ino); 2481 if (!err) 2482 err = err2; 2483 } 2484 return err; 2485 } 2486 2487 /* 2488 * Calculate the total number of credits to reserve for one writepages 2489 * iteration. This is called from ext4_writepages(). We map an extent of 2490 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2491 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2492 * bpp - 1 blocks in bpp different extents. 2493 */ 2494 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2495 { 2496 int bpp = ext4_journal_blocks_per_page(inode); 2497 2498 return ext4_meta_trans_blocks(inode, 2499 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2500 } 2501 2502 /* 2503 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2504 * and underlying extent to map 2505 * 2506 * @mpd - where to look for pages 2507 * 2508 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2509 * IO immediately. When we find a page which isn't mapped we start accumulating 2510 * extent of buffers underlying these pages that needs mapping (formed by 2511 * either delayed or unwritten buffers). We also lock the pages containing 2512 * these buffers. The extent found is returned in @mpd structure (starting at 2513 * mpd->lblk with length mpd->len blocks). 2514 * 2515 * Note that this function can attach bios to one io_end structure which are 2516 * neither logically nor physically contiguous. Although it may seem as an 2517 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2518 * case as we need to track IO to all buffers underlying a page in one io_end. 2519 */ 2520 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2521 { 2522 struct address_space *mapping = mpd->inode->i_mapping; 2523 struct pagevec pvec; 2524 unsigned int nr_pages; 2525 long left = mpd->wbc->nr_to_write; 2526 pgoff_t index = mpd->first_page; 2527 pgoff_t end = mpd->last_page; 2528 int tag; 2529 int i, err = 0; 2530 int blkbits = mpd->inode->i_blkbits; 2531 ext4_lblk_t lblk; 2532 struct buffer_head *head; 2533 2534 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2535 tag = PAGECACHE_TAG_TOWRITE; 2536 else 2537 tag = PAGECACHE_TAG_DIRTY; 2538 2539 pagevec_init(&pvec, 0); 2540 mpd->map.m_len = 0; 2541 mpd->next_page = index; 2542 while (index <= end) { 2543 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2544 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2545 if (nr_pages == 0) 2546 goto out; 2547 2548 for (i = 0; i < nr_pages; i++) { 2549 struct page *page = pvec.pages[i]; 2550 2551 /* 2552 * At this point, the page may be truncated or 2553 * invalidated (changing page->mapping to NULL), or 2554 * even swizzled back from swapper_space to tmpfs file 2555 * mapping. However, page->index will not change 2556 * because we have a reference on the page. 2557 */ 2558 if (page->index > end) 2559 goto out; 2560 2561 /* 2562 * Accumulated enough dirty pages? This doesn't apply 2563 * to WB_SYNC_ALL mode. For integrity sync we have to 2564 * keep going because someone may be concurrently 2565 * dirtying pages, and we might have synced a lot of 2566 * newly appeared dirty pages, but have not synced all 2567 * of the old dirty pages. 2568 */ 2569 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2570 goto out; 2571 2572 /* If we can't merge this page, we are done. */ 2573 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2574 goto out; 2575 2576 lock_page(page); 2577 /* 2578 * If the page is no longer dirty, or its mapping no 2579 * longer corresponds to inode we are writing (which 2580 * means it has been truncated or invalidated), or the 2581 * page is already under writeback and we are not doing 2582 * a data integrity writeback, skip the page 2583 */ 2584 if (!PageDirty(page) || 2585 (PageWriteback(page) && 2586 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2587 unlikely(page->mapping != mapping)) { 2588 unlock_page(page); 2589 continue; 2590 } 2591 2592 wait_on_page_writeback(page); 2593 BUG_ON(PageWriteback(page)); 2594 2595 if (mpd->map.m_len == 0) 2596 mpd->first_page = page->index; 2597 mpd->next_page = page->index + 1; 2598 /* Add all dirty buffers to mpd */ 2599 lblk = ((ext4_lblk_t)page->index) << 2600 (PAGE_SHIFT - blkbits); 2601 head = page_buffers(page); 2602 err = mpage_process_page_bufs(mpd, head, head, lblk); 2603 if (err <= 0) 2604 goto out; 2605 err = 0; 2606 left--; 2607 } 2608 pagevec_release(&pvec); 2609 cond_resched(); 2610 } 2611 return 0; 2612 out: 2613 pagevec_release(&pvec); 2614 return err; 2615 } 2616 2617 static int __writepage(struct page *page, struct writeback_control *wbc, 2618 void *data) 2619 { 2620 struct address_space *mapping = data; 2621 int ret = ext4_writepage(page, wbc); 2622 mapping_set_error(mapping, ret); 2623 return ret; 2624 } 2625 2626 static int ext4_writepages(struct address_space *mapping, 2627 struct writeback_control *wbc) 2628 { 2629 pgoff_t writeback_index = 0; 2630 long nr_to_write = wbc->nr_to_write; 2631 int range_whole = 0; 2632 int cycled = 1; 2633 handle_t *handle = NULL; 2634 struct mpage_da_data mpd; 2635 struct inode *inode = mapping->host; 2636 int needed_blocks, rsv_blocks = 0, ret = 0; 2637 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2638 bool done; 2639 struct blk_plug plug; 2640 bool give_up_on_write = false; 2641 2642 percpu_down_read(&sbi->s_journal_flag_rwsem); 2643 trace_ext4_writepages(inode, wbc); 2644 2645 if (dax_mapping(mapping)) { 2646 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, 2647 wbc); 2648 goto out_writepages; 2649 } 2650 2651 /* 2652 * No pages to write? This is mainly a kludge to avoid starting 2653 * a transaction for special inodes like journal inode on last iput() 2654 * because that could violate lock ordering on umount 2655 */ 2656 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2657 goto out_writepages; 2658 2659 if (ext4_should_journal_data(inode)) { 2660 struct blk_plug plug; 2661 2662 blk_start_plug(&plug); 2663 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2664 blk_finish_plug(&plug); 2665 goto out_writepages; 2666 } 2667 2668 /* 2669 * If the filesystem has aborted, it is read-only, so return 2670 * right away instead of dumping stack traces later on that 2671 * will obscure the real source of the problem. We test 2672 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2673 * the latter could be true if the filesystem is mounted 2674 * read-only, and in that case, ext4_writepages should 2675 * *never* be called, so if that ever happens, we would want 2676 * the stack trace. 2677 */ 2678 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2679 ret = -EROFS; 2680 goto out_writepages; 2681 } 2682 2683 if (ext4_should_dioread_nolock(inode)) { 2684 /* 2685 * We may need to convert up to one extent per block in 2686 * the page and we may dirty the inode. 2687 */ 2688 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits); 2689 } 2690 2691 /* 2692 * If we have inline data and arrive here, it means that 2693 * we will soon create the block for the 1st page, so 2694 * we'd better clear the inline data here. 2695 */ 2696 if (ext4_has_inline_data(inode)) { 2697 /* Just inode will be modified... */ 2698 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2699 if (IS_ERR(handle)) { 2700 ret = PTR_ERR(handle); 2701 goto out_writepages; 2702 } 2703 BUG_ON(ext4_test_inode_state(inode, 2704 EXT4_STATE_MAY_INLINE_DATA)); 2705 ext4_destroy_inline_data(handle, inode); 2706 ext4_journal_stop(handle); 2707 } 2708 2709 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2710 range_whole = 1; 2711 2712 if (wbc->range_cyclic) { 2713 writeback_index = mapping->writeback_index; 2714 if (writeback_index) 2715 cycled = 0; 2716 mpd.first_page = writeback_index; 2717 mpd.last_page = -1; 2718 } else { 2719 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2720 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2721 } 2722 2723 mpd.inode = inode; 2724 mpd.wbc = wbc; 2725 ext4_io_submit_init(&mpd.io_submit, wbc); 2726 retry: 2727 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2728 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2729 done = false; 2730 blk_start_plug(&plug); 2731 while (!done && mpd.first_page <= mpd.last_page) { 2732 /* For each extent of pages we use new io_end */ 2733 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2734 if (!mpd.io_submit.io_end) { 2735 ret = -ENOMEM; 2736 break; 2737 } 2738 2739 /* 2740 * We have two constraints: We find one extent to map and we 2741 * must always write out whole page (makes a difference when 2742 * blocksize < pagesize) so that we don't block on IO when we 2743 * try to write out the rest of the page. Journalled mode is 2744 * not supported by delalloc. 2745 */ 2746 BUG_ON(ext4_should_journal_data(inode)); 2747 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2748 2749 /* start a new transaction */ 2750 handle = ext4_journal_start_with_reserve(inode, 2751 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2752 if (IS_ERR(handle)) { 2753 ret = PTR_ERR(handle); 2754 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2755 "%ld pages, ino %lu; err %d", __func__, 2756 wbc->nr_to_write, inode->i_ino, ret); 2757 /* Release allocated io_end */ 2758 ext4_put_io_end(mpd.io_submit.io_end); 2759 break; 2760 } 2761 2762 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2763 ret = mpage_prepare_extent_to_map(&mpd); 2764 if (!ret) { 2765 if (mpd.map.m_len) 2766 ret = mpage_map_and_submit_extent(handle, &mpd, 2767 &give_up_on_write); 2768 else { 2769 /* 2770 * We scanned the whole range (or exhausted 2771 * nr_to_write), submitted what was mapped and 2772 * didn't find anything needing mapping. We are 2773 * done. 2774 */ 2775 done = true; 2776 } 2777 } 2778 /* 2779 * Caution: If the handle is synchronous, 2780 * ext4_journal_stop() can wait for transaction commit 2781 * to finish which may depend on writeback of pages to 2782 * complete or on page lock to be released. In that 2783 * case, we have to wait until after after we have 2784 * submitted all the IO, released page locks we hold, 2785 * and dropped io_end reference (for extent conversion 2786 * to be able to complete) before stopping the handle. 2787 */ 2788 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2789 ext4_journal_stop(handle); 2790 handle = NULL; 2791 } 2792 /* Submit prepared bio */ 2793 ext4_io_submit(&mpd.io_submit); 2794 /* Unlock pages we didn't use */ 2795 mpage_release_unused_pages(&mpd, give_up_on_write); 2796 /* 2797 * Drop our io_end reference we got from init. We have 2798 * to be careful and use deferred io_end finishing if 2799 * we are still holding the transaction as we can 2800 * release the last reference to io_end which may end 2801 * up doing unwritten extent conversion. 2802 */ 2803 if (handle) { 2804 ext4_put_io_end_defer(mpd.io_submit.io_end); 2805 ext4_journal_stop(handle); 2806 } else 2807 ext4_put_io_end(mpd.io_submit.io_end); 2808 2809 if (ret == -ENOSPC && sbi->s_journal) { 2810 /* 2811 * Commit the transaction which would 2812 * free blocks released in the transaction 2813 * and try again 2814 */ 2815 jbd2_journal_force_commit_nested(sbi->s_journal); 2816 ret = 0; 2817 continue; 2818 } 2819 /* Fatal error - ENOMEM, EIO... */ 2820 if (ret) 2821 break; 2822 } 2823 blk_finish_plug(&plug); 2824 if (!ret && !cycled && wbc->nr_to_write > 0) { 2825 cycled = 1; 2826 mpd.last_page = writeback_index - 1; 2827 mpd.first_page = 0; 2828 goto retry; 2829 } 2830 2831 /* Update index */ 2832 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2833 /* 2834 * Set the writeback_index so that range_cyclic 2835 * mode will write it back later 2836 */ 2837 mapping->writeback_index = mpd.first_page; 2838 2839 out_writepages: 2840 trace_ext4_writepages_result(inode, wbc, ret, 2841 nr_to_write - wbc->nr_to_write); 2842 percpu_up_read(&sbi->s_journal_flag_rwsem); 2843 return ret; 2844 } 2845 2846 static int ext4_nonda_switch(struct super_block *sb) 2847 { 2848 s64 free_clusters, dirty_clusters; 2849 struct ext4_sb_info *sbi = EXT4_SB(sb); 2850 2851 /* 2852 * switch to non delalloc mode if we are running low 2853 * on free block. The free block accounting via percpu 2854 * counters can get slightly wrong with percpu_counter_batch getting 2855 * accumulated on each CPU without updating global counters 2856 * Delalloc need an accurate free block accounting. So switch 2857 * to non delalloc when we are near to error range. 2858 */ 2859 free_clusters = 2860 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2861 dirty_clusters = 2862 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2863 /* 2864 * Start pushing delalloc when 1/2 of free blocks are dirty. 2865 */ 2866 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2867 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2868 2869 if (2 * free_clusters < 3 * dirty_clusters || 2870 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2871 /* 2872 * free block count is less than 150% of dirty blocks 2873 * or free blocks is less than watermark 2874 */ 2875 return 1; 2876 } 2877 return 0; 2878 } 2879 2880 /* We always reserve for an inode update; the superblock could be there too */ 2881 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2882 { 2883 if (likely(ext4_has_feature_large_file(inode->i_sb))) 2884 return 1; 2885 2886 if (pos + len <= 0x7fffffffULL) 2887 return 1; 2888 2889 /* We might need to update the superblock to set LARGE_FILE */ 2890 return 2; 2891 } 2892 2893 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2894 loff_t pos, unsigned len, unsigned flags, 2895 struct page **pagep, void **fsdata) 2896 { 2897 int ret, retries = 0; 2898 struct page *page; 2899 pgoff_t index; 2900 struct inode *inode = mapping->host; 2901 handle_t *handle; 2902 2903 index = pos >> PAGE_SHIFT; 2904 2905 if (ext4_nonda_switch(inode->i_sb) || 2906 S_ISLNK(inode->i_mode)) { 2907 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2908 return ext4_write_begin(file, mapping, pos, 2909 len, flags, pagep, fsdata); 2910 } 2911 *fsdata = (void *)0; 2912 trace_ext4_da_write_begin(inode, pos, len, flags); 2913 2914 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2915 ret = ext4_da_write_inline_data_begin(mapping, inode, 2916 pos, len, flags, 2917 pagep, fsdata); 2918 if (ret < 0) 2919 return ret; 2920 if (ret == 1) 2921 return 0; 2922 } 2923 2924 /* 2925 * grab_cache_page_write_begin() can take a long time if the 2926 * system is thrashing due to memory pressure, or if the page 2927 * is being written back. So grab it first before we start 2928 * the transaction handle. This also allows us to allocate 2929 * the page (if needed) without using GFP_NOFS. 2930 */ 2931 retry_grab: 2932 page = grab_cache_page_write_begin(mapping, index, flags); 2933 if (!page) 2934 return -ENOMEM; 2935 unlock_page(page); 2936 2937 /* 2938 * With delayed allocation, we don't log the i_disksize update 2939 * if there is delayed block allocation. But we still need 2940 * to journalling the i_disksize update if writes to the end 2941 * of file which has an already mapped buffer. 2942 */ 2943 retry_journal: 2944 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2945 ext4_da_write_credits(inode, pos, len)); 2946 if (IS_ERR(handle)) { 2947 put_page(page); 2948 return PTR_ERR(handle); 2949 } 2950 2951 lock_page(page); 2952 if (page->mapping != mapping) { 2953 /* The page got truncated from under us */ 2954 unlock_page(page); 2955 put_page(page); 2956 ext4_journal_stop(handle); 2957 goto retry_grab; 2958 } 2959 /* In case writeback began while the page was unlocked */ 2960 wait_for_stable_page(page); 2961 2962 #ifdef CONFIG_EXT4_FS_ENCRYPTION 2963 ret = ext4_block_write_begin(page, pos, len, 2964 ext4_da_get_block_prep); 2965 #else 2966 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2967 #endif 2968 if (ret < 0) { 2969 unlock_page(page); 2970 ext4_journal_stop(handle); 2971 /* 2972 * block_write_begin may have instantiated a few blocks 2973 * outside i_size. Trim these off again. Don't need 2974 * i_size_read because we hold i_mutex. 2975 */ 2976 if (pos + len > inode->i_size) 2977 ext4_truncate_failed_write(inode); 2978 2979 if (ret == -ENOSPC && 2980 ext4_should_retry_alloc(inode->i_sb, &retries)) 2981 goto retry_journal; 2982 2983 put_page(page); 2984 return ret; 2985 } 2986 2987 *pagep = page; 2988 return ret; 2989 } 2990 2991 /* 2992 * Check if we should update i_disksize 2993 * when write to the end of file but not require block allocation 2994 */ 2995 static int ext4_da_should_update_i_disksize(struct page *page, 2996 unsigned long offset) 2997 { 2998 struct buffer_head *bh; 2999 struct inode *inode = page->mapping->host; 3000 unsigned int idx; 3001 int i; 3002 3003 bh = page_buffers(page); 3004 idx = offset >> inode->i_blkbits; 3005 3006 for (i = 0; i < idx; i++) 3007 bh = bh->b_this_page; 3008 3009 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3010 return 0; 3011 return 1; 3012 } 3013 3014 static int ext4_da_write_end(struct file *file, 3015 struct address_space *mapping, 3016 loff_t pos, unsigned len, unsigned copied, 3017 struct page *page, void *fsdata) 3018 { 3019 struct inode *inode = mapping->host; 3020 int ret = 0, ret2; 3021 handle_t *handle = ext4_journal_current_handle(); 3022 loff_t new_i_size; 3023 unsigned long start, end; 3024 int write_mode = (int)(unsigned long)fsdata; 3025 3026 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3027 return ext4_write_end(file, mapping, pos, 3028 len, copied, page, fsdata); 3029 3030 trace_ext4_da_write_end(inode, pos, len, copied); 3031 start = pos & (PAGE_SIZE - 1); 3032 end = start + copied - 1; 3033 3034 /* 3035 * generic_write_end() will run mark_inode_dirty() if i_size 3036 * changes. So let's piggyback the i_disksize mark_inode_dirty 3037 * into that. 3038 */ 3039 new_i_size = pos + copied; 3040 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 3041 if (ext4_has_inline_data(inode) || 3042 ext4_da_should_update_i_disksize(page, end)) { 3043 ext4_update_i_disksize(inode, new_i_size); 3044 /* We need to mark inode dirty even if 3045 * new_i_size is less that inode->i_size 3046 * bu greater than i_disksize.(hint delalloc) 3047 */ 3048 ext4_mark_inode_dirty(handle, inode); 3049 } 3050 } 3051 3052 if (write_mode != CONVERT_INLINE_DATA && 3053 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3054 ext4_has_inline_data(inode)) 3055 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 3056 page); 3057 else 3058 ret2 = generic_write_end(file, mapping, pos, len, copied, 3059 page, fsdata); 3060 3061 copied = ret2; 3062 if (ret2 < 0) 3063 ret = ret2; 3064 ret2 = ext4_journal_stop(handle); 3065 if (!ret) 3066 ret = ret2; 3067 3068 return ret ? ret : copied; 3069 } 3070 3071 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 3072 unsigned int length) 3073 { 3074 /* 3075 * Drop reserved blocks 3076 */ 3077 BUG_ON(!PageLocked(page)); 3078 if (!page_has_buffers(page)) 3079 goto out; 3080 3081 ext4_da_page_release_reservation(page, offset, length); 3082 3083 out: 3084 ext4_invalidatepage(page, offset, length); 3085 3086 return; 3087 } 3088 3089 /* 3090 * Force all delayed allocation blocks to be allocated for a given inode. 3091 */ 3092 int ext4_alloc_da_blocks(struct inode *inode) 3093 { 3094 trace_ext4_alloc_da_blocks(inode); 3095 3096 if (!EXT4_I(inode)->i_reserved_data_blocks) 3097 return 0; 3098 3099 /* 3100 * We do something simple for now. The filemap_flush() will 3101 * also start triggering a write of the data blocks, which is 3102 * not strictly speaking necessary (and for users of 3103 * laptop_mode, not even desirable). However, to do otherwise 3104 * would require replicating code paths in: 3105 * 3106 * ext4_writepages() -> 3107 * write_cache_pages() ---> (via passed in callback function) 3108 * __mpage_da_writepage() --> 3109 * mpage_add_bh_to_extent() 3110 * mpage_da_map_blocks() 3111 * 3112 * The problem is that write_cache_pages(), located in 3113 * mm/page-writeback.c, marks pages clean in preparation for 3114 * doing I/O, which is not desirable if we're not planning on 3115 * doing I/O at all. 3116 * 3117 * We could call write_cache_pages(), and then redirty all of 3118 * the pages by calling redirty_page_for_writepage() but that 3119 * would be ugly in the extreme. So instead we would need to 3120 * replicate parts of the code in the above functions, 3121 * simplifying them because we wouldn't actually intend to 3122 * write out the pages, but rather only collect contiguous 3123 * logical block extents, call the multi-block allocator, and 3124 * then update the buffer heads with the block allocations. 3125 * 3126 * For now, though, we'll cheat by calling filemap_flush(), 3127 * which will map the blocks, and start the I/O, but not 3128 * actually wait for the I/O to complete. 3129 */ 3130 return filemap_flush(inode->i_mapping); 3131 } 3132 3133 /* 3134 * bmap() is special. It gets used by applications such as lilo and by 3135 * the swapper to find the on-disk block of a specific piece of data. 3136 * 3137 * Naturally, this is dangerous if the block concerned is still in the 3138 * journal. If somebody makes a swapfile on an ext4 data-journaling 3139 * filesystem and enables swap, then they may get a nasty shock when the 3140 * data getting swapped to that swapfile suddenly gets overwritten by 3141 * the original zero's written out previously to the journal and 3142 * awaiting writeback in the kernel's buffer cache. 3143 * 3144 * So, if we see any bmap calls here on a modified, data-journaled file, 3145 * take extra steps to flush any blocks which might be in the cache. 3146 */ 3147 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3148 { 3149 struct inode *inode = mapping->host; 3150 journal_t *journal; 3151 int err; 3152 3153 /* 3154 * We can get here for an inline file via the FIBMAP ioctl 3155 */ 3156 if (ext4_has_inline_data(inode)) 3157 return 0; 3158 3159 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3160 test_opt(inode->i_sb, DELALLOC)) { 3161 /* 3162 * With delalloc we want to sync the file 3163 * so that we can make sure we allocate 3164 * blocks for file 3165 */ 3166 filemap_write_and_wait(mapping); 3167 } 3168 3169 if (EXT4_JOURNAL(inode) && 3170 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3171 /* 3172 * This is a REALLY heavyweight approach, but the use of 3173 * bmap on dirty files is expected to be extremely rare: 3174 * only if we run lilo or swapon on a freshly made file 3175 * do we expect this to happen. 3176 * 3177 * (bmap requires CAP_SYS_RAWIO so this does not 3178 * represent an unprivileged user DOS attack --- we'd be 3179 * in trouble if mortal users could trigger this path at 3180 * will.) 3181 * 3182 * NB. EXT4_STATE_JDATA is not set on files other than 3183 * regular files. If somebody wants to bmap a directory 3184 * or symlink and gets confused because the buffer 3185 * hasn't yet been flushed to disk, they deserve 3186 * everything they get. 3187 */ 3188 3189 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3190 journal = EXT4_JOURNAL(inode); 3191 jbd2_journal_lock_updates(journal); 3192 err = jbd2_journal_flush(journal); 3193 jbd2_journal_unlock_updates(journal); 3194 3195 if (err) 3196 return 0; 3197 } 3198 3199 return generic_block_bmap(mapping, block, ext4_get_block); 3200 } 3201 3202 static int ext4_readpage(struct file *file, struct page *page) 3203 { 3204 int ret = -EAGAIN; 3205 struct inode *inode = page->mapping->host; 3206 3207 trace_ext4_readpage(page); 3208 3209 if (ext4_has_inline_data(inode)) 3210 ret = ext4_readpage_inline(inode, page); 3211 3212 if (ret == -EAGAIN) 3213 return ext4_mpage_readpages(page->mapping, NULL, page, 1); 3214 3215 return ret; 3216 } 3217 3218 static int 3219 ext4_readpages(struct file *file, struct address_space *mapping, 3220 struct list_head *pages, unsigned nr_pages) 3221 { 3222 struct inode *inode = mapping->host; 3223 3224 /* If the file has inline data, no need to do readpages. */ 3225 if (ext4_has_inline_data(inode)) 3226 return 0; 3227 3228 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages); 3229 } 3230 3231 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3232 unsigned int length) 3233 { 3234 trace_ext4_invalidatepage(page, offset, length); 3235 3236 /* No journalling happens on data buffers when this function is used */ 3237 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3238 3239 block_invalidatepage(page, offset, length); 3240 } 3241 3242 static int __ext4_journalled_invalidatepage(struct page *page, 3243 unsigned int offset, 3244 unsigned int length) 3245 { 3246 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3247 3248 trace_ext4_journalled_invalidatepage(page, offset, length); 3249 3250 /* 3251 * If it's a full truncate we just forget about the pending dirtying 3252 */ 3253 if (offset == 0 && length == PAGE_SIZE) 3254 ClearPageChecked(page); 3255 3256 return jbd2_journal_invalidatepage(journal, page, offset, length); 3257 } 3258 3259 /* Wrapper for aops... */ 3260 static void ext4_journalled_invalidatepage(struct page *page, 3261 unsigned int offset, 3262 unsigned int length) 3263 { 3264 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3265 } 3266 3267 static int ext4_releasepage(struct page *page, gfp_t wait) 3268 { 3269 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3270 3271 trace_ext4_releasepage(page); 3272 3273 /* Page has dirty journalled data -> cannot release */ 3274 if (PageChecked(page)) 3275 return 0; 3276 if (journal) 3277 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3278 else 3279 return try_to_free_buffers(page); 3280 } 3281 3282 #ifdef CONFIG_FS_DAX 3283 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3284 unsigned flags, struct iomap *iomap) 3285 { 3286 unsigned int blkbits = inode->i_blkbits; 3287 unsigned long first_block = offset >> blkbits; 3288 unsigned long last_block = (offset + length - 1) >> blkbits; 3289 struct ext4_map_blocks map; 3290 int ret; 3291 3292 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3293 return -ERANGE; 3294 3295 map.m_lblk = first_block; 3296 map.m_len = last_block - first_block + 1; 3297 3298 if (!(flags & IOMAP_WRITE)) { 3299 ret = ext4_map_blocks(NULL, inode, &map, 0); 3300 } else { 3301 int dio_credits; 3302 handle_t *handle; 3303 int retries = 0; 3304 3305 /* Trim mapping request to maximum we can map at once for DIO */ 3306 if (map.m_len > DIO_MAX_BLOCKS) 3307 map.m_len = DIO_MAX_BLOCKS; 3308 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 3309 retry: 3310 /* 3311 * Either we allocate blocks and then we don't get unwritten 3312 * extent so we have reserved enough credits, or the blocks 3313 * are already allocated and unwritten and in that case 3314 * extent conversion fits in the credits as well. 3315 */ 3316 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 3317 dio_credits); 3318 if (IS_ERR(handle)) 3319 return PTR_ERR(handle); 3320 3321 ret = ext4_map_blocks(handle, inode, &map, 3322 EXT4_GET_BLOCKS_CREATE_ZERO); 3323 if (ret < 0) { 3324 ext4_journal_stop(handle); 3325 if (ret == -ENOSPC && 3326 ext4_should_retry_alloc(inode->i_sb, &retries)) 3327 goto retry; 3328 return ret; 3329 } 3330 3331 /* 3332 * If we added blocks beyond i_size, we need to make sure they 3333 * will get truncated if we crash before updating i_size in 3334 * ext4_iomap_end(). For faults we don't need to do that (and 3335 * even cannot because for orphan list operations inode_lock is 3336 * required) - if we happen to instantiate block beyond i_size, 3337 * it is because we race with truncate which has already added 3338 * the inode to the orphan list. 3339 */ 3340 if (!(flags & IOMAP_FAULT) && first_block + map.m_len > 3341 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) { 3342 int err; 3343 3344 err = ext4_orphan_add(handle, inode); 3345 if (err < 0) { 3346 ext4_journal_stop(handle); 3347 return err; 3348 } 3349 } 3350 ext4_journal_stop(handle); 3351 } 3352 3353 iomap->flags = 0; 3354 iomap->bdev = inode->i_sb->s_bdev; 3355 iomap->offset = first_block << blkbits; 3356 3357 if (ret == 0) { 3358 iomap->type = IOMAP_HOLE; 3359 iomap->blkno = IOMAP_NULL_BLOCK; 3360 iomap->length = (u64)map.m_len << blkbits; 3361 } else { 3362 if (map.m_flags & EXT4_MAP_MAPPED) { 3363 iomap->type = IOMAP_MAPPED; 3364 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) { 3365 iomap->type = IOMAP_UNWRITTEN; 3366 } else { 3367 WARN_ON_ONCE(1); 3368 return -EIO; 3369 } 3370 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9); 3371 iomap->length = (u64)map.m_len << blkbits; 3372 } 3373 3374 if (map.m_flags & EXT4_MAP_NEW) 3375 iomap->flags |= IOMAP_F_NEW; 3376 return 0; 3377 } 3378 3379 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3380 ssize_t written, unsigned flags, struct iomap *iomap) 3381 { 3382 int ret = 0; 3383 handle_t *handle; 3384 int blkbits = inode->i_blkbits; 3385 bool truncate = false; 3386 3387 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT)) 3388 return 0; 3389 3390 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3391 if (IS_ERR(handle)) { 3392 ret = PTR_ERR(handle); 3393 goto orphan_del; 3394 } 3395 if (ext4_update_inode_size(inode, offset + written)) 3396 ext4_mark_inode_dirty(handle, inode); 3397 /* 3398 * We may need to truncate allocated but not written blocks beyond EOF. 3399 */ 3400 if (iomap->offset + iomap->length > 3401 ALIGN(inode->i_size, 1 << blkbits)) { 3402 ext4_lblk_t written_blk, end_blk; 3403 3404 written_blk = (offset + written) >> blkbits; 3405 end_blk = (offset + length) >> blkbits; 3406 if (written_blk < end_blk && ext4_can_truncate(inode)) 3407 truncate = true; 3408 } 3409 /* 3410 * Remove inode from orphan list if we were extending a inode and 3411 * everything went fine. 3412 */ 3413 if (!truncate && inode->i_nlink && 3414 !list_empty(&EXT4_I(inode)->i_orphan)) 3415 ext4_orphan_del(handle, inode); 3416 ext4_journal_stop(handle); 3417 if (truncate) { 3418 ext4_truncate_failed_write(inode); 3419 orphan_del: 3420 /* 3421 * If truncate failed early the inode might still be on the 3422 * orphan list; we need to make sure the inode is removed from 3423 * the orphan list in that case. 3424 */ 3425 if (inode->i_nlink) 3426 ext4_orphan_del(NULL, inode); 3427 } 3428 return ret; 3429 } 3430 3431 struct iomap_ops ext4_iomap_ops = { 3432 .iomap_begin = ext4_iomap_begin, 3433 .iomap_end = ext4_iomap_end, 3434 }; 3435 3436 #endif 3437 3438 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3439 ssize_t size, void *private) 3440 { 3441 ext4_io_end_t *io_end = private; 3442 3443 /* if not async direct IO just return */ 3444 if (!io_end) 3445 return 0; 3446 3447 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3448 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3449 io_end, io_end->inode->i_ino, iocb, offset, size); 3450 3451 /* 3452 * Error during AIO DIO. We cannot convert unwritten extents as the 3453 * data was not written. Just clear the unwritten flag and drop io_end. 3454 */ 3455 if (size <= 0) { 3456 ext4_clear_io_unwritten_flag(io_end); 3457 size = 0; 3458 } 3459 io_end->offset = offset; 3460 io_end->size = size; 3461 ext4_put_io_end(io_end); 3462 3463 return 0; 3464 } 3465 3466 /* 3467 * Handling of direct IO writes. 3468 * 3469 * For ext4 extent files, ext4 will do direct-io write even to holes, 3470 * preallocated extents, and those write extend the file, no need to 3471 * fall back to buffered IO. 3472 * 3473 * For holes, we fallocate those blocks, mark them as unwritten 3474 * If those blocks were preallocated, we mark sure they are split, but 3475 * still keep the range to write as unwritten. 3476 * 3477 * The unwritten extents will be converted to written when DIO is completed. 3478 * For async direct IO, since the IO may still pending when return, we 3479 * set up an end_io call back function, which will do the conversion 3480 * when async direct IO completed. 3481 * 3482 * If the O_DIRECT write will extend the file then add this inode to the 3483 * orphan list. So recovery will truncate it back to the original size 3484 * if the machine crashes during the write. 3485 * 3486 */ 3487 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter) 3488 { 3489 struct file *file = iocb->ki_filp; 3490 struct inode *inode = file->f_mapping->host; 3491 struct ext4_inode_info *ei = EXT4_I(inode); 3492 ssize_t ret; 3493 loff_t offset = iocb->ki_pos; 3494 size_t count = iov_iter_count(iter); 3495 int overwrite = 0; 3496 get_block_t *get_block_func = NULL; 3497 int dio_flags = 0; 3498 loff_t final_size = offset + count; 3499 int orphan = 0; 3500 handle_t *handle; 3501 3502 if (final_size > inode->i_size) { 3503 /* Credits for sb + inode write */ 3504 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3505 if (IS_ERR(handle)) { 3506 ret = PTR_ERR(handle); 3507 goto out; 3508 } 3509 ret = ext4_orphan_add(handle, inode); 3510 if (ret) { 3511 ext4_journal_stop(handle); 3512 goto out; 3513 } 3514 orphan = 1; 3515 ei->i_disksize = inode->i_size; 3516 ext4_journal_stop(handle); 3517 } 3518 3519 BUG_ON(iocb->private == NULL); 3520 3521 /* 3522 * Make all waiters for direct IO properly wait also for extent 3523 * conversion. This also disallows race between truncate() and 3524 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3525 */ 3526 inode_dio_begin(inode); 3527 3528 /* If we do a overwrite dio, i_mutex locking can be released */ 3529 overwrite = *((int *)iocb->private); 3530 3531 if (overwrite) 3532 inode_unlock(inode); 3533 3534 /* 3535 * For extent mapped files we could direct write to holes and fallocate. 3536 * 3537 * Allocated blocks to fill the hole are marked as unwritten to prevent 3538 * parallel buffered read to expose the stale data before DIO complete 3539 * the data IO. 3540 * 3541 * As to previously fallocated extents, ext4 get_block will just simply 3542 * mark the buffer mapped but still keep the extents unwritten. 3543 * 3544 * For non AIO case, we will convert those unwritten extents to written 3545 * after return back from blockdev_direct_IO. That way we save us from 3546 * allocating io_end structure and also the overhead of offloading 3547 * the extent convertion to a workqueue. 3548 * 3549 * For async DIO, the conversion needs to be deferred when the 3550 * IO is completed. The ext4 end_io callback function will be 3551 * called to take care of the conversion work. Here for async 3552 * case, we allocate an io_end structure to hook to the iocb. 3553 */ 3554 iocb->private = NULL; 3555 if (overwrite) 3556 get_block_func = ext4_dio_get_block_overwrite; 3557 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) || 3558 round_down(offset, 1 << inode->i_blkbits) >= inode->i_size) { 3559 get_block_func = ext4_dio_get_block; 3560 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES; 3561 } else if (is_sync_kiocb(iocb)) { 3562 get_block_func = ext4_dio_get_block_unwritten_sync; 3563 dio_flags = DIO_LOCKING; 3564 } else { 3565 get_block_func = ext4_dio_get_block_unwritten_async; 3566 dio_flags = DIO_LOCKING; 3567 } 3568 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3569 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)); 3570 #endif 3571 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 3572 get_block_func, ext4_end_io_dio, NULL, 3573 dio_flags); 3574 3575 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3576 EXT4_STATE_DIO_UNWRITTEN)) { 3577 int err; 3578 /* 3579 * for non AIO case, since the IO is already 3580 * completed, we could do the conversion right here 3581 */ 3582 err = ext4_convert_unwritten_extents(NULL, inode, 3583 offset, ret); 3584 if (err < 0) 3585 ret = err; 3586 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3587 } 3588 3589 inode_dio_end(inode); 3590 /* take i_mutex locking again if we do a ovewrite dio */ 3591 if (overwrite) 3592 inode_lock(inode); 3593 3594 if (ret < 0 && final_size > inode->i_size) 3595 ext4_truncate_failed_write(inode); 3596 3597 /* Handle extending of i_size after direct IO write */ 3598 if (orphan) { 3599 int err; 3600 3601 /* Credits for sb + inode write */ 3602 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3603 if (IS_ERR(handle)) { 3604 /* This is really bad luck. We've written the data 3605 * but cannot extend i_size. Bail out and pretend 3606 * the write failed... */ 3607 ret = PTR_ERR(handle); 3608 if (inode->i_nlink) 3609 ext4_orphan_del(NULL, inode); 3610 3611 goto out; 3612 } 3613 if (inode->i_nlink) 3614 ext4_orphan_del(handle, inode); 3615 if (ret > 0) { 3616 loff_t end = offset + ret; 3617 if (end > inode->i_size) { 3618 ei->i_disksize = end; 3619 i_size_write(inode, end); 3620 /* 3621 * We're going to return a positive `ret' 3622 * here due to non-zero-length I/O, so there's 3623 * no way of reporting error returns from 3624 * ext4_mark_inode_dirty() to userspace. So 3625 * ignore it. 3626 */ 3627 ext4_mark_inode_dirty(handle, inode); 3628 } 3629 } 3630 err = ext4_journal_stop(handle); 3631 if (ret == 0) 3632 ret = err; 3633 } 3634 out: 3635 return ret; 3636 } 3637 3638 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter) 3639 { 3640 struct address_space *mapping = iocb->ki_filp->f_mapping; 3641 struct inode *inode = mapping->host; 3642 size_t count = iov_iter_count(iter); 3643 ssize_t ret; 3644 3645 /* 3646 * Shared inode_lock is enough for us - it protects against concurrent 3647 * writes & truncates and since we take care of writing back page cache, 3648 * we are protected against page writeback as well. 3649 */ 3650 inode_lock_shared(inode); 3651 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos, 3652 iocb->ki_pos + count); 3653 if (ret) 3654 goto out_unlock; 3655 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 3656 iter, ext4_dio_get_block, NULL, NULL, 0); 3657 out_unlock: 3658 inode_unlock_shared(inode); 3659 return ret; 3660 } 3661 3662 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3663 { 3664 struct file *file = iocb->ki_filp; 3665 struct inode *inode = file->f_mapping->host; 3666 size_t count = iov_iter_count(iter); 3667 loff_t offset = iocb->ki_pos; 3668 ssize_t ret; 3669 3670 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3671 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 3672 return 0; 3673 #endif 3674 3675 /* 3676 * If we are doing data journalling we don't support O_DIRECT 3677 */ 3678 if (ext4_should_journal_data(inode)) 3679 return 0; 3680 3681 /* Let buffer I/O handle the inline data case. */ 3682 if (ext4_has_inline_data(inode)) 3683 return 0; 3684 3685 /* DAX uses iomap path now */ 3686 if (WARN_ON_ONCE(IS_DAX(inode))) 3687 return 0; 3688 3689 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 3690 if (iov_iter_rw(iter) == READ) 3691 ret = ext4_direct_IO_read(iocb, iter); 3692 else 3693 ret = ext4_direct_IO_write(iocb, iter); 3694 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); 3695 return ret; 3696 } 3697 3698 /* 3699 * Pages can be marked dirty completely asynchronously from ext4's journalling 3700 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3701 * much here because ->set_page_dirty is called under VFS locks. The page is 3702 * not necessarily locked. 3703 * 3704 * We cannot just dirty the page and leave attached buffers clean, because the 3705 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3706 * or jbddirty because all the journalling code will explode. 3707 * 3708 * So what we do is to mark the page "pending dirty" and next time writepage 3709 * is called, propagate that into the buffers appropriately. 3710 */ 3711 static int ext4_journalled_set_page_dirty(struct page *page) 3712 { 3713 SetPageChecked(page); 3714 return __set_page_dirty_nobuffers(page); 3715 } 3716 3717 static int ext4_set_page_dirty(struct page *page) 3718 { 3719 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page)); 3720 WARN_ON_ONCE(!page_has_buffers(page)); 3721 return __set_page_dirty_buffers(page); 3722 } 3723 3724 static const struct address_space_operations ext4_aops = { 3725 .readpage = ext4_readpage, 3726 .readpages = ext4_readpages, 3727 .writepage = ext4_writepage, 3728 .writepages = ext4_writepages, 3729 .write_begin = ext4_write_begin, 3730 .write_end = ext4_write_end, 3731 .set_page_dirty = ext4_set_page_dirty, 3732 .bmap = ext4_bmap, 3733 .invalidatepage = ext4_invalidatepage, 3734 .releasepage = ext4_releasepage, 3735 .direct_IO = ext4_direct_IO, 3736 .migratepage = buffer_migrate_page, 3737 .is_partially_uptodate = block_is_partially_uptodate, 3738 .error_remove_page = generic_error_remove_page, 3739 }; 3740 3741 static const struct address_space_operations ext4_journalled_aops = { 3742 .readpage = ext4_readpage, 3743 .readpages = ext4_readpages, 3744 .writepage = ext4_writepage, 3745 .writepages = ext4_writepages, 3746 .write_begin = ext4_write_begin, 3747 .write_end = ext4_journalled_write_end, 3748 .set_page_dirty = ext4_journalled_set_page_dirty, 3749 .bmap = ext4_bmap, 3750 .invalidatepage = ext4_journalled_invalidatepage, 3751 .releasepage = ext4_releasepage, 3752 .direct_IO = ext4_direct_IO, 3753 .is_partially_uptodate = block_is_partially_uptodate, 3754 .error_remove_page = generic_error_remove_page, 3755 }; 3756 3757 static const struct address_space_operations ext4_da_aops = { 3758 .readpage = ext4_readpage, 3759 .readpages = ext4_readpages, 3760 .writepage = ext4_writepage, 3761 .writepages = ext4_writepages, 3762 .write_begin = ext4_da_write_begin, 3763 .write_end = ext4_da_write_end, 3764 .set_page_dirty = ext4_set_page_dirty, 3765 .bmap = ext4_bmap, 3766 .invalidatepage = ext4_da_invalidatepage, 3767 .releasepage = ext4_releasepage, 3768 .direct_IO = ext4_direct_IO, 3769 .migratepage = buffer_migrate_page, 3770 .is_partially_uptodate = block_is_partially_uptodate, 3771 .error_remove_page = generic_error_remove_page, 3772 }; 3773 3774 void ext4_set_aops(struct inode *inode) 3775 { 3776 switch (ext4_inode_journal_mode(inode)) { 3777 case EXT4_INODE_ORDERED_DATA_MODE: 3778 case EXT4_INODE_WRITEBACK_DATA_MODE: 3779 break; 3780 case EXT4_INODE_JOURNAL_DATA_MODE: 3781 inode->i_mapping->a_ops = &ext4_journalled_aops; 3782 return; 3783 default: 3784 BUG(); 3785 } 3786 if (test_opt(inode->i_sb, DELALLOC)) 3787 inode->i_mapping->a_ops = &ext4_da_aops; 3788 else 3789 inode->i_mapping->a_ops = &ext4_aops; 3790 } 3791 3792 static int __ext4_block_zero_page_range(handle_t *handle, 3793 struct address_space *mapping, loff_t from, loff_t length) 3794 { 3795 ext4_fsblk_t index = from >> PAGE_SHIFT; 3796 unsigned offset = from & (PAGE_SIZE-1); 3797 unsigned blocksize, pos; 3798 ext4_lblk_t iblock; 3799 struct inode *inode = mapping->host; 3800 struct buffer_head *bh; 3801 struct page *page; 3802 int err = 0; 3803 3804 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3805 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3806 if (!page) 3807 return -ENOMEM; 3808 3809 blocksize = inode->i_sb->s_blocksize; 3810 3811 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3812 3813 if (!page_has_buffers(page)) 3814 create_empty_buffers(page, blocksize, 0); 3815 3816 /* Find the buffer that contains "offset" */ 3817 bh = page_buffers(page); 3818 pos = blocksize; 3819 while (offset >= pos) { 3820 bh = bh->b_this_page; 3821 iblock++; 3822 pos += blocksize; 3823 } 3824 if (buffer_freed(bh)) { 3825 BUFFER_TRACE(bh, "freed: skip"); 3826 goto unlock; 3827 } 3828 if (!buffer_mapped(bh)) { 3829 BUFFER_TRACE(bh, "unmapped"); 3830 ext4_get_block(inode, iblock, bh, 0); 3831 /* unmapped? It's a hole - nothing to do */ 3832 if (!buffer_mapped(bh)) { 3833 BUFFER_TRACE(bh, "still unmapped"); 3834 goto unlock; 3835 } 3836 } 3837 3838 /* Ok, it's mapped. Make sure it's up-to-date */ 3839 if (PageUptodate(page)) 3840 set_buffer_uptodate(bh); 3841 3842 if (!buffer_uptodate(bh)) { 3843 err = -EIO; 3844 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 3845 wait_on_buffer(bh); 3846 /* Uhhuh. Read error. Complain and punt. */ 3847 if (!buffer_uptodate(bh)) 3848 goto unlock; 3849 if (S_ISREG(inode->i_mode) && 3850 ext4_encrypted_inode(inode)) { 3851 /* We expect the key to be set. */ 3852 BUG_ON(!fscrypt_has_encryption_key(inode)); 3853 BUG_ON(blocksize != PAGE_SIZE); 3854 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host, 3855 page, PAGE_SIZE, 0, page->index)); 3856 } 3857 } 3858 if (ext4_should_journal_data(inode)) { 3859 BUFFER_TRACE(bh, "get write access"); 3860 err = ext4_journal_get_write_access(handle, bh); 3861 if (err) 3862 goto unlock; 3863 } 3864 zero_user(page, offset, length); 3865 BUFFER_TRACE(bh, "zeroed end of block"); 3866 3867 if (ext4_should_journal_data(inode)) { 3868 err = ext4_handle_dirty_metadata(handle, inode, bh); 3869 } else { 3870 err = 0; 3871 mark_buffer_dirty(bh); 3872 if (ext4_should_order_data(inode)) 3873 err = ext4_jbd2_inode_add_write(handle, inode); 3874 } 3875 3876 unlock: 3877 unlock_page(page); 3878 put_page(page); 3879 return err; 3880 } 3881 3882 /* 3883 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3884 * starting from file offset 'from'. The range to be zero'd must 3885 * be contained with in one block. If the specified range exceeds 3886 * the end of the block it will be shortened to end of the block 3887 * that cooresponds to 'from' 3888 */ 3889 static int ext4_block_zero_page_range(handle_t *handle, 3890 struct address_space *mapping, loff_t from, loff_t length) 3891 { 3892 struct inode *inode = mapping->host; 3893 unsigned offset = from & (PAGE_SIZE-1); 3894 unsigned blocksize = inode->i_sb->s_blocksize; 3895 unsigned max = blocksize - (offset & (blocksize - 1)); 3896 3897 /* 3898 * correct length if it does not fall between 3899 * 'from' and the end of the block 3900 */ 3901 if (length > max || length < 0) 3902 length = max; 3903 3904 if (IS_DAX(inode)) { 3905 return iomap_zero_range(inode, from, length, NULL, 3906 &ext4_iomap_ops); 3907 } 3908 return __ext4_block_zero_page_range(handle, mapping, from, length); 3909 } 3910 3911 /* 3912 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3913 * up to the end of the block which corresponds to `from'. 3914 * This required during truncate. We need to physically zero the tail end 3915 * of that block so it doesn't yield old data if the file is later grown. 3916 */ 3917 static int ext4_block_truncate_page(handle_t *handle, 3918 struct address_space *mapping, loff_t from) 3919 { 3920 unsigned offset = from & (PAGE_SIZE-1); 3921 unsigned length; 3922 unsigned blocksize; 3923 struct inode *inode = mapping->host; 3924 3925 blocksize = inode->i_sb->s_blocksize; 3926 length = blocksize - (offset & (blocksize - 1)); 3927 3928 return ext4_block_zero_page_range(handle, mapping, from, length); 3929 } 3930 3931 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3932 loff_t lstart, loff_t length) 3933 { 3934 struct super_block *sb = inode->i_sb; 3935 struct address_space *mapping = inode->i_mapping; 3936 unsigned partial_start, partial_end; 3937 ext4_fsblk_t start, end; 3938 loff_t byte_end = (lstart + length - 1); 3939 int err = 0; 3940 3941 partial_start = lstart & (sb->s_blocksize - 1); 3942 partial_end = byte_end & (sb->s_blocksize - 1); 3943 3944 start = lstart >> sb->s_blocksize_bits; 3945 end = byte_end >> sb->s_blocksize_bits; 3946 3947 /* Handle partial zero within the single block */ 3948 if (start == end && 3949 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3950 err = ext4_block_zero_page_range(handle, mapping, 3951 lstart, length); 3952 return err; 3953 } 3954 /* Handle partial zero out on the start of the range */ 3955 if (partial_start) { 3956 err = ext4_block_zero_page_range(handle, mapping, 3957 lstart, sb->s_blocksize); 3958 if (err) 3959 return err; 3960 } 3961 /* Handle partial zero out on the end of the range */ 3962 if (partial_end != sb->s_blocksize - 1) 3963 err = ext4_block_zero_page_range(handle, mapping, 3964 byte_end - partial_end, 3965 partial_end + 1); 3966 return err; 3967 } 3968 3969 int ext4_can_truncate(struct inode *inode) 3970 { 3971 if (S_ISREG(inode->i_mode)) 3972 return 1; 3973 if (S_ISDIR(inode->i_mode)) 3974 return 1; 3975 if (S_ISLNK(inode->i_mode)) 3976 return !ext4_inode_is_fast_symlink(inode); 3977 return 0; 3978 } 3979 3980 /* 3981 * We have to make sure i_disksize gets properly updated before we truncate 3982 * page cache due to hole punching or zero range. Otherwise i_disksize update 3983 * can get lost as it may have been postponed to submission of writeback but 3984 * that will never happen after we truncate page cache. 3985 */ 3986 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3987 loff_t len) 3988 { 3989 handle_t *handle; 3990 loff_t size = i_size_read(inode); 3991 3992 WARN_ON(!inode_is_locked(inode)); 3993 if (offset > size || offset + len < size) 3994 return 0; 3995 3996 if (EXT4_I(inode)->i_disksize >= size) 3997 return 0; 3998 3999 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 4000 if (IS_ERR(handle)) 4001 return PTR_ERR(handle); 4002 ext4_update_i_disksize(inode, size); 4003 ext4_mark_inode_dirty(handle, inode); 4004 ext4_journal_stop(handle); 4005 4006 return 0; 4007 } 4008 4009 /* 4010 * ext4_punch_hole: punches a hole in a file by releasing the blocks 4011 * associated with the given offset and length 4012 * 4013 * @inode: File inode 4014 * @offset: The offset where the hole will begin 4015 * @len: The length of the hole 4016 * 4017 * Returns: 0 on success or negative on failure 4018 */ 4019 4020 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 4021 { 4022 struct super_block *sb = inode->i_sb; 4023 ext4_lblk_t first_block, stop_block; 4024 struct address_space *mapping = inode->i_mapping; 4025 loff_t first_block_offset, last_block_offset; 4026 handle_t *handle; 4027 unsigned int credits; 4028 int ret = 0; 4029 4030 if (!S_ISREG(inode->i_mode)) 4031 return -EOPNOTSUPP; 4032 4033 trace_ext4_punch_hole(inode, offset, length, 0); 4034 4035 /* 4036 * Write out all dirty pages to avoid race conditions 4037 * Then release them. 4038 */ 4039 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4040 ret = filemap_write_and_wait_range(mapping, offset, 4041 offset + length - 1); 4042 if (ret) 4043 return ret; 4044 } 4045 4046 inode_lock(inode); 4047 4048 /* No need to punch hole beyond i_size */ 4049 if (offset >= inode->i_size) 4050 goto out_mutex; 4051 4052 /* 4053 * If the hole extends beyond i_size, set the hole 4054 * to end after the page that contains i_size 4055 */ 4056 if (offset + length > inode->i_size) { 4057 length = inode->i_size + 4058 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 4059 offset; 4060 } 4061 4062 if (offset & (sb->s_blocksize - 1) || 4063 (offset + length) & (sb->s_blocksize - 1)) { 4064 /* 4065 * Attach jinode to inode for jbd2 if we do any zeroing of 4066 * partial block 4067 */ 4068 ret = ext4_inode_attach_jinode(inode); 4069 if (ret < 0) 4070 goto out_mutex; 4071 4072 } 4073 4074 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4075 ext4_inode_block_unlocked_dio(inode); 4076 inode_dio_wait(inode); 4077 4078 /* 4079 * Prevent page faults from reinstantiating pages we have released from 4080 * page cache. 4081 */ 4082 down_write(&EXT4_I(inode)->i_mmap_sem); 4083 first_block_offset = round_up(offset, sb->s_blocksize); 4084 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4085 4086 /* Now release the pages and zero block aligned part of pages*/ 4087 if (last_block_offset > first_block_offset) { 4088 ret = ext4_update_disksize_before_punch(inode, offset, length); 4089 if (ret) 4090 goto out_dio; 4091 truncate_pagecache_range(inode, first_block_offset, 4092 last_block_offset); 4093 } 4094 4095 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4096 credits = ext4_writepage_trans_blocks(inode); 4097 else 4098 credits = ext4_blocks_for_truncate(inode); 4099 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4100 if (IS_ERR(handle)) { 4101 ret = PTR_ERR(handle); 4102 ext4_std_error(sb, ret); 4103 goto out_dio; 4104 } 4105 4106 ret = ext4_zero_partial_blocks(handle, inode, offset, 4107 length); 4108 if (ret) 4109 goto out_stop; 4110 4111 first_block = (offset + sb->s_blocksize - 1) >> 4112 EXT4_BLOCK_SIZE_BITS(sb); 4113 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4114 4115 /* If there are no blocks to remove, return now */ 4116 if (first_block >= stop_block) 4117 goto out_stop; 4118 4119 down_write(&EXT4_I(inode)->i_data_sem); 4120 ext4_discard_preallocations(inode); 4121 4122 ret = ext4_es_remove_extent(inode, first_block, 4123 stop_block - first_block); 4124 if (ret) { 4125 up_write(&EXT4_I(inode)->i_data_sem); 4126 goto out_stop; 4127 } 4128 4129 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4130 ret = ext4_ext_remove_space(inode, first_block, 4131 stop_block - 1); 4132 else 4133 ret = ext4_ind_remove_space(handle, inode, first_block, 4134 stop_block); 4135 4136 up_write(&EXT4_I(inode)->i_data_sem); 4137 if (IS_SYNC(inode)) 4138 ext4_handle_sync(handle); 4139 4140 inode->i_mtime = inode->i_ctime = current_time(inode); 4141 ext4_mark_inode_dirty(handle, inode); 4142 out_stop: 4143 ext4_journal_stop(handle); 4144 out_dio: 4145 up_write(&EXT4_I(inode)->i_mmap_sem); 4146 ext4_inode_resume_unlocked_dio(inode); 4147 out_mutex: 4148 inode_unlock(inode); 4149 return ret; 4150 } 4151 4152 int ext4_inode_attach_jinode(struct inode *inode) 4153 { 4154 struct ext4_inode_info *ei = EXT4_I(inode); 4155 struct jbd2_inode *jinode; 4156 4157 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4158 return 0; 4159 4160 jinode = jbd2_alloc_inode(GFP_KERNEL); 4161 spin_lock(&inode->i_lock); 4162 if (!ei->jinode) { 4163 if (!jinode) { 4164 spin_unlock(&inode->i_lock); 4165 return -ENOMEM; 4166 } 4167 ei->jinode = jinode; 4168 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4169 jinode = NULL; 4170 } 4171 spin_unlock(&inode->i_lock); 4172 if (unlikely(jinode != NULL)) 4173 jbd2_free_inode(jinode); 4174 return 0; 4175 } 4176 4177 /* 4178 * ext4_truncate() 4179 * 4180 * We block out ext4_get_block() block instantiations across the entire 4181 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4182 * simultaneously on behalf of the same inode. 4183 * 4184 * As we work through the truncate and commit bits of it to the journal there 4185 * is one core, guiding principle: the file's tree must always be consistent on 4186 * disk. We must be able to restart the truncate after a crash. 4187 * 4188 * The file's tree may be transiently inconsistent in memory (although it 4189 * probably isn't), but whenever we close off and commit a journal transaction, 4190 * the contents of (the filesystem + the journal) must be consistent and 4191 * restartable. It's pretty simple, really: bottom up, right to left (although 4192 * left-to-right works OK too). 4193 * 4194 * Note that at recovery time, journal replay occurs *before* the restart of 4195 * truncate against the orphan inode list. 4196 * 4197 * The committed inode has the new, desired i_size (which is the same as 4198 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4199 * that this inode's truncate did not complete and it will again call 4200 * ext4_truncate() to have another go. So there will be instantiated blocks 4201 * to the right of the truncation point in a crashed ext4 filesystem. But 4202 * that's fine - as long as they are linked from the inode, the post-crash 4203 * ext4_truncate() run will find them and release them. 4204 */ 4205 int ext4_truncate(struct inode *inode) 4206 { 4207 struct ext4_inode_info *ei = EXT4_I(inode); 4208 unsigned int credits; 4209 int err = 0; 4210 handle_t *handle; 4211 struct address_space *mapping = inode->i_mapping; 4212 4213 /* 4214 * There is a possibility that we're either freeing the inode 4215 * or it's a completely new inode. In those cases we might not 4216 * have i_mutex locked because it's not necessary. 4217 */ 4218 if (!(inode->i_state & (I_NEW|I_FREEING))) 4219 WARN_ON(!inode_is_locked(inode)); 4220 trace_ext4_truncate_enter(inode); 4221 4222 if (!ext4_can_truncate(inode)) 4223 return 0; 4224 4225 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4226 4227 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4228 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4229 4230 if (ext4_has_inline_data(inode)) { 4231 int has_inline = 1; 4232 4233 ext4_inline_data_truncate(inode, &has_inline); 4234 if (has_inline) 4235 return 0; 4236 } 4237 4238 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4239 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4240 if (ext4_inode_attach_jinode(inode) < 0) 4241 return 0; 4242 } 4243 4244 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4245 credits = ext4_writepage_trans_blocks(inode); 4246 else 4247 credits = ext4_blocks_for_truncate(inode); 4248 4249 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4250 if (IS_ERR(handle)) 4251 return PTR_ERR(handle); 4252 4253 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4254 ext4_block_truncate_page(handle, mapping, inode->i_size); 4255 4256 /* 4257 * We add the inode to the orphan list, so that if this 4258 * truncate spans multiple transactions, and we crash, we will 4259 * resume the truncate when the filesystem recovers. It also 4260 * marks the inode dirty, to catch the new size. 4261 * 4262 * Implication: the file must always be in a sane, consistent 4263 * truncatable state while each transaction commits. 4264 */ 4265 err = ext4_orphan_add(handle, inode); 4266 if (err) 4267 goto out_stop; 4268 4269 down_write(&EXT4_I(inode)->i_data_sem); 4270 4271 ext4_discard_preallocations(inode); 4272 4273 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4274 err = ext4_ext_truncate(handle, inode); 4275 else 4276 ext4_ind_truncate(handle, inode); 4277 4278 up_write(&ei->i_data_sem); 4279 if (err) 4280 goto out_stop; 4281 4282 if (IS_SYNC(inode)) 4283 ext4_handle_sync(handle); 4284 4285 out_stop: 4286 /* 4287 * If this was a simple ftruncate() and the file will remain alive, 4288 * then we need to clear up the orphan record which we created above. 4289 * However, if this was a real unlink then we were called by 4290 * ext4_evict_inode(), and we allow that function to clean up the 4291 * orphan info for us. 4292 */ 4293 if (inode->i_nlink) 4294 ext4_orphan_del(handle, inode); 4295 4296 inode->i_mtime = inode->i_ctime = current_time(inode); 4297 ext4_mark_inode_dirty(handle, inode); 4298 ext4_journal_stop(handle); 4299 4300 trace_ext4_truncate_exit(inode); 4301 return err; 4302 } 4303 4304 /* 4305 * ext4_get_inode_loc returns with an extra refcount against the inode's 4306 * underlying buffer_head on success. If 'in_mem' is true, we have all 4307 * data in memory that is needed to recreate the on-disk version of this 4308 * inode. 4309 */ 4310 static int __ext4_get_inode_loc(struct inode *inode, 4311 struct ext4_iloc *iloc, int in_mem) 4312 { 4313 struct ext4_group_desc *gdp; 4314 struct buffer_head *bh; 4315 struct super_block *sb = inode->i_sb; 4316 ext4_fsblk_t block; 4317 int inodes_per_block, inode_offset; 4318 4319 iloc->bh = NULL; 4320 if (!ext4_valid_inum(sb, inode->i_ino)) 4321 return -EFSCORRUPTED; 4322 4323 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4324 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4325 if (!gdp) 4326 return -EIO; 4327 4328 /* 4329 * Figure out the offset within the block group inode table 4330 */ 4331 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4332 inode_offset = ((inode->i_ino - 1) % 4333 EXT4_INODES_PER_GROUP(sb)); 4334 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4335 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4336 4337 bh = sb_getblk(sb, block); 4338 if (unlikely(!bh)) 4339 return -ENOMEM; 4340 if (!buffer_uptodate(bh)) { 4341 lock_buffer(bh); 4342 4343 /* 4344 * If the buffer has the write error flag, we have failed 4345 * to write out another inode in the same block. In this 4346 * case, we don't have to read the block because we may 4347 * read the old inode data successfully. 4348 */ 4349 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4350 set_buffer_uptodate(bh); 4351 4352 if (buffer_uptodate(bh)) { 4353 /* someone brought it uptodate while we waited */ 4354 unlock_buffer(bh); 4355 goto has_buffer; 4356 } 4357 4358 /* 4359 * If we have all information of the inode in memory and this 4360 * is the only valid inode in the block, we need not read the 4361 * block. 4362 */ 4363 if (in_mem) { 4364 struct buffer_head *bitmap_bh; 4365 int i, start; 4366 4367 start = inode_offset & ~(inodes_per_block - 1); 4368 4369 /* Is the inode bitmap in cache? */ 4370 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4371 if (unlikely(!bitmap_bh)) 4372 goto make_io; 4373 4374 /* 4375 * If the inode bitmap isn't in cache then the 4376 * optimisation may end up performing two reads instead 4377 * of one, so skip it. 4378 */ 4379 if (!buffer_uptodate(bitmap_bh)) { 4380 brelse(bitmap_bh); 4381 goto make_io; 4382 } 4383 for (i = start; i < start + inodes_per_block; i++) { 4384 if (i == inode_offset) 4385 continue; 4386 if (ext4_test_bit(i, bitmap_bh->b_data)) 4387 break; 4388 } 4389 brelse(bitmap_bh); 4390 if (i == start + inodes_per_block) { 4391 /* all other inodes are free, so skip I/O */ 4392 memset(bh->b_data, 0, bh->b_size); 4393 set_buffer_uptodate(bh); 4394 unlock_buffer(bh); 4395 goto has_buffer; 4396 } 4397 } 4398 4399 make_io: 4400 /* 4401 * If we need to do any I/O, try to pre-readahead extra 4402 * blocks from the inode table. 4403 */ 4404 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4405 ext4_fsblk_t b, end, table; 4406 unsigned num; 4407 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4408 4409 table = ext4_inode_table(sb, gdp); 4410 /* s_inode_readahead_blks is always a power of 2 */ 4411 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4412 if (table > b) 4413 b = table; 4414 end = b + ra_blks; 4415 num = EXT4_INODES_PER_GROUP(sb); 4416 if (ext4_has_group_desc_csum(sb)) 4417 num -= ext4_itable_unused_count(sb, gdp); 4418 table += num / inodes_per_block; 4419 if (end > table) 4420 end = table; 4421 while (b <= end) 4422 sb_breadahead(sb, b++); 4423 } 4424 4425 /* 4426 * There are other valid inodes in the buffer, this inode 4427 * has in-inode xattrs, or we don't have this inode in memory. 4428 * Read the block from disk. 4429 */ 4430 trace_ext4_load_inode(inode); 4431 get_bh(bh); 4432 bh->b_end_io = end_buffer_read_sync; 4433 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 4434 wait_on_buffer(bh); 4435 if (!buffer_uptodate(bh)) { 4436 EXT4_ERROR_INODE_BLOCK(inode, block, 4437 "unable to read itable block"); 4438 brelse(bh); 4439 return -EIO; 4440 } 4441 } 4442 has_buffer: 4443 iloc->bh = bh; 4444 return 0; 4445 } 4446 4447 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4448 { 4449 /* We have all inode data except xattrs in memory here. */ 4450 return __ext4_get_inode_loc(inode, iloc, 4451 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4452 } 4453 4454 void ext4_set_inode_flags(struct inode *inode) 4455 { 4456 unsigned int flags = EXT4_I(inode)->i_flags; 4457 unsigned int new_fl = 0; 4458 4459 if (flags & EXT4_SYNC_FL) 4460 new_fl |= S_SYNC; 4461 if (flags & EXT4_APPEND_FL) 4462 new_fl |= S_APPEND; 4463 if (flags & EXT4_IMMUTABLE_FL) 4464 new_fl |= S_IMMUTABLE; 4465 if (flags & EXT4_NOATIME_FL) 4466 new_fl |= S_NOATIME; 4467 if (flags & EXT4_DIRSYNC_FL) 4468 new_fl |= S_DIRSYNC; 4469 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) && 4470 !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) && 4471 !ext4_encrypted_inode(inode)) 4472 new_fl |= S_DAX; 4473 inode_set_flags(inode, new_fl, 4474 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX); 4475 } 4476 4477 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 4478 void ext4_get_inode_flags(struct ext4_inode_info *ei) 4479 { 4480 unsigned int vfs_fl; 4481 unsigned long old_fl, new_fl; 4482 4483 do { 4484 vfs_fl = ei->vfs_inode.i_flags; 4485 old_fl = ei->i_flags; 4486 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 4487 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 4488 EXT4_DIRSYNC_FL); 4489 if (vfs_fl & S_SYNC) 4490 new_fl |= EXT4_SYNC_FL; 4491 if (vfs_fl & S_APPEND) 4492 new_fl |= EXT4_APPEND_FL; 4493 if (vfs_fl & S_IMMUTABLE) 4494 new_fl |= EXT4_IMMUTABLE_FL; 4495 if (vfs_fl & S_NOATIME) 4496 new_fl |= EXT4_NOATIME_FL; 4497 if (vfs_fl & S_DIRSYNC) 4498 new_fl |= EXT4_DIRSYNC_FL; 4499 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 4500 } 4501 4502 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4503 struct ext4_inode_info *ei) 4504 { 4505 blkcnt_t i_blocks ; 4506 struct inode *inode = &(ei->vfs_inode); 4507 struct super_block *sb = inode->i_sb; 4508 4509 if (ext4_has_feature_huge_file(sb)) { 4510 /* we are using combined 48 bit field */ 4511 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4512 le32_to_cpu(raw_inode->i_blocks_lo); 4513 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4514 /* i_blocks represent file system block size */ 4515 return i_blocks << (inode->i_blkbits - 9); 4516 } else { 4517 return i_blocks; 4518 } 4519 } else { 4520 return le32_to_cpu(raw_inode->i_blocks_lo); 4521 } 4522 } 4523 4524 static inline void ext4_iget_extra_inode(struct inode *inode, 4525 struct ext4_inode *raw_inode, 4526 struct ext4_inode_info *ei) 4527 { 4528 __le32 *magic = (void *)raw_inode + 4529 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4530 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <= 4531 EXT4_INODE_SIZE(inode->i_sb) && 4532 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4533 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4534 ext4_find_inline_data_nolock(inode); 4535 } else 4536 EXT4_I(inode)->i_inline_off = 0; 4537 } 4538 4539 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4540 { 4541 if (!ext4_has_feature_project(inode->i_sb)) 4542 return -EOPNOTSUPP; 4543 *projid = EXT4_I(inode)->i_projid; 4544 return 0; 4545 } 4546 4547 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4548 { 4549 struct ext4_iloc iloc; 4550 struct ext4_inode *raw_inode; 4551 struct ext4_inode_info *ei; 4552 struct inode *inode; 4553 journal_t *journal = EXT4_SB(sb)->s_journal; 4554 long ret; 4555 loff_t size; 4556 int block; 4557 uid_t i_uid; 4558 gid_t i_gid; 4559 projid_t i_projid; 4560 4561 inode = iget_locked(sb, ino); 4562 if (!inode) 4563 return ERR_PTR(-ENOMEM); 4564 if (!(inode->i_state & I_NEW)) 4565 return inode; 4566 4567 ei = EXT4_I(inode); 4568 iloc.bh = NULL; 4569 4570 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4571 if (ret < 0) 4572 goto bad_inode; 4573 raw_inode = ext4_raw_inode(&iloc); 4574 4575 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4576 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4577 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4578 EXT4_INODE_SIZE(inode->i_sb) || 4579 (ei->i_extra_isize & 3)) { 4580 EXT4_ERROR_INODE(inode, 4581 "bad extra_isize %u (inode size %u)", 4582 ei->i_extra_isize, 4583 EXT4_INODE_SIZE(inode->i_sb)); 4584 ret = -EFSCORRUPTED; 4585 goto bad_inode; 4586 } 4587 } else 4588 ei->i_extra_isize = 0; 4589 4590 /* Precompute checksum seed for inode metadata */ 4591 if (ext4_has_metadata_csum(sb)) { 4592 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4593 __u32 csum; 4594 __le32 inum = cpu_to_le32(inode->i_ino); 4595 __le32 gen = raw_inode->i_generation; 4596 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4597 sizeof(inum)); 4598 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4599 sizeof(gen)); 4600 } 4601 4602 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4603 EXT4_ERROR_INODE(inode, "checksum invalid"); 4604 ret = -EFSBADCRC; 4605 goto bad_inode; 4606 } 4607 4608 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4609 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4610 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4611 if (ext4_has_feature_project(sb) && 4612 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4613 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4614 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4615 else 4616 i_projid = EXT4_DEF_PROJID; 4617 4618 if (!(test_opt(inode->i_sb, NO_UID32))) { 4619 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4620 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4621 } 4622 i_uid_write(inode, i_uid); 4623 i_gid_write(inode, i_gid); 4624 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4625 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4626 4627 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4628 ei->i_inline_off = 0; 4629 ei->i_dir_start_lookup = 0; 4630 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4631 /* We now have enough fields to check if the inode was active or not. 4632 * This is needed because nfsd might try to access dead inodes 4633 * the test is that same one that e2fsck uses 4634 * NeilBrown 1999oct15 4635 */ 4636 if (inode->i_nlink == 0) { 4637 if ((inode->i_mode == 0 || 4638 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4639 ino != EXT4_BOOT_LOADER_INO) { 4640 /* this inode is deleted */ 4641 ret = -ESTALE; 4642 goto bad_inode; 4643 } 4644 /* The only unlinked inodes we let through here have 4645 * valid i_mode and are being read by the orphan 4646 * recovery code: that's fine, we're about to complete 4647 * the process of deleting those. 4648 * OR it is the EXT4_BOOT_LOADER_INO which is 4649 * not initialized on a new filesystem. */ 4650 } 4651 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4652 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4653 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4654 if (ext4_has_feature_64bit(sb)) 4655 ei->i_file_acl |= 4656 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4657 inode->i_size = ext4_isize(raw_inode); 4658 if ((size = i_size_read(inode)) < 0) { 4659 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size); 4660 ret = -EFSCORRUPTED; 4661 goto bad_inode; 4662 } 4663 ei->i_disksize = inode->i_size; 4664 #ifdef CONFIG_QUOTA 4665 ei->i_reserved_quota = 0; 4666 #endif 4667 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4668 ei->i_block_group = iloc.block_group; 4669 ei->i_last_alloc_group = ~0; 4670 /* 4671 * NOTE! The in-memory inode i_data array is in little-endian order 4672 * even on big-endian machines: we do NOT byteswap the block numbers! 4673 */ 4674 for (block = 0; block < EXT4_N_BLOCKS; block++) 4675 ei->i_data[block] = raw_inode->i_block[block]; 4676 INIT_LIST_HEAD(&ei->i_orphan); 4677 4678 /* 4679 * Set transaction id's of transactions that have to be committed 4680 * to finish f[data]sync. We set them to currently running transaction 4681 * as we cannot be sure that the inode or some of its metadata isn't 4682 * part of the transaction - the inode could have been reclaimed and 4683 * now it is reread from disk. 4684 */ 4685 if (journal) { 4686 transaction_t *transaction; 4687 tid_t tid; 4688 4689 read_lock(&journal->j_state_lock); 4690 if (journal->j_running_transaction) 4691 transaction = journal->j_running_transaction; 4692 else 4693 transaction = journal->j_committing_transaction; 4694 if (transaction) 4695 tid = transaction->t_tid; 4696 else 4697 tid = journal->j_commit_sequence; 4698 read_unlock(&journal->j_state_lock); 4699 ei->i_sync_tid = tid; 4700 ei->i_datasync_tid = tid; 4701 } 4702 4703 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4704 if (ei->i_extra_isize == 0) { 4705 /* The extra space is currently unused. Use it. */ 4706 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4707 ei->i_extra_isize = sizeof(struct ext4_inode) - 4708 EXT4_GOOD_OLD_INODE_SIZE; 4709 } else { 4710 ext4_iget_extra_inode(inode, raw_inode, ei); 4711 } 4712 } 4713 4714 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4715 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4716 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4717 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4718 4719 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4720 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4721 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4722 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4723 inode->i_version |= 4724 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4725 } 4726 } 4727 4728 ret = 0; 4729 if (ei->i_file_acl && 4730 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4731 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4732 ei->i_file_acl); 4733 ret = -EFSCORRUPTED; 4734 goto bad_inode; 4735 } else if (!ext4_has_inline_data(inode)) { 4736 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4737 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4738 (S_ISLNK(inode->i_mode) && 4739 !ext4_inode_is_fast_symlink(inode)))) 4740 /* Validate extent which is part of inode */ 4741 ret = ext4_ext_check_inode(inode); 4742 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4743 (S_ISLNK(inode->i_mode) && 4744 !ext4_inode_is_fast_symlink(inode))) { 4745 /* Validate block references which are part of inode */ 4746 ret = ext4_ind_check_inode(inode); 4747 } 4748 } 4749 if (ret) 4750 goto bad_inode; 4751 4752 if (S_ISREG(inode->i_mode)) { 4753 inode->i_op = &ext4_file_inode_operations; 4754 inode->i_fop = &ext4_file_operations; 4755 ext4_set_aops(inode); 4756 } else if (S_ISDIR(inode->i_mode)) { 4757 inode->i_op = &ext4_dir_inode_operations; 4758 inode->i_fop = &ext4_dir_operations; 4759 } else if (S_ISLNK(inode->i_mode)) { 4760 if (ext4_encrypted_inode(inode)) { 4761 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4762 ext4_set_aops(inode); 4763 } else if (ext4_inode_is_fast_symlink(inode)) { 4764 inode->i_link = (char *)ei->i_data; 4765 inode->i_op = &ext4_fast_symlink_inode_operations; 4766 nd_terminate_link(ei->i_data, inode->i_size, 4767 sizeof(ei->i_data) - 1); 4768 } else { 4769 inode->i_op = &ext4_symlink_inode_operations; 4770 ext4_set_aops(inode); 4771 } 4772 inode_nohighmem(inode); 4773 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4774 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4775 inode->i_op = &ext4_special_inode_operations; 4776 if (raw_inode->i_block[0]) 4777 init_special_inode(inode, inode->i_mode, 4778 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4779 else 4780 init_special_inode(inode, inode->i_mode, 4781 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4782 } else if (ino == EXT4_BOOT_LOADER_INO) { 4783 make_bad_inode(inode); 4784 } else { 4785 ret = -EFSCORRUPTED; 4786 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4787 goto bad_inode; 4788 } 4789 brelse(iloc.bh); 4790 ext4_set_inode_flags(inode); 4791 unlock_new_inode(inode); 4792 return inode; 4793 4794 bad_inode: 4795 brelse(iloc.bh); 4796 iget_failed(inode); 4797 return ERR_PTR(ret); 4798 } 4799 4800 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino) 4801 { 4802 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 4803 return ERR_PTR(-EFSCORRUPTED); 4804 return ext4_iget(sb, ino); 4805 } 4806 4807 static int ext4_inode_blocks_set(handle_t *handle, 4808 struct ext4_inode *raw_inode, 4809 struct ext4_inode_info *ei) 4810 { 4811 struct inode *inode = &(ei->vfs_inode); 4812 u64 i_blocks = inode->i_blocks; 4813 struct super_block *sb = inode->i_sb; 4814 4815 if (i_blocks <= ~0U) { 4816 /* 4817 * i_blocks can be represented in a 32 bit variable 4818 * as multiple of 512 bytes 4819 */ 4820 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4821 raw_inode->i_blocks_high = 0; 4822 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4823 return 0; 4824 } 4825 if (!ext4_has_feature_huge_file(sb)) 4826 return -EFBIG; 4827 4828 if (i_blocks <= 0xffffffffffffULL) { 4829 /* 4830 * i_blocks can be represented in a 48 bit variable 4831 * as multiple of 512 bytes 4832 */ 4833 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4834 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4835 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4836 } else { 4837 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4838 /* i_block is stored in file system block size */ 4839 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4840 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4841 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4842 } 4843 return 0; 4844 } 4845 4846 struct other_inode { 4847 unsigned long orig_ino; 4848 struct ext4_inode *raw_inode; 4849 }; 4850 4851 static int other_inode_match(struct inode * inode, unsigned long ino, 4852 void *data) 4853 { 4854 struct other_inode *oi = (struct other_inode *) data; 4855 4856 if ((inode->i_ino != ino) || 4857 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4858 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) || 4859 ((inode->i_state & I_DIRTY_TIME) == 0)) 4860 return 0; 4861 spin_lock(&inode->i_lock); 4862 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4863 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) && 4864 (inode->i_state & I_DIRTY_TIME)) { 4865 struct ext4_inode_info *ei = EXT4_I(inode); 4866 4867 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 4868 spin_unlock(&inode->i_lock); 4869 4870 spin_lock(&ei->i_raw_lock); 4871 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 4872 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 4873 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 4874 ext4_inode_csum_set(inode, oi->raw_inode, ei); 4875 spin_unlock(&ei->i_raw_lock); 4876 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 4877 return -1; 4878 } 4879 spin_unlock(&inode->i_lock); 4880 return -1; 4881 } 4882 4883 /* 4884 * Opportunistically update the other time fields for other inodes in 4885 * the same inode table block. 4886 */ 4887 static void ext4_update_other_inodes_time(struct super_block *sb, 4888 unsigned long orig_ino, char *buf) 4889 { 4890 struct other_inode oi; 4891 unsigned long ino; 4892 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4893 int inode_size = EXT4_INODE_SIZE(sb); 4894 4895 oi.orig_ino = orig_ino; 4896 /* 4897 * Calculate the first inode in the inode table block. Inode 4898 * numbers are one-based. That is, the first inode in a block 4899 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 4900 */ 4901 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 4902 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 4903 if (ino == orig_ino) 4904 continue; 4905 oi.raw_inode = (struct ext4_inode *) buf; 4906 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 4907 } 4908 } 4909 4910 /* 4911 * Post the struct inode info into an on-disk inode location in the 4912 * buffer-cache. This gobbles the caller's reference to the 4913 * buffer_head in the inode location struct. 4914 * 4915 * The caller must have write access to iloc->bh. 4916 */ 4917 static int ext4_do_update_inode(handle_t *handle, 4918 struct inode *inode, 4919 struct ext4_iloc *iloc) 4920 { 4921 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4922 struct ext4_inode_info *ei = EXT4_I(inode); 4923 struct buffer_head *bh = iloc->bh; 4924 struct super_block *sb = inode->i_sb; 4925 int err = 0, rc, block; 4926 int need_datasync = 0, set_large_file = 0; 4927 uid_t i_uid; 4928 gid_t i_gid; 4929 projid_t i_projid; 4930 4931 spin_lock(&ei->i_raw_lock); 4932 4933 /* For fields not tracked in the in-memory inode, 4934 * initialise them to zero for new inodes. */ 4935 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4936 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4937 4938 ext4_get_inode_flags(ei); 4939 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4940 i_uid = i_uid_read(inode); 4941 i_gid = i_gid_read(inode); 4942 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4943 if (!(test_opt(inode->i_sb, NO_UID32))) { 4944 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4945 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4946 /* 4947 * Fix up interoperability with old kernels. Otherwise, old inodes get 4948 * re-used with the upper 16 bits of the uid/gid intact 4949 */ 4950 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 4951 raw_inode->i_uid_high = 0; 4952 raw_inode->i_gid_high = 0; 4953 } else { 4954 raw_inode->i_uid_high = 4955 cpu_to_le16(high_16_bits(i_uid)); 4956 raw_inode->i_gid_high = 4957 cpu_to_le16(high_16_bits(i_gid)); 4958 } 4959 } else { 4960 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4961 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4962 raw_inode->i_uid_high = 0; 4963 raw_inode->i_gid_high = 0; 4964 } 4965 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4966 4967 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4968 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4969 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4970 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4971 4972 err = ext4_inode_blocks_set(handle, raw_inode, ei); 4973 if (err) { 4974 spin_unlock(&ei->i_raw_lock); 4975 goto out_brelse; 4976 } 4977 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4978 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4979 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4980 raw_inode->i_file_acl_high = 4981 cpu_to_le16(ei->i_file_acl >> 32); 4982 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4983 if (ei->i_disksize != ext4_isize(raw_inode)) { 4984 ext4_isize_set(raw_inode, ei->i_disksize); 4985 need_datasync = 1; 4986 } 4987 if (ei->i_disksize > 0x7fffffffULL) { 4988 if (!ext4_has_feature_large_file(sb) || 4989 EXT4_SB(sb)->s_es->s_rev_level == 4990 cpu_to_le32(EXT4_GOOD_OLD_REV)) 4991 set_large_file = 1; 4992 } 4993 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4994 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4995 if (old_valid_dev(inode->i_rdev)) { 4996 raw_inode->i_block[0] = 4997 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4998 raw_inode->i_block[1] = 0; 4999 } else { 5000 raw_inode->i_block[0] = 0; 5001 raw_inode->i_block[1] = 5002 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5003 raw_inode->i_block[2] = 0; 5004 } 5005 } else if (!ext4_has_inline_data(inode)) { 5006 for (block = 0; block < EXT4_N_BLOCKS; block++) 5007 raw_inode->i_block[block] = ei->i_data[block]; 5008 } 5009 5010 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5011 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 5012 if (ei->i_extra_isize) { 5013 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5014 raw_inode->i_version_hi = 5015 cpu_to_le32(inode->i_version >> 32); 5016 raw_inode->i_extra_isize = 5017 cpu_to_le16(ei->i_extra_isize); 5018 } 5019 } 5020 5021 BUG_ON(!ext4_has_feature_project(inode->i_sb) && 5022 i_projid != EXT4_DEF_PROJID); 5023 5024 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 5025 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 5026 raw_inode->i_projid = cpu_to_le32(i_projid); 5027 5028 ext4_inode_csum_set(inode, raw_inode, ei); 5029 spin_unlock(&ei->i_raw_lock); 5030 if (inode->i_sb->s_flags & MS_LAZYTIME) 5031 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5032 bh->b_data); 5033 5034 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5035 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 5036 if (!err) 5037 err = rc; 5038 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5039 if (set_large_file) { 5040 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5041 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 5042 if (err) 5043 goto out_brelse; 5044 ext4_update_dynamic_rev(sb); 5045 ext4_set_feature_large_file(sb); 5046 ext4_handle_sync(handle); 5047 err = ext4_handle_dirty_super(handle, sb); 5048 } 5049 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5050 out_brelse: 5051 brelse(bh); 5052 ext4_std_error(inode->i_sb, err); 5053 return err; 5054 } 5055 5056 /* 5057 * ext4_write_inode() 5058 * 5059 * We are called from a few places: 5060 * 5061 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5062 * Here, there will be no transaction running. We wait for any running 5063 * transaction to commit. 5064 * 5065 * - Within flush work (sys_sync(), kupdate and such). 5066 * We wait on commit, if told to. 5067 * 5068 * - Within iput_final() -> write_inode_now() 5069 * We wait on commit, if told to. 5070 * 5071 * In all cases it is actually safe for us to return without doing anything, 5072 * because the inode has been copied into a raw inode buffer in 5073 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5074 * writeback. 5075 * 5076 * Note that we are absolutely dependent upon all inode dirtiers doing the 5077 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5078 * which we are interested. 5079 * 5080 * It would be a bug for them to not do this. The code: 5081 * 5082 * mark_inode_dirty(inode) 5083 * stuff(); 5084 * inode->i_size = expr; 5085 * 5086 * is in error because write_inode() could occur while `stuff()' is running, 5087 * and the new i_size will be lost. Plus the inode will no longer be on the 5088 * superblock's dirty inode list. 5089 */ 5090 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5091 { 5092 int err; 5093 5094 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 5095 return 0; 5096 5097 if (EXT4_SB(inode->i_sb)->s_journal) { 5098 if (ext4_journal_current_handle()) { 5099 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5100 dump_stack(); 5101 return -EIO; 5102 } 5103 5104 /* 5105 * No need to force transaction in WB_SYNC_NONE mode. Also 5106 * ext4_sync_fs() will force the commit after everything is 5107 * written. 5108 */ 5109 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5110 return 0; 5111 5112 err = ext4_force_commit(inode->i_sb); 5113 } else { 5114 struct ext4_iloc iloc; 5115 5116 err = __ext4_get_inode_loc(inode, &iloc, 0); 5117 if (err) 5118 return err; 5119 /* 5120 * sync(2) will flush the whole buffer cache. No need to do 5121 * it here separately for each inode. 5122 */ 5123 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5124 sync_dirty_buffer(iloc.bh); 5125 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5126 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 5127 "IO error syncing inode"); 5128 err = -EIO; 5129 } 5130 brelse(iloc.bh); 5131 } 5132 return err; 5133 } 5134 5135 /* 5136 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 5137 * buffers that are attached to a page stradding i_size and are undergoing 5138 * commit. In that case we have to wait for commit to finish and try again. 5139 */ 5140 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5141 { 5142 struct page *page; 5143 unsigned offset; 5144 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5145 tid_t commit_tid = 0; 5146 int ret; 5147 5148 offset = inode->i_size & (PAGE_SIZE - 1); 5149 /* 5150 * All buffers in the last page remain valid? Then there's nothing to 5151 * do. We do the check mainly to optimize the common PAGE_SIZE == 5152 * blocksize case 5153 */ 5154 if (offset > PAGE_SIZE - (1 << inode->i_blkbits)) 5155 return; 5156 while (1) { 5157 page = find_lock_page(inode->i_mapping, 5158 inode->i_size >> PAGE_SHIFT); 5159 if (!page) 5160 return; 5161 ret = __ext4_journalled_invalidatepage(page, offset, 5162 PAGE_SIZE - offset); 5163 unlock_page(page); 5164 put_page(page); 5165 if (ret != -EBUSY) 5166 return; 5167 commit_tid = 0; 5168 read_lock(&journal->j_state_lock); 5169 if (journal->j_committing_transaction) 5170 commit_tid = journal->j_committing_transaction->t_tid; 5171 read_unlock(&journal->j_state_lock); 5172 if (commit_tid) 5173 jbd2_log_wait_commit(journal, commit_tid); 5174 } 5175 } 5176 5177 /* 5178 * ext4_setattr() 5179 * 5180 * Called from notify_change. 5181 * 5182 * We want to trap VFS attempts to truncate the file as soon as 5183 * possible. In particular, we want to make sure that when the VFS 5184 * shrinks i_size, we put the inode on the orphan list and modify 5185 * i_disksize immediately, so that during the subsequent flushing of 5186 * dirty pages and freeing of disk blocks, we can guarantee that any 5187 * commit will leave the blocks being flushed in an unused state on 5188 * disk. (On recovery, the inode will get truncated and the blocks will 5189 * be freed, so we have a strong guarantee that no future commit will 5190 * leave these blocks visible to the user.) 5191 * 5192 * Another thing we have to assure is that if we are in ordered mode 5193 * and inode is still attached to the committing transaction, we must 5194 * we start writeout of all the dirty pages which are being truncated. 5195 * This way we are sure that all the data written in the previous 5196 * transaction are already on disk (truncate waits for pages under 5197 * writeback). 5198 * 5199 * Called with inode->i_mutex down. 5200 */ 5201 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5202 { 5203 struct inode *inode = d_inode(dentry); 5204 int error, rc = 0; 5205 int orphan = 0; 5206 const unsigned int ia_valid = attr->ia_valid; 5207 5208 error = setattr_prepare(dentry, attr); 5209 if (error) 5210 return error; 5211 5212 if (is_quota_modification(inode, attr)) { 5213 error = dquot_initialize(inode); 5214 if (error) 5215 return error; 5216 } 5217 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5218 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5219 handle_t *handle; 5220 5221 /* (user+group)*(old+new) structure, inode write (sb, 5222 * inode block, ? - but truncate inode update has it) */ 5223 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5224 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5225 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5226 if (IS_ERR(handle)) { 5227 error = PTR_ERR(handle); 5228 goto err_out; 5229 } 5230 error = dquot_transfer(inode, attr); 5231 if (error) { 5232 ext4_journal_stop(handle); 5233 return error; 5234 } 5235 /* Update corresponding info in inode so that everything is in 5236 * one transaction */ 5237 if (attr->ia_valid & ATTR_UID) 5238 inode->i_uid = attr->ia_uid; 5239 if (attr->ia_valid & ATTR_GID) 5240 inode->i_gid = attr->ia_gid; 5241 error = ext4_mark_inode_dirty(handle, inode); 5242 ext4_journal_stop(handle); 5243 } 5244 5245 if (attr->ia_valid & ATTR_SIZE) { 5246 handle_t *handle; 5247 loff_t oldsize = inode->i_size; 5248 int shrink = (attr->ia_size <= inode->i_size); 5249 5250 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5251 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5252 5253 if (attr->ia_size > sbi->s_bitmap_maxbytes) 5254 return -EFBIG; 5255 } 5256 if (!S_ISREG(inode->i_mode)) 5257 return -EINVAL; 5258 5259 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5260 inode_inc_iversion(inode); 5261 5262 if (ext4_should_order_data(inode) && 5263 (attr->ia_size < inode->i_size)) { 5264 error = ext4_begin_ordered_truncate(inode, 5265 attr->ia_size); 5266 if (error) 5267 goto err_out; 5268 } 5269 if (attr->ia_size != inode->i_size) { 5270 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5271 if (IS_ERR(handle)) { 5272 error = PTR_ERR(handle); 5273 goto err_out; 5274 } 5275 if (ext4_handle_valid(handle) && shrink) { 5276 error = ext4_orphan_add(handle, inode); 5277 orphan = 1; 5278 } 5279 /* 5280 * Update c/mtime on truncate up, ext4_truncate() will 5281 * update c/mtime in shrink case below 5282 */ 5283 if (!shrink) { 5284 inode->i_mtime = current_time(inode); 5285 inode->i_ctime = inode->i_mtime; 5286 } 5287 down_write(&EXT4_I(inode)->i_data_sem); 5288 EXT4_I(inode)->i_disksize = attr->ia_size; 5289 rc = ext4_mark_inode_dirty(handle, inode); 5290 if (!error) 5291 error = rc; 5292 /* 5293 * We have to update i_size under i_data_sem together 5294 * with i_disksize to avoid races with writeback code 5295 * running ext4_wb_update_i_disksize(). 5296 */ 5297 if (!error) 5298 i_size_write(inode, attr->ia_size); 5299 up_write(&EXT4_I(inode)->i_data_sem); 5300 ext4_journal_stop(handle); 5301 if (error) { 5302 if (orphan) 5303 ext4_orphan_del(NULL, inode); 5304 goto err_out; 5305 } 5306 } 5307 if (!shrink) 5308 pagecache_isize_extended(inode, oldsize, inode->i_size); 5309 5310 /* 5311 * Blocks are going to be removed from the inode. Wait 5312 * for dio in flight. Temporarily disable 5313 * dioread_nolock to prevent livelock. 5314 */ 5315 if (orphan) { 5316 if (!ext4_should_journal_data(inode)) { 5317 ext4_inode_block_unlocked_dio(inode); 5318 inode_dio_wait(inode); 5319 ext4_inode_resume_unlocked_dio(inode); 5320 } else 5321 ext4_wait_for_tail_page_commit(inode); 5322 } 5323 down_write(&EXT4_I(inode)->i_mmap_sem); 5324 /* 5325 * Truncate pagecache after we've waited for commit 5326 * in data=journal mode to make pages freeable. 5327 */ 5328 truncate_pagecache(inode, inode->i_size); 5329 if (shrink) { 5330 rc = ext4_truncate(inode); 5331 if (rc) 5332 error = rc; 5333 } 5334 up_write(&EXT4_I(inode)->i_mmap_sem); 5335 } 5336 5337 if (!error) { 5338 setattr_copy(inode, attr); 5339 mark_inode_dirty(inode); 5340 } 5341 5342 /* 5343 * If the call to ext4_truncate failed to get a transaction handle at 5344 * all, we need to clean up the in-core orphan list manually. 5345 */ 5346 if (orphan && inode->i_nlink) 5347 ext4_orphan_del(NULL, inode); 5348 5349 if (!error && (ia_valid & ATTR_MODE)) 5350 rc = posix_acl_chmod(inode, inode->i_mode); 5351 5352 err_out: 5353 ext4_std_error(inode->i_sb, error); 5354 if (!error) 5355 error = rc; 5356 return error; 5357 } 5358 5359 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 5360 struct kstat *stat) 5361 { 5362 struct inode *inode; 5363 unsigned long long delalloc_blocks; 5364 5365 inode = d_inode(dentry); 5366 generic_fillattr(inode, stat); 5367 5368 /* 5369 * If there is inline data in the inode, the inode will normally not 5370 * have data blocks allocated (it may have an external xattr block). 5371 * Report at least one sector for such files, so tools like tar, rsync, 5372 * others doen't incorrectly think the file is completely sparse. 5373 */ 5374 if (unlikely(ext4_has_inline_data(inode))) 5375 stat->blocks += (stat->size + 511) >> 9; 5376 5377 /* 5378 * We can't update i_blocks if the block allocation is delayed 5379 * otherwise in the case of system crash before the real block 5380 * allocation is done, we will have i_blocks inconsistent with 5381 * on-disk file blocks. 5382 * We always keep i_blocks updated together with real 5383 * allocation. But to not confuse with user, stat 5384 * will return the blocks that include the delayed allocation 5385 * blocks for this file. 5386 */ 5387 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5388 EXT4_I(inode)->i_reserved_data_blocks); 5389 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5390 return 0; 5391 } 5392 5393 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5394 int pextents) 5395 { 5396 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5397 return ext4_ind_trans_blocks(inode, lblocks); 5398 return ext4_ext_index_trans_blocks(inode, pextents); 5399 } 5400 5401 /* 5402 * Account for index blocks, block groups bitmaps and block group 5403 * descriptor blocks if modify datablocks and index blocks 5404 * worse case, the indexs blocks spread over different block groups 5405 * 5406 * If datablocks are discontiguous, they are possible to spread over 5407 * different block groups too. If they are contiguous, with flexbg, 5408 * they could still across block group boundary. 5409 * 5410 * Also account for superblock, inode, quota and xattr blocks 5411 */ 5412 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5413 int pextents) 5414 { 5415 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5416 int gdpblocks; 5417 int idxblocks; 5418 int ret = 0; 5419 5420 /* 5421 * How many index blocks need to touch to map @lblocks logical blocks 5422 * to @pextents physical extents? 5423 */ 5424 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5425 5426 ret = idxblocks; 5427 5428 /* 5429 * Now let's see how many group bitmaps and group descriptors need 5430 * to account 5431 */ 5432 groups = idxblocks + pextents; 5433 gdpblocks = groups; 5434 if (groups > ngroups) 5435 groups = ngroups; 5436 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5437 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5438 5439 /* bitmaps and block group descriptor blocks */ 5440 ret += groups + gdpblocks; 5441 5442 /* Blocks for super block, inode, quota and xattr blocks */ 5443 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5444 5445 return ret; 5446 } 5447 5448 /* 5449 * Calculate the total number of credits to reserve to fit 5450 * the modification of a single pages into a single transaction, 5451 * which may include multiple chunks of block allocations. 5452 * 5453 * This could be called via ext4_write_begin() 5454 * 5455 * We need to consider the worse case, when 5456 * one new block per extent. 5457 */ 5458 int ext4_writepage_trans_blocks(struct inode *inode) 5459 { 5460 int bpp = ext4_journal_blocks_per_page(inode); 5461 int ret; 5462 5463 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5464 5465 /* Account for data blocks for journalled mode */ 5466 if (ext4_should_journal_data(inode)) 5467 ret += bpp; 5468 return ret; 5469 } 5470 5471 /* 5472 * Calculate the journal credits for a chunk of data modification. 5473 * 5474 * This is called from DIO, fallocate or whoever calling 5475 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5476 * 5477 * journal buffers for data blocks are not included here, as DIO 5478 * and fallocate do no need to journal data buffers. 5479 */ 5480 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5481 { 5482 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5483 } 5484 5485 /* 5486 * The caller must have previously called ext4_reserve_inode_write(). 5487 * Give this, we know that the caller already has write access to iloc->bh. 5488 */ 5489 int ext4_mark_iloc_dirty(handle_t *handle, 5490 struct inode *inode, struct ext4_iloc *iloc) 5491 { 5492 int err = 0; 5493 5494 if (IS_I_VERSION(inode)) 5495 inode_inc_iversion(inode); 5496 5497 /* the do_update_inode consumes one bh->b_count */ 5498 get_bh(iloc->bh); 5499 5500 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5501 err = ext4_do_update_inode(handle, inode, iloc); 5502 put_bh(iloc->bh); 5503 return err; 5504 } 5505 5506 /* 5507 * On success, We end up with an outstanding reference count against 5508 * iloc->bh. This _must_ be cleaned up later. 5509 */ 5510 5511 int 5512 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5513 struct ext4_iloc *iloc) 5514 { 5515 int err; 5516 5517 err = ext4_get_inode_loc(inode, iloc); 5518 if (!err) { 5519 BUFFER_TRACE(iloc->bh, "get_write_access"); 5520 err = ext4_journal_get_write_access(handle, iloc->bh); 5521 if (err) { 5522 brelse(iloc->bh); 5523 iloc->bh = NULL; 5524 } 5525 } 5526 ext4_std_error(inode->i_sb, err); 5527 return err; 5528 } 5529 5530 /* 5531 * Expand an inode by new_extra_isize bytes. 5532 * Returns 0 on success or negative error number on failure. 5533 */ 5534 static int ext4_expand_extra_isize(struct inode *inode, 5535 unsigned int new_extra_isize, 5536 struct ext4_iloc iloc, 5537 handle_t *handle) 5538 { 5539 struct ext4_inode *raw_inode; 5540 struct ext4_xattr_ibody_header *header; 5541 5542 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 5543 return 0; 5544 5545 raw_inode = ext4_raw_inode(&iloc); 5546 5547 header = IHDR(inode, raw_inode); 5548 5549 /* No extended attributes present */ 5550 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5551 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5552 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 5553 new_extra_isize); 5554 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5555 return 0; 5556 } 5557 5558 /* try to expand with EAs present */ 5559 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 5560 raw_inode, handle); 5561 } 5562 5563 /* 5564 * What we do here is to mark the in-core inode as clean with respect to inode 5565 * dirtiness (it may still be data-dirty). 5566 * This means that the in-core inode may be reaped by prune_icache 5567 * without having to perform any I/O. This is a very good thing, 5568 * because *any* task may call prune_icache - even ones which 5569 * have a transaction open against a different journal. 5570 * 5571 * Is this cheating? Not really. Sure, we haven't written the 5572 * inode out, but prune_icache isn't a user-visible syncing function. 5573 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5574 * we start and wait on commits. 5575 */ 5576 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5577 { 5578 struct ext4_iloc iloc; 5579 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5580 static unsigned int mnt_count; 5581 int err, ret; 5582 5583 might_sleep(); 5584 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5585 err = ext4_reserve_inode_write(handle, inode, &iloc); 5586 if (err) 5587 return err; 5588 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5589 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5590 /* 5591 * In nojournal mode, we can immediately attempt to expand 5592 * the inode. When journaled, we first need to obtain extra 5593 * buffer credits since we may write into the EA block 5594 * with this same handle. If journal_extend fails, then it will 5595 * only result in a minor loss of functionality for that inode. 5596 * If this is felt to be critical, then e2fsck should be run to 5597 * force a large enough s_min_extra_isize. 5598 */ 5599 if (!ext4_handle_valid(handle) || 5600 jbd2_journal_extend(handle, 5601 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) { 5602 ret = ext4_expand_extra_isize(inode, 5603 sbi->s_want_extra_isize, 5604 iloc, handle); 5605 if (ret) { 5606 if (mnt_count != 5607 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5608 ext4_warning(inode->i_sb, 5609 "Unable to expand inode %lu. Delete" 5610 " some EAs or run e2fsck.", 5611 inode->i_ino); 5612 mnt_count = 5613 le16_to_cpu(sbi->s_es->s_mnt_count); 5614 } 5615 } 5616 } 5617 } 5618 return ext4_mark_iloc_dirty(handle, inode, &iloc); 5619 } 5620 5621 /* 5622 * ext4_dirty_inode() is called from __mark_inode_dirty() 5623 * 5624 * We're really interested in the case where a file is being extended. 5625 * i_size has been changed by generic_commit_write() and we thus need 5626 * to include the updated inode in the current transaction. 5627 * 5628 * Also, dquot_alloc_block() will always dirty the inode when blocks 5629 * are allocated to the file. 5630 * 5631 * If the inode is marked synchronous, we don't honour that here - doing 5632 * so would cause a commit on atime updates, which we don't bother doing. 5633 * We handle synchronous inodes at the highest possible level. 5634 * 5635 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 5636 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 5637 * to copy into the on-disk inode structure are the timestamp files. 5638 */ 5639 void ext4_dirty_inode(struct inode *inode, int flags) 5640 { 5641 handle_t *handle; 5642 5643 if (flags == I_DIRTY_TIME) 5644 return; 5645 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5646 if (IS_ERR(handle)) 5647 goto out; 5648 5649 ext4_mark_inode_dirty(handle, inode); 5650 5651 ext4_journal_stop(handle); 5652 out: 5653 return; 5654 } 5655 5656 #if 0 5657 /* 5658 * Bind an inode's backing buffer_head into this transaction, to prevent 5659 * it from being flushed to disk early. Unlike 5660 * ext4_reserve_inode_write, this leaves behind no bh reference and 5661 * returns no iloc structure, so the caller needs to repeat the iloc 5662 * lookup to mark the inode dirty later. 5663 */ 5664 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5665 { 5666 struct ext4_iloc iloc; 5667 5668 int err = 0; 5669 if (handle) { 5670 err = ext4_get_inode_loc(inode, &iloc); 5671 if (!err) { 5672 BUFFER_TRACE(iloc.bh, "get_write_access"); 5673 err = jbd2_journal_get_write_access(handle, iloc.bh); 5674 if (!err) 5675 err = ext4_handle_dirty_metadata(handle, 5676 NULL, 5677 iloc.bh); 5678 brelse(iloc.bh); 5679 } 5680 } 5681 ext4_std_error(inode->i_sb, err); 5682 return err; 5683 } 5684 #endif 5685 5686 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5687 { 5688 journal_t *journal; 5689 handle_t *handle; 5690 int err; 5691 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5692 5693 /* 5694 * We have to be very careful here: changing a data block's 5695 * journaling status dynamically is dangerous. If we write a 5696 * data block to the journal, change the status and then delete 5697 * that block, we risk forgetting to revoke the old log record 5698 * from the journal and so a subsequent replay can corrupt data. 5699 * So, first we make sure that the journal is empty and that 5700 * nobody is changing anything. 5701 */ 5702 5703 journal = EXT4_JOURNAL(inode); 5704 if (!journal) 5705 return 0; 5706 if (is_journal_aborted(journal)) 5707 return -EROFS; 5708 5709 /* Wait for all existing dio workers */ 5710 ext4_inode_block_unlocked_dio(inode); 5711 inode_dio_wait(inode); 5712 5713 /* 5714 * Before flushing the journal and switching inode's aops, we have 5715 * to flush all dirty data the inode has. There can be outstanding 5716 * delayed allocations, there can be unwritten extents created by 5717 * fallocate or buffered writes in dioread_nolock mode covered by 5718 * dirty data which can be converted only after flushing the dirty 5719 * data (and journalled aops don't know how to handle these cases). 5720 */ 5721 if (val) { 5722 down_write(&EXT4_I(inode)->i_mmap_sem); 5723 err = filemap_write_and_wait(inode->i_mapping); 5724 if (err < 0) { 5725 up_write(&EXT4_I(inode)->i_mmap_sem); 5726 ext4_inode_resume_unlocked_dio(inode); 5727 return err; 5728 } 5729 } 5730 5731 percpu_down_write(&sbi->s_journal_flag_rwsem); 5732 jbd2_journal_lock_updates(journal); 5733 5734 /* 5735 * OK, there are no updates running now, and all cached data is 5736 * synced to disk. We are now in a completely consistent state 5737 * which doesn't have anything in the journal, and we know that 5738 * no filesystem updates are running, so it is safe to modify 5739 * the inode's in-core data-journaling state flag now. 5740 */ 5741 5742 if (val) 5743 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5744 else { 5745 err = jbd2_journal_flush(journal); 5746 if (err < 0) { 5747 jbd2_journal_unlock_updates(journal); 5748 percpu_up_write(&sbi->s_journal_flag_rwsem); 5749 ext4_inode_resume_unlocked_dio(inode); 5750 return err; 5751 } 5752 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5753 } 5754 ext4_set_aops(inode); 5755 /* 5756 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated. 5757 * E.g. S_DAX may get cleared / set. 5758 */ 5759 ext4_set_inode_flags(inode); 5760 5761 jbd2_journal_unlock_updates(journal); 5762 percpu_up_write(&sbi->s_journal_flag_rwsem); 5763 5764 if (val) 5765 up_write(&EXT4_I(inode)->i_mmap_sem); 5766 ext4_inode_resume_unlocked_dio(inode); 5767 5768 /* Finally we can mark the inode as dirty. */ 5769 5770 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5771 if (IS_ERR(handle)) 5772 return PTR_ERR(handle); 5773 5774 err = ext4_mark_inode_dirty(handle, inode); 5775 ext4_handle_sync(handle); 5776 ext4_journal_stop(handle); 5777 ext4_std_error(inode->i_sb, err); 5778 5779 return err; 5780 } 5781 5782 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5783 { 5784 return !buffer_mapped(bh); 5785 } 5786 5787 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5788 { 5789 struct page *page = vmf->page; 5790 loff_t size; 5791 unsigned long len; 5792 int ret; 5793 struct file *file = vma->vm_file; 5794 struct inode *inode = file_inode(file); 5795 struct address_space *mapping = inode->i_mapping; 5796 handle_t *handle; 5797 get_block_t *get_block; 5798 int retries = 0; 5799 5800 sb_start_pagefault(inode->i_sb); 5801 file_update_time(vma->vm_file); 5802 5803 down_read(&EXT4_I(inode)->i_mmap_sem); 5804 /* Delalloc case is easy... */ 5805 if (test_opt(inode->i_sb, DELALLOC) && 5806 !ext4_should_journal_data(inode) && 5807 !ext4_nonda_switch(inode->i_sb)) { 5808 do { 5809 ret = block_page_mkwrite(vma, vmf, 5810 ext4_da_get_block_prep); 5811 } while (ret == -ENOSPC && 5812 ext4_should_retry_alloc(inode->i_sb, &retries)); 5813 goto out_ret; 5814 } 5815 5816 lock_page(page); 5817 size = i_size_read(inode); 5818 /* Page got truncated from under us? */ 5819 if (page->mapping != mapping || page_offset(page) > size) { 5820 unlock_page(page); 5821 ret = VM_FAULT_NOPAGE; 5822 goto out; 5823 } 5824 5825 if (page->index == size >> PAGE_SHIFT) 5826 len = size & ~PAGE_MASK; 5827 else 5828 len = PAGE_SIZE; 5829 /* 5830 * Return if we have all the buffers mapped. This avoids the need to do 5831 * journal_start/journal_stop which can block and take a long time 5832 */ 5833 if (page_has_buffers(page)) { 5834 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5835 0, len, NULL, 5836 ext4_bh_unmapped)) { 5837 /* Wait so that we don't change page under IO */ 5838 wait_for_stable_page(page); 5839 ret = VM_FAULT_LOCKED; 5840 goto out; 5841 } 5842 } 5843 unlock_page(page); 5844 /* OK, we need to fill the hole... */ 5845 if (ext4_should_dioread_nolock(inode)) 5846 get_block = ext4_get_block_unwritten; 5847 else 5848 get_block = ext4_get_block; 5849 retry_alloc: 5850 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5851 ext4_writepage_trans_blocks(inode)); 5852 if (IS_ERR(handle)) { 5853 ret = VM_FAULT_SIGBUS; 5854 goto out; 5855 } 5856 ret = block_page_mkwrite(vma, vmf, get_block); 5857 if (!ret && ext4_should_journal_data(inode)) { 5858 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5859 PAGE_SIZE, NULL, do_journal_get_write_access)) { 5860 unlock_page(page); 5861 ret = VM_FAULT_SIGBUS; 5862 ext4_journal_stop(handle); 5863 goto out; 5864 } 5865 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5866 } 5867 ext4_journal_stop(handle); 5868 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5869 goto retry_alloc; 5870 out_ret: 5871 ret = block_page_mkwrite_return(ret); 5872 out: 5873 up_read(&EXT4_I(inode)->i_mmap_sem); 5874 sb_end_pagefault(inode->i_sb); 5875 return ret; 5876 } 5877 5878 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 5879 { 5880 struct inode *inode = file_inode(vma->vm_file); 5881 int err; 5882 5883 down_read(&EXT4_I(inode)->i_mmap_sem); 5884 err = filemap_fault(vma, vmf); 5885 up_read(&EXT4_I(inode)->i_mmap_sem); 5886 5887 return err; 5888 } 5889 5890 /* 5891 * Find the first extent at or after @lblk in an inode that is not a hole. 5892 * Search for @map_len blocks at most. The extent is returned in @result. 5893 * 5894 * The function returns 1 if we found an extent. The function returns 0 in 5895 * case there is no extent at or after @lblk and in that case also sets 5896 * @result->es_len to 0. In case of error, the error code is returned. 5897 */ 5898 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk, 5899 unsigned int map_len, struct extent_status *result) 5900 { 5901 struct ext4_map_blocks map; 5902 struct extent_status es = {}; 5903 int ret; 5904 5905 map.m_lblk = lblk; 5906 map.m_len = map_len; 5907 5908 /* 5909 * For non-extent based files this loop may iterate several times since 5910 * we do not determine full hole size. 5911 */ 5912 while (map.m_len > 0) { 5913 ret = ext4_map_blocks(NULL, inode, &map, 0); 5914 if (ret < 0) 5915 return ret; 5916 /* There's extent covering m_lblk? Just return it. */ 5917 if (ret > 0) { 5918 int status; 5919 5920 ext4_es_store_pblock(result, map.m_pblk); 5921 result->es_lblk = map.m_lblk; 5922 result->es_len = map.m_len; 5923 if (map.m_flags & EXT4_MAP_UNWRITTEN) 5924 status = EXTENT_STATUS_UNWRITTEN; 5925 else 5926 status = EXTENT_STATUS_WRITTEN; 5927 ext4_es_store_status(result, status); 5928 return 1; 5929 } 5930 ext4_es_find_delayed_extent_range(inode, map.m_lblk, 5931 map.m_lblk + map.m_len - 1, 5932 &es); 5933 /* Is delalloc data before next block in extent tree? */ 5934 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) { 5935 ext4_lblk_t offset = 0; 5936 5937 if (es.es_lblk < lblk) 5938 offset = lblk - es.es_lblk; 5939 result->es_lblk = es.es_lblk + offset; 5940 ext4_es_store_pblock(result, 5941 ext4_es_pblock(&es) + offset); 5942 result->es_len = es.es_len - offset; 5943 ext4_es_store_status(result, ext4_es_status(&es)); 5944 5945 return 1; 5946 } 5947 /* There's a hole at m_lblk, advance us after it */ 5948 map.m_lblk += map.m_len; 5949 map_len -= map.m_len; 5950 map.m_len = map_len; 5951 cond_resched(); 5952 } 5953 result->es_len = 0; 5954 return 0; 5955 } 5956