xref: /linux/fs/ext4/inode.c (revision 372e2db7210df7c45ead46429aeb1443ba148060)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 #include <linux/iomap.h>
41 
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46 
47 #include <trace/events/ext4.h>
48 
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50 
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 			      struct ext4_inode_info *ei)
53 {
54 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 	__u32 csum;
56 	__u16 dummy_csum = 0;
57 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 	unsigned int csum_size = sizeof(dummy_csum);
59 
60 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 	offset += csum_size;
63 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
65 
66 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 		offset = offsetof(struct ext4_inode, i_checksum_hi);
68 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 				   EXT4_GOOD_OLD_INODE_SIZE,
70 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
71 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 					   csum_size);
74 			offset += csum_size;
75 		}
76 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
78 	}
79 
80 	return csum;
81 }
82 
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 				  struct ext4_inode_info *ei)
85 {
86 	__u32 provided, calculated;
87 
88 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 	    cpu_to_le32(EXT4_OS_LINUX) ||
90 	    !ext4_has_metadata_csum(inode->i_sb))
91 		return 1;
92 
93 	provided = le16_to_cpu(raw->i_checksum_lo);
94 	calculated = ext4_inode_csum(inode, raw, ei);
95 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 	else
99 		calculated &= 0xFFFF;
100 
101 	return provided == calculated;
102 }
103 
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 				struct ext4_inode_info *ei)
106 {
107 	__u32 csum;
108 
109 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 	    cpu_to_le32(EXT4_OS_LINUX) ||
111 	    !ext4_has_metadata_csum(inode->i_sb))
112 		return;
113 
114 	csum = ext4_inode_csum(inode, raw, ei);
115 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120 
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 					      loff_t new_size)
123 {
124 	trace_ext4_begin_ordered_truncate(inode, new_size);
125 	/*
126 	 * If jinode is zero, then we never opened the file for
127 	 * writing, so there's no need to call
128 	 * jbd2_journal_begin_ordered_truncate() since there's no
129 	 * outstanding writes we need to flush.
130 	 */
131 	if (!EXT4_I(inode)->jinode)
132 		return 0;
133 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 						   EXT4_I(inode)->jinode,
135 						   new_size);
136 }
137 
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 				unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 				  int pextents);
144 
145 /*
146  * Test whether an inode is a fast symlink.
147  */
148 int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150         int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152 
153 	if (ext4_has_inline_data(inode))
154 		return 0;
155 
156 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
158 
159 /*
160  * Restart the transaction associated with *handle.  This does a commit,
161  * so before we call here everything must be consistently dirtied against
162  * this transaction.
163  */
164 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
165 				 int nblocks)
166 {
167 	int ret;
168 
169 	/*
170 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
171 	 * moment, get_block can be called only for blocks inside i_size since
172 	 * page cache has been already dropped and writes are blocked by
173 	 * i_mutex. So we can safely drop the i_data_sem here.
174 	 */
175 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
176 	jbd_debug(2, "restarting handle %p\n", handle);
177 	up_write(&EXT4_I(inode)->i_data_sem);
178 	ret = ext4_journal_restart(handle, nblocks);
179 	down_write(&EXT4_I(inode)->i_data_sem);
180 	ext4_discard_preallocations(inode);
181 
182 	return ret;
183 }
184 
185 /*
186  * Called at the last iput() if i_nlink is zero.
187  */
188 void ext4_evict_inode(struct inode *inode)
189 {
190 	handle_t *handle;
191 	int err;
192 
193 	trace_ext4_evict_inode(inode);
194 
195 	if (inode->i_nlink) {
196 		/*
197 		 * When journalling data dirty buffers are tracked only in the
198 		 * journal. So although mm thinks everything is clean and
199 		 * ready for reaping the inode might still have some pages to
200 		 * write in the running transaction or waiting to be
201 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
202 		 * (via truncate_inode_pages()) to discard these buffers can
203 		 * cause data loss. Also even if we did not discard these
204 		 * buffers, we would have no way to find them after the inode
205 		 * is reaped and thus user could see stale data if he tries to
206 		 * read them before the transaction is checkpointed. So be
207 		 * careful and force everything to disk here... We use
208 		 * ei->i_datasync_tid to store the newest transaction
209 		 * containing inode's data.
210 		 *
211 		 * Note that directories do not have this problem because they
212 		 * don't use page cache.
213 		 */
214 		if (inode->i_ino != EXT4_JOURNAL_INO &&
215 		    ext4_should_journal_data(inode) &&
216 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
217 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219 
220 			jbd2_complete_transaction(journal, commit_tid);
221 			filemap_write_and_wait(&inode->i_data);
222 		}
223 		truncate_inode_pages_final(&inode->i_data);
224 
225 		goto no_delete;
226 	}
227 
228 	if (is_bad_inode(inode))
229 		goto no_delete;
230 	dquot_initialize(inode);
231 
232 	if (ext4_should_order_data(inode))
233 		ext4_begin_ordered_truncate(inode, 0);
234 	truncate_inode_pages_final(&inode->i_data);
235 
236 	/*
237 	 * Protect us against freezing - iput() caller didn't have to have any
238 	 * protection against it
239 	 */
240 	sb_start_intwrite(inode->i_sb);
241 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
242 				    ext4_blocks_for_truncate(inode)+3);
243 	if (IS_ERR(handle)) {
244 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
245 		/*
246 		 * If we're going to skip the normal cleanup, we still need to
247 		 * make sure that the in-core orphan linked list is properly
248 		 * cleaned up.
249 		 */
250 		ext4_orphan_del(NULL, inode);
251 		sb_end_intwrite(inode->i_sb);
252 		goto no_delete;
253 	}
254 
255 	if (IS_SYNC(inode))
256 		ext4_handle_sync(handle);
257 	inode->i_size = 0;
258 	err = ext4_mark_inode_dirty(handle, inode);
259 	if (err) {
260 		ext4_warning(inode->i_sb,
261 			     "couldn't mark inode dirty (err %d)", err);
262 		goto stop_handle;
263 	}
264 	if (inode->i_blocks) {
265 		err = ext4_truncate(inode);
266 		if (err) {
267 			ext4_error(inode->i_sb,
268 				   "couldn't truncate inode %lu (err %d)",
269 				   inode->i_ino, err);
270 			goto stop_handle;
271 		}
272 	}
273 
274 	/*
275 	 * ext4_ext_truncate() doesn't reserve any slop when it
276 	 * restarts journal transactions; therefore there may not be
277 	 * enough credits left in the handle to remove the inode from
278 	 * the orphan list and set the dtime field.
279 	 */
280 	if (!ext4_handle_has_enough_credits(handle, 3)) {
281 		err = ext4_journal_extend(handle, 3);
282 		if (err > 0)
283 			err = ext4_journal_restart(handle, 3);
284 		if (err != 0) {
285 			ext4_warning(inode->i_sb,
286 				     "couldn't extend journal (err %d)", err);
287 		stop_handle:
288 			ext4_journal_stop(handle);
289 			ext4_orphan_del(NULL, inode);
290 			sb_end_intwrite(inode->i_sb);
291 			goto no_delete;
292 		}
293 	}
294 
295 	/*
296 	 * Kill off the orphan record which ext4_truncate created.
297 	 * AKPM: I think this can be inside the above `if'.
298 	 * Note that ext4_orphan_del() has to be able to cope with the
299 	 * deletion of a non-existent orphan - this is because we don't
300 	 * know if ext4_truncate() actually created an orphan record.
301 	 * (Well, we could do this if we need to, but heck - it works)
302 	 */
303 	ext4_orphan_del(handle, inode);
304 	EXT4_I(inode)->i_dtime	= get_seconds();
305 
306 	/*
307 	 * One subtle ordering requirement: if anything has gone wrong
308 	 * (transaction abort, IO errors, whatever), then we can still
309 	 * do these next steps (the fs will already have been marked as
310 	 * having errors), but we can't free the inode if the mark_dirty
311 	 * fails.
312 	 */
313 	if (ext4_mark_inode_dirty(handle, inode))
314 		/* If that failed, just do the required in-core inode clear. */
315 		ext4_clear_inode(inode);
316 	else
317 		ext4_free_inode(handle, inode);
318 	ext4_journal_stop(handle);
319 	sb_end_intwrite(inode->i_sb);
320 	return;
321 no_delete:
322 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
323 }
324 
325 #ifdef CONFIG_QUOTA
326 qsize_t *ext4_get_reserved_space(struct inode *inode)
327 {
328 	return &EXT4_I(inode)->i_reserved_quota;
329 }
330 #endif
331 
332 /*
333  * Called with i_data_sem down, which is important since we can call
334  * ext4_discard_preallocations() from here.
335  */
336 void ext4_da_update_reserve_space(struct inode *inode,
337 					int used, int quota_claim)
338 {
339 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
340 	struct ext4_inode_info *ei = EXT4_I(inode);
341 
342 	spin_lock(&ei->i_block_reservation_lock);
343 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
344 	if (unlikely(used > ei->i_reserved_data_blocks)) {
345 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
346 			 "with only %d reserved data blocks",
347 			 __func__, inode->i_ino, used,
348 			 ei->i_reserved_data_blocks);
349 		WARN_ON(1);
350 		used = ei->i_reserved_data_blocks;
351 	}
352 
353 	/* Update per-inode reservations */
354 	ei->i_reserved_data_blocks -= used;
355 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
356 
357 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
358 
359 	/* Update quota subsystem for data blocks */
360 	if (quota_claim)
361 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
362 	else {
363 		/*
364 		 * We did fallocate with an offset that is already delayed
365 		 * allocated. So on delayed allocated writeback we should
366 		 * not re-claim the quota for fallocated blocks.
367 		 */
368 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
369 	}
370 
371 	/*
372 	 * If we have done all the pending block allocations and if
373 	 * there aren't any writers on the inode, we can discard the
374 	 * inode's preallocations.
375 	 */
376 	if ((ei->i_reserved_data_blocks == 0) &&
377 	    (atomic_read(&inode->i_writecount) == 0))
378 		ext4_discard_preallocations(inode);
379 }
380 
381 static int __check_block_validity(struct inode *inode, const char *func,
382 				unsigned int line,
383 				struct ext4_map_blocks *map)
384 {
385 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
386 				   map->m_len)) {
387 		ext4_error_inode(inode, func, line, map->m_pblk,
388 				 "lblock %lu mapped to illegal pblock "
389 				 "(length %d)", (unsigned long) map->m_lblk,
390 				 map->m_len);
391 		return -EFSCORRUPTED;
392 	}
393 	return 0;
394 }
395 
396 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
397 		       ext4_lblk_t len)
398 {
399 	int ret;
400 
401 	if (ext4_encrypted_inode(inode))
402 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
403 
404 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
405 	if (ret > 0)
406 		ret = 0;
407 
408 	return ret;
409 }
410 
411 #define check_block_validity(inode, map)	\
412 	__check_block_validity((inode), __func__, __LINE__, (map))
413 
414 #ifdef ES_AGGRESSIVE_TEST
415 static void ext4_map_blocks_es_recheck(handle_t *handle,
416 				       struct inode *inode,
417 				       struct ext4_map_blocks *es_map,
418 				       struct ext4_map_blocks *map,
419 				       int flags)
420 {
421 	int retval;
422 
423 	map->m_flags = 0;
424 	/*
425 	 * There is a race window that the result is not the same.
426 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
427 	 * is that we lookup a block mapping in extent status tree with
428 	 * out taking i_data_sem.  So at the time the unwritten extent
429 	 * could be converted.
430 	 */
431 	down_read(&EXT4_I(inode)->i_data_sem);
432 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
433 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
434 					     EXT4_GET_BLOCKS_KEEP_SIZE);
435 	} else {
436 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
437 					     EXT4_GET_BLOCKS_KEEP_SIZE);
438 	}
439 	up_read((&EXT4_I(inode)->i_data_sem));
440 
441 	/*
442 	 * We don't check m_len because extent will be collpased in status
443 	 * tree.  So the m_len might not equal.
444 	 */
445 	if (es_map->m_lblk != map->m_lblk ||
446 	    es_map->m_flags != map->m_flags ||
447 	    es_map->m_pblk != map->m_pblk) {
448 		printk("ES cache assertion failed for inode: %lu "
449 		       "es_cached ex [%d/%d/%llu/%x] != "
450 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
451 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
452 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
453 		       map->m_len, map->m_pblk, map->m_flags,
454 		       retval, flags);
455 	}
456 }
457 #endif /* ES_AGGRESSIVE_TEST */
458 
459 /*
460  * The ext4_map_blocks() function tries to look up the requested blocks,
461  * and returns if the blocks are already mapped.
462  *
463  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
464  * and store the allocated blocks in the result buffer head and mark it
465  * mapped.
466  *
467  * If file type is extents based, it will call ext4_ext_map_blocks(),
468  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
469  * based files
470  *
471  * On success, it returns the number of blocks being mapped or allocated.  if
472  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
473  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
474  *
475  * It returns 0 if plain look up failed (blocks have not been allocated), in
476  * that case, @map is returned as unmapped but we still do fill map->m_len to
477  * indicate the length of a hole starting at map->m_lblk.
478  *
479  * It returns the error in case of allocation failure.
480  */
481 int ext4_map_blocks(handle_t *handle, struct inode *inode,
482 		    struct ext4_map_blocks *map, int flags)
483 {
484 	struct extent_status es;
485 	int retval;
486 	int ret = 0;
487 #ifdef ES_AGGRESSIVE_TEST
488 	struct ext4_map_blocks orig_map;
489 
490 	memcpy(&orig_map, map, sizeof(*map));
491 #endif
492 
493 	map->m_flags = 0;
494 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
495 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
496 		  (unsigned long) map->m_lblk);
497 
498 	/*
499 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
500 	 */
501 	if (unlikely(map->m_len > INT_MAX))
502 		map->m_len = INT_MAX;
503 
504 	/* We can handle the block number less than EXT_MAX_BLOCKS */
505 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
506 		return -EFSCORRUPTED;
507 
508 	/* Lookup extent status tree firstly */
509 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
510 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
511 			map->m_pblk = ext4_es_pblock(&es) +
512 					map->m_lblk - es.es_lblk;
513 			map->m_flags |= ext4_es_is_written(&es) ?
514 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
515 			retval = es.es_len - (map->m_lblk - es.es_lblk);
516 			if (retval > map->m_len)
517 				retval = map->m_len;
518 			map->m_len = retval;
519 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
520 			map->m_pblk = 0;
521 			retval = es.es_len - (map->m_lblk - es.es_lblk);
522 			if (retval > map->m_len)
523 				retval = map->m_len;
524 			map->m_len = retval;
525 			retval = 0;
526 		} else {
527 			BUG_ON(1);
528 		}
529 #ifdef ES_AGGRESSIVE_TEST
530 		ext4_map_blocks_es_recheck(handle, inode, map,
531 					   &orig_map, flags);
532 #endif
533 		goto found;
534 	}
535 
536 	/*
537 	 * Try to see if we can get the block without requesting a new
538 	 * file system block.
539 	 */
540 	down_read(&EXT4_I(inode)->i_data_sem);
541 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
542 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
543 					     EXT4_GET_BLOCKS_KEEP_SIZE);
544 	} else {
545 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
546 					     EXT4_GET_BLOCKS_KEEP_SIZE);
547 	}
548 	if (retval > 0) {
549 		unsigned int status;
550 
551 		if (unlikely(retval != map->m_len)) {
552 			ext4_warning(inode->i_sb,
553 				     "ES len assertion failed for inode "
554 				     "%lu: retval %d != map->m_len %d",
555 				     inode->i_ino, retval, map->m_len);
556 			WARN_ON(1);
557 		}
558 
559 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
560 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
561 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
562 		    !(status & EXTENT_STATUS_WRITTEN) &&
563 		    ext4_find_delalloc_range(inode, map->m_lblk,
564 					     map->m_lblk + map->m_len - 1))
565 			status |= EXTENT_STATUS_DELAYED;
566 		ret = ext4_es_insert_extent(inode, map->m_lblk,
567 					    map->m_len, map->m_pblk, status);
568 		if (ret < 0)
569 			retval = ret;
570 	}
571 	up_read((&EXT4_I(inode)->i_data_sem));
572 
573 found:
574 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
575 		ret = check_block_validity(inode, map);
576 		if (ret != 0)
577 			return ret;
578 	}
579 
580 	/* If it is only a block(s) look up */
581 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
582 		return retval;
583 
584 	/*
585 	 * Returns if the blocks have already allocated
586 	 *
587 	 * Note that if blocks have been preallocated
588 	 * ext4_ext_get_block() returns the create = 0
589 	 * with buffer head unmapped.
590 	 */
591 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
592 		/*
593 		 * If we need to convert extent to unwritten
594 		 * we continue and do the actual work in
595 		 * ext4_ext_map_blocks()
596 		 */
597 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
598 			return retval;
599 
600 	/*
601 	 * Here we clear m_flags because after allocating an new extent,
602 	 * it will be set again.
603 	 */
604 	map->m_flags &= ~EXT4_MAP_FLAGS;
605 
606 	/*
607 	 * New blocks allocate and/or writing to unwritten extent
608 	 * will possibly result in updating i_data, so we take
609 	 * the write lock of i_data_sem, and call get_block()
610 	 * with create == 1 flag.
611 	 */
612 	down_write(&EXT4_I(inode)->i_data_sem);
613 
614 	/*
615 	 * We need to check for EXT4 here because migrate
616 	 * could have changed the inode type in between
617 	 */
618 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
619 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
620 	} else {
621 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
622 
623 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
624 			/*
625 			 * We allocated new blocks which will result in
626 			 * i_data's format changing.  Force the migrate
627 			 * to fail by clearing migrate flags
628 			 */
629 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
630 		}
631 
632 		/*
633 		 * Update reserved blocks/metadata blocks after successful
634 		 * block allocation which had been deferred till now. We don't
635 		 * support fallocate for non extent files. So we can update
636 		 * reserve space here.
637 		 */
638 		if ((retval > 0) &&
639 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
640 			ext4_da_update_reserve_space(inode, retval, 1);
641 	}
642 
643 	if (retval > 0) {
644 		unsigned int status;
645 
646 		if (unlikely(retval != map->m_len)) {
647 			ext4_warning(inode->i_sb,
648 				     "ES len assertion failed for inode "
649 				     "%lu: retval %d != map->m_len %d",
650 				     inode->i_ino, retval, map->m_len);
651 			WARN_ON(1);
652 		}
653 
654 		/*
655 		 * We have to zeroout blocks before inserting them into extent
656 		 * status tree. Otherwise someone could look them up there and
657 		 * use them before they are really zeroed. We also have to
658 		 * unmap metadata before zeroing as otherwise writeback can
659 		 * overwrite zeros with stale data from block device.
660 		 */
661 		if (flags & EXT4_GET_BLOCKS_ZERO &&
662 		    map->m_flags & EXT4_MAP_MAPPED &&
663 		    map->m_flags & EXT4_MAP_NEW) {
664 			ext4_lblk_t i;
665 
666 			for (i = 0; i < map->m_len; i++) {
667 				unmap_underlying_metadata(inode->i_sb->s_bdev,
668 							  map->m_pblk + i);
669 			}
670 			ret = ext4_issue_zeroout(inode, map->m_lblk,
671 						 map->m_pblk, map->m_len);
672 			if (ret) {
673 				retval = ret;
674 				goto out_sem;
675 			}
676 		}
677 
678 		/*
679 		 * If the extent has been zeroed out, we don't need to update
680 		 * extent status tree.
681 		 */
682 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
683 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
684 			if (ext4_es_is_written(&es))
685 				goto out_sem;
686 		}
687 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
688 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
689 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
690 		    !(status & EXTENT_STATUS_WRITTEN) &&
691 		    ext4_find_delalloc_range(inode, map->m_lblk,
692 					     map->m_lblk + map->m_len - 1))
693 			status |= EXTENT_STATUS_DELAYED;
694 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
695 					    map->m_pblk, status);
696 		if (ret < 0) {
697 			retval = ret;
698 			goto out_sem;
699 		}
700 	}
701 
702 out_sem:
703 	up_write((&EXT4_I(inode)->i_data_sem));
704 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
705 		ret = check_block_validity(inode, map);
706 		if (ret != 0)
707 			return ret;
708 
709 		/*
710 		 * Inodes with freshly allocated blocks where contents will be
711 		 * visible after transaction commit must be on transaction's
712 		 * ordered data list.
713 		 */
714 		if (map->m_flags & EXT4_MAP_NEW &&
715 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
716 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
717 		    !IS_NOQUOTA(inode) &&
718 		    ext4_should_order_data(inode)) {
719 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
720 				ret = ext4_jbd2_inode_add_wait(handle, inode);
721 			else
722 				ret = ext4_jbd2_inode_add_write(handle, inode);
723 			if (ret)
724 				return ret;
725 		}
726 	}
727 	return retval;
728 }
729 
730 /*
731  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
732  * we have to be careful as someone else may be manipulating b_state as well.
733  */
734 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
735 {
736 	unsigned long old_state;
737 	unsigned long new_state;
738 
739 	flags &= EXT4_MAP_FLAGS;
740 
741 	/* Dummy buffer_head? Set non-atomically. */
742 	if (!bh->b_page) {
743 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
744 		return;
745 	}
746 	/*
747 	 * Someone else may be modifying b_state. Be careful! This is ugly but
748 	 * once we get rid of using bh as a container for mapping information
749 	 * to pass to / from get_block functions, this can go away.
750 	 */
751 	do {
752 		old_state = READ_ONCE(bh->b_state);
753 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
754 	} while (unlikely(
755 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
756 }
757 
758 static int _ext4_get_block(struct inode *inode, sector_t iblock,
759 			   struct buffer_head *bh, int flags)
760 {
761 	struct ext4_map_blocks map;
762 	int ret = 0;
763 
764 	if (ext4_has_inline_data(inode))
765 		return -ERANGE;
766 
767 	map.m_lblk = iblock;
768 	map.m_len = bh->b_size >> inode->i_blkbits;
769 
770 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
771 			      flags);
772 	if (ret > 0) {
773 		map_bh(bh, inode->i_sb, map.m_pblk);
774 		ext4_update_bh_state(bh, map.m_flags);
775 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
776 		ret = 0;
777 	} else if (ret == 0) {
778 		/* hole case, need to fill in bh->b_size */
779 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
780 	}
781 	return ret;
782 }
783 
784 int ext4_get_block(struct inode *inode, sector_t iblock,
785 		   struct buffer_head *bh, int create)
786 {
787 	return _ext4_get_block(inode, iblock, bh,
788 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
789 }
790 
791 /*
792  * Get block function used when preparing for buffered write if we require
793  * creating an unwritten extent if blocks haven't been allocated.  The extent
794  * will be converted to written after the IO is complete.
795  */
796 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
797 			     struct buffer_head *bh_result, int create)
798 {
799 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
800 		   inode->i_ino, create);
801 	return _ext4_get_block(inode, iblock, bh_result,
802 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
803 }
804 
805 /* Maximum number of blocks we map for direct IO at once. */
806 #define DIO_MAX_BLOCKS 4096
807 
808 /*
809  * Get blocks function for the cases that need to start a transaction -
810  * generally difference cases of direct IO and DAX IO. It also handles retries
811  * in case of ENOSPC.
812  */
813 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
814 				struct buffer_head *bh_result, int flags)
815 {
816 	int dio_credits;
817 	handle_t *handle;
818 	int retries = 0;
819 	int ret;
820 
821 	/* Trim mapping request to maximum we can map at once for DIO */
822 	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
823 		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
824 	dio_credits = ext4_chunk_trans_blocks(inode,
825 				      bh_result->b_size >> inode->i_blkbits);
826 retry:
827 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
828 	if (IS_ERR(handle))
829 		return PTR_ERR(handle);
830 
831 	ret = _ext4_get_block(inode, iblock, bh_result, flags);
832 	ext4_journal_stop(handle);
833 
834 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
835 		goto retry;
836 	return ret;
837 }
838 
839 /* Get block function for DIO reads and writes to inodes without extents */
840 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
841 		       struct buffer_head *bh, int create)
842 {
843 	/* We don't expect handle for direct IO */
844 	WARN_ON_ONCE(ext4_journal_current_handle());
845 
846 	if (!create)
847 		return _ext4_get_block(inode, iblock, bh, 0);
848 	return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
849 }
850 
851 /*
852  * Get block function for AIO DIO writes when we create unwritten extent if
853  * blocks are not allocated yet. The extent will be converted to written
854  * after IO is complete.
855  */
856 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
857 		sector_t iblock, struct buffer_head *bh_result,	int create)
858 {
859 	int ret;
860 
861 	/* We don't expect handle for direct IO */
862 	WARN_ON_ONCE(ext4_journal_current_handle());
863 
864 	ret = ext4_get_block_trans(inode, iblock, bh_result,
865 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
866 
867 	/*
868 	 * When doing DIO using unwritten extents, we need io_end to convert
869 	 * unwritten extents to written on IO completion. We allocate io_end
870 	 * once we spot unwritten extent and store it in b_private. Generic
871 	 * DIO code keeps b_private set and furthermore passes the value to
872 	 * our completion callback in 'private' argument.
873 	 */
874 	if (!ret && buffer_unwritten(bh_result)) {
875 		if (!bh_result->b_private) {
876 			ext4_io_end_t *io_end;
877 
878 			io_end = ext4_init_io_end(inode, GFP_KERNEL);
879 			if (!io_end)
880 				return -ENOMEM;
881 			bh_result->b_private = io_end;
882 			ext4_set_io_unwritten_flag(inode, io_end);
883 		}
884 		set_buffer_defer_completion(bh_result);
885 	}
886 
887 	return ret;
888 }
889 
890 /*
891  * Get block function for non-AIO DIO writes when we create unwritten extent if
892  * blocks are not allocated yet. The extent will be converted to written
893  * after IO is complete from ext4_ext_direct_IO() function.
894  */
895 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
896 		sector_t iblock, struct buffer_head *bh_result,	int create)
897 {
898 	int ret;
899 
900 	/* We don't expect handle for direct IO */
901 	WARN_ON_ONCE(ext4_journal_current_handle());
902 
903 	ret = ext4_get_block_trans(inode, iblock, bh_result,
904 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
905 
906 	/*
907 	 * Mark inode as having pending DIO writes to unwritten extents.
908 	 * ext4_ext_direct_IO() checks this flag and converts extents to
909 	 * written.
910 	 */
911 	if (!ret && buffer_unwritten(bh_result))
912 		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
913 
914 	return ret;
915 }
916 
917 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
918 		   struct buffer_head *bh_result, int create)
919 {
920 	int ret;
921 
922 	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
923 		   inode->i_ino, create);
924 	/* We don't expect handle for direct IO */
925 	WARN_ON_ONCE(ext4_journal_current_handle());
926 
927 	ret = _ext4_get_block(inode, iblock, bh_result, 0);
928 	/*
929 	 * Blocks should have been preallocated! ext4_file_write_iter() checks
930 	 * that.
931 	 */
932 	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
933 
934 	return ret;
935 }
936 
937 
938 /*
939  * `handle' can be NULL if create is zero
940  */
941 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
942 				ext4_lblk_t block, int map_flags)
943 {
944 	struct ext4_map_blocks map;
945 	struct buffer_head *bh;
946 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
947 	int err;
948 
949 	J_ASSERT(handle != NULL || create == 0);
950 
951 	map.m_lblk = block;
952 	map.m_len = 1;
953 	err = ext4_map_blocks(handle, inode, &map, map_flags);
954 
955 	if (err == 0)
956 		return create ? ERR_PTR(-ENOSPC) : NULL;
957 	if (err < 0)
958 		return ERR_PTR(err);
959 
960 	bh = sb_getblk(inode->i_sb, map.m_pblk);
961 	if (unlikely(!bh))
962 		return ERR_PTR(-ENOMEM);
963 	if (map.m_flags & EXT4_MAP_NEW) {
964 		J_ASSERT(create != 0);
965 		J_ASSERT(handle != NULL);
966 
967 		/*
968 		 * Now that we do not always journal data, we should
969 		 * keep in mind whether this should always journal the
970 		 * new buffer as metadata.  For now, regular file
971 		 * writes use ext4_get_block instead, so it's not a
972 		 * problem.
973 		 */
974 		lock_buffer(bh);
975 		BUFFER_TRACE(bh, "call get_create_access");
976 		err = ext4_journal_get_create_access(handle, bh);
977 		if (unlikely(err)) {
978 			unlock_buffer(bh);
979 			goto errout;
980 		}
981 		if (!buffer_uptodate(bh)) {
982 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
983 			set_buffer_uptodate(bh);
984 		}
985 		unlock_buffer(bh);
986 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
987 		err = ext4_handle_dirty_metadata(handle, inode, bh);
988 		if (unlikely(err))
989 			goto errout;
990 	} else
991 		BUFFER_TRACE(bh, "not a new buffer");
992 	return bh;
993 errout:
994 	brelse(bh);
995 	return ERR_PTR(err);
996 }
997 
998 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
999 			       ext4_lblk_t block, int map_flags)
1000 {
1001 	struct buffer_head *bh;
1002 
1003 	bh = ext4_getblk(handle, inode, block, map_flags);
1004 	if (IS_ERR(bh))
1005 		return bh;
1006 	if (!bh || buffer_uptodate(bh))
1007 		return bh;
1008 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1009 	wait_on_buffer(bh);
1010 	if (buffer_uptodate(bh))
1011 		return bh;
1012 	put_bh(bh);
1013 	return ERR_PTR(-EIO);
1014 }
1015 
1016 int ext4_walk_page_buffers(handle_t *handle,
1017 			   struct buffer_head *head,
1018 			   unsigned from,
1019 			   unsigned to,
1020 			   int *partial,
1021 			   int (*fn)(handle_t *handle,
1022 				     struct buffer_head *bh))
1023 {
1024 	struct buffer_head *bh;
1025 	unsigned block_start, block_end;
1026 	unsigned blocksize = head->b_size;
1027 	int err, ret = 0;
1028 	struct buffer_head *next;
1029 
1030 	for (bh = head, block_start = 0;
1031 	     ret == 0 && (bh != head || !block_start);
1032 	     block_start = block_end, bh = next) {
1033 		next = bh->b_this_page;
1034 		block_end = block_start + blocksize;
1035 		if (block_end <= from || block_start >= to) {
1036 			if (partial && !buffer_uptodate(bh))
1037 				*partial = 1;
1038 			continue;
1039 		}
1040 		err = (*fn)(handle, bh);
1041 		if (!ret)
1042 			ret = err;
1043 	}
1044 	return ret;
1045 }
1046 
1047 /*
1048  * To preserve ordering, it is essential that the hole instantiation and
1049  * the data write be encapsulated in a single transaction.  We cannot
1050  * close off a transaction and start a new one between the ext4_get_block()
1051  * and the commit_write().  So doing the jbd2_journal_start at the start of
1052  * prepare_write() is the right place.
1053  *
1054  * Also, this function can nest inside ext4_writepage().  In that case, we
1055  * *know* that ext4_writepage() has generated enough buffer credits to do the
1056  * whole page.  So we won't block on the journal in that case, which is good,
1057  * because the caller may be PF_MEMALLOC.
1058  *
1059  * By accident, ext4 can be reentered when a transaction is open via
1060  * quota file writes.  If we were to commit the transaction while thus
1061  * reentered, there can be a deadlock - we would be holding a quota
1062  * lock, and the commit would never complete if another thread had a
1063  * transaction open and was blocking on the quota lock - a ranking
1064  * violation.
1065  *
1066  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1067  * will _not_ run commit under these circumstances because handle->h_ref
1068  * is elevated.  We'll still have enough credits for the tiny quotafile
1069  * write.
1070  */
1071 int do_journal_get_write_access(handle_t *handle,
1072 				struct buffer_head *bh)
1073 {
1074 	int dirty = buffer_dirty(bh);
1075 	int ret;
1076 
1077 	if (!buffer_mapped(bh) || buffer_freed(bh))
1078 		return 0;
1079 	/*
1080 	 * __block_write_begin() could have dirtied some buffers. Clean
1081 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1082 	 * otherwise about fs integrity issues. Setting of the dirty bit
1083 	 * by __block_write_begin() isn't a real problem here as we clear
1084 	 * the bit before releasing a page lock and thus writeback cannot
1085 	 * ever write the buffer.
1086 	 */
1087 	if (dirty)
1088 		clear_buffer_dirty(bh);
1089 	BUFFER_TRACE(bh, "get write access");
1090 	ret = ext4_journal_get_write_access(handle, bh);
1091 	if (!ret && dirty)
1092 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1093 	return ret;
1094 }
1095 
1096 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1097 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1098 				  get_block_t *get_block)
1099 {
1100 	unsigned from = pos & (PAGE_SIZE - 1);
1101 	unsigned to = from + len;
1102 	struct inode *inode = page->mapping->host;
1103 	unsigned block_start, block_end;
1104 	sector_t block;
1105 	int err = 0;
1106 	unsigned blocksize = inode->i_sb->s_blocksize;
1107 	unsigned bbits;
1108 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1109 	bool decrypt = false;
1110 
1111 	BUG_ON(!PageLocked(page));
1112 	BUG_ON(from > PAGE_SIZE);
1113 	BUG_ON(to > PAGE_SIZE);
1114 	BUG_ON(from > to);
1115 
1116 	if (!page_has_buffers(page))
1117 		create_empty_buffers(page, blocksize, 0);
1118 	head = page_buffers(page);
1119 	bbits = ilog2(blocksize);
1120 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1121 
1122 	for (bh = head, block_start = 0; bh != head || !block_start;
1123 	    block++, block_start = block_end, bh = bh->b_this_page) {
1124 		block_end = block_start + blocksize;
1125 		if (block_end <= from || block_start >= to) {
1126 			if (PageUptodate(page)) {
1127 				if (!buffer_uptodate(bh))
1128 					set_buffer_uptodate(bh);
1129 			}
1130 			continue;
1131 		}
1132 		if (buffer_new(bh))
1133 			clear_buffer_new(bh);
1134 		if (!buffer_mapped(bh)) {
1135 			WARN_ON(bh->b_size != blocksize);
1136 			err = get_block(inode, block, bh, 1);
1137 			if (err)
1138 				break;
1139 			if (buffer_new(bh)) {
1140 				unmap_underlying_metadata(bh->b_bdev,
1141 							  bh->b_blocknr);
1142 				if (PageUptodate(page)) {
1143 					clear_buffer_new(bh);
1144 					set_buffer_uptodate(bh);
1145 					mark_buffer_dirty(bh);
1146 					continue;
1147 				}
1148 				if (block_end > to || block_start < from)
1149 					zero_user_segments(page, to, block_end,
1150 							   block_start, from);
1151 				continue;
1152 			}
1153 		}
1154 		if (PageUptodate(page)) {
1155 			if (!buffer_uptodate(bh))
1156 				set_buffer_uptodate(bh);
1157 			continue;
1158 		}
1159 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1160 		    !buffer_unwritten(bh) &&
1161 		    (block_start < from || block_end > to)) {
1162 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1163 			*wait_bh++ = bh;
1164 			decrypt = ext4_encrypted_inode(inode) &&
1165 				S_ISREG(inode->i_mode);
1166 		}
1167 	}
1168 	/*
1169 	 * If we issued read requests, let them complete.
1170 	 */
1171 	while (wait_bh > wait) {
1172 		wait_on_buffer(*--wait_bh);
1173 		if (!buffer_uptodate(*wait_bh))
1174 			err = -EIO;
1175 	}
1176 	if (unlikely(err))
1177 		page_zero_new_buffers(page, from, to);
1178 	else if (decrypt)
1179 		err = fscrypt_decrypt_page(page->mapping->host, page,
1180 				PAGE_SIZE, 0, page->index);
1181 	return err;
1182 }
1183 #endif
1184 
1185 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1186 			    loff_t pos, unsigned len, unsigned flags,
1187 			    struct page **pagep, void **fsdata)
1188 {
1189 	struct inode *inode = mapping->host;
1190 	int ret, needed_blocks;
1191 	handle_t *handle;
1192 	int retries = 0;
1193 	struct page *page;
1194 	pgoff_t index;
1195 	unsigned from, to;
1196 
1197 	trace_ext4_write_begin(inode, pos, len, flags);
1198 	/*
1199 	 * Reserve one block more for addition to orphan list in case
1200 	 * we allocate blocks but write fails for some reason
1201 	 */
1202 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1203 	index = pos >> PAGE_SHIFT;
1204 	from = pos & (PAGE_SIZE - 1);
1205 	to = from + len;
1206 
1207 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1208 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1209 						    flags, pagep);
1210 		if (ret < 0)
1211 			return ret;
1212 		if (ret == 1)
1213 			return 0;
1214 	}
1215 
1216 	/*
1217 	 * grab_cache_page_write_begin() can take a long time if the
1218 	 * system is thrashing due to memory pressure, or if the page
1219 	 * is being written back.  So grab it first before we start
1220 	 * the transaction handle.  This also allows us to allocate
1221 	 * the page (if needed) without using GFP_NOFS.
1222 	 */
1223 retry_grab:
1224 	page = grab_cache_page_write_begin(mapping, index, flags);
1225 	if (!page)
1226 		return -ENOMEM;
1227 	unlock_page(page);
1228 
1229 retry_journal:
1230 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1231 	if (IS_ERR(handle)) {
1232 		put_page(page);
1233 		return PTR_ERR(handle);
1234 	}
1235 
1236 	lock_page(page);
1237 	if (page->mapping != mapping) {
1238 		/* The page got truncated from under us */
1239 		unlock_page(page);
1240 		put_page(page);
1241 		ext4_journal_stop(handle);
1242 		goto retry_grab;
1243 	}
1244 	/* In case writeback began while the page was unlocked */
1245 	wait_for_stable_page(page);
1246 
1247 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1248 	if (ext4_should_dioread_nolock(inode))
1249 		ret = ext4_block_write_begin(page, pos, len,
1250 					     ext4_get_block_unwritten);
1251 	else
1252 		ret = ext4_block_write_begin(page, pos, len,
1253 					     ext4_get_block);
1254 #else
1255 	if (ext4_should_dioread_nolock(inode))
1256 		ret = __block_write_begin(page, pos, len,
1257 					  ext4_get_block_unwritten);
1258 	else
1259 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1260 #endif
1261 	if (!ret && ext4_should_journal_data(inode)) {
1262 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1263 					     from, to, NULL,
1264 					     do_journal_get_write_access);
1265 	}
1266 
1267 	if (ret) {
1268 		unlock_page(page);
1269 		/*
1270 		 * __block_write_begin may have instantiated a few blocks
1271 		 * outside i_size.  Trim these off again. Don't need
1272 		 * i_size_read because we hold i_mutex.
1273 		 *
1274 		 * Add inode to orphan list in case we crash before
1275 		 * truncate finishes
1276 		 */
1277 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1278 			ext4_orphan_add(handle, inode);
1279 
1280 		ext4_journal_stop(handle);
1281 		if (pos + len > inode->i_size) {
1282 			ext4_truncate_failed_write(inode);
1283 			/*
1284 			 * If truncate failed early the inode might
1285 			 * still be on the orphan list; we need to
1286 			 * make sure the inode is removed from the
1287 			 * orphan list in that case.
1288 			 */
1289 			if (inode->i_nlink)
1290 				ext4_orphan_del(NULL, inode);
1291 		}
1292 
1293 		if (ret == -ENOSPC &&
1294 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1295 			goto retry_journal;
1296 		put_page(page);
1297 		return ret;
1298 	}
1299 	*pagep = page;
1300 	return ret;
1301 }
1302 
1303 /* For write_end() in data=journal mode */
1304 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1305 {
1306 	int ret;
1307 	if (!buffer_mapped(bh) || buffer_freed(bh))
1308 		return 0;
1309 	set_buffer_uptodate(bh);
1310 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1311 	clear_buffer_meta(bh);
1312 	clear_buffer_prio(bh);
1313 	return ret;
1314 }
1315 
1316 /*
1317  * We need to pick up the new inode size which generic_commit_write gave us
1318  * `file' can be NULL - eg, when called from page_symlink().
1319  *
1320  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1321  * buffers are managed internally.
1322  */
1323 static int ext4_write_end(struct file *file,
1324 			  struct address_space *mapping,
1325 			  loff_t pos, unsigned len, unsigned copied,
1326 			  struct page *page, void *fsdata)
1327 {
1328 	handle_t *handle = ext4_journal_current_handle();
1329 	struct inode *inode = mapping->host;
1330 	loff_t old_size = inode->i_size;
1331 	int ret = 0, ret2;
1332 	int i_size_changed = 0;
1333 
1334 	trace_ext4_write_end(inode, pos, len, copied);
1335 	if (ext4_has_inline_data(inode)) {
1336 		ret = ext4_write_inline_data_end(inode, pos, len,
1337 						 copied, page);
1338 		if (ret < 0)
1339 			goto errout;
1340 		copied = ret;
1341 	} else
1342 		copied = block_write_end(file, mapping, pos,
1343 					 len, copied, page, fsdata);
1344 	/*
1345 	 * it's important to update i_size while still holding page lock:
1346 	 * page writeout could otherwise come in and zero beyond i_size.
1347 	 */
1348 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1349 	unlock_page(page);
1350 	put_page(page);
1351 
1352 	if (old_size < pos)
1353 		pagecache_isize_extended(inode, old_size, pos);
1354 	/*
1355 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1356 	 * makes the holding time of page lock longer. Second, it forces lock
1357 	 * ordering of page lock and transaction start for journaling
1358 	 * filesystems.
1359 	 */
1360 	if (i_size_changed)
1361 		ext4_mark_inode_dirty(handle, inode);
1362 
1363 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1364 		/* if we have allocated more blocks and copied
1365 		 * less. We will have blocks allocated outside
1366 		 * inode->i_size. So truncate them
1367 		 */
1368 		ext4_orphan_add(handle, inode);
1369 errout:
1370 	ret2 = ext4_journal_stop(handle);
1371 	if (!ret)
1372 		ret = ret2;
1373 
1374 	if (pos + len > inode->i_size) {
1375 		ext4_truncate_failed_write(inode);
1376 		/*
1377 		 * If truncate failed early the inode might still be
1378 		 * on the orphan list; we need to make sure the inode
1379 		 * is removed from the orphan list in that case.
1380 		 */
1381 		if (inode->i_nlink)
1382 			ext4_orphan_del(NULL, inode);
1383 	}
1384 
1385 	return ret ? ret : copied;
1386 }
1387 
1388 /*
1389  * This is a private version of page_zero_new_buffers() which doesn't
1390  * set the buffer to be dirty, since in data=journalled mode we need
1391  * to call ext4_handle_dirty_metadata() instead.
1392  */
1393 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1394 {
1395 	unsigned int block_start = 0, block_end;
1396 	struct buffer_head *head, *bh;
1397 
1398 	bh = head = page_buffers(page);
1399 	do {
1400 		block_end = block_start + bh->b_size;
1401 		if (buffer_new(bh)) {
1402 			if (block_end > from && block_start < to) {
1403 				if (!PageUptodate(page)) {
1404 					unsigned start, size;
1405 
1406 					start = max(from, block_start);
1407 					size = min(to, block_end) - start;
1408 
1409 					zero_user(page, start, size);
1410 					set_buffer_uptodate(bh);
1411 				}
1412 				clear_buffer_new(bh);
1413 			}
1414 		}
1415 		block_start = block_end;
1416 		bh = bh->b_this_page;
1417 	} while (bh != head);
1418 }
1419 
1420 static int ext4_journalled_write_end(struct file *file,
1421 				     struct address_space *mapping,
1422 				     loff_t pos, unsigned len, unsigned copied,
1423 				     struct page *page, void *fsdata)
1424 {
1425 	handle_t *handle = ext4_journal_current_handle();
1426 	struct inode *inode = mapping->host;
1427 	loff_t old_size = inode->i_size;
1428 	int ret = 0, ret2;
1429 	int partial = 0;
1430 	unsigned from, to;
1431 	int size_changed = 0;
1432 
1433 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1434 	from = pos & (PAGE_SIZE - 1);
1435 	to = from + len;
1436 
1437 	BUG_ON(!ext4_handle_valid(handle));
1438 
1439 	if (ext4_has_inline_data(inode))
1440 		copied = ext4_write_inline_data_end(inode, pos, len,
1441 						    copied, page);
1442 	else {
1443 		if (copied < len) {
1444 			if (!PageUptodate(page))
1445 				copied = 0;
1446 			zero_new_buffers(page, from+copied, to);
1447 		}
1448 
1449 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1450 					     to, &partial, write_end_fn);
1451 		if (!partial)
1452 			SetPageUptodate(page);
1453 	}
1454 	size_changed = ext4_update_inode_size(inode, pos + copied);
1455 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1456 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1457 	unlock_page(page);
1458 	put_page(page);
1459 
1460 	if (old_size < pos)
1461 		pagecache_isize_extended(inode, old_size, pos);
1462 
1463 	if (size_changed) {
1464 		ret2 = ext4_mark_inode_dirty(handle, inode);
1465 		if (!ret)
1466 			ret = ret2;
1467 	}
1468 
1469 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1470 		/* if we have allocated more blocks and copied
1471 		 * less. We will have blocks allocated outside
1472 		 * inode->i_size. So truncate them
1473 		 */
1474 		ext4_orphan_add(handle, inode);
1475 
1476 	ret2 = ext4_journal_stop(handle);
1477 	if (!ret)
1478 		ret = ret2;
1479 	if (pos + len > inode->i_size) {
1480 		ext4_truncate_failed_write(inode);
1481 		/*
1482 		 * If truncate failed early the inode might still be
1483 		 * on the orphan list; we need to make sure the inode
1484 		 * is removed from the orphan list in that case.
1485 		 */
1486 		if (inode->i_nlink)
1487 			ext4_orphan_del(NULL, inode);
1488 	}
1489 
1490 	return ret ? ret : copied;
1491 }
1492 
1493 /*
1494  * Reserve space for a single cluster
1495  */
1496 static int ext4_da_reserve_space(struct inode *inode)
1497 {
1498 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1499 	struct ext4_inode_info *ei = EXT4_I(inode);
1500 	int ret;
1501 
1502 	/*
1503 	 * We will charge metadata quota at writeout time; this saves
1504 	 * us from metadata over-estimation, though we may go over by
1505 	 * a small amount in the end.  Here we just reserve for data.
1506 	 */
1507 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1508 	if (ret)
1509 		return ret;
1510 
1511 	spin_lock(&ei->i_block_reservation_lock);
1512 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1513 		spin_unlock(&ei->i_block_reservation_lock);
1514 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1515 		return -ENOSPC;
1516 	}
1517 	ei->i_reserved_data_blocks++;
1518 	trace_ext4_da_reserve_space(inode);
1519 	spin_unlock(&ei->i_block_reservation_lock);
1520 
1521 	return 0;       /* success */
1522 }
1523 
1524 static void ext4_da_release_space(struct inode *inode, int to_free)
1525 {
1526 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1527 	struct ext4_inode_info *ei = EXT4_I(inode);
1528 
1529 	if (!to_free)
1530 		return;		/* Nothing to release, exit */
1531 
1532 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1533 
1534 	trace_ext4_da_release_space(inode, to_free);
1535 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1536 		/*
1537 		 * if there aren't enough reserved blocks, then the
1538 		 * counter is messed up somewhere.  Since this
1539 		 * function is called from invalidate page, it's
1540 		 * harmless to return without any action.
1541 		 */
1542 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1543 			 "ino %lu, to_free %d with only %d reserved "
1544 			 "data blocks", inode->i_ino, to_free,
1545 			 ei->i_reserved_data_blocks);
1546 		WARN_ON(1);
1547 		to_free = ei->i_reserved_data_blocks;
1548 	}
1549 	ei->i_reserved_data_blocks -= to_free;
1550 
1551 	/* update fs dirty data blocks counter */
1552 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1553 
1554 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1555 
1556 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1557 }
1558 
1559 static void ext4_da_page_release_reservation(struct page *page,
1560 					     unsigned int offset,
1561 					     unsigned int length)
1562 {
1563 	int to_release = 0, contiguous_blks = 0;
1564 	struct buffer_head *head, *bh;
1565 	unsigned int curr_off = 0;
1566 	struct inode *inode = page->mapping->host;
1567 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1568 	unsigned int stop = offset + length;
1569 	int num_clusters;
1570 	ext4_fsblk_t lblk;
1571 
1572 	BUG_ON(stop > PAGE_SIZE || stop < length);
1573 
1574 	head = page_buffers(page);
1575 	bh = head;
1576 	do {
1577 		unsigned int next_off = curr_off + bh->b_size;
1578 
1579 		if (next_off > stop)
1580 			break;
1581 
1582 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1583 			to_release++;
1584 			contiguous_blks++;
1585 			clear_buffer_delay(bh);
1586 		} else if (contiguous_blks) {
1587 			lblk = page->index <<
1588 			       (PAGE_SHIFT - inode->i_blkbits);
1589 			lblk += (curr_off >> inode->i_blkbits) -
1590 				contiguous_blks;
1591 			ext4_es_remove_extent(inode, lblk, contiguous_blks);
1592 			contiguous_blks = 0;
1593 		}
1594 		curr_off = next_off;
1595 	} while ((bh = bh->b_this_page) != head);
1596 
1597 	if (contiguous_blks) {
1598 		lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1599 		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1600 		ext4_es_remove_extent(inode, lblk, contiguous_blks);
1601 	}
1602 
1603 	/* If we have released all the blocks belonging to a cluster, then we
1604 	 * need to release the reserved space for that cluster. */
1605 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1606 	while (num_clusters > 0) {
1607 		lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1608 			((num_clusters - 1) << sbi->s_cluster_bits);
1609 		if (sbi->s_cluster_ratio == 1 ||
1610 		    !ext4_find_delalloc_cluster(inode, lblk))
1611 			ext4_da_release_space(inode, 1);
1612 
1613 		num_clusters--;
1614 	}
1615 }
1616 
1617 /*
1618  * Delayed allocation stuff
1619  */
1620 
1621 struct mpage_da_data {
1622 	struct inode *inode;
1623 	struct writeback_control *wbc;
1624 
1625 	pgoff_t first_page;	/* The first page to write */
1626 	pgoff_t next_page;	/* Current page to examine */
1627 	pgoff_t last_page;	/* Last page to examine */
1628 	/*
1629 	 * Extent to map - this can be after first_page because that can be
1630 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1631 	 * is delalloc or unwritten.
1632 	 */
1633 	struct ext4_map_blocks map;
1634 	struct ext4_io_submit io_submit;	/* IO submission data */
1635 };
1636 
1637 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1638 				       bool invalidate)
1639 {
1640 	int nr_pages, i;
1641 	pgoff_t index, end;
1642 	struct pagevec pvec;
1643 	struct inode *inode = mpd->inode;
1644 	struct address_space *mapping = inode->i_mapping;
1645 
1646 	/* This is necessary when next_page == 0. */
1647 	if (mpd->first_page >= mpd->next_page)
1648 		return;
1649 
1650 	index = mpd->first_page;
1651 	end   = mpd->next_page - 1;
1652 	if (invalidate) {
1653 		ext4_lblk_t start, last;
1654 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1655 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1656 		ext4_es_remove_extent(inode, start, last - start + 1);
1657 	}
1658 
1659 	pagevec_init(&pvec, 0);
1660 	while (index <= end) {
1661 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1662 		if (nr_pages == 0)
1663 			break;
1664 		for (i = 0; i < nr_pages; i++) {
1665 			struct page *page = pvec.pages[i];
1666 			if (page->index > end)
1667 				break;
1668 			BUG_ON(!PageLocked(page));
1669 			BUG_ON(PageWriteback(page));
1670 			if (invalidate) {
1671 				if (page_mapped(page))
1672 					clear_page_dirty_for_io(page);
1673 				block_invalidatepage(page, 0, PAGE_SIZE);
1674 				ClearPageUptodate(page);
1675 			}
1676 			unlock_page(page);
1677 		}
1678 		index = pvec.pages[nr_pages - 1]->index + 1;
1679 		pagevec_release(&pvec);
1680 	}
1681 }
1682 
1683 static void ext4_print_free_blocks(struct inode *inode)
1684 {
1685 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1686 	struct super_block *sb = inode->i_sb;
1687 	struct ext4_inode_info *ei = EXT4_I(inode);
1688 
1689 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1690 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1691 			ext4_count_free_clusters(sb)));
1692 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1693 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1694 	       (long long) EXT4_C2B(EXT4_SB(sb),
1695 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1696 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1697 	       (long long) EXT4_C2B(EXT4_SB(sb),
1698 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1699 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1700 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1701 		 ei->i_reserved_data_blocks);
1702 	return;
1703 }
1704 
1705 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1706 {
1707 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1708 }
1709 
1710 /*
1711  * This function is grabs code from the very beginning of
1712  * ext4_map_blocks, but assumes that the caller is from delayed write
1713  * time. This function looks up the requested blocks and sets the
1714  * buffer delay bit under the protection of i_data_sem.
1715  */
1716 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1717 			      struct ext4_map_blocks *map,
1718 			      struct buffer_head *bh)
1719 {
1720 	struct extent_status es;
1721 	int retval;
1722 	sector_t invalid_block = ~((sector_t) 0xffff);
1723 #ifdef ES_AGGRESSIVE_TEST
1724 	struct ext4_map_blocks orig_map;
1725 
1726 	memcpy(&orig_map, map, sizeof(*map));
1727 #endif
1728 
1729 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1730 		invalid_block = ~0;
1731 
1732 	map->m_flags = 0;
1733 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1734 		  "logical block %lu\n", inode->i_ino, map->m_len,
1735 		  (unsigned long) map->m_lblk);
1736 
1737 	/* Lookup extent status tree firstly */
1738 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1739 		if (ext4_es_is_hole(&es)) {
1740 			retval = 0;
1741 			down_read(&EXT4_I(inode)->i_data_sem);
1742 			goto add_delayed;
1743 		}
1744 
1745 		/*
1746 		 * Delayed extent could be allocated by fallocate.
1747 		 * So we need to check it.
1748 		 */
1749 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1750 			map_bh(bh, inode->i_sb, invalid_block);
1751 			set_buffer_new(bh);
1752 			set_buffer_delay(bh);
1753 			return 0;
1754 		}
1755 
1756 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1757 		retval = es.es_len - (iblock - es.es_lblk);
1758 		if (retval > map->m_len)
1759 			retval = map->m_len;
1760 		map->m_len = retval;
1761 		if (ext4_es_is_written(&es))
1762 			map->m_flags |= EXT4_MAP_MAPPED;
1763 		else if (ext4_es_is_unwritten(&es))
1764 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1765 		else
1766 			BUG_ON(1);
1767 
1768 #ifdef ES_AGGRESSIVE_TEST
1769 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1770 #endif
1771 		return retval;
1772 	}
1773 
1774 	/*
1775 	 * Try to see if we can get the block without requesting a new
1776 	 * file system block.
1777 	 */
1778 	down_read(&EXT4_I(inode)->i_data_sem);
1779 	if (ext4_has_inline_data(inode))
1780 		retval = 0;
1781 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1782 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1783 	else
1784 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1785 
1786 add_delayed:
1787 	if (retval == 0) {
1788 		int ret;
1789 		/*
1790 		 * XXX: __block_prepare_write() unmaps passed block,
1791 		 * is it OK?
1792 		 */
1793 		/*
1794 		 * If the block was allocated from previously allocated cluster,
1795 		 * then we don't need to reserve it again. However we still need
1796 		 * to reserve metadata for every block we're going to write.
1797 		 */
1798 		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1799 		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1800 			ret = ext4_da_reserve_space(inode);
1801 			if (ret) {
1802 				/* not enough space to reserve */
1803 				retval = ret;
1804 				goto out_unlock;
1805 			}
1806 		}
1807 
1808 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1809 					    ~0, EXTENT_STATUS_DELAYED);
1810 		if (ret) {
1811 			retval = ret;
1812 			goto out_unlock;
1813 		}
1814 
1815 		map_bh(bh, inode->i_sb, invalid_block);
1816 		set_buffer_new(bh);
1817 		set_buffer_delay(bh);
1818 	} else if (retval > 0) {
1819 		int ret;
1820 		unsigned int status;
1821 
1822 		if (unlikely(retval != map->m_len)) {
1823 			ext4_warning(inode->i_sb,
1824 				     "ES len assertion failed for inode "
1825 				     "%lu: retval %d != map->m_len %d",
1826 				     inode->i_ino, retval, map->m_len);
1827 			WARN_ON(1);
1828 		}
1829 
1830 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1831 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1832 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1833 					    map->m_pblk, status);
1834 		if (ret != 0)
1835 			retval = ret;
1836 	}
1837 
1838 out_unlock:
1839 	up_read((&EXT4_I(inode)->i_data_sem));
1840 
1841 	return retval;
1842 }
1843 
1844 /*
1845  * This is a special get_block_t callback which is used by
1846  * ext4_da_write_begin().  It will either return mapped block or
1847  * reserve space for a single block.
1848  *
1849  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1850  * We also have b_blocknr = -1 and b_bdev initialized properly
1851  *
1852  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1853  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1854  * initialized properly.
1855  */
1856 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1857 			   struct buffer_head *bh, int create)
1858 {
1859 	struct ext4_map_blocks map;
1860 	int ret = 0;
1861 
1862 	BUG_ON(create == 0);
1863 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1864 
1865 	map.m_lblk = iblock;
1866 	map.m_len = 1;
1867 
1868 	/*
1869 	 * first, we need to know whether the block is allocated already
1870 	 * preallocated blocks are unmapped but should treated
1871 	 * the same as allocated blocks.
1872 	 */
1873 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1874 	if (ret <= 0)
1875 		return ret;
1876 
1877 	map_bh(bh, inode->i_sb, map.m_pblk);
1878 	ext4_update_bh_state(bh, map.m_flags);
1879 
1880 	if (buffer_unwritten(bh)) {
1881 		/* A delayed write to unwritten bh should be marked
1882 		 * new and mapped.  Mapped ensures that we don't do
1883 		 * get_block multiple times when we write to the same
1884 		 * offset and new ensures that we do proper zero out
1885 		 * for partial write.
1886 		 */
1887 		set_buffer_new(bh);
1888 		set_buffer_mapped(bh);
1889 	}
1890 	return 0;
1891 }
1892 
1893 static int bget_one(handle_t *handle, struct buffer_head *bh)
1894 {
1895 	get_bh(bh);
1896 	return 0;
1897 }
1898 
1899 static int bput_one(handle_t *handle, struct buffer_head *bh)
1900 {
1901 	put_bh(bh);
1902 	return 0;
1903 }
1904 
1905 static int __ext4_journalled_writepage(struct page *page,
1906 				       unsigned int len)
1907 {
1908 	struct address_space *mapping = page->mapping;
1909 	struct inode *inode = mapping->host;
1910 	struct buffer_head *page_bufs = NULL;
1911 	handle_t *handle = NULL;
1912 	int ret = 0, err = 0;
1913 	int inline_data = ext4_has_inline_data(inode);
1914 	struct buffer_head *inode_bh = NULL;
1915 
1916 	ClearPageChecked(page);
1917 
1918 	if (inline_data) {
1919 		BUG_ON(page->index != 0);
1920 		BUG_ON(len > ext4_get_max_inline_size(inode));
1921 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1922 		if (inode_bh == NULL)
1923 			goto out;
1924 	} else {
1925 		page_bufs = page_buffers(page);
1926 		if (!page_bufs) {
1927 			BUG();
1928 			goto out;
1929 		}
1930 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1931 				       NULL, bget_one);
1932 	}
1933 	/*
1934 	 * We need to release the page lock before we start the
1935 	 * journal, so grab a reference so the page won't disappear
1936 	 * out from under us.
1937 	 */
1938 	get_page(page);
1939 	unlock_page(page);
1940 
1941 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1942 				    ext4_writepage_trans_blocks(inode));
1943 	if (IS_ERR(handle)) {
1944 		ret = PTR_ERR(handle);
1945 		put_page(page);
1946 		goto out_no_pagelock;
1947 	}
1948 	BUG_ON(!ext4_handle_valid(handle));
1949 
1950 	lock_page(page);
1951 	put_page(page);
1952 	if (page->mapping != mapping) {
1953 		/* The page got truncated from under us */
1954 		ext4_journal_stop(handle);
1955 		ret = 0;
1956 		goto out;
1957 	}
1958 
1959 	if (inline_data) {
1960 		BUFFER_TRACE(inode_bh, "get write access");
1961 		ret = ext4_journal_get_write_access(handle, inode_bh);
1962 
1963 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1964 
1965 	} else {
1966 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1967 					     do_journal_get_write_access);
1968 
1969 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1970 					     write_end_fn);
1971 	}
1972 	if (ret == 0)
1973 		ret = err;
1974 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1975 	err = ext4_journal_stop(handle);
1976 	if (!ret)
1977 		ret = err;
1978 
1979 	if (!ext4_has_inline_data(inode))
1980 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1981 				       NULL, bput_one);
1982 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1983 out:
1984 	unlock_page(page);
1985 out_no_pagelock:
1986 	brelse(inode_bh);
1987 	return ret;
1988 }
1989 
1990 /*
1991  * Note that we don't need to start a transaction unless we're journaling data
1992  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1993  * need to file the inode to the transaction's list in ordered mode because if
1994  * we are writing back data added by write(), the inode is already there and if
1995  * we are writing back data modified via mmap(), no one guarantees in which
1996  * transaction the data will hit the disk. In case we are journaling data, we
1997  * cannot start transaction directly because transaction start ranks above page
1998  * lock so we have to do some magic.
1999  *
2000  * This function can get called via...
2001  *   - ext4_writepages after taking page lock (have journal handle)
2002  *   - journal_submit_inode_data_buffers (no journal handle)
2003  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2004  *   - grab_page_cache when doing write_begin (have journal handle)
2005  *
2006  * We don't do any block allocation in this function. If we have page with
2007  * multiple blocks we need to write those buffer_heads that are mapped. This
2008  * is important for mmaped based write. So if we do with blocksize 1K
2009  * truncate(f, 1024);
2010  * a = mmap(f, 0, 4096);
2011  * a[0] = 'a';
2012  * truncate(f, 4096);
2013  * we have in the page first buffer_head mapped via page_mkwrite call back
2014  * but other buffer_heads would be unmapped but dirty (dirty done via the
2015  * do_wp_page). So writepage should write the first block. If we modify
2016  * the mmap area beyond 1024 we will again get a page_fault and the
2017  * page_mkwrite callback will do the block allocation and mark the
2018  * buffer_heads mapped.
2019  *
2020  * We redirty the page if we have any buffer_heads that is either delay or
2021  * unwritten in the page.
2022  *
2023  * We can get recursively called as show below.
2024  *
2025  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2026  *		ext4_writepage()
2027  *
2028  * But since we don't do any block allocation we should not deadlock.
2029  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2030  */
2031 static int ext4_writepage(struct page *page,
2032 			  struct writeback_control *wbc)
2033 {
2034 	int ret = 0;
2035 	loff_t size;
2036 	unsigned int len;
2037 	struct buffer_head *page_bufs = NULL;
2038 	struct inode *inode = page->mapping->host;
2039 	struct ext4_io_submit io_submit;
2040 	bool keep_towrite = false;
2041 
2042 	trace_ext4_writepage(page);
2043 	size = i_size_read(inode);
2044 	if (page->index == size >> PAGE_SHIFT)
2045 		len = size & ~PAGE_MASK;
2046 	else
2047 		len = PAGE_SIZE;
2048 
2049 	page_bufs = page_buffers(page);
2050 	/*
2051 	 * We cannot do block allocation or other extent handling in this
2052 	 * function. If there are buffers needing that, we have to redirty
2053 	 * the page. But we may reach here when we do a journal commit via
2054 	 * journal_submit_inode_data_buffers() and in that case we must write
2055 	 * allocated buffers to achieve data=ordered mode guarantees.
2056 	 *
2057 	 * Also, if there is only one buffer per page (the fs block
2058 	 * size == the page size), if one buffer needs block
2059 	 * allocation or needs to modify the extent tree to clear the
2060 	 * unwritten flag, we know that the page can't be written at
2061 	 * all, so we might as well refuse the write immediately.
2062 	 * Unfortunately if the block size != page size, we can't as
2063 	 * easily detect this case using ext4_walk_page_buffers(), but
2064 	 * for the extremely common case, this is an optimization that
2065 	 * skips a useless round trip through ext4_bio_write_page().
2066 	 */
2067 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2068 				   ext4_bh_delay_or_unwritten)) {
2069 		redirty_page_for_writepage(wbc, page);
2070 		if ((current->flags & PF_MEMALLOC) ||
2071 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2072 			/*
2073 			 * For memory cleaning there's no point in writing only
2074 			 * some buffers. So just bail out. Warn if we came here
2075 			 * from direct reclaim.
2076 			 */
2077 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2078 							== PF_MEMALLOC);
2079 			unlock_page(page);
2080 			return 0;
2081 		}
2082 		keep_towrite = true;
2083 	}
2084 
2085 	if (PageChecked(page) && ext4_should_journal_data(inode))
2086 		/*
2087 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2088 		 * doesn't seem much point in redirtying the page here.
2089 		 */
2090 		return __ext4_journalled_writepage(page, len);
2091 
2092 	ext4_io_submit_init(&io_submit, wbc);
2093 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2094 	if (!io_submit.io_end) {
2095 		redirty_page_for_writepage(wbc, page);
2096 		unlock_page(page);
2097 		return -ENOMEM;
2098 	}
2099 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2100 	ext4_io_submit(&io_submit);
2101 	/* Drop io_end reference we got from init */
2102 	ext4_put_io_end_defer(io_submit.io_end);
2103 	return ret;
2104 }
2105 
2106 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2107 {
2108 	int len;
2109 	loff_t size = i_size_read(mpd->inode);
2110 	int err;
2111 
2112 	BUG_ON(page->index != mpd->first_page);
2113 	if (page->index == size >> PAGE_SHIFT)
2114 		len = size & ~PAGE_MASK;
2115 	else
2116 		len = PAGE_SIZE;
2117 	clear_page_dirty_for_io(page);
2118 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2119 	if (!err)
2120 		mpd->wbc->nr_to_write--;
2121 	mpd->first_page++;
2122 
2123 	return err;
2124 }
2125 
2126 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2127 
2128 /*
2129  * mballoc gives us at most this number of blocks...
2130  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2131  * The rest of mballoc seems to handle chunks up to full group size.
2132  */
2133 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2134 
2135 /*
2136  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2137  *
2138  * @mpd - extent of blocks
2139  * @lblk - logical number of the block in the file
2140  * @bh - buffer head we want to add to the extent
2141  *
2142  * The function is used to collect contig. blocks in the same state. If the
2143  * buffer doesn't require mapping for writeback and we haven't started the
2144  * extent of buffers to map yet, the function returns 'true' immediately - the
2145  * caller can write the buffer right away. Otherwise the function returns true
2146  * if the block has been added to the extent, false if the block couldn't be
2147  * added.
2148  */
2149 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2150 				   struct buffer_head *bh)
2151 {
2152 	struct ext4_map_blocks *map = &mpd->map;
2153 
2154 	/* Buffer that doesn't need mapping for writeback? */
2155 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2156 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2157 		/* So far no extent to map => we write the buffer right away */
2158 		if (map->m_len == 0)
2159 			return true;
2160 		return false;
2161 	}
2162 
2163 	/* First block in the extent? */
2164 	if (map->m_len == 0) {
2165 		map->m_lblk = lblk;
2166 		map->m_len = 1;
2167 		map->m_flags = bh->b_state & BH_FLAGS;
2168 		return true;
2169 	}
2170 
2171 	/* Don't go larger than mballoc is willing to allocate */
2172 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2173 		return false;
2174 
2175 	/* Can we merge the block to our big extent? */
2176 	if (lblk == map->m_lblk + map->m_len &&
2177 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2178 		map->m_len++;
2179 		return true;
2180 	}
2181 	return false;
2182 }
2183 
2184 /*
2185  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2186  *
2187  * @mpd - extent of blocks for mapping
2188  * @head - the first buffer in the page
2189  * @bh - buffer we should start processing from
2190  * @lblk - logical number of the block in the file corresponding to @bh
2191  *
2192  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2193  * the page for IO if all buffers in this page were mapped and there's no
2194  * accumulated extent of buffers to map or add buffers in the page to the
2195  * extent of buffers to map. The function returns 1 if the caller can continue
2196  * by processing the next page, 0 if it should stop adding buffers to the
2197  * extent to map because we cannot extend it anymore. It can also return value
2198  * < 0 in case of error during IO submission.
2199  */
2200 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2201 				   struct buffer_head *head,
2202 				   struct buffer_head *bh,
2203 				   ext4_lblk_t lblk)
2204 {
2205 	struct inode *inode = mpd->inode;
2206 	int err;
2207 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2208 							>> inode->i_blkbits;
2209 
2210 	do {
2211 		BUG_ON(buffer_locked(bh));
2212 
2213 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2214 			/* Found extent to map? */
2215 			if (mpd->map.m_len)
2216 				return 0;
2217 			/* Everything mapped so far and we hit EOF */
2218 			break;
2219 		}
2220 	} while (lblk++, (bh = bh->b_this_page) != head);
2221 	/* So far everything mapped? Submit the page for IO. */
2222 	if (mpd->map.m_len == 0) {
2223 		err = mpage_submit_page(mpd, head->b_page);
2224 		if (err < 0)
2225 			return err;
2226 	}
2227 	return lblk < blocks;
2228 }
2229 
2230 /*
2231  * mpage_map_buffers - update buffers corresponding to changed extent and
2232  *		       submit fully mapped pages for IO
2233  *
2234  * @mpd - description of extent to map, on return next extent to map
2235  *
2236  * Scan buffers corresponding to changed extent (we expect corresponding pages
2237  * to be already locked) and update buffer state according to new extent state.
2238  * We map delalloc buffers to their physical location, clear unwritten bits,
2239  * and mark buffers as uninit when we perform writes to unwritten extents
2240  * and do extent conversion after IO is finished. If the last page is not fully
2241  * mapped, we update @map to the next extent in the last page that needs
2242  * mapping. Otherwise we submit the page for IO.
2243  */
2244 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2245 {
2246 	struct pagevec pvec;
2247 	int nr_pages, i;
2248 	struct inode *inode = mpd->inode;
2249 	struct buffer_head *head, *bh;
2250 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2251 	pgoff_t start, end;
2252 	ext4_lblk_t lblk;
2253 	sector_t pblock;
2254 	int err;
2255 
2256 	start = mpd->map.m_lblk >> bpp_bits;
2257 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2258 	lblk = start << bpp_bits;
2259 	pblock = mpd->map.m_pblk;
2260 
2261 	pagevec_init(&pvec, 0);
2262 	while (start <= end) {
2263 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2264 					  PAGEVEC_SIZE);
2265 		if (nr_pages == 0)
2266 			break;
2267 		for (i = 0; i < nr_pages; i++) {
2268 			struct page *page = pvec.pages[i];
2269 
2270 			if (page->index > end)
2271 				break;
2272 			/* Up to 'end' pages must be contiguous */
2273 			BUG_ON(page->index != start);
2274 			bh = head = page_buffers(page);
2275 			do {
2276 				if (lblk < mpd->map.m_lblk)
2277 					continue;
2278 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2279 					/*
2280 					 * Buffer after end of mapped extent.
2281 					 * Find next buffer in the page to map.
2282 					 */
2283 					mpd->map.m_len = 0;
2284 					mpd->map.m_flags = 0;
2285 					/*
2286 					 * FIXME: If dioread_nolock supports
2287 					 * blocksize < pagesize, we need to make
2288 					 * sure we add size mapped so far to
2289 					 * io_end->size as the following call
2290 					 * can submit the page for IO.
2291 					 */
2292 					err = mpage_process_page_bufs(mpd, head,
2293 								      bh, lblk);
2294 					pagevec_release(&pvec);
2295 					if (err > 0)
2296 						err = 0;
2297 					return err;
2298 				}
2299 				if (buffer_delay(bh)) {
2300 					clear_buffer_delay(bh);
2301 					bh->b_blocknr = pblock++;
2302 				}
2303 				clear_buffer_unwritten(bh);
2304 			} while (lblk++, (bh = bh->b_this_page) != head);
2305 
2306 			/*
2307 			 * FIXME: This is going to break if dioread_nolock
2308 			 * supports blocksize < pagesize as we will try to
2309 			 * convert potentially unmapped parts of inode.
2310 			 */
2311 			mpd->io_submit.io_end->size += PAGE_SIZE;
2312 			/* Page fully mapped - let IO run! */
2313 			err = mpage_submit_page(mpd, page);
2314 			if (err < 0) {
2315 				pagevec_release(&pvec);
2316 				return err;
2317 			}
2318 			start++;
2319 		}
2320 		pagevec_release(&pvec);
2321 	}
2322 	/* Extent fully mapped and matches with page boundary. We are done. */
2323 	mpd->map.m_len = 0;
2324 	mpd->map.m_flags = 0;
2325 	return 0;
2326 }
2327 
2328 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2329 {
2330 	struct inode *inode = mpd->inode;
2331 	struct ext4_map_blocks *map = &mpd->map;
2332 	int get_blocks_flags;
2333 	int err, dioread_nolock;
2334 
2335 	trace_ext4_da_write_pages_extent(inode, map);
2336 	/*
2337 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2338 	 * to convert an unwritten extent to be initialized (in the case
2339 	 * where we have written into one or more preallocated blocks).  It is
2340 	 * possible that we're going to need more metadata blocks than
2341 	 * previously reserved. However we must not fail because we're in
2342 	 * writeback and there is nothing we can do about it so it might result
2343 	 * in data loss.  So use reserved blocks to allocate metadata if
2344 	 * possible.
2345 	 *
2346 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2347 	 * the blocks in question are delalloc blocks.  This indicates
2348 	 * that the blocks and quotas has already been checked when
2349 	 * the data was copied into the page cache.
2350 	 */
2351 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2352 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2353 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2354 	dioread_nolock = ext4_should_dioread_nolock(inode);
2355 	if (dioread_nolock)
2356 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2357 	if (map->m_flags & (1 << BH_Delay))
2358 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2359 
2360 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2361 	if (err < 0)
2362 		return err;
2363 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2364 		if (!mpd->io_submit.io_end->handle &&
2365 		    ext4_handle_valid(handle)) {
2366 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2367 			handle->h_rsv_handle = NULL;
2368 		}
2369 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2370 	}
2371 
2372 	BUG_ON(map->m_len == 0);
2373 	if (map->m_flags & EXT4_MAP_NEW) {
2374 		struct block_device *bdev = inode->i_sb->s_bdev;
2375 		int i;
2376 
2377 		for (i = 0; i < map->m_len; i++)
2378 			unmap_underlying_metadata(bdev, map->m_pblk + i);
2379 	}
2380 	return 0;
2381 }
2382 
2383 /*
2384  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2385  *				 mpd->len and submit pages underlying it for IO
2386  *
2387  * @handle - handle for journal operations
2388  * @mpd - extent to map
2389  * @give_up_on_write - we set this to true iff there is a fatal error and there
2390  *                     is no hope of writing the data. The caller should discard
2391  *                     dirty pages to avoid infinite loops.
2392  *
2393  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2394  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2395  * them to initialized or split the described range from larger unwritten
2396  * extent. Note that we need not map all the described range since allocation
2397  * can return less blocks or the range is covered by more unwritten extents. We
2398  * cannot map more because we are limited by reserved transaction credits. On
2399  * the other hand we always make sure that the last touched page is fully
2400  * mapped so that it can be written out (and thus forward progress is
2401  * guaranteed). After mapping we submit all mapped pages for IO.
2402  */
2403 static int mpage_map_and_submit_extent(handle_t *handle,
2404 				       struct mpage_da_data *mpd,
2405 				       bool *give_up_on_write)
2406 {
2407 	struct inode *inode = mpd->inode;
2408 	struct ext4_map_blocks *map = &mpd->map;
2409 	int err;
2410 	loff_t disksize;
2411 	int progress = 0;
2412 
2413 	mpd->io_submit.io_end->offset =
2414 				((loff_t)map->m_lblk) << inode->i_blkbits;
2415 	do {
2416 		err = mpage_map_one_extent(handle, mpd);
2417 		if (err < 0) {
2418 			struct super_block *sb = inode->i_sb;
2419 
2420 			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2421 				goto invalidate_dirty_pages;
2422 			/*
2423 			 * Let the uper layers retry transient errors.
2424 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2425 			 * is non-zero, a commit should free up blocks.
2426 			 */
2427 			if ((err == -ENOMEM) ||
2428 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2429 				if (progress)
2430 					goto update_disksize;
2431 				return err;
2432 			}
2433 			ext4_msg(sb, KERN_CRIT,
2434 				 "Delayed block allocation failed for "
2435 				 "inode %lu at logical offset %llu with"
2436 				 " max blocks %u with error %d",
2437 				 inode->i_ino,
2438 				 (unsigned long long)map->m_lblk,
2439 				 (unsigned)map->m_len, -err);
2440 			ext4_msg(sb, KERN_CRIT,
2441 				 "This should not happen!! Data will "
2442 				 "be lost\n");
2443 			if (err == -ENOSPC)
2444 				ext4_print_free_blocks(inode);
2445 		invalidate_dirty_pages:
2446 			*give_up_on_write = true;
2447 			return err;
2448 		}
2449 		progress = 1;
2450 		/*
2451 		 * Update buffer state, submit mapped pages, and get us new
2452 		 * extent to map
2453 		 */
2454 		err = mpage_map_and_submit_buffers(mpd);
2455 		if (err < 0)
2456 			goto update_disksize;
2457 	} while (map->m_len);
2458 
2459 update_disksize:
2460 	/*
2461 	 * Update on-disk size after IO is submitted.  Races with
2462 	 * truncate are avoided by checking i_size under i_data_sem.
2463 	 */
2464 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2465 	if (disksize > EXT4_I(inode)->i_disksize) {
2466 		int err2;
2467 		loff_t i_size;
2468 
2469 		down_write(&EXT4_I(inode)->i_data_sem);
2470 		i_size = i_size_read(inode);
2471 		if (disksize > i_size)
2472 			disksize = i_size;
2473 		if (disksize > EXT4_I(inode)->i_disksize)
2474 			EXT4_I(inode)->i_disksize = disksize;
2475 		err2 = ext4_mark_inode_dirty(handle, inode);
2476 		up_write(&EXT4_I(inode)->i_data_sem);
2477 		if (err2)
2478 			ext4_error(inode->i_sb,
2479 				   "Failed to mark inode %lu dirty",
2480 				   inode->i_ino);
2481 		if (!err)
2482 			err = err2;
2483 	}
2484 	return err;
2485 }
2486 
2487 /*
2488  * Calculate the total number of credits to reserve for one writepages
2489  * iteration. This is called from ext4_writepages(). We map an extent of
2490  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2491  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2492  * bpp - 1 blocks in bpp different extents.
2493  */
2494 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2495 {
2496 	int bpp = ext4_journal_blocks_per_page(inode);
2497 
2498 	return ext4_meta_trans_blocks(inode,
2499 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2500 }
2501 
2502 /*
2503  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2504  * 				 and underlying extent to map
2505  *
2506  * @mpd - where to look for pages
2507  *
2508  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2509  * IO immediately. When we find a page which isn't mapped we start accumulating
2510  * extent of buffers underlying these pages that needs mapping (formed by
2511  * either delayed or unwritten buffers). We also lock the pages containing
2512  * these buffers. The extent found is returned in @mpd structure (starting at
2513  * mpd->lblk with length mpd->len blocks).
2514  *
2515  * Note that this function can attach bios to one io_end structure which are
2516  * neither logically nor physically contiguous. Although it may seem as an
2517  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2518  * case as we need to track IO to all buffers underlying a page in one io_end.
2519  */
2520 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2521 {
2522 	struct address_space *mapping = mpd->inode->i_mapping;
2523 	struct pagevec pvec;
2524 	unsigned int nr_pages;
2525 	long left = mpd->wbc->nr_to_write;
2526 	pgoff_t index = mpd->first_page;
2527 	pgoff_t end = mpd->last_page;
2528 	int tag;
2529 	int i, err = 0;
2530 	int blkbits = mpd->inode->i_blkbits;
2531 	ext4_lblk_t lblk;
2532 	struct buffer_head *head;
2533 
2534 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2535 		tag = PAGECACHE_TAG_TOWRITE;
2536 	else
2537 		tag = PAGECACHE_TAG_DIRTY;
2538 
2539 	pagevec_init(&pvec, 0);
2540 	mpd->map.m_len = 0;
2541 	mpd->next_page = index;
2542 	while (index <= end) {
2543 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2544 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2545 		if (nr_pages == 0)
2546 			goto out;
2547 
2548 		for (i = 0; i < nr_pages; i++) {
2549 			struct page *page = pvec.pages[i];
2550 
2551 			/*
2552 			 * At this point, the page may be truncated or
2553 			 * invalidated (changing page->mapping to NULL), or
2554 			 * even swizzled back from swapper_space to tmpfs file
2555 			 * mapping. However, page->index will not change
2556 			 * because we have a reference on the page.
2557 			 */
2558 			if (page->index > end)
2559 				goto out;
2560 
2561 			/*
2562 			 * Accumulated enough dirty pages? This doesn't apply
2563 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2564 			 * keep going because someone may be concurrently
2565 			 * dirtying pages, and we might have synced a lot of
2566 			 * newly appeared dirty pages, but have not synced all
2567 			 * of the old dirty pages.
2568 			 */
2569 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2570 				goto out;
2571 
2572 			/* If we can't merge this page, we are done. */
2573 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2574 				goto out;
2575 
2576 			lock_page(page);
2577 			/*
2578 			 * If the page is no longer dirty, or its mapping no
2579 			 * longer corresponds to inode we are writing (which
2580 			 * means it has been truncated or invalidated), or the
2581 			 * page is already under writeback and we are not doing
2582 			 * a data integrity writeback, skip the page
2583 			 */
2584 			if (!PageDirty(page) ||
2585 			    (PageWriteback(page) &&
2586 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2587 			    unlikely(page->mapping != mapping)) {
2588 				unlock_page(page);
2589 				continue;
2590 			}
2591 
2592 			wait_on_page_writeback(page);
2593 			BUG_ON(PageWriteback(page));
2594 
2595 			if (mpd->map.m_len == 0)
2596 				mpd->first_page = page->index;
2597 			mpd->next_page = page->index + 1;
2598 			/* Add all dirty buffers to mpd */
2599 			lblk = ((ext4_lblk_t)page->index) <<
2600 				(PAGE_SHIFT - blkbits);
2601 			head = page_buffers(page);
2602 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2603 			if (err <= 0)
2604 				goto out;
2605 			err = 0;
2606 			left--;
2607 		}
2608 		pagevec_release(&pvec);
2609 		cond_resched();
2610 	}
2611 	return 0;
2612 out:
2613 	pagevec_release(&pvec);
2614 	return err;
2615 }
2616 
2617 static int __writepage(struct page *page, struct writeback_control *wbc,
2618 		       void *data)
2619 {
2620 	struct address_space *mapping = data;
2621 	int ret = ext4_writepage(page, wbc);
2622 	mapping_set_error(mapping, ret);
2623 	return ret;
2624 }
2625 
2626 static int ext4_writepages(struct address_space *mapping,
2627 			   struct writeback_control *wbc)
2628 {
2629 	pgoff_t	writeback_index = 0;
2630 	long nr_to_write = wbc->nr_to_write;
2631 	int range_whole = 0;
2632 	int cycled = 1;
2633 	handle_t *handle = NULL;
2634 	struct mpage_da_data mpd;
2635 	struct inode *inode = mapping->host;
2636 	int needed_blocks, rsv_blocks = 0, ret = 0;
2637 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2638 	bool done;
2639 	struct blk_plug plug;
2640 	bool give_up_on_write = false;
2641 
2642 	percpu_down_read(&sbi->s_journal_flag_rwsem);
2643 	trace_ext4_writepages(inode, wbc);
2644 
2645 	if (dax_mapping(mapping)) {
2646 		ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2647 						  wbc);
2648 		goto out_writepages;
2649 	}
2650 
2651 	/*
2652 	 * No pages to write? This is mainly a kludge to avoid starting
2653 	 * a transaction for special inodes like journal inode on last iput()
2654 	 * because that could violate lock ordering on umount
2655 	 */
2656 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2657 		goto out_writepages;
2658 
2659 	if (ext4_should_journal_data(inode)) {
2660 		struct blk_plug plug;
2661 
2662 		blk_start_plug(&plug);
2663 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2664 		blk_finish_plug(&plug);
2665 		goto out_writepages;
2666 	}
2667 
2668 	/*
2669 	 * If the filesystem has aborted, it is read-only, so return
2670 	 * right away instead of dumping stack traces later on that
2671 	 * will obscure the real source of the problem.  We test
2672 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2673 	 * the latter could be true if the filesystem is mounted
2674 	 * read-only, and in that case, ext4_writepages should
2675 	 * *never* be called, so if that ever happens, we would want
2676 	 * the stack trace.
2677 	 */
2678 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2679 		ret = -EROFS;
2680 		goto out_writepages;
2681 	}
2682 
2683 	if (ext4_should_dioread_nolock(inode)) {
2684 		/*
2685 		 * We may need to convert up to one extent per block in
2686 		 * the page and we may dirty the inode.
2687 		 */
2688 		rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2689 	}
2690 
2691 	/*
2692 	 * If we have inline data and arrive here, it means that
2693 	 * we will soon create the block for the 1st page, so
2694 	 * we'd better clear the inline data here.
2695 	 */
2696 	if (ext4_has_inline_data(inode)) {
2697 		/* Just inode will be modified... */
2698 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2699 		if (IS_ERR(handle)) {
2700 			ret = PTR_ERR(handle);
2701 			goto out_writepages;
2702 		}
2703 		BUG_ON(ext4_test_inode_state(inode,
2704 				EXT4_STATE_MAY_INLINE_DATA));
2705 		ext4_destroy_inline_data(handle, inode);
2706 		ext4_journal_stop(handle);
2707 	}
2708 
2709 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2710 		range_whole = 1;
2711 
2712 	if (wbc->range_cyclic) {
2713 		writeback_index = mapping->writeback_index;
2714 		if (writeback_index)
2715 			cycled = 0;
2716 		mpd.first_page = writeback_index;
2717 		mpd.last_page = -1;
2718 	} else {
2719 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2720 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2721 	}
2722 
2723 	mpd.inode = inode;
2724 	mpd.wbc = wbc;
2725 	ext4_io_submit_init(&mpd.io_submit, wbc);
2726 retry:
2727 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2728 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2729 	done = false;
2730 	blk_start_plug(&plug);
2731 	while (!done && mpd.first_page <= mpd.last_page) {
2732 		/* For each extent of pages we use new io_end */
2733 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2734 		if (!mpd.io_submit.io_end) {
2735 			ret = -ENOMEM;
2736 			break;
2737 		}
2738 
2739 		/*
2740 		 * We have two constraints: We find one extent to map and we
2741 		 * must always write out whole page (makes a difference when
2742 		 * blocksize < pagesize) so that we don't block on IO when we
2743 		 * try to write out the rest of the page. Journalled mode is
2744 		 * not supported by delalloc.
2745 		 */
2746 		BUG_ON(ext4_should_journal_data(inode));
2747 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2748 
2749 		/* start a new transaction */
2750 		handle = ext4_journal_start_with_reserve(inode,
2751 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2752 		if (IS_ERR(handle)) {
2753 			ret = PTR_ERR(handle);
2754 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2755 			       "%ld pages, ino %lu; err %d", __func__,
2756 				wbc->nr_to_write, inode->i_ino, ret);
2757 			/* Release allocated io_end */
2758 			ext4_put_io_end(mpd.io_submit.io_end);
2759 			break;
2760 		}
2761 
2762 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2763 		ret = mpage_prepare_extent_to_map(&mpd);
2764 		if (!ret) {
2765 			if (mpd.map.m_len)
2766 				ret = mpage_map_and_submit_extent(handle, &mpd,
2767 					&give_up_on_write);
2768 			else {
2769 				/*
2770 				 * We scanned the whole range (or exhausted
2771 				 * nr_to_write), submitted what was mapped and
2772 				 * didn't find anything needing mapping. We are
2773 				 * done.
2774 				 */
2775 				done = true;
2776 			}
2777 		}
2778 		/*
2779 		 * Caution: If the handle is synchronous,
2780 		 * ext4_journal_stop() can wait for transaction commit
2781 		 * to finish which may depend on writeback of pages to
2782 		 * complete or on page lock to be released.  In that
2783 		 * case, we have to wait until after after we have
2784 		 * submitted all the IO, released page locks we hold,
2785 		 * and dropped io_end reference (for extent conversion
2786 		 * to be able to complete) before stopping the handle.
2787 		 */
2788 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2789 			ext4_journal_stop(handle);
2790 			handle = NULL;
2791 		}
2792 		/* Submit prepared bio */
2793 		ext4_io_submit(&mpd.io_submit);
2794 		/* Unlock pages we didn't use */
2795 		mpage_release_unused_pages(&mpd, give_up_on_write);
2796 		/*
2797 		 * Drop our io_end reference we got from init. We have
2798 		 * to be careful and use deferred io_end finishing if
2799 		 * we are still holding the transaction as we can
2800 		 * release the last reference to io_end which may end
2801 		 * up doing unwritten extent conversion.
2802 		 */
2803 		if (handle) {
2804 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2805 			ext4_journal_stop(handle);
2806 		} else
2807 			ext4_put_io_end(mpd.io_submit.io_end);
2808 
2809 		if (ret == -ENOSPC && sbi->s_journal) {
2810 			/*
2811 			 * Commit the transaction which would
2812 			 * free blocks released in the transaction
2813 			 * and try again
2814 			 */
2815 			jbd2_journal_force_commit_nested(sbi->s_journal);
2816 			ret = 0;
2817 			continue;
2818 		}
2819 		/* Fatal error - ENOMEM, EIO... */
2820 		if (ret)
2821 			break;
2822 	}
2823 	blk_finish_plug(&plug);
2824 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2825 		cycled = 1;
2826 		mpd.last_page = writeback_index - 1;
2827 		mpd.first_page = 0;
2828 		goto retry;
2829 	}
2830 
2831 	/* Update index */
2832 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2833 		/*
2834 		 * Set the writeback_index so that range_cyclic
2835 		 * mode will write it back later
2836 		 */
2837 		mapping->writeback_index = mpd.first_page;
2838 
2839 out_writepages:
2840 	trace_ext4_writepages_result(inode, wbc, ret,
2841 				     nr_to_write - wbc->nr_to_write);
2842 	percpu_up_read(&sbi->s_journal_flag_rwsem);
2843 	return ret;
2844 }
2845 
2846 static int ext4_nonda_switch(struct super_block *sb)
2847 {
2848 	s64 free_clusters, dirty_clusters;
2849 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2850 
2851 	/*
2852 	 * switch to non delalloc mode if we are running low
2853 	 * on free block. The free block accounting via percpu
2854 	 * counters can get slightly wrong with percpu_counter_batch getting
2855 	 * accumulated on each CPU without updating global counters
2856 	 * Delalloc need an accurate free block accounting. So switch
2857 	 * to non delalloc when we are near to error range.
2858 	 */
2859 	free_clusters =
2860 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2861 	dirty_clusters =
2862 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2863 	/*
2864 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2865 	 */
2866 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2867 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2868 
2869 	if (2 * free_clusters < 3 * dirty_clusters ||
2870 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2871 		/*
2872 		 * free block count is less than 150% of dirty blocks
2873 		 * or free blocks is less than watermark
2874 		 */
2875 		return 1;
2876 	}
2877 	return 0;
2878 }
2879 
2880 /* We always reserve for an inode update; the superblock could be there too */
2881 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2882 {
2883 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2884 		return 1;
2885 
2886 	if (pos + len <= 0x7fffffffULL)
2887 		return 1;
2888 
2889 	/* We might need to update the superblock to set LARGE_FILE */
2890 	return 2;
2891 }
2892 
2893 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2894 			       loff_t pos, unsigned len, unsigned flags,
2895 			       struct page **pagep, void **fsdata)
2896 {
2897 	int ret, retries = 0;
2898 	struct page *page;
2899 	pgoff_t index;
2900 	struct inode *inode = mapping->host;
2901 	handle_t *handle;
2902 
2903 	index = pos >> PAGE_SHIFT;
2904 
2905 	if (ext4_nonda_switch(inode->i_sb) ||
2906 	    S_ISLNK(inode->i_mode)) {
2907 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2908 		return ext4_write_begin(file, mapping, pos,
2909 					len, flags, pagep, fsdata);
2910 	}
2911 	*fsdata = (void *)0;
2912 	trace_ext4_da_write_begin(inode, pos, len, flags);
2913 
2914 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2915 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2916 						      pos, len, flags,
2917 						      pagep, fsdata);
2918 		if (ret < 0)
2919 			return ret;
2920 		if (ret == 1)
2921 			return 0;
2922 	}
2923 
2924 	/*
2925 	 * grab_cache_page_write_begin() can take a long time if the
2926 	 * system is thrashing due to memory pressure, or if the page
2927 	 * is being written back.  So grab it first before we start
2928 	 * the transaction handle.  This also allows us to allocate
2929 	 * the page (if needed) without using GFP_NOFS.
2930 	 */
2931 retry_grab:
2932 	page = grab_cache_page_write_begin(mapping, index, flags);
2933 	if (!page)
2934 		return -ENOMEM;
2935 	unlock_page(page);
2936 
2937 	/*
2938 	 * With delayed allocation, we don't log the i_disksize update
2939 	 * if there is delayed block allocation. But we still need
2940 	 * to journalling the i_disksize update if writes to the end
2941 	 * of file which has an already mapped buffer.
2942 	 */
2943 retry_journal:
2944 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2945 				ext4_da_write_credits(inode, pos, len));
2946 	if (IS_ERR(handle)) {
2947 		put_page(page);
2948 		return PTR_ERR(handle);
2949 	}
2950 
2951 	lock_page(page);
2952 	if (page->mapping != mapping) {
2953 		/* The page got truncated from under us */
2954 		unlock_page(page);
2955 		put_page(page);
2956 		ext4_journal_stop(handle);
2957 		goto retry_grab;
2958 	}
2959 	/* In case writeback began while the page was unlocked */
2960 	wait_for_stable_page(page);
2961 
2962 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2963 	ret = ext4_block_write_begin(page, pos, len,
2964 				     ext4_da_get_block_prep);
2965 #else
2966 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2967 #endif
2968 	if (ret < 0) {
2969 		unlock_page(page);
2970 		ext4_journal_stop(handle);
2971 		/*
2972 		 * block_write_begin may have instantiated a few blocks
2973 		 * outside i_size.  Trim these off again. Don't need
2974 		 * i_size_read because we hold i_mutex.
2975 		 */
2976 		if (pos + len > inode->i_size)
2977 			ext4_truncate_failed_write(inode);
2978 
2979 		if (ret == -ENOSPC &&
2980 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2981 			goto retry_journal;
2982 
2983 		put_page(page);
2984 		return ret;
2985 	}
2986 
2987 	*pagep = page;
2988 	return ret;
2989 }
2990 
2991 /*
2992  * Check if we should update i_disksize
2993  * when write to the end of file but not require block allocation
2994  */
2995 static int ext4_da_should_update_i_disksize(struct page *page,
2996 					    unsigned long offset)
2997 {
2998 	struct buffer_head *bh;
2999 	struct inode *inode = page->mapping->host;
3000 	unsigned int idx;
3001 	int i;
3002 
3003 	bh = page_buffers(page);
3004 	idx = offset >> inode->i_blkbits;
3005 
3006 	for (i = 0; i < idx; i++)
3007 		bh = bh->b_this_page;
3008 
3009 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3010 		return 0;
3011 	return 1;
3012 }
3013 
3014 static int ext4_da_write_end(struct file *file,
3015 			     struct address_space *mapping,
3016 			     loff_t pos, unsigned len, unsigned copied,
3017 			     struct page *page, void *fsdata)
3018 {
3019 	struct inode *inode = mapping->host;
3020 	int ret = 0, ret2;
3021 	handle_t *handle = ext4_journal_current_handle();
3022 	loff_t new_i_size;
3023 	unsigned long start, end;
3024 	int write_mode = (int)(unsigned long)fsdata;
3025 
3026 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3027 		return ext4_write_end(file, mapping, pos,
3028 				      len, copied, page, fsdata);
3029 
3030 	trace_ext4_da_write_end(inode, pos, len, copied);
3031 	start = pos & (PAGE_SIZE - 1);
3032 	end = start + copied - 1;
3033 
3034 	/*
3035 	 * generic_write_end() will run mark_inode_dirty() if i_size
3036 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3037 	 * into that.
3038 	 */
3039 	new_i_size = pos + copied;
3040 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3041 		if (ext4_has_inline_data(inode) ||
3042 		    ext4_da_should_update_i_disksize(page, end)) {
3043 			ext4_update_i_disksize(inode, new_i_size);
3044 			/* We need to mark inode dirty even if
3045 			 * new_i_size is less that inode->i_size
3046 			 * bu greater than i_disksize.(hint delalloc)
3047 			 */
3048 			ext4_mark_inode_dirty(handle, inode);
3049 		}
3050 	}
3051 
3052 	if (write_mode != CONVERT_INLINE_DATA &&
3053 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3054 	    ext4_has_inline_data(inode))
3055 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3056 						     page);
3057 	else
3058 		ret2 = generic_write_end(file, mapping, pos, len, copied,
3059 							page, fsdata);
3060 
3061 	copied = ret2;
3062 	if (ret2 < 0)
3063 		ret = ret2;
3064 	ret2 = ext4_journal_stop(handle);
3065 	if (!ret)
3066 		ret = ret2;
3067 
3068 	return ret ? ret : copied;
3069 }
3070 
3071 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3072 				   unsigned int length)
3073 {
3074 	/*
3075 	 * Drop reserved blocks
3076 	 */
3077 	BUG_ON(!PageLocked(page));
3078 	if (!page_has_buffers(page))
3079 		goto out;
3080 
3081 	ext4_da_page_release_reservation(page, offset, length);
3082 
3083 out:
3084 	ext4_invalidatepage(page, offset, length);
3085 
3086 	return;
3087 }
3088 
3089 /*
3090  * Force all delayed allocation blocks to be allocated for a given inode.
3091  */
3092 int ext4_alloc_da_blocks(struct inode *inode)
3093 {
3094 	trace_ext4_alloc_da_blocks(inode);
3095 
3096 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3097 		return 0;
3098 
3099 	/*
3100 	 * We do something simple for now.  The filemap_flush() will
3101 	 * also start triggering a write of the data blocks, which is
3102 	 * not strictly speaking necessary (and for users of
3103 	 * laptop_mode, not even desirable).  However, to do otherwise
3104 	 * would require replicating code paths in:
3105 	 *
3106 	 * ext4_writepages() ->
3107 	 *    write_cache_pages() ---> (via passed in callback function)
3108 	 *        __mpage_da_writepage() -->
3109 	 *           mpage_add_bh_to_extent()
3110 	 *           mpage_da_map_blocks()
3111 	 *
3112 	 * The problem is that write_cache_pages(), located in
3113 	 * mm/page-writeback.c, marks pages clean in preparation for
3114 	 * doing I/O, which is not desirable if we're not planning on
3115 	 * doing I/O at all.
3116 	 *
3117 	 * We could call write_cache_pages(), and then redirty all of
3118 	 * the pages by calling redirty_page_for_writepage() but that
3119 	 * would be ugly in the extreme.  So instead we would need to
3120 	 * replicate parts of the code in the above functions,
3121 	 * simplifying them because we wouldn't actually intend to
3122 	 * write out the pages, but rather only collect contiguous
3123 	 * logical block extents, call the multi-block allocator, and
3124 	 * then update the buffer heads with the block allocations.
3125 	 *
3126 	 * For now, though, we'll cheat by calling filemap_flush(),
3127 	 * which will map the blocks, and start the I/O, but not
3128 	 * actually wait for the I/O to complete.
3129 	 */
3130 	return filemap_flush(inode->i_mapping);
3131 }
3132 
3133 /*
3134  * bmap() is special.  It gets used by applications such as lilo and by
3135  * the swapper to find the on-disk block of a specific piece of data.
3136  *
3137  * Naturally, this is dangerous if the block concerned is still in the
3138  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3139  * filesystem and enables swap, then they may get a nasty shock when the
3140  * data getting swapped to that swapfile suddenly gets overwritten by
3141  * the original zero's written out previously to the journal and
3142  * awaiting writeback in the kernel's buffer cache.
3143  *
3144  * So, if we see any bmap calls here on a modified, data-journaled file,
3145  * take extra steps to flush any blocks which might be in the cache.
3146  */
3147 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3148 {
3149 	struct inode *inode = mapping->host;
3150 	journal_t *journal;
3151 	int err;
3152 
3153 	/*
3154 	 * We can get here for an inline file via the FIBMAP ioctl
3155 	 */
3156 	if (ext4_has_inline_data(inode))
3157 		return 0;
3158 
3159 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3160 			test_opt(inode->i_sb, DELALLOC)) {
3161 		/*
3162 		 * With delalloc we want to sync the file
3163 		 * so that we can make sure we allocate
3164 		 * blocks for file
3165 		 */
3166 		filemap_write_and_wait(mapping);
3167 	}
3168 
3169 	if (EXT4_JOURNAL(inode) &&
3170 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3171 		/*
3172 		 * This is a REALLY heavyweight approach, but the use of
3173 		 * bmap on dirty files is expected to be extremely rare:
3174 		 * only if we run lilo or swapon on a freshly made file
3175 		 * do we expect this to happen.
3176 		 *
3177 		 * (bmap requires CAP_SYS_RAWIO so this does not
3178 		 * represent an unprivileged user DOS attack --- we'd be
3179 		 * in trouble if mortal users could trigger this path at
3180 		 * will.)
3181 		 *
3182 		 * NB. EXT4_STATE_JDATA is not set on files other than
3183 		 * regular files.  If somebody wants to bmap a directory
3184 		 * or symlink and gets confused because the buffer
3185 		 * hasn't yet been flushed to disk, they deserve
3186 		 * everything they get.
3187 		 */
3188 
3189 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3190 		journal = EXT4_JOURNAL(inode);
3191 		jbd2_journal_lock_updates(journal);
3192 		err = jbd2_journal_flush(journal);
3193 		jbd2_journal_unlock_updates(journal);
3194 
3195 		if (err)
3196 			return 0;
3197 	}
3198 
3199 	return generic_block_bmap(mapping, block, ext4_get_block);
3200 }
3201 
3202 static int ext4_readpage(struct file *file, struct page *page)
3203 {
3204 	int ret = -EAGAIN;
3205 	struct inode *inode = page->mapping->host;
3206 
3207 	trace_ext4_readpage(page);
3208 
3209 	if (ext4_has_inline_data(inode))
3210 		ret = ext4_readpage_inline(inode, page);
3211 
3212 	if (ret == -EAGAIN)
3213 		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3214 
3215 	return ret;
3216 }
3217 
3218 static int
3219 ext4_readpages(struct file *file, struct address_space *mapping,
3220 		struct list_head *pages, unsigned nr_pages)
3221 {
3222 	struct inode *inode = mapping->host;
3223 
3224 	/* If the file has inline data, no need to do readpages. */
3225 	if (ext4_has_inline_data(inode))
3226 		return 0;
3227 
3228 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3229 }
3230 
3231 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3232 				unsigned int length)
3233 {
3234 	trace_ext4_invalidatepage(page, offset, length);
3235 
3236 	/* No journalling happens on data buffers when this function is used */
3237 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3238 
3239 	block_invalidatepage(page, offset, length);
3240 }
3241 
3242 static int __ext4_journalled_invalidatepage(struct page *page,
3243 					    unsigned int offset,
3244 					    unsigned int length)
3245 {
3246 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3247 
3248 	trace_ext4_journalled_invalidatepage(page, offset, length);
3249 
3250 	/*
3251 	 * If it's a full truncate we just forget about the pending dirtying
3252 	 */
3253 	if (offset == 0 && length == PAGE_SIZE)
3254 		ClearPageChecked(page);
3255 
3256 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3257 }
3258 
3259 /* Wrapper for aops... */
3260 static void ext4_journalled_invalidatepage(struct page *page,
3261 					   unsigned int offset,
3262 					   unsigned int length)
3263 {
3264 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3265 }
3266 
3267 static int ext4_releasepage(struct page *page, gfp_t wait)
3268 {
3269 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3270 
3271 	trace_ext4_releasepage(page);
3272 
3273 	/* Page has dirty journalled data -> cannot release */
3274 	if (PageChecked(page))
3275 		return 0;
3276 	if (journal)
3277 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3278 	else
3279 		return try_to_free_buffers(page);
3280 }
3281 
3282 #ifdef CONFIG_FS_DAX
3283 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3284 			    unsigned flags, struct iomap *iomap)
3285 {
3286 	unsigned int blkbits = inode->i_blkbits;
3287 	unsigned long first_block = offset >> blkbits;
3288 	unsigned long last_block = (offset + length - 1) >> blkbits;
3289 	struct ext4_map_blocks map;
3290 	int ret;
3291 
3292 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3293 		return -ERANGE;
3294 
3295 	map.m_lblk = first_block;
3296 	map.m_len = last_block - first_block + 1;
3297 
3298 	if (!(flags & IOMAP_WRITE)) {
3299 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3300 	} else {
3301 		int dio_credits;
3302 		handle_t *handle;
3303 		int retries = 0;
3304 
3305 		/* Trim mapping request to maximum we can map at once for DIO */
3306 		if (map.m_len > DIO_MAX_BLOCKS)
3307 			map.m_len = DIO_MAX_BLOCKS;
3308 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3309 retry:
3310 		/*
3311 		 * Either we allocate blocks and then we don't get unwritten
3312 		 * extent so we have reserved enough credits, or the blocks
3313 		 * are already allocated and unwritten and in that case
3314 		 * extent conversion fits in the credits as well.
3315 		 */
3316 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3317 					    dio_credits);
3318 		if (IS_ERR(handle))
3319 			return PTR_ERR(handle);
3320 
3321 		ret = ext4_map_blocks(handle, inode, &map,
3322 				      EXT4_GET_BLOCKS_CREATE_ZERO);
3323 		if (ret < 0) {
3324 			ext4_journal_stop(handle);
3325 			if (ret == -ENOSPC &&
3326 			    ext4_should_retry_alloc(inode->i_sb, &retries))
3327 				goto retry;
3328 			return ret;
3329 		}
3330 
3331 		/*
3332 		 * If we added blocks beyond i_size, we need to make sure they
3333 		 * will get truncated if we crash before updating i_size in
3334 		 * ext4_iomap_end(). For faults we don't need to do that (and
3335 		 * even cannot because for orphan list operations inode_lock is
3336 		 * required) - if we happen to instantiate block beyond i_size,
3337 		 * it is because we race with truncate which has already added
3338 		 * the inode to the orphan list.
3339 		 */
3340 		if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3341 		    (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3342 			int err;
3343 
3344 			err = ext4_orphan_add(handle, inode);
3345 			if (err < 0) {
3346 				ext4_journal_stop(handle);
3347 				return err;
3348 			}
3349 		}
3350 		ext4_journal_stop(handle);
3351 	}
3352 
3353 	iomap->flags = 0;
3354 	iomap->bdev = inode->i_sb->s_bdev;
3355 	iomap->offset = first_block << blkbits;
3356 
3357 	if (ret == 0) {
3358 		iomap->type = IOMAP_HOLE;
3359 		iomap->blkno = IOMAP_NULL_BLOCK;
3360 		iomap->length = (u64)map.m_len << blkbits;
3361 	} else {
3362 		if (map.m_flags & EXT4_MAP_MAPPED) {
3363 			iomap->type = IOMAP_MAPPED;
3364 		} else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3365 			iomap->type = IOMAP_UNWRITTEN;
3366 		} else {
3367 			WARN_ON_ONCE(1);
3368 			return -EIO;
3369 		}
3370 		iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3371 		iomap->length = (u64)map.m_len << blkbits;
3372 	}
3373 
3374 	if (map.m_flags & EXT4_MAP_NEW)
3375 		iomap->flags |= IOMAP_F_NEW;
3376 	return 0;
3377 }
3378 
3379 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3380 			  ssize_t written, unsigned flags, struct iomap *iomap)
3381 {
3382 	int ret = 0;
3383 	handle_t *handle;
3384 	int blkbits = inode->i_blkbits;
3385 	bool truncate = false;
3386 
3387 	if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3388 		return 0;
3389 
3390 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3391 	if (IS_ERR(handle)) {
3392 		ret = PTR_ERR(handle);
3393 		goto orphan_del;
3394 	}
3395 	if (ext4_update_inode_size(inode, offset + written))
3396 		ext4_mark_inode_dirty(handle, inode);
3397 	/*
3398 	 * We may need to truncate allocated but not written blocks beyond EOF.
3399 	 */
3400 	if (iomap->offset + iomap->length >
3401 	    ALIGN(inode->i_size, 1 << blkbits)) {
3402 		ext4_lblk_t written_blk, end_blk;
3403 
3404 		written_blk = (offset + written) >> blkbits;
3405 		end_blk = (offset + length) >> blkbits;
3406 		if (written_blk < end_blk && ext4_can_truncate(inode))
3407 			truncate = true;
3408 	}
3409 	/*
3410 	 * Remove inode from orphan list if we were extending a inode and
3411 	 * everything went fine.
3412 	 */
3413 	if (!truncate && inode->i_nlink &&
3414 	    !list_empty(&EXT4_I(inode)->i_orphan))
3415 		ext4_orphan_del(handle, inode);
3416 	ext4_journal_stop(handle);
3417 	if (truncate) {
3418 		ext4_truncate_failed_write(inode);
3419 orphan_del:
3420 		/*
3421 		 * If truncate failed early the inode might still be on the
3422 		 * orphan list; we need to make sure the inode is removed from
3423 		 * the orphan list in that case.
3424 		 */
3425 		if (inode->i_nlink)
3426 			ext4_orphan_del(NULL, inode);
3427 	}
3428 	return ret;
3429 }
3430 
3431 struct iomap_ops ext4_iomap_ops = {
3432 	.iomap_begin		= ext4_iomap_begin,
3433 	.iomap_end		= ext4_iomap_end,
3434 };
3435 
3436 #endif
3437 
3438 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3439 			    ssize_t size, void *private)
3440 {
3441         ext4_io_end_t *io_end = private;
3442 
3443 	/* if not async direct IO just return */
3444 	if (!io_end)
3445 		return 0;
3446 
3447 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3448 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3449 		  io_end, io_end->inode->i_ino, iocb, offset, size);
3450 
3451 	/*
3452 	 * Error during AIO DIO. We cannot convert unwritten extents as the
3453 	 * data was not written. Just clear the unwritten flag and drop io_end.
3454 	 */
3455 	if (size <= 0) {
3456 		ext4_clear_io_unwritten_flag(io_end);
3457 		size = 0;
3458 	}
3459 	io_end->offset = offset;
3460 	io_end->size = size;
3461 	ext4_put_io_end(io_end);
3462 
3463 	return 0;
3464 }
3465 
3466 /*
3467  * Handling of direct IO writes.
3468  *
3469  * For ext4 extent files, ext4 will do direct-io write even to holes,
3470  * preallocated extents, and those write extend the file, no need to
3471  * fall back to buffered IO.
3472  *
3473  * For holes, we fallocate those blocks, mark them as unwritten
3474  * If those blocks were preallocated, we mark sure they are split, but
3475  * still keep the range to write as unwritten.
3476  *
3477  * The unwritten extents will be converted to written when DIO is completed.
3478  * For async direct IO, since the IO may still pending when return, we
3479  * set up an end_io call back function, which will do the conversion
3480  * when async direct IO completed.
3481  *
3482  * If the O_DIRECT write will extend the file then add this inode to the
3483  * orphan list.  So recovery will truncate it back to the original size
3484  * if the machine crashes during the write.
3485  *
3486  */
3487 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3488 {
3489 	struct file *file = iocb->ki_filp;
3490 	struct inode *inode = file->f_mapping->host;
3491 	struct ext4_inode_info *ei = EXT4_I(inode);
3492 	ssize_t ret;
3493 	loff_t offset = iocb->ki_pos;
3494 	size_t count = iov_iter_count(iter);
3495 	int overwrite = 0;
3496 	get_block_t *get_block_func = NULL;
3497 	int dio_flags = 0;
3498 	loff_t final_size = offset + count;
3499 	int orphan = 0;
3500 	handle_t *handle;
3501 
3502 	if (final_size > inode->i_size) {
3503 		/* Credits for sb + inode write */
3504 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3505 		if (IS_ERR(handle)) {
3506 			ret = PTR_ERR(handle);
3507 			goto out;
3508 		}
3509 		ret = ext4_orphan_add(handle, inode);
3510 		if (ret) {
3511 			ext4_journal_stop(handle);
3512 			goto out;
3513 		}
3514 		orphan = 1;
3515 		ei->i_disksize = inode->i_size;
3516 		ext4_journal_stop(handle);
3517 	}
3518 
3519 	BUG_ON(iocb->private == NULL);
3520 
3521 	/*
3522 	 * Make all waiters for direct IO properly wait also for extent
3523 	 * conversion. This also disallows race between truncate() and
3524 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3525 	 */
3526 	inode_dio_begin(inode);
3527 
3528 	/* If we do a overwrite dio, i_mutex locking can be released */
3529 	overwrite = *((int *)iocb->private);
3530 
3531 	if (overwrite)
3532 		inode_unlock(inode);
3533 
3534 	/*
3535 	 * For extent mapped files we could direct write to holes and fallocate.
3536 	 *
3537 	 * Allocated blocks to fill the hole are marked as unwritten to prevent
3538 	 * parallel buffered read to expose the stale data before DIO complete
3539 	 * the data IO.
3540 	 *
3541 	 * As to previously fallocated extents, ext4 get_block will just simply
3542 	 * mark the buffer mapped but still keep the extents unwritten.
3543 	 *
3544 	 * For non AIO case, we will convert those unwritten extents to written
3545 	 * after return back from blockdev_direct_IO. That way we save us from
3546 	 * allocating io_end structure and also the overhead of offloading
3547 	 * the extent convertion to a workqueue.
3548 	 *
3549 	 * For async DIO, the conversion needs to be deferred when the
3550 	 * IO is completed. The ext4 end_io callback function will be
3551 	 * called to take care of the conversion work.  Here for async
3552 	 * case, we allocate an io_end structure to hook to the iocb.
3553 	 */
3554 	iocb->private = NULL;
3555 	if (overwrite)
3556 		get_block_func = ext4_dio_get_block_overwrite;
3557 	else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3558 		   round_down(offset, 1 << inode->i_blkbits) >= inode->i_size) {
3559 		get_block_func = ext4_dio_get_block;
3560 		dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3561 	} else if (is_sync_kiocb(iocb)) {
3562 		get_block_func = ext4_dio_get_block_unwritten_sync;
3563 		dio_flags = DIO_LOCKING;
3564 	} else {
3565 		get_block_func = ext4_dio_get_block_unwritten_async;
3566 		dio_flags = DIO_LOCKING;
3567 	}
3568 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3569 	BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3570 #endif
3571 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3572 				   get_block_func, ext4_end_io_dio, NULL,
3573 				   dio_flags);
3574 
3575 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3576 						EXT4_STATE_DIO_UNWRITTEN)) {
3577 		int err;
3578 		/*
3579 		 * for non AIO case, since the IO is already
3580 		 * completed, we could do the conversion right here
3581 		 */
3582 		err = ext4_convert_unwritten_extents(NULL, inode,
3583 						     offset, ret);
3584 		if (err < 0)
3585 			ret = err;
3586 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3587 	}
3588 
3589 	inode_dio_end(inode);
3590 	/* take i_mutex locking again if we do a ovewrite dio */
3591 	if (overwrite)
3592 		inode_lock(inode);
3593 
3594 	if (ret < 0 && final_size > inode->i_size)
3595 		ext4_truncate_failed_write(inode);
3596 
3597 	/* Handle extending of i_size after direct IO write */
3598 	if (orphan) {
3599 		int err;
3600 
3601 		/* Credits for sb + inode write */
3602 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3603 		if (IS_ERR(handle)) {
3604 			/* This is really bad luck. We've written the data
3605 			 * but cannot extend i_size. Bail out and pretend
3606 			 * the write failed... */
3607 			ret = PTR_ERR(handle);
3608 			if (inode->i_nlink)
3609 				ext4_orphan_del(NULL, inode);
3610 
3611 			goto out;
3612 		}
3613 		if (inode->i_nlink)
3614 			ext4_orphan_del(handle, inode);
3615 		if (ret > 0) {
3616 			loff_t end = offset + ret;
3617 			if (end > inode->i_size) {
3618 				ei->i_disksize = end;
3619 				i_size_write(inode, end);
3620 				/*
3621 				 * We're going to return a positive `ret'
3622 				 * here due to non-zero-length I/O, so there's
3623 				 * no way of reporting error returns from
3624 				 * ext4_mark_inode_dirty() to userspace.  So
3625 				 * ignore it.
3626 				 */
3627 				ext4_mark_inode_dirty(handle, inode);
3628 			}
3629 		}
3630 		err = ext4_journal_stop(handle);
3631 		if (ret == 0)
3632 			ret = err;
3633 	}
3634 out:
3635 	return ret;
3636 }
3637 
3638 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3639 {
3640 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3641 	struct inode *inode = mapping->host;
3642 	size_t count = iov_iter_count(iter);
3643 	ssize_t ret;
3644 
3645 	/*
3646 	 * Shared inode_lock is enough for us - it protects against concurrent
3647 	 * writes & truncates and since we take care of writing back page cache,
3648 	 * we are protected against page writeback as well.
3649 	 */
3650 	inode_lock_shared(inode);
3651 	ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3652 					   iocb->ki_pos + count);
3653 	if (ret)
3654 		goto out_unlock;
3655 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3656 				   iter, ext4_dio_get_block, NULL, NULL, 0);
3657 out_unlock:
3658 	inode_unlock_shared(inode);
3659 	return ret;
3660 }
3661 
3662 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3663 {
3664 	struct file *file = iocb->ki_filp;
3665 	struct inode *inode = file->f_mapping->host;
3666 	size_t count = iov_iter_count(iter);
3667 	loff_t offset = iocb->ki_pos;
3668 	ssize_t ret;
3669 
3670 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3671 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3672 		return 0;
3673 #endif
3674 
3675 	/*
3676 	 * If we are doing data journalling we don't support O_DIRECT
3677 	 */
3678 	if (ext4_should_journal_data(inode))
3679 		return 0;
3680 
3681 	/* Let buffer I/O handle the inline data case. */
3682 	if (ext4_has_inline_data(inode))
3683 		return 0;
3684 
3685 	/* DAX uses iomap path now */
3686 	if (WARN_ON_ONCE(IS_DAX(inode)))
3687 		return 0;
3688 
3689 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3690 	if (iov_iter_rw(iter) == READ)
3691 		ret = ext4_direct_IO_read(iocb, iter);
3692 	else
3693 		ret = ext4_direct_IO_write(iocb, iter);
3694 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3695 	return ret;
3696 }
3697 
3698 /*
3699  * Pages can be marked dirty completely asynchronously from ext4's journalling
3700  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3701  * much here because ->set_page_dirty is called under VFS locks.  The page is
3702  * not necessarily locked.
3703  *
3704  * We cannot just dirty the page and leave attached buffers clean, because the
3705  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3706  * or jbddirty because all the journalling code will explode.
3707  *
3708  * So what we do is to mark the page "pending dirty" and next time writepage
3709  * is called, propagate that into the buffers appropriately.
3710  */
3711 static int ext4_journalled_set_page_dirty(struct page *page)
3712 {
3713 	SetPageChecked(page);
3714 	return __set_page_dirty_nobuffers(page);
3715 }
3716 
3717 static int ext4_set_page_dirty(struct page *page)
3718 {
3719 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3720 	WARN_ON_ONCE(!page_has_buffers(page));
3721 	return __set_page_dirty_buffers(page);
3722 }
3723 
3724 static const struct address_space_operations ext4_aops = {
3725 	.readpage		= ext4_readpage,
3726 	.readpages		= ext4_readpages,
3727 	.writepage		= ext4_writepage,
3728 	.writepages		= ext4_writepages,
3729 	.write_begin		= ext4_write_begin,
3730 	.write_end		= ext4_write_end,
3731 	.set_page_dirty		= ext4_set_page_dirty,
3732 	.bmap			= ext4_bmap,
3733 	.invalidatepage		= ext4_invalidatepage,
3734 	.releasepage		= ext4_releasepage,
3735 	.direct_IO		= ext4_direct_IO,
3736 	.migratepage		= buffer_migrate_page,
3737 	.is_partially_uptodate  = block_is_partially_uptodate,
3738 	.error_remove_page	= generic_error_remove_page,
3739 };
3740 
3741 static const struct address_space_operations ext4_journalled_aops = {
3742 	.readpage		= ext4_readpage,
3743 	.readpages		= ext4_readpages,
3744 	.writepage		= ext4_writepage,
3745 	.writepages		= ext4_writepages,
3746 	.write_begin		= ext4_write_begin,
3747 	.write_end		= ext4_journalled_write_end,
3748 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3749 	.bmap			= ext4_bmap,
3750 	.invalidatepage		= ext4_journalled_invalidatepage,
3751 	.releasepage		= ext4_releasepage,
3752 	.direct_IO		= ext4_direct_IO,
3753 	.is_partially_uptodate  = block_is_partially_uptodate,
3754 	.error_remove_page	= generic_error_remove_page,
3755 };
3756 
3757 static const struct address_space_operations ext4_da_aops = {
3758 	.readpage		= ext4_readpage,
3759 	.readpages		= ext4_readpages,
3760 	.writepage		= ext4_writepage,
3761 	.writepages		= ext4_writepages,
3762 	.write_begin		= ext4_da_write_begin,
3763 	.write_end		= ext4_da_write_end,
3764 	.set_page_dirty		= ext4_set_page_dirty,
3765 	.bmap			= ext4_bmap,
3766 	.invalidatepage		= ext4_da_invalidatepage,
3767 	.releasepage		= ext4_releasepage,
3768 	.direct_IO		= ext4_direct_IO,
3769 	.migratepage		= buffer_migrate_page,
3770 	.is_partially_uptodate  = block_is_partially_uptodate,
3771 	.error_remove_page	= generic_error_remove_page,
3772 };
3773 
3774 void ext4_set_aops(struct inode *inode)
3775 {
3776 	switch (ext4_inode_journal_mode(inode)) {
3777 	case EXT4_INODE_ORDERED_DATA_MODE:
3778 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3779 		break;
3780 	case EXT4_INODE_JOURNAL_DATA_MODE:
3781 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3782 		return;
3783 	default:
3784 		BUG();
3785 	}
3786 	if (test_opt(inode->i_sb, DELALLOC))
3787 		inode->i_mapping->a_ops = &ext4_da_aops;
3788 	else
3789 		inode->i_mapping->a_ops = &ext4_aops;
3790 }
3791 
3792 static int __ext4_block_zero_page_range(handle_t *handle,
3793 		struct address_space *mapping, loff_t from, loff_t length)
3794 {
3795 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3796 	unsigned offset = from & (PAGE_SIZE-1);
3797 	unsigned blocksize, pos;
3798 	ext4_lblk_t iblock;
3799 	struct inode *inode = mapping->host;
3800 	struct buffer_head *bh;
3801 	struct page *page;
3802 	int err = 0;
3803 
3804 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3805 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3806 	if (!page)
3807 		return -ENOMEM;
3808 
3809 	blocksize = inode->i_sb->s_blocksize;
3810 
3811 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3812 
3813 	if (!page_has_buffers(page))
3814 		create_empty_buffers(page, blocksize, 0);
3815 
3816 	/* Find the buffer that contains "offset" */
3817 	bh = page_buffers(page);
3818 	pos = blocksize;
3819 	while (offset >= pos) {
3820 		bh = bh->b_this_page;
3821 		iblock++;
3822 		pos += blocksize;
3823 	}
3824 	if (buffer_freed(bh)) {
3825 		BUFFER_TRACE(bh, "freed: skip");
3826 		goto unlock;
3827 	}
3828 	if (!buffer_mapped(bh)) {
3829 		BUFFER_TRACE(bh, "unmapped");
3830 		ext4_get_block(inode, iblock, bh, 0);
3831 		/* unmapped? It's a hole - nothing to do */
3832 		if (!buffer_mapped(bh)) {
3833 			BUFFER_TRACE(bh, "still unmapped");
3834 			goto unlock;
3835 		}
3836 	}
3837 
3838 	/* Ok, it's mapped. Make sure it's up-to-date */
3839 	if (PageUptodate(page))
3840 		set_buffer_uptodate(bh);
3841 
3842 	if (!buffer_uptodate(bh)) {
3843 		err = -EIO;
3844 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3845 		wait_on_buffer(bh);
3846 		/* Uhhuh. Read error. Complain and punt. */
3847 		if (!buffer_uptodate(bh))
3848 			goto unlock;
3849 		if (S_ISREG(inode->i_mode) &&
3850 		    ext4_encrypted_inode(inode)) {
3851 			/* We expect the key to be set. */
3852 			BUG_ON(!fscrypt_has_encryption_key(inode));
3853 			BUG_ON(blocksize != PAGE_SIZE);
3854 			WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3855 						page, PAGE_SIZE, 0, page->index));
3856 		}
3857 	}
3858 	if (ext4_should_journal_data(inode)) {
3859 		BUFFER_TRACE(bh, "get write access");
3860 		err = ext4_journal_get_write_access(handle, bh);
3861 		if (err)
3862 			goto unlock;
3863 	}
3864 	zero_user(page, offset, length);
3865 	BUFFER_TRACE(bh, "zeroed end of block");
3866 
3867 	if (ext4_should_journal_data(inode)) {
3868 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3869 	} else {
3870 		err = 0;
3871 		mark_buffer_dirty(bh);
3872 		if (ext4_should_order_data(inode))
3873 			err = ext4_jbd2_inode_add_write(handle, inode);
3874 	}
3875 
3876 unlock:
3877 	unlock_page(page);
3878 	put_page(page);
3879 	return err;
3880 }
3881 
3882 /*
3883  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3884  * starting from file offset 'from'.  The range to be zero'd must
3885  * be contained with in one block.  If the specified range exceeds
3886  * the end of the block it will be shortened to end of the block
3887  * that cooresponds to 'from'
3888  */
3889 static int ext4_block_zero_page_range(handle_t *handle,
3890 		struct address_space *mapping, loff_t from, loff_t length)
3891 {
3892 	struct inode *inode = mapping->host;
3893 	unsigned offset = from & (PAGE_SIZE-1);
3894 	unsigned blocksize = inode->i_sb->s_blocksize;
3895 	unsigned max = blocksize - (offset & (blocksize - 1));
3896 
3897 	/*
3898 	 * correct length if it does not fall between
3899 	 * 'from' and the end of the block
3900 	 */
3901 	if (length > max || length < 0)
3902 		length = max;
3903 
3904 	if (IS_DAX(inode)) {
3905 		return iomap_zero_range(inode, from, length, NULL,
3906 					&ext4_iomap_ops);
3907 	}
3908 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3909 }
3910 
3911 /*
3912  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3913  * up to the end of the block which corresponds to `from'.
3914  * This required during truncate. We need to physically zero the tail end
3915  * of that block so it doesn't yield old data if the file is later grown.
3916  */
3917 static int ext4_block_truncate_page(handle_t *handle,
3918 		struct address_space *mapping, loff_t from)
3919 {
3920 	unsigned offset = from & (PAGE_SIZE-1);
3921 	unsigned length;
3922 	unsigned blocksize;
3923 	struct inode *inode = mapping->host;
3924 
3925 	blocksize = inode->i_sb->s_blocksize;
3926 	length = blocksize - (offset & (blocksize - 1));
3927 
3928 	return ext4_block_zero_page_range(handle, mapping, from, length);
3929 }
3930 
3931 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3932 			     loff_t lstart, loff_t length)
3933 {
3934 	struct super_block *sb = inode->i_sb;
3935 	struct address_space *mapping = inode->i_mapping;
3936 	unsigned partial_start, partial_end;
3937 	ext4_fsblk_t start, end;
3938 	loff_t byte_end = (lstart + length - 1);
3939 	int err = 0;
3940 
3941 	partial_start = lstart & (sb->s_blocksize - 1);
3942 	partial_end = byte_end & (sb->s_blocksize - 1);
3943 
3944 	start = lstart >> sb->s_blocksize_bits;
3945 	end = byte_end >> sb->s_blocksize_bits;
3946 
3947 	/* Handle partial zero within the single block */
3948 	if (start == end &&
3949 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3950 		err = ext4_block_zero_page_range(handle, mapping,
3951 						 lstart, length);
3952 		return err;
3953 	}
3954 	/* Handle partial zero out on the start of the range */
3955 	if (partial_start) {
3956 		err = ext4_block_zero_page_range(handle, mapping,
3957 						 lstart, sb->s_blocksize);
3958 		if (err)
3959 			return err;
3960 	}
3961 	/* Handle partial zero out on the end of the range */
3962 	if (partial_end != sb->s_blocksize - 1)
3963 		err = ext4_block_zero_page_range(handle, mapping,
3964 						 byte_end - partial_end,
3965 						 partial_end + 1);
3966 	return err;
3967 }
3968 
3969 int ext4_can_truncate(struct inode *inode)
3970 {
3971 	if (S_ISREG(inode->i_mode))
3972 		return 1;
3973 	if (S_ISDIR(inode->i_mode))
3974 		return 1;
3975 	if (S_ISLNK(inode->i_mode))
3976 		return !ext4_inode_is_fast_symlink(inode);
3977 	return 0;
3978 }
3979 
3980 /*
3981  * We have to make sure i_disksize gets properly updated before we truncate
3982  * page cache due to hole punching or zero range. Otherwise i_disksize update
3983  * can get lost as it may have been postponed to submission of writeback but
3984  * that will never happen after we truncate page cache.
3985  */
3986 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3987 				      loff_t len)
3988 {
3989 	handle_t *handle;
3990 	loff_t size = i_size_read(inode);
3991 
3992 	WARN_ON(!inode_is_locked(inode));
3993 	if (offset > size || offset + len < size)
3994 		return 0;
3995 
3996 	if (EXT4_I(inode)->i_disksize >= size)
3997 		return 0;
3998 
3999 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4000 	if (IS_ERR(handle))
4001 		return PTR_ERR(handle);
4002 	ext4_update_i_disksize(inode, size);
4003 	ext4_mark_inode_dirty(handle, inode);
4004 	ext4_journal_stop(handle);
4005 
4006 	return 0;
4007 }
4008 
4009 /*
4010  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4011  * associated with the given offset and length
4012  *
4013  * @inode:  File inode
4014  * @offset: The offset where the hole will begin
4015  * @len:    The length of the hole
4016  *
4017  * Returns: 0 on success or negative on failure
4018  */
4019 
4020 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4021 {
4022 	struct super_block *sb = inode->i_sb;
4023 	ext4_lblk_t first_block, stop_block;
4024 	struct address_space *mapping = inode->i_mapping;
4025 	loff_t first_block_offset, last_block_offset;
4026 	handle_t *handle;
4027 	unsigned int credits;
4028 	int ret = 0;
4029 
4030 	if (!S_ISREG(inode->i_mode))
4031 		return -EOPNOTSUPP;
4032 
4033 	trace_ext4_punch_hole(inode, offset, length, 0);
4034 
4035 	/*
4036 	 * Write out all dirty pages to avoid race conditions
4037 	 * Then release them.
4038 	 */
4039 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4040 		ret = filemap_write_and_wait_range(mapping, offset,
4041 						   offset + length - 1);
4042 		if (ret)
4043 			return ret;
4044 	}
4045 
4046 	inode_lock(inode);
4047 
4048 	/* No need to punch hole beyond i_size */
4049 	if (offset >= inode->i_size)
4050 		goto out_mutex;
4051 
4052 	/*
4053 	 * If the hole extends beyond i_size, set the hole
4054 	 * to end after the page that contains i_size
4055 	 */
4056 	if (offset + length > inode->i_size) {
4057 		length = inode->i_size +
4058 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4059 		   offset;
4060 	}
4061 
4062 	if (offset & (sb->s_blocksize - 1) ||
4063 	    (offset + length) & (sb->s_blocksize - 1)) {
4064 		/*
4065 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4066 		 * partial block
4067 		 */
4068 		ret = ext4_inode_attach_jinode(inode);
4069 		if (ret < 0)
4070 			goto out_mutex;
4071 
4072 	}
4073 
4074 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4075 	ext4_inode_block_unlocked_dio(inode);
4076 	inode_dio_wait(inode);
4077 
4078 	/*
4079 	 * Prevent page faults from reinstantiating pages we have released from
4080 	 * page cache.
4081 	 */
4082 	down_write(&EXT4_I(inode)->i_mmap_sem);
4083 	first_block_offset = round_up(offset, sb->s_blocksize);
4084 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4085 
4086 	/* Now release the pages and zero block aligned part of pages*/
4087 	if (last_block_offset > first_block_offset) {
4088 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4089 		if (ret)
4090 			goto out_dio;
4091 		truncate_pagecache_range(inode, first_block_offset,
4092 					 last_block_offset);
4093 	}
4094 
4095 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4096 		credits = ext4_writepage_trans_blocks(inode);
4097 	else
4098 		credits = ext4_blocks_for_truncate(inode);
4099 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4100 	if (IS_ERR(handle)) {
4101 		ret = PTR_ERR(handle);
4102 		ext4_std_error(sb, ret);
4103 		goto out_dio;
4104 	}
4105 
4106 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4107 				       length);
4108 	if (ret)
4109 		goto out_stop;
4110 
4111 	first_block = (offset + sb->s_blocksize - 1) >>
4112 		EXT4_BLOCK_SIZE_BITS(sb);
4113 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4114 
4115 	/* If there are no blocks to remove, return now */
4116 	if (first_block >= stop_block)
4117 		goto out_stop;
4118 
4119 	down_write(&EXT4_I(inode)->i_data_sem);
4120 	ext4_discard_preallocations(inode);
4121 
4122 	ret = ext4_es_remove_extent(inode, first_block,
4123 				    stop_block - first_block);
4124 	if (ret) {
4125 		up_write(&EXT4_I(inode)->i_data_sem);
4126 		goto out_stop;
4127 	}
4128 
4129 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4130 		ret = ext4_ext_remove_space(inode, first_block,
4131 					    stop_block - 1);
4132 	else
4133 		ret = ext4_ind_remove_space(handle, inode, first_block,
4134 					    stop_block);
4135 
4136 	up_write(&EXT4_I(inode)->i_data_sem);
4137 	if (IS_SYNC(inode))
4138 		ext4_handle_sync(handle);
4139 
4140 	inode->i_mtime = inode->i_ctime = current_time(inode);
4141 	ext4_mark_inode_dirty(handle, inode);
4142 out_stop:
4143 	ext4_journal_stop(handle);
4144 out_dio:
4145 	up_write(&EXT4_I(inode)->i_mmap_sem);
4146 	ext4_inode_resume_unlocked_dio(inode);
4147 out_mutex:
4148 	inode_unlock(inode);
4149 	return ret;
4150 }
4151 
4152 int ext4_inode_attach_jinode(struct inode *inode)
4153 {
4154 	struct ext4_inode_info *ei = EXT4_I(inode);
4155 	struct jbd2_inode *jinode;
4156 
4157 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4158 		return 0;
4159 
4160 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4161 	spin_lock(&inode->i_lock);
4162 	if (!ei->jinode) {
4163 		if (!jinode) {
4164 			spin_unlock(&inode->i_lock);
4165 			return -ENOMEM;
4166 		}
4167 		ei->jinode = jinode;
4168 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4169 		jinode = NULL;
4170 	}
4171 	spin_unlock(&inode->i_lock);
4172 	if (unlikely(jinode != NULL))
4173 		jbd2_free_inode(jinode);
4174 	return 0;
4175 }
4176 
4177 /*
4178  * ext4_truncate()
4179  *
4180  * We block out ext4_get_block() block instantiations across the entire
4181  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4182  * simultaneously on behalf of the same inode.
4183  *
4184  * As we work through the truncate and commit bits of it to the journal there
4185  * is one core, guiding principle: the file's tree must always be consistent on
4186  * disk.  We must be able to restart the truncate after a crash.
4187  *
4188  * The file's tree may be transiently inconsistent in memory (although it
4189  * probably isn't), but whenever we close off and commit a journal transaction,
4190  * the contents of (the filesystem + the journal) must be consistent and
4191  * restartable.  It's pretty simple, really: bottom up, right to left (although
4192  * left-to-right works OK too).
4193  *
4194  * Note that at recovery time, journal replay occurs *before* the restart of
4195  * truncate against the orphan inode list.
4196  *
4197  * The committed inode has the new, desired i_size (which is the same as
4198  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4199  * that this inode's truncate did not complete and it will again call
4200  * ext4_truncate() to have another go.  So there will be instantiated blocks
4201  * to the right of the truncation point in a crashed ext4 filesystem.  But
4202  * that's fine - as long as they are linked from the inode, the post-crash
4203  * ext4_truncate() run will find them and release them.
4204  */
4205 int ext4_truncate(struct inode *inode)
4206 {
4207 	struct ext4_inode_info *ei = EXT4_I(inode);
4208 	unsigned int credits;
4209 	int err = 0;
4210 	handle_t *handle;
4211 	struct address_space *mapping = inode->i_mapping;
4212 
4213 	/*
4214 	 * There is a possibility that we're either freeing the inode
4215 	 * or it's a completely new inode. In those cases we might not
4216 	 * have i_mutex locked because it's not necessary.
4217 	 */
4218 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4219 		WARN_ON(!inode_is_locked(inode));
4220 	trace_ext4_truncate_enter(inode);
4221 
4222 	if (!ext4_can_truncate(inode))
4223 		return 0;
4224 
4225 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4226 
4227 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4228 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4229 
4230 	if (ext4_has_inline_data(inode)) {
4231 		int has_inline = 1;
4232 
4233 		ext4_inline_data_truncate(inode, &has_inline);
4234 		if (has_inline)
4235 			return 0;
4236 	}
4237 
4238 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4239 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4240 		if (ext4_inode_attach_jinode(inode) < 0)
4241 			return 0;
4242 	}
4243 
4244 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4245 		credits = ext4_writepage_trans_blocks(inode);
4246 	else
4247 		credits = ext4_blocks_for_truncate(inode);
4248 
4249 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4250 	if (IS_ERR(handle))
4251 		return PTR_ERR(handle);
4252 
4253 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4254 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4255 
4256 	/*
4257 	 * We add the inode to the orphan list, so that if this
4258 	 * truncate spans multiple transactions, and we crash, we will
4259 	 * resume the truncate when the filesystem recovers.  It also
4260 	 * marks the inode dirty, to catch the new size.
4261 	 *
4262 	 * Implication: the file must always be in a sane, consistent
4263 	 * truncatable state while each transaction commits.
4264 	 */
4265 	err = ext4_orphan_add(handle, inode);
4266 	if (err)
4267 		goto out_stop;
4268 
4269 	down_write(&EXT4_I(inode)->i_data_sem);
4270 
4271 	ext4_discard_preallocations(inode);
4272 
4273 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4274 		err = ext4_ext_truncate(handle, inode);
4275 	else
4276 		ext4_ind_truncate(handle, inode);
4277 
4278 	up_write(&ei->i_data_sem);
4279 	if (err)
4280 		goto out_stop;
4281 
4282 	if (IS_SYNC(inode))
4283 		ext4_handle_sync(handle);
4284 
4285 out_stop:
4286 	/*
4287 	 * If this was a simple ftruncate() and the file will remain alive,
4288 	 * then we need to clear up the orphan record which we created above.
4289 	 * However, if this was a real unlink then we were called by
4290 	 * ext4_evict_inode(), and we allow that function to clean up the
4291 	 * orphan info for us.
4292 	 */
4293 	if (inode->i_nlink)
4294 		ext4_orphan_del(handle, inode);
4295 
4296 	inode->i_mtime = inode->i_ctime = current_time(inode);
4297 	ext4_mark_inode_dirty(handle, inode);
4298 	ext4_journal_stop(handle);
4299 
4300 	trace_ext4_truncate_exit(inode);
4301 	return err;
4302 }
4303 
4304 /*
4305  * ext4_get_inode_loc returns with an extra refcount against the inode's
4306  * underlying buffer_head on success. If 'in_mem' is true, we have all
4307  * data in memory that is needed to recreate the on-disk version of this
4308  * inode.
4309  */
4310 static int __ext4_get_inode_loc(struct inode *inode,
4311 				struct ext4_iloc *iloc, int in_mem)
4312 {
4313 	struct ext4_group_desc	*gdp;
4314 	struct buffer_head	*bh;
4315 	struct super_block	*sb = inode->i_sb;
4316 	ext4_fsblk_t		block;
4317 	int			inodes_per_block, inode_offset;
4318 
4319 	iloc->bh = NULL;
4320 	if (!ext4_valid_inum(sb, inode->i_ino))
4321 		return -EFSCORRUPTED;
4322 
4323 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4324 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4325 	if (!gdp)
4326 		return -EIO;
4327 
4328 	/*
4329 	 * Figure out the offset within the block group inode table
4330 	 */
4331 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4332 	inode_offset = ((inode->i_ino - 1) %
4333 			EXT4_INODES_PER_GROUP(sb));
4334 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4335 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4336 
4337 	bh = sb_getblk(sb, block);
4338 	if (unlikely(!bh))
4339 		return -ENOMEM;
4340 	if (!buffer_uptodate(bh)) {
4341 		lock_buffer(bh);
4342 
4343 		/*
4344 		 * If the buffer has the write error flag, we have failed
4345 		 * to write out another inode in the same block.  In this
4346 		 * case, we don't have to read the block because we may
4347 		 * read the old inode data successfully.
4348 		 */
4349 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4350 			set_buffer_uptodate(bh);
4351 
4352 		if (buffer_uptodate(bh)) {
4353 			/* someone brought it uptodate while we waited */
4354 			unlock_buffer(bh);
4355 			goto has_buffer;
4356 		}
4357 
4358 		/*
4359 		 * If we have all information of the inode in memory and this
4360 		 * is the only valid inode in the block, we need not read the
4361 		 * block.
4362 		 */
4363 		if (in_mem) {
4364 			struct buffer_head *bitmap_bh;
4365 			int i, start;
4366 
4367 			start = inode_offset & ~(inodes_per_block - 1);
4368 
4369 			/* Is the inode bitmap in cache? */
4370 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4371 			if (unlikely(!bitmap_bh))
4372 				goto make_io;
4373 
4374 			/*
4375 			 * If the inode bitmap isn't in cache then the
4376 			 * optimisation may end up performing two reads instead
4377 			 * of one, so skip it.
4378 			 */
4379 			if (!buffer_uptodate(bitmap_bh)) {
4380 				brelse(bitmap_bh);
4381 				goto make_io;
4382 			}
4383 			for (i = start; i < start + inodes_per_block; i++) {
4384 				if (i == inode_offset)
4385 					continue;
4386 				if (ext4_test_bit(i, bitmap_bh->b_data))
4387 					break;
4388 			}
4389 			brelse(bitmap_bh);
4390 			if (i == start + inodes_per_block) {
4391 				/* all other inodes are free, so skip I/O */
4392 				memset(bh->b_data, 0, bh->b_size);
4393 				set_buffer_uptodate(bh);
4394 				unlock_buffer(bh);
4395 				goto has_buffer;
4396 			}
4397 		}
4398 
4399 make_io:
4400 		/*
4401 		 * If we need to do any I/O, try to pre-readahead extra
4402 		 * blocks from the inode table.
4403 		 */
4404 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4405 			ext4_fsblk_t b, end, table;
4406 			unsigned num;
4407 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4408 
4409 			table = ext4_inode_table(sb, gdp);
4410 			/* s_inode_readahead_blks is always a power of 2 */
4411 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4412 			if (table > b)
4413 				b = table;
4414 			end = b + ra_blks;
4415 			num = EXT4_INODES_PER_GROUP(sb);
4416 			if (ext4_has_group_desc_csum(sb))
4417 				num -= ext4_itable_unused_count(sb, gdp);
4418 			table += num / inodes_per_block;
4419 			if (end > table)
4420 				end = table;
4421 			while (b <= end)
4422 				sb_breadahead(sb, b++);
4423 		}
4424 
4425 		/*
4426 		 * There are other valid inodes in the buffer, this inode
4427 		 * has in-inode xattrs, or we don't have this inode in memory.
4428 		 * Read the block from disk.
4429 		 */
4430 		trace_ext4_load_inode(inode);
4431 		get_bh(bh);
4432 		bh->b_end_io = end_buffer_read_sync;
4433 		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4434 		wait_on_buffer(bh);
4435 		if (!buffer_uptodate(bh)) {
4436 			EXT4_ERROR_INODE_BLOCK(inode, block,
4437 					       "unable to read itable block");
4438 			brelse(bh);
4439 			return -EIO;
4440 		}
4441 	}
4442 has_buffer:
4443 	iloc->bh = bh;
4444 	return 0;
4445 }
4446 
4447 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4448 {
4449 	/* We have all inode data except xattrs in memory here. */
4450 	return __ext4_get_inode_loc(inode, iloc,
4451 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4452 }
4453 
4454 void ext4_set_inode_flags(struct inode *inode)
4455 {
4456 	unsigned int flags = EXT4_I(inode)->i_flags;
4457 	unsigned int new_fl = 0;
4458 
4459 	if (flags & EXT4_SYNC_FL)
4460 		new_fl |= S_SYNC;
4461 	if (flags & EXT4_APPEND_FL)
4462 		new_fl |= S_APPEND;
4463 	if (flags & EXT4_IMMUTABLE_FL)
4464 		new_fl |= S_IMMUTABLE;
4465 	if (flags & EXT4_NOATIME_FL)
4466 		new_fl |= S_NOATIME;
4467 	if (flags & EXT4_DIRSYNC_FL)
4468 		new_fl |= S_DIRSYNC;
4469 	if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4470 	    !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4471 	    !ext4_encrypted_inode(inode))
4472 		new_fl |= S_DAX;
4473 	inode_set_flags(inode, new_fl,
4474 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4475 }
4476 
4477 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4478 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4479 {
4480 	unsigned int vfs_fl;
4481 	unsigned long old_fl, new_fl;
4482 
4483 	do {
4484 		vfs_fl = ei->vfs_inode.i_flags;
4485 		old_fl = ei->i_flags;
4486 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4487 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4488 				EXT4_DIRSYNC_FL);
4489 		if (vfs_fl & S_SYNC)
4490 			new_fl |= EXT4_SYNC_FL;
4491 		if (vfs_fl & S_APPEND)
4492 			new_fl |= EXT4_APPEND_FL;
4493 		if (vfs_fl & S_IMMUTABLE)
4494 			new_fl |= EXT4_IMMUTABLE_FL;
4495 		if (vfs_fl & S_NOATIME)
4496 			new_fl |= EXT4_NOATIME_FL;
4497 		if (vfs_fl & S_DIRSYNC)
4498 			new_fl |= EXT4_DIRSYNC_FL;
4499 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4500 }
4501 
4502 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4503 				  struct ext4_inode_info *ei)
4504 {
4505 	blkcnt_t i_blocks ;
4506 	struct inode *inode = &(ei->vfs_inode);
4507 	struct super_block *sb = inode->i_sb;
4508 
4509 	if (ext4_has_feature_huge_file(sb)) {
4510 		/* we are using combined 48 bit field */
4511 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4512 					le32_to_cpu(raw_inode->i_blocks_lo);
4513 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4514 			/* i_blocks represent file system block size */
4515 			return i_blocks  << (inode->i_blkbits - 9);
4516 		} else {
4517 			return i_blocks;
4518 		}
4519 	} else {
4520 		return le32_to_cpu(raw_inode->i_blocks_lo);
4521 	}
4522 }
4523 
4524 static inline void ext4_iget_extra_inode(struct inode *inode,
4525 					 struct ext4_inode *raw_inode,
4526 					 struct ext4_inode_info *ei)
4527 {
4528 	__le32 *magic = (void *)raw_inode +
4529 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4530 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4531 	    EXT4_INODE_SIZE(inode->i_sb) &&
4532 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4533 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4534 		ext4_find_inline_data_nolock(inode);
4535 	} else
4536 		EXT4_I(inode)->i_inline_off = 0;
4537 }
4538 
4539 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4540 {
4541 	if (!ext4_has_feature_project(inode->i_sb))
4542 		return -EOPNOTSUPP;
4543 	*projid = EXT4_I(inode)->i_projid;
4544 	return 0;
4545 }
4546 
4547 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4548 {
4549 	struct ext4_iloc iloc;
4550 	struct ext4_inode *raw_inode;
4551 	struct ext4_inode_info *ei;
4552 	struct inode *inode;
4553 	journal_t *journal = EXT4_SB(sb)->s_journal;
4554 	long ret;
4555 	loff_t size;
4556 	int block;
4557 	uid_t i_uid;
4558 	gid_t i_gid;
4559 	projid_t i_projid;
4560 
4561 	inode = iget_locked(sb, ino);
4562 	if (!inode)
4563 		return ERR_PTR(-ENOMEM);
4564 	if (!(inode->i_state & I_NEW))
4565 		return inode;
4566 
4567 	ei = EXT4_I(inode);
4568 	iloc.bh = NULL;
4569 
4570 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4571 	if (ret < 0)
4572 		goto bad_inode;
4573 	raw_inode = ext4_raw_inode(&iloc);
4574 
4575 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4576 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4577 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4578 			EXT4_INODE_SIZE(inode->i_sb) ||
4579 		    (ei->i_extra_isize & 3)) {
4580 			EXT4_ERROR_INODE(inode,
4581 					 "bad extra_isize %u (inode size %u)",
4582 					 ei->i_extra_isize,
4583 					 EXT4_INODE_SIZE(inode->i_sb));
4584 			ret = -EFSCORRUPTED;
4585 			goto bad_inode;
4586 		}
4587 	} else
4588 		ei->i_extra_isize = 0;
4589 
4590 	/* Precompute checksum seed for inode metadata */
4591 	if (ext4_has_metadata_csum(sb)) {
4592 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4593 		__u32 csum;
4594 		__le32 inum = cpu_to_le32(inode->i_ino);
4595 		__le32 gen = raw_inode->i_generation;
4596 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4597 				   sizeof(inum));
4598 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4599 					      sizeof(gen));
4600 	}
4601 
4602 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4603 		EXT4_ERROR_INODE(inode, "checksum invalid");
4604 		ret = -EFSBADCRC;
4605 		goto bad_inode;
4606 	}
4607 
4608 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4609 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4610 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4611 	if (ext4_has_feature_project(sb) &&
4612 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4613 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4614 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4615 	else
4616 		i_projid = EXT4_DEF_PROJID;
4617 
4618 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4619 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4620 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4621 	}
4622 	i_uid_write(inode, i_uid);
4623 	i_gid_write(inode, i_gid);
4624 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4625 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4626 
4627 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4628 	ei->i_inline_off = 0;
4629 	ei->i_dir_start_lookup = 0;
4630 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4631 	/* We now have enough fields to check if the inode was active or not.
4632 	 * This is needed because nfsd might try to access dead inodes
4633 	 * the test is that same one that e2fsck uses
4634 	 * NeilBrown 1999oct15
4635 	 */
4636 	if (inode->i_nlink == 0) {
4637 		if ((inode->i_mode == 0 ||
4638 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4639 		    ino != EXT4_BOOT_LOADER_INO) {
4640 			/* this inode is deleted */
4641 			ret = -ESTALE;
4642 			goto bad_inode;
4643 		}
4644 		/* The only unlinked inodes we let through here have
4645 		 * valid i_mode and are being read by the orphan
4646 		 * recovery code: that's fine, we're about to complete
4647 		 * the process of deleting those.
4648 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4649 		 * not initialized on a new filesystem. */
4650 	}
4651 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4652 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4653 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4654 	if (ext4_has_feature_64bit(sb))
4655 		ei->i_file_acl |=
4656 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4657 	inode->i_size = ext4_isize(raw_inode);
4658 	if ((size = i_size_read(inode)) < 0) {
4659 		EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4660 		ret = -EFSCORRUPTED;
4661 		goto bad_inode;
4662 	}
4663 	ei->i_disksize = inode->i_size;
4664 #ifdef CONFIG_QUOTA
4665 	ei->i_reserved_quota = 0;
4666 #endif
4667 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4668 	ei->i_block_group = iloc.block_group;
4669 	ei->i_last_alloc_group = ~0;
4670 	/*
4671 	 * NOTE! The in-memory inode i_data array is in little-endian order
4672 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4673 	 */
4674 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4675 		ei->i_data[block] = raw_inode->i_block[block];
4676 	INIT_LIST_HEAD(&ei->i_orphan);
4677 
4678 	/*
4679 	 * Set transaction id's of transactions that have to be committed
4680 	 * to finish f[data]sync. We set them to currently running transaction
4681 	 * as we cannot be sure that the inode or some of its metadata isn't
4682 	 * part of the transaction - the inode could have been reclaimed and
4683 	 * now it is reread from disk.
4684 	 */
4685 	if (journal) {
4686 		transaction_t *transaction;
4687 		tid_t tid;
4688 
4689 		read_lock(&journal->j_state_lock);
4690 		if (journal->j_running_transaction)
4691 			transaction = journal->j_running_transaction;
4692 		else
4693 			transaction = journal->j_committing_transaction;
4694 		if (transaction)
4695 			tid = transaction->t_tid;
4696 		else
4697 			tid = journal->j_commit_sequence;
4698 		read_unlock(&journal->j_state_lock);
4699 		ei->i_sync_tid = tid;
4700 		ei->i_datasync_tid = tid;
4701 	}
4702 
4703 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4704 		if (ei->i_extra_isize == 0) {
4705 			/* The extra space is currently unused. Use it. */
4706 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4707 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4708 					    EXT4_GOOD_OLD_INODE_SIZE;
4709 		} else {
4710 			ext4_iget_extra_inode(inode, raw_inode, ei);
4711 		}
4712 	}
4713 
4714 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4715 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4716 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4717 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4718 
4719 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4720 		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4721 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4722 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4723 				inode->i_version |=
4724 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4725 		}
4726 	}
4727 
4728 	ret = 0;
4729 	if (ei->i_file_acl &&
4730 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4731 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4732 				 ei->i_file_acl);
4733 		ret = -EFSCORRUPTED;
4734 		goto bad_inode;
4735 	} else if (!ext4_has_inline_data(inode)) {
4736 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4737 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4738 			    (S_ISLNK(inode->i_mode) &&
4739 			     !ext4_inode_is_fast_symlink(inode))))
4740 				/* Validate extent which is part of inode */
4741 				ret = ext4_ext_check_inode(inode);
4742 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4743 			   (S_ISLNK(inode->i_mode) &&
4744 			    !ext4_inode_is_fast_symlink(inode))) {
4745 			/* Validate block references which are part of inode */
4746 			ret = ext4_ind_check_inode(inode);
4747 		}
4748 	}
4749 	if (ret)
4750 		goto bad_inode;
4751 
4752 	if (S_ISREG(inode->i_mode)) {
4753 		inode->i_op = &ext4_file_inode_operations;
4754 		inode->i_fop = &ext4_file_operations;
4755 		ext4_set_aops(inode);
4756 	} else if (S_ISDIR(inode->i_mode)) {
4757 		inode->i_op = &ext4_dir_inode_operations;
4758 		inode->i_fop = &ext4_dir_operations;
4759 	} else if (S_ISLNK(inode->i_mode)) {
4760 		if (ext4_encrypted_inode(inode)) {
4761 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4762 			ext4_set_aops(inode);
4763 		} else if (ext4_inode_is_fast_symlink(inode)) {
4764 			inode->i_link = (char *)ei->i_data;
4765 			inode->i_op = &ext4_fast_symlink_inode_operations;
4766 			nd_terminate_link(ei->i_data, inode->i_size,
4767 				sizeof(ei->i_data) - 1);
4768 		} else {
4769 			inode->i_op = &ext4_symlink_inode_operations;
4770 			ext4_set_aops(inode);
4771 		}
4772 		inode_nohighmem(inode);
4773 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4774 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4775 		inode->i_op = &ext4_special_inode_operations;
4776 		if (raw_inode->i_block[0])
4777 			init_special_inode(inode, inode->i_mode,
4778 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4779 		else
4780 			init_special_inode(inode, inode->i_mode,
4781 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4782 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4783 		make_bad_inode(inode);
4784 	} else {
4785 		ret = -EFSCORRUPTED;
4786 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4787 		goto bad_inode;
4788 	}
4789 	brelse(iloc.bh);
4790 	ext4_set_inode_flags(inode);
4791 	unlock_new_inode(inode);
4792 	return inode;
4793 
4794 bad_inode:
4795 	brelse(iloc.bh);
4796 	iget_failed(inode);
4797 	return ERR_PTR(ret);
4798 }
4799 
4800 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4801 {
4802 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4803 		return ERR_PTR(-EFSCORRUPTED);
4804 	return ext4_iget(sb, ino);
4805 }
4806 
4807 static int ext4_inode_blocks_set(handle_t *handle,
4808 				struct ext4_inode *raw_inode,
4809 				struct ext4_inode_info *ei)
4810 {
4811 	struct inode *inode = &(ei->vfs_inode);
4812 	u64 i_blocks = inode->i_blocks;
4813 	struct super_block *sb = inode->i_sb;
4814 
4815 	if (i_blocks <= ~0U) {
4816 		/*
4817 		 * i_blocks can be represented in a 32 bit variable
4818 		 * as multiple of 512 bytes
4819 		 */
4820 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4821 		raw_inode->i_blocks_high = 0;
4822 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4823 		return 0;
4824 	}
4825 	if (!ext4_has_feature_huge_file(sb))
4826 		return -EFBIG;
4827 
4828 	if (i_blocks <= 0xffffffffffffULL) {
4829 		/*
4830 		 * i_blocks can be represented in a 48 bit variable
4831 		 * as multiple of 512 bytes
4832 		 */
4833 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4834 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4835 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4836 	} else {
4837 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4838 		/* i_block is stored in file system block size */
4839 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4840 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4841 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4842 	}
4843 	return 0;
4844 }
4845 
4846 struct other_inode {
4847 	unsigned long		orig_ino;
4848 	struct ext4_inode	*raw_inode;
4849 };
4850 
4851 static int other_inode_match(struct inode * inode, unsigned long ino,
4852 			     void *data)
4853 {
4854 	struct other_inode *oi = (struct other_inode *) data;
4855 
4856 	if ((inode->i_ino != ino) ||
4857 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4858 			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4859 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4860 		return 0;
4861 	spin_lock(&inode->i_lock);
4862 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4863 				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4864 	    (inode->i_state & I_DIRTY_TIME)) {
4865 		struct ext4_inode_info	*ei = EXT4_I(inode);
4866 
4867 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4868 		spin_unlock(&inode->i_lock);
4869 
4870 		spin_lock(&ei->i_raw_lock);
4871 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4872 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4873 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4874 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4875 		spin_unlock(&ei->i_raw_lock);
4876 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4877 		return -1;
4878 	}
4879 	spin_unlock(&inode->i_lock);
4880 	return -1;
4881 }
4882 
4883 /*
4884  * Opportunistically update the other time fields for other inodes in
4885  * the same inode table block.
4886  */
4887 static void ext4_update_other_inodes_time(struct super_block *sb,
4888 					  unsigned long orig_ino, char *buf)
4889 {
4890 	struct other_inode oi;
4891 	unsigned long ino;
4892 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4893 	int inode_size = EXT4_INODE_SIZE(sb);
4894 
4895 	oi.orig_ino = orig_ino;
4896 	/*
4897 	 * Calculate the first inode in the inode table block.  Inode
4898 	 * numbers are one-based.  That is, the first inode in a block
4899 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4900 	 */
4901 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4902 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4903 		if (ino == orig_ino)
4904 			continue;
4905 		oi.raw_inode = (struct ext4_inode *) buf;
4906 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4907 	}
4908 }
4909 
4910 /*
4911  * Post the struct inode info into an on-disk inode location in the
4912  * buffer-cache.  This gobbles the caller's reference to the
4913  * buffer_head in the inode location struct.
4914  *
4915  * The caller must have write access to iloc->bh.
4916  */
4917 static int ext4_do_update_inode(handle_t *handle,
4918 				struct inode *inode,
4919 				struct ext4_iloc *iloc)
4920 {
4921 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4922 	struct ext4_inode_info *ei = EXT4_I(inode);
4923 	struct buffer_head *bh = iloc->bh;
4924 	struct super_block *sb = inode->i_sb;
4925 	int err = 0, rc, block;
4926 	int need_datasync = 0, set_large_file = 0;
4927 	uid_t i_uid;
4928 	gid_t i_gid;
4929 	projid_t i_projid;
4930 
4931 	spin_lock(&ei->i_raw_lock);
4932 
4933 	/* For fields not tracked in the in-memory inode,
4934 	 * initialise them to zero for new inodes. */
4935 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4936 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4937 
4938 	ext4_get_inode_flags(ei);
4939 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4940 	i_uid = i_uid_read(inode);
4941 	i_gid = i_gid_read(inode);
4942 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4943 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4944 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4945 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4946 /*
4947  * Fix up interoperability with old kernels. Otherwise, old inodes get
4948  * re-used with the upper 16 bits of the uid/gid intact
4949  */
4950 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4951 			raw_inode->i_uid_high = 0;
4952 			raw_inode->i_gid_high = 0;
4953 		} else {
4954 			raw_inode->i_uid_high =
4955 				cpu_to_le16(high_16_bits(i_uid));
4956 			raw_inode->i_gid_high =
4957 				cpu_to_le16(high_16_bits(i_gid));
4958 		}
4959 	} else {
4960 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4961 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4962 		raw_inode->i_uid_high = 0;
4963 		raw_inode->i_gid_high = 0;
4964 	}
4965 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4966 
4967 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4968 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4969 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4970 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4971 
4972 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
4973 	if (err) {
4974 		spin_unlock(&ei->i_raw_lock);
4975 		goto out_brelse;
4976 	}
4977 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4978 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4979 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4980 		raw_inode->i_file_acl_high =
4981 			cpu_to_le16(ei->i_file_acl >> 32);
4982 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4983 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4984 		ext4_isize_set(raw_inode, ei->i_disksize);
4985 		need_datasync = 1;
4986 	}
4987 	if (ei->i_disksize > 0x7fffffffULL) {
4988 		if (!ext4_has_feature_large_file(sb) ||
4989 				EXT4_SB(sb)->s_es->s_rev_level ==
4990 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
4991 			set_large_file = 1;
4992 	}
4993 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4994 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4995 		if (old_valid_dev(inode->i_rdev)) {
4996 			raw_inode->i_block[0] =
4997 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4998 			raw_inode->i_block[1] = 0;
4999 		} else {
5000 			raw_inode->i_block[0] = 0;
5001 			raw_inode->i_block[1] =
5002 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5003 			raw_inode->i_block[2] = 0;
5004 		}
5005 	} else if (!ext4_has_inline_data(inode)) {
5006 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5007 			raw_inode->i_block[block] = ei->i_data[block];
5008 	}
5009 
5010 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5011 		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5012 		if (ei->i_extra_isize) {
5013 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5014 				raw_inode->i_version_hi =
5015 					cpu_to_le32(inode->i_version >> 32);
5016 			raw_inode->i_extra_isize =
5017 				cpu_to_le16(ei->i_extra_isize);
5018 		}
5019 	}
5020 
5021 	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5022 	       i_projid != EXT4_DEF_PROJID);
5023 
5024 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5025 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5026 		raw_inode->i_projid = cpu_to_le32(i_projid);
5027 
5028 	ext4_inode_csum_set(inode, raw_inode, ei);
5029 	spin_unlock(&ei->i_raw_lock);
5030 	if (inode->i_sb->s_flags & MS_LAZYTIME)
5031 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5032 					      bh->b_data);
5033 
5034 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5035 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5036 	if (!err)
5037 		err = rc;
5038 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5039 	if (set_large_file) {
5040 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5041 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5042 		if (err)
5043 			goto out_brelse;
5044 		ext4_update_dynamic_rev(sb);
5045 		ext4_set_feature_large_file(sb);
5046 		ext4_handle_sync(handle);
5047 		err = ext4_handle_dirty_super(handle, sb);
5048 	}
5049 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5050 out_brelse:
5051 	brelse(bh);
5052 	ext4_std_error(inode->i_sb, err);
5053 	return err;
5054 }
5055 
5056 /*
5057  * ext4_write_inode()
5058  *
5059  * We are called from a few places:
5060  *
5061  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5062  *   Here, there will be no transaction running. We wait for any running
5063  *   transaction to commit.
5064  *
5065  * - Within flush work (sys_sync(), kupdate and such).
5066  *   We wait on commit, if told to.
5067  *
5068  * - Within iput_final() -> write_inode_now()
5069  *   We wait on commit, if told to.
5070  *
5071  * In all cases it is actually safe for us to return without doing anything,
5072  * because the inode has been copied into a raw inode buffer in
5073  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5074  * writeback.
5075  *
5076  * Note that we are absolutely dependent upon all inode dirtiers doing the
5077  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5078  * which we are interested.
5079  *
5080  * It would be a bug for them to not do this.  The code:
5081  *
5082  *	mark_inode_dirty(inode)
5083  *	stuff();
5084  *	inode->i_size = expr;
5085  *
5086  * is in error because write_inode() could occur while `stuff()' is running,
5087  * and the new i_size will be lost.  Plus the inode will no longer be on the
5088  * superblock's dirty inode list.
5089  */
5090 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5091 {
5092 	int err;
5093 
5094 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5095 		return 0;
5096 
5097 	if (EXT4_SB(inode->i_sb)->s_journal) {
5098 		if (ext4_journal_current_handle()) {
5099 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5100 			dump_stack();
5101 			return -EIO;
5102 		}
5103 
5104 		/*
5105 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5106 		 * ext4_sync_fs() will force the commit after everything is
5107 		 * written.
5108 		 */
5109 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5110 			return 0;
5111 
5112 		err = ext4_force_commit(inode->i_sb);
5113 	} else {
5114 		struct ext4_iloc iloc;
5115 
5116 		err = __ext4_get_inode_loc(inode, &iloc, 0);
5117 		if (err)
5118 			return err;
5119 		/*
5120 		 * sync(2) will flush the whole buffer cache. No need to do
5121 		 * it here separately for each inode.
5122 		 */
5123 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5124 			sync_dirty_buffer(iloc.bh);
5125 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5126 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5127 					 "IO error syncing inode");
5128 			err = -EIO;
5129 		}
5130 		brelse(iloc.bh);
5131 	}
5132 	return err;
5133 }
5134 
5135 /*
5136  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5137  * buffers that are attached to a page stradding i_size and are undergoing
5138  * commit. In that case we have to wait for commit to finish and try again.
5139  */
5140 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5141 {
5142 	struct page *page;
5143 	unsigned offset;
5144 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5145 	tid_t commit_tid = 0;
5146 	int ret;
5147 
5148 	offset = inode->i_size & (PAGE_SIZE - 1);
5149 	/*
5150 	 * All buffers in the last page remain valid? Then there's nothing to
5151 	 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5152 	 * blocksize case
5153 	 */
5154 	if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
5155 		return;
5156 	while (1) {
5157 		page = find_lock_page(inode->i_mapping,
5158 				      inode->i_size >> PAGE_SHIFT);
5159 		if (!page)
5160 			return;
5161 		ret = __ext4_journalled_invalidatepage(page, offset,
5162 						PAGE_SIZE - offset);
5163 		unlock_page(page);
5164 		put_page(page);
5165 		if (ret != -EBUSY)
5166 			return;
5167 		commit_tid = 0;
5168 		read_lock(&journal->j_state_lock);
5169 		if (journal->j_committing_transaction)
5170 			commit_tid = journal->j_committing_transaction->t_tid;
5171 		read_unlock(&journal->j_state_lock);
5172 		if (commit_tid)
5173 			jbd2_log_wait_commit(journal, commit_tid);
5174 	}
5175 }
5176 
5177 /*
5178  * ext4_setattr()
5179  *
5180  * Called from notify_change.
5181  *
5182  * We want to trap VFS attempts to truncate the file as soon as
5183  * possible.  In particular, we want to make sure that when the VFS
5184  * shrinks i_size, we put the inode on the orphan list and modify
5185  * i_disksize immediately, so that during the subsequent flushing of
5186  * dirty pages and freeing of disk blocks, we can guarantee that any
5187  * commit will leave the blocks being flushed in an unused state on
5188  * disk.  (On recovery, the inode will get truncated and the blocks will
5189  * be freed, so we have a strong guarantee that no future commit will
5190  * leave these blocks visible to the user.)
5191  *
5192  * Another thing we have to assure is that if we are in ordered mode
5193  * and inode is still attached to the committing transaction, we must
5194  * we start writeout of all the dirty pages which are being truncated.
5195  * This way we are sure that all the data written in the previous
5196  * transaction are already on disk (truncate waits for pages under
5197  * writeback).
5198  *
5199  * Called with inode->i_mutex down.
5200  */
5201 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5202 {
5203 	struct inode *inode = d_inode(dentry);
5204 	int error, rc = 0;
5205 	int orphan = 0;
5206 	const unsigned int ia_valid = attr->ia_valid;
5207 
5208 	error = setattr_prepare(dentry, attr);
5209 	if (error)
5210 		return error;
5211 
5212 	if (is_quota_modification(inode, attr)) {
5213 		error = dquot_initialize(inode);
5214 		if (error)
5215 			return error;
5216 	}
5217 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5218 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5219 		handle_t *handle;
5220 
5221 		/* (user+group)*(old+new) structure, inode write (sb,
5222 		 * inode block, ? - but truncate inode update has it) */
5223 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5224 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5225 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5226 		if (IS_ERR(handle)) {
5227 			error = PTR_ERR(handle);
5228 			goto err_out;
5229 		}
5230 		error = dquot_transfer(inode, attr);
5231 		if (error) {
5232 			ext4_journal_stop(handle);
5233 			return error;
5234 		}
5235 		/* Update corresponding info in inode so that everything is in
5236 		 * one transaction */
5237 		if (attr->ia_valid & ATTR_UID)
5238 			inode->i_uid = attr->ia_uid;
5239 		if (attr->ia_valid & ATTR_GID)
5240 			inode->i_gid = attr->ia_gid;
5241 		error = ext4_mark_inode_dirty(handle, inode);
5242 		ext4_journal_stop(handle);
5243 	}
5244 
5245 	if (attr->ia_valid & ATTR_SIZE) {
5246 		handle_t *handle;
5247 		loff_t oldsize = inode->i_size;
5248 		int shrink = (attr->ia_size <= inode->i_size);
5249 
5250 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5251 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5252 
5253 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5254 				return -EFBIG;
5255 		}
5256 		if (!S_ISREG(inode->i_mode))
5257 			return -EINVAL;
5258 
5259 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5260 			inode_inc_iversion(inode);
5261 
5262 		if (ext4_should_order_data(inode) &&
5263 		    (attr->ia_size < inode->i_size)) {
5264 			error = ext4_begin_ordered_truncate(inode,
5265 							    attr->ia_size);
5266 			if (error)
5267 				goto err_out;
5268 		}
5269 		if (attr->ia_size != inode->i_size) {
5270 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5271 			if (IS_ERR(handle)) {
5272 				error = PTR_ERR(handle);
5273 				goto err_out;
5274 			}
5275 			if (ext4_handle_valid(handle) && shrink) {
5276 				error = ext4_orphan_add(handle, inode);
5277 				orphan = 1;
5278 			}
5279 			/*
5280 			 * Update c/mtime on truncate up, ext4_truncate() will
5281 			 * update c/mtime in shrink case below
5282 			 */
5283 			if (!shrink) {
5284 				inode->i_mtime = current_time(inode);
5285 				inode->i_ctime = inode->i_mtime;
5286 			}
5287 			down_write(&EXT4_I(inode)->i_data_sem);
5288 			EXT4_I(inode)->i_disksize = attr->ia_size;
5289 			rc = ext4_mark_inode_dirty(handle, inode);
5290 			if (!error)
5291 				error = rc;
5292 			/*
5293 			 * We have to update i_size under i_data_sem together
5294 			 * with i_disksize to avoid races with writeback code
5295 			 * running ext4_wb_update_i_disksize().
5296 			 */
5297 			if (!error)
5298 				i_size_write(inode, attr->ia_size);
5299 			up_write(&EXT4_I(inode)->i_data_sem);
5300 			ext4_journal_stop(handle);
5301 			if (error) {
5302 				if (orphan)
5303 					ext4_orphan_del(NULL, inode);
5304 				goto err_out;
5305 			}
5306 		}
5307 		if (!shrink)
5308 			pagecache_isize_extended(inode, oldsize, inode->i_size);
5309 
5310 		/*
5311 		 * Blocks are going to be removed from the inode. Wait
5312 		 * for dio in flight.  Temporarily disable
5313 		 * dioread_nolock to prevent livelock.
5314 		 */
5315 		if (orphan) {
5316 			if (!ext4_should_journal_data(inode)) {
5317 				ext4_inode_block_unlocked_dio(inode);
5318 				inode_dio_wait(inode);
5319 				ext4_inode_resume_unlocked_dio(inode);
5320 			} else
5321 				ext4_wait_for_tail_page_commit(inode);
5322 		}
5323 		down_write(&EXT4_I(inode)->i_mmap_sem);
5324 		/*
5325 		 * Truncate pagecache after we've waited for commit
5326 		 * in data=journal mode to make pages freeable.
5327 		 */
5328 		truncate_pagecache(inode, inode->i_size);
5329 		if (shrink) {
5330 			rc = ext4_truncate(inode);
5331 			if (rc)
5332 				error = rc;
5333 		}
5334 		up_write(&EXT4_I(inode)->i_mmap_sem);
5335 	}
5336 
5337 	if (!error) {
5338 		setattr_copy(inode, attr);
5339 		mark_inode_dirty(inode);
5340 	}
5341 
5342 	/*
5343 	 * If the call to ext4_truncate failed to get a transaction handle at
5344 	 * all, we need to clean up the in-core orphan list manually.
5345 	 */
5346 	if (orphan && inode->i_nlink)
5347 		ext4_orphan_del(NULL, inode);
5348 
5349 	if (!error && (ia_valid & ATTR_MODE))
5350 		rc = posix_acl_chmod(inode, inode->i_mode);
5351 
5352 err_out:
5353 	ext4_std_error(inode->i_sb, error);
5354 	if (!error)
5355 		error = rc;
5356 	return error;
5357 }
5358 
5359 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5360 		 struct kstat *stat)
5361 {
5362 	struct inode *inode;
5363 	unsigned long long delalloc_blocks;
5364 
5365 	inode = d_inode(dentry);
5366 	generic_fillattr(inode, stat);
5367 
5368 	/*
5369 	 * If there is inline data in the inode, the inode will normally not
5370 	 * have data blocks allocated (it may have an external xattr block).
5371 	 * Report at least one sector for such files, so tools like tar, rsync,
5372 	 * others doen't incorrectly think the file is completely sparse.
5373 	 */
5374 	if (unlikely(ext4_has_inline_data(inode)))
5375 		stat->blocks += (stat->size + 511) >> 9;
5376 
5377 	/*
5378 	 * We can't update i_blocks if the block allocation is delayed
5379 	 * otherwise in the case of system crash before the real block
5380 	 * allocation is done, we will have i_blocks inconsistent with
5381 	 * on-disk file blocks.
5382 	 * We always keep i_blocks updated together with real
5383 	 * allocation. But to not confuse with user, stat
5384 	 * will return the blocks that include the delayed allocation
5385 	 * blocks for this file.
5386 	 */
5387 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5388 				   EXT4_I(inode)->i_reserved_data_blocks);
5389 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5390 	return 0;
5391 }
5392 
5393 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5394 				   int pextents)
5395 {
5396 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5397 		return ext4_ind_trans_blocks(inode, lblocks);
5398 	return ext4_ext_index_trans_blocks(inode, pextents);
5399 }
5400 
5401 /*
5402  * Account for index blocks, block groups bitmaps and block group
5403  * descriptor blocks if modify datablocks and index blocks
5404  * worse case, the indexs blocks spread over different block groups
5405  *
5406  * If datablocks are discontiguous, they are possible to spread over
5407  * different block groups too. If they are contiguous, with flexbg,
5408  * they could still across block group boundary.
5409  *
5410  * Also account for superblock, inode, quota and xattr blocks
5411  */
5412 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5413 				  int pextents)
5414 {
5415 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5416 	int gdpblocks;
5417 	int idxblocks;
5418 	int ret = 0;
5419 
5420 	/*
5421 	 * How many index blocks need to touch to map @lblocks logical blocks
5422 	 * to @pextents physical extents?
5423 	 */
5424 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5425 
5426 	ret = idxblocks;
5427 
5428 	/*
5429 	 * Now let's see how many group bitmaps and group descriptors need
5430 	 * to account
5431 	 */
5432 	groups = idxblocks + pextents;
5433 	gdpblocks = groups;
5434 	if (groups > ngroups)
5435 		groups = ngroups;
5436 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5437 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5438 
5439 	/* bitmaps and block group descriptor blocks */
5440 	ret += groups + gdpblocks;
5441 
5442 	/* Blocks for super block, inode, quota and xattr blocks */
5443 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5444 
5445 	return ret;
5446 }
5447 
5448 /*
5449  * Calculate the total number of credits to reserve to fit
5450  * the modification of a single pages into a single transaction,
5451  * which may include multiple chunks of block allocations.
5452  *
5453  * This could be called via ext4_write_begin()
5454  *
5455  * We need to consider the worse case, when
5456  * one new block per extent.
5457  */
5458 int ext4_writepage_trans_blocks(struct inode *inode)
5459 {
5460 	int bpp = ext4_journal_blocks_per_page(inode);
5461 	int ret;
5462 
5463 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5464 
5465 	/* Account for data blocks for journalled mode */
5466 	if (ext4_should_journal_data(inode))
5467 		ret += bpp;
5468 	return ret;
5469 }
5470 
5471 /*
5472  * Calculate the journal credits for a chunk of data modification.
5473  *
5474  * This is called from DIO, fallocate or whoever calling
5475  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5476  *
5477  * journal buffers for data blocks are not included here, as DIO
5478  * and fallocate do no need to journal data buffers.
5479  */
5480 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5481 {
5482 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5483 }
5484 
5485 /*
5486  * The caller must have previously called ext4_reserve_inode_write().
5487  * Give this, we know that the caller already has write access to iloc->bh.
5488  */
5489 int ext4_mark_iloc_dirty(handle_t *handle,
5490 			 struct inode *inode, struct ext4_iloc *iloc)
5491 {
5492 	int err = 0;
5493 
5494 	if (IS_I_VERSION(inode))
5495 		inode_inc_iversion(inode);
5496 
5497 	/* the do_update_inode consumes one bh->b_count */
5498 	get_bh(iloc->bh);
5499 
5500 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5501 	err = ext4_do_update_inode(handle, inode, iloc);
5502 	put_bh(iloc->bh);
5503 	return err;
5504 }
5505 
5506 /*
5507  * On success, We end up with an outstanding reference count against
5508  * iloc->bh.  This _must_ be cleaned up later.
5509  */
5510 
5511 int
5512 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5513 			 struct ext4_iloc *iloc)
5514 {
5515 	int err;
5516 
5517 	err = ext4_get_inode_loc(inode, iloc);
5518 	if (!err) {
5519 		BUFFER_TRACE(iloc->bh, "get_write_access");
5520 		err = ext4_journal_get_write_access(handle, iloc->bh);
5521 		if (err) {
5522 			brelse(iloc->bh);
5523 			iloc->bh = NULL;
5524 		}
5525 	}
5526 	ext4_std_error(inode->i_sb, err);
5527 	return err;
5528 }
5529 
5530 /*
5531  * Expand an inode by new_extra_isize bytes.
5532  * Returns 0 on success or negative error number on failure.
5533  */
5534 static int ext4_expand_extra_isize(struct inode *inode,
5535 				   unsigned int new_extra_isize,
5536 				   struct ext4_iloc iloc,
5537 				   handle_t *handle)
5538 {
5539 	struct ext4_inode *raw_inode;
5540 	struct ext4_xattr_ibody_header *header;
5541 
5542 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5543 		return 0;
5544 
5545 	raw_inode = ext4_raw_inode(&iloc);
5546 
5547 	header = IHDR(inode, raw_inode);
5548 
5549 	/* No extended attributes present */
5550 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5551 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5552 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5553 			new_extra_isize);
5554 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5555 		return 0;
5556 	}
5557 
5558 	/* try to expand with EAs present */
5559 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5560 					  raw_inode, handle);
5561 }
5562 
5563 /*
5564  * What we do here is to mark the in-core inode as clean with respect to inode
5565  * dirtiness (it may still be data-dirty).
5566  * This means that the in-core inode may be reaped by prune_icache
5567  * without having to perform any I/O.  This is a very good thing,
5568  * because *any* task may call prune_icache - even ones which
5569  * have a transaction open against a different journal.
5570  *
5571  * Is this cheating?  Not really.  Sure, we haven't written the
5572  * inode out, but prune_icache isn't a user-visible syncing function.
5573  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5574  * we start and wait on commits.
5575  */
5576 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5577 {
5578 	struct ext4_iloc iloc;
5579 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5580 	static unsigned int mnt_count;
5581 	int err, ret;
5582 
5583 	might_sleep();
5584 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5585 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5586 	if (err)
5587 		return err;
5588 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5589 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5590 		/*
5591 		 * In nojournal mode, we can immediately attempt to expand
5592 		 * the inode.  When journaled, we first need to obtain extra
5593 		 * buffer credits since we may write into the EA block
5594 		 * with this same handle. If journal_extend fails, then it will
5595 		 * only result in a minor loss of functionality for that inode.
5596 		 * If this is felt to be critical, then e2fsck should be run to
5597 		 * force a large enough s_min_extra_isize.
5598 		 */
5599 		if (!ext4_handle_valid(handle) ||
5600 		    jbd2_journal_extend(handle,
5601 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) {
5602 			ret = ext4_expand_extra_isize(inode,
5603 						      sbi->s_want_extra_isize,
5604 						      iloc, handle);
5605 			if (ret) {
5606 				if (mnt_count !=
5607 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5608 					ext4_warning(inode->i_sb,
5609 					"Unable to expand inode %lu. Delete"
5610 					" some EAs or run e2fsck.",
5611 					inode->i_ino);
5612 					mnt_count =
5613 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5614 				}
5615 			}
5616 		}
5617 	}
5618 	return ext4_mark_iloc_dirty(handle, inode, &iloc);
5619 }
5620 
5621 /*
5622  * ext4_dirty_inode() is called from __mark_inode_dirty()
5623  *
5624  * We're really interested in the case where a file is being extended.
5625  * i_size has been changed by generic_commit_write() and we thus need
5626  * to include the updated inode in the current transaction.
5627  *
5628  * Also, dquot_alloc_block() will always dirty the inode when blocks
5629  * are allocated to the file.
5630  *
5631  * If the inode is marked synchronous, we don't honour that here - doing
5632  * so would cause a commit on atime updates, which we don't bother doing.
5633  * We handle synchronous inodes at the highest possible level.
5634  *
5635  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5636  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5637  * to copy into the on-disk inode structure are the timestamp files.
5638  */
5639 void ext4_dirty_inode(struct inode *inode, int flags)
5640 {
5641 	handle_t *handle;
5642 
5643 	if (flags == I_DIRTY_TIME)
5644 		return;
5645 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5646 	if (IS_ERR(handle))
5647 		goto out;
5648 
5649 	ext4_mark_inode_dirty(handle, inode);
5650 
5651 	ext4_journal_stop(handle);
5652 out:
5653 	return;
5654 }
5655 
5656 #if 0
5657 /*
5658  * Bind an inode's backing buffer_head into this transaction, to prevent
5659  * it from being flushed to disk early.  Unlike
5660  * ext4_reserve_inode_write, this leaves behind no bh reference and
5661  * returns no iloc structure, so the caller needs to repeat the iloc
5662  * lookup to mark the inode dirty later.
5663  */
5664 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5665 {
5666 	struct ext4_iloc iloc;
5667 
5668 	int err = 0;
5669 	if (handle) {
5670 		err = ext4_get_inode_loc(inode, &iloc);
5671 		if (!err) {
5672 			BUFFER_TRACE(iloc.bh, "get_write_access");
5673 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5674 			if (!err)
5675 				err = ext4_handle_dirty_metadata(handle,
5676 								 NULL,
5677 								 iloc.bh);
5678 			brelse(iloc.bh);
5679 		}
5680 	}
5681 	ext4_std_error(inode->i_sb, err);
5682 	return err;
5683 }
5684 #endif
5685 
5686 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5687 {
5688 	journal_t *journal;
5689 	handle_t *handle;
5690 	int err;
5691 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5692 
5693 	/*
5694 	 * We have to be very careful here: changing a data block's
5695 	 * journaling status dynamically is dangerous.  If we write a
5696 	 * data block to the journal, change the status and then delete
5697 	 * that block, we risk forgetting to revoke the old log record
5698 	 * from the journal and so a subsequent replay can corrupt data.
5699 	 * So, first we make sure that the journal is empty and that
5700 	 * nobody is changing anything.
5701 	 */
5702 
5703 	journal = EXT4_JOURNAL(inode);
5704 	if (!journal)
5705 		return 0;
5706 	if (is_journal_aborted(journal))
5707 		return -EROFS;
5708 
5709 	/* Wait for all existing dio workers */
5710 	ext4_inode_block_unlocked_dio(inode);
5711 	inode_dio_wait(inode);
5712 
5713 	/*
5714 	 * Before flushing the journal and switching inode's aops, we have
5715 	 * to flush all dirty data the inode has. There can be outstanding
5716 	 * delayed allocations, there can be unwritten extents created by
5717 	 * fallocate or buffered writes in dioread_nolock mode covered by
5718 	 * dirty data which can be converted only after flushing the dirty
5719 	 * data (and journalled aops don't know how to handle these cases).
5720 	 */
5721 	if (val) {
5722 		down_write(&EXT4_I(inode)->i_mmap_sem);
5723 		err = filemap_write_and_wait(inode->i_mapping);
5724 		if (err < 0) {
5725 			up_write(&EXT4_I(inode)->i_mmap_sem);
5726 			ext4_inode_resume_unlocked_dio(inode);
5727 			return err;
5728 		}
5729 	}
5730 
5731 	percpu_down_write(&sbi->s_journal_flag_rwsem);
5732 	jbd2_journal_lock_updates(journal);
5733 
5734 	/*
5735 	 * OK, there are no updates running now, and all cached data is
5736 	 * synced to disk.  We are now in a completely consistent state
5737 	 * which doesn't have anything in the journal, and we know that
5738 	 * no filesystem updates are running, so it is safe to modify
5739 	 * the inode's in-core data-journaling state flag now.
5740 	 */
5741 
5742 	if (val)
5743 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5744 	else {
5745 		err = jbd2_journal_flush(journal);
5746 		if (err < 0) {
5747 			jbd2_journal_unlock_updates(journal);
5748 			percpu_up_write(&sbi->s_journal_flag_rwsem);
5749 			ext4_inode_resume_unlocked_dio(inode);
5750 			return err;
5751 		}
5752 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5753 	}
5754 	ext4_set_aops(inode);
5755 	/*
5756 	 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5757 	 * E.g. S_DAX may get cleared / set.
5758 	 */
5759 	ext4_set_inode_flags(inode);
5760 
5761 	jbd2_journal_unlock_updates(journal);
5762 	percpu_up_write(&sbi->s_journal_flag_rwsem);
5763 
5764 	if (val)
5765 		up_write(&EXT4_I(inode)->i_mmap_sem);
5766 	ext4_inode_resume_unlocked_dio(inode);
5767 
5768 	/* Finally we can mark the inode as dirty. */
5769 
5770 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5771 	if (IS_ERR(handle))
5772 		return PTR_ERR(handle);
5773 
5774 	err = ext4_mark_inode_dirty(handle, inode);
5775 	ext4_handle_sync(handle);
5776 	ext4_journal_stop(handle);
5777 	ext4_std_error(inode->i_sb, err);
5778 
5779 	return err;
5780 }
5781 
5782 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5783 {
5784 	return !buffer_mapped(bh);
5785 }
5786 
5787 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5788 {
5789 	struct page *page = vmf->page;
5790 	loff_t size;
5791 	unsigned long len;
5792 	int ret;
5793 	struct file *file = vma->vm_file;
5794 	struct inode *inode = file_inode(file);
5795 	struct address_space *mapping = inode->i_mapping;
5796 	handle_t *handle;
5797 	get_block_t *get_block;
5798 	int retries = 0;
5799 
5800 	sb_start_pagefault(inode->i_sb);
5801 	file_update_time(vma->vm_file);
5802 
5803 	down_read(&EXT4_I(inode)->i_mmap_sem);
5804 	/* Delalloc case is easy... */
5805 	if (test_opt(inode->i_sb, DELALLOC) &&
5806 	    !ext4_should_journal_data(inode) &&
5807 	    !ext4_nonda_switch(inode->i_sb)) {
5808 		do {
5809 			ret = block_page_mkwrite(vma, vmf,
5810 						   ext4_da_get_block_prep);
5811 		} while (ret == -ENOSPC &&
5812 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5813 		goto out_ret;
5814 	}
5815 
5816 	lock_page(page);
5817 	size = i_size_read(inode);
5818 	/* Page got truncated from under us? */
5819 	if (page->mapping != mapping || page_offset(page) > size) {
5820 		unlock_page(page);
5821 		ret = VM_FAULT_NOPAGE;
5822 		goto out;
5823 	}
5824 
5825 	if (page->index == size >> PAGE_SHIFT)
5826 		len = size & ~PAGE_MASK;
5827 	else
5828 		len = PAGE_SIZE;
5829 	/*
5830 	 * Return if we have all the buffers mapped. This avoids the need to do
5831 	 * journal_start/journal_stop which can block and take a long time
5832 	 */
5833 	if (page_has_buffers(page)) {
5834 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5835 					    0, len, NULL,
5836 					    ext4_bh_unmapped)) {
5837 			/* Wait so that we don't change page under IO */
5838 			wait_for_stable_page(page);
5839 			ret = VM_FAULT_LOCKED;
5840 			goto out;
5841 		}
5842 	}
5843 	unlock_page(page);
5844 	/* OK, we need to fill the hole... */
5845 	if (ext4_should_dioread_nolock(inode))
5846 		get_block = ext4_get_block_unwritten;
5847 	else
5848 		get_block = ext4_get_block;
5849 retry_alloc:
5850 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5851 				    ext4_writepage_trans_blocks(inode));
5852 	if (IS_ERR(handle)) {
5853 		ret = VM_FAULT_SIGBUS;
5854 		goto out;
5855 	}
5856 	ret = block_page_mkwrite(vma, vmf, get_block);
5857 	if (!ret && ext4_should_journal_data(inode)) {
5858 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5859 			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
5860 			unlock_page(page);
5861 			ret = VM_FAULT_SIGBUS;
5862 			ext4_journal_stop(handle);
5863 			goto out;
5864 		}
5865 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5866 	}
5867 	ext4_journal_stop(handle);
5868 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5869 		goto retry_alloc;
5870 out_ret:
5871 	ret = block_page_mkwrite_return(ret);
5872 out:
5873 	up_read(&EXT4_I(inode)->i_mmap_sem);
5874 	sb_end_pagefault(inode->i_sb);
5875 	return ret;
5876 }
5877 
5878 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5879 {
5880 	struct inode *inode = file_inode(vma->vm_file);
5881 	int err;
5882 
5883 	down_read(&EXT4_I(inode)->i_mmap_sem);
5884 	err = filemap_fault(vma, vmf);
5885 	up_read(&EXT4_I(inode)->i_mmap_sem);
5886 
5887 	return err;
5888 }
5889 
5890 /*
5891  * Find the first extent at or after @lblk in an inode that is not a hole.
5892  * Search for @map_len blocks at most. The extent is returned in @result.
5893  *
5894  * The function returns 1 if we found an extent. The function returns 0 in
5895  * case there is no extent at or after @lblk and in that case also sets
5896  * @result->es_len to 0. In case of error, the error code is returned.
5897  */
5898 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5899 			 unsigned int map_len, struct extent_status *result)
5900 {
5901 	struct ext4_map_blocks map;
5902 	struct extent_status es = {};
5903 	int ret;
5904 
5905 	map.m_lblk = lblk;
5906 	map.m_len = map_len;
5907 
5908 	/*
5909 	 * For non-extent based files this loop may iterate several times since
5910 	 * we do not determine full hole size.
5911 	 */
5912 	while (map.m_len > 0) {
5913 		ret = ext4_map_blocks(NULL, inode, &map, 0);
5914 		if (ret < 0)
5915 			return ret;
5916 		/* There's extent covering m_lblk? Just return it. */
5917 		if (ret > 0) {
5918 			int status;
5919 
5920 			ext4_es_store_pblock(result, map.m_pblk);
5921 			result->es_lblk = map.m_lblk;
5922 			result->es_len = map.m_len;
5923 			if (map.m_flags & EXT4_MAP_UNWRITTEN)
5924 				status = EXTENT_STATUS_UNWRITTEN;
5925 			else
5926 				status = EXTENT_STATUS_WRITTEN;
5927 			ext4_es_store_status(result, status);
5928 			return 1;
5929 		}
5930 		ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5931 						  map.m_lblk + map.m_len - 1,
5932 						  &es);
5933 		/* Is delalloc data before next block in extent tree? */
5934 		if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5935 			ext4_lblk_t offset = 0;
5936 
5937 			if (es.es_lblk < lblk)
5938 				offset = lblk - es.es_lblk;
5939 			result->es_lblk = es.es_lblk + offset;
5940 			ext4_es_store_pblock(result,
5941 					     ext4_es_pblock(&es) + offset);
5942 			result->es_len = es.es_len - offset;
5943 			ext4_es_store_status(result, ext4_es_status(&es));
5944 
5945 			return 1;
5946 		}
5947 		/* There's a hole at m_lblk, advance us after it */
5948 		map.m_lblk += map.m_len;
5949 		map_len -= map.m_len;
5950 		map.m_len = map_len;
5951 		cond_resched();
5952 	}
5953 	result->es_len = 0;
5954 	return 0;
5955 }
5956