xref: /linux/fs/ext4/inode.c (revision 367b8112fe2ea5c39a7bb4d263dcdd9b612fae18)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
40 #include "xattr.h"
41 #include "acl.h"
42 #include "ext4_extents.h"
43 
44 #define MPAGE_DA_EXTENT_TAIL 0x01
45 
46 static inline int ext4_begin_ordered_truncate(struct inode *inode,
47 					      loff_t new_size)
48 {
49 	return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
50 						   new_size);
51 }
52 
53 static void ext4_invalidatepage(struct page *page, unsigned long offset);
54 
55 /*
56  * Test whether an inode is a fast symlink.
57  */
58 static int ext4_inode_is_fast_symlink(struct inode *inode)
59 {
60 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
61 		(inode->i_sb->s_blocksize >> 9) : 0;
62 
63 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
64 }
65 
66 /*
67  * The ext4 forget function must perform a revoke if we are freeing data
68  * which has been journaled.  Metadata (eg. indirect blocks) must be
69  * revoked in all cases.
70  *
71  * "bh" may be NULL: a metadata block may have been freed from memory
72  * but there may still be a record of it in the journal, and that record
73  * still needs to be revoked.
74  */
75 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
76 			struct buffer_head *bh, ext4_fsblk_t blocknr)
77 {
78 	int err;
79 
80 	might_sleep();
81 
82 	BUFFER_TRACE(bh, "enter");
83 
84 	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
85 		  "data mode %lx\n",
86 		  bh, is_metadata, inode->i_mode,
87 		  test_opt(inode->i_sb, DATA_FLAGS));
88 
89 	/* Never use the revoke function if we are doing full data
90 	 * journaling: there is no need to, and a V1 superblock won't
91 	 * support it.  Otherwise, only skip the revoke on un-journaled
92 	 * data blocks. */
93 
94 	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
95 	    (!is_metadata && !ext4_should_journal_data(inode))) {
96 		if (bh) {
97 			BUFFER_TRACE(bh, "call jbd2_journal_forget");
98 			return ext4_journal_forget(handle, bh);
99 		}
100 		return 0;
101 	}
102 
103 	/*
104 	 * data!=journal && (is_metadata || should_journal_data(inode))
105 	 */
106 	BUFFER_TRACE(bh, "call ext4_journal_revoke");
107 	err = ext4_journal_revoke(handle, blocknr, bh);
108 	if (err)
109 		ext4_abort(inode->i_sb, __func__,
110 			   "error %d when attempting revoke", err);
111 	BUFFER_TRACE(bh, "exit");
112 	return err;
113 }
114 
115 /*
116  * Work out how many blocks we need to proceed with the next chunk of a
117  * truncate transaction.
118  */
119 static unsigned long blocks_for_truncate(struct inode *inode)
120 {
121 	ext4_lblk_t needed;
122 
123 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
124 
125 	/* Give ourselves just enough room to cope with inodes in which
126 	 * i_blocks is corrupt: we've seen disk corruptions in the past
127 	 * which resulted in random data in an inode which looked enough
128 	 * like a regular file for ext4 to try to delete it.  Things
129 	 * will go a bit crazy if that happens, but at least we should
130 	 * try not to panic the whole kernel. */
131 	if (needed < 2)
132 		needed = 2;
133 
134 	/* But we need to bound the transaction so we don't overflow the
135 	 * journal. */
136 	if (needed > EXT4_MAX_TRANS_DATA)
137 		needed = EXT4_MAX_TRANS_DATA;
138 
139 	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
140 }
141 
142 /*
143  * Truncate transactions can be complex and absolutely huge.  So we need to
144  * be able to restart the transaction at a conventient checkpoint to make
145  * sure we don't overflow the journal.
146  *
147  * start_transaction gets us a new handle for a truncate transaction,
148  * and extend_transaction tries to extend the existing one a bit.  If
149  * extend fails, we need to propagate the failure up and restart the
150  * transaction in the top-level truncate loop. --sct
151  */
152 static handle_t *start_transaction(struct inode *inode)
153 {
154 	handle_t *result;
155 
156 	result = ext4_journal_start(inode, blocks_for_truncate(inode));
157 	if (!IS_ERR(result))
158 		return result;
159 
160 	ext4_std_error(inode->i_sb, PTR_ERR(result));
161 	return result;
162 }
163 
164 /*
165  * Try to extend this transaction for the purposes of truncation.
166  *
167  * Returns 0 if we managed to create more room.  If we can't create more
168  * room, and the transaction must be restarted we return 1.
169  */
170 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
171 {
172 	if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
173 		return 0;
174 	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
175 		return 0;
176 	return 1;
177 }
178 
179 /*
180  * Restart the transaction associated with *handle.  This does a commit,
181  * so before we call here everything must be consistently dirtied against
182  * this transaction.
183  */
184 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
185 {
186 	jbd_debug(2, "restarting handle %p\n", handle);
187 	return ext4_journal_restart(handle, blocks_for_truncate(inode));
188 }
189 
190 /*
191  * Called at the last iput() if i_nlink is zero.
192  */
193 void ext4_delete_inode(struct inode *inode)
194 {
195 	handle_t *handle;
196 	int err;
197 
198 	if (ext4_should_order_data(inode))
199 		ext4_begin_ordered_truncate(inode, 0);
200 	truncate_inode_pages(&inode->i_data, 0);
201 
202 	if (is_bad_inode(inode))
203 		goto no_delete;
204 
205 	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
206 	if (IS_ERR(handle)) {
207 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
208 		/*
209 		 * If we're going to skip the normal cleanup, we still need to
210 		 * make sure that the in-core orphan linked list is properly
211 		 * cleaned up.
212 		 */
213 		ext4_orphan_del(NULL, inode);
214 		goto no_delete;
215 	}
216 
217 	if (IS_SYNC(inode))
218 		handle->h_sync = 1;
219 	inode->i_size = 0;
220 	err = ext4_mark_inode_dirty(handle, inode);
221 	if (err) {
222 		ext4_warning(inode->i_sb, __func__,
223 			     "couldn't mark inode dirty (err %d)", err);
224 		goto stop_handle;
225 	}
226 	if (inode->i_blocks)
227 		ext4_truncate(inode);
228 
229 	/*
230 	 * ext4_ext_truncate() doesn't reserve any slop when it
231 	 * restarts journal transactions; therefore there may not be
232 	 * enough credits left in the handle to remove the inode from
233 	 * the orphan list and set the dtime field.
234 	 */
235 	if (handle->h_buffer_credits < 3) {
236 		err = ext4_journal_extend(handle, 3);
237 		if (err > 0)
238 			err = ext4_journal_restart(handle, 3);
239 		if (err != 0) {
240 			ext4_warning(inode->i_sb, __func__,
241 				     "couldn't extend journal (err %d)", err);
242 		stop_handle:
243 			ext4_journal_stop(handle);
244 			goto no_delete;
245 		}
246 	}
247 
248 	/*
249 	 * Kill off the orphan record which ext4_truncate created.
250 	 * AKPM: I think this can be inside the above `if'.
251 	 * Note that ext4_orphan_del() has to be able to cope with the
252 	 * deletion of a non-existent orphan - this is because we don't
253 	 * know if ext4_truncate() actually created an orphan record.
254 	 * (Well, we could do this if we need to, but heck - it works)
255 	 */
256 	ext4_orphan_del(handle, inode);
257 	EXT4_I(inode)->i_dtime	= get_seconds();
258 
259 	/*
260 	 * One subtle ordering requirement: if anything has gone wrong
261 	 * (transaction abort, IO errors, whatever), then we can still
262 	 * do these next steps (the fs will already have been marked as
263 	 * having errors), but we can't free the inode if the mark_dirty
264 	 * fails.
265 	 */
266 	if (ext4_mark_inode_dirty(handle, inode))
267 		/* If that failed, just do the required in-core inode clear. */
268 		clear_inode(inode);
269 	else
270 		ext4_free_inode(handle, inode);
271 	ext4_journal_stop(handle);
272 	return;
273 no_delete:
274 	clear_inode(inode);	/* We must guarantee clearing of inode... */
275 }
276 
277 typedef struct {
278 	__le32	*p;
279 	__le32	key;
280 	struct buffer_head *bh;
281 } Indirect;
282 
283 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
284 {
285 	p->key = *(p->p = v);
286 	p->bh = bh;
287 }
288 
289 /**
290  *	ext4_block_to_path - parse the block number into array of offsets
291  *	@inode: inode in question (we are only interested in its superblock)
292  *	@i_block: block number to be parsed
293  *	@offsets: array to store the offsets in
294  *	@boundary: set this non-zero if the referred-to block is likely to be
295  *	       followed (on disk) by an indirect block.
296  *
297  *	To store the locations of file's data ext4 uses a data structure common
298  *	for UNIX filesystems - tree of pointers anchored in the inode, with
299  *	data blocks at leaves and indirect blocks in intermediate nodes.
300  *	This function translates the block number into path in that tree -
301  *	return value is the path length and @offsets[n] is the offset of
302  *	pointer to (n+1)th node in the nth one. If @block is out of range
303  *	(negative or too large) warning is printed and zero returned.
304  *
305  *	Note: function doesn't find node addresses, so no IO is needed. All
306  *	we need to know is the capacity of indirect blocks (taken from the
307  *	inode->i_sb).
308  */
309 
310 /*
311  * Portability note: the last comparison (check that we fit into triple
312  * indirect block) is spelled differently, because otherwise on an
313  * architecture with 32-bit longs and 8Kb pages we might get into trouble
314  * if our filesystem had 8Kb blocks. We might use long long, but that would
315  * kill us on x86. Oh, well, at least the sign propagation does not matter -
316  * i_block would have to be negative in the very beginning, so we would not
317  * get there at all.
318  */
319 
320 static int ext4_block_to_path(struct inode *inode,
321 			ext4_lblk_t i_block,
322 			ext4_lblk_t offsets[4], int *boundary)
323 {
324 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
325 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
326 	const long direct_blocks = EXT4_NDIR_BLOCKS,
327 		indirect_blocks = ptrs,
328 		double_blocks = (1 << (ptrs_bits * 2));
329 	int n = 0;
330 	int final = 0;
331 
332 	if (i_block < 0) {
333 		ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
334 	} else if (i_block < direct_blocks) {
335 		offsets[n++] = i_block;
336 		final = direct_blocks;
337 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
338 		offsets[n++] = EXT4_IND_BLOCK;
339 		offsets[n++] = i_block;
340 		final = ptrs;
341 	} else if ((i_block -= indirect_blocks) < double_blocks) {
342 		offsets[n++] = EXT4_DIND_BLOCK;
343 		offsets[n++] = i_block >> ptrs_bits;
344 		offsets[n++] = i_block & (ptrs - 1);
345 		final = ptrs;
346 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
347 		offsets[n++] = EXT4_TIND_BLOCK;
348 		offsets[n++] = i_block >> (ptrs_bits * 2);
349 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
350 		offsets[n++] = i_block & (ptrs - 1);
351 		final = ptrs;
352 	} else {
353 		ext4_warning(inode->i_sb, "ext4_block_to_path",
354 				"block %lu > max",
355 				i_block + direct_blocks +
356 				indirect_blocks + double_blocks);
357 	}
358 	if (boundary)
359 		*boundary = final - 1 - (i_block & (ptrs - 1));
360 	return n;
361 }
362 
363 /**
364  *	ext4_get_branch - read the chain of indirect blocks leading to data
365  *	@inode: inode in question
366  *	@depth: depth of the chain (1 - direct pointer, etc.)
367  *	@offsets: offsets of pointers in inode/indirect blocks
368  *	@chain: place to store the result
369  *	@err: here we store the error value
370  *
371  *	Function fills the array of triples <key, p, bh> and returns %NULL
372  *	if everything went OK or the pointer to the last filled triple
373  *	(incomplete one) otherwise. Upon the return chain[i].key contains
374  *	the number of (i+1)-th block in the chain (as it is stored in memory,
375  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
376  *	number (it points into struct inode for i==0 and into the bh->b_data
377  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
378  *	block for i>0 and NULL for i==0. In other words, it holds the block
379  *	numbers of the chain, addresses they were taken from (and where we can
380  *	verify that chain did not change) and buffer_heads hosting these
381  *	numbers.
382  *
383  *	Function stops when it stumbles upon zero pointer (absent block)
384  *		(pointer to last triple returned, *@err == 0)
385  *	or when it gets an IO error reading an indirect block
386  *		(ditto, *@err == -EIO)
387  *	or when it reads all @depth-1 indirect blocks successfully and finds
388  *	the whole chain, all way to the data (returns %NULL, *err == 0).
389  *
390  *      Need to be called with
391  *      down_read(&EXT4_I(inode)->i_data_sem)
392  */
393 static Indirect *ext4_get_branch(struct inode *inode, int depth,
394 				 ext4_lblk_t  *offsets,
395 				 Indirect chain[4], int *err)
396 {
397 	struct super_block *sb = inode->i_sb;
398 	Indirect *p = chain;
399 	struct buffer_head *bh;
400 
401 	*err = 0;
402 	/* i_data is not going away, no lock needed */
403 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
404 	if (!p->key)
405 		goto no_block;
406 	while (--depth) {
407 		bh = sb_bread(sb, le32_to_cpu(p->key));
408 		if (!bh)
409 			goto failure;
410 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
411 		/* Reader: end */
412 		if (!p->key)
413 			goto no_block;
414 	}
415 	return NULL;
416 
417 failure:
418 	*err = -EIO;
419 no_block:
420 	return p;
421 }
422 
423 /**
424  *	ext4_find_near - find a place for allocation with sufficient locality
425  *	@inode: owner
426  *	@ind: descriptor of indirect block.
427  *
428  *	This function returns the preferred place for block allocation.
429  *	It is used when heuristic for sequential allocation fails.
430  *	Rules are:
431  *	  + if there is a block to the left of our position - allocate near it.
432  *	  + if pointer will live in indirect block - allocate near that block.
433  *	  + if pointer will live in inode - allocate in the same
434  *	    cylinder group.
435  *
436  * In the latter case we colour the starting block by the callers PID to
437  * prevent it from clashing with concurrent allocations for a different inode
438  * in the same block group.   The PID is used here so that functionally related
439  * files will be close-by on-disk.
440  *
441  *	Caller must make sure that @ind is valid and will stay that way.
442  */
443 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
444 {
445 	struct ext4_inode_info *ei = EXT4_I(inode);
446 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
447 	__le32 *p;
448 	ext4_fsblk_t bg_start;
449 	ext4_fsblk_t last_block;
450 	ext4_grpblk_t colour;
451 
452 	/* Try to find previous block */
453 	for (p = ind->p - 1; p >= start; p--) {
454 		if (*p)
455 			return le32_to_cpu(*p);
456 	}
457 
458 	/* No such thing, so let's try location of indirect block */
459 	if (ind->bh)
460 		return ind->bh->b_blocknr;
461 
462 	/*
463 	 * It is going to be referred to from the inode itself? OK, just put it
464 	 * into the same cylinder group then.
465 	 */
466 	bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
467 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
468 
469 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
470 		colour = (current->pid % 16) *
471 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
472 	else
473 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
474 	return bg_start + colour;
475 }
476 
477 /**
478  *	ext4_find_goal - find a preferred place for allocation.
479  *	@inode: owner
480  *	@block:  block we want
481  *	@partial: pointer to the last triple within a chain
482  *
483  *	Normally this function find the preferred place for block allocation,
484  *	returns it.
485  */
486 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
487 		Indirect *partial)
488 {
489 	/*
490 	 * XXX need to get goal block from mballoc's data structures
491 	 */
492 
493 	return ext4_find_near(inode, partial);
494 }
495 
496 /**
497  *	ext4_blks_to_allocate: Look up the block map and count the number
498  *	of direct blocks need to be allocated for the given branch.
499  *
500  *	@branch: chain of indirect blocks
501  *	@k: number of blocks need for indirect blocks
502  *	@blks: number of data blocks to be mapped.
503  *	@blocks_to_boundary:  the offset in the indirect block
504  *
505  *	return the total number of blocks to be allocate, including the
506  *	direct and indirect blocks.
507  */
508 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
509 		int blocks_to_boundary)
510 {
511 	unsigned long count = 0;
512 
513 	/*
514 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
515 	 * then it's clear blocks on that path have not allocated
516 	 */
517 	if (k > 0) {
518 		/* right now we don't handle cross boundary allocation */
519 		if (blks < blocks_to_boundary + 1)
520 			count += blks;
521 		else
522 			count += blocks_to_boundary + 1;
523 		return count;
524 	}
525 
526 	count++;
527 	while (count < blks && count <= blocks_to_boundary &&
528 		le32_to_cpu(*(branch[0].p + count)) == 0) {
529 		count++;
530 	}
531 	return count;
532 }
533 
534 /**
535  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
536  *	@indirect_blks: the number of blocks need to allocate for indirect
537  *			blocks
538  *
539  *	@new_blocks: on return it will store the new block numbers for
540  *	the indirect blocks(if needed) and the first direct block,
541  *	@blks:	on return it will store the total number of allocated
542  *		direct blocks
543  */
544 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
545 				ext4_lblk_t iblock, ext4_fsblk_t goal,
546 				int indirect_blks, int blks,
547 				ext4_fsblk_t new_blocks[4], int *err)
548 {
549 	int target, i;
550 	unsigned long count = 0, blk_allocated = 0;
551 	int index = 0;
552 	ext4_fsblk_t current_block = 0;
553 	int ret = 0;
554 
555 	/*
556 	 * Here we try to allocate the requested multiple blocks at once,
557 	 * on a best-effort basis.
558 	 * To build a branch, we should allocate blocks for
559 	 * the indirect blocks(if not allocated yet), and at least
560 	 * the first direct block of this branch.  That's the
561 	 * minimum number of blocks need to allocate(required)
562 	 */
563 	/* first we try to allocate the indirect blocks */
564 	target = indirect_blks;
565 	while (target > 0) {
566 		count = target;
567 		/* allocating blocks for indirect blocks and direct blocks */
568 		current_block = ext4_new_meta_blocks(handle, inode,
569 							goal, &count, err);
570 		if (*err)
571 			goto failed_out;
572 
573 		target -= count;
574 		/* allocate blocks for indirect blocks */
575 		while (index < indirect_blks && count) {
576 			new_blocks[index++] = current_block++;
577 			count--;
578 		}
579 		if (count > 0) {
580 			/*
581 			 * save the new block number
582 			 * for the first direct block
583 			 */
584 			new_blocks[index] = current_block;
585 			printk(KERN_INFO "%s returned more blocks than "
586 						"requested\n", __func__);
587 			WARN_ON(1);
588 			break;
589 		}
590 	}
591 
592 	target = blks - count ;
593 	blk_allocated = count;
594 	if (!target)
595 		goto allocated;
596 	/* Now allocate data blocks */
597 	count = target;
598 	/* allocating blocks for data blocks */
599 	current_block = ext4_new_blocks(handle, inode, iblock,
600 						goal, &count, err);
601 	if (*err && (target == blks)) {
602 		/*
603 		 * if the allocation failed and we didn't allocate
604 		 * any blocks before
605 		 */
606 		goto failed_out;
607 	}
608 	if (!*err) {
609 		if (target == blks) {
610 		/*
611 		 * save the new block number
612 		 * for the first direct block
613 		 */
614 			new_blocks[index] = current_block;
615 		}
616 		blk_allocated += count;
617 	}
618 allocated:
619 	/* total number of blocks allocated for direct blocks */
620 	ret = blk_allocated;
621 	*err = 0;
622 	return ret;
623 failed_out:
624 	for (i = 0; i < index; i++)
625 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
626 	return ret;
627 }
628 
629 /**
630  *	ext4_alloc_branch - allocate and set up a chain of blocks.
631  *	@inode: owner
632  *	@indirect_blks: number of allocated indirect blocks
633  *	@blks: number of allocated direct blocks
634  *	@offsets: offsets (in the blocks) to store the pointers to next.
635  *	@branch: place to store the chain in.
636  *
637  *	This function allocates blocks, zeroes out all but the last one,
638  *	links them into chain and (if we are synchronous) writes them to disk.
639  *	In other words, it prepares a branch that can be spliced onto the
640  *	inode. It stores the information about that chain in the branch[], in
641  *	the same format as ext4_get_branch() would do. We are calling it after
642  *	we had read the existing part of chain and partial points to the last
643  *	triple of that (one with zero ->key). Upon the exit we have the same
644  *	picture as after the successful ext4_get_block(), except that in one
645  *	place chain is disconnected - *branch->p is still zero (we did not
646  *	set the last link), but branch->key contains the number that should
647  *	be placed into *branch->p to fill that gap.
648  *
649  *	If allocation fails we free all blocks we've allocated (and forget
650  *	their buffer_heads) and return the error value the from failed
651  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
652  *	as described above and return 0.
653  */
654 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
655 				ext4_lblk_t iblock, int indirect_blks,
656 				int *blks, ext4_fsblk_t goal,
657 				ext4_lblk_t *offsets, Indirect *branch)
658 {
659 	int blocksize = inode->i_sb->s_blocksize;
660 	int i, n = 0;
661 	int err = 0;
662 	struct buffer_head *bh;
663 	int num;
664 	ext4_fsblk_t new_blocks[4];
665 	ext4_fsblk_t current_block;
666 
667 	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
668 				*blks, new_blocks, &err);
669 	if (err)
670 		return err;
671 
672 	branch[0].key = cpu_to_le32(new_blocks[0]);
673 	/*
674 	 * metadata blocks and data blocks are allocated.
675 	 */
676 	for (n = 1; n <= indirect_blks;  n++) {
677 		/*
678 		 * Get buffer_head for parent block, zero it out
679 		 * and set the pointer to new one, then send
680 		 * parent to disk.
681 		 */
682 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
683 		branch[n].bh = bh;
684 		lock_buffer(bh);
685 		BUFFER_TRACE(bh, "call get_create_access");
686 		err = ext4_journal_get_create_access(handle, bh);
687 		if (err) {
688 			unlock_buffer(bh);
689 			brelse(bh);
690 			goto failed;
691 		}
692 
693 		memset(bh->b_data, 0, blocksize);
694 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
695 		branch[n].key = cpu_to_le32(new_blocks[n]);
696 		*branch[n].p = branch[n].key;
697 		if (n == indirect_blks) {
698 			current_block = new_blocks[n];
699 			/*
700 			 * End of chain, update the last new metablock of
701 			 * the chain to point to the new allocated
702 			 * data blocks numbers
703 			 */
704 			for (i=1; i < num; i++)
705 				*(branch[n].p + i) = cpu_to_le32(++current_block);
706 		}
707 		BUFFER_TRACE(bh, "marking uptodate");
708 		set_buffer_uptodate(bh);
709 		unlock_buffer(bh);
710 
711 		BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
712 		err = ext4_journal_dirty_metadata(handle, bh);
713 		if (err)
714 			goto failed;
715 	}
716 	*blks = num;
717 	return err;
718 failed:
719 	/* Allocation failed, free what we already allocated */
720 	for (i = 1; i <= n ; i++) {
721 		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
722 		ext4_journal_forget(handle, branch[i].bh);
723 	}
724 	for (i = 0; i < indirect_blks; i++)
725 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
726 
727 	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
728 
729 	return err;
730 }
731 
732 /**
733  * ext4_splice_branch - splice the allocated branch onto inode.
734  * @inode: owner
735  * @block: (logical) number of block we are adding
736  * @chain: chain of indirect blocks (with a missing link - see
737  *	ext4_alloc_branch)
738  * @where: location of missing link
739  * @num:   number of indirect blocks we are adding
740  * @blks:  number of direct blocks we are adding
741  *
742  * This function fills the missing link and does all housekeeping needed in
743  * inode (->i_blocks, etc.). In case of success we end up with the full
744  * chain to new block and return 0.
745  */
746 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
747 			ext4_lblk_t block, Indirect *where, int num, int blks)
748 {
749 	int i;
750 	int err = 0;
751 	ext4_fsblk_t current_block;
752 
753 	/*
754 	 * If we're splicing into a [td]indirect block (as opposed to the
755 	 * inode) then we need to get write access to the [td]indirect block
756 	 * before the splice.
757 	 */
758 	if (where->bh) {
759 		BUFFER_TRACE(where->bh, "get_write_access");
760 		err = ext4_journal_get_write_access(handle, where->bh);
761 		if (err)
762 			goto err_out;
763 	}
764 	/* That's it */
765 
766 	*where->p = where->key;
767 
768 	/*
769 	 * Update the host buffer_head or inode to point to more just allocated
770 	 * direct blocks blocks
771 	 */
772 	if (num == 0 && blks > 1) {
773 		current_block = le32_to_cpu(where->key) + 1;
774 		for (i = 1; i < blks; i++)
775 			*(where->p + i) = cpu_to_le32(current_block++);
776 	}
777 
778 	/* We are done with atomic stuff, now do the rest of housekeeping */
779 
780 	inode->i_ctime = ext4_current_time(inode);
781 	ext4_mark_inode_dirty(handle, inode);
782 
783 	/* had we spliced it onto indirect block? */
784 	if (where->bh) {
785 		/*
786 		 * If we spliced it onto an indirect block, we haven't
787 		 * altered the inode.  Note however that if it is being spliced
788 		 * onto an indirect block at the very end of the file (the
789 		 * file is growing) then we *will* alter the inode to reflect
790 		 * the new i_size.  But that is not done here - it is done in
791 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
792 		 */
793 		jbd_debug(5, "splicing indirect only\n");
794 		BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
795 		err = ext4_journal_dirty_metadata(handle, where->bh);
796 		if (err)
797 			goto err_out;
798 	} else {
799 		/*
800 		 * OK, we spliced it into the inode itself on a direct block.
801 		 * Inode was dirtied above.
802 		 */
803 		jbd_debug(5, "splicing direct\n");
804 	}
805 	return err;
806 
807 err_out:
808 	for (i = 1; i <= num; i++) {
809 		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
810 		ext4_journal_forget(handle, where[i].bh);
811 		ext4_free_blocks(handle, inode,
812 					le32_to_cpu(where[i-1].key), 1, 0);
813 	}
814 	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
815 
816 	return err;
817 }
818 
819 /*
820  * Allocation strategy is simple: if we have to allocate something, we will
821  * have to go the whole way to leaf. So let's do it before attaching anything
822  * to tree, set linkage between the newborn blocks, write them if sync is
823  * required, recheck the path, free and repeat if check fails, otherwise
824  * set the last missing link (that will protect us from any truncate-generated
825  * removals - all blocks on the path are immune now) and possibly force the
826  * write on the parent block.
827  * That has a nice additional property: no special recovery from the failed
828  * allocations is needed - we simply release blocks and do not touch anything
829  * reachable from inode.
830  *
831  * `handle' can be NULL if create == 0.
832  *
833  * return > 0, # of blocks mapped or allocated.
834  * return = 0, if plain lookup failed.
835  * return < 0, error case.
836  *
837  *
838  * Need to be called with
839  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
840  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
841  */
842 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
843 		ext4_lblk_t iblock, unsigned long maxblocks,
844 		struct buffer_head *bh_result,
845 		int create, int extend_disksize)
846 {
847 	int err = -EIO;
848 	ext4_lblk_t offsets[4];
849 	Indirect chain[4];
850 	Indirect *partial;
851 	ext4_fsblk_t goal;
852 	int indirect_blks;
853 	int blocks_to_boundary = 0;
854 	int depth;
855 	struct ext4_inode_info *ei = EXT4_I(inode);
856 	int count = 0;
857 	ext4_fsblk_t first_block = 0;
858 	loff_t disksize;
859 
860 
861 	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
862 	J_ASSERT(handle != NULL || create == 0);
863 	depth = ext4_block_to_path(inode, iblock, offsets,
864 					&blocks_to_boundary);
865 
866 	if (depth == 0)
867 		goto out;
868 
869 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
870 
871 	/* Simplest case - block found, no allocation needed */
872 	if (!partial) {
873 		first_block = le32_to_cpu(chain[depth - 1].key);
874 		clear_buffer_new(bh_result);
875 		count++;
876 		/*map more blocks*/
877 		while (count < maxblocks && count <= blocks_to_boundary) {
878 			ext4_fsblk_t blk;
879 
880 			blk = le32_to_cpu(*(chain[depth-1].p + count));
881 
882 			if (blk == first_block + count)
883 				count++;
884 			else
885 				break;
886 		}
887 		goto got_it;
888 	}
889 
890 	/* Next simple case - plain lookup or failed read of indirect block */
891 	if (!create || err == -EIO)
892 		goto cleanup;
893 
894 	/*
895 	 * Okay, we need to do block allocation.
896 	*/
897 	goal = ext4_find_goal(inode, iblock, partial);
898 
899 	/* the number of blocks need to allocate for [d,t]indirect blocks */
900 	indirect_blks = (chain + depth) - partial - 1;
901 
902 	/*
903 	 * Next look up the indirect map to count the totoal number of
904 	 * direct blocks to allocate for this branch.
905 	 */
906 	count = ext4_blks_to_allocate(partial, indirect_blks,
907 					maxblocks, blocks_to_boundary);
908 	/*
909 	 * Block out ext4_truncate while we alter the tree
910 	 */
911 	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
912 					&count, goal,
913 					offsets + (partial - chain), partial);
914 
915 	/*
916 	 * The ext4_splice_branch call will free and forget any buffers
917 	 * on the new chain if there is a failure, but that risks using
918 	 * up transaction credits, especially for bitmaps where the
919 	 * credits cannot be returned.  Can we handle this somehow?  We
920 	 * may need to return -EAGAIN upwards in the worst case.  --sct
921 	 */
922 	if (!err)
923 		err = ext4_splice_branch(handle, inode, iblock,
924 					partial, indirect_blks, count);
925 	/*
926 	 * i_disksize growing is protected by i_data_sem.  Don't forget to
927 	 * protect it if you're about to implement concurrent
928 	 * ext4_get_block() -bzzz
929 	*/
930 	if (!err && extend_disksize) {
931 		disksize = ((loff_t) iblock + count) << inode->i_blkbits;
932 		if (disksize > i_size_read(inode))
933 			disksize = i_size_read(inode);
934 		if (disksize > ei->i_disksize)
935 			ei->i_disksize = disksize;
936 	}
937 	if (err)
938 		goto cleanup;
939 
940 	set_buffer_new(bh_result);
941 got_it:
942 	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
943 	if (count > blocks_to_boundary)
944 		set_buffer_boundary(bh_result);
945 	err = count;
946 	/* Clean up and exit */
947 	partial = chain + depth - 1;	/* the whole chain */
948 cleanup:
949 	while (partial > chain) {
950 		BUFFER_TRACE(partial->bh, "call brelse");
951 		brelse(partial->bh);
952 		partial--;
953 	}
954 	BUFFER_TRACE(bh_result, "returned");
955 out:
956 	return err;
957 }
958 
959 /*
960  * Calculate the number of metadata blocks need to reserve
961  * to allocate @blocks for non extent file based file
962  */
963 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
964 {
965 	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
966 	int ind_blks, dind_blks, tind_blks;
967 
968 	/* number of new indirect blocks needed */
969 	ind_blks = (blocks + icap - 1) / icap;
970 
971 	dind_blks = (ind_blks + icap - 1) / icap;
972 
973 	tind_blks = 1;
974 
975 	return ind_blks + dind_blks + tind_blks;
976 }
977 
978 /*
979  * Calculate the number of metadata blocks need to reserve
980  * to allocate given number of blocks
981  */
982 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
983 {
984 	if (!blocks)
985 		return 0;
986 
987 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
988 		return ext4_ext_calc_metadata_amount(inode, blocks);
989 
990 	return ext4_indirect_calc_metadata_amount(inode, blocks);
991 }
992 
993 static void ext4_da_update_reserve_space(struct inode *inode, int used)
994 {
995 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
996 	int total, mdb, mdb_free;
997 
998 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
999 	/* recalculate the number of metablocks still need to be reserved */
1000 	total = EXT4_I(inode)->i_reserved_data_blocks - used;
1001 	mdb = ext4_calc_metadata_amount(inode, total);
1002 
1003 	/* figure out how many metablocks to release */
1004 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1005 	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1006 
1007 	if (mdb_free) {
1008 		/* Account for allocated meta_blocks */
1009 		mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1010 
1011 		/* update fs dirty blocks counter */
1012 		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1013 		EXT4_I(inode)->i_allocated_meta_blocks = 0;
1014 		EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1015 	}
1016 
1017 	/* update per-inode reservations */
1018 	BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1019 	EXT4_I(inode)->i_reserved_data_blocks -= used;
1020 
1021 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1022 }
1023 
1024 /*
1025  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1026  * and returns if the blocks are already mapped.
1027  *
1028  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1029  * and store the allocated blocks in the result buffer head and mark it
1030  * mapped.
1031  *
1032  * If file type is extents based, it will call ext4_ext_get_blocks(),
1033  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1034  * based files
1035  *
1036  * On success, it returns the number of blocks being mapped or allocate.
1037  * if create==0 and the blocks are pre-allocated and uninitialized block,
1038  * the result buffer head is unmapped. If the create ==1, it will make sure
1039  * the buffer head is mapped.
1040  *
1041  * It returns 0 if plain look up failed (blocks have not been allocated), in
1042  * that casem, buffer head is unmapped
1043  *
1044  * It returns the error in case of allocation failure.
1045  */
1046 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1047 			unsigned long max_blocks, struct buffer_head *bh,
1048 			int create, int extend_disksize, int flag)
1049 {
1050 	int retval;
1051 
1052 	clear_buffer_mapped(bh);
1053 
1054 	/*
1055 	 * Try to see if we can get  the block without requesting
1056 	 * for new file system block.
1057 	 */
1058 	down_read((&EXT4_I(inode)->i_data_sem));
1059 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1060 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1061 				bh, 0, 0);
1062 	} else {
1063 		retval = ext4_get_blocks_handle(handle,
1064 				inode, block, max_blocks, bh, 0, 0);
1065 	}
1066 	up_read((&EXT4_I(inode)->i_data_sem));
1067 
1068 	/* If it is only a block(s) look up */
1069 	if (!create)
1070 		return retval;
1071 
1072 	/*
1073 	 * Returns if the blocks have already allocated
1074 	 *
1075 	 * Note that if blocks have been preallocated
1076 	 * ext4_ext_get_block() returns th create = 0
1077 	 * with buffer head unmapped.
1078 	 */
1079 	if (retval > 0 && buffer_mapped(bh))
1080 		return retval;
1081 
1082 	/*
1083 	 * New blocks allocate and/or writing to uninitialized extent
1084 	 * will possibly result in updating i_data, so we take
1085 	 * the write lock of i_data_sem, and call get_blocks()
1086 	 * with create == 1 flag.
1087 	 */
1088 	down_write((&EXT4_I(inode)->i_data_sem));
1089 
1090 	/*
1091 	 * if the caller is from delayed allocation writeout path
1092 	 * we have already reserved fs blocks for allocation
1093 	 * let the underlying get_block() function know to
1094 	 * avoid double accounting
1095 	 */
1096 	if (flag)
1097 		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1098 	/*
1099 	 * We need to check for EXT4 here because migrate
1100 	 * could have changed the inode type in between
1101 	 */
1102 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1103 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1104 				bh, create, extend_disksize);
1105 	} else {
1106 		retval = ext4_get_blocks_handle(handle, inode, block,
1107 				max_blocks, bh, create, extend_disksize);
1108 
1109 		if (retval > 0 && buffer_new(bh)) {
1110 			/*
1111 			 * We allocated new blocks which will result in
1112 			 * i_data's format changing.  Force the migrate
1113 			 * to fail by clearing migrate flags
1114 			 */
1115 			EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1116 							~EXT4_EXT_MIGRATE;
1117 		}
1118 	}
1119 
1120 	if (flag) {
1121 		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1122 		/*
1123 		 * Update reserved blocks/metadata blocks
1124 		 * after successful block allocation
1125 		 * which were deferred till now
1126 		 */
1127 		if ((retval > 0) && buffer_delay(bh))
1128 			ext4_da_update_reserve_space(inode, retval);
1129 	}
1130 
1131 	up_write((&EXT4_I(inode)->i_data_sem));
1132 	return retval;
1133 }
1134 
1135 /* Maximum number of blocks we map for direct IO at once. */
1136 #define DIO_MAX_BLOCKS 4096
1137 
1138 int ext4_get_block(struct inode *inode, sector_t iblock,
1139 		   struct buffer_head *bh_result, int create)
1140 {
1141 	handle_t *handle = ext4_journal_current_handle();
1142 	int ret = 0, started = 0;
1143 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1144 	int dio_credits;
1145 
1146 	if (create && !handle) {
1147 		/* Direct IO write... */
1148 		if (max_blocks > DIO_MAX_BLOCKS)
1149 			max_blocks = DIO_MAX_BLOCKS;
1150 		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1151 		handle = ext4_journal_start(inode, dio_credits);
1152 		if (IS_ERR(handle)) {
1153 			ret = PTR_ERR(handle);
1154 			goto out;
1155 		}
1156 		started = 1;
1157 	}
1158 
1159 	ret = ext4_get_blocks_wrap(handle, inode, iblock,
1160 					max_blocks, bh_result, create, 0, 0);
1161 	if (ret > 0) {
1162 		bh_result->b_size = (ret << inode->i_blkbits);
1163 		ret = 0;
1164 	}
1165 	if (started)
1166 		ext4_journal_stop(handle);
1167 out:
1168 	return ret;
1169 }
1170 
1171 /*
1172  * `handle' can be NULL if create is zero
1173  */
1174 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1175 				ext4_lblk_t block, int create, int *errp)
1176 {
1177 	struct buffer_head dummy;
1178 	int fatal = 0, err;
1179 
1180 	J_ASSERT(handle != NULL || create == 0);
1181 
1182 	dummy.b_state = 0;
1183 	dummy.b_blocknr = -1000;
1184 	buffer_trace_init(&dummy.b_history);
1185 	err = ext4_get_blocks_wrap(handle, inode, block, 1,
1186 					&dummy, create, 1, 0);
1187 	/*
1188 	 * ext4_get_blocks_handle() returns number of blocks
1189 	 * mapped. 0 in case of a HOLE.
1190 	 */
1191 	if (err > 0) {
1192 		if (err > 1)
1193 			WARN_ON(1);
1194 		err = 0;
1195 	}
1196 	*errp = err;
1197 	if (!err && buffer_mapped(&dummy)) {
1198 		struct buffer_head *bh;
1199 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1200 		if (!bh) {
1201 			*errp = -EIO;
1202 			goto err;
1203 		}
1204 		if (buffer_new(&dummy)) {
1205 			J_ASSERT(create != 0);
1206 			J_ASSERT(handle != NULL);
1207 
1208 			/*
1209 			 * Now that we do not always journal data, we should
1210 			 * keep in mind whether this should always journal the
1211 			 * new buffer as metadata.  For now, regular file
1212 			 * writes use ext4_get_block instead, so it's not a
1213 			 * problem.
1214 			 */
1215 			lock_buffer(bh);
1216 			BUFFER_TRACE(bh, "call get_create_access");
1217 			fatal = ext4_journal_get_create_access(handle, bh);
1218 			if (!fatal && !buffer_uptodate(bh)) {
1219 				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1220 				set_buffer_uptodate(bh);
1221 			}
1222 			unlock_buffer(bh);
1223 			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1224 			err = ext4_journal_dirty_metadata(handle, bh);
1225 			if (!fatal)
1226 				fatal = err;
1227 		} else {
1228 			BUFFER_TRACE(bh, "not a new buffer");
1229 		}
1230 		if (fatal) {
1231 			*errp = fatal;
1232 			brelse(bh);
1233 			bh = NULL;
1234 		}
1235 		return bh;
1236 	}
1237 err:
1238 	return NULL;
1239 }
1240 
1241 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1242 			       ext4_lblk_t block, int create, int *err)
1243 {
1244 	struct buffer_head *bh;
1245 
1246 	bh = ext4_getblk(handle, inode, block, create, err);
1247 	if (!bh)
1248 		return bh;
1249 	if (buffer_uptodate(bh))
1250 		return bh;
1251 	ll_rw_block(READ_META, 1, &bh);
1252 	wait_on_buffer(bh);
1253 	if (buffer_uptodate(bh))
1254 		return bh;
1255 	put_bh(bh);
1256 	*err = -EIO;
1257 	return NULL;
1258 }
1259 
1260 static int walk_page_buffers(handle_t *handle,
1261 			     struct buffer_head *head,
1262 			     unsigned from,
1263 			     unsigned to,
1264 			     int *partial,
1265 			     int (*fn)(handle_t *handle,
1266 				       struct buffer_head *bh))
1267 {
1268 	struct buffer_head *bh;
1269 	unsigned block_start, block_end;
1270 	unsigned blocksize = head->b_size;
1271 	int err, ret = 0;
1272 	struct buffer_head *next;
1273 
1274 	for (bh = head, block_start = 0;
1275 	     ret == 0 && (bh != head || !block_start);
1276 	     block_start = block_end, bh = next)
1277 	{
1278 		next = bh->b_this_page;
1279 		block_end = block_start + blocksize;
1280 		if (block_end <= from || block_start >= to) {
1281 			if (partial && !buffer_uptodate(bh))
1282 				*partial = 1;
1283 			continue;
1284 		}
1285 		err = (*fn)(handle, bh);
1286 		if (!ret)
1287 			ret = err;
1288 	}
1289 	return ret;
1290 }
1291 
1292 /*
1293  * To preserve ordering, it is essential that the hole instantiation and
1294  * the data write be encapsulated in a single transaction.  We cannot
1295  * close off a transaction and start a new one between the ext4_get_block()
1296  * and the commit_write().  So doing the jbd2_journal_start at the start of
1297  * prepare_write() is the right place.
1298  *
1299  * Also, this function can nest inside ext4_writepage() ->
1300  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1301  * has generated enough buffer credits to do the whole page.  So we won't
1302  * block on the journal in that case, which is good, because the caller may
1303  * be PF_MEMALLOC.
1304  *
1305  * By accident, ext4 can be reentered when a transaction is open via
1306  * quota file writes.  If we were to commit the transaction while thus
1307  * reentered, there can be a deadlock - we would be holding a quota
1308  * lock, and the commit would never complete if another thread had a
1309  * transaction open and was blocking on the quota lock - a ranking
1310  * violation.
1311  *
1312  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1313  * will _not_ run commit under these circumstances because handle->h_ref
1314  * is elevated.  We'll still have enough credits for the tiny quotafile
1315  * write.
1316  */
1317 static int do_journal_get_write_access(handle_t *handle,
1318 					struct buffer_head *bh)
1319 {
1320 	if (!buffer_mapped(bh) || buffer_freed(bh))
1321 		return 0;
1322 	return ext4_journal_get_write_access(handle, bh);
1323 }
1324 
1325 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1326 				loff_t pos, unsigned len, unsigned flags,
1327 				struct page **pagep, void **fsdata)
1328 {
1329 	struct inode *inode = mapping->host;
1330 	int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1331 	handle_t *handle;
1332 	int retries = 0;
1333 	struct page *page;
1334  	pgoff_t index;
1335 	unsigned from, to;
1336 
1337  	index = pos >> PAGE_CACHE_SHIFT;
1338 	from = pos & (PAGE_CACHE_SIZE - 1);
1339 	to = from + len;
1340 
1341 retry:
1342 	handle = ext4_journal_start(inode, needed_blocks);
1343 	if (IS_ERR(handle)) {
1344 		ret = PTR_ERR(handle);
1345 		goto out;
1346 	}
1347 
1348 	page = __grab_cache_page(mapping, index);
1349 	if (!page) {
1350 		ext4_journal_stop(handle);
1351 		ret = -ENOMEM;
1352 		goto out;
1353 	}
1354 	*pagep = page;
1355 
1356 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1357 							ext4_get_block);
1358 
1359 	if (!ret && ext4_should_journal_data(inode)) {
1360 		ret = walk_page_buffers(handle, page_buffers(page),
1361 				from, to, NULL, do_journal_get_write_access);
1362 	}
1363 
1364 	if (ret) {
1365 		unlock_page(page);
1366 		ext4_journal_stop(handle);
1367 		page_cache_release(page);
1368 		/*
1369 		 * block_write_begin may have instantiated a few blocks
1370 		 * outside i_size.  Trim these off again. Don't need
1371 		 * i_size_read because we hold i_mutex.
1372 		 */
1373 		if (pos + len > inode->i_size)
1374 			vmtruncate(inode, inode->i_size);
1375 	}
1376 
1377 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1378 		goto retry;
1379 out:
1380 	return ret;
1381 }
1382 
1383 /* For write_end() in data=journal mode */
1384 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1385 {
1386 	if (!buffer_mapped(bh) || buffer_freed(bh))
1387 		return 0;
1388 	set_buffer_uptodate(bh);
1389 	return ext4_journal_dirty_metadata(handle, bh);
1390 }
1391 
1392 /*
1393  * We need to pick up the new inode size which generic_commit_write gave us
1394  * `file' can be NULL - eg, when called from page_symlink().
1395  *
1396  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1397  * buffers are managed internally.
1398  */
1399 static int ext4_ordered_write_end(struct file *file,
1400 				struct address_space *mapping,
1401 				loff_t pos, unsigned len, unsigned copied,
1402 				struct page *page, void *fsdata)
1403 {
1404 	handle_t *handle = ext4_journal_current_handle();
1405 	struct inode *inode = mapping->host;
1406 	int ret = 0, ret2;
1407 
1408 	ret = ext4_jbd2_file_inode(handle, inode);
1409 
1410 	if (ret == 0) {
1411 		loff_t new_i_size;
1412 
1413 		new_i_size = pos + copied;
1414 		if (new_i_size > EXT4_I(inode)->i_disksize) {
1415 			ext4_update_i_disksize(inode, new_i_size);
1416 			/* We need to mark inode dirty even if
1417 			 * new_i_size is less that inode->i_size
1418 			 * bu greater than i_disksize.(hint delalloc)
1419 			 */
1420 			ext4_mark_inode_dirty(handle, inode);
1421 		}
1422 
1423 		ret2 = generic_write_end(file, mapping, pos, len, copied,
1424 							page, fsdata);
1425 		copied = ret2;
1426 		if (ret2 < 0)
1427 			ret = ret2;
1428 	}
1429 	ret2 = ext4_journal_stop(handle);
1430 	if (!ret)
1431 		ret = ret2;
1432 
1433 	return ret ? ret : copied;
1434 }
1435 
1436 static int ext4_writeback_write_end(struct file *file,
1437 				struct address_space *mapping,
1438 				loff_t pos, unsigned len, unsigned copied,
1439 				struct page *page, void *fsdata)
1440 {
1441 	handle_t *handle = ext4_journal_current_handle();
1442 	struct inode *inode = mapping->host;
1443 	int ret = 0, ret2;
1444 	loff_t new_i_size;
1445 
1446 	new_i_size = pos + copied;
1447 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1448 		ext4_update_i_disksize(inode, new_i_size);
1449 		/* We need to mark inode dirty even if
1450 		 * new_i_size is less that inode->i_size
1451 		 * bu greater than i_disksize.(hint delalloc)
1452 		 */
1453 		ext4_mark_inode_dirty(handle, inode);
1454 	}
1455 
1456 	ret2 = generic_write_end(file, mapping, pos, len, copied,
1457 							page, fsdata);
1458 	copied = ret2;
1459 	if (ret2 < 0)
1460 		ret = ret2;
1461 
1462 	ret2 = ext4_journal_stop(handle);
1463 	if (!ret)
1464 		ret = ret2;
1465 
1466 	return ret ? ret : copied;
1467 }
1468 
1469 static int ext4_journalled_write_end(struct file *file,
1470 				struct address_space *mapping,
1471 				loff_t pos, unsigned len, unsigned copied,
1472 				struct page *page, void *fsdata)
1473 {
1474 	handle_t *handle = ext4_journal_current_handle();
1475 	struct inode *inode = mapping->host;
1476 	int ret = 0, ret2;
1477 	int partial = 0;
1478 	unsigned from, to;
1479 	loff_t new_i_size;
1480 
1481 	from = pos & (PAGE_CACHE_SIZE - 1);
1482 	to = from + len;
1483 
1484 	if (copied < len) {
1485 		if (!PageUptodate(page))
1486 			copied = 0;
1487 		page_zero_new_buffers(page, from+copied, to);
1488 	}
1489 
1490 	ret = walk_page_buffers(handle, page_buffers(page), from,
1491 				to, &partial, write_end_fn);
1492 	if (!partial)
1493 		SetPageUptodate(page);
1494 	new_i_size = pos + copied;
1495 	if (new_i_size > inode->i_size)
1496 		i_size_write(inode, pos+copied);
1497 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1498 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1499 		ext4_update_i_disksize(inode, new_i_size);
1500 		ret2 = ext4_mark_inode_dirty(handle, inode);
1501 		if (!ret)
1502 			ret = ret2;
1503 	}
1504 
1505 	unlock_page(page);
1506 	ret2 = ext4_journal_stop(handle);
1507 	if (!ret)
1508 		ret = ret2;
1509 	page_cache_release(page);
1510 
1511 	return ret ? ret : copied;
1512 }
1513 
1514 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1515 {
1516 	int retries = 0;
1517        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1518        unsigned long md_needed, mdblocks, total = 0;
1519 
1520 	/*
1521 	 * recalculate the amount of metadata blocks to reserve
1522 	 * in order to allocate nrblocks
1523 	 * worse case is one extent per block
1524 	 */
1525 repeat:
1526 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1527 	total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1528 	mdblocks = ext4_calc_metadata_amount(inode, total);
1529 	BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1530 
1531 	md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1532 	total = md_needed + nrblocks;
1533 
1534 	if (ext4_claim_free_blocks(sbi, total)) {
1535 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1536 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1537 			yield();
1538 			goto repeat;
1539 		}
1540 		return -ENOSPC;
1541 	}
1542 	EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1543 	EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1544 
1545 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1546 	return 0;       /* success */
1547 }
1548 
1549 static void ext4_da_release_space(struct inode *inode, int to_free)
1550 {
1551 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1552 	int total, mdb, mdb_free, release;
1553 
1554 	if (!to_free)
1555 		return;		/* Nothing to release, exit */
1556 
1557 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1558 
1559 	if (!EXT4_I(inode)->i_reserved_data_blocks) {
1560 		/*
1561 		 * if there is no reserved blocks, but we try to free some
1562 		 * then the counter is messed up somewhere.
1563 		 * but since this function is called from invalidate
1564 		 * page, it's harmless to return without any action
1565 		 */
1566 		printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1567 			    "blocks for inode %lu, but there is no reserved "
1568 			    "data blocks\n", to_free, inode->i_ino);
1569 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1570 		return;
1571 	}
1572 
1573 	/* recalculate the number of metablocks still need to be reserved */
1574 	total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1575 	mdb = ext4_calc_metadata_amount(inode, total);
1576 
1577 	/* figure out how many metablocks to release */
1578 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1579 	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1580 
1581 	release = to_free + mdb_free;
1582 
1583 	/* update fs dirty blocks counter for truncate case */
1584 	percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1585 
1586 	/* update per-inode reservations */
1587 	BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1588 	EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1589 
1590 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1591 	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1592 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1593 }
1594 
1595 static void ext4_da_page_release_reservation(struct page *page,
1596 						unsigned long offset)
1597 {
1598 	int to_release = 0;
1599 	struct buffer_head *head, *bh;
1600 	unsigned int curr_off = 0;
1601 
1602 	head = page_buffers(page);
1603 	bh = head;
1604 	do {
1605 		unsigned int next_off = curr_off + bh->b_size;
1606 
1607 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1608 			to_release++;
1609 			clear_buffer_delay(bh);
1610 		}
1611 		curr_off = next_off;
1612 	} while ((bh = bh->b_this_page) != head);
1613 	ext4_da_release_space(page->mapping->host, to_release);
1614 }
1615 
1616 /*
1617  * Delayed allocation stuff
1618  */
1619 
1620 struct mpage_da_data {
1621 	struct inode *inode;
1622 	struct buffer_head lbh;			/* extent of blocks */
1623 	unsigned long first_page, next_page;	/* extent of pages */
1624 	get_block_t *get_block;
1625 	struct writeback_control *wbc;
1626 	int io_done;
1627 	long pages_written;
1628 	int retval;
1629 };
1630 
1631 /*
1632  * mpage_da_submit_io - walks through extent of pages and try to write
1633  * them with writepage() call back
1634  *
1635  * @mpd->inode: inode
1636  * @mpd->first_page: first page of the extent
1637  * @mpd->next_page: page after the last page of the extent
1638  * @mpd->get_block: the filesystem's block mapper function
1639  *
1640  * By the time mpage_da_submit_io() is called we expect all blocks
1641  * to be allocated. this may be wrong if allocation failed.
1642  *
1643  * As pages are already locked by write_cache_pages(), we can't use it
1644  */
1645 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1646 {
1647 	struct address_space *mapping = mpd->inode->i_mapping;
1648 	int ret = 0, err, nr_pages, i;
1649 	unsigned long index, end;
1650 	struct pagevec pvec;
1651 	long pages_skipped;
1652 
1653 	BUG_ON(mpd->next_page <= mpd->first_page);
1654 	pagevec_init(&pvec, 0);
1655 	index = mpd->first_page;
1656 	end = mpd->next_page - 1;
1657 
1658 	while (index <= end) {
1659 		/*
1660 		 * We can use PAGECACHE_TAG_DIRTY lookup here because
1661 		 * even though we have cleared the dirty flag on the page
1662 		 * We still keep the page in the radix tree with tag
1663 		 * PAGECACHE_TAG_DIRTY. See clear_page_dirty_for_io.
1664 		 * The PAGECACHE_TAG_DIRTY is cleared in set_page_writeback
1665 		 * which is called via the below writepage callback.
1666 		 */
1667 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1668 					PAGECACHE_TAG_DIRTY,
1669 					min(end - index,
1670 					(pgoff_t)PAGEVEC_SIZE-1) + 1);
1671 		if (nr_pages == 0)
1672 			break;
1673 		for (i = 0; i < nr_pages; i++) {
1674 			struct page *page = pvec.pages[i];
1675 
1676 			pages_skipped = mpd->wbc->pages_skipped;
1677 			err = mapping->a_ops->writepage(page, mpd->wbc);
1678 			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1679 				/*
1680 				 * have successfully written the page
1681 				 * without skipping the same
1682 				 */
1683 				mpd->pages_written++;
1684 			/*
1685 			 * In error case, we have to continue because
1686 			 * remaining pages are still locked
1687 			 * XXX: unlock and re-dirty them?
1688 			 */
1689 			if (ret == 0)
1690 				ret = err;
1691 		}
1692 		pagevec_release(&pvec);
1693 	}
1694 	return ret;
1695 }
1696 
1697 /*
1698  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1699  *
1700  * @mpd->inode - inode to walk through
1701  * @exbh->b_blocknr - first block on a disk
1702  * @exbh->b_size - amount of space in bytes
1703  * @logical - first logical block to start assignment with
1704  *
1705  * the function goes through all passed space and put actual disk
1706  * block numbers into buffer heads, dropping BH_Delay
1707  */
1708 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1709 				 struct buffer_head *exbh)
1710 {
1711 	struct inode *inode = mpd->inode;
1712 	struct address_space *mapping = inode->i_mapping;
1713 	int blocks = exbh->b_size >> inode->i_blkbits;
1714 	sector_t pblock = exbh->b_blocknr, cur_logical;
1715 	struct buffer_head *head, *bh;
1716 	pgoff_t index, end;
1717 	struct pagevec pvec;
1718 	int nr_pages, i;
1719 
1720 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1721 	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1722 	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1723 
1724 	pagevec_init(&pvec, 0);
1725 
1726 	while (index <= end) {
1727 		/* XXX: optimize tail */
1728 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1729 		if (nr_pages == 0)
1730 			break;
1731 		for (i = 0; i < nr_pages; i++) {
1732 			struct page *page = pvec.pages[i];
1733 
1734 			index = page->index;
1735 			if (index > end)
1736 				break;
1737 			index++;
1738 
1739 			BUG_ON(!PageLocked(page));
1740 			BUG_ON(PageWriteback(page));
1741 			BUG_ON(!page_has_buffers(page));
1742 
1743 			bh = page_buffers(page);
1744 			head = bh;
1745 
1746 			/* skip blocks out of the range */
1747 			do {
1748 				if (cur_logical >= logical)
1749 					break;
1750 				cur_logical++;
1751 			} while ((bh = bh->b_this_page) != head);
1752 
1753 			do {
1754 				if (cur_logical >= logical + blocks)
1755 					break;
1756 				if (buffer_delay(bh)) {
1757 					bh->b_blocknr = pblock;
1758 					clear_buffer_delay(bh);
1759 					bh->b_bdev = inode->i_sb->s_bdev;
1760 				} else if (buffer_unwritten(bh)) {
1761 					bh->b_blocknr = pblock;
1762 					clear_buffer_unwritten(bh);
1763 					set_buffer_mapped(bh);
1764 					set_buffer_new(bh);
1765 					bh->b_bdev = inode->i_sb->s_bdev;
1766 				} else if (buffer_mapped(bh))
1767 					BUG_ON(bh->b_blocknr != pblock);
1768 
1769 				cur_logical++;
1770 				pblock++;
1771 			} while ((bh = bh->b_this_page) != head);
1772 		}
1773 		pagevec_release(&pvec);
1774 	}
1775 }
1776 
1777 
1778 /*
1779  * __unmap_underlying_blocks - just a helper function to unmap
1780  * set of blocks described by @bh
1781  */
1782 static inline void __unmap_underlying_blocks(struct inode *inode,
1783 					     struct buffer_head *bh)
1784 {
1785 	struct block_device *bdev = inode->i_sb->s_bdev;
1786 	int blocks, i;
1787 
1788 	blocks = bh->b_size >> inode->i_blkbits;
1789 	for (i = 0; i < blocks; i++)
1790 		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1791 }
1792 
1793 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1794 					sector_t logical, long blk_cnt)
1795 {
1796 	int nr_pages, i;
1797 	pgoff_t index, end;
1798 	struct pagevec pvec;
1799 	struct inode *inode = mpd->inode;
1800 	struct address_space *mapping = inode->i_mapping;
1801 
1802 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1803 	end   = (logical + blk_cnt - 1) >>
1804 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
1805 	while (index <= end) {
1806 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1807 		if (nr_pages == 0)
1808 			break;
1809 		for (i = 0; i < nr_pages; i++) {
1810 			struct page *page = pvec.pages[i];
1811 			index = page->index;
1812 			if (index > end)
1813 				break;
1814 			index++;
1815 
1816 			BUG_ON(!PageLocked(page));
1817 			BUG_ON(PageWriteback(page));
1818 			block_invalidatepage(page, 0);
1819 			ClearPageUptodate(page);
1820 			unlock_page(page);
1821 		}
1822 	}
1823 	return;
1824 }
1825 
1826 static void ext4_print_free_blocks(struct inode *inode)
1827 {
1828 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1829 	printk(KERN_EMERG "Total free blocks count %lld\n",
1830 			ext4_count_free_blocks(inode->i_sb));
1831 	printk(KERN_EMERG "Free/Dirty block details\n");
1832 	printk(KERN_EMERG "free_blocks=%lld\n",
1833 			percpu_counter_sum(&sbi->s_freeblocks_counter));
1834 	printk(KERN_EMERG "dirty_blocks=%lld\n",
1835 			percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1836 	printk(KERN_EMERG "Block reservation details\n");
1837 	printk(KERN_EMERG "i_reserved_data_blocks=%lu\n",
1838 			EXT4_I(inode)->i_reserved_data_blocks);
1839 	printk(KERN_EMERG "i_reserved_meta_blocks=%lu\n",
1840 			EXT4_I(inode)->i_reserved_meta_blocks);
1841 	return;
1842 }
1843 
1844 /*
1845  * mpage_da_map_blocks - go through given space
1846  *
1847  * @mpd->lbh - bh describing space
1848  * @mpd->get_block - the filesystem's block mapper function
1849  *
1850  * The function skips space we know is already mapped to disk blocks.
1851  *
1852  */
1853 static int  mpage_da_map_blocks(struct mpage_da_data *mpd)
1854 {
1855 	int err = 0;
1856 	struct buffer_head new;
1857 	struct buffer_head *lbh = &mpd->lbh;
1858 	sector_t next;
1859 
1860 	/*
1861 	 * We consider only non-mapped and non-allocated blocks
1862 	 */
1863 	if (buffer_mapped(lbh) && !buffer_delay(lbh))
1864 		return 0;
1865 	new.b_state = lbh->b_state;
1866 	new.b_blocknr = 0;
1867 	new.b_size = lbh->b_size;
1868 	next = lbh->b_blocknr;
1869 	/*
1870 	 * If we didn't accumulate anything
1871 	 * to write simply return
1872 	 */
1873 	if (!new.b_size)
1874 		return 0;
1875 	err = mpd->get_block(mpd->inode, next, &new, 1);
1876 	if (err) {
1877 
1878 		/* If get block returns with error
1879 		 * we simply return. Later writepage
1880 		 * will redirty the page and writepages
1881 		 * will find the dirty page again
1882 		 */
1883 		if (err == -EAGAIN)
1884 			return 0;
1885 
1886 		if (err == -ENOSPC &&
1887 				ext4_count_free_blocks(mpd->inode->i_sb)) {
1888 			mpd->retval = err;
1889 			return 0;
1890 		}
1891 
1892 		/*
1893 		 * get block failure will cause us
1894 		 * to loop in writepages. Because
1895 		 * a_ops->writepage won't be able to
1896 		 * make progress. The page will be redirtied
1897 		 * by writepage and writepages will again
1898 		 * try to write the same.
1899 		 */
1900 		printk(KERN_EMERG "%s block allocation failed for inode %lu "
1901 				  "at logical offset %llu with max blocks "
1902 				  "%zd with error %d\n",
1903 				  __func__, mpd->inode->i_ino,
1904 				  (unsigned long long)next,
1905 				  lbh->b_size >> mpd->inode->i_blkbits, err);
1906 		printk(KERN_EMERG "This should not happen.!! "
1907 					"Data will be lost\n");
1908 		if (err == -ENOSPC) {
1909 			ext4_print_free_blocks(mpd->inode);
1910 		}
1911 		/* invlaidate all the pages */
1912 		ext4_da_block_invalidatepages(mpd, next,
1913 				lbh->b_size >> mpd->inode->i_blkbits);
1914 		return err;
1915 	}
1916 	BUG_ON(new.b_size == 0);
1917 
1918 	if (buffer_new(&new))
1919 		__unmap_underlying_blocks(mpd->inode, &new);
1920 
1921 	/*
1922 	 * If blocks are delayed marked, we need to
1923 	 * put actual blocknr and drop delayed bit
1924 	 */
1925 	if (buffer_delay(lbh) || buffer_unwritten(lbh))
1926 		mpage_put_bnr_to_bhs(mpd, next, &new);
1927 
1928 	return 0;
1929 }
1930 
1931 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1932 		(1 << BH_Delay) | (1 << BH_Unwritten))
1933 
1934 /*
1935  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1936  *
1937  * @mpd->lbh - extent of blocks
1938  * @logical - logical number of the block in the file
1939  * @bh - bh of the block (used to access block's state)
1940  *
1941  * the function is used to collect contig. blocks in same state
1942  */
1943 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1944 				   sector_t logical, struct buffer_head *bh)
1945 {
1946 	sector_t next;
1947 	size_t b_size = bh->b_size;
1948 	struct buffer_head *lbh = &mpd->lbh;
1949 	int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1950 
1951 	/* check if thereserved journal credits might overflow */
1952 	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1953 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1954 			/*
1955 			 * With non-extent format we are limited by the journal
1956 			 * credit available.  Total credit needed to insert
1957 			 * nrblocks contiguous blocks is dependent on the
1958 			 * nrblocks.  So limit nrblocks.
1959 			 */
1960 			goto flush_it;
1961 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1962 				EXT4_MAX_TRANS_DATA) {
1963 			/*
1964 			 * Adding the new buffer_head would make it cross the
1965 			 * allowed limit for which we have journal credit
1966 			 * reserved. So limit the new bh->b_size
1967 			 */
1968 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1969 						mpd->inode->i_blkbits;
1970 			/* we will do mpage_da_submit_io in the next loop */
1971 		}
1972 	}
1973 	/*
1974 	 * First block in the extent
1975 	 */
1976 	if (lbh->b_size == 0) {
1977 		lbh->b_blocknr = logical;
1978 		lbh->b_size = b_size;
1979 		lbh->b_state = bh->b_state & BH_FLAGS;
1980 		return;
1981 	}
1982 
1983 	next = lbh->b_blocknr + nrblocks;
1984 	/*
1985 	 * Can we merge the block to our big extent?
1986 	 */
1987 	if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1988 		lbh->b_size += b_size;
1989 		return;
1990 	}
1991 
1992 flush_it:
1993 	/*
1994 	 * We couldn't merge the block to our extent, so we
1995 	 * need to flush current  extent and start new one
1996 	 */
1997 	if (mpage_da_map_blocks(mpd) == 0)
1998 		mpage_da_submit_io(mpd);
1999 	mpd->io_done = 1;
2000 	return;
2001 }
2002 
2003 /*
2004  * __mpage_da_writepage - finds extent of pages and blocks
2005  *
2006  * @page: page to consider
2007  * @wbc: not used, we just follow rules
2008  * @data: context
2009  *
2010  * The function finds extents of pages and scan them for all blocks.
2011  */
2012 static int __mpage_da_writepage(struct page *page,
2013 				struct writeback_control *wbc, void *data)
2014 {
2015 	struct mpage_da_data *mpd = data;
2016 	struct inode *inode = mpd->inode;
2017 	struct buffer_head *bh, *head, fake;
2018 	sector_t logical;
2019 
2020 	if (mpd->io_done) {
2021 		/*
2022 		 * Rest of the page in the page_vec
2023 		 * redirty then and skip then. We will
2024 		 * try to to write them again after
2025 		 * starting a new transaction
2026 		 */
2027 		redirty_page_for_writepage(wbc, page);
2028 		unlock_page(page);
2029 		return MPAGE_DA_EXTENT_TAIL;
2030 	}
2031 	/*
2032 	 * Can we merge this page to current extent?
2033 	 */
2034 	if (mpd->next_page != page->index) {
2035 		/*
2036 		 * Nope, we can't. So, we map non-allocated blocks
2037 		 * and start IO on them using writepage()
2038 		 */
2039 		if (mpd->next_page != mpd->first_page) {
2040 			if (mpage_da_map_blocks(mpd) == 0)
2041 				mpage_da_submit_io(mpd);
2042 			/*
2043 			 * skip rest of the page in the page_vec
2044 			 */
2045 			mpd->io_done = 1;
2046 			redirty_page_for_writepage(wbc, page);
2047 			unlock_page(page);
2048 			return MPAGE_DA_EXTENT_TAIL;
2049 		}
2050 
2051 		/*
2052 		 * Start next extent of pages ...
2053 		 */
2054 		mpd->first_page = page->index;
2055 
2056 		/*
2057 		 * ... and blocks
2058 		 */
2059 		mpd->lbh.b_size = 0;
2060 		mpd->lbh.b_state = 0;
2061 		mpd->lbh.b_blocknr = 0;
2062 	}
2063 
2064 	mpd->next_page = page->index + 1;
2065 	logical = (sector_t) page->index <<
2066 		  (PAGE_CACHE_SHIFT - inode->i_blkbits);
2067 
2068 	if (!page_has_buffers(page)) {
2069 		/*
2070 		 * There is no attached buffer heads yet (mmap?)
2071 		 * we treat the page asfull of dirty blocks
2072 		 */
2073 		bh = &fake;
2074 		bh->b_size = PAGE_CACHE_SIZE;
2075 		bh->b_state = 0;
2076 		set_buffer_dirty(bh);
2077 		set_buffer_uptodate(bh);
2078 		mpage_add_bh_to_extent(mpd, logical, bh);
2079 		if (mpd->io_done)
2080 			return MPAGE_DA_EXTENT_TAIL;
2081 	} else {
2082 		/*
2083 		 * Page with regular buffer heads, just add all dirty ones
2084 		 */
2085 		head = page_buffers(page);
2086 		bh = head;
2087 		do {
2088 			BUG_ON(buffer_locked(bh));
2089 			if (buffer_dirty(bh) &&
2090 				(!buffer_mapped(bh) || buffer_delay(bh))) {
2091 				mpage_add_bh_to_extent(mpd, logical, bh);
2092 				if (mpd->io_done)
2093 					return MPAGE_DA_EXTENT_TAIL;
2094 			}
2095 			logical++;
2096 		} while ((bh = bh->b_this_page) != head);
2097 	}
2098 
2099 	return 0;
2100 }
2101 
2102 /*
2103  * mpage_da_writepages - walk the list of dirty pages of the given
2104  * address space, allocates non-allocated blocks, maps newly-allocated
2105  * blocks to existing bhs and issue IO them
2106  *
2107  * @mapping: address space structure to write
2108  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2109  * @get_block: the filesystem's block mapper function.
2110  *
2111  * This is a library function, which implements the writepages()
2112  * address_space_operation.
2113  */
2114 static int mpage_da_writepages(struct address_space *mapping,
2115 			       struct writeback_control *wbc,
2116 			       struct mpage_da_data *mpd)
2117 {
2118 	int ret;
2119 
2120 	if (!mpd->get_block)
2121 		return generic_writepages(mapping, wbc);
2122 
2123 	mpd->lbh.b_size = 0;
2124 	mpd->lbh.b_state = 0;
2125 	mpd->lbh.b_blocknr = 0;
2126 	mpd->first_page = 0;
2127 	mpd->next_page = 0;
2128 	mpd->io_done = 0;
2129 	mpd->pages_written = 0;
2130 	mpd->retval = 0;
2131 
2132 	ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
2133 	/*
2134 	 * Handle last extent of pages
2135 	 */
2136 	if (!mpd->io_done && mpd->next_page != mpd->first_page) {
2137 		if (mpage_da_map_blocks(mpd) == 0)
2138 			mpage_da_submit_io(mpd);
2139 
2140 		mpd->io_done = 1;
2141 		ret = MPAGE_DA_EXTENT_TAIL;
2142 	}
2143 	wbc->nr_to_write -= mpd->pages_written;
2144 	return ret;
2145 }
2146 
2147 /*
2148  * this is a special callback for ->write_begin() only
2149  * it's intention is to return mapped block or reserve space
2150  */
2151 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2152 				  struct buffer_head *bh_result, int create)
2153 {
2154 	int ret = 0;
2155 
2156 	BUG_ON(create == 0);
2157 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2158 
2159 	/*
2160 	 * first, we need to know whether the block is allocated already
2161 	 * preallocated blocks are unmapped but should treated
2162 	 * the same as allocated blocks.
2163 	 */
2164 	ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2165 	if ((ret == 0) && !buffer_delay(bh_result)) {
2166 		/* the block isn't (pre)allocated yet, let's reserve space */
2167 		/*
2168 		 * XXX: __block_prepare_write() unmaps passed block,
2169 		 * is it OK?
2170 		 */
2171 		ret = ext4_da_reserve_space(inode, 1);
2172 		if (ret)
2173 			/* not enough space to reserve */
2174 			return ret;
2175 
2176 		map_bh(bh_result, inode->i_sb, 0);
2177 		set_buffer_new(bh_result);
2178 		set_buffer_delay(bh_result);
2179 	} else if (ret > 0) {
2180 		bh_result->b_size = (ret << inode->i_blkbits);
2181 		ret = 0;
2182 	}
2183 
2184 	return ret;
2185 }
2186 #define		EXT4_DELALLOC_RSVED	1
2187 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2188 				   struct buffer_head *bh_result, int create)
2189 {
2190 	int ret;
2191 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2192 	loff_t disksize = EXT4_I(inode)->i_disksize;
2193 	handle_t *handle = NULL;
2194 
2195 	handle = ext4_journal_current_handle();
2196 	BUG_ON(!handle);
2197 	ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2198 			bh_result, create, 0, EXT4_DELALLOC_RSVED);
2199 	if (ret > 0) {
2200 
2201 		bh_result->b_size = (ret << inode->i_blkbits);
2202 
2203 		if (ext4_should_order_data(inode)) {
2204 			int retval;
2205 			retval = ext4_jbd2_file_inode(handle, inode);
2206 			if (retval)
2207 				/*
2208 				 * Failed to add inode for ordered
2209 				 * mode. Don't update file size
2210 				 */
2211 				return retval;
2212 		}
2213 
2214 		/*
2215 		 * Update on-disk size along with block allocation
2216 		 * we don't use 'extend_disksize' as size may change
2217 		 * within already allocated block -bzzz
2218 		 */
2219 		disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2220 		if (disksize > i_size_read(inode))
2221 			disksize = i_size_read(inode);
2222 		if (disksize > EXT4_I(inode)->i_disksize) {
2223 			ext4_update_i_disksize(inode, disksize);
2224 			ret = ext4_mark_inode_dirty(handle, inode);
2225 			return ret;
2226 		}
2227 		ret = 0;
2228 	}
2229 	return ret;
2230 }
2231 
2232 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2233 {
2234 	/*
2235 	 * unmapped buffer is possible for holes.
2236 	 * delay buffer is possible with delayed allocation
2237 	 */
2238 	return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2239 }
2240 
2241 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2242 				   struct buffer_head *bh_result, int create)
2243 {
2244 	int ret = 0;
2245 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2246 
2247 	/*
2248 	 * we don't want to do block allocation in writepage
2249 	 * so call get_block_wrap with create = 0
2250 	 */
2251 	ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2252 				   bh_result, 0, 0, 0);
2253 	if (ret > 0) {
2254 		bh_result->b_size = (ret << inode->i_blkbits);
2255 		ret = 0;
2256 	}
2257 	return ret;
2258 }
2259 
2260 /*
2261  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2262  * get called via journal_submit_inode_data_buffers (no journal handle)
2263  * get called via shrink_page_list via pdflush (no journal handle)
2264  * or grab_page_cache when doing write_begin (have journal handle)
2265  */
2266 static int ext4_da_writepage(struct page *page,
2267 				struct writeback_control *wbc)
2268 {
2269 	int ret = 0;
2270 	loff_t size;
2271 	unsigned long len;
2272 	struct buffer_head *page_bufs;
2273 	struct inode *inode = page->mapping->host;
2274 
2275 	size = i_size_read(inode);
2276 	if (page->index == size >> PAGE_CACHE_SHIFT)
2277 		len = size & ~PAGE_CACHE_MASK;
2278 	else
2279 		len = PAGE_CACHE_SIZE;
2280 
2281 	if (page_has_buffers(page)) {
2282 		page_bufs = page_buffers(page);
2283 		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2284 					ext4_bh_unmapped_or_delay)) {
2285 			/*
2286 			 * We don't want to do  block allocation
2287 			 * So redirty the page and return
2288 			 * We may reach here when we do a journal commit
2289 			 * via journal_submit_inode_data_buffers.
2290 			 * If we don't have mapping block we just ignore
2291 			 * them. We can also reach here via shrink_page_list
2292 			 */
2293 			redirty_page_for_writepage(wbc, page);
2294 			unlock_page(page);
2295 			return 0;
2296 		}
2297 	} else {
2298 		/*
2299 		 * The test for page_has_buffers() is subtle:
2300 		 * We know the page is dirty but it lost buffers. That means
2301 		 * that at some moment in time after write_begin()/write_end()
2302 		 * has been called all buffers have been clean and thus they
2303 		 * must have been written at least once. So they are all
2304 		 * mapped and we can happily proceed with mapping them
2305 		 * and writing the page.
2306 		 *
2307 		 * Try to initialize the buffer_heads and check whether
2308 		 * all are mapped and non delay. We don't want to
2309 		 * do block allocation here.
2310 		 */
2311 		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2312 						ext4_normal_get_block_write);
2313 		if (!ret) {
2314 			page_bufs = page_buffers(page);
2315 			/* check whether all are mapped and non delay */
2316 			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2317 						ext4_bh_unmapped_or_delay)) {
2318 				redirty_page_for_writepage(wbc, page);
2319 				unlock_page(page);
2320 				return 0;
2321 			}
2322 		} else {
2323 			/*
2324 			 * We can't do block allocation here
2325 			 * so just redity the page and unlock
2326 			 * and return
2327 			 */
2328 			redirty_page_for_writepage(wbc, page);
2329 			unlock_page(page);
2330 			return 0;
2331 		}
2332 	}
2333 
2334 	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2335 		ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2336 	else
2337 		ret = block_write_full_page(page,
2338 						ext4_normal_get_block_write,
2339 						wbc);
2340 
2341 	return ret;
2342 }
2343 
2344 /*
2345  * This is called via ext4_da_writepages() to
2346  * calulate the total number of credits to reserve to fit
2347  * a single extent allocation into a single transaction,
2348  * ext4_da_writpeages() will loop calling this before
2349  * the block allocation.
2350  */
2351 
2352 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2353 {
2354 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2355 
2356 	/*
2357 	 * With non-extent format the journal credit needed to
2358 	 * insert nrblocks contiguous block is dependent on
2359 	 * number of contiguous block. So we will limit
2360 	 * number of contiguous block to a sane value
2361 	 */
2362 	if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2363 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2364 		max_blocks = EXT4_MAX_TRANS_DATA;
2365 
2366 	return ext4_chunk_trans_blocks(inode, max_blocks);
2367 }
2368 
2369 static int ext4_da_writepages(struct address_space *mapping,
2370 			      struct writeback_control *wbc)
2371 {
2372 	pgoff_t	index;
2373 	int range_whole = 0;
2374 	handle_t *handle = NULL;
2375 	struct mpage_da_data mpd;
2376 	struct inode *inode = mapping->host;
2377 	int no_nrwrite_index_update;
2378 	long pages_written = 0, pages_skipped;
2379 	int needed_blocks, ret = 0, nr_to_writebump = 0;
2380 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2381 
2382 	/*
2383 	 * No pages to write? This is mainly a kludge to avoid starting
2384 	 * a transaction for special inodes like journal inode on last iput()
2385 	 * because that could violate lock ordering on umount
2386 	 */
2387 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2388 		return 0;
2389 	/*
2390 	 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2391 	 * This make sure small files blocks are allocated in
2392 	 * single attempt. This ensure that small files
2393 	 * get less fragmented.
2394 	 */
2395 	if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2396 		nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2397 		wbc->nr_to_write = sbi->s_mb_stream_request;
2398 	}
2399 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2400 		range_whole = 1;
2401 
2402 	if (wbc->range_cyclic)
2403 		index = mapping->writeback_index;
2404 	else
2405 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2406 
2407 	mpd.wbc = wbc;
2408 	mpd.inode = mapping->host;
2409 
2410 	/*
2411 	 * we don't want write_cache_pages to update
2412 	 * nr_to_write and writeback_index
2413 	 */
2414 	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2415 	wbc->no_nrwrite_index_update = 1;
2416 	pages_skipped = wbc->pages_skipped;
2417 
2418 	while (!ret && wbc->nr_to_write > 0) {
2419 
2420 		/*
2421 		 * we  insert one extent at a time. So we need
2422 		 * credit needed for single extent allocation.
2423 		 * journalled mode is currently not supported
2424 		 * by delalloc
2425 		 */
2426 		BUG_ON(ext4_should_journal_data(inode));
2427 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2428 
2429 		/* start a new transaction*/
2430 		handle = ext4_journal_start(inode, needed_blocks);
2431 		if (IS_ERR(handle)) {
2432 			ret = PTR_ERR(handle);
2433 			printk(KERN_EMERG "%s: jbd2_start: "
2434 			       "%ld pages, ino %lu; err %d\n", __func__,
2435 				wbc->nr_to_write, inode->i_ino, ret);
2436 			dump_stack();
2437 			goto out_writepages;
2438 		}
2439 		mpd.get_block = ext4_da_get_block_write;
2440 		ret = mpage_da_writepages(mapping, wbc, &mpd);
2441 
2442 		ext4_journal_stop(handle);
2443 
2444 		if (mpd.retval == -ENOSPC) {
2445 			/* commit the transaction which would
2446 			 * free blocks released in the transaction
2447 			 * and try again
2448 			 */
2449 			jbd2_journal_force_commit_nested(sbi->s_journal);
2450 			wbc->pages_skipped = pages_skipped;
2451 			ret = 0;
2452 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2453 			/*
2454 			 * got one extent now try with
2455 			 * rest of the pages
2456 			 */
2457 			pages_written += mpd.pages_written;
2458 			wbc->pages_skipped = pages_skipped;
2459 			ret = 0;
2460 		} else if (wbc->nr_to_write)
2461 			/*
2462 			 * There is no more writeout needed
2463 			 * or we requested for a noblocking writeout
2464 			 * and we found the device congested
2465 			 */
2466 			break;
2467 	}
2468 	if (pages_skipped != wbc->pages_skipped)
2469 		printk(KERN_EMERG "This should not happen leaving %s "
2470 				"with nr_to_write = %ld ret = %d\n",
2471 				__func__, wbc->nr_to_write, ret);
2472 
2473 	/* Update index */
2474 	index += pages_written;
2475 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2476 		/*
2477 		 * set the writeback_index so that range_cyclic
2478 		 * mode will write it back later
2479 		 */
2480 		mapping->writeback_index = index;
2481 
2482 out_writepages:
2483 	if (!no_nrwrite_index_update)
2484 		wbc->no_nrwrite_index_update = 0;
2485 	wbc->nr_to_write -= nr_to_writebump;
2486 	return ret;
2487 }
2488 
2489 #define FALL_BACK_TO_NONDELALLOC 1
2490 static int ext4_nonda_switch(struct super_block *sb)
2491 {
2492 	s64 free_blocks, dirty_blocks;
2493 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2494 
2495 	/*
2496 	 * switch to non delalloc mode if we are running low
2497 	 * on free block. The free block accounting via percpu
2498 	 * counters can get slightly wrong with FBC_BATCH getting
2499 	 * accumulated on each CPU without updating global counters
2500 	 * Delalloc need an accurate free block accounting. So switch
2501 	 * to non delalloc when we are near to error range.
2502 	 */
2503 	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2504 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2505 	if (2 * free_blocks < 3 * dirty_blocks ||
2506 		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2507 		/*
2508 		 * free block count is less that 150% of dirty blocks
2509 		 * or free blocks is less that watermark
2510 		 */
2511 		return 1;
2512 	}
2513 	return 0;
2514 }
2515 
2516 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2517 				loff_t pos, unsigned len, unsigned flags,
2518 				struct page **pagep, void **fsdata)
2519 {
2520 	int ret, retries = 0;
2521 	struct page *page;
2522 	pgoff_t index;
2523 	unsigned from, to;
2524 	struct inode *inode = mapping->host;
2525 	handle_t *handle;
2526 
2527 	index = pos >> PAGE_CACHE_SHIFT;
2528 	from = pos & (PAGE_CACHE_SIZE - 1);
2529 	to = from + len;
2530 
2531 	if (ext4_nonda_switch(inode->i_sb)) {
2532 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2533 		return ext4_write_begin(file, mapping, pos,
2534 					len, flags, pagep, fsdata);
2535 	}
2536 	*fsdata = (void *)0;
2537 retry:
2538 	/*
2539 	 * With delayed allocation, we don't log the i_disksize update
2540 	 * if there is delayed block allocation. But we still need
2541 	 * to journalling the i_disksize update if writes to the end
2542 	 * of file which has an already mapped buffer.
2543 	 */
2544 	handle = ext4_journal_start(inode, 1);
2545 	if (IS_ERR(handle)) {
2546 		ret = PTR_ERR(handle);
2547 		goto out;
2548 	}
2549 
2550 	page = __grab_cache_page(mapping, index);
2551 	if (!page) {
2552 		ext4_journal_stop(handle);
2553 		ret = -ENOMEM;
2554 		goto out;
2555 	}
2556 	*pagep = page;
2557 
2558 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2559 							ext4_da_get_block_prep);
2560 	if (ret < 0) {
2561 		unlock_page(page);
2562 		ext4_journal_stop(handle);
2563 		page_cache_release(page);
2564 		/*
2565 		 * block_write_begin may have instantiated a few blocks
2566 		 * outside i_size.  Trim these off again. Don't need
2567 		 * i_size_read because we hold i_mutex.
2568 		 */
2569 		if (pos + len > inode->i_size)
2570 			vmtruncate(inode, inode->i_size);
2571 	}
2572 
2573 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2574 		goto retry;
2575 out:
2576 	return ret;
2577 }
2578 
2579 /*
2580  * Check if we should update i_disksize
2581  * when write to the end of file but not require block allocation
2582  */
2583 static int ext4_da_should_update_i_disksize(struct page *page,
2584 					 unsigned long offset)
2585 {
2586 	struct buffer_head *bh;
2587 	struct inode *inode = page->mapping->host;
2588 	unsigned int idx;
2589 	int i;
2590 
2591 	bh = page_buffers(page);
2592 	idx = offset >> inode->i_blkbits;
2593 
2594 	for (i = 0; i < idx; i++)
2595 		bh = bh->b_this_page;
2596 
2597 	if (!buffer_mapped(bh) || (buffer_delay(bh)))
2598 		return 0;
2599 	return 1;
2600 }
2601 
2602 static int ext4_da_write_end(struct file *file,
2603 				struct address_space *mapping,
2604 				loff_t pos, unsigned len, unsigned copied,
2605 				struct page *page, void *fsdata)
2606 {
2607 	struct inode *inode = mapping->host;
2608 	int ret = 0, ret2;
2609 	handle_t *handle = ext4_journal_current_handle();
2610 	loff_t new_i_size;
2611 	unsigned long start, end;
2612 	int write_mode = (int)(unsigned long)fsdata;
2613 
2614 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2615 		if (ext4_should_order_data(inode)) {
2616 			return ext4_ordered_write_end(file, mapping, pos,
2617 					len, copied, page, fsdata);
2618 		} else if (ext4_should_writeback_data(inode)) {
2619 			return ext4_writeback_write_end(file, mapping, pos,
2620 					len, copied, page, fsdata);
2621 		} else {
2622 			BUG();
2623 		}
2624 	}
2625 
2626 	start = pos & (PAGE_CACHE_SIZE - 1);
2627 	end = start + copied - 1;
2628 
2629 	/*
2630 	 * generic_write_end() will run mark_inode_dirty() if i_size
2631 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2632 	 * into that.
2633 	 */
2634 
2635 	new_i_size = pos + copied;
2636 	if (new_i_size > EXT4_I(inode)->i_disksize) {
2637 		if (ext4_da_should_update_i_disksize(page, end)) {
2638 			down_write(&EXT4_I(inode)->i_data_sem);
2639 			if (new_i_size > EXT4_I(inode)->i_disksize) {
2640 				/*
2641 				 * Updating i_disksize when extending file
2642 				 * without needing block allocation
2643 				 */
2644 				if (ext4_should_order_data(inode))
2645 					ret = ext4_jbd2_file_inode(handle,
2646 								   inode);
2647 
2648 				EXT4_I(inode)->i_disksize = new_i_size;
2649 			}
2650 			up_write(&EXT4_I(inode)->i_data_sem);
2651 			/* We need to mark inode dirty even if
2652 			 * new_i_size is less that inode->i_size
2653 			 * bu greater than i_disksize.(hint delalloc)
2654 			 */
2655 			ext4_mark_inode_dirty(handle, inode);
2656 		}
2657 	}
2658 	ret2 = generic_write_end(file, mapping, pos, len, copied,
2659 							page, fsdata);
2660 	copied = ret2;
2661 	if (ret2 < 0)
2662 		ret = ret2;
2663 	ret2 = ext4_journal_stop(handle);
2664 	if (!ret)
2665 		ret = ret2;
2666 
2667 	return ret ? ret : copied;
2668 }
2669 
2670 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2671 {
2672 	/*
2673 	 * Drop reserved blocks
2674 	 */
2675 	BUG_ON(!PageLocked(page));
2676 	if (!page_has_buffers(page))
2677 		goto out;
2678 
2679 	ext4_da_page_release_reservation(page, offset);
2680 
2681 out:
2682 	ext4_invalidatepage(page, offset);
2683 
2684 	return;
2685 }
2686 
2687 
2688 /*
2689  * bmap() is special.  It gets used by applications such as lilo and by
2690  * the swapper to find the on-disk block of a specific piece of data.
2691  *
2692  * Naturally, this is dangerous if the block concerned is still in the
2693  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2694  * filesystem and enables swap, then they may get a nasty shock when the
2695  * data getting swapped to that swapfile suddenly gets overwritten by
2696  * the original zero's written out previously to the journal and
2697  * awaiting writeback in the kernel's buffer cache.
2698  *
2699  * So, if we see any bmap calls here on a modified, data-journaled file,
2700  * take extra steps to flush any blocks which might be in the cache.
2701  */
2702 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2703 {
2704 	struct inode *inode = mapping->host;
2705 	journal_t *journal;
2706 	int err;
2707 
2708 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2709 			test_opt(inode->i_sb, DELALLOC)) {
2710 		/*
2711 		 * With delalloc we want to sync the file
2712 		 * so that we can make sure we allocate
2713 		 * blocks for file
2714 		 */
2715 		filemap_write_and_wait(mapping);
2716 	}
2717 
2718 	if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2719 		/*
2720 		 * This is a REALLY heavyweight approach, but the use of
2721 		 * bmap on dirty files is expected to be extremely rare:
2722 		 * only if we run lilo or swapon on a freshly made file
2723 		 * do we expect this to happen.
2724 		 *
2725 		 * (bmap requires CAP_SYS_RAWIO so this does not
2726 		 * represent an unprivileged user DOS attack --- we'd be
2727 		 * in trouble if mortal users could trigger this path at
2728 		 * will.)
2729 		 *
2730 		 * NB. EXT4_STATE_JDATA is not set on files other than
2731 		 * regular files.  If somebody wants to bmap a directory
2732 		 * or symlink and gets confused because the buffer
2733 		 * hasn't yet been flushed to disk, they deserve
2734 		 * everything they get.
2735 		 */
2736 
2737 		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2738 		journal = EXT4_JOURNAL(inode);
2739 		jbd2_journal_lock_updates(journal);
2740 		err = jbd2_journal_flush(journal);
2741 		jbd2_journal_unlock_updates(journal);
2742 
2743 		if (err)
2744 			return 0;
2745 	}
2746 
2747 	return generic_block_bmap(mapping, block, ext4_get_block);
2748 }
2749 
2750 static int bget_one(handle_t *handle, struct buffer_head *bh)
2751 {
2752 	get_bh(bh);
2753 	return 0;
2754 }
2755 
2756 static int bput_one(handle_t *handle, struct buffer_head *bh)
2757 {
2758 	put_bh(bh);
2759 	return 0;
2760 }
2761 
2762 /*
2763  * Note that we don't need to start a transaction unless we're journaling data
2764  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2765  * need to file the inode to the transaction's list in ordered mode because if
2766  * we are writing back data added by write(), the inode is already there and if
2767  * we are writing back data modified via mmap(), noone guarantees in which
2768  * transaction the data will hit the disk. In case we are journaling data, we
2769  * cannot start transaction directly because transaction start ranks above page
2770  * lock so we have to do some magic.
2771  *
2772  * In all journaling modes block_write_full_page() will start the I/O.
2773  *
2774  * Problem:
2775  *
2776  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2777  *		ext4_writepage()
2778  *
2779  * Similar for:
2780  *
2781  *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2782  *
2783  * Same applies to ext4_get_block().  We will deadlock on various things like
2784  * lock_journal and i_data_sem
2785  *
2786  * Setting PF_MEMALLOC here doesn't work - too many internal memory
2787  * allocations fail.
2788  *
2789  * 16May01: If we're reentered then journal_current_handle() will be
2790  *	    non-zero. We simply *return*.
2791  *
2792  * 1 July 2001: @@@ FIXME:
2793  *   In journalled data mode, a data buffer may be metadata against the
2794  *   current transaction.  But the same file is part of a shared mapping
2795  *   and someone does a writepage() on it.
2796  *
2797  *   We will move the buffer onto the async_data list, but *after* it has
2798  *   been dirtied. So there's a small window where we have dirty data on
2799  *   BJ_Metadata.
2800  *
2801  *   Note that this only applies to the last partial page in the file.  The
2802  *   bit which block_write_full_page() uses prepare/commit for.  (That's
2803  *   broken code anyway: it's wrong for msync()).
2804  *
2805  *   It's a rare case: affects the final partial page, for journalled data
2806  *   where the file is subject to bith write() and writepage() in the same
2807  *   transction.  To fix it we'll need a custom block_write_full_page().
2808  *   We'll probably need that anyway for journalling writepage() output.
2809  *
2810  * We don't honour synchronous mounts for writepage().  That would be
2811  * disastrous.  Any write() or metadata operation will sync the fs for
2812  * us.
2813  *
2814  */
2815 static int __ext4_normal_writepage(struct page *page,
2816 				struct writeback_control *wbc)
2817 {
2818 	struct inode *inode = page->mapping->host;
2819 
2820 	if (test_opt(inode->i_sb, NOBH))
2821 		return nobh_writepage(page,
2822 					ext4_normal_get_block_write, wbc);
2823 	else
2824 		return block_write_full_page(page,
2825 						ext4_normal_get_block_write,
2826 						wbc);
2827 }
2828 
2829 static int ext4_normal_writepage(struct page *page,
2830 				struct writeback_control *wbc)
2831 {
2832 	struct inode *inode = page->mapping->host;
2833 	loff_t size = i_size_read(inode);
2834 	loff_t len;
2835 
2836 	J_ASSERT(PageLocked(page));
2837 	if (page->index == size >> PAGE_CACHE_SHIFT)
2838 		len = size & ~PAGE_CACHE_MASK;
2839 	else
2840 		len = PAGE_CACHE_SIZE;
2841 
2842 	if (page_has_buffers(page)) {
2843 		/* if page has buffers it should all be mapped
2844 		 * and allocated. If there are not buffers attached
2845 		 * to the page we know the page is dirty but it lost
2846 		 * buffers. That means that at some moment in time
2847 		 * after write_begin() / write_end() has been called
2848 		 * all buffers have been clean and thus they must have been
2849 		 * written at least once. So they are all mapped and we can
2850 		 * happily proceed with mapping them and writing the page.
2851 		 */
2852 		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2853 					ext4_bh_unmapped_or_delay));
2854 	}
2855 
2856 	if (!ext4_journal_current_handle())
2857 		return __ext4_normal_writepage(page, wbc);
2858 
2859 	redirty_page_for_writepage(wbc, page);
2860 	unlock_page(page);
2861 	return 0;
2862 }
2863 
2864 static int __ext4_journalled_writepage(struct page *page,
2865 				struct writeback_control *wbc)
2866 {
2867 	struct address_space *mapping = page->mapping;
2868 	struct inode *inode = mapping->host;
2869 	struct buffer_head *page_bufs;
2870 	handle_t *handle = NULL;
2871 	int ret = 0;
2872 	int err;
2873 
2874 	ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2875 					ext4_normal_get_block_write);
2876 	if (ret != 0)
2877 		goto out_unlock;
2878 
2879 	page_bufs = page_buffers(page);
2880 	walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2881 								bget_one);
2882 	/* As soon as we unlock the page, it can go away, but we have
2883 	 * references to buffers so we are safe */
2884 	unlock_page(page);
2885 
2886 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2887 	if (IS_ERR(handle)) {
2888 		ret = PTR_ERR(handle);
2889 		goto out;
2890 	}
2891 
2892 	ret = walk_page_buffers(handle, page_bufs, 0,
2893 			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2894 
2895 	err = walk_page_buffers(handle, page_bufs, 0,
2896 				PAGE_CACHE_SIZE, NULL, write_end_fn);
2897 	if (ret == 0)
2898 		ret = err;
2899 	err = ext4_journal_stop(handle);
2900 	if (!ret)
2901 		ret = err;
2902 
2903 	walk_page_buffers(handle, page_bufs, 0,
2904 				PAGE_CACHE_SIZE, NULL, bput_one);
2905 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2906 	goto out;
2907 
2908 out_unlock:
2909 	unlock_page(page);
2910 out:
2911 	return ret;
2912 }
2913 
2914 static int ext4_journalled_writepage(struct page *page,
2915 				struct writeback_control *wbc)
2916 {
2917 	struct inode *inode = page->mapping->host;
2918 	loff_t size = i_size_read(inode);
2919 	loff_t len;
2920 
2921 	J_ASSERT(PageLocked(page));
2922 	if (page->index == size >> PAGE_CACHE_SHIFT)
2923 		len = size & ~PAGE_CACHE_MASK;
2924 	else
2925 		len = PAGE_CACHE_SIZE;
2926 
2927 	if (page_has_buffers(page)) {
2928 		/* if page has buffers it should all be mapped
2929 		 * and allocated. If there are not buffers attached
2930 		 * to the page we know the page is dirty but it lost
2931 		 * buffers. That means that at some moment in time
2932 		 * after write_begin() / write_end() has been called
2933 		 * all buffers have been clean and thus they must have been
2934 		 * written at least once. So they are all mapped and we can
2935 		 * happily proceed with mapping them and writing the page.
2936 		 */
2937 		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2938 					ext4_bh_unmapped_or_delay));
2939 	}
2940 
2941 	if (ext4_journal_current_handle())
2942 		goto no_write;
2943 
2944 	if (PageChecked(page)) {
2945 		/*
2946 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2947 		 * doesn't seem much point in redirtying the page here.
2948 		 */
2949 		ClearPageChecked(page);
2950 		return __ext4_journalled_writepage(page, wbc);
2951 	} else {
2952 		/*
2953 		 * It may be a page full of checkpoint-mode buffers.  We don't
2954 		 * really know unless we go poke around in the buffer_heads.
2955 		 * But block_write_full_page will do the right thing.
2956 		 */
2957 		return block_write_full_page(page,
2958 						ext4_normal_get_block_write,
2959 						wbc);
2960 	}
2961 no_write:
2962 	redirty_page_for_writepage(wbc, page);
2963 	unlock_page(page);
2964 	return 0;
2965 }
2966 
2967 static int ext4_readpage(struct file *file, struct page *page)
2968 {
2969 	return mpage_readpage(page, ext4_get_block);
2970 }
2971 
2972 static int
2973 ext4_readpages(struct file *file, struct address_space *mapping,
2974 		struct list_head *pages, unsigned nr_pages)
2975 {
2976 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2977 }
2978 
2979 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2980 {
2981 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2982 
2983 	/*
2984 	 * If it's a full truncate we just forget about the pending dirtying
2985 	 */
2986 	if (offset == 0)
2987 		ClearPageChecked(page);
2988 
2989 	jbd2_journal_invalidatepage(journal, page, offset);
2990 }
2991 
2992 static int ext4_releasepage(struct page *page, gfp_t wait)
2993 {
2994 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2995 
2996 	WARN_ON(PageChecked(page));
2997 	if (!page_has_buffers(page))
2998 		return 0;
2999 	return jbd2_journal_try_to_free_buffers(journal, page, wait);
3000 }
3001 
3002 /*
3003  * If the O_DIRECT write will extend the file then add this inode to the
3004  * orphan list.  So recovery will truncate it back to the original size
3005  * if the machine crashes during the write.
3006  *
3007  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3008  * crashes then stale disk data _may_ be exposed inside the file. But current
3009  * VFS code falls back into buffered path in that case so we are safe.
3010  */
3011 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3012 			const struct iovec *iov, loff_t offset,
3013 			unsigned long nr_segs)
3014 {
3015 	struct file *file = iocb->ki_filp;
3016 	struct inode *inode = file->f_mapping->host;
3017 	struct ext4_inode_info *ei = EXT4_I(inode);
3018 	handle_t *handle;
3019 	ssize_t ret;
3020 	int orphan = 0;
3021 	size_t count = iov_length(iov, nr_segs);
3022 
3023 	if (rw == WRITE) {
3024 		loff_t final_size = offset + count;
3025 
3026 		if (final_size > inode->i_size) {
3027 			/* Credits for sb + inode write */
3028 			handle = ext4_journal_start(inode, 2);
3029 			if (IS_ERR(handle)) {
3030 				ret = PTR_ERR(handle);
3031 				goto out;
3032 			}
3033 			ret = ext4_orphan_add(handle, inode);
3034 			if (ret) {
3035 				ext4_journal_stop(handle);
3036 				goto out;
3037 			}
3038 			orphan = 1;
3039 			ei->i_disksize = inode->i_size;
3040 			ext4_journal_stop(handle);
3041 		}
3042 	}
3043 
3044 	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3045 				 offset, nr_segs,
3046 				 ext4_get_block, NULL);
3047 
3048 	if (orphan) {
3049 		int err;
3050 
3051 		/* Credits for sb + inode write */
3052 		handle = ext4_journal_start(inode, 2);
3053 		if (IS_ERR(handle)) {
3054 			/* This is really bad luck. We've written the data
3055 			 * but cannot extend i_size. Bail out and pretend
3056 			 * the write failed... */
3057 			ret = PTR_ERR(handle);
3058 			goto out;
3059 		}
3060 		if (inode->i_nlink)
3061 			ext4_orphan_del(handle, inode);
3062 		if (ret > 0) {
3063 			loff_t end = offset + ret;
3064 			if (end > inode->i_size) {
3065 				ei->i_disksize = end;
3066 				i_size_write(inode, end);
3067 				/*
3068 				 * We're going to return a positive `ret'
3069 				 * here due to non-zero-length I/O, so there's
3070 				 * no way of reporting error returns from
3071 				 * ext4_mark_inode_dirty() to userspace.  So
3072 				 * ignore it.
3073 				 */
3074 				ext4_mark_inode_dirty(handle, inode);
3075 			}
3076 		}
3077 		err = ext4_journal_stop(handle);
3078 		if (ret == 0)
3079 			ret = err;
3080 	}
3081 out:
3082 	return ret;
3083 }
3084 
3085 /*
3086  * Pages can be marked dirty completely asynchronously from ext4's journalling
3087  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3088  * much here because ->set_page_dirty is called under VFS locks.  The page is
3089  * not necessarily locked.
3090  *
3091  * We cannot just dirty the page and leave attached buffers clean, because the
3092  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3093  * or jbddirty because all the journalling code will explode.
3094  *
3095  * So what we do is to mark the page "pending dirty" and next time writepage
3096  * is called, propagate that into the buffers appropriately.
3097  */
3098 static int ext4_journalled_set_page_dirty(struct page *page)
3099 {
3100 	SetPageChecked(page);
3101 	return __set_page_dirty_nobuffers(page);
3102 }
3103 
3104 static const struct address_space_operations ext4_ordered_aops = {
3105 	.readpage		= ext4_readpage,
3106 	.readpages		= ext4_readpages,
3107 	.writepage		= ext4_normal_writepage,
3108 	.sync_page		= block_sync_page,
3109 	.write_begin		= ext4_write_begin,
3110 	.write_end		= ext4_ordered_write_end,
3111 	.bmap			= ext4_bmap,
3112 	.invalidatepage		= ext4_invalidatepage,
3113 	.releasepage		= ext4_releasepage,
3114 	.direct_IO		= ext4_direct_IO,
3115 	.migratepage		= buffer_migrate_page,
3116 	.is_partially_uptodate  = block_is_partially_uptodate,
3117 };
3118 
3119 static const struct address_space_operations ext4_writeback_aops = {
3120 	.readpage		= ext4_readpage,
3121 	.readpages		= ext4_readpages,
3122 	.writepage		= ext4_normal_writepage,
3123 	.sync_page		= block_sync_page,
3124 	.write_begin		= ext4_write_begin,
3125 	.write_end		= ext4_writeback_write_end,
3126 	.bmap			= ext4_bmap,
3127 	.invalidatepage		= ext4_invalidatepage,
3128 	.releasepage		= ext4_releasepage,
3129 	.direct_IO		= ext4_direct_IO,
3130 	.migratepage		= buffer_migrate_page,
3131 	.is_partially_uptodate  = block_is_partially_uptodate,
3132 };
3133 
3134 static const struct address_space_operations ext4_journalled_aops = {
3135 	.readpage		= ext4_readpage,
3136 	.readpages		= ext4_readpages,
3137 	.writepage		= ext4_journalled_writepage,
3138 	.sync_page		= block_sync_page,
3139 	.write_begin		= ext4_write_begin,
3140 	.write_end		= ext4_journalled_write_end,
3141 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3142 	.bmap			= ext4_bmap,
3143 	.invalidatepage		= ext4_invalidatepage,
3144 	.releasepage		= ext4_releasepage,
3145 	.is_partially_uptodate  = block_is_partially_uptodate,
3146 };
3147 
3148 static const struct address_space_operations ext4_da_aops = {
3149 	.readpage		= ext4_readpage,
3150 	.readpages		= ext4_readpages,
3151 	.writepage		= ext4_da_writepage,
3152 	.writepages		= ext4_da_writepages,
3153 	.sync_page		= block_sync_page,
3154 	.write_begin		= ext4_da_write_begin,
3155 	.write_end		= ext4_da_write_end,
3156 	.bmap			= ext4_bmap,
3157 	.invalidatepage		= ext4_da_invalidatepage,
3158 	.releasepage		= ext4_releasepage,
3159 	.direct_IO		= ext4_direct_IO,
3160 	.migratepage		= buffer_migrate_page,
3161 	.is_partially_uptodate  = block_is_partially_uptodate,
3162 };
3163 
3164 void ext4_set_aops(struct inode *inode)
3165 {
3166 	if (ext4_should_order_data(inode) &&
3167 		test_opt(inode->i_sb, DELALLOC))
3168 		inode->i_mapping->a_ops = &ext4_da_aops;
3169 	else if (ext4_should_order_data(inode))
3170 		inode->i_mapping->a_ops = &ext4_ordered_aops;
3171 	else if (ext4_should_writeback_data(inode) &&
3172 		 test_opt(inode->i_sb, DELALLOC))
3173 		inode->i_mapping->a_ops = &ext4_da_aops;
3174 	else if (ext4_should_writeback_data(inode))
3175 		inode->i_mapping->a_ops = &ext4_writeback_aops;
3176 	else
3177 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3178 }
3179 
3180 /*
3181  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3182  * up to the end of the block which corresponds to `from'.
3183  * This required during truncate. We need to physically zero the tail end
3184  * of that block so it doesn't yield old data if the file is later grown.
3185  */
3186 int ext4_block_truncate_page(handle_t *handle,
3187 		struct address_space *mapping, loff_t from)
3188 {
3189 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3190 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3191 	unsigned blocksize, length, pos;
3192 	ext4_lblk_t iblock;
3193 	struct inode *inode = mapping->host;
3194 	struct buffer_head *bh;
3195 	struct page *page;
3196 	int err = 0;
3197 
3198 	page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3199 	if (!page)
3200 		return -EINVAL;
3201 
3202 	blocksize = inode->i_sb->s_blocksize;
3203 	length = blocksize - (offset & (blocksize - 1));
3204 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3205 
3206 	/*
3207 	 * For "nobh" option,  we can only work if we don't need to
3208 	 * read-in the page - otherwise we create buffers to do the IO.
3209 	 */
3210 	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3211 	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
3212 		zero_user(page, offset, length);
3213 		set_page_dirty(page);
3214 		goto unlock;
3215 	}
3216 
3217 	if (!page_has_buffers(page))
3218 		create_empty_buffers(page, blocksize, 0);
3219 
3220 	/* Find the buffer that contains "offset" */
3221 	bh = page_buffers(page);
3222 	pos = blocksize;
3223 	while (offset >= pos) {
3224 		bh = bh->b_this_page;
3225 		iblock++;
3226 		pos += blocksize;
3227 	}
3228 
3229 	err = 0;
3230 	if (buffer_freed(bh)) {
3231 		BUFFER_TRACE(bh, "freed: skip");
3232 		goto unlock;
3233 	}
3234 
3235 	if (!buffer_mapped(bh)) {
3236 		BUFFER_TRACE(bh, "unmapped");
3237 		ext4_get_block(inode, iblock, bh, 0);
3238 		/* unmapped? It's a hole - nothing to do */
3239 		if (!buffer_mapped(bh)) {
3240 			BUFFER_TRACE(bh, "still unmapped");
3241 			goto unlock;
3242 		}
3243 	}
3244 
3245 	/* Ok, it's mapped. Make sure it's up-to-date */
3246 	if (PageUptodate(page))
3247 		set_buffer_uptodate(bh);
3248 
3249 	if (!buffer_uptodate(bh)) {
3250 		err = -EIO;
3251 		ll_rw_block(READ, 1, &bh);
3252 		wait_on_buffer(bh);
3253 		/* Uhhuh. Read error. Complain and punt. */
3254 		if (!buffer_uptodate(bh))
3255 			goto unlock;
3256 	}
3257 
3258 	if (ext4_should_journal_data(inode)) {
3259 		BUFFER_TRACE(bh, "get write access");
3260 		err = ext4_journal_get_write_access(handle, bh);
3261 		if (err)
3262 			goto unlock;
3263 	}
3264 
3265 	zero_user(page, offset, length);
3266 
3267 	BUFFER_TRACE(bh, "zeroed end of block");
3268 
3269 	err = 0;
3270 	if (ext4_should_journal_data(inode)) {
3271 		err = ext4_journal_dirty_metadata(handle, bh);
3272 	} else {
3273 		if (ext4_should_order_data(inode))
3274 			err = ext4_jbd2_file_inode(handle, inode);
3275 		mark_buffer_dirty(bh);
3276 	}
3277 
3278 unlock:
3279 	unlock_page(page);
3280 	page_cache_release(page);
3281 	return err;
3282 }
3283 
3284 /*
3285  * Probably it should be a library function... search for first non-zero word
3286  * or memcmp with zero_page, whatever is better for particular architecture.
3287  * Linus?
3288  */
3289 static inline int all_zeroes(__le32 *p, __le32 *q)
3290 {
3291 	while (p < q)
3292 		if (*p++)
3293 			return 0;
3294 	return 1;
3295 }
3296 
3297 /**
3298  *	ext4_find_shared - find the indirect blocks for partial truncation.
3299  *	@inode:	  inode in question
3300  *	@depth:	  depth of the affected branch
3301  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
3302  *	@chain:	  place to store the pointers to partial indirect blocks
3303  *	@top:	  place to the (detached) top of branch
3304  *
3305  *	This is a helper function used by ext4_truncate().
3306  *
3307  *	When we do truncate() we may have to clean the ends of several
3308  *	indirect blocks but leave the blocks themselves alive. Block is
3309  *	partially truncated if some data below the new i_size is refered
3310  *	from it (and it is on the path to the first completely truncated
3311  *	data block, indeed).  We have to free the top of that path along
3312  *	with everything to the right of the path. Since no allocation
3313  *	past the truncation point is possible until ext4_truncate()
3314  *	finishes, we may safely do the latter, but top of branch may
3315  *	require special attention - pageout below the truncation point
3316  *	might try to populate it.
3317  *
3318  *	We atomically detach the top of branch from the tree, store the
3319  *	block number of its root in *@top, pointers to buffer_heads of
3320  *	partially truncated blocks - in @chain[].bh and pointers to
3321  *	their last elements that should not be removed - in
3322  *	@chain[].p. Return value is the pointer to last filled element
3323  *	of @chain.
3324  *
3325  *	The work left to caller to do the actual freeing of subtrees:
3326  *		a) free the subtree starting from *@top
3327  *		b) free the subtrees whose roots are stored in
3328  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
3329  *		c) free the subtrees growing from the inode past the @chain[0].
3330  *			(no partially truncated stuff there).  */
3331 
3332 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3333 			ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3334 {
3335 	Indirect *partial, *p;
3336 	int k, err;
3337 
3338 	*top = 0;
3339 	/* Make k index the deepest non-null offest + 1 */
3340 	for (k = depth; k > 1 && !offsets[k-1]; k--)
3341 		;
3342 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
3343 	/* Writer: pointers */
3344 	if (!partial)
3345 		partial = chain + k-1;
3346 	/*
3347 	 * If the branch acquired continuation since we've looked at it -
3348 	 * fine, it should all survive and (new) top doesn't belong to us.
3349 	 */
3350 	if (!partial->key && *partial->p)
3351 		/* Writer: end */
3352 		goto no_top;
3353 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3354 		;
3355 	/*
3356 	 * OK, we've found the last block that must survive. The rest of our
3357 	 * branch should be detached before unlocking. However, if that rest
3358 	 * of branch is all ours and does not grow immediately from the inode
3359 	 * it's easier to cheat and just decrement partial->p.
3360 	 */
3361 	if (p == chain + k - 1 && p > chain) {
3362 		p->p--;
3363 	} else {
3364 		*top = *p->p;
3365 		/* Nope, don't do this in ext4.  Must leave the tree intact */
3366 #if 0
3367 		*p->p = 0;
3368 #endif
3369 	}
3370 	/* Writer: end */
3371 
3372 	while (partial > p) {
3373 		brelse(partial->bh);
3374 		partial--;
3375 	}
3376 no_top:
3377 	return partial;
3378 }
3379 
3380 /*
3381  * Zero a number of block pointers in either an inode or an indirect block.
3382  * If we restart the transaction we must again get write access to the
3383  * indirect block for further modification.
3384  *
3385  * We release `count' blocks on disk, but (last - first) may be greater
3386  * than `count' because there can be holes in there.
3387  */
3388 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3389 		struct buffer_head *bh, ext4_fsblk_t block_to_free,
3390 		unsigned long count, __le32 *first, __le32 *last)
3391 {
3392 	__le32 *p;
3393 	if (try_to_extend_transaction(handle, inode)) {
3394 		if (bh) {
3395 			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3396 			ext4_journal_dirty_metadata(handle, bh);
3397 		}
3398 		ext4_mark_inode_dirty(handle, inode);
3399 		ext4_journal_test_restart(handle, inode);
3400 		if (bh) {
3401 			BUFFER_TRACE(bh, "retaking write access");
3402 			ext4_journal_get_write_access(handle, bh);
3403 		}
3404 	}
3405 
3406 	/*
3407 	 * Any buffers which are on the journal will be in memory. We find
3408 	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3409 	 * on them.  We've already detached each block from the file, so
3410 	 * bforget() in jbd2_journal_forget() should be safe.
3411 	 *
3412 	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3413 	 */
3414 	for (p = first; p < last; p++) {
3415 		u32 nr = le32_to_cpu(*p);
3416 		if (nr) {
3417 			struct buffer_head *tbh;
3418 
3419 			*p = 0;
3420 			tbh = sb_find_get_block(inode->i_sb, nr);
3421 			ext4_forget(handle, 0, inode, tbh, nr);
3422 		}
3423 	}
3424 
3425 	ext4_free_blocks(handle, inode, block_to_free, count, 0);
3426 }
3427 
3428 /**
3429  * ext4_free_data - free a list of data blocks
3430  * @handle:	handle for this transaction
3431  * @inode:	inode we are dealing with
3432  * @this_bh:	indirect buffer_head which contains *@first and *@last
3433  * @first:	array of block numbers
3434  * @last:	points immediately past the end of array
3435  *
3436  * We are freeing all blocks refered from that array (numbers are stored as
3437  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3438  *
3439  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3440  * blocks are contiguous then releasing them at one time will only affect one
3441  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3442  * actually use a lot of journal space.
3443  *
3444  * @this_bh will be %NULL if @first and @last point into the inode's direct
3445  * block pointers.
3446  */
3447 static void ext4_free_data(handle_t *handle, struct inode *inode,
3448 			   struct buffer_head *this_bh,
3449 			   __le32 *first, __le32 *last)
3450 {
3451 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3452 	unsigned long count = 0;	    /* Number of blocks in the run */
3453 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
3454 					       corresponding to
3455 					       block_to_free */
3456 	ext4_fsblk_t nr;		    /* Current block # */
3457 	__le32 *p;			    /* Pointer into inode/ind
3458 					       for current block */
3459 	int err;
3460 
3461 	if (this_bh) {				/* For indirect block */
3462 		BUFFER_TRACE(this_bh, "get_write_access");
3463 		err = ext4_journal_get_write_access(handle, this_bh);
3464 		/* Important: if we can't update the indirect pointers
3465 		 * to the blocks, we can't free them. */
3466 		if (err)
3467 			return;
3468 	}
3469 
3470 	for (p = first; p < last; p++) {
3471 		nr = le32_to_cpu(*p);
3472 		if (nr) {
3473 			/* accumulate blocks to free if they're contiguous */
3474 			if (count == 0) {
3475 				block_to_free = nr;
3476 				block_to_free_p = p;
3477 				count = 1;
3478 			} else if (nr == block_to_free + count) {
3479 				count++;
3480 			} else {
3481 				ext4_clear_blocks(handle, inode, this_bh,
3482 						  block_to_free,
3483 						  count, block_to_free_p, p);
3484 				block_to_free = nr;
3485 				block_to_free_p = p;
3486 				count = 1;
3487 			}
3488 		}
3489 	}
3490 
3491 	if (count > 0)
3492 		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3493 				  count, block_to_free_p, p);
3494 
3495 	if (this_bh) {
3496 		BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3497 
3498 		/*
3499 		 * The buffer head should have an attached journal head at this
3500 		 * point. However, if the data is corrupted and an indirect
3501 		 * block pointed to itself, it would have been detached when
3502 		 * the block was cleared. Check for this instead of OOPSing.
3503 		 */
3504 		if (bh2jh(this_bh))
3505 			ext4_journal_dirty_metadata(handle, this_bh);
3506 		else
3507 			ext4_error(inode->i_sb, __func__,
3508 				   "circular indirect block detected, "
3509 				   "inode=%lu, block=%llu",
3510 				   inode->i_ino,
3511 				   (unsigned long long) this_bh->b_blocknr);
3512 	}
3513 }
3514 
3515 /**
3516  *	ext4_free_branches - free an array of branches
3517  *	@handle: JBD handle for this transaction
3518  *	@inode:	inode we are dealing with
3519  *	@parent_bh: the buffer_head which contains *@first and *@last
3520  *	@first:	array of block numbers
3521  *	@last:	pointer immediately past the end of array
3522  *	@depth:	depth of the branches to free
3523  *
3524  *	We are freeing all blocks refered from these branches (numbers are
3525  *	stored as little-endian 32-bit) and updating @inode->i_blocks
3526  *	appropriately.
3527  */
3528 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3529 			       struct buffer_head *parent_bh,
3530 			       __le32 *first, __le32 *last, int depth)
3531 {
3532 	ext4_fsblk_t nr;
3533 	__le32 *p;
3534 
3535 	if (is_handle_aborted(handle))
3536 		return;
3537 
3538 	if (depth--) {
3539 		struct buffer_head *bh;
3540 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3541 		p = last;
3542 		while (--p >= first) {
3543 			nr = le32_to_cpu(*p);
3544 			if (!nr)
3545 				continue;		/* A hole */
3546 
3547 			/* Go read the buffer for the next level down */
3548 			bh = sb_bread(inode->i_sb, nr);
3549 
3550 			/*
3551 			 * A read failure? Report error and clear slot
3552 			 * (should be rare).
3553 			 */
3554 			if (!bh) {
3555 				ext4_error(inode->i_sb, "ext4_free_branches",
3556 					   "Read failure, inode=%lu, block=%llu",
3557 					   inode->i_ino, nr);
3558 				continue;
3559 			}
3560 
3561 			/* This zaps the entire block.  Bottom up. */
3562 			BUFFER_TRACE(bh, "free child branches");
3563 			ext4_free_branches(handle, inode, bh,
3564 					(__le32 *) bh->b_data,
3565 					(__le32 *) bh->b_data + addr_per_block,
3566 					depth);
3567 
3568 			/*
3569 			 * We've probably journalled the indirect block several
3570 			 * times during the truncate.  But it's no longer
3571 			 * needed and we now drop it from the transaction via
3572 			 * jbd2_journal_revoke().
3573 			 *
3574 			 * That's easy if it's exclusively part of this
3575 			 * transaction.  But if it's part of the committing
3576 			 * transaction then jbd2_journal_forget() will simply
3577 			 * brelse() it.  That means that if the underlying
3578 			 * block is reallocated in ext4_get_block(),
3579 			 * unmap_underlying_metadata() will find this block
3580 			 * and will try to get rid of it.  damn, damn.
3581 			 *
3582 			 * If this block has already been committed to the
3583 			 * journal, a revoke record will be written.  And
3584 			 * revoke records must be emitted *before* clearing
3585 			 * this block's bit in the bitmaps.
3586 			 */
3587 			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3588 
3589 			/*
3590 			 * Everything below this this pointer has been
3591 			 * released.  Now let this top-of-subtree go.
3592 			 *
3593 			 * We want the freeing of this indirect block to be
3594 			 * atomic in the journal with the updating of the
3595 			 * bitmap block which owns it.  So make some room in
3596 			 * the journal.
3597 			 *
3598 			 * We zero the parent pointer *after* freeing its
3599 			 * pointee in the bitmaps, so if extend_transaction()
3600 			 * for some reason fails to put the bitmap changes and
3601 			 * the release into the same transaction, recovery
3602 			 * will merely complain about releasing a free block,
3603 			 * rather than leaking blocks.
3604 			 */
3605 			if (is_handle_aborted(handle))
3606 				return;
3607 			if (try_to_extend_transaction(handle, inode)) {
3608 				ext4_mark_inode_dirty(handle, inode);
3609 				ext4_journal_test_restart(handle, inode);
3610 			}
3611 
3612 			ext4_free_blocks(handle, inode, nr, 1, 1);
3613 
3614 			if (parent_bh) {
3615 				/*
3616 				 * The block which we have just freed is
3617 				 * pointed to by an indirect block: journal it
3618 				 */
3619 				BUFFER_TRACE(parent_bh, "get_write_access");
3620 				if (!ext4_journal_get_write_access(handle,
3621 								   parent_bh)){
3622 					*p = 0;
3623 					BUFFER_TRACE(parent_bh,
3624 					"call ext4_journal_dirty_metadata");
3625 					ext4_journal_dirty_metadata(handle,
3626 								    parent_bh);
3627 				}
3628 			}
3629 		}
3630 	} else {
3631 		/* We have reached the bottom of the tree. */
3632 		BUFFER_TRACE(parent_bh, "free data blocks");
3633 		ext4_free_data(handle, inode, parent_bh, first, last);
3634 	}
3635 }
3636 
3637 int ext4_can_truncate(struct inode *inode)
3638 {
3639 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3640 		return 0;
3641 	if (S_ISREG(inode->i_mode))
3642 		return 1;
3643 	if (S_ISDIR(inode->i_mode))
3644 		return 1;
3645 	if (S_ISLNK(inode->i_mode))
3646 		return !ext4_inode_is_fast_symlink(inode);
3647 	return 0;
3648 }
3649 
3650 /*
3651  * ext4_truncate()
3652  *
3653  * We block out ext4_get_block() block instantiations across the entire
3654  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3655  * simultaneously on behalf of the same inode.
3656  *
3657  * As we work through the truncate and commmit bits of it to the journal there
3658  * is one core, guiding principle: the file's tree must always be consistent on
3659  * disk.  We must be able to restart the truncate after a crash.
3660  *
3661  * The file's tree may be transiently inconsistent in memory (although it
3662  * probably isn't), but whenever we close off and commit a journal transaction,
3663  * the contents of (the filesystem + the journal) must be consistent and
3664  * restartable.  It's pretty simple, really: bottom up, right to left (although
3665  * left-to-right works OK too).
3666  *
3667  * Note that at recovery time, journal replay occurs *before* the restart of
3668  * truncate against the orphan inode list.
3669  *
3670  * The committed inode has the new, desired i_size (which is the same as
3671  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3672  * that this inode's truncate did not complete and it will again call
3673  * ext4_truncate() to have another go.  So there will be instantiated blocks
3674  * to the right of the truncation point in a crashed ext4 filesystem.  But
3675  * that's fine - as long as they are linked from the inode, the post-crash
3676  * ext4_truncate() run will find them and release them.
3677  */
3678 void ext4_truncate(struct inode *inode)
3679 {
3680 	handle_t *handle;
3681 	struct ext4_inode_info *ei = EXT4_I(inode);
3682 	__le32 *i_data = ei->i_data;
3683 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3684 	struct address_space *mapping = inode->i_mapping;
3685 	ext4_lblk_t offsets[4];
3686 	Indirect chain[4];
3687 	Indirect *partial;
3688 	__le32 nr = 0;
3689 	int n;
3690 	ext4_lblk_t last_block;
3691 	unsigned blocksize = inode->i_sb->s_blocksize;
3692 
3693 	if (!ext4_can_truncate(inode))
3694 		return;
3695 
3696 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3697 		ext4_ext_truncate(inode);
3698 		return;
3699 	}
3700 
3701 	handle = start_transaction(inode);
3702 	if (IS_ERR(handle))
3703 		return;		/* AKPM: return what? */
3704 
3705 	last_block = (inode->i_size + blocksize-1)
3706 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3707 
3708 	if (inode->i_size & (blocksize - 1))
3709 		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3710 			goto out_stop;
3711 
3712 	n = ext4_block_to_path(inode, last_block, offsets, NULL);
3713 	if (n == 0)
3714 		goto out_stop;	/* error */
3715 
3716 	/*
3717 	 * OK.  This truncate is going to happen.  We add the inode to the
3718 	 * orphan list, so that if this truncate spans multiple transactions,
3719 	 * and we crash, we will resume the truncate when the filesystem
3720 	 * recovers.  It also marks the inode dirty, to catch the new size.
3721 	 *
3722 	 * Implication: the file must always be in a sane, consistent
3723 	 * truncatable state while each transaction commits.
3724 	 */
3725 	if (ext4_orphan_add(handle, inode))
3726 		goto out_stop;
3727 
3728 	/*
3729 	 * From here we block out all ext4_get_block() callers who want to
3730 	 * modify the block allocation tree.
3731 	 */
3732 	down_write(&ei->i_data_sem);
3733 
3734 	ext4_discard_preallocations(inode);
3735 
3736 	/*
3737 	 * The orphan list entry will now protect us from any crash which
3738 	 * occurs before the truncate completes, so it is now safe to propagate
3739 	 * the new, shorter inode size (held for now in i_size) into the
3740 	 * on-disk inode. We do this via i_disksize, which is the value which
3741 	 * ext4 *really* writes onto the disk inode.
3742 	 */
3743 	ei->i_disksize = inode->i_size;
3744 
3745 	if (n == 1) {		/* direct blocks */
3746 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3747 			       i_data + EXT4_NDIR_BLOCKS);
3748 		goto do_indirects;
3749 	}
3750 
3751 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3752 	/* Kill the top of shared branch (not detached) */
3753 	if (nr) {
3754 		if (partial == chain) {
3755 			/* Shared branch grows from the inode */
3756 			ext4_free_branches(handle, inode, NULL,
3757 					   &nr, &nr+1, (chain+n-1) - partial);
3758 			*partial->p = 0;
3759 			/*
3760 			 * We mark the inode dirty prior to restart,
3761 			 * and prior to stop.  No need for it here.
3762 			 */
3763 		} else {
3764 			/* Shared branch grows from an indirect block */
3765 			BUFFER_TRACE(partial->bh, "get_write_access");
3766 			ext4_free_branches(handle, inode, partial->bh,
3767 					partial->p,
3768 					partial->p+1, (chain+n-1) - partial);
3769 		}
3770 	}
3771 	/* Clear the ends of indirect blocks on the shared branch */
3772 	while (partial > chain) {
3773 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3774 				   (__le32*)partial->bh->b_data+addr_per_block,
3775 				   (chain+n-1) - partial);
3776 		BUFFER_TRACE(partial->bh, "call brelse");
3777 		brelse (partial->bh);
3778 		partial--;
3779 	}
3780 do_indirects:
3781 	/* Kill the remaining (whole) subtrees */
3782 	switch (offsets[0]) {
3783 	default:
3784 		nr = i_data[EXT4_IND_BLOCK];
3785 		if (nr) {
3786 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3787 			i_data[EXT4_IND_BLOCK] = 0;
3788 		}
3789 	case EXT4_IND_BLOCK:
3790 		nr = i_data[EXT4_DIND_BLOCK];
3791 		if (nr) {
3792 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3793 			i_data[EXT4_DIND_BLOCK] = 0;
3794 		}
3795 	case EXT4_DIND_BLOCK:
3796 		nr = i_data[EXT4_TIND_BLOCK];
3797 		if (nr) {
3798 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3799 			i_data[EXT4_TIND_BLOCK] = 0;
3800 		}
3801 	case EXT4_TIND_BLOCK:
3802 		;
3803 	}
3804 
3805 	up_write(&ei->i_data_sem);
3806 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3807 	ext4_mark_inode_dirty(handle, inode);
3808 
3809 	/*
3810 	 * In a multi-transaction truncate, we only make the final transaction
3811 	 * synchronous
3812 	 */
3813 	if (IS_SYNC(inode))
3814 		handle->h_sync = 1;
3815 out_stop:
3816 	/*
3817 	 * If this was a simple ftruncate(), and the file will remain alive
3818 	 * then we need to clear up the orphan record which we created above.
3819 	 * However, if this was a real unlink then we were called by
3820 	 * ext4_delete_inode(), and we allow that function to clean up the
3821 	 * orphan info for us.
3822 	 */
3823 	if (inode->i_nlink)
3824 		ext4_orphan_del(handle, inode);
3825 
3826 	ext4_journal_stop(handle);
3827 }
3828 
3829 /*
3830  * ext4_get_inode_loc returns with an extra refcount against the inode's
3831  * underlying buffer_head on success. If 'in_mem' is true, we have all
3832  * data in memory that is needed to recreate the on-disk version of this
3833  * inode.
3834  */
3835 static int __ext4_get_inode_loc(struct inode *inode,
3836 				struct ext4_iloc *iloc, int in_mem)
3837 {
3838 	struct ext4_group_desc	*gdp;
3839 	struct buffer_head	*bh;
3840 	struct super_block	*sb = inode->i_sb;
3841 	ext4_fsblk_t		block;
3842 	int			inodes_per_block, inode_offset;
3843 
3844 	iloc->bh = 0;
3845 	if (!ext4_valid_inum(sb, inode->i_ino))
3846 		return -EIO;
3847 
3848 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3849 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3850 	if (!gdp)
3851 		return -EIO;
3852 
3853 	/*
3854 	 * Figure out the offset within the block group inode table
3855 	 */
3856 	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
3857 	inode_offset = ((inode->i_ino - 1) %
3858 			EXT4_INODES_PER_GROUP(sb));
3859 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3860 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3861 
3862 	bh = sb_getblk(sb, block);
3863 	if (!bh) {
3864 		ext4_error(sb, "ext4_get_inode_loc", "unable to read "
3865 			   "inode block - inode=%lu, block=%llu",
3866 			   inode->i_ino, block);
3867 		return -EIO;
3868 	}
3869 	if (!buffer_uptodate(bh)) {
3870 		lock_buffer(bh);
3871 
3872 		/*
3873 		 * If the buffer has the write error flag, we have failed
3874 		 * to write out another inode in the same block.  In this
3875 		 * case, we don't have to read the block because we may
3876 		 * read the old inode data successfully.
3877 		 */
3878 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3879 			set_buffer_uptodate(bh);
3880 
3881 		if (buffer_uptodate(bh)) {
3882 			/* someone brought it uptodate while we waited */
3883 			unlock_buffer(bh);
3884 			goto has_buffer;
3885 		}
3886 
3887 		/*
3888 		 * If we have all information of the inode in memory and this
3889 		 * is the only valid inode in the block, we need not read the
3890 		 * block.
3891 		 */
3892 		if (in_mem) {
3893 			struct buffer_head *bitmap_bh;
3894 			int i, start;
3895 
3896 			start = inode_offset & ~(inodes_per_block - 1);
3897 
3898 			/* Is the inode bitmap in cache? */
3899 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3900 			if (!bitmap_bh)
3901 				goto make_io;
3902 
3903 			/*
3904 			 * If the inode bitmap isn't in cache then the
3905 			 * optimisation may end up performing two reads instead
3906 			 * of one, so skip it.
3907 			 */
3908 			if (!buffer_uptodate(bitmap_bh)) {
3909 				brelse(bitmap_bh);
3910 				goto make_io;
3911 			}
3912 			for (i = start; i < start + inodes_per_block; i++) {
3913 				if (i == inode_offset)
3914 					continue;
3915 				if (ext4_test_bit(i, bitmap_bh->b_data))
3916 					break;
3917 			}
3918 			brelse(bitmap_bh);
3919 			if (i == start + inodes_per_block) {
3920 				/* all other inodes are free, so skip I/O */
3921 				memset(bh->b_data, 0, bh->b_size);
3922 				set_buffer_uptodate(bh);
3923 				unlock_buffer(bh);
3924 				goto has_buffer;
3925 			}
3926 		}
3927 
3928 make_io:
3929 		/*
3930 		 * If we need to do any I/O, try to pre-readahead extra
3931 		 * blocks from the inode table.
3932 		 */
3933 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3934 			ext4_fsblk_t b, end, table;
3935 			unsigned num;
3936 
3937 			table = ext4_inode_table(sb, gdp);
3938 			/* Make sure s_inode_readahead_blks is a power of 2 */
3939 			while (EXT4_SB(sb)->s_inode_readahead_blks &
3940 			       (EXT4_SB(sb)->s_inode_readahead_blks-1))
3941 				EXT4_SB(sb)->s_inode_readahead_blks =
3942 				   (EXT4_SB(sb)->s_inode_readahead_blks &
3943 				    (EXT4_SB(sb)->s_inode_readahead_blks-1));
3944 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3945 			if (table > b)
3946 				b = table;
3947 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3948 			num = EXT4_INODES_PER_GROUP(sb);
3949 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3950 				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3951 				num -= le16_to_cpu(gdp->bg_itable_unused);
3952 			table += num / inodes_per_block;
3953 			if (end > table)
3954 				end = table;
3955 			while (b <= end)
3956 				sb_breadahead(sb, b++);
3957 		}
3958 
3959 		/*
3960 		 * There are other valid inodes in the buffer, this inode
3961 		 * has in-inode xattrs, or we don't have this inode in memory.
3962 		 * Read the block from disk.
3963 		 */
3964 		get_bh(bh);
3965 		bh->b_end_io = end_buffer_read_sync;
3966 		submit_bh(READ_META, bh);
3967 		wait_on_buffer(bh);
3968 		if (!buffer_uptodate(bh)) {
3969 			ext4_error(sb, __func__,
3970 				   "unable to read inode block - inode=%lu, "
3971 				   "block=%llu", inode->i_ino, block);
3972 			brelse(bh);
3973 			return -EIO;
3974 		}
3975 	}
3976 has_buffer:
3977 	iloc->bh = bh;
3978 	return 0;
3979 }
3980 
3981 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3982 {
3983 	/* We have all inode data except xattrs in memory here. */
3984 	return __ext4_get_inode_loc(inode, iloc,
3985 		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3986 }
3987 
3988 void ext4_set_inode_flags(struct inode *inode)
3989 {
3990 	unsigned int flags = EXT4_I(inode)->i_flags;
3991 
3992 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3993 	if (flags & EXT4_SYNC_FL)
3994 		inode->i_flags |= S_SYNC;
3995 	if (flags & EXT4_APPEND_FL)
3996 		inode->i_flags |= S_APPEND;
3997 	if (flags & EXT4_IMMUTABLE_FL)
3998 		inode->i_flags |= S_IMMUTABLE;
3999 	if (flags & EXT4_NOATIME_FL)
4000 		inode->i_flags |= S_NOATIME;
4001 	if (flags & EXT4_DIRSYNC_FL)
4002 		inode->i_flags |= S_DIRSYNC;
4003 }
4004 
4005 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4006 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4007 {
4008 	unsigned int flags = ei->vfs_inode.i_flags;
4009 
4010 	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4011 			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4012 	if (flags & S_SYNC)
4013 		ei->i_flags |= EXT4_SYNC_FL;
4014 	if (flags & S_APPEND)
4015 		ei->i_flags |= EXT4_APPEND_FL;
4016 	if (flags & S_IMMUTABLE)
4017 		ei->i_flags |= EXT4_IMMUTABLE_FL;
4018 	if (flags & S_NOATIME)
4019 		ei->i_flags |= EXT4_NOATIME_FL;
4020 	if (flags & S_DIRSYNC)
4021 		ei->i_flags |= EXT4_DIRSYNC_FL;
4022 }
4023 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4024 					struct ext4_inode_info *ei)
4025 {
4026 	blkcnt_t i_blocks ;
4027 	struct inode *inode = &(ei->vfs_inode);
4028 	struct super_block *sb = inode->i_sb;
4029 
4030 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4031 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4032 		/* we are using combined 48 bit field */
4033 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4034 					le32_to_cpu(raw_inode->i_blocks_lo);
4035 		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4036 			/* i_blocks represent file system block size */
4037 			return i_blocks  << (inode->i_blkbits - 9);
4038 		} else {
4039 			return i_blocks;
4040 		}
4041 	} else {
4042 		return le32_to_cpu(raw_inode->i_blocks_lo);
4043 	}
4044 }
4045 
4046 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4047 {
4048 	struct ext4_iloc iloc;
4049 	struct ext4_inode *raw_inode;
4050 	struct ext4_inode_info *ei;
4051 	struct buffer_head *bh;
4052 	struct inode *inode;
4053 	long ret;
4054 	int block;
4055 
4056 	inode = iget_locked(sb, ino);
4057 	if (!inode)
4058 		return ERR_PTR(-ENOMEM);
4059 	if (!(inode->i_state & I_NEW))
4060 		return inode;
4061 
4062 	ei = EXT4_I(inode);
4063 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4064 	ei->i_acl = EXT4_ACL_NOT_CACHED;
4065 	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4066 #endif
4067 
4068 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4069 	if (ret < 0)
4070 		goto bad_inode;
4071 	bh = iloc.bh;
4072 	raw_inode = ext4_raw_inode(&iloc);
4073 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4074 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4075 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4076 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4077 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4078 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4079 	}
4080 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4081 
4082 	ei->i_state = 0;
4083 	ei->i_dir_start_lookup = 0;
4084 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4085 	/* We now have enough fields to check if the inode was active or not.
4086 	 * This is needed because nfsd might try to access dead inodes
4087 	 * the test is that same one that e2fsck uses
4088 	 * NeilBrown 1999oct15
4089 	 */
4090 	if (inode->i_nlink == 0) {
4091 		if (inode->i_mode == 0 ||
4092 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4093 			/* this inode is deleted */
4094 			brelse(bh);
4095 			ret = -ESTALE;
4096 			goto bad_inode;
4097 		}
4098 		/* The only unlinked inodes we let through here have
4099 		 * valid i_mode and are being read by the orphan
4100 		 * recovery code: that's fine, we're about to complete
4101 		 * the process of deleting those. */
4102 	}
4103 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4104 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4105 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4106 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4107 	    cpu_to_le32(EXT4_OS_HURD)) {
4108 		ei->i_file_acl |=
4109 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4110 	}
4111 	inode->i_size = ext4_isize(raw_inode);
4112 	ei->i_disksize = inode->i_size;
4113 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4114 	ei->i_block_group = iloc.block_group;
4115 	/*
4116 	 * NOTE! The in-memory inode i_data array is in little-endian order
4117 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4118 	 */
4119 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4120 		ei->i_data[block] = raw_inode->i_block[block];
4121 	INIT_LIST_HEAD(&ei->i_orphan);
4122 
4123 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4124 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4125 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4126 		    EXT4_INODE_SIZE(inode->i_sb)) {
4127 			brelse(bh);
4128 			ret = -EIO;
4129 			goto bad_inode;
4130 		}
4131 		if (ei->i_extra_isize == 0) {
4132 			/* The extra space is currently unused. Use it. */
4133 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4134 					    EXT4_GOOD_OLD_INODE_SIZE;
4135 		} else {
4136 			__le32 *magic = (void *)raw_inode +
4137 					EXT4_GOOD_OLD_INODE_SIZE +
4138 					ei->i_extra_isize;
4139 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4140 				 ei->i_state |= EXT4_STATE_XATTR;
4141 		}
4142 	} else
4143 		ei->i_extra_isize = 0;
4144 
4145 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4146 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4147 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4148 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4149 
4150 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4151 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4152 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4153 			inode->i_version |=
4154 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4155 	}
4156 
4157 	if (S_ISREG(inode->i_mode)) {
4158 		inode->i_op = &ext4_file_inode_operations;
4159 		inode->i_fop = &ext4_file_operations;
4160 		ext4_set_aops(inode);
4161 	} else if (S_ISDIR(inode->i_mode)) {
4162 		inode->i_op = &ext4_dir_inode_operations;
4163 		inode->i_fop = &ext4_dir_operations;
4164 	} else if (S_ISLNK(inode->i_mode)) {
4165 		if (ext4_inode_is_fast_symlink(inode))
4166 			inode->i_op = &ext4_fast_symlink_inode_operations;
4167 		else {
4168 			inode->i_op = &ext4_symlink_inode_operations;
4169 			ext4_set_aops(inode);
4170 		}
4171 	} else {
4172 		inode->i_op = &ext4_special_inode_operations;
4173 		if (raw_inode->i_block[0])
4174 			init_special_inode(inode, inode->i_mode,
4175 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4176 		else
4177 			init_special_inode(inode, inode->i_mode,
4178 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4179 	}
4180 	brelse(iloc.bh);
4181 	ext4_set_inode_flags(inode);
4182 	unlock_new_inode(inode);
4183 	return inode;
4184 
4185 bad_inode:
4186 	iget_failed(inode);
4187 	return ERR_PTR(ret);
4188 }
4189 
4190 static int ext4_inode_blocks_set(handle_t *handle,
4191 				struct ext4_inode *raw_inode,
4192 				struct ext4_inode_info *ei)
4193 {
4194 	struct inode *inode = &(ei->vfs_inode);
4195 	u64 i_blocks = inode->i_blocks;
4196 	struct super_block *sb = inode->i_sb;
4197 
4198 	if (i_blocks <= ~0U) {
4199 		/*
4200 		 * i_blocks can be represnted in a 32 bit variable
4201 		 * as multiple of 512 bytes
4202 		 */
4203 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4204 		raw_inode->i_blocks_high = 0;
4205 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4206 		return 0;
4207 	}
4208 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4209 		return -EFBIG;
4210 
4211 	if (i_blocks <= 0xffffffffffffULL) {
4212 		/*
4213 		 * i_blocks can be represented in a 48 bit variable
4214 		 * as multiple of 512 bytes
4215 		 */
4216 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4217 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4218 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4219 	} else {
4220 		ei->i_flags |= EXT4_HUGE_FILE_FL;
4221 		/* i_block is stored in file system block size */
4222 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4223 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4224 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4225 	}
4226 	return 0;
4227 }
4228 
4229 /*
4230  * Post the struct inode info into an on-disk inode location in the
4231  * buffer-cache.  This gobbles the caller's reference to the
4232  * buffer_head in the inode location struct.
4233  *
4234  * The caller must have write access to iloc->bh.
4235  */
4236 static int ext4_do_update_inode(handle_t *handle,
4237 				struct inode *inode,
4238 				struct ext4_iloc *iloc)
4239 {
4240 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4241 	struct ext4_inode_info *ei = EXT4_I(inode);
4242 	struct buffer_head *bh = iloc->bh;
4243 	int err = 0, rc, block;
4244 
4245 	/* For fields not not tracking in the in-memory inode,
4246 	 * initialise them to zero for new inodes. */
4247 	if (ei->i_state & EXT4_STATE_NEW)
4248 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4249 
4250 	ext4_get_inode_flags(ei);
4251 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4252 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4253 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4254 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4255 /*
4256  * Fix up interoperability with old kernels. Otherwise, old inodes get
4257  * re-used with the upper 16 bits of the uid/gid intact
4258  */
4259 		if (!ei->i_dtime) {
4260 			raw_inode->i_uid_high =
4261 				cpu_to_le16(high_16_bits(inode->i_uid));
4262 			raw_inode->i_gid_high =
4263 				cpu_to_le16(high_16_bits(inode->i_gid));
4264 		} else {
4265 			raw_inode->i_uid_high = 0;
4266 			raw_inode->i_gid_high = 0;
4267 		}
4268 	} else {
4269 		raw_inode->i_uid_low =
4270 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
4271 		raw_inode->i_gid_low =
4272 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
4273 		raw_inode->i_uid_high = 0;
4274 		raw_inode->i_gid_high = 0;
4275 	}
4276 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4277 
4278 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4279 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4280 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4281 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4282 
4283 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4284 		goto out_brelse;
4285 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4286 	/* clear the migrate flag in the raw_inode */
4287 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4288 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4289 	    cpu_to_le32(EXT4_OS_HURD))
4290 		raw_inode->i_file_acl_high =
4291 			cpu_to_le16(ei->i_file_acl >> 32);
4292 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4293 	ext4_isize_set(raw_inode, ei->i_disksize);
4294 	if (ei->i_disksize > 0x7fffffffULL) {
4295 		struct super_block *sb = inode->i_sb;
4296 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4297 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4298 				EXT4_SB(sb)->s_es->s_rev_level ==
4299 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4300 			/* If this is the first large file
4301 			 * created, add a flag to the superblock.
4302 			 */
4303 			err = ext4_journal_get_write_access(handle,
4304 					EXT4_SB(sb)->s_sbh);
4305 			if (err)
4306 				goto out_brelse;
4307 			ext4_update_dynamic_rev(sb);
4308 			EXT4_SET_RO_COMPAT_FEATURE(sb,
4309 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4310 			sb->s_dirt = 1;
4311 			handle->h_sync = 1;
4312 			err = ext4_journal_dirty_metadata(handle,
4313 					EXT4_SB(sb)->s_sbh);
4314 		}
4315 	}
4316 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4317 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4318 		if (old_valid_dev(inode->i_rdev)) {
4319 			raw_inode->i_block[0] =
4320 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4321 			raw_inode->i_block[1] = 0;
4322 		} else {
4323 			raw_inode->i_block[0] = 0;
4324 			raw_inode->i_block[1] =
4325 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4326 			raw_inode->i_block[2] = 0;
4327 		}
4328 	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
4329 		raw_inode->i_block[block] = ei->i_data[block];
4330 
4331 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4332 	if (ei->i_extra_isize) {
4333 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4334 			raw_inode->i_version_hi =
4335 			cpu_to_le32(inode->i_version >> 32);
4336 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4337 	}
4338 
4339 
4340 	BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4341 	rc = ext4_journal_dirty_metadata(handle, bh);
4342 	if (!err)
4343 		err = rc;
4344 	ei->i_state &= ~EXT4_STATE_NEW;
4345 
4346 out_brelse:
4347 	brelse(bh);
4348 	ext4_std_error(inode->i_sb, err);
4349 	return err;
4350 }
4351 
4352 /*
4353  * ext4_write_inode()
4354  *
4355  * We are called from a few places:
4356  *
4357  * - Within generic_file_write() for O_SYNC files.
4358  *   Here, there will be no transaction running. We wait for any running
4359  *   trasnaction to commit.
4360  *
4361  * - Within sys_sync(), kupdate and such.
4362  *   We wait on commit, if tol to.
4363  *
4364  * - Within prune_icache() (PF_MEMALLOC == true)
4365  *   Here we simply return.  We can't afford to block kswapd on the
4366  *   journal commit.
4367  *
4368  * In all cases it is actually safe for us to return without doing anything,
4369  * because the inode has been copied into a raw inode buffer in
4370  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4371  * knfsd.
4372  *
4373  * Note that we are absolutely dependent upon all inode dirtiers doing the
4374  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4375  * which we are interested.
4376  *
4377  * It would be a bug for them to not do this.  The code:
4378  *
4379  *	mark_inode_dirty(inode)
4380  *	stuff();
4381  *	inode->i_size = expr;
4382  *
4383  * is in error because a kswapd-driven write_inode() could occur while
4384  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4385  * will no longer be on the superblock's dirty inode list.
4386  */
4387 int ext4_write_inode(struct inode *inode, int wait)
4388 {
4389 	if (current->flags & PF_MEMALLOC)
4390 		return 0;
4391 
4392 	if (ext4_journal_current_handle()) {
4393 		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4394 		dump_stack();
4395 		return -EIO;
4396 	}
4397 
4398 	if (!wait)
4399 		return 0;
4400 
4401 	return ext4_force_commit(inode->i_sb);
4402 }
4403 
4404 /*
4405  * ext4_setattr()
4406  *
4407  * Called from notify_change.
4408  *
4409  * We want to trap VFS attempts to truncate the file as soon as
4410  * possible.  In particular, we want to make sure that when the VFS
4411  * shrinks i_size, we put the inode on the orphan list and modify
4412  * i_disksize immediately, so that during the subsequent flushing of
4413  * dirty pages and freeing of disk blocks, we can guarantee that any
4414  * commit will leave the blocks being flushed in an unused state on
4415  * disk.  (On recovery, the inode will get truncated and the blocks will
4416  * be freed, so we have a strong guarantee that no future commit will
4417  * leave these blocks visible to the user.)
4418  *
4419  * Another thing we have to assure is that if we are in ordered mode
4420  * and inode is still attached to the committing transaction, we must
4421  * we start writeout of all the dirty pages which are being truncated.
4422  * This way we are sure that all the data written in the previous
4423  * transaction are already on disk (truncate waits for pages under
4424  * writeback).
4425  *
4426  * Called with inode->i_mutex down.
4427  */
4428 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4429 {
4430 	struct inode *inode = dentry->d_inode;
4431 	int error, rc = 0;
4432 	const unsigned int ia_valid = attr->ia_valid;
4433 
4434 	error = inode_change_ok(inode, attr);
4435 	if (error)
4436 		return error;
4437 
4438 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4439 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4440 		handle_t *handle;
4441 
4442 		/* (user+group)*(old+new) structure, inode write (sb,
4443 		 * inode block, ? - but truncate inode update has it) */
4444 		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4445 					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4446 		if (IS_ERR(handle)) {
4447 			error = PTR_ERR(handle);
4448 			goto err_out;
4449 		}
4450 		error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4451 		if (error) {
4452 			ext4_journal_stop(handle);
4453 			return error;
4454 		}
4455 		/* Update corresponding info in inode so that everything is in
4456 		 * one transaction */
4457 		if (attr->ia_valid & ATTR_UID)
4458 			inode->i_uid = attr->ia_uid;
4459 		if (attr->ia_valid & ATTR_GID)
4460 			inode->i_gid = attr->ia_gid;
4461 		error = ext4_mark_inode_dirty(handle, inode);
4462 		ext4_journal_stop(handle);
4463 	}
4464 
4465 	if (attr->ia_valid & ATTR_SIZE) {
4466 		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4467 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4468 
4469 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4470 				error = -EFBIG;
4471 				goto err_out;
4472 			}
4473 		}
4474 	}
4475 
4476 	if (S_ISREG(inode->i_mode) &&
4477 	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4478 		handle_t *handle;
4479 
4480 		handle = ext4_journal_start(inode, 3);
4481 		if (IS_ERR(handle)) {
4482 			error = PTR_ERR(handle);
4483 			goto err_out;
4484 		}
4485 
4486 		error = ext4_orphan_add(handle, inode);
4487 		EXT4_I(inode)->i_disksize = attr->ia_size;
4488 		rc = ext4_mark_inode_dirty(handle, inode);
4489 		if (!error)
4490 			error = rc;
4491 		ext4_journal_stop(handle);
4492 
4493 		if (ext4_should_order_data(inode)) {
4494 			error = ext4_begin_ordered_truncate(inode,
4495 							    attr->ia_size);
4496 			if (error) {
4497 				/* Do as much error cleanup as possible */
4498 				handle = ext4_journal_start(inode, 3);
4499 				if (IS_ERR(handle)) {
4500 					ext4_orphan_del(NULL, inode);
4501 					goto err_out;
4502 				}
4503 				ext4_orphan_del(handle, inode);
4504 				ext4_journal_stop(handle);
4505 				goto err_out;
4506 			}
4507 		}
4508 	}
4509 
4510 	rc = inode_setattr(inode, attr);
4511 
4512 	/* If inode_setattr's call to ext4_truncate failed to get a
4513 	 * transaction handle at all, we need to clean up the in-core
4514 	 * orphan list manually. */
4515 	if (inode->i_nlink)
4516 		ext4_orphan_del(NULL, inode);
4517 
4518 	if (!rc && (ia_valid & ATTR_MODE))
4519 		rc = ext4_acl_chmod(inode);
4520 
4521 err_out:
4522 	ext4_std_error(inode->i_sb, error);
4523 	if (!error)
4524 		error = rc;
4525 	return error;
4526 }
4527 
4528 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4529 		 struct kstat *stat)
4530 {
4531 	struct inode *inode;
4532 	unsigned long delalloc_blocks;
4533 
4534 	inode = dentry->d_inode;
4535 	generic_fillattr(inode, stat);
4536 
4537 	/*
4538 	 * We can't update i_blocks if the block allocation is delayed
4539 	 * otherwise in the case of system crash before the real block
4540 	 * allocation is done, we will have i_blocks inconsistent with
4541 	 * on-disk file blocks.
4542 	 * We always keep i_blocks updated together with real
4543 	 * allocation. But to not confuse with user, stat
4544 	 * will return the blocks that include the delayed allocation
4545 	 * blocks for this file.
4546 	 */
4547 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4548 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4549 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4550 
4551 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4552 	return 0;
4553 }
4554 
4555 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4556 				      int chunk)
4557 {
4558 	int indirects;
4559 
4560 	/* if nrblocks are contiguous */
4561 	if (chunk) {
4562 		/*
4563 		 * With N contiguous data blocks, it need at most
4564 		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4565 		 * 2 dindirect blocks
4566 		 * 1 tindirect block
4567 		 */
4568 		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4569 		return indirects + 3;
4570 	}
4571 	/*
4572 	 * if nrblocks are not contiguous, worse case, each block touch
4573 	 * a indirect block, and each indirect block touch a double indirect
4574 	 * block, plus a triple indirect block
4575 	 */
4576 	indirects = nrblocks * 2 + 1;
4577 	return indirects;
4578 }
4579 
4580 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4581 {
4582 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4583 		return ext4_indirect_trans_blocks(inode, nrblocks, 0);
4584 	return ext4_ext_index_trans_blocks(inode, nrblocks, 0);
4585 }
4586 /*
4587  * Account for index blocks, block groups bitmaps and block group
4588  * descriptor blocks if modify datablocks and index blocks
4589  * worse case, the indexs blocks spread over different block groups
4590  *
4591  * If datablocks are discontiguous, they are possible to spread over
4592  * different block groups too. If they are contiugous, with flexbg,
4593  * they could still across block group boundary.
4594  *
4595  * Also account for superblock, inode, quota and xattr blocks
4596  */
4597 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4598 {
4599 	int groups, gdpblocks;
4600 	int idxblocks;
4601 	int ret = 0;
4602 
4603 	/*
4604 	 * How many index blocks need to touch to modify nrblocks?
4605 	 * The "Chunk" flag indicating whether the nrblocks is
4606 	 * physically contiguous on disk
4607 	 *
4608 	 * For Direct IO and fallocate, they calls get_block to allocate
4609 	 * one single extent at a time, so they could set the "Chunk" flag
4610 	 */
4611 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4612 
4613 	ret = idxblocks;
4614 
4615 	/*
4616 	 * Now let's see how many group bitmaps and group descriptors need
4617 	 * to account
4618 	 */
4619 	groups = idxblocks;
4620 	if (chunk)
4621 		groups += 1;
4622 	else
4623 		groups += nrblocks;
4624 
4625 	gdpblocks = groups;
4626 	if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4627 		groups = EXT4_SB(inode->i_sb)->s_groups_count;
4628 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4629 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4630 
4631 	/* bitmaps and block group descriptor blocks */
4632 	ret += groups + gdpblocks;
4633 
4634 	/* Blocks for super block, inode, quota and xattr blocks */
4635 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4636 
4637 	return ret;
4638 }
4639 
4640 /*
4641  * Calulate the total number of credits to reserve to fit
4642  * the modification of a single pages into a single transaction,
4643  * which may include multiple chunks of block allocations.
4644  *
4645  * This could be called via ext4_write_begin()
4646  *
4647  * We need to consider the worse case, when
4648  * one new block per extent.
4649  */
4650 int ext4_writepage_trans_blocks(struct inode *inode)
4651 {
4652 	int bpp = ext4_journal_blocks_per_page(inode);
4653 	int ret;
4654 
4655 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4656 
4657 	/* Account for data blocks for journalled mode */
4658 	if (ext4_should_journal_data(inode))
4659 		ret += bpp;
4660 	return ret;
4661 }
4662 
4663 /*
4664  * Calculate the journal credits for a chunk of data modification.
4665  *
4666  * This is called from DIO, fallocate or whoever calling
4667  * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4668  *
4669  * journal buffers for data blocks are not included here, as DIO
4670  * and fallocate do no need to journal data buffers.
4671  */
4672 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4673 {
4674 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4675 }
4676 
4677 /*
4678  * The caller must have previously called ext4_reserve_inode_write().
4679  * Give this, we know that the caller already has write access to iloc->bh.
4680  */
4681 int ext4_mark_iloc_dirty(handle_t *handle,
4682 		struct inode *inode, struct ext4_iloc *iloc)
4683 {
4684 	int err = 0;
4685 
4686 	if (test_opt(inode->i_sb, I_VERSION))
4687 		inode_inc_iversion(inode);
4688 
4689 	/* the do_update_inode consumes one bh->b_count */
4690 	get_bh(iloc->bh);
4691 
4692 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4693 	err = ext4_do_update_inode(handle, inode, iloc);
4694 	put_bh(iloc->bh);
4695 	return err;
4696 }
4697 
4698 /*
4699  * On success, We end up with an outstanding reference count against
4700  * iloc->bh.  This _must_ be cleaned up later.
4701  */
4702 
4703 int
4704 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4705 			 struct ext4_iloc *iloc)
4706 {
4707 	int err = 0;
4708 	if (handle) {
4709 		err = ext4_get_inode_loc(inode, iloc);
4710 		if (!err) {
4711 			BUFFER_TRACE(iloc->bh, "get_write_access");
4712 			err = ext4_journal_get_write_access(handle, iloc->bh);
4713 			if (err) {
4714 				brelse(iloc->bh);
4715 				iloc->bh = NULL;
4716 			}
4717 		}
4718 	}
4719 	ext4_std_error(inode->i_sb, err);
4720 	return err;
4721 }
4722 
4723 /*
4724  * Expand an inode by new_extra_isize bytes.
4725  * Returns 0 on success or negative error number on failure.
4726  */
4727 static int ext4_expand_extra_isize(struct inode *inode,
4728 				   unsigned int new_extra_isize,
4729 				   struct ext4_iloc iloc,
4730 				   handle_t *handle)
4731 {
4732 	struct ext4_inode *raw_inode;
4733 	struct ext4_xattr_ibody_header *header;
4734 	struct ext4_xattr_entry *entry;
4735 
4736 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4737 		return 0;
4738 
4739 	raw_inode = ext4_raw_inode(&iloc);
4740 
4741 	header = IHDR(inode, raw_inode);
4742 	entry = IFIRST(header);
4743 
4744 	/* No extended attributes present */
4745 	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4746 		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4747 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4748 			new_extra_isize);
4749 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4750 		return 0;
4751 	}
4752 
4753 	/* try to expand with EAs present */
4754 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4755 					  raw_inode, handle);
4756 }
4757 
4758 /*
4759  * What we do here is to mark the in-core inode as clean with respect to inode
4760  * dirtiness (it may still be data-dirty).
4761  * This means that the in-core inode may be reaped by prune_icache
4762  * without having to perform any I/O.  This is a very good thing,
4763  * because *any* task may call prune_icache - even ones which
4764  * have a transaction open against a different journal.
4765  *
4766  * Is this cheating?  Not really.  Sure, we haven't written the
4767  * inode out, but prune_icache isn't a user-visible syncing function.
4768  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4769  * we start and wait on commits.
4770  *
4771  * Is this efficient/effective?  Well, we're being nice to the system
4772  * by cleaning up our inodes proactively so they can be reaped
4773  * without I/O.  But we are potentially leaving up to five seconds'
4774  * worth of inodes floating about which prune_icache wants us to
4775  * write out.  One way to fix that would be to get prune_icache()
4776  * to do a write_super() to free up some memory.  It has the desired
4777  * effect.
4778  */
4779 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4780 {
4781 	struct ext4_iloc iloc;
4782 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4783 	static unsigned int mnt_count;
4784 	int err, ret;
4785 
4786 	might_sleep();
4787 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4788 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4789 	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4790 		/*
4791 		 * We need extra buffer credits since we may write into EA block
4792 		 * with this same handle. If journal_extend fails, then it will
4793 		 * only result in a minor loss of functionality for that inode.
4794 		 * If this is felt to be critical, then e2fsck should be run to
4795 		 * force a large enough s_min_extra_isize.
4796 		 */
4797 		if ((jbd2_journal_extend(handle,
4798 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4799 			ret = ext4_expand_extra_isize(inode,
4800 						      sbi->s_want_extra_isize,
4801 						      iloc, handle);
4802 			if (ret) {
4803 				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4804 				if (mnt_count !=
4805 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4806 					ext4_warning(inode->i_sb, __func__,
4807 					"Unable to expand inode %lu. Delete"
4808 					" some EAs or run e2fsck.",
4809 					inode->i_ino);
4810 					mnt_count =
4811 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4812 				}
4813 			}
4814 		}
4815 	}
4816 	if (!err)
4817 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4818 	return err;
4819 }
4820 
4821 /*
4822  * ext4_dirty_inode() is called from __mark_inode_dirty()
4823  *
4824  * We're really interested in the case where a file is being extended.
4825  * i_size has been changed by generic_commit_write() and we thus need
4826  * to include the updated inode in the current transaction.
4827  *
4828  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4829  * are allocated to the file.
4830  *
4831  * If the inode is marked synchronous, we don't honour that here - doing
4832  * so would cause a commit on atime updates, which we don't bother doing.
4833  * We handle synchronous inodes at the highest possible level.
4834  */
4835 void ext4_dirty_inode(struct inode *inode)
4836 {
4837 	handle_t *current_handle = ext4_journal_current_handle();
4838 	handle_t *handle;
4839 
4840 	handle = ext4_journal_start(inode, 2);
4841 	if (IS_ERR(handle))
4842 		goto out;
4843 	if (current_handle &&
4844 		current_handle->h_transaction != handle->h_transaction) {
4845 		/* This task has a transaction open against a different fs */
4846 		printk(KERN_EMERG "%s: transactions do not match!\n",
4847 		       __func__);
4848 	} else {
4849 		jbd_debug(5, "marking dirty.  outer handle=%p\n",
4850 				current_handle);
4851 		ext4_mark_inode_dirty(handle, inode);
4852 	}
4853 	ext4_journal_stop(handle);
4854 out:
4855 	return;
4856 }
4857 
4858 #if 0
4859 /*
4860  * Bind an inode's backing buffer_head into this transaction, to prevent
4861  * it from being flushed to disk early.  Unlike
4862  * ext4_reserve_inode_write, this leaves behind no bh reference and
4863  * returns no iloc structure, so the caller needs to repeat the iloc
4864  * lookup to mark the inode dirty later.
4865  */
4866 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4867 {
4868 	struct ext4_iloc iloc;
4869 
4870 	int err = 0;
4871 	if (handle) {
4872 		err = ext4_get_inode_loc(inode, &iloc);
4873 		if (!err) {
4874 			BUFFER_TRACE(iloc.bh, "get_write_access");
4875 			err = jbd2_journal_get_write_access(handle, iloc.bh);
4876 			if (!err)
4877 				err = ext4_journal_dirty_metadata(handle,
4878 								  iloc.bh);
4879 			brelse(iloc.bh);
4880 		}
4881 	}
4882 	ext4_std_error(inode->i_sb, err);
4883 	return err;
4884 }
4885 #endif
4886 
4887 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4888 {
4889 	journal_t *journal;
4890 	handle_t *handle;
4891 	int err;
4892 
4893 	/*
4894 	 * We have to be very careful here: changing a data block's
4895 	 * journaling status dynamically is dangerous.  If we write a
4896 	 * data block to the journal, change the status and then delete
4897 	 * that block, we risk forgetting to revoke the old log record
4898 	 * from the journal and so a subsequent replay can corrupt data.
4899 	 * So, first we make sure that the journal is empty and that
4900 	 * nobody is changing anything.
4901 	 */
4902 
4903 	journal = EXT4_JOURNAL(inode);
4904 	if (is_journal_aborted(journal))
4905 		return -EROFS;
4906 
4907 	jbd2_journal_lock_updates(journal);
4908 	jbd2_journal_flush(journal);
4909 
4910 	/*
4911 	 * OK, there are no updates running now, and all cached data is
4912 	 * synced to disk.  We are now in a completely consistent state
4913 	 * which doesn't have anything in the journal, and we know that
4914 	 * no filesystem updates are running, so it is safe to modify
4915 	 * the inode's in-core data-journaling state flag now.
4916 	 */
4917 
4918 	if (val)
4919 		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4920 	else
4921 		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4922 	ext4_set_aops(inode);
4923 
4924 	jbd2_journal_unlock_updates(journal);
4925 
4926 	/* Finally we can mark the inode as dirty. */
4927 
4928 	handle = ext4_journal_start(inode, 1);
4929 	if (IS_ERR(handle))
4930 		return PTR_ERR(handle);
4931 
4932 	err = ext4_mark_inode_dirty(handle, inode);
4933 	handle->h_sync = 1;
4934 	ext4_journal_stop(handle);
4935 	ext4_std_error(inode->i_sb, err);
4936 
4937 	return err;
4938 }
4939 
4940 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4941 {
4942 	return !buffer_mapped(bh);
4943 }
4944 
4945 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4946 {
4947 	loff_t size;
4948 	unsigned long len;
4949 	int ret = -EINVAL;
4950 	void *fsdata;
4951 	struct file *file = vma->vm_file;
4952 	struct inode *inode = file->f_path.dentry->d_inode;
4953 	struct address_space *mapping = inode->i_mapping;
4954 
4955 	/*
4956 	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4957 	 * get i_mutex because we are already holding mmap_sem.
4958 	 */
4959 	down_read(&inode->i_alloc_sem);
4960 	size = i_size_read(inode);
4961 	if (page->mapping != mapping || size <= page_offset(page)
4962 	    || !PageUptodate(page)) {
4963 		/* page got truncated from under us? */
4964 		goto out_unlock;
4965 	}
4966 	ret = 0;
4967 	if (PageMappedToDisk(page))
4968 		goto out_unlock;
4969 
4970 	if (page->index == size >> PAGE_CACHE_SHIFT)
4971 		len = size & ~PAGE_CACHE_MASK;
4972 	else
4973 		len = PAGE_CACHE_SIZE;
4974 
4975 	if (page_has_buffers(page)) {
4976 		/* return if we have all the buffers mapped */
4977 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4978 				       ext4_bh_unmapped))
4979 			goto out_unlock;
4980 	}
4981 	/*
4982 	 * OK, we need to fill the hole... Do write_begin write_end
4983 	 * to do block allocation/reservation.We are not holding
4984 	 * inode.i__mutex here. That allow * parallel write_begin,
4985 	 * write_end call. lock_page prevent this from happening
4986 	 * on the same page though
4987 	 */
4988 	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4989 			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
4990 	if (ret < 0)
4991 		goto out_unlock;
4992 	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4993 			len, len, page, fsdata);
4994 	if (ret < 0)
4995 		goto out_unlock;
4996 	ret = 0;
4997 out_unlock:
4998 	up_read(&inode->i_alloc_sem);
4999 	return ret;
5000 }
5001