1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Goal-directed block allocation by Stephen Tweedie 16 * (sct@redhat.com), 1993, 1998 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 20 * (jj@sunsite.ms.mff.cuni.cz) 21 * 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 23 */ 24 25 #include <linux/module.h> 26 #include <linux/fs.h> 27 #include <linux/time.h> 28 #include <linux/jbd2.h> 29 #include <linux/highuid.h> 30 #include <linux/pagemap.h> 31 #include <linux/quotaops.h> 32 #include <linux/string.h> 33 #include <linux/buffer_head.h> 34 #include <linux/writeback.h> 35 #include <linux/pagevec.h> 36 #include <linux/mpage.h> 37 #include <linux/uio.h> 38 #include <linux/bio.h> 39 #include "ext4_jbd2.h" 40 #include "xattr.h" 41 #include "acl.h" 42 #include "ext4_extents.h" 43 44 #define MPAGE_DA_EXTENT_TAIL 0x01 45 46 static inline int ext4_begin_ordered_truncate(struct inode *inode, 47 loff_t new_size) 48 { 49 return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode, 50 new_size); 51 } 52 53 static void ext4_invalidatepage(struct page *page, unsigned long offset); 54 55 /* 56 * Test whether an inode is a fast symlink. 57 */ 58 static int ext4_inode_is_fast_symlink(struct inode *inode) 59 { 60 int ea_blocks = EXT4_I(inode)->i_file_acl ? 61 (inode->i_sb->s_blocksize >> 9) : 0; 62 63 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 64 } 65 66 /* 67 * The ext4 forget function must perform a revoke if we are freeing data 68 * which has been journaled. Metadata (eg. indirect blocks) must be 69 * revoked in all cases. 70 * 71 * "bh" may be NULL: a metadata block may have been freed from memory 72 * but there may still be a record of it in the journal, and that record 73 * still needs to be revoked. 74 */ 75 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode, 76 struct buffer_head *bh, ext4_fsblk_t blocknr) 77 { 78 int err; 79 80 might_sleep(); 81 82 BUFFER_TRACE(bh, "enter"); 83 84 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, " 85 "data mode %lx\n", 86 bh, is_metadata, inode->i_mode, 87 test_opt(inode->i_sb, DATA_FLAGS)); 88 89 /* Never use the revoke function if we are doing full data 90 * journaling: there is no need to, and a V1 superblock won't 91 * support it. Otherwise, only skip the revoke on un-journaled 92 * data blocks. */ 93 94 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA || 95 (!is_metadata && !ext4_should_journal_data(inode))) { 96 if (bh) { 97 BUFFER_TRACE(bh, "call jbd2_journal_forget"); 98 return ext4_journal_forget(handle, bh); 99 } 100 return 0; 101 } 102 103 /* 104 * data!=journal && (is_metadata || should_journal_data(inode)) 105 */ 106 BUFFER_TRACE(bh, "call ext4_journal_revoke"); 107 err = ext4_journal_revoke(handle, blocknr, bh); 108 if (err) 109 ext4_abort(inode->i_sb, __func__, 110 "error %d when attempting revoke", err); 111 BUFFER_TRACE(bh, "exit"); 112 return err; 113 } 114 115 /* 116 * Work out how many blocks we need to proceed with the next chunk of a 117 * truncate transaction. 118 */ 119 static unsigned long blocks_for_truncate(struct inode *inode) 120 { 121 ext4_lblk_t needed; 122 123 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); 124 125 /* Give ourselves just enough room to cope with inodes in which 126 * i_blocks is corrupt: we've seen disk corruptions in the past 127 * which resulted in random data in an inode which looked enough 128 * like a regular file for ext4 to try to delete it. Things 129 * will go a bit crazy if that happens, but at least we should 130 * try not to panic the whole kernel. */ 131 if (needed < 2) 132 needed = 2; 133 134 /* But we need to bound the transaction so we don't overflow the 135 * journal. */ 136 if (needed > EXT4_MAX_TRANS_DATA) 137 needed = EXT4_MAX_TRANS_DATA; 138 139 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed; 140 } 141 142 /* 143 * Truncate transactions can be complex and absolutely huge. So we need to 144 * be able to restart the transaction at a conventient checkpoint to make 145 * sure we don't overflow the journal. 146 * 147 * start_transaction gets us a new handle for a truncate transaction, 148 * and extend_transaction tries to extend the existing one a bit. If 149 * extend fails, we need to propagate the failure up and restart the 150 * transaction in the top-level truncate loop. --sct 151 */ 152 static handle_t *start_transaction(struct inode *inode) 153 { 154 handle_t *result; 155 156 result = ext4_journal_start(inode, blocks_for_truncate(inode)); 157 if (!IS_ERR(result)) 158 return result; 159 160 ext4_std_error(inode->i_sb, PTR_ERR(result)); 161 return result; 162 } 163 164 /* 165 * Try to extend this transaction for the purposes of truncation. 166 * 167 * Returns 0 if we managed to create more room. If we can't create more 168 * room, and the transaction must be restarted we return 1. 169 */ 170 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 171 { 172 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS) 173 return 0; 174 if (!ext4_journal_extend(handle, blocks_for_truncate(inode))) 175 return 0; 176 return 1; 177 } 178 179 /* 180 * Restart the transaction associated with *handle. This does a commit, 181 * so before we call here everything must be consistently dirtied against 182 * this transaction. 183 */ 184 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode) 185 { 186 jbd_debug(2, "restarting handle %p\n", handle); 187 return ext4_journal_restart(handle, blocks_for_truncate(inode)); 188 } 189 190 /* 191 * Called at the last iput() if i_nlink is zero. 192 */ 193 void ext4_delete_inode(struct inode *inode) 194 { 195 handle_t *handle; 196 int err; 197 198 if (ext4_should_order_data(inode)) 199 ext4_begin_ordered_truncate(inode, 0); 200 truncate_inode_pages(&inode->i_data, 0); 201 202 if (is_bad_inode(inode)) 203 goto no_delete; 204 205 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3); 206 if (IS_ERR(handle)) { 207 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 208 /* 209 * If we're going to skip the normal cleanup, we still need to 210 * make sure that the in-core orphan linked list is properly 211 * cleaned up. 212 */ 213 ext4_orphan_del(NULL, inode); 214 goto no_delete; 215 } 216 217 if (IS_SYNC(inode)) 218 handle->h_sync = 1; 219 inode->i_size = 0; 220 err = ext4_mark_inode_dirty(handle, inode); 221 if (err) { 222 ext4_warning(inode->i_sb, __func__, 223 "couldn't mark inode dirty (err %d)", err); 224 goto stop_handle; 225 } 226 if (inode->i_blocks) 227 ext4_truncate(inode); 228 229 /* 230 * ext4_ext_truncate() doesn't reserve any slop when it 231 * restarts journal transactions; therefore there may not be 232 * enough credits left in the handle to remove the inode from 233 * the orphan list and set the dtime field. 234 */ 235 if (handle->h_buffer_credits < 3) { 236 err = ext4_journal_extend(handle, 3); 237 if (err > 0) 238 err = ext4_journal_restart(handle, 3); 239 if (err != 0) { 240 ext4_warning(inode->i_sb, __func__, 241 "couldn't extend journal (err %d)", err); 242 stop_handle: 243 ext4_journal_stop(handle); 244 goto no_delete; 245 } 246 } 247 248 /* 249 * Kill off the orphan record which ext4_truncate created. 250 * AKPM: I think this can be inside the above `if'. 251 * Note that ext4_orphan_del() has to be able to cope with the 252 * deletion of a non-existent orphan - this is because we don't 253 * know if ext4_truncate() actually created an orphan record. 254 * (Well, we could do this if we need to, but heck - it works) 255 */ 256 ext4_orphan_del(handle, inode); 257 EXT4_I(inode)->i_dtime = get_seconds(); 258 259 /* 260 * One subtle ordering requirement: if anything has gone wrong 261 * (transaction abort, IO errors, whatever), then we can still 262 * do these next steps (the fs will already have been marked as 263 * having errors), but we can't free the inode if the mark_dirty 264 * fails. 265 */ 266 if (ext4_mark_inode_dirty(handle, inode)) 267 /* If that failed, just do the required in-core inode clear. */ 268 clear_inode(inode); 269 else 270 ext4_free_inode(handle, inode); 271 ext4_journal_stop(handle); 272 return; 273 no_delete: 274 clear_inode(inode); /* We must guarantee clearing of inode... */ 275 } 276 277 typedef struct { 278 __le32 *p; 279 __le32 key; 280 struct buffer_head *bh; 281 } Indirect; 282 283 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 284 { 285 p->key = *(p->p = v); 286 p->bh = bh; 287 } 288 289 /** 290 * ext4_block_to_path - parse the block number into array of offsets 291 * @inode: inode in question (we are only interested in its superblock) 292 * @i_block: block number to be parsed 293 * @offsets: array to store the offsets in 294 * @boundary: set this non-zero if the referred-to block is likely to be 295 * followed (on disk) by an indirect block. 296 * 297 * To store the locations of file's data ext4 uses a data structure common 298 * for UNIX filesystems - tree of pointers anchored in the inode, with 299 * data blocks at leaves and indirect blocks in intermediate nodes. 300 * This function translates the block number into path in that tree - 301 * return value is the path length and @offsets[n] is the offset of 302 * pointer to (n+1)th node in the nth one. If @block is out of range 303 * (negative or too large) warning is printed and zero returned. 304 * 305 * Note: function doesn't find node addresses, so no IO is needed. All 306 * we need to know is the capacity of indirect blocks (taken from the 307 * inode->i_sb). 308 */ 309 310 /* 311 * Portability note: the last comparison (check that we fit into triple 312 * indirect block) is spelled differently, because otherwise on an 313 * architecture with 32-bit longs and 8Kb pages we might get into trouble 314 * if our filesystem had 8Kb blocks. We might use long long, but that would 315 * kill us on x86. Oh, well, at least the sign propagation does not matter - 316 * i_block would have to be negative in the very beginning, so we would not 317 * get there at all. 318 */ 319 320 static int ext4_block_to_path(struct inode *inode, 321 ext4_lblk_t i_block, 322 ext4_lblk_t offsets[4], int *boundary) 323 { 324 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 325 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 326 const long direct_blocks = EXT4_NDIR_BLOCKS, 327 indirect_blocks = ptrs, 328 double_blocks = (1 << (ptrs_bits * 2)); 329 int n = 0; 330 int final = 0; 331 332 if (i_block < 0) { 333 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0"); 334 } else if (i_block < direct_blocks) { 335 offsets[n++] = i_block; 336 final = direct_blocks; 337 } else if ((i_block -= direct_blocks) < indirect_blocks) { 338 offsets[n++] = EXT4_IND_BLOCK; 339 offsets[n++] = i_block; 340 final = ptrs; 341 } else if ((i_block -= indirect_blocks) < double_blocks) { 342 offsets[n++] = EXT4_DIND_BLOCK; 343 offsets[n++] = i_block >> ptrs_bits; 344 offsets[n++] = i_block & (ptrs - 1); 345 final = ptrs; 346 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 347 offsets[n++] = EXT4_TIND_BLOCK; 348 offsets[n++] = i_block >> (ptrs_bits * 2); 349 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 350 offsets[n++] = i_block & (ptrs - 1); 351 final = ptrs; 352 } else { 353 ext4_warning(inode->i_sb, "ext4_block_to_path", 354 "block %lu > max", 355 i_block + direct_blocks + 356 indirect_blocks + double_blocks); 357 } 358 if (boundary) 359 *boundary = final - 1 - (i_block & (ptrs - 1)); 360 return n; 361 } 362 363 /** 364 * ext4_get_branch - read the chain of indirect blocks leading to data 365 * @inode: inode in question 366 * @depth: depth of the chain (1 - direct pointer, etc.) 367 * @offsets: offsets of pointers in inode/indirect blocks 368 * @chain: place to store the result 369 * @err: here we store the error value 370 * 371 * Function fills the array of triples <key, p, bh> and returns %NULL 372 * if everything went OK or the pointer to the last filled triple 373 * (incomplete one) otherwise. Upon the return chain[i].key contains 374 * the number of (i+1)-th block in the chain (as it is stored in memory, 375 * i.e. little-endian 32-bit), chain[i].p contains the address of that 376 * number (it points into struct inode for i==0 and into the bh->b_data 377 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 378 * block for i>0 and NULL for i==0. In other words, it holds the block 379 * numbers of the chain, addresses they were taken from (and where we can 380 * verify that chain did not change) and buffer_heads hosting these 381 * numbers. 382 * 383 * Function stops when it stumbles upon zero pointer (absent block) 384 * (pointer to last triple returned, *@err == 0) 385 * or when it gets an IO error reading an indirect block 386 * (ditto, *@err == -EIO) 387 * or when it reads all @depth-1 indirect blocks successfully and finds 388 * the whole chain, all way to the data (returns %NULL, *err == 0). 389 * 390 * Need to be called with 391 * down_read(&EXT4_I(inode)->i_data_sem) 392 */ 393 static Indirect *ext4_get_branch(struct inode *inode, int depth, 394 ext4_lblk_t *offsets, 395 Indirect chain[4], int *err) 396 { 397 struct super_block *sb = inode->i_sb; 398 Indirect *p = chain; 399 struct buffer_head *bh; 400 401 *err = 0; 402 /* i_data is not going away, no lock needed */ 403 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 404 if (!p->key) 405 goto no_block; 406 while (--depth) { 407 bh = sb_bread(sb, le32_to_cpu(p->key)); 408 if (!bh) 409 goto failure; 410 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 411 /* Reader: end */ 412 if (!p->key) 413 goto no_block; 414 } 415 return NULL; 416 417 failure: 418 *err = -EIO; 419 no_block: 420 return p; 421 } 422 423 /** 424 * ext4_find_near - find a place for allocation with sufficient locality 425 * @inode: owner 426 * @ind: descriptor of indirect block. 427 * 428 * This function returns the preferred place for block allocation. 429 * It is used when heuristic for sequential allocation fails. 430 * Rules are: 431 * + if there is a block to the left of our position - allocate near it. 432 * + if pointer will live in indirect block - allocate near that block. 433 * + if pointer will live in inode - allocate in the same 434 * cylinder group. 435 * 436 * In the latter case we colour the starting block by the callers PID to 437 * prevent it from clashing with concurrent allocations for a different inode 438 * in the same block group. The PID is used here so that functionally related 439 * files will be close-by on-disk. 440 * 441 * Caller must make sure that @ind is valid and will stay that way. 442 */ 443 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 444 { 445 struct ext4_inode_info *ei = EXT4_I(inode); 446 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 447 __le32 *p; 448 ext4_fsblk_t bg_start; 449 ext4_fsblk_t last_block; 450 ext4_grpblk_t colour; 451 452 /* Try to find previous block */ 453 for (p = ind->p - 1; p >= start; p--) { 454 if (*p) 455 return le32_to_cpu(*p); 456 } 457 458 /* No such thing, so let's try location of indirect block */ 459 if (ind->bh) 460 return ind->bh->b_blocknr; 461 462 /* 463 * It is going to be referred to from the inode itself? OK, just put it 464 * into the same cylinder group then. 465 */ 466 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group); 467 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1; 468 469 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block) 470 colour = (current->pid % 16) * 471 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 472 else 473 colour = (current->pid % 16) * ((last_block - bg_start) / 16); 474 return bg_start + colour; 475 } 476 477 /** 478 * ext4_find_goal - find a preferred place for allocation. 479 * @inode: owner 480 * @block: block we want 481 * @partial: pointer to the last triple within a chain 482 * 483 * Normally this function find the preferred place for block allocation, 484 * returns it. 485 */ 486 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 487 Indirect *partial) 488 { 489 /* 490 * XXX need to get goal block from mballoc's data structures 491 */ 492 493 return ext4_find_near(inode, partial); 494 } 495 496 /** 497 * ext4_blks_to_allocate: Look up the block map and count the number 498 * of direct blocks need to be allocated for the given branch. 499 * 500 * @branch: chain of indirect blocks 501 * @k: number of blocks need for indirect blocks 502 * @blks: number of data blocks to be mapped. 503 * @blocks_to_boundary: the offset in the indirect block 504 * 505 * return the total number of blocks to be allocate, including the 506 * direct and indirect blocks. 507 */ 508 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks, 509 int blocks_to_boundary) 510 { 511 unsigned long count = 0; 512 513 /* 514 * Simple case, [t,d]Indirect block(s) has not allocated yet 515 * then it's clear blocks on that path have not allocated 516 */ 517 if (k > 0) { 518 /* right now we don't handle cross boundary allocation */ 519 if (blks < blocks_to_boundary + 1) 520 count += blks; 521 else 522 count += blocks_to_boundary + 1; 523 return count; 524 } 525 526 count++; 527 while (count < blks && count <= blocks_to_boundary && 528 le32_to_cpu(*(branch[0].p + count)) == 0) { 529 count++; 530 } 531 return count; 532 } 533 534 /** 535 * ext4_alloc_blocks: multiple allocate blocks needed for a branch 536 * @indirect_blks: the number of blocks need to allocate for indirect 537 * blocks 538 * 539 * @new_blocks: on return it will store the new block numbers for 540 * the indirect blocks(if needed) and the first direct block, 541 * @blks: on return it will store the total number of allocated 542 * direct blocks 543 */ 544 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, 545 ext4_lblk_t iblock, ext4_fsblk_t goal, 546 int indirect_blks, int blks, 547 ext4_fsblk_t new_blocks[4], int *err) 548 { 549 int target, i; 550 unsigned long count = 0, blk_allocated = 0; 551 int index = 0; 552 ext4_fsblk_t current_block = 0; 553 int ret = 0; 554 555 /* 556 * Here we try to allocate the requested multiple blocks at once, 557 * on a best-effort basis. 558 * To build a branch, we should allocate blocks for 559 * the indirect blocks(if not allocated yet), and at least 560 * the first direct block of this branch. That's the 561 * minimum number of blocks need to allocate(required) 562 */ 563 /* first we try to allocate the indirect blocks */ 564 target = indirect_blks; 565 while (target > 0) { 566 count = target; 567 /* allocating blocks for indirect blocks and direct blocks */ 568 current_block = ext4_new_meta_blocks(handle, inode, 569 goal, &count, err); 570 if (*err) 571 goto failed_out; 572 573 target -= count; 574 /* allocate blocks for indirect blocks */ 575 while (index < indirect_blks && count) { 576 new_blocks[index++] = current_block++; 577 count--; 578 } 579 if (count > 0) { 580 /* 581 * save the new block number 582 * for the first direct block 583 */ 584 new_blocks[index] = current_block; 585 printk(KERN_INFO "%s returned more blocks than " 586 "requested\n", __func__); 587 WARN_ON(1); 588 break; 589 } 590 } 591 592 target = blks - count ; 593 blk_allocated = count; 594 if (!target) 595 goto allocated; 596 /* Now allocate data blocks */ 597 count = target; 598 /* allocating blocks for data blocks */ 599 current_block = ext4_new_blocks(handle, inode, iblock, 600 goal, &count, err); 601 if (*err && (target == blks)) { 602 /* 603 * if the allocation failed and we didn't allocate 604 * any blocks before 605 */ 606 goto failed_out; 607 } 608 if (!*err) { 609 if (target == blks) { 610 /* 611 * save the new block number 612 * for the first direct block 613 */ 614 new_blocks[index] = current_block; 615 } 616 blk_allocated += count; 617 } 618 allocated: 619 /* total number of blocks allocated for direct blocks */ 620 ret = blk_allocated; 621 *err = 0; 622 return ret; 623 failed_out: 624 for (i = 0; i < index; i++) 625 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0); 626 return ret; 627 } 628 629 /** 630 * ext4_alloc_branch - allocate and set up a chain of blocks. 631 * @inode: owner 632 * @indirect_blks: number of allocated indirect blocks 633 * @blks: number of allocated direct blocks 634 * @offsets: offsets (in the blocks) to store the pointers to next. 635 * @branch: place to store the chain in. 636 * 637 * This function allocates blocks, zeroes out all but the last one, 638 * links them into chain and (if we are synchronous) writes them to disk. 639 * In other words, it prepares a branch that can be spliced onto the 640 * inode. It stores the information about that chain in the branch[], in 641 * the same format as ext4_get_branch() would do. We are calling it after 642 * we had read the existing part of chain and partial points to the last 643 * triple of that (one with zero ->key). Upon the exit we have the same 644 * picture as after the successful ext4_get_block(), except that in one 645 * place chain is disconnected - *branch->p is still zero (we did not 646 * set the last link), but branch->key contains the number that should 647 * be placed into *branch->p to fill that gap. 648 * 649 * If allocation fails we free all blocks we've allocated (and forget 650 * their buffer_heads) and return the error value the from failed 651 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 652 * as described above and return 0. 653 */ 654 static int ext4_alloc_branch(handle_t *handle, struct inode *inode, 655 ext4_lblk_t iblock, int indirect_blks, 656 int *blks, ext4_fsblk_t goal, 657 ext4_lblk_t *offsets, Indirect *branch) 658 { 659 int blocksize = inode->i_sb->s_blocksize; 660 int i, n = 0; 661 int err = 0; 662 struct buffer_head *bh; 663 int num; 664 ext4_fsblk_t new_blocks[4]; 665 ext4_fsblk_t current_block; 666 667 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks, 668 *blks, new_blocks, &err); 669 if (err) 670 return err; 671 672 branch[0].key = cpu_to_le32(new_blocks[0]); 673 /* 674 * metadata blocks and data blocks are allocated. 675 */ 676 for (n = 1; n <= indirect_blks; n++) { 677 /* 678 * Get buffer_head for parent block, zero it out 679 * and set the pointer to new one, then send 680 * parent to disk. 681 */ 682 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 683 branch[n].bh = bh; 684 lock_buffer(bh); 685 BUFFER_TRACE(bh, "call get_create_access"); 686 err = ext4_journal_get_create_access(handle, bh); 687 if (err) { 688 unlock_buffer(bh); 689 brelse(bh); 690 goto failed; 691 } 692 693 memset(bh->b_data, 0, blocksize); 694 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 695 branch[n].key = cpu_to_le32(new_blocks[n]); 696 *branch[n].p = branch[n].key; 697 if (n == indirect_blks) { 698 current_block = new_blocks[n]; 699 /* 700 * End of chain, update the last new metablock of 701 * the chain to point to the new allocated 702 * data blocks numbers 703 */ 704 for (i=1; i < num; i++) 705 *(branch[n].p + i) = cpu_to_le32(++current_block); 706 } 707 BUFFER_TRACE(bh, "marking uptodate"); 708 set_buffer_uptodate(bh); 709 unlock_buffer(bh); 710 711 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 712 err = ext4_journal_dirty_metadata(handle, bh); 713 if (err) 714 goto failed; 715 } 716 *blks = num; 717 return err; 718 failed: 719 /* Allocation failed, free what we already allocated */ 720 for (i = 1; i <= n ; i++) { 721 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget"); 722 ext4_journal_forget(handle, branch[i].bh); 723 } 724 for (i = 0; i < indirect_blks; i++) 725 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0); 726 727 ext4_free_blocks(handle, inode, new_blocks[i], num, 0); 728 729 return err; 730 } 731 732 /** 733 * ext4_splice_branch - splice the allocated branch onto inode. 734 * @inode: owner 735 * @block: (logical) number of block we are adding 736 * @chain: chain of indirect blocks (with a missing link - see 737 * ext4_alloc_branch) 738 * @where: location of missing link 739 * @num: number of indirect blocks we are adding 740 * @blks: number of direct blocks we are adding 741 * 742 * This function fills the missing link and does all housekeeping needed in 743 * inode (->i_blocks, etc.). In case of success we end up with the full 744 * chain to new block and return 0. 745 */ 746 static int ext4_splice_branch(handle_t *handle, struct inode *inode, 747 ext4_lblk_t block, Indirect *where, int num, int blks) 748 { 749 int i; 750 int err = 0; 751 ext4_fsblk_t current_block; 752 753 /* 754 * If we're splicing into a [td]indirect block (as opposed to the 755 * inode) then we need to get write access to the [td]indirect block 756 * before the splice. 757 */ 758 if (where->bh) { 759 BUFFER_TRACE(where->bh, "get_write_access"); 760 err = ext4_journal_get_write_access(handle, where->bh); 761 if (err) 762 goto err_out; 763 } 764 /* That's it */ 765 766 *where->p = where->key; 767 768 /* 769 * Update the host buffer_head or inode to point to more just allocated 770 * direct blocks blocks 771 */ 772 if (num == 0 && blks > 1) { 773 current_block = le32_to_cpu(where->key) + 1; 774 for (i = 1; i < blks; i++) 775 *(where->p + i) = cpu_to_le32(current_block++); 776 } 777 778 /* We are done with atomic stuff, now do the rest of housekeeping */ 779 780 inode->i_ctime = ext4_current_time(inode); 781 ext4_mark_inode_dirty(handle, inode); 782 783 /* had we spliced it onto indirect block? */ 784 if (where->bh) { 785 /* 786 * If we spliced it onto an indirect block, we haven't 787 * altered the inode. Note however that if it is being spliced 788 * onto an indirect block at the very end of the file (the 789 * file is growing) then we *will* alter the inode to reflect 790 * the new i_size. But that is not done here - it is done in 791 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 792 */ 793 jbd_debug(5, "splicing indirect only\n"); 794 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata"); 795 err = ext4_journal_dirty_metadata(handle, where->bh); 796 if (err) 797 goto err_out; 798 } else { 799 /* 800 * OK, we spliced it into the inode itself on a direct block. 801 * Inode was dirtied above. 802 */ 803 jbd_debug(5, "splicing direct\n"); 804 } 805 return err; 806 807 err_out: 808 for (i = 1; i <= num; i++) { 809 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget"); 810 ext4_journal_forget(handle, where[i].bh); 811 ext4_free_blocks(handle, inode, 812 le32_to_cpu(where[i-1].key), 1, 0); 813 } 814 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0); 815 816 return err; 817 } 818 819 /* 820 * Allocation strategy is simple: if we have to allocate something, we will 821 * have to go the whole way to leaf. So let's do it before attaching anything 822 * to tree, set linkage between the newborn blocks, write them if sync is 823 * required, recheck the path, free and repeat if check fails, otherwise 824 * set the last missing link (that will protect us from any truncate-generated 825 * removals - all blocks on the path are immune now) and possibly force the 826 * write on the parent block. 827 * That has a nice additional property: no special recovery from the failed 828 * allocations is needed - we simply release blocks and do not touch anything 829 * reachable from inode. 830 * 831 * `handle' can be NULL if create == 0. 832 * 833 * return > 0, # of blocks mapped or allocated. 834 * return = 0, if plain lookup failed. 835 * return < 0, error case. 836 * 837 * 838 * Need to be called with 839 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 840 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 841 */ 842 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode, 843 ext4_lblk_t iblock, unsigned long maxblocks, 844 struct buffer_head *bh_result, 845 int create, int extend_disksize) 846 { 847 int err = -EIO; 848 ext4_lblk_t offsets[4]; 849 Indirect chain[4]; 850 Indirect *partial; 851 ext4_fsblk_t goal; 852 int indirect_blks; 853 int blocks_to_boundary = 0; 854 int depth; 855 struct ext4_inode_info *ei = EXT4_I(inode); 856 int count = 0; 857 ext4_fsblk_t first_block = 0; 858 loff_t disksize; 859 860 861 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)); 862 J_ASSERT(handle != NULL || create == 0); 863 depth = ext4_block_to_path(inode, iblock, offsets, 864 &blocks_to_boundary); 865 866 if (depth == 0) 867 goto out; 868 869 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 870 871 /* Simplest case - block found, no allocation needed */ 872 if (!partial) { 873 first_block = le32_to_cpu(chain[depth - 1].key); 874 clear_buffer_new(bh_result); 875 count++; 876 /*map more blocks*/ 877 while (count < maxblocks && count <= blocks_to_boundary) { 878 ext4_fsblk_t blk; 879 880 blk = le32_to_cpu(*(chain[depth-1].p + count)); 881 882 if (blk == first_block + count) 883 count++; 884 else 885 break; 886 } 887 goto got_it; 888 } 889 890 /* Next simple case - plain lookup or failed read of indirect block */ 891 if (!create || err == -EIO) 892 goto cleanup; 893 894 /* 895 * Okay, we need to do block allocation. 896 */ 897 goal = ext4_find_goal(inode, iblock, partial); 898 899 /* the number of blocks need to allocate for [d,t]indirect blocks */ 900 indirect_blks = (chain + depth) - partial - 1; 901 902 /* 903 * Next look up the indirect map to count the totoal number of 904 * direct blocks to allocate for this branch. 905 */ 906 count = ext4_blks_to_allocate(partial, indirect_blks, 907 maxblocks, blocks_to_boundary); 908 /* 909 * Block out ext4_truncate while we alter the tree 910 */ 911 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks, 912 &count, goal, 913 offsets + (partial - chain), partial); 914 915 /* 916 * The ext4_splice_branch call will free and forget any buffers 917 * on the new chain if there is a failure, but that risks using 918 * up transaction credits, especially for bitmaps where the 919 * credits cannot be returned. Can we handle this somehow? We 920 * may need to return -EAGAIN upwards in the worst case. --sct 921 */ 922 if (!err) 923 err = ext4_splice_branch(handle, inode, iblock, 924 partial, indirect_blks, count); 925 /* 926 * i_disksize growing is protected by i_data_sem. Don't forget to 927 * protect it if you're about to implement concurrent 928 * ext4_get_block() -bzzz 929 */ 930 if (!err && extend_disksize) { 931 disksize = ((loff_t) iblock + count) << inode->i_blkbits; 932 if (disksize > i_size_read(inode)) 933 disksize = i_size_read(inode); 934 if (disksize > ei->i_disksize) 935 ei->i_disksize = disksize; 936 } 937 if (err) 938 goto cleanup; 939 940 set_buffer_new(bh_result); 941 got_it: 942 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); 943 if (count > blocks_to_boundary) 944 set_buffer_boundary(bh_result); 945 err = count; 946 /* Clean up and exit */ 947 partial = chain + depth - 1; /* the whole chain */ 948 cleanup: 949 while (partial > chain) { 950 BUFFER_TRACE(partial->bh, "call brelse"); 951 brelse(partial->bh); 952 partial--; 953 } 954 BUFFER_TRACE(bh_result, "returned"); 955 out: 956 return err; 957 } 958 959 /* 960 * Calculate the number of metadata blocks need to reserve 961 * to allocate @blocks for non extent file based file 962 */ 963 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks) 964 { 965 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb); 966 int ind_blks, dind_blks, tind_blks; 967 968 /* number of new indirect blocks needed */ 969 ind_blks = (blocks + icap - 1) / icap; 970 971 dind_blks = (ind_blks + icap - 1) / icap; 972 973 tind_blks = 1; 974 975 return ind_blks + dind_blks + tind_blks; 976 } 977 978 /* 979 * Calculate the number of metadata blocks need to reserve 980 * to allocate given number of blocks 981 */ 982 static int ext4_calc_metadata_amount(struct inode *inode, int blocks) 983 { 984 if (!blocks) 985 return 0; 986 987 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) 988 return ext4_ext_calc_metadata_amount(inode, blocks); 989 990 return ext4_indirect_calc_metadata_amount(inode, blocks); 991 } 992 993 static void ext4_da_update_reserve_space(struct inode *inode, int used) 994 { 995 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 996 int total, mdb, mdb_free; 997 998 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 999 /* recalculate the number of metablocks still need to be reserved */ 1000 total = EXT4_I(inode)->i_reserved_data_blocks - used; 1001 mdb = ext4_calc_metadata_amount(inode, total); 1002 1003 /* figure out how many metablocks to release */ 1004 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1005 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb; 1006 1007 if (mdb_free) { 1008 /* Account for allocated meta_blocks */ 1009 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks; 1010 1011 /* update fs dirty blocks counter */ 1012 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free); 1013 EXT4_I(inode)->i_allocated_meta_blocks = 0; 1014 EXT4_I(inode)->i_reserved_meta_blocks = mdb; 1015 } 1016 1017 /* update per-inode reservations */ 1018 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks); 1019 EXT4_I(inode)->i_reserved_data_blocks -= used; 1020 1021 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1022 } 1023 1024 /* 1025 * The ext4_get_blocks_wrap() function try to look up the requested blocks, 1026 * and returns if the blocks are already mapped. 1027 * 1028 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 1029 * and store the allocated blocks in the result buffer head and mark it 1030 * mapped. 1031 * 1032 * If file type is extents based, it will call ext4_ext_get_blocks(), 1033 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping 1034 * based files 1035 * 1036 * On success, it returns the number of blocks being mapped or allocate. 1037 * if create==0 and the blocks are pre-allocated and uninitialized block, 1038 * the result buffer head is unmapped. If the create ==1, it will make sure 1039 * the buffer head is mapped. 1040 * 1041 * It returns 0 if plain look up failed (blocks have not been allocated), in 1042 * that casem, buffer head is unmapped 1043 * 1044 * It returns the error in case of allocation failure. 1045 */ 1046 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block, 1047 unsigned long max_blocks, struct buffer_head *bh, 1048 int create, int extend_disksize, int flag) 1049 { 1050 int retval; 1051 1052 clear_buffer_mapped(bh); 1053 1054 /* 1055 * Try to see if we can get the block without requesting 1056 * for new file system block. 1057 */ 1058 down_read((&EXT4_I(inode)->i_data_sem)); 1059 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 1060 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 1061 bh, 0, 0); 1062 } else { 1063 retval = ext4_get_blocks_handle(handle, 1064 inode, block, max_blocks, bh, 0, 0); 1065 } 1066 up_read((&EXT4_I(inode)->i_data_sem)); 1067 1068 /* If it is only a block(s) look up */ 1069 if (!create) 1070 return retval; 1071 1072 /* 1073 * Returns if the blocks have already allocated 1074 * 1075 * Note that if blocks have been preallocated 1076 * ext4_ext_get_block() returns th create = 0 1077 * with buffer head unmapped. 1078 */ 1079 if (retval > 0 && buffer_mapped(bh)) 1080 return retval; 1081 1082 /* 1083 * New blocks allocate and/or writing to uninitialized extent 1084 * will possibly result in updating i_data, so we take 1085 * the write lock of i_data_sem, and call get_blocks() 1086 * with create == 1 flag. 1087 */ 1088 down_write((&EXT4_I(inode)->i_data_sem)); 1089 1090 /* 1091 * if the caller is from delayed allocation writeout path 1092 * we have already reserved fs blocks for allocation 1093 * let the underlying get_block() function know to 1094 * avoid double accounting 1095 */ 1096 if (flag) 1097 EXT4_I(inode)->i_delalloc_reserved_flag = 1; 1098 /* 1099 * We need to check for EXT4 here because migrate 1100 * could have changed the inode type in between 1101 */ 1102 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 1103 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 1104 bh, create, extend_disksize); 1105 } else { 1106 retval = ext4_get_blocks_handle(handle, inode, block, 1107 max_blocks, bh, create, extend_disksize); 1108 1109 if (retval > 0 && buffer_new(bh)) { 1110 /* 1111 * We allocated new blocks which will result in 1112 * i_data's format changing. Force the migrate 1113 * to fail by clearing migrate flags 1114 */ 1115 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags & 1116 ~EXT4_EXT_MIGRATE; 1117 } 1118 } 1119 1120 if (flag) { 1121 EXT4_I(inode)->i_delalloc_reserved_flag = 0; 1122 /* 1123 * Update reserved blocks/metadata blocks 1124 * after successful block allocation 1125 * which were deferred till now 1126 */ 1127 if ((retval > 0) && buffer_delay(bh)) 1128 ext4_da_update_reserve_space(inode, retval); 1129 } 1130 1131 up_write((&EXT4_I(inode)->i_data_sem)); 1132 return retval; 1133 } 1134 1135 /* Maximum number of blocks we map for direct IO at once. */ 1136 #define DIO_MAX_BLOCKS 4096 1137 1138 int ext4_get_block(struct inode *inode, sector_t iblock, 1139 struct buffer_head *bh_result, int create) 1140 { 1141 handle_t *handle = ext4_journal_current_handle(); 1142 int ret = 0, started = 0; 1143 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 1144 int dio_credits; 1145 1146 if (create && !handle) { 1147 /* Direct IO write... */ 1148 if (max_blocks > DIO_MAX_BLOCKS) 1149 max_blocks = DIO_MAX_BLOCKS; 1150 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks); 1151 handle = ext4_journal_start(inode, dio_credits); 1152 if (IS_ERR(handle)) { 1153 ret = PTR_ERR(handle); 1154 goto out; 1155 } 1156 started = 1; 1157 } 1158 1159 ret = ext4_get_blocks_wrap(handle, inode, iblock, 1160 max_blocks, bh_result, create, 0, 0); 1161 if (ret > 0) { 1162 bh_result->b_size = (ret << inode->i_blkbits); 1163 ret = 0; 1164 } 1165 if (started) 1166 ext4_journal_stop(handle); 1167 out: 1168 return ret; 1169 } 1170 1171 /* 1172 * `handle' can be NULL if create is zero 1173 */ 1174 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 1175 ext4_lblk_t block, int create, int *errp) 1176 { 1177 struct buffer_head dummy; 1178 int fatal = 0, err; 1179 1180 J_ASSERT(handle != NULL || create == 0); 1181 1182 dummy.b_state = 0; 1183 dummy.b_blocknr = -1000; 1184 buffer_trace_init(&dummy.b_history); 1185 err = ext4_get_blocks_wrap(handle, inode, block, 1, 1186 &dummy, create, 1, 0); 1187 /* 1188 * ext4_get_blocks_handle() returns number of blocks 1189 * mapped. 0 in case of a HOLE. 1190 */ 1191 if (err > 0) { 1192 if (err > 1) 1193 WARN_ON(1); 1194 err = 0; 1195 } 1196 *errp = err; 1197 if (!err && buffer_mapped(&dummy)) { 1198 struct buffer_head *bh; 1199 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 1200 if (!bh) { 1201 *errp = -EIO; 1202 goto err; 1203 } 1204 if (buffer_new(&dummy)) { 1205 J_ASSERT(create != 0); 1206 J_ASSERT(handle != NULL); 1207 1208 /* 1209 * Now that we do not always journal data, we should 1210 * keep in mind whether this should always journal the 1211 * new buffer as metadata. For now, regular file 1212 * writes use ext4_get_block instead, so it's not a 1213 * problem. 1214 */ 1215 lock_buffer(bh); 1216 BUFFER_TRACE(bh, "call get_create_access"); 1217 fatal = ext4_journal_get_create_access(handle, bh); 1218 if (!fatal && !buffer_uptodate(bh)) { 1219 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1220 set_buffer_uptodate(bh); 1221 } 1222 unlock_buffer(bh); 1223 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 1224 err = ext4_journal_dirty_metadata(handle, bh); 1225 if (!fatal) 1226 fatal = err; 1227 } else { 1228 BUFFER_TRACE(bh, "not a new buffer"); 1229 } 1230 if (fatal) { 1231 *errp = fatal; 1232 brelse(bh); 1233 bh = NULL; 1234 } 1235 return bh; 1236 } 1237 err: 1238 return NULL; 1239 } 1240 1241 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1242 ext4_lblk_t block, int create, int *err) 1243 { 1244 struct buffer_head *bh; 1245 1246 bh = ext4_getblk(handle, inode, block, create, err); 1247 if (!bh) 1248 return bh; 1249 if (buffer_uptodate(bh)) 1250 return bh; 1251 ll_rw_block(READ_META, 1, &bh); 1252 wait_on_buffer(bh); 1253 if (buffer_uptodate(bh)) 1254 return bh; 1255 put_bh(bh); 1256 *err = -EIO; 1257 return NULL; 1258 } 1259 1260 static int walk_page_buffers(handle_t *handle, 1261 struct buffer_head *head, 1262 unsigned from, 1263 unsigned to, 1264 int *partial, 1265 int (*fn)(handle_t *handle, 1266 struct buffer_head *bh)) 1267 { 1268 struct buffer_head *bh; 1269 unsigned block_start, block_end; 1270 unsigned blocksize = head->b_size; 1271 int err, ret = 0; 1272 struct buffer_head *next; 1273 1274 for (bh = head, block_start = 0; 1275 ret == 0 && (bh != head || !block_start); 1276 block_start = block_end, bh = next) 1277 { 1278 next = bh->b_this_page; 1279 block_end = block_start + blocksize; 1280 if (block_end <= from || block_start >= to) { 1281 if (partial && !buffer_uptodate(bh)) 1282 *partial = 1; 1283 continue; 1284 } 1285 err = (*fn)(handle, bh); 1286 if (!ret) 1287 ret = err; 1288 } 1289 return ret; 1290 } 1291 1292 /* 1293 * To preserve ordering, it is essential that the hole instantiation and 1294 * the data write be encapsulated in a single transaction. We cannot 1295 * close off a transaction and start a new one between the ext4_get_block() 1296 * and the commit_write(). So doing the jbd2_journal_start at the start of 1297 * prepare_write() is the right place. 1298 * 1299 * Also, this function can nest inside ext4_writepage() -> 1300 * block_write_full_page(). In that case, we *know* that ext4_writepage() 1301 * has generated enough buffer credits to do the whole page. So we won't 1302 * block on the journal in that case, which is good, because the caller may 1303 * be PF_MEMALLOC. 1304 * 1305 * By accident, ext4 can be reentered when a transaction is open via 1306 * quota file writes. If we were to commit the transaction while thus 1307 * reentered, there can be a deadlock - we would be holding a quota 1308 * lock, and the commit would never complete if another thread had a 1309 * transaction open and was blocking on the quota lock - a ranking 1310 * violation. 1311 * 1312 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1313 * will _not_ run commit under these circumstances because handle->h_ref 1314 * is elevated. We'll still have enough credits for the tiny quotafile 1315 * write. 1316 */ 1317 static int do_journal_get_write_access(handle_t *handle, 1318 struct buffer_head *bh) 1319 { 1320 if (!buffer_mapped(bh) || buffer_freed(bh)) 1321 return 0; 1322 return ext4_journal_get_write_access(handle, bh); 1323 } 1324 1325 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1326 loff_t pos, unsigned len, unsigned flags, 1327 struct page **pagep, void **fsdata) 1328 { 1329 struct inode *inode = mapping->host; 1330 int ret, needed_blocks = ext4_writepage_trans_blocks(inode); 1331 handle_t *handle; 1332 int retries = 0; 1333 struct page *page; 1334 pgoff_t index; 1335 unsigned from, to; 1336 1337 index = pos >> PAGE_CACHE_SHIFT; 1338 from = pos & (PAGE_CACHE_SIZE - 1); 1339 to = from + len; 1340 1341 retry: 1342 handle = ext4_journal_start(inode, needed_blocks); 1343 if (IS_ERR(handle)) { 1344 ret = PTR_ERR(handle); 1345 goto out; 1346 } 1347 1348 page = __grab_cache_page(mapping, index); 1349 if (!page) { 1350 ext4_journal_stop(handle); 1351 ret = -ENOMEM; 1352 goto out; 1353 } 1354 *pagep = page; 1355 1356 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 1357 ext4_get_block); 1358 1359 if (!ret && ext4_should_journal_data(inode)) { 1360 ret = walk_page_buffers(handle, page_buffers(page), 1361 from, to, NULL, do_journal_get_write_access); 1362 } 1363 1364 if (ret) { 1365 unlock_page(page); 1366 ext4_journal_stop(handle); 1367 page_cache_release(page); 1368 /* 1369 * block_write_begin may have instantiated a few blocks 1370 * outside i_size. Trim these off again. Don't need 1371 * i_size_read because we hold i_mutex. 1372 */ 1373 if (pos + len > inode->i_size) 1374 vmtruncate(inode, inode->i_size); 1375 } 1376 1377 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1378 goto retry; 1379 out: 1380 return ret; 1381 } 1382 1383 /* For write_end() in data=journal mode */ 1384 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1385 { 1386 if (!buffer_mapped(bh) || buffer_freed(bh)) 1387 return 0; 1388 set_buffer_uptodate(bh); 1389 return ext4_journal_dirty_metadata(handle, bh); 1390 } 1391 1392 /* 1393 * We need to pick up the new inode size which generic_commit_write gave us 1394 * `file' can be NULL - eg, when called from page_symlink(). 1395 * 1396 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1397 * buffers are managed internally. 1398 */ 1399 static int ext4_ordered_write_end(struct file *file, 1400 struct address_space *mapping, 1401 loff_t pos, unsigned len, unsigned copied, 1402 struct page *page, void *fsdata) 1403 { 1404 handle_t *handle = ext4_journal_current_handle(); 1405 struct inode *inode = mapping->host; 1406 int ret = 0, ret2; 1407 1408 ret = ext4_jbd2_file_inode(handle, inode); 1409 1410 if (ret == 0) { 1411 loff_t new_i_size; 1412 1413 new_i_size = pos + copied; 1414 if (new_i_size > EXT4_I(inode)->i_disksize) { 1415 ext4_update_i_disksize(inode, new_i_size); 1416 /* We need to mark inode dirty even if 1417 * new_i_size is less that inode->i_size 1418 * bu greater than i_disksize.(hint delalloc) 1419 */ 1420 ext4_mark_inode_dirty(handle, inode); 1421 } 1422 1423 ret2 = generic_write_end(file, mapping, pos, len, copied, 1424 page, fsdata); 1425 copied = ret2; 1426 if (ret2 < 0) 1427 ret = ret2; 1428 } 1429 ret2 = ext4_journal_stop(handle); 1430 if (!ret) 1431 ret = ret2; 1432 1433 return ret ? ret : copied; 1434 } 1435 1436 static int ext4_writeback_write_end(struct file *file, 1437 struct address_space *mapping, 1438 loff_t pos, unsigned len, unsigned copied, 1439 struct page *page, void *fsdata) 1440 { 1441 handle_t *handle = ext4_journal_current_handle(); 1442 struct inode *inode = mapping->host; 1443 int ret = 0, ret2; 1444 loff_t new_i_size; 1445 1446 new_i_size = pos + copied; 1447 if (new_i_size > EXT4_I(inode)->i_disksize) { 1448 ext4_update_i_disksize(inode, new_i_size); 1449 /* We need to mark inode dirty even if 1450 * new_i_size is less that inode->i_size 1451 * bu greater than i_disksize.(hint delalloc) 1452 */ 1453 ext4_mark_inode_dirty(handle, inode); 1454 } 1455 1456 ret2 = generic_write_end(file, mapping, pos, len, copied, 1457 page, fsdata); 1458 copied = ret2; 1459 if (ret2 < 0) 1460 ret = ret2; 1461 1462 ret2 = ext4_journal_stop(handle); 1463 if (!ret) 1464 ret = ret2; 1465 1466 return ret ? ret : copied; 1467 } 1468 1469 static int ext4_journalled_write_end(struct file *file, 1470 struct address_space *mapping, 1471 loff_t pos, unsigned len, unsigned copied, 1472 struct page *page, void *fsdata) 1473 { 1474 handle_t *handle = ext4_journal_current_handle(); 1475 struct inode *inode = mapping->host; 1476 int ret = 0, ret2; 1477 int partial = 0; 1478 unsigned from, to; 1479 loff_t new_i_size; 1480 1481 from = pos & (PAGE_CACHE_SIZE - 1); 1482 to = from + len; 1483 1484 if (copied < len) { 1485 if (!PageUptodate(page)) 1486 copied = 0; 1487 page_zero_new_buffers(page, from+copied, to); 1488 } 1489 1490 ret = walk_page_buffers(handle, page_buffers(page), from, 1491 to, &partial, write_end_fn); 1492 if (!partial) 1493 SetPageUptodate(page); 1494 new_i_size = pos + copied; 1495 if (new_i_size > inode->i_size) 1496 i_size_write(inode, pos+copied); 1497 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 1498 if (new_i_size > EXT4_I(inode)->i_disksize) { 1499 ext4_update_i_disksize(inode, new_i_size); 1500 ret2 = ext4_mark_inode_dirty(handle, inode); 1501 if (!ret) 1502 ret = ret2; 1503 } 1504 1505 unlock_page(page); 1506 ret2 = ext4_journal_stop(handle); 1507 if (!ret) 1508 ret = ret2; 1509 page_cache_release(page); 1510 1511 return ret ? ret : copied; 1512 } 1513 1514 static int ext4_da_reserve_space(struct inode *inode, int nrblocks) 1515 { 1516 int retries = 0; 1517 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1518 unsigned long md_needed, mdblocks, total = 0; 1519 1520 /* 1521 * recalculate the amount of metadata blocks to reserve 1522 * in order to allocate nrblocks 1523 * worse case is one extent per block 1524 */ 1525 repeat: 1526 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1527 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks; 1528 mdblocks = ext4_calc_metadata_amount(inode, total); 1529 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks); 1530 1531 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks; 1532 total = md_needed + nrblocks; 1533 1534 if (ext4_claim_free_blocks(sbi, total)) { 1535 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1536 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1537 yield(); 1538 goto repeat; 1539 } 1540 return -ENOSPC; 1541 } 1542 EXT4_I(inode)->i_reserved_data_blocks += nrblocks; 1543 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks; 1544 1545 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1546 return 0; /* success */ 1547 } 1548 1549 static void ext4_da_release_space(struct inode *inode, int to_free) 1550 { 1551 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1552 int total, mdb, mdb_free, release; 1553 1554 if (!to_free) 1555 return; /* Nothing to release, exit */ 1556 1557 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1558 1559 if (!EXT4_I(inode)->i_reserved_data_blocks) { 1560 /* 1561 * if there is no reserved blocks, but we try to free some 1562 * then the counter is messed up somewhere. 1563 * but since this function is called from invalidate 1564 * page, it's harmless to return without any action 1565 */ 1566 printk(KERN_INFO "ext4 delalloc try to release %d reserved " 1567 "blocks for inode %lu, but there is no reserved " 1568 "data blocks\n", to_free, inode->i_ino); 1569 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1570 return; 1571 } 1572 1573 /* recalculate the number of metablocks still need to be reserved */ 1574 total = EXT4_I(inode)->i_reserved_data_blocks - to_free; 1575 mdb = ext4_calc_metadata_amount(inode, total); 1576 1577 /* figure out how many metablocks to release */ 1578 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1579 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb; 1580 1581 release = to_free + mdb_free; 1582 1583 /* update fs dirty blocks counter for truncate case */ 1584 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release); 1585 1586 /* update per-inode reservations */ 1587 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks); 1588 EXT4_I(inode)->i_reserved_data_blocks -= to_free; 1589 1590 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1591 EXT4_I(inode)->i_reserved_meta_blocks = mdb; 1592 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1593 } 1594 1595 static void ext4_da_page_release_reservation(struct page *page, 1596 unsigned long offset) 1597 { 1598 int to_release = 0; 1599 struct buffer_head *head, *bh; 1600 unsigned int curr_off = 0; 1601 1602 head = page_buffers(page); 1603 bh = head; 1604 do { 1605 unsigned int next_off = curr_off + bh->b_size; 1606 1607 if ((offset <= curr_off) && (buffer_delay(bh))) { 1608 to_release++; 1609 clear_buffer_delay(bh); 1610 } 1611 curr_off = next_off; 1612 } while ((bh = bh->b_this_page) != head); 1613 ext4_da_release_space(page->mapping->host, to_release); 1614 } 1615 1616 /* 1617 * Delayed allocation stuff 1618 */ 1619 1620 struct mpage_da_data { 1621 struct inode *inode; 1622 struct buffer_head lbh; /* extent of blocks */ 1623 unsigned long first_page, next_page; /* extent of pages */ 1624 get_block_t *get_block; 1625 struct writeback_control *wbc; 1626 int io_done; 1627 long pages_written; 1628 int retval; 1629 }; 1630 1631 /* 1632 * mpage_da_submit_io - walks through extent of pages and try to write 1633 * them with writepage() call back 1634 * 1635 * @mpd->inode: inode 1636 * @mpd->first_page: first page of the extent 1637 * @mpd->next_page: page after the last page of the extent 1638 * @mpd->get_block: the filesystem's block mapper function 1639 * 1640 * By the time mpage_da_submit_io() is called we expect all blocks 1641 * to be allocated. this may be wrong if allocation failed. 1642 * 1643 * As pages are already locked by write_cache_pages(), we can't use it 1644 */ 1645 static int mpage_da_submit_io(struct mpage_da_data *mpd) 1646 { 1647 struct address_space *mapping = mpd->inode->i_mapping; 1648 int ret = 0, err, nr_pages, i; 1649 unsigned long index, end; 1650 struct pagevec pvec; 1651 long pages_skipped; 1652 1653 BUG_ON(mpd->next_page <= mpd->first_page); 1654 pagevec_init(&pvec, 0); 1655 index = mpd->first_page; 1656 end = mpd->next_page - 1; 1657 1658 while (index <= end) { 1659 /* 1660 * We can use PAGECACHE_TAG_DIRTY lookup here because 1661 * even though we have cleared the dirty flag on the page 1662 * We still keep the page in the radix tree with tag 1663 * PAGECACHE_TAG_DIRTY. See clear_page_dirty_for_io. 1664 * The PAGECACHE_TAG_DIRTY is cleared in set_page_writeback 1665 * which is called via the below writepage callback. 1666 */ 1667 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 1668 PAGECACHE_TAG_DIRTY, 1669 min(end - index, 1670 (pgoff_t)PAGEVEC_SIZE-1) + 1); 1671 if (nr_pages == 0) 1672 break; 1673 for (i = 0; i < nr_pages; i++) { 1674 struct page *page = pvec.pages[i]; 1675 1676 pages_skipped = mpd->wbc->pages_skipped; 1677 err = mapping->a_ops->writepage(page, mpd->wbc); 1678 if (!err && (pages_skipped == mpd->wbc->pages_skipped)) 1679 /* 1680 * have successfully written the page 1681 * without skipping the same 1682 */ 1683 mpd->pages_written++; 1684 /* 1685 * In error case, we have to continue because 1686 * remaining pages are still locked 1687 * XXX: unlock and re-dirty them? 1688 */ 1689 if (ret == 0) 1690 ret = err; 1691 } 1692 pagevec_release(&pvec); 1693 } 1694 return ret; 1695 } 1696 1697 /* 1698 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers 1699 * 1700 * @mpd->inode - inode to walk through 1701 * @exbh->b_blocknr - first block on a disk 1702 * @exbh->b_size - amount of space in bytes 1703 * @logical - first logical block to start assignment with 1704 * 1705 * the function goes through all passed space and put actual disk 1706 * block numbers into buffer heads, dropping BH_Delay 1707 */ 1708 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical, 1709 struct buffer_head *exbh) 1710 { 1711 struct inode *inode = mpd->inode; 1712 struct address_space *mapping = inode->i_mapping; 1713 int blocks = exbh->b_size >> inode->i_blkbits; 1714 sector_t pblock = exbh->b_blocknr, cur_logical; 1715 struct buffer_head *head, *bh; 1716 pgoff_t index, end; 1717 struct pagevec pvec; 1718 int nr_pages, i; 1719 1720 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 1721 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 1722 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1723 1724 pagevec_init(&pvec, 0); 1725 1726 while (index <= end) { 1727 /* XXX: optimize tail */ 1728 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1729 if (nr_pages == 0) 1730 break; 1731 for (i = 0; i < nr_pages; i++) { 1732 struct page *page = pvec.pages[i]; 1733 1734 index = page->index; 1735 if (index > end) 1736 break; 1737 index++; 1738 1739 BUG_ON(!PageLocked(page)); 1740 BUG_ON(PageWriteback(page)); 1741 BUG_ON(!page_has_buffers(page)); 1742 1743 bh = page_buffers(page); 1744 head = bh; 1745 1746 /* skip blocks out of the range */ 1747 do { 1748 if (cur_logical >= logical) 1749 break; 1750 cur_logical++; 1751 } while ((bh = bh->b_this_page) != head); 1752 1753 do { 1754 if (cur_logical >= logical + blocks) 1755 break; 1756 if (buffer_delay(bh)) { 1757 bh->b_blocknr = pblock; 1758 clear_buffer_delay(bh); 1759 bh->b_bdev = inode->i_sb->s_bdev; 1760 } else if (buffer_unwritten(bh)) { 1761 bh->b_blocknr = pblock; 1762 clear_buffer_unwritten(bh); 1763 set_buffer_mapped(bh); 1764 set_buffer_new(bh); 1765 bh->b_bdev = inode->i_sb->s_bdev; 1766 } else if (buffer_mapped(bh)) 1767 BUG_ON(bh->b_blocknr != pblock); 1768 1769 cur_logical++; 1770 pblock++; 1771 } while ((bh = bh->b_this_page) != head); 1772 } 1773 pagevec_release(&pvec); 1774 } 1775 } 1776 1777 1778 /* 1779 * __unmap_underlying_blocks - just a helper function to unmap 1780 * set of blocks described by @bh 1781 */ 1782 static inline void __unmap_underlying_blocks(struct inode *inode, 1783 struct buffer_head *bh) 1784 { 1785 struct block_device *bdev = inode->i_sb->s_bdev; 1786 int blocks, i; 1787 1788 blocks = bh->b_size >> inode->i_blkbits; 1789 for (i = 0; i < blocks; i++) 1790 unmap_underlying_metadata(bdev, bh->b_blocknr + i); 1791 } 1792 1793 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd, 1794 sector_t logical, long blk_cnt) 1795 { 1796 int nr_pages, i; 1797 pgoff_t index, end; 1798 struct pagevec pvec; 1799 struct inode *inode = mpd->inode; 1800 struct address_space *mapping = inode->i_mapping; 1801 1802 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 1803 end = (logical + blk_cnt - 1) >> 1804 (PAGE_CACHE_SHIFT - inode->i_blkbits); 1805 while (index <= end) { 1806 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1807 if (nr_pages == 0) 1808 break; 1809 for (i = 0; i < nr_pages; i++) { 1810 struct page *page = pvec.pages[i]; 1811 index = page->index; 1812 if (index > end) 1813 break; 1814 index++; 1815 1816 BUG_ON(!PageLocked(page)); 1817 BUG_ON(PageWriteback(page)); 1818 block_invalidatepage(page, 0); 1819 ClearPageUptodate(page); 1820 unlock_page(page); 1821 } 1822 } 1823 return; 1824 } 1825 1826 static void ext4_print_free_blocks(struct inode *inode) 1827 { 1828 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1829 printk(KERN_EMERG "Total free blocks count %lld\n", 1830 ext4_count_free_blocks(inode->i_sb)); 1831 printk(KERN_EMERG "Free/Dirty block details\n"); 1832 printk(KERN_EMERG "free_blocks=%lld\n", 1833 percpu_counter_sum(&sbi->s_freeblocks_counter)); 1834 printk(KERN_EMERG "dirty_blocks=%lld\n", 1835 percpu_counter_sum(&sbi->s_dirtyblocks_counter)); 1836 printk(KERN_EMERG "Block reservation details\n"); 1837 printk(KERN_EMERG "i_reserved_data_blocks=%lu\n", 1838 EXT4_I(inode)->i_reserved_data_blocks); 1839 printk(KERN_EMERG "i_reserved_meta_blocks=%lu\n", 1840 EXT4_I(inode)->i_reserved_meta_blocks); 1841 return; 1842 } 1843 1844 /* 1845 * mpage_da_map_blocks - go through given space 1846 * 1847 * @mpd->lbh - bh describing space 1848 * @mpd->get_block - the filesystem's block mapper function 1849 * 1850 * The function skips space we know is already mapped to disk blocks. 1851 * 1852 */ 1853 static int mpage_da_map_blocks(struct mpage_da_data *mpd) 1854 { 1855 int err = 0; 1856 struct buffer_head new; 1857 struct buffer_head *lbh = &mpd->lbh; 1858 sector_t next; 1859 1860 /* 1861 * We consider only non-mapped and non-allocated blocks 1862 */ 1863 if (buffer_mapped(lbh) && !buffer_delay(lbh)) 1864 return 0; 1865 new.b_state = lbh->b_state; 1866 new.b_blocknr = 0; 1867 new.b_size = lbh->b_size; 1868 next = lbh->b_blocknr; 1869 /* 1870 * If we didn't accumulate anything 1871 * to write simply return 1872 */ 1873 if (!new.b_size) 1874 return 0; 1875 err = mpd->get_block(mpd->inode, next, &new, 1); 1876 if (err) { 1877 1878 /* If get block returns with error 1879 * we simply return. Later writepage 1880 * will redirty the page and writepages 1881 * will find the dirty page again 1882 */ 1883 if (err == -EAGAIN) 1884 return 0; 1885 1886 if (err == -ENOSPC && 1887 ext4_count_free_blocks(mpd->inode->i_sb)) { 1888 mpd->retval = err; 1889 return 0; 1890 } 1891 1892 /* 1893 * get block failure will cause us 1894 * to loop in writepages. Because 1895 * a_ops->writepage won't be able to 1896 * make progress. The page will be redirtied 1897 * by writepage and writepages will again 1898 * try to write the same. 1899 */ 1900 printk(KERN_EMERG "%s block allocation failed for inode %lu " 1901 "at logical offset %llu with max blocks " 1902 "%zd with error %d\n", 1903 __func__, mpd->inode->i_ino, 1904 (unsigned long long)next, 1905 lbh->b_size >> mpd->inode->i_blkbits, err); 1906 printk(KERN_EMERG "This should not happen.!! " 1907 "Data will be lost\n"); 1908 if (err == -ENOSPC) { 1909 ext4_print_free_blocks(mpd->inode); 1910 } 1911 /* invlaidate all the pages */ 1912 ext4_da_block_invalidatepages(mpd, next, 1913 lbh->b_size >> mpd->inode->i_blkbits); 1914 return err; 1915 } 1916 BUG_ON(new.b_size == 0); 1917 1918 if (buffer_new(&new)) 1919 __unmap_underlying_blocks(mpd->inode, &new); 1920 1921 /* 1922 * If blocks are delayed marked, we need to 1923 * put actual blocknr and drop delayed bit 1924 */ 1925 if (buffer_delay(lbh) || buffer_unwritten(lbh)) 1926 mpage_put_bnr_to_bhs(mpd, next, &new); 1927 1928 return 0; 1929 } 1930 1931 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 1932 (1 << BH_Delay) | (1 << BH_Unwritten)) 1933 1934 /* 1935 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 1936 * 1937 * @mpd->lbh - extent of blocks 1938 * @logical - logical number of the block in the file 1939 * @bh - bh of the block (used to access block's state) 1940 * 1941 * the function is used to collect contig. blocks in same state 1942 */ 1943 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 1944 sector_t logical, struct buffer_head *bh) 1945 { 1946 sector_t next; 1947 size_t b_size = bh->b_size; 1948 struct buffer_head *lbh = &mpd->lbh; 1949 int nrblocks = lbh->b_size >> mpd->inode->i_blkbits; 1950 1951 /* check if thereserved journal credits might overflow */ 1952 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) { 1953 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 1954 /* 1955 * With non-extent format we are limited by the journal 1956 * credit available. Total credit needed to insert 1957 * nrblocks contiguous blocks is dependent on the 1958 * nrblocks. So limit nrblocks. 1959 */ 1960 goto flush_it; 1961 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > 1962 EXT4_MAX_TRANS_DATA) { 1963 /* 1964 * Adding the new buffer_head would make it cross the 1965 * allowed limit for which we have journal credit 1966 * reserved. So limit the new bh->b_size 1967 */ 1968 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << 1969 mpd->inode->i_blkbits; 1970 /* we will do mpage_da_submit_io in the next loop */ 1971 } 1972 } 1973 /* 1974 * First block in the extent 1975 */ 1976 if (lbh->b_size == 0) { 1977 lbh->b_blocknr = logical; 1978 lbh->b_size = b_size; 1979 lbh->b_state = bh->b_state & BH_FLAGS; 1980 return; 1981 } 1982 1983 next = lbh->b_blocknr + nrblocks; 1984 /* 1985 * Can we merge the block to our big extent? 1986 */ 1987 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) { 1988 lbh->b_size += b_size; 1989 return; 1990 } 1991 1992 flush_it: 1993 /* 1994 * We couldn't merge the block to our extent, so we 1995 * need to flush current extent and start new one 1996 */ 1997 if (mpage_da_map_blocks(mpd) == 0) 1998 mpage_da_submit_io(mpd); 1999 mpd->io_done = 1; 2000 return; 2001 } 2002 2003 /* 2004 * __mpage_da_writepage - finds extent of pages and blocks 2005 * 2006 * @page: page to consider 2007 * @wbc: not used, we just follow rules 2008 * @data: context 2009 * 2010 * The function finds extents of pages and scan them for all blocks. 2011 */ 2012 static int __mpage_da_writepage(struct page *page, 2013 struct writeback_control *wbc, void *data) 2014 { 2015 struct mpage_da_data *mpd = data; 2016 struct inode *inode = mpd->inode; 2017 struct buffer_head *bh, *head, fake; 2018 sector_t logical; 2019 2020 if (mpd->io_done) { 2021 /* 2022 * Rest of the page in the page_vec 2023 * redirty then and skip then. We will 2024 * try to to write them again after 2025 * starting a new transaction 2026 */ 2027 redirty_page_for_writepage(wbc, page); 2028 unlock_page(page); 2029 return MPAGE_DA_EXTENT_TAIL; 2030 } 2031 /* 2032 * Can we merge this page to current extent? 2033 */ 2034 if (mpd->next_page != page->index) { 2035 /* 2036 * Nope, we can't. So, we map non-allocated blocks 2037 * and start IO on them using writepage() 2038 */ 2039 if (mpd->next_page != mpd->first_page) { 2040 if (mpage_da_map_blocks(mpd) == 0) 2041 mpage_da_submit_io(mpd); 2042 /* 2043 * skip rest of the page in the page_vec 2044 */ 2045 mpd->io_done = 1; 2046 redirty_page_for_writepage(wbc, page); 2047 unlock_page(page); 2048 return MPAGE_DA_EXTENT_TAIL; 2049 } 2050 2051 /* 2052 * Start next extent of pages ... 2053 */ 2054 mpd->first_page = page->index; 2055 2056 /* 2057 * ... and blocks 2058 */ 2059 mpd->lbh.b_size = 0; 2060 mpd->lbh.b_state = 0; 2061 mpd->lbh.b_blocknr = 0; 2062 } 2063 2064 mpd->next_page = page->index + 1; 2065 logical = (sector_t) page->index << 2066 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2067 2068 if (!page_has_buffers(page)) { 2069 /* 2070 * There is no attached buffer heads yet (mmap?) 2071 * we treat the page asfull of dirty blocks 2072 */ 2073 bh = &fake; 2074 bh->b_size = PAGE_CACHE_SIZE; 2075 bh->b_state = 0; 2076 set_buffer_dirty(bh); 2077 set_buffer_uptodate(bh); 2078 mpage_add_bh_to_extent(mpd, logical, bh); 2079 if (mpd->io_done) 2080 return MPAGE_DA_EXTENT_TAIL; 2081 } else { 2082 /* 2083 * Page with regular buffer heads, just add all dirty ones 2084 */ 2085 head = page_buffers(page); 2086 bh = head; 2087 do { 2088 BUG_ON(buffer_locked(bh)); 2089 if (buffer_dirty(bh) && 2090 (!buffer_mapped(bh) || buffer_delay(bh))) { 2091 mpage_add_bh_to_extent(mpd, logical, bh); 2092 if (mpd->io_done) 2093 return MPAGE_DA_EXTENT_TAIL; 2094 } 2095 logical++; 2096 } while ((bh = bh->b_this_page) != head); 2097 } 2098 2099 return 0; 2100 } 2101 2102 /* 2103 * mpage_da_writepages - walk the list of dirty pages of the given 2104 * address space, allocates non-allocated blocks, maps newly-allocated 2105 * blocks to existing bhs and issue IO them 2106 * 2107 * @mapping: address space structure to write 2108 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2109 * @get_block: the filesystem's block mapper function. 2110 * 2111 * This is a library function, which implements the writepages() 2112 * address_space_operation. 2113 */ 2114 static int mpage_da_writepages(struct address_space *mapping, 2115 struct writeback_control *wbc, 2116 struct mpage_da_data *mpd) 2117 { 2118 int ret; 2119 2120 if (!mpd->get_block) 2121 return generic_writepages(mapping, wbc); 2122 2123 mpd->lbh.b_size = 0; 2124 mpd->lbh.b_state = 0; 2125 mpd->lbh.b_blocknr = 0; 2126 mpd->first_page = 0; 2127 mpd->next_page = 0; 2128 mpd->io_done = 0; 2129 mpd->pages_written = 0; 2130 mpd->retval = 0; 2131 2132 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd); 2133 /* 2134 * Handle last extent of pages 2135 */ 2136 if (!mpd->io_done && mpd->next_page != mpd->first_page) { 2137 if (mpage_da_map_blocks(mpd) == 0) 2138 mpage_da_submit_io(mpd); 2139 2140 mpd->io_done = 1; 2141 ret = MPAGE_DA_EXTENT_TAIL; 2142 } 2143 wbc->nr_to_write -= mpd->pages_written; 2144 return ret; 2145 } 2146 2147 /* 2148 * this is a special callback for ->write_begin() only 2149 * it's intention is to return mapped block or reserve space 2150 */ 2151 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 2152 struct buffer_head *bh_result, int create) 2153 { 2154 int ret = 0; 2155 2156 BUG_ON(create == 0); 2157 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 2158 2159 /* 2160 * first, we need to know whether the block is allocated already 2161 * preallocated blocks are unmapped but should treated 2162 * the same as allocated blocks. 2163 */ 2164 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0); 2165 if ((ret == 0) && !buffer_delay(bh_result)) { 2166 /* the block isn't (pre)allocated yet, let's reserve space */ 2167 /* 2168 * XXX: __block_prepare_write() unmaps passed block, 2169 * is it OK? 2170 */ 2171 ret = ext4_da_reserve_space(inode, 1); 2172 if (ret) 2173 /* not enough space to reserve */ 2174 return ret; 2175 2176 map_bh(bh_result, inode->i_sb, 0); 2177 set_buffer_new(bh_result); 2178 set_buffer_delay(bh_result); 2179 } else if (ret > 0) { 2180 bh_result->b_size = (ret << inode->i_blkbits); 2181 ret = 0; 2182 } 2183 2184 return ret; 2185 } 2186 #define EXT4_DELALLOC_RSVED 1 2187 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock, 2188 struct buffer_head *bh_result, int create) 2189 { 2190 int ret; 2191 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 2192 loff_t disksize = EXT4_I(inode)->i_disksize; 2193 handle_t *handle = NULL; 2194 2195 handle = ext4_journal_current_handle(); 2196 BUG_ON(!handle); 2197 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks, 2198 bh_result, create, 0, EXT4_DELALLOC_RSVED); 2199 if (ret > 0) { 2200 2201 bh_result->b_size = (ret << inode->i_blkbits); 2202 2203 if (ext4_should_order_data(inode)) { 2204 int retval; 2205 retval = ext4_jbd2_file_inode(handle, inode); 2206 if (retval) 2207 /* 2208 * Failed to add inode for ordered 2209 * mode. Don't update file size 2210 */ 2211 return retval; 2212 } 2213 2214 /* 2215 * Update on-disk size along with block allocation 2216 * we don't use 'extend_disksize' as size may change 2217 * within already allocated block -bzzz 2218 */ 2219 disksize = ((loff_t) iblock + ret) << inode->i_blkbits; 2220 if (disksize > i_size_read(inode)) 2221 disksize = i_size_read(inode); 2222 if (disksize > EXT4_I(inode)->i_disksize) { 2223 ext4_update_i_disksize(inode, disksize); 2224 ret = ext4_mark_inode_dirty(handle, inode); 2225 return ret; 2226 } 2227 ret = 0; 2228 } 2229 return ret; 2230 } 2231 2232 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh) 2233 { 2234 /* 2235 * unmapped buffer is possible for holes. 2236 * delay buffer is possible with delayed allocation 2237 */ 2238 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh)); 2239 } 2240 2241 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock, 2242 struct buffer_head *bh_result, int create) 2243 { 2244 int ret = 0; 2245 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 2246 2247 /* 2248 * we don't want to do block allocation in writepage 2249 * so call get_block_wrap with create = 0 2250 */ 2251 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks, 2252 bh_result, 0, 0, 0); 2253 if (ret > 0) { 2254 bh_result->b_size = (ret << inode->i_blkbits); 2255 ret = 0; 2256 } 2257 return ret; 2258 } 2259 2260 /* 2261 * get called vi ext4_da_writepages after taking page lock (have journal handle) 2262 * get called via journal_submit_inode_data_buffers (no journal handle) 2263 * get called via shrink_page_list via pdflush (no journal handle) 2264 * or grab_page_cache when doing write_begin (have journal handle) 2265 */ 2266 static int ext4_da_writepage(struct page *page, 2267 struct writeback_control *wbc) 2268 { 2269 int ret = 0; 2270 loff_t size; 2271 unsigned long len; 2272 struct buffer_head *page_bufs; 2273 struct inode *inode = page->mapping->host; 2274 2275 size = i_size_read(inode); 2276 if (page->index == size >> PAGE_CACHE_SHIFT) 2277 len = size & ~PAGE_CACHE_MASK; 2278 else 2279 len = PAGE_CACHE_SIZE; 2280 2281 if (page_has_buffers(page)) { 2282 page_bufs = page_buffers(page); 2283 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2284 ext4_bh_unmapped_or_delay)) { 2285 /* 2286 * We don't want to do block allocation 2287 * So redirty the page and return 2288 * We may reach here when we do a journal commit 2289 * via journal_submit_inode_data_buffers. 2290 * If we don't have mapping block we just ignore 2291 * them. We can also reach here via shrink_page_list 2292 */ 2293 redirty_page_for_writepage(wbc, page); 2294 unlock_page(page); 2295 return 0; 2296 } 2297 } else { 2298 /* 2299 * The test for page_has_buffers() is subtle: 2300 * We know the page is dirty but it lost buffers. That means 2301 * that at some moment in time after write_begin()/write_end() 2302 * has been called all buffers have been clean and thus they 2303 * must have been written at least once. So they are all 2304 * mapped and we can happily proceed with mapping them 2305 * and writing the page. 2306 * 2307 * Try to initialize the buffer_heads and check whether 2308 * all are mapped and non delay. We don't want to 2309 * do block allocation here. 2310 */ 2311 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, 2312 ext4_normal_get_block_write); 2313 if (!ret) { 2314 page_bufs = page_buffers(page); 2315 /* check whether all are mapped and non delay */ 2316 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2317 ext4_bh_unmapped_or_delay)) { 2318 redirty_page_for_writepage(wbc, page); 2319 unlock_page(page); 2320 return 0; 2321 } 2322 } else { 2323 /* 2324 * We can't do block allocation here 2325 * so just redity the page and unlock 2326 * and return 2327 */ 2328 redirty_page_for_writepage(wbc, page); 2329 unlock_page(page); 2330 return 0; 2331 } 2332 } 2333 2334 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode)) 2335 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc); 2336 else 2337 ret = block_write_full_page(page, 2338 ext4_normal_get_block_write, 2339 wbc); 2340 2341 return ret; 2342 } 2343 2344 /* 2345 * This is called via ext4_da_writepages() to 2346 * calulate the total number of credits to reserve to fit 2347 * a single extent allocation into a single transaction, 2348 * ext4_da_writpeages() will loop calling this before 2349 * the block allocation. 2350 */ 2351 2352 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2353 { 2354 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 2355 2356 /* 2357 * With non-extent format the journal credit needed to 2358 * insert nrblocks contiguous block is dependent on 2359 * number of contiguous block. So we will limit 2360 * number of contiguous block to a sane value 2361 */ 2362 if (!(inode->i_flags & EXT4_EXTENTS_FL) && 2363 (max_blocks > EXT4_MAX_TRANS_DATA)) 2364 max_blocks = EXT4_MAX_TRANS_DATA; 2365 2366 return ext4_chunk_trans_blocks(inode, max_blocks); 2367 } 2368 2369 static int ext4_da_writepages(struct address_space *mapping, 2370 struct writeback_control *wbc) 2371 { 2372 pgoff_t index; 2373 int range_whole = 0; 2374 handle_t *handle = NULL; 2375 struct mpage_da_data mpd; 2376 struct inode *inode = mapping->host; 2377 int no_nrwrite_index_update; 2378 long pages_written = 0, pages_skipped; 2379 int needed_blocks, ret = 0, nr_to_writebump = 0; 2380 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2381 2382 /* 2383 * No pages to write? This is mainly a kludge to avoid starting 2384 * a transaction for special inodes like journal inode on last iput() 2385 * because that could violate lock ordering on umount 2386 */ 2387 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2388 return 0; 2389 /* 2390 * Make sure nr_to_write is >= sbi->s_mb_stream_request 2391 * This make sure small files blocks are allocated in 2392 * single attempt. This ensure that small files 2393 * get less fragmented. 2394 */ 2395 if (wbc->nr_to_write < sbi->s_mb_stream_request) { 2396 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write; 2397 wbc->nr_to_write = sbi->s_mb_stream_request; 2398 } 2399 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2400 range_whole = 1; 2401 2402 if (wbc->range_cyclic) 2403 index = mapping->writeback_index; 2404 else 2405 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2406 2407 mpd.wbc = wbc; 2408 mpd.inode = mapping->host; 2409 2410 /* 2411 * we don't want write_cache_pages to update 2412 * nr_to_write and writeback_index 2413 */ 2414 no_nrwrite_index_update = wbc->no_nrwrite_index_update; 2415 wbc->no_nrwrite_index_update = 1; 2416 pages_skipped = wbc->pages_skipped; 2417 2418 while (!ret && wbc->nr_to_write > 0) { 2419 2420 /* 2421 * we insert one extent at a time. So we need 2422 * credit needed for single extent allocation. 2423 * journalled mode is currently not supported 2424 * by delalloc 2425 */ 2426 BUG_ON(ext4_should_journal_data(inode)); 2427 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2428 2429 /* start a new transaction*/ 2430 handle = ext4_journal_start(inode, needed_blocks); 2431 if (IS_ERR(handle)) { 2432 ret = PTR_ERR(handle); 2433 printk(KERN_EMERG "%s: jbd2_start: " 2434 "%ld pages, ino %lu; err %d\n", __func__, 2435 wbc->nr_to_write, inode->i_ino, ret); 2436 dump_stack(); 2437 goto out_writepages; 2438 } 2439 mpd.get_block = ext4_da_get_block_write; 2440 ret = mpage_da_writepages(mapping, wbc, &mpd); 2441 2442 ext4_journal_stop(handle); 2443 2444 if (mpd.retval == -ENOSPC) { 2445 /* commit the transaction which would 2446 * free blocks released in the transaction 2447 * and try again 2448 */ 2449 jbd2_journal_force_commit_nested(sbi->s_journal); 2450 wbc->pages_skipped = pages_skipped; 2451 ret = 0; 2452 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 2453 /* 2454 * got one extent now try with 2455 * rest of the pages 2456 */ 2457 pages_written += mpd.pages_written; 2458 wbc->pages_skipped = pages_skipped; 2459 ret = 0; 2460 } else if (wbc->nr_to_write) 2461 /* 2462 * There is no more writeout needed 2463 * or we requested for a noblocking writeout 2464 * and we found the device congested 2465 */ 2466 break; 2467 } 2468 if (pages_skipped != wbc->pages_skipped) 2469 printk(KERN_EMERG "This should not happen leaving %s " 2470 "with nr_to_write = %ld ret = %d\n", 2471 __func__, wbc->nr_to_write, ret); 2472 2473 /* Update index */ 2474 index += pages_written; 2475 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2476 /* 2477 * set the writeback_index so that range_cyclic 2478 * mode will write it back later 2479 */ 2480 mapping->writeback_index = index; 2481 2482 out_writepages: 2483 if (!no_nrwrite_index_update) 2484 wbc->no_nrwrite_index_update = 0; 2485 wbc->nr_to_write -= nr_to_writebump; 2486 return ret; 2487 } 2488 2489 #define FALL_BACK_TO_NONDELALLOC 1 2490 static int ext4_nonda_switch(struct super_block *sb) 2491 { 2492 s64 free_blocks, dirty_blocks; 2493 struct ext4_sb_info *sbi = EXT4_SB(sb); 2494 2495 /* 2496 * switch to non delalloc mode if we are running low 2497 * on free block. The free block accounting via percpu 2498 * counters can get slightly wrong with FBC_BATCH getting 2499 * accumulated on each CPU without updating global counters 2500 * Delalloc need an accurate free block accounting. So switch 2501 * to non delalloc when we are near to error range. 2502 */ 2503 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter); 2504 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter); 2505 if (2 * free_blocks < 3 * dirty_blocks || 2506 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) { 2507 /* 2508 * free block count is less that 150% of dirty blocks 2509 * or free blocks is less that watermark 2510 */ 2511 return 1; 2512 } 2513 return 0; 2514 } 2515 2516 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2517 loff_t pos, unsigned len, unsigned flags, 2518 struct page **pagep, void **fsdata) 2519 { 2520 int ret, retries = 0; 2521 struct page *page; 2522 pgoff_t index; 2523 unsigned from, to; 2524 struct inode *inode = mapping->host; 2525 handle_t *handle; 2526 2527 index = pos >> PAGE_CACHE_SHIFT; 2528 from = pos & (PAGE_CACHE_SIZE - 1); 2529 to = from + len; 2530 2531 if (ext4_nonda_switch(inode->i_sb)) { 2532 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2533 return ext4_write_begin(file, mapping, pos, 2534 len, flags, pagep, fsdata); 2535 } 2536 *fsdata = (void *)0; 2537 retry: 2538 /* 2539 * With delayed allocation, we don't log the i_disksize update 2540 * if there is delayed block allocation. But we still need 2541 * to journalling the i_disksize update if writes to the end 2542 * of file which has an already mapped buffer. 2543 */ 2544 handle = ext4_journal_start(inode, 1); 2545 if (IS_ERR(handle)) { 2546 ret = PTR_ERR(handle); 2547 goto out; 2548 } 2549 2550 page = __grab_cache_page(mapping, index); 2551 if (!page) { 2552 ext4_journal_stop(handle); 2553 ret = -ENOMEM; 2554 goto out; 2555 } 2556 *pagep = page; 2557 2558 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 2559 ext4_da_get_block_prep); 2560 if (ret < 0) { 2561 unlock_page(page); 2562 ext4_journal_stop(handle); 2563 page_cache_release(page); 2564 /* 2565 * block_write_begin may have instantiated a few blocks 2566 * outside i_size. Trim these off again. Don't need 2567 * i_size_read because we hold i_mutex. 2568 */ 2569 if (pos + len > inode->i_size) 2570 vmtruncate(inode, inode->i_size); 2571 } 2572 2573 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 2574 goto retry; 2575 out: 2576 return ret; 2577 } 2578 2579 /* 2580 * Check if we should update i_disksize 2581 * when write to the end of file but not require block allocation 2582 */ 2583 static int ext4_da_should_update_i_disksize(struct page *page, 2584 unsigned long offset) 2585 { 2586 struct buffer_head *bh; 2587 struct inode *inode = page->mapping->host; 2588 unsigned int idx; 2589 int i; 2590 2591 bh = page_buffers(page); 2592 idx = offset >> inode->i_blkbits; 2593 2594 for (i = 0; i < idx; i++) 2595 bh = bh->b_this_page; 2596 2597 if (!buffer_mapped(bh) || (buffer_delay(bh))) 2598 return 0; 2599 return 1; 2600 } 2601 2602 static int ext4_da_write_end(struct file *file, 2603 struct address_space *mapping, 2604 loff_t pos, unsigned len, unsigned copied, 2605 struct page *page, void *fsdata) 2606 { 2607 struct inode *inode = mapping->host; 2608 int ret = 0, ret2; 2609 handle_t *handle = ext4_journal_current_handle(); 2610 loff_t new_i_size; 2611 unsigned long start, end; 2612 int write_mode = (int)(unsigned long)fsdata; 2613 2614 if (write_mode == FALL_BACK_TO_NONDELALLOC) { 2615 if (ext4_should_order_data(inode)) { 2616 return ext4_ordered_write_end(file, mapping, pos, 2617 len, copied, page, fsdata); 2618 } else if (ext4_should_writeback_data(inode)) { 2619 return ext4_writeback_write_end(file, mapping, pos, 2620 len, copied, page, fsdata); 2621 } else { 2622 BUG(); 2623 } 2624 } 2625 2626 start = pos & (PAGE_CACHE_SIZE - 1); 2627 end = start + copied - 1; 2628 2629 /* 2630 * generic_write_end() will run mark_inode_dirty() if i_size 2631 * changes. So let's piggyback the i_disksize mark_inode_dirty 2632 * into that. 2633 */ 2634 2635 new_i_size = pos + copied; 2636 if (new_i_size > EXT4_I(inode)->i_disksize) { 2637 if (ext4_da_should_update_i_disksize(page, end)) { 2638 down_write(&EXT4_I(inode)->i_data_sem); 2639 if (new_i_size > EXT4_I(inode)->i_disksize) { 2640 /* 2641 * Updating i_disksize when extending file 2642 * without needing block allocation 2643 */ 2644 if (ext4_should_order_data(inode)) 2645 ret = ext4_jbd2_file_inode(handle, 2646 inode); 2647 2648 EXT4_I(inode)->i_disksize = new_i_size; 2649 } 2650 up_write(&EXT4_I(inode)->i_data_sem); 2651 /* We need to mark inode dirty even if 2652 * new_i_size is less that inode->i_size 2653 * bu greater than i_disksize.(hint delalloc) 2654 */ 2655 ext4_mark_inode_dirty(handle, inode); 2656 } 2657 } 2658 ret2 = generic_write_end(file, mapping, pos, len, copied, 2659 page, fsdata); 2660 copied = ret2; 2661 if (ret2 < 0) 2662 ret = ret2; 2663 ret2 = ext4_journal_stop(handle); 2664 if (!ret) 2665 ret = ret2; 2666 2667 return ret ? ret : copied; 2668 } 2669 2670 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 2671 { 2672 /* 2673 * Drop reserved blocks 2674 */ 2675 BUG_ON(!PageLocked(page)); 2676 if (!page_has_buffers(page)) 2677 goto out; 2678 2679 ext4_da_page_release_reservation(page, offset); 2680 2681 out: 2682 ext4_invalidatepage(page, offset); 2683 2684 return; 2685 } 2686 2687 2688 /* 2689 * bmap() is special. It gets used by applications such as lilo and by 2690 * the swapper to find the on-disk block of a specific piece of data. 2691 * 2692 * Naturally, this is dangerous if the block concerned is still in the 2693 * journal. If somebody makes a swapfile on an ext4 data-journaling 2694 * filesystem and enables swap, then they may get a nasty shock when the 2695 * data getting swapped to that swapfile suddenly gets overwritten by 2696 * the original zero's written out previously to the journal and 2697 * awaiting writeback in the kernel's buffer cache. 2698 * 2699 * So, if we see any bmap calls here on a modified, data-journaled file, 2700 * take extra steps to flush any blocks which might be in the cache. 2701 */ 2702 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2703 { 2704 struct inode *inode = mapping->host; 2705 journal_t *journal; 2706 int err; 2707 2708 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2709 test_opt(inode->i_sb, DELALLOC)) { 2710 /* 2711 * With delalloc we want to sync the file 2712 * so that we can make sure we allocate 2713 * blocks for file 2714 */ 2715 filemap_write_and_wait(mapping); 2716 } 2717 2718 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) { 2719 /* 2720 * This is a REALLY heavyweight approach, but the use of 2721 * bmap on dirty files is expected to be extremely rare: 2722 * only if we run lilo or swapon on a freshly made file 2723 * do we expect this to happen. 2724 * 2725 * (bmap requires CAP_SYS_RAWIO so this does not 2726 * represent an unprivileged user DOS attack --- we'd be 2727 * in trouble if mortal users could trigger this path at 2728 * will.) 2729 * 2730 * NB. EXT4_STATE_JDATA is not set on files other than 2731 * regular files. If somebody wants to bmap a directory 2732 * or symlink and gets confused because the buffer 2733 * hasn't yet been flushed to disk, they deserve 2734 * everything they get. 2735 */ 2736 2737 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA; 2738 journal = EXT4_JOURNAL(inode); 2739 jbd2_journal_lock_updates(journal); 2740 err = jbd2_journal_flush(journal); 2741 jbd2_journal_unlock_updates(journal); 2742 2743 if (err) 2744 return 0; 2745 } 2746 2747 return generic_block_bmap(mapping, block, ext4_get_block); 2748 } 2749 2750 static int bget_one(handle_t *handle, struct buffer_head *bh) 2751 { 2752 get_bh(bh); 2753 return 0; 2754 } 2755 2756 static int bput_one(handle_t *handle, struct buffer_head *bh) 2757 { 2758 put_bh(bh); 2759 return 0; 2760 } 2761 2762 /* 2763 * Note that we don't need to start a transaction unless we're journaling data 2764 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2765 * need to file the inode to the transaction's list in ordered mode because if 2766 * we are writing back data added by write(), the inode is already there and if 2767 * we are writing back data modified via mmap(), noone guarantees in which 2768 * transaction the data will hit the disk. In case we are journaling data, we 2769 * cannot start transaction directly because transaction start ranks above page 2770 * lock so we have to do some magic. 2771 * 2772 * In all journaling modes block_write_full_page() will start the I/O. 2773 * 2774 * Problem: 2775 * 2776 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2777 * ext4_writepage() 2778 * 2779 * Similar for: 2780 * 2781 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ... 2782 * 2783 * Same applies to ext4_get_block(). We will deadlock on various things like 2784 * lock_journal and i_data_sem 2785 * 2786 * Setting PF_MEMALLOC here doesn't work - too many internal memory 2787 * allocations fail. 2788 * 2789 * 16May01: If we're reentered then journal_current_handle() will be 2790 * non-zero. We simply *return*. 2791 * 2792 * 1 July 2001: @@@ FIXME: 2793 * In journalled data mode, a data buffer may be metadata against the 2794 * current transaction. But the same file is part of a shared mapping 2795 * and someone does a writepage() on it. 2796 * 2797 * We will move the buffer onto the async_data list, but *after* it has 2798 * been dirtied. So there's a small window where we have dirty data on 2799 * BJ_Metadata. 2800 * 2801 * Note that this only applies to the last partial page in the file. The 2802 * bit which block_write_full_page() uses prepare/commit for. (That's 2803 * broken code anyway: it's wrong for msync()). 2804 * 2805 * It's a rare case: affects the final partial page, for journalled data 2806 * where the file is subject to bith write() and writepage() in the same 2807 * transction. To fix it we'll need a custom block_write_full_page(). 2808 * We'll probably need that anyway for journalling writepage() output. 2809 * 2810 * We don't honour synchronous mounts for writepage(). That would be 2811 * disastrous. Any write() or metadata operation will sync the fs for 2812 * us. 2813 * 2814 */ 2815 static int __ext4_normal_writepage(struct page *page, 2816 struct writeback_control *wbc) 2817 { 2818 struct inode *inode = page->mapping->host; 2819 2820 if (test_opt(inode->i_sb, NOBH)) 2821 return nobh_writepage(page, 2822 ext4_normal_get_block_write, wbc); 2823 else 2824 return block_write_full_page(page, 2825 ext4_normal_get_block_write, 2826 wbc); 2827 } 2828 2829 static int ext4_normal_writepage(struct page *page, 2830 struct writeback_control *wbc) 2831 { 2832 struct inode *inode = page->mapping->host; 2833 loff_t size = i_size_read(inode); 2834 loff_t len; 2835 2836 J_ASSERT(PageLocked(page)); 2837 if (page->index == size >> PAGE_CACHE_SHIFT) 2838 len = size & ~PAGE_CACHE_MASK; 2839 else 2840 len = PAGE_CACHE_SIZE; 2841 2842 if (page_has_buffers(page)) { 2843 /* if page has buffers it should all be mapped 2844 * and allocated. If there are not buffers attached 2845 * to the page we know the page is dirty but it lost 2846 * buffers. That means that at some moment in time 2847 * after write_begin() / write_end() has been called 2848 * all buffers have been clean and thus they must have been 2849 * written at least once. So they are all mapped and we can 2850 * happily proceed with mapping them and writing the page. 2851 */ 2852 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 2853 ext4_bh_unmapped_or_delay)); 2854 } 2855 2856 if (!ext4_journal_current_handle()) 2857 return __ext4_normal_writepage(page, wbc); 2858 2859 redirty_page_for_writepage(wbc, page); 2860 unlock_page(page); 2861 return 0; 2862 } 2863 2864 static int __ext4_journalled_writepage(struct page *page, 2865 struct writeback_control *wbc) 2866 { 2867 struct address_space *mapping = page->mapping; 2868 struct inode *inode = mapping->host; 2869 struct buffer_head *page_bufs; 2870 handle_t *handle = NULL; 2871 int ret = 0; 2872 int err; 2873 2874 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, 2875 ext4_normal_get_block_write); 2876 if (ret != 0) 2877 goto out_unlock; 2878 2879 page_bufs = page_buffers(page); 2880 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL, 2881 bget_one); 2882 /* As soon as we unlock the page, it can go away, but we have 2883 * references to buffers so we are safe */ 2884 unlock_page(page); 2885 2886 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 2887 if (IS_ERR(handle)) { 2888 ret = PTR_ERR(handle); 2889 goto out; 2890 } 2891 2892 ret = walk_page_buffers(handle, page_bufs, 0, 2893 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access); 2894 2895 err = walk_page_buffers(handle, page_bufs, 0, 2896 PAGE_CACHE_SIZE, NULL, write_end_fn); 2897 if (ret == 0) 2898 ret = err; 2899 err = ext4_journal_stop(handle); 2900 if (!ret) 2901 ret = err; 2902 2903 walk_page_buffers(handle, page_bufs, 0, 2904 PAGE_CACHE_SIZE, NULL, bput_one); 2905 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 2906 goto out; 2907 2908 out_unlock: 2909 unlock_page(page); 2910 out: 2911 return ret; 2912 } 2913 2914 static int ext4_journalled_writepage(struct page *page, 2915 struct writeback_control *wbc) 2916 { 2917 struct inode *inode = page->mapping->host; 2918 loff_t size = i_size_read(inode); 2919 loff_t len; 2920 2921 J_ASSERT(PageLocked(page)); 2922 if (page->index == size >> PAGE_CACHE_SHIFT) 2923 len = size & ~PAGE_CACHE_MASK; 2924 else 2925 len = PAGE_CACHE_SIZE; 2926 2927 if (page_has_buffers(page)) { 2928 /* if page has buffers it should all be mapped 2929 * and allocated. If there are not buffers attached 2930 * to the page we know the page is dirty but it lost 2931 * buffers. That means that at some moment in time 2932 * after write_begin() / write_end() has been called 2933 * all buffers have been clean and thus they must have been 2934 * written at least once. So they are all mapped and we can 2935 * happily proceed with mapping them and writing the page. 2936 */ 2937 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 2938 ext4_bh_unmapped_or_delay)); 2939 } 2940 2941 if (ext4_journal_current_handle()) 2942 goto no_write; 2943 2944 if (PageChecked(page)) { 2945 /* 2946 * It's mmapped pagecache. Add buffers and journal it. There 2947 * doesn't seem much point in redirtying the page here. 2948 */ 2949 ClearPageChecked(page); 2950 return __ext4_journalled_writepage(page, wbc); 2951 } else { 2952 /* 2953 * It may be a page full of checkpoint-mode buffers. We don't 2954 * really know unless we go poke around in the buffer_heads. 2955 * But block_write_full_page will do the right thing. 2956 */ 2957 return block_write_full_page(page, 2958 ext4_normal_get_block_write, 2959 wbc); 2960 } 2961 no_write: 2962 redirty_page_for_writepage(wbc, page); 2963 unlock_page(page); 2964 return 0; 2965 } 2966 2967 static int ext4_readpage(struct file *file, struct page *page) 2968 { 2969 return mpage_readpage(page, ext4_get_block); 2970 } 2971 2972 static int 2973 ext4_readpages(struct file *file, struct address_space *mapping, 2974 struct list_head *pages, unsigned nr_pages) 2975 { 2976 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2977 } 2978 2979 static void ext4_invalidatepage(struct page *page, unsigned long offset) 2980 { 2981 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2982 2983 /* 2984 * If it's a full truncate we just forget about the pending dirtying 2985 */ 2986 if (offset == 0) 2987 ClearPageChecked(page); 2988 2989 jbd2_journal_invalidatepage(journal, page, offset); 2990 } 2991 2992 static int ext4_releasepage(struct page *page, gfp_t wait) 2993 { 2994 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2995 2996 WARN_ON(PageChecked(page)); 2997 if (!page_has_buffers(page)) 2998 return 0; 2999 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3000 } 3001 3002 /* 3003 * If the O_DIRECT write will extend the file then add this inode to the 3004 * orphan list. So recovery will truncate it back to the original size 3005 * if the machine crashes during the write. 3006 * 3007 * If the O_DIRECT write is intantiating holes inside i_size and the machine 3008 * crashes then stale disk data _may_ be exposed inside the file. But current 3009 * VFS code falls back into buffered path in that case so we are safe. 3010 */ 3011 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3012 const struct iovec *iov, loff_t offset, 3013 unsigned long nr_segs) 3014 { 3015 struct file *file = iocb->ki_filp; 3016 struct inode *inode = file->f_mapping->host; 3017 struct ext4_inode_info *ei = EXT4_I(inode); 3018 handle_t *handle; 3019 ssize_t ret; 3020 int orphan = 0; 3021 size_t count = iov_length(iov, nr_segs); 3022 3023 if (rw == WRITE) { 3024 loff_t final_size = offset + count; 3025 3026 if (final_size > inode->i_size) { 3027 /* Credits for sb + inode write */ 3028 handle = ext4_journal_start(inode, 2); 3029 if (IS_ERR(handle)) { 3030 ret = PTR_ERR(handle); 3031 goto out; 3032 } 3033 ret = ext4_orphan_add(handle, inode); 3034 if (ret) { 3035 ext4_journal_stop(handle); 3036 goto out; 3037 } 3038 orphan = 1; 3039 ei->i_disksize = inode->i_size; 3040 ext4_journal_stop(handle); 3041 } 3042 } 3043 3044 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 3045 offset, nr_segs, 3046 ext4_get_block, NULL); 3047 3048 if (orphan) { 3049 int err; 3050 3051 /* Credits for sb + inode write */ 3052 handle = ext4_journal_start(inode, 2); 3053 if (IS_ERR(handle)) { 3054 /* This is really bad luck. We've written the data 3055 * but cannot extend i_size. Bail out and pretend 3056 * the write failed... */ 3057 ret = PTR_ERR(handle); 3058 goto out; 3059 } 3060 if (inode->i_nlink) 3061 ext4_orphan_del(handle, inode); 3062 if (ret > 0) { 3063 loff_t end = offset + ret; 3064 if (end > inode->i_size) { 3065 ei->i_disksize = end; 3066 i_size_write(inode, end); 3067 /* 3068 * We're going to return a positive `ret' 3069 * here due to non-zero-length I/O, so there's 3070 * no way of reporting error returns from 3071 * ext4_mark_inode_dirty() to userspace. So 3072 * ignore it. 3073 */ 3074 ext4_mark_inode_dirty(handle, inode); 3075 } 3076 } 3077 err = ext4_journal_stop(handle); 3078 if (ret == 0) 3079 ret = err; 3080 } 3081 out: 3082 return ret; 3083 } 3084 3085 /* 3086 * Pages can be marked dirty completely asynchronously from ext4's journalling 3087 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3088 * much here because ->set_page_dirty is called under VFS locks. The page is 3089 * not necessarily locked. 3090 * 3091 * We cannot just dirty the page and leave attached buffers clean, because the 3092 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3093 * or jbddirty because all the journalling code will explode. 3094 * 3095 * So what we do is to mark the page "pending dirty" and next time writepage 3096 * is called, propagate that into the buffers appropriately. 3097 */ 3098 static int ext4_journalled_set_page_dirty(struct page *page) 3099 { 3100 SetPageChecked(page); 3101 return __set_page_dirty_nobuffers(page); 3102 } 3103 3104 static const struct address_space_operations ext4_ordered_aops = { 3105 .readpage = ext4_readpage, 3106 .readpages = ext4_readpages, 3107 .writepage = ext4_normal_writepage, 3108 .sync_page = block_sync_page, 3109 .write_begin = ext4_write_begin, 3110 .write_end = ext4_ordered_write_end, 3111 .bmap = ext4_bmap, 3112 .invalidatepage = ext4_invalidatepage, 3113 .releasepage = ext4_releasepage, 3114 .direct_IO = ext4_direct_IO, 3115 .migratepage = buffer_migrate_page, 3116 .is_partially_uptodate = block_is_partially_uptodate, 3117 }; 3118 3119 static const struct address_space_operations ext4_writeback_aops = { 3120 .readpage = ext4_readpage, 3121 .readpages = ext4_readpages, 3122 .writepage = ext4_normal_writepage, 3123 .sync_page = block_sync_page, 3124 .write_begin = ext4_write_begin, 3125 .write_end = ext4_writeback_write_end, 3126 .bmap = ext4_bmap, 3127 .invalidatepage = ext4_invalidatepage, 3128 .releasepage = ext4_releasepage, 3129 .direct_IO = ext4_direct_IO, 3130 .migratepage = buffer_migrate_page, 3131 .is_partially_uptodate = block_is_partially_uptodate, 3132 }; 3133 3134 static const struct address_space_operations ext4_journalled_aops = { 3135 .readpage = ext4_readpage, 3136 .readpages = ext4_readpages, 3137 .writepage = ext4_journalled_writepage, 3138 .sync_page = block_sync_page, 3139 .write_begin = ext4_write_begin, 3140 .write_end = ext4_journalled_write_end, 3141 .set_page_dirty = ext4_journalled_set_page_dirty, 3142 .bmap = ext4_bmap, 3143 .invalidatepage = ext4_invalidatepage, 3144 .releasepage = ext4_releasepage, 3145 .is_partially_uptodate = block_is_partially_uptodate, 3146 }; 3147 3148 static const struct address_space_operations ext4_da_aops = { 3149 .readpage = ext4_readpage, 3150 .readpages = ext4_readpages, 3151 .writepage = ext4_da_writepage, 3152 .writepages = ext4_da_writepages, 3153 .sync_page = block_sync_page, 3154 .write_begin = ext4_da_write_begin, 3155 .write_end = ext4_da_write_end, 3156 .bmap = ext4_bmap, 3157 .invalidatepage = ext4_da_invalidatepage, 3158 .releasepage = ext4_releasepage, 3159 .direct_IO = ext4_direct_IO, 3160 .migratepage = buffer_migrate_page, 3161 .is_partially_uptodate = block_is_partially_uptodate, 3162 }; 3163 3164 void ext4_set_aops(struct inode *inode) 3165 { 3166 if (ext4_should_order_data(inode) && 3167 test_opt(inode->i_sb, DELALLOC)) 3168 inode->i_mapping->a_ops = &ext4_da_aops; 3169 else if (ext4_should_order_data(inode)) 3170 inode->i_mapping->a_ops = &ext4_ordered_aops; 3171 else if (ext4_should_writeback_data(inode) && 3172 test_opt(inode->i_sb, DELALLOC)) 3173 inode->i_mapping->a_ops = &ext4_da_aops; 3174 else if (ext4_should_writeback_data(inode)) 3175 inode->i_mapping->a_ops = &ext4_writeback_aops; 3176 else 3177 inode->i_mapping->a_ops = &ext4_journalled_aops; 3178 } 3179 3180 /* 3181 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3182 * up to the end of the block which corresponds to `from'. 3183 * This required during truncate. We need to physically zero the tail end 3184 * of that block so it doesn't yield old data if the file is later grown. 3185 */ 3186 int ext4_block_truncate_page(handle_t *handle, 3187 struct address_space *mapping, loff_t from) 3188 { 3189 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3190 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3191 unsigned blocksize, length, pos; 3192 ext4_lblk_t iblock; 3193 struct inode *inode = mapping->host; 3194 struct buffer_head *bh; 3195 struct page *page; 3196 int err = 0; 3197 3198 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT); 3199 if (!page) 3200 return -EINVAL; 3201 3202 blocksize = inode->i_sb->s_blocksize; 3203 length = blocksize - (offset & (blocksize - 1)); 3204 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3205 3206 /* 3207 * For "nobh" option, we can only work if we don't need to 3208 * read-in the page - otherwise we create buffers to do the IO. 3209 */ 3210 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) && 3211 ext4_should_writeback_data(inode) && PageUptodate(page)) { 3212 zero_user(page, offset, length); 3213 set_page_dirty(page); 3214 goto unlock; 3215 } 3216 3217 if (!page_has_buffers(page)) 3218 create_empty_buffers(page, blocksize, 0); 3219 3220 /* Find the buffer that contains "offset" */ 3221 bh = page_buffers(page); 3222 pos = blocksize; 3223 while (offset >= pos) { 3224 bh = bh->b_this_page; 3225 iblock++; 3226 pos += blocksize; 3227 } 3228 3229 err = 0; 3230 if (buffer_freed(bh)) { 3231 BUFFER_TRACE(bh, "freed: skip"); 3232 goto unlock; 3233 } 3234 3235 if (!buffer_mapped(bh)) { 3236 BUFFER_TRACE(bh, "unmapped"); 3237 ext4_get_block(inode, iblock, bh, 0); 3238 /* unmapped? It's a hole - nothing to do */ 3239 if (!buffer_mapped(bh)) { 3240 BUFFER_TRACE(bh, "still unmapped"); 3241 goto unlock; 3242 } 3243 } 3244 3245 /* Ok, it's mapped. Make sure it's up-to-date */ 3246 if (PageUptodate(page)) 3247 set_buffer_uptodate(bh); 3248 3249 if (!buffer_uptodate(bh)) { 3250 err = -EIO; 3251 ll_rw_block(READ, 1, &bh); 3252 wait_on_buffer(bh); 3253 /* Uhhuh. Read error. Complain and punt. */ 3254 if (!buffer_uptodate(bh)) 3255 goto unlock; 3256 } 3257 3258 if (ext4_should_journal_data(inode)) { 3259 BUFFER_TRACE(bh, "get write access"); 3260 err = ext4_journal_get_write_access(handle, bh); 3261 if (err) 3262 goto unlock; 3263 } 3264 3265 zero_user(page, offset, length); 3266 3267 BUFFER_TRACE(bh, "zeroed end of block"); 3268 3269 err = 0; 3270 if (ext4_should_journal_data(inode)) { 3271 err = ext4_journal_dirty_metadata(handle, bh); 3272 } else { 3273 if (ext4_should_order_data(inode)) 3274 err = ext4_jbd2_file_inode(handle, inode); 3275 mark_buffer_dirty(bh); 3276 } 3277 3278 unlock: 3279 unlock_page(page); 3280 page_cache_release(page); 3281 return err; 3282 } 3283 3284 /* 3285 * Probably it should be a library function... search for first non-zero word 3286 * or memcmp with zero_page, whatever is better for particular architecture. 3287 * Linus? 3288 */ 3289 static inline int all_zeroes(__le32 *p, __le32 *q) 3290 { 3291 while (p < q) 3292 if (*p++) 3293 return 0; 3294 return 1; 3295 } 3296 3297 /** 3298 * ext4_find_shared - find the indirect blocks for partial truncation. 3299 * @inode: inode in question 3300 * @depth: depth of the affected branch 3301 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 3302 * @chain: place to store the pointers to partial indirect blocks 3303 * @top: place to the (detached) top of branch 3304 * 3305 * This is a helper function used by ext4_truncate(). 3306 * 3307 * When we do truncate() we may have to clean the ends of several 3308 * indirect blocks but leave the blocks themselves alive. Block is 3309 * partially truncated if some data below the new i_size is refered 3310 * from it (and it is on the path to the first completely truncated 3311 * data block, indeed). We have to free the top of that path along 3312 * with everything to the right of the path. Since no allocation 3313 * past the truncation point is possible until ext4_truncate() 3314 * finishes, we may safely do the latter, but top of branch may 3315 * require special attention - pageout below the truncation point 3316 * might try to populate it. 3317 * 3318 * We atomically detach the top of branch from the tree, store the 3319 * block number of its root in *@top, pointers to buffer_heads of 3320 * partially truncated blocks - in @chain[].bh and pointers to 3321 * their last elements that should not be removed - in 3322 * @chain[].p. Return value is the pointer to last filled element 3323 * of @chain. 3324 * 3325 * The work left to caller to do the actual freeing of subtrees: 3326 * a) free the subtree starting from *@top 3327 * b) free the subtrees whose roots are stored in 3328 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 3329 * c) free the subtrees growing from the inode past the @chain[0]. 3330 * (no partially truncated stuff there). */ 3331 3332 static Indirect *ext4_find_shared(struct inode *inode, int depth, 3333 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top) 3334 { 3335 Indirect *partial, *p; 3336 int k, err; 3337 3338 *top = 0; 3339 /* Make k index the deepest non-null offest + 1 */ 3340 for (k = depth; k > 1 && !offsets[k-1]; k--) 3341 ; 3342 partial = ext4_get_branch(inode, k, offsets, chain, &err); 3343 /* Writer: pointers */ 3344 if (!partial) 3345 partial = chain + k-1; 3346 /* 3347 * If the branch acquired continuation since we've looked at it - 3348 * fine, it should all survive and (new) top doesn't belong to us. 3349 */ 3350 if (!partial->key && *partial->p) 3351 /* Writer: end */ 3352 goto no_top; 3353 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 3354 ; 3355 /* 3356 * OK, we've found the last block that must survive. The rest of our 3357 * branch should be detached before unlocking. However, if that rest 3358 * of branch is all ours and does not grow immediately from the inode 3359 * it's easier to cheat and just decrement partial->p. 3360 */ 3361 if (p == chain + k - 1 && p > chain) { 3362 p->p--; 3363 } else { 3364 *top = *p->p; 3365 /* Nope, don't do this in ext4. Must leave the tree intact */ 3366 #if 0 3367 *p->p = 0; 3368 #endif 3369 } 3370 /* Writer: end */ 3371 3372 while (partial > p) { 3373 brelse(partial->bh); 3374 partial--; 3375 } 3376 no_top: 3377 return partial; 3378 } 3379 3380 /* 3381 * Zero a number of block pointers in either an inode or an indirect block. 3382 * If we restart the transaction we must again get write access to the 3383 * indirect block for further modification. 3384 * 3385 * We release `count' blocks on disk, but (last - first) may be greater 3386 * than `count' because there can be holes in there. 3387 */ 3388 static void ext4_clear_blocks(handle_t *handle, struct inode *inode, 3389 struct buffer_head *bh, ext4_fsblk_t block_to_free, 3390 unsigned long count, __le32 *first, __le32 *last) 3391 { 3392 __le32 *p; 3393 if (try_to_extend_transaction(handle, inode)) { 3394 if (bh) { 3395 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 3396 ext4_journal_dirty_metadata(handle, bh); 3397 } 3398 ext4_mark_inode_dirty(handle, inode); 3399 ext4_journal_test_restart(handle, inode); 3400 if (bh) { 3401 BUFFER_TRACE(bh, "retaking write access"); 3402 ext4_journal_get_write_access(handle, bh); 3403 } 3404 } 3405 3406 /* 3407 * Any buffers which are on the journal will be in memory. We find 3408 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget() 3409 * on them. We've already detached each block from the file, so 3410 * bforget() in jbd2_journal_forget() should be safe. 3411 * 3412 * AKPM: turn on bforget in jbd2_journal_forget()!!! 3413 */ 3414 for (p = first; p < last; p++) { 3415 u32 nr = le32_to_cpu(*p); 3416 if (nr) { 3417 struct buffer_head *tbh; 3418 3419 *p = 0; 3420 tbh = sb_find_get_block(inode->i_sb, nr); 3421 ext4_forget(handle, 0, inode, tbh, nr); 3422 } 3423 } 3424 3425 ext4_free_blocks(handle, inode, block_to_free, count, 0); 3426 } 3427 3428 /** 3429 * ext4_free_data - free a list of data blocks 3430 * @handle: handle for this transaction 3431 * @inode: inode we are dealing with 3432 * @this_bh: indirect buffer_head which contains *@first and *@last 3433 * @first: array of block numbers 3434 * @last: points immediately past the end of array 3435 * 3436 * We are freeing all blocks refered from that array (numbers are stored as 3437 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 3438 * 3439 * We accumulate contiguous runs of blocks to free. Conveniently, if these 3440 * blocks are contiguous then releasing them at one time will only affect one 3441 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 3442 * actually use a lot of journal space. 3443 * 3444 * @this_bh will be %NULL if @first and @last point into the inode's direct 3445 * block pointers. 3446 */ 3447 static void ext4_free_data(handle_t *handle, struct inode *inode, 3448 struct buffer_head *this_bh, 3449 __le32 *first, __le32 *last) 3450 { 3451 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 3452 unsigned long count = 0; /* Number of blocks in the run */ 3453 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 3454 corresponding to 3455 block_to_free */ 3456 ext4_fsblk_t nr; /* Current block # */ 3457 __le32 *p; /* Pointer into inode/ind 3458 for current block */ 3459 int err; 3460 3461 if (this_bh) { /* For indirect block */ 3462 BUFFER_TRACE(this_bh, "get_write_access"); 3463 err = ext4_journal_get_write_access(handle, this_bh); 3464 /* Important: if we can't update the indirect pointers 3465 * to the blocks, we can't free them. */ 3466 if (err) 3467 return; 3468 } 3469 3470 for (p = first; p < last; p++) { 3471 nr = le32_to_cpu(*p); 3472 if (nr) { 3473 /* accumulate blocks to free if they're contiguous */ 3474 if (count == 0) { 3475 block_to_free = nr; 3476 block_to_free_p = p; 3477 count = 1; 3478 } else if (nr == block_to_free + count) { 3479 count++; 3480 } else { 3481 ext4_clear_blocks(handle, inode, this_bh, 3482 block_to_free, 3483 count, block_to_free_p, p); 3484 block_to_free = nr; 3485 block_to_free_p = p; 3486 count = 1; 3487 } 3488 } 3489 } 3490 3491 if (count > 0) 3492 ext4_clear_blocks(handle, inode, this_bh, block_to_free, 3493 count, block_to_free_p, p); 3494 3495 if (this_bh) { 3496 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata"); 3497 3498 /* 3499 * The buffer head should have an attached journal head at this 3500 * point. However, if the data is corrupted and an indirect 3501 * block pointed to itself, it would have been detached when 3502 * the block was cleared. Check for this instead of OOPSing. 3503 */ 3504 if (bh2jh(this_bh)) 3505 ext4_journal_dirty_metadata(handle, this_bh); 3506 else 3507 ext4_error(inode->i_sb, __func__, 3508 "circular indirect block detected, " 3509 "inode=%lu, block=%llu", 3510 inode->i_ino, 3511 (unsigned long long) this_bh->b_blocknr); 3512 } 3513 } 3514 3515 /** 3516 * ext4_free_branches - free an array of branches 3517 * @handle: JBD handle for this transaction 3518 * @inode: inode we are dealing with 3519 * @parent_bh: the buffer_head which contains *@first and *@last 3520 * @first: array of block numbers 3521 * @last: pointer immediately past the end of array 3522 * @depth: depth of the branches to free 3523 * 3524 * We are freeing all blocks refered from these branches (numbers are 3525 * stored as little-endian 32-bit) and updating @inode->i_blocks 3526 * appropriately. 3527 */ 3528 static void ext4_free_branches(handle_t *handle, struct inode *inode, 3529 struct buffer_head *parent_bh, 3530 __le32 *first, __le32 *last, int depth) 3531 { 3532 ext4_fsblk_t nr; 3533 __le32 *p; 3534 3535 if (is_handle_aborted(handle)) 3536 return; 3537 3538 if (depth--) { 3539 struct buffer_head *bh; 3540 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 3541 p = last; 3542 while (--p >= first) { 3543 nr = le32_to_cpu(*p); 3544 if (!nr) 3545 continue; /* A hole */ 3546 3547 /* Go read the buffer for the next level down */ 3548 bh = sb_bread(inode->i_sb, nr); 3549 3550 /* 3551 * A read failure? Report error and clear slot 3552 * (should be rare). 3553 */ 3554 if (!bh) { 3555 ext4_error(inode->i_sb, "ext4_free_branches", 3556 "Read failure, inode=%lu, block=%llu", 3557 inode->i_ino, nr); 3558 continue; 3559 } 3560 3561 /* This zaps the entire block. Bottom up. */ 3562 BUFFER_TRACE(bh, "free child branches"); 3563 ext4_free_branches(handle, inode, bh, 3564 (__le32 *) bh->b_data, 3565 (__le32 *) bh->b_data + addr_per_block, 3566 depth); 3567 3568 /* 3569 * We've probably journalled the indirect block several 3570 * times during the truncate. But it's no longer 3571 * needed and we now drop it from the transaction via 3572 * jbd2_journal_revoke(). 3573 * 3574 * That's easy if it's exclusively part of this 3575 * transaction. But if it's part of the committing 3576 * transaction then jbd2_journal_forget() will simply 3577 * brelse() it. That means that if the underlying 3578 * block is reallocated in ext4_get_block(), 3579 * unmap_underlying_metadata() will find this block 3580 * and will try to get rid of it. damn, damn. 3581 * 3582 * If this block has already been committed to the 3583 * journal, a revoke record will be written. And 3584 * revoke records must be emitted *before* clearing 3585 * this block's bit in the bitmaps. 3586 */ 3587 ext4_forget(handle, 1, inode, bh, bh->b_blocknr); 3588 3589 /* 3590 * Everything below this this pointer has been 3591 * released. Now let this top-of-subtree go. 3592 * 3593 * We want the freeing of this indirect block to be 3594 * atomic in the journal with the updating of the 3595 * bitmap block which owns it. So make some room in 3596 * the journal. 3597 * 3598 * We zero the parent pointer *after* freeing its 3599 * pointee in the bitmaps, so if extend_transaction() 3600 * for some reason fails to put the bitmap changes and 3601 * the release into the same transaction, recovery 3602 * will merely complain about releasing a free block, 3603 * rather than leaking blocks. 3604 */ 3605 if (is_handle_aborted(handle)) 3606 return; 3607 if (try_to_extend_transaction(handle, inode)) { 3608 ext4_mark_inode_dirty(handle, inode); 3609 ext4_journal_test_restart(handle, inode); 3610 } 3611 3612 ext4_free_blocks(handle, inode, nr, 1, 1); 3613 3614 if (parent_bh) { 3615 /* 3616 * The block which we have just freed is 3617 * pointed to by an indirect block: journal it 3618 */ 3619 BUFFER_TRACE(parent_bh, "get_write_access"); 3620 if (!ext4_journal_get_write_access(handle, 3621 parent_bh)){ 3622 *p = 0; 3623 BUFFER_TRACE(parent_bh, 3624 "call ext4_journal_dirty_metadata"); 3625 ext4_journal_dirty_metadata(handle, 3626 parent_bh); 3627 } 3628 } 3629 } 3630 } else { 3631 /* We have reached the bottom of the tree. */ 3632 BUFFER_TRACE(parent_bh, "free data blocks"); 3633 ext4_free_data(handle, inode, parent_bh, first, last); 3634 } 3635 } 3636 3637 int ext4_can_truncate(struct inode *inode) 3638 { 3639 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 3640 return 0; 3641 if (S_ISREG(inode->i_mode)) 3642 return 1; 3643 if (S_ISDIR(inode->i_mode)) 3644 return 1; 3645 if (S_ISLNK(inode->i_mode)) 3646 return !ext4_inode_is_fast_symlink(inode); 3647 return 0; 3648 } 3649 3650 /* 3651 * ext4_truncate() 3652 * 3653 * We block out ext4_get_block() block instantiations across the entire 3654 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3655 * simultaneously on behalf of the same inode. 3656 * 3657 * As we work through the truncate and commmit bits of it to the journal there 3658 * is one core, guiding principle: the file's tree must always be consistent on 3659 * disk. We must be able to restart the truncate after a crash. 3660 * 3661 * The file's tree may be transiently inconsistent in memory (although it 3662 * probably isn't), but whenever we close off and commit a journal transaction, 3663 * the contents of (the filesystem + the journal) must be consistent and 3664 * restartable. It's pretty simple, really: bottom up, right to left (although 3665 * left-to-right works OK too). 3666 * 3667 * Note that at recovery time, journal replay occurs *before* the restart of 3668 * truncate against the orphan inode list. 3669 * 3670 * The committed inode has the new, desired i_size (which is the same as 3671 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3672 * that this inode's truncate did not complete and it will again call 3673 * ext4_truncate() to have another go. So there will be instantiated blocks 3674 * to the right of the truncation point in a crashed ext4 filesystem. But 3675 * that's fine - as long as they are linked from the inode, the post-crash 3676 * ext4_truncate() run will find them and release them. 3677 */ 3678 void ext4_truncate(struct inode *inode) 3679 { 3680 handle_t *handle; 3681 struct ext4_inode_info *ei = EXT4_I(inode); 3682 __le32 *i_data = ei->i_data; 3683 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 3684 struct address_space *mapping = inode->i_mapping; 3685 ext4_lblk_t offsets[4]; 3686 Indirect chain[4]; 3687 Indirect *partial; 3688 __le32 nr = 0; 3689 int n; 3690 ext4_lblk_t last_block; 3691 unsigned blocksize = inode->i_sb->s_blocksize; 3692 3693 if (!ext4_can_truncate(inode)) 3694 return; 3695 3696 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 3697 ext4_ext_truncate(inode); 3698 return; 3699 } 3700 3701 handle = start_transaction(inode); 3702 if (IS_ERR(handle)) 3703 return; /* AKPM: return what? */ 3704 3705 last_block = (inode->i_size + blocksize-1) 3706 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 3707 3708 if (inode->i_size & (blocksize - 1)) 3709 if (ext4_block_truncate_page(handle, mapping, inode->i_size)) 3710 goto out_stop; 3711 3712 n = ext4_block_to_path(inode, last_block, offsets, NULL); 3713 if (n == 0) 3714 goto out_stop; /* error */ 3715 3716 /* 3717 * OK. This truncate is going to happen. We add the inode to the 3718 * orphan list, so that if this truncate spans multiple transactions, 3719 * and we crash, we will resume the truncate when the filesystem 3720 * recovers. It also marks the inode dirty, to catch the new size. 3721 * 3722 * Implication: the file must always be in a sane, consistent 3723 * truncatable state while each transaction commits. 3724 */ 3725 if (ext4_orphan_add(handle, inode)) 3726 goto out_stop; 3727 3728 /* 3729 * From here we block out all ext4_get_block() callers who want to 3730 * modify the block allocation tree. 3731 */ 3732 down_write(&ei->i_data_sem); 3733 3734 ext4_discard_preallocations(inode); 3735 3736 /* 3737 * The orphan list entry will now protect us from any crash which 3738 * occurs before the truncate completes, so it is now safe to propagate 3739 * the new, shorter inode size (held for now in i_size) into the 3740 * on-disk inode. We do this via i_disksize, which is the value which 3741 * ext4 *really* writes onto the disk inode. 3742 */ 3743 ei->i_disksize = inode->i_size; 3744 3745 if (n == 1) { /* direct blocks */ 3746 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 3747 i_data + EXT4_NDIR_BLOCKS); 3748 goto do_indirects; 3749 } 3750 3751 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 3752 /* Kill the top of shared branch (not detached) */ 3753 if (nr) { 3754 if (partial == chain) { 3755 /* Shared branch grows from the inode */ 3756 ext4_free_branches(handle, inode, NULL, 3757 &nr, &nr+1, (chain+n-1) - partial); 3758 *partial->p = 0; 3759 /* 3760 * We mark the inode dirty prior to restart, 3761 * and prior to stop. No need for it here. 3762 */ 3763 } else { 3764 /* Shared branch grows from an indirect block */ 3765 BUFFER_TRACE(partial->bh, "get_write_access"); 3766 ext4_free_branches(handle, inode, partial->bh, 3767 partial->p, 3768 partial->p+1, (chain+n-1) - partial); 3769 } 3770 } 3771 /* Clear the ends of indirect blocks on the shared branch */ 3772 while (partial > chain) { 3773 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 3774 (__le32*)partial->bh->b_data+addr_per_block, 3775 (chain+n-1) - partial); 3776 BUFFER_TRACE(partial->bh, "call brelse"); 3777 brelse (partial->bh); 3778 partial--; 3779 } 3780 do_indirects: 3781 /* Kill the remaining (whole) subtrees */ 3782 switch (offsets[0]) { 3783 default: 3784 nr = i_data[EXT4_IND_BLOCK]; 3785 if (nr) { 3786 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 3787 i_data[EXT4_IND_BLOCK] = 0; 3788 } 3789 case EXT4_IND_BLOCK: 3790 nr = i_data[EXT4_DIND_BLOCK]; 3791 if (nr) { 3792 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 3793 i_data[EXT4_DIND_BLOCK] = 0; 3794 } 3795 case EXT4_DIND_BLOCK: 3796 nr = i_data[EXT4_TIND_BLOCK]; 3797 if (nr) { 3798 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 3799 i_data[EXT4_TIND_BLOCK] = 0; 3800 } 3801 case EXT4_TIND_BLOCK: 3802 ; 3803 } 3804 3805 up_write(&ei->i_data_sem); 3806 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3807 ext4_mark_inode_dirty(handle, inode); 3808 3809 /* 3810 * In a multi-transaction truncate, we only make the final transaction 3811 * synchronous 3812 */ 3813 if (IS_SYNC(inode)) 3814 handle->h_sync = 1; 3815 out_stop: 3816 /* 3817 * If this was a simple ftruncate(), and the file will remain alive 3818 * then we need to clear up the orphan record which we created above. 3819 * However, if this was a real unlink then we were called by 3820 * ext4_delete_inode(), and we allow that function to clean up the 3821 * orphan info for us. 3822 */ 3823 if (inode->i_nlink) 3824 ext4_orphan_del(handle, inode); 3825 3826 ext4_journal_stop(handle); 3827 } 3828 3829 /* 3830 * ext4_get_inode_loc returns with an extra refcount against the inode's 3831 * underlying buffer_head on success. If 'in_mem' is true, we have all 3832 * data in memory that is needed to recreate the on-disk version of this 3833 * inode. 3834 */ 3835 static int __ext4_get_inode_loc(struct inode *inode, 3836 struct ext4_iloc *iloc, int in_mem) 3837 { 3838 struct ext4_group_desc *gdp; 3839 struct buffer_head *bh; 3840 struct super_block *sb = inode->i_sb; 3841 ext4_fsblk_t block; 3842 int inodes_per_block, inode_offset; 3843 3844 iloc->bh = 0; 3845 if (!ext4_valid_inum(sb, inode->i_ino)) 3846 return -EIO; 3847 3848 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3849 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3850 if (!gdp) 3851 return -EIO; 3852 3853 /* 3854 * Figure out the offset within the block group inode table 3855 */ 3856 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb)); 3857 inode_offset = ((inode->i_ino - 1) % 3858 EXT4_INODES_PER_GROUP(sb)); 3859 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3860 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3861 3862 bh = sb_getblk(sb, block); 3863 if (!bh) { 3864 ext4_error(sb, "ext4_get_inode_loc", "unable to read " 3865 "inode block - inode=%lu, block=%llu", 3866 inode->i_ino, block); 3867 return -EIO; 3868 } 3869 if (!buffer_uptodate(bh)) { 3870 lock_buffer(bh); 3871 3872 /* 3873 * If the buffer has the write error flag, we have failed 3874 * to write out another inode in the same block. In this 3875 * case, we don't have to read the block because we may 3876 * read the old inode data successfully. 3877 */ 3878 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3879 set_buffer_uptodate(bh); 3880 3881 if (buffer_uptodate(bh)) { 3882 /* someone brought it uptodate while we waited */ 3883 unlock_buffer(bh); 3884 goto has_buffer; 3885 } 3886 3887 /* 3888 * If we have all information of the inode in memory and this 3889 * is the only valid inode in the block, we need not read the 3890 * block. 3891 */ 3892 if (in_mem) { 3893 struct buffer_head *bitmap_bh; 3894 int i, start; 3895 3896 start = inode_offset & ~(inodes_per_block - 1); 3897 3898 /* Is the inode bitmap in cache? */ 3899 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3900 if (!bitmap_bh) 3901 goto make_io; 3902 3903 /* 3904 * If the inode bitmap isn't in cache then the 3905 * optimisation may end up performing two reads instead 3906 * of one, so skip it. 3907 */ 3908 if (!buffer_uptodate(bitmap_bh)) { 3909 brelse(bitmap_bh); 3910 goto make_io; 3911 } 3912 for (i = start; i < start + inodes_per_block; i++) { 3913 if (i == inode_offset) 3914 continue; 3915 if (ext4_test_bit(i, bitmap_bh->b_data)) 3916 break; 3917 } 3918 brelse(bitmap_bh); 3919 if (i == start + inodes_per_block) { 3920 /* all other inodes are free, so skip I/O */ 3921 memset(bh->b_data, 0, bh->b_size); 3922 set_buffer_uptodate(bh); 3923 unlock_buffer(bh); 3924 goto has_buffer; 3925 } 3926 } 3927 3928 make_io: 3929 /* 3930 * If we need to do any I/O, try to pre-readahead extra 3931 * blocks from the inode table. 3932 */ 3933 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3934 ext4_fsblk_t b, end, table; 3935 unsigned num; 3936 3937 table = ext4_inode_table(sb, gdp); 3938 /* Make sure s_inode_readahead_blks is a power of 2 */ 3939 while (EXT4_SB(sb)->s_inode_readahead_blks & 3940 (EXT4_SB(sb)->s_inode_readahead_blks-1)) 3941 EXT4_SB(sb)->s_inode_readahead_blks = 3942 (EXT4_SB(sb)->s_inode_readahead_blks & 3943 (EXT4_SB(sb)->s_inode_readahead_blks-1)); 3944 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1); 3945 if (table > b) 3946 b = table; 3947 end = b + EXT4_SB(sb)->s_inode_readahead_blks; 3948 num = EXT4_INODES_PER_GROUP(sb); 3949 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3950 EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3951 num -= le16_to_cpu(gdp->bg_itable_unused); 3952 table += num / inodes_per_block; 3953 if (end > table) 3954 end = table; 3955 while (b <= end) 3956 sb_breadahead(sb, b++); 3957 } 3958 3959 /* 3960 * There are other valid inodes in the buffer, this inode 3961 * has in-inode xattrs, or we don't have this inode in memory. 3962 * Read the block from disk. 3963 */ 3964 get_bh(bh); 3965 bh->b_end_io = end_buffer_read_sync; 3966 submit_bh(READ_META, bh); 3967 wait_on_buffer(bh); 3968 if (!buffer_uptodate(bh)) { 3969 ext4_error(sb, __func__, 3970 "unable to read inode block - inode=%lu, " 3971 "block=%llu", inode->i_ino, block); 3972 brelse(bh); 3973 return -EIO; 3974 } 3975 } 3976 has_buffer: 3977 iloc->bh = bh; 3978 return 0; 3979 } 3980 3981 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3982 { 3983 /* We have all inode data except xattrs in memory here. */ 3984 return __ext4_get_inode_loc(inode, iloc, 3985 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR)); 3986 } 3987 3988 void ext4_set_inode_flags(struct inode *inode) 3989 { 3990 unsigned int flags = EXT4_I(inode)->i_flags; 3991 3992 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3993 if (flags & EXT4_SYNC_FL) 3994 inode->i_flags |= S_SYNC; 3995 if (flags & EXT4_APPEND_FL) 3996 inode->i_flags |= S_APPEND; 3997 if (flags & EXT4_IMMUTABLE_FL) 3998 inode->i_flags |= S_IMMUTABLE; 3999 if (flags & EXT4_NOATIME_FL) 4000 inode->i_flags |= S_NOATIME; 4001 if (flags & EXT4_DIRSYNC_FL) 4002 inode->i_flags |= S_DIRSYNC; 4003 } 4004 4005 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 4006 void ext4_get_inode_flags(struct ext4_inode_info *ei) 4007 { 4008 unsigned int flags = ei->vfs_inode.i_flags; 4009 4010 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 4011 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL); 4012 if (flags & S_SYNC) 4013 ei->i_flags |= EXT4_SYNC_FL; 4014 if (flags & S_APPEND) 4015 ei->i_flags |= EXT4_APPEND_FL; 4016 if (flags & S_IMMUTABLE) 4017 ei->i_flags |= EXT4_IMMUTABLE_FL; 4018 if (flags & S_NOATIME) 4019 ei->i_flags |= EXT4_NOATIME_FL; 4020 if (flags & S_DIRSYNC) 4021 ei->i_flags |= EXT4_DIRSYNC_FL; 4022 } 4023 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4024 struct ext4_inode_info *ei) 4025 { 4026 blkcnt_t i_blocks ; 4027 struct inode *inode = &(ei->vfs_inode); 4028 struct super_block *sb = inode->i_sb; 4029 4030 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4031 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 4032 /* we are using combined 48 bit field */ 4033 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4034 le32_to_cpu(raw_inode->i_blocks_lo); 4035 if (ei->i_flags & EXT4_HUGE_FILE_FL) { 4036 /* i_blocks represent file system block size */ 4037 return i_blocks << (inode->i_blkbits - 9); 4038 } else { 4039 return i_blocks; 4040 } 4041 } else { 4042 return le32_to_cpu(raw_inode->i_blocks_lo); 4043 } 4044 } 4045 4046 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4047 { 4048 struct ext4_iloc iloc; 4049 struct ext4_inode *raw_inode; 4050 struct ext4_inode_info *ei; 4051 struct buffer_head *bh; 4052 struct inode *inode; 4053 long ret; 4054 int block; 4055 4056 inode = iget_locked(sb, ino); 4057 if (!inode) 4058 return ERR_PTR(-ENOMEM); 4059 if (!(inode->i_state & I_NEW)) 4060 return inode; 4061 4062 ei = EXT4_I(inode); 4063 #ifdef CONFIG_EXT4_FS_POSIX_ACL 4064 ei->i_acl = EXT4_ACL_NOT_CACHED; 4065 ei->i_default_acl = EXT4_ACL_NOT_CACHED; 4066 #endif 4067 4068 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4069 if (ret < 0) 4070 goto bad_inode; 4071 bh = iloc.bh; 4072 raw_inode = ext4_raw_inode(&iloc); 4073 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4074 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4075 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4076 if (!(test_opt(inode->i_sb, NO_UID32))) { 4077 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4078 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4079 } 4080 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 4081 4082 ei->i_state = 0; 4083 ei->i_dir_start_lookup = 0; 4084 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4085 /* We now have enough fields to check if the inode was active or not. 4086 * This is needed because nfsd might try to access dead inodes 4087 * the test is that same one that e2fsck uses 4088 * NeilBrown 1999oct15 4089 */ 4090 if (inode->i_nlink == 0) { 4091 if (inode->i_mode == 0 || 4092 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 4093 /* this inode is deleted */ 4094 brelse(bh); 4095 ret = -ESTALE; 4096 goto bad_inode; 4097 } 4098 /* The only unlinked inodes we let through here have 4099 * valid i_mode and are being read by the orphan 4100 * recovery code: that's fine, we're about to complete 4101 * the process of deleting those. */ 4102 } 4103 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4104 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4105 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4106 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4107 cpu_to_le32(EXT4_OS_HURD)) { 4108 ei->i_file_acl |= 4109 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4110 } 4111 inode->i_size = ext4_isize(raw_inode); 4112 ei->i_disksize = inode->i_size; 4113 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4114 ei->i_block_group = iloc.block_group; 4115 /* 4116 * NOTE! The in-memory inode i_data array is in little-endian order 4117 * even on big-endian machines: we do NOT byteswap the block numbers! 4118 */ 4119 for (block = 0; block < EXT4_N_BLOCKS; block++) 4120 ei->i_data[block] = raw_inode->i_block[block]; 4121 INIT_LIST_HEAD(&ei->i_orphan); 4122 4123 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4124 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4125 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4126 EXT4_INODE_SIZE(inode->i_sb)) { 4127 brelse(bh); 4128 ret = -EIO; 4129 goto bad_inode; 4130 } 4131 if (ei->i_extra_isize == 0) { 4132 /* The extra space is currently unused. Use it. */ 4133 ei->i_extra_isize = sizeof(struct ext4_inode) - 4134 EXT4_GOOD_OLD_INODE_SIZE; 4135 } else { 4136 __le32 *magic = (void *)raw_inode + 4137 EXT4_GOOD_OLD_INODE_SIZE + 4138 ei->i_extra_isize; 4139 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 4140 ei->i_state |= EXT4_STATE_XATTR; 4141 } 4142 } else 4143 ei->i_extra_isize = 0; 4144 4145 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4146 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4147 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4148 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4149 4150 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4151 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4152 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4153 inode->i_version |= 4154 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4155 } 4156 4157 if (S_ISREG(inode->i_mode)) { 4158 inode->i_op = &ext4_file_inode_operations; 4159 inode->i_fop = &ext4_file_operations; 4160 ext4_set_aops(inode); 4161 } else if (S_ISDIR(inode->i_mode)) { 4162 inode->i_op = &ext4_dir_inode_operations; 4163 inode->i_fop = &ext4_dir_operations; 4164 } else if (S_ISLNK(inode->i_mode)) { 4165 if (ext4_inode_is_fast_symlink(inode)) 4166 inode->i_op = &ext4_fast_symlink_inode_operations; 4167 else { 4168 inode->i_op = &ext4_symlink_inode_operations; 4169 ext4_set_aops(inode); 4170 } 4171 } else { 4172 inode->i_op = &ext4_special_inode_operations; 4173 if (raw_inode->i_block[0]) 4174 init_special_inode(inode, inode->i_mode, 4175 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4176 else 4177 init_special_inode(inode, inode->i_mode, 4178 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4179 } 4180 brelse(iloc.bh); 4181 ext4_set_inode_flags(inode); 4182 unlock_new_inode(inode); 4183 return inode; 4184 4185 bad_inode: 4186 iget_failed(inode); 4187 return ERR_PTR(ret); 4188 } 4189 4190 static int ext4_inode_blocks_set(handle_t *handle, 4191 struct ext4_inode *raw_inode, 4192 struct ext4_inode_info *ei) 4193 { 4194 struct inode *inode = &(ei->vfs_inode); 4195 u64 i_blocks = inode->i_blocks; 4196 struct super_block *sb = inode->i_sb; 4197 4198 if (i_blocks <= ~0U) { 4199 /* 4200 * i_blocks can be represnted in a 32 bit variable 4201 * as multiple of 512 bytes 4202 */ 4203 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4204 raw_inode->i_blocks_high = 0; 4205 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 4206 return 0; 4207 } 4208 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4209 return -EFBIG; 4210 4211 if (i_blocks <= 0xffffffffffffULL) { 4212 /* 4213 * i_blocks can be represented in a 48 bit variable 4214 * as multiple of 512 bytes 4215 */ 4216 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4217 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4218 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 4219 } else { 4220 ei->i_flags |= EXT4_HUGE_FILE_FL; 4221 /* i_block is stored in file system block size */ 4222 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4223 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4224 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4225 } 4226 return 0; 4227 } 4228 4229 /* 4230 * Post the struct inode info into an on-disk inode location in the 4231 * buffer-cache. This gobbles the caller's reference to the 4232 * buffer_head in the inode location struct. 4233 * 4234 * The caller must have write access to iloc->bh. 4235 */ 4236 static int ext4_do_update_inode(handle_t *handle, 4237 struct inode *inode, 4238 struct ext4_iloc *iloc) 4239 { 4240 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4241 struct ext4_inode_info *ei = EXT4_I(inode); 4242 struct buffer_head *bh = iloc->bh; 4243 int err = 0, rc, block; 4244 4245 /* For fields not not tracking in the in-memory inode, 4246 * initialise them to zero for new inodes. */ 4247 if (ei->i_state & EXT4_STATE_NEW) 4248 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4249 4250 ext4_get_inode_flags(ei); 4251 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4252 if (!(test_opt(inode->i_sb, NO_UID32))) { 4253 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 4254 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 4255 /* 4256 * Fix up interoperability with old kernels. Otherwise, old inodes get 4257 * re-used with the upper 16 bits of the uid/gid intact 4258 */ 4259 if (!ei->i_dtime) { 4260 raw_inode->i_uid_high = 4261 cpu_to_le16(high_16_bits(inode->i_uid)); 4262 raw_inode->i_gid_high = 4263 cpu_to_le16(high_16_bits(inode->i_gid)); 4264 } else { 4265 raw_inode->i_uid_high = 0; 4266 raw_inode->i_gid_high = 0; 4267 } 4268 } else { 4269 raw_inode->i_uid_low = 4270 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 4271 raw_inode->i_gid_low = 4272 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 4273 raw_inode->i_uid_high = 0; 4274 raw_inode->i_gid_high = 0; 4275 } 4276 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4277 4278 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4279 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4280 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4281 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4282 4283 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 4284 goto out_brelse; 4285 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4286 /* clear the migrate flag in the raw_inode */ 4287 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE); 4288 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4289 cpu_to_le32(EXT4_OS_HURD)) 4290 raw_inode->i_file_acl_high = 4291 cpu_to_le16(ei->i_file_acl >> 32); 4292 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4293 ext4_isize_set(raw_inode, ei->i_disksize); 4294 if (ei->i_disksize > 0x7fffffffULL) { 4295 struct super_block *sb = inode->i_sb; 4296 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4297 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4298 EXT4_SB(sb)->s_es->s_rev_level == 4299 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 4300 /* If this is the first large file 4301 * created, add a flag to the superblock. 4302 */ 4303 err = ext4_journal_get_write_access(handle, 4304 EXT4_SB(sb)->s_sbh); 4305 if (err) 4306 goto out_brelse; 4307 ext4_update_dynamic_rev(sb); 4308 EXT4_SET_RO_COMPAT_FEATURE(sb, 4309 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4310 sb->s_dirt = 1; 4311 handle->h_sync = 1; 4312 err = ext4_journal_dirty_metadata(handle, 4313 EXT4_SB(sb)->s_sbh); 4314 } 4315 } 4316 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4317 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4318 if (old_valid_dev(inode->i_rdev)) { 4319 raw_inode->i_block[0] = 4320 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4321 raw_inode->i_block[1] = 0; 4322 } else { 4323 raw_inode->i_block[0] = 0; 4324 raw_inode->i_block[1] = 4325 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4326 raw_inode->i_block[2] = 0; 4327 } 4328 } else for (block = 0; block < EXT4_N_BLOCKS; block++) 4329 raw_inode->i_block[block] = ei->i_data[block]; 4330 4331 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4332 if (ei->i_extra_isize) { 4333 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4334 raw_inode->i_version_hi = 4335 cpu_to_le32(inode->i_version >> 32); 4336 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 4337 } 4338 4339 4340 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 4341 rc = ext4_journal_dirty_metadata(handle, bh); 4342 if (!err) 4343 err = rc; 4344 ei->i_state &= ~EXT4_STATE_NEW; 4345 4346 out_brelse: 4347 brelse(bh); 4348 ext4_std_error(inode->i_sb, err); 4349 return err; 4350 } 4351 4352 /* 4353 * ext4_write_inode() 4354 * 4355 * We are called from a few places: 4356 * 4357 * - Within generic_file_write() for O_SYNC files. 4358 * Here, there will be no transaction running. We wait for any running 4359 * trasnaction to commit. 4360 * 4361 * - Within sys_sync(), kupdate and such. 4362 * We wait on commit, if tol to. 4363 * 4364 * - Within prune_icache() (PF_MEMALLOC == true) 4365 * Here we simply return. We can't afford to block kswapd on the 4366 * journal commit. 4367 * 4368 * In all cases it is actually safe for us to return without doing anything, 4369 * because the inode has been copied into a raw inode buffer in 4370 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 4371 * knfsd. 4372 * 4373 * Note that we are absolutely dependent upon all inode dirtiers doing the 4374 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4375 * which we are interested. 4376 * 4377 * It would be a bug for them to not do this. The code: 4378 * 4379 * mark_inode_dirty(inode) 4380 * stuff(); 4381 * inode->i_size = expr; 4382 * 4383 * is in error because a kswapd-driven write_inode() could occur while 4384 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4385 * will no longer be on the superblock's dirty inode list. 4386 */ 4387 int ext4_write_inode(struct inode *inode, int wait) 4388 { 4389 if (current->flags & PF_MEMALLOC) 4390 return 0; 4391 4392 if (ext4_journal_current_handle()) { 4393 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4394 dump_stack(); 4395 return -EIO; 4396 } 4397 4398 if (!wait) 4399 return 0; 4400 4401 return ext4_force_commit(inode->i_sb); 4402 } 4403 4404 /* 4405 * ext4_setattr() 4406 * 4407 * Called from notify_change. 4408 * 4409 * We want to trap VFS attempts to truncate the file as soon as 4410 * possible. In particular, we want to make sure that when the VFS 4411 * shrinks i_size, we put the inode on the orphan list and modify 4412 * i_disksize immediately, so that during the subsequent flushing of 4413 * dirty pages and freeing of disk blocks, we can guarantee that any 4414 * commit will leave the blocks being flushed in an unused state on 4415 * disk. (On recovery, the inode will get truncated and the blocks will 4416 * be freed, so we have a strong guarantee that no future commit will 4417 * leave these blocks visible to the user.) 4418 * 4419 * Another thing we have to assure is that if we are in ordered mode 4420 * and inode is still attached to the committing transaction, we must 4421 * we start writeout of all the dirty pages which are being truncated. 4422 * This way we are sure that all the data written in the previous 4423 * transaction are already on disk (truncate waits for pages under 4424 * writeback). 4425 * 4426 * Called with inode->i_mutex down. 4427 */ 4428 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4429 { 4430 struct inode *inode = dentry->d_inode; 4431 int error, rc = 0; 4432 const unsigned int ia_valid = attr->ia_valid; 4433 4434 error = inode_change_ok(inode, attr); 4435 if (error) 4436 return error; 4437 4438 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 4439 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 4440 handle_t *handle; 4441 4442 /* (user+group)*(old+new) structure, inode write (sb, 4443 * inode block, ? - but truncate inode update has it) */ 4444 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+ 4445 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3); 4446 if (IS_ERR(handle)) { 4447 error = PTR_ERR(handle); 4448 goto err_out; 4449 } 4450 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0; 4451 if (error) { 4452 ext4_journal_stop(handle); 4453 return error; 4454 } 4455 /* Update corresponding info in inode so that everything is in 4456 * one transaction */ 4457 if (attr->ia_valid & ATTR_UID) 4458 inode->i_uid = attr->ia_uid; 4459 if (attr->ia_valid & ATTR_GID) 4460 inode->i_gid = attr->ia_gid; 4461 error = ext4_mark_inode_dirty(handle, inode); 4462 ext4_journal_stop(handle); 4463 } 4464 4465 if (attr->ia_valid & ATTR_SIZE) { 4466 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) { 4467 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4468 4469 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 4470 error = -EFBIG; 4471 goto err_out; 4472 } 4473 } 4474 } 4475 4476 if (S_ISREG(inode->i_mode) && 4477 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) { 4478 handle_t *handle; 4479 4480 handle = ext4_journal_start(inode, 3); 4481 if (IS_ERR(handle)) { 4482 error = PTR_ERR(handle); 4483 goto err_out; 4484 } 4485 4486 error = ext4_orphan_add(handle, inode); 4487 EXT4_I(inode)->i_disksize = attr->ia_size; 4488 rc = ext4_mark_inode_dirty(handle, inode); 4489 if (!error) 4490 error = rc; 4491 ext4_journal_stop(handle); 4492 4493 if (ext4_should_order_data(inode)) { 4494 error = ext4_begin_ordered_truncate(inode, 4495 attr->ia_size); 4496 if (error) { 4497 /* Do as much error cleanup as possible */ 4498 handle = ext4_journal_start(inode, 3); 4499 if (IS_ERR(handle)) { 4500 ext4_orphan_del(NULL, inode); 4501 goto err_out; 4502 } 4503 ext4_orphan_del(handle, inode); 4504 ext4_journal_stop(handle); 4505 goto err_out; 4506 } 4507 } 4508 } 4509 4510 rc = inode_setattr(inode, attr); 4511 4512 /* If inode_setattr's call to ext4_truncate failed to get a 4513 * transaction handle at all, we need to clean up the in-core 4514 * orphan list manually. */ 4515 if (inode->i_nlink) 4516 ext4_orphan_del(NULL, inode); 4517 4518 if (!rc && (ia_valid & ATTR_MODE)) 4519 rc = ext4_acl_chmod(inode); 4520 4521 err_out: 4522 ext4_std_error(inode->i_sb, error); 4523 if (!error) 4524 error = rc; 4525 return error; 4526 } 4527 4528 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4529 struct kstat *stat) 4530 { 4531 struct inode *inode; 4532 unsigned long delalloc_blocks; 4533 4534 inode = dentry->d_inode; 4535 generic_fillattr(inode, stat); 4536 4537 /* 4538 * We can't update i_blocks if the block allocation is delayed 4539 * otherwise in the case of system crash before the real block 4540 * allocation is done, we will have i_blocks inconsistent with 4541 * on-disk file blocks. 4542 * We always keep i_blocks updated together with real 4543 * allocation. But to not confuse with user, stat 4544 * will return the blocks that include the delayed allocation 4545 * blocks for this file. 4546 */ 4547 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 4548 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks; 4549 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 4550 4551 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 4552 return 0; 4553 } 4554 4555 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks, 4556 int chunk) 4557 { 4558 int indirects; 4559 4560 /* if nrblocks are contiguous */ 4561 if (chunk) { 4562 /* 4563 * With N contiguous data blocks, it need at most 4564 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks 4565 * 2 dindirect blocks 4566 * 1 tindirect block 4567 */ 4568 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb); 4569 return indirects + 3; 4570 } 4571 /* 4572 * if nrblocks are not contiguous, worse case, each block touch 4573 * a indirect block, and each indirect block touch a double indirect 4574 * block, plus a triple indirect block 4575 */ 4576 indirects = nrblocks * 2 + 1; 4577 return indirects; 4578 } 4579 4580 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4581 { 4582 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) 4583 return ext4_indirect_trans_blocks(inode, nrblocks, 0); 4584 return ext4_ext_index_trans_blocks(inode, nrblocks, 0); 4585 } 4586 /* 4587 * Account for index blocks, block groups bitmaps and block group 4588 * descriptor blocks if modify datablocks and index blocks 4589 * worse case, the indexs blocks spread over different block groups 4590 * 4591 * If datablocks are discontiguous, they are possible to spread over 4592 * different block groups too. If they are contiugous, with flexbg, 4593 * they could still across block group boundary. 4594 * 4595 * Also account for superblock, inode, quota and xattr blocks 4596 */ 4597 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4598 { 4599 int groups, gdpblocks; 4600 int idxblocks; 4601 int ret = 0; 4602 4603 /* 4604 * How many index blocks need to touch to modify nrblocks? 4605 * The "Chunk" flag indicating whether the nrblocks is 4606 * physically contiguous on disk 4607 * 4608 * For Direct IO and fallocate, they calls get_block to allocate 4609 * one single extent at a time, so they could set the "Chunk" flag 4610 */ 4611 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 4612 4613 ret = idxblocks; 4614 4615 /* 4616 * Now let's see how many group bitmaps and group descriptors need 4617 * to account 4618 */ 4619 groups = idxblocks; 4620 if (chunk) 4621 groups += 1; 4622 else 4623 groups += nrblocks; 4624 4625 gdpblocks = groups; 4626 if (groups > EXT4_SB(inode->i_sb)->s_groups_count) 4627 groups = EXT4_SB(inode->i_sb)->s_groups_count; 4628 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4629 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4630 4631 /* bitmaps and block group descriptor blocks */ 4632 ret += groups + gdpblocks; 4633 4634 /* Blocks for super block, inode, quota and xattr blocks */ 4635 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4636 4637 return ret; 4638 } 4639 4640 /* 4641 * Calulate the total number of credits to reserve to fit 4642 * the modification of a single pages into a single transaction, 4643 * which may include multiple chunks of block allocations. 4644 * 4645 * This could be called via ext4_write_begin() 4646 * 4647 * We need to consider the worse case, when 4648 * one new block per extent. 4649 */ 4650 int ext4_writepage_trans_blocks(struct inode *inode) 4651 { 4652 int bpp = ext4_journal_blocks_per_page(inode); 4653 int ret; 4654 4655 ret = ext4_meta_trans_blocks(inode, bpp, 0); 4656 4657 /* Account for data blocks for journalled mode */ 4658 if (ext4_should_journal_data(inode)) 4659 ret += bpp; 4660 return ret; 4661 } 4662 4663 /* 4664 * Calculate the journal credits for a chunk of data modification. 4665 * 4666 * This is called from DIO, fallocate or whoever calling 4667 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks. 4668 * 4669 * journal buffers for data blocks are not included here, as DIO 4670 * and fallocate do no need to journal data buffers. 4671 */ 4672 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4673 { 4674 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4675 } 4676 4677 /* 4678 * The caller must have previously called ext4_reserve_inode_write(). 4679 * Give this, we know that the caller already has write access to iloc->bh. 4680 */ 4681 int ext4_mark_iloc_dirty(handle_t *handle, 4682 struct inode *inode, struct ext4_iloc *iloc) 4683 { 4684 int err = 0; 4685 4686 if (test_opt(inode->i_sb, I_VERSION)) 4687 inode_inc_iversion(inode); 4688 4689 /* the do_update_inode consumes one bh->b_count */ 4690 get_bh(iloc->bh); 4691 4692 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4693 err = ext4_do_update_inode(handle, inode, iloc); 4694 put_bh(iloc->bh); 4695 return err; 4696 } 4697 4698 /* 4699 * On success, We end up with an outstanding reference count against 4700 * iloc->bh. This _must_ be cleaned up later. 4701 */ 4702 4703 int 4704 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4705 struct ext4_iloc *iloc) 4706 { 4707 int err = 0; 4708 if (handle) { 4709 err = ext4_get_inode_loc(inode, iloc); 4710 if (!err) { 4711 BUFFER_TRACE(iloc->bh, "get_write_access"); 4712 err = ext4_journal_get_write_access(handle, iloc->bh); 4713 if (err) { 4714 brelse(iloc->bh); 4715 iloc->bh = NULL; 4716 } 4717 } 4718 } 4719 ext4_std_error(inode->i_sb, err); 4720 return err; 4721 } 4722 4723 /* 4724 * Expand an inode by new_extra_isize bytes. 4725 * Returns 0 on success or negative error number on failure. 4726 */ 4727 static int ext4_expand_extra_isize(struct inode *inode, 4728 unsigned int new_extra_isize, 4729 struct ext4_iloc iloc, 4730 handle_t *handle) 4731 { 4732 struct ext4_inode *raw_inode; 4733 struct ext4_xattr_ibody_header *header; 4734 struct ext4_xattr_entry *entry; 4735 4736 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4737 return 0; 4738 4739 raw_inode = ext4_raw_inode(&iloc); 4740 4741 header = IHDR(inode, raw_inode); 4742 entry = IFIRST(header); 4743 4744 /* No extended attributes present */ 4745 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) || 4746 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4747 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4748 new_extra_isize); 4749 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4750 return 0; 4751 } 4752 4753 /* try to expand with EAs present */ 4754 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4755 raw_inode, handle); 4756 } 4757 4758 /* 4759 * What we do here is to mark the in-core inode as clean with respect to inode 4760 * dirtiness (it may still be data-dirty). 4761 * This means that the in-core inode may be reaped by prune_icache 4762 * without having to perform any I/O. This is a very good thing, 4763 * because *any* task may call prune_icache - even ones which 4764 * have a transaction open against a different journal. 4765 * 4766 * Is this cheating? Not really. Sure, we haven't written the 4767 * inode out, but prune_icache isn't a user-visible syncing function. 4768 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4769 * we start and wait on commits. 4770 * 4771 * Is this efficient/effective? Well, we're being nice to the system 4772 * by cleaning up our inodes proactively so they can be reaped 4773 * without I/O. But we are potentially leaving up to five seconds' 4774 * worth of inodes floating about which prune_icache wants us to 4775 * write out. One way to fix that would be to get prune_icache() 4776 * to do a write_super() to free up some memory. It has the desired 4777 * effect. 4778 */ 4779 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4780 { 4781 struct ext4_iloc iloc; 4782 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4783 static unsigned int mnt_count; 4784 int err, ret; 4785 4786 might_sleep(); 4787 err = ext4_reserve_inode_write(handle, inode, &iloc); 4788 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4789 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) { 4790 /* 4791 * We need extra buffer credits since we may write into EA block 4792 * with this same handle. If journal_extend fails, then it will 4793 * only result in a minor loss of functionality for that inode. 4794 * If this is felt to be critical, then e2fsck should be run to 4795 * force a large enough s_min_extra_isize. 4796 */ 4797 if ((jbd2_journal_extend(handle, 4798 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4799 ret = ext4_expand_extra_isize(inode, 4800 sbi->s_want_extra_isize, 4801 iloc, handle); 4802 if (ret) { 4803 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND; 4804 if (mnt_count != 4805 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4806 ext4_warning(inode->i_sb, __func__, 4807 "Unable to expand inode %lu. Delete" 4808 " some EAs or run e2fsck.", 4809 inode->i_ino); 4810 mnt_count = 4811 le16_to_cpu(sbi->s_es->s_mnt_count); 4812 } 4813 } 4814 } 4815 } 4816 if (!err) 4817 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4818 return err; 4819 } 4820 4821 /* 4822 * ext4_dirty_inode() is called from __mark_inode_dirty() 4823 * 4824 * We're really interested in the case where a file is being extended. 4825 * i_size has been changed by generic_commit_write() and we thus need 4826 * to include the updated inode in the current transaction. 4827 * 4828 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks 4829 * are allocated to the file. 4830 * 4831 * If the inode is marked synchronous, we don't honour that here - doing 4832 * so would cause a commit on atime updates, which we don't bother doing. 4833 * We handle synchronous inodes at the highest possible level. 4834 */ 4835 void ext4_dirty_inode(struct inode *inode) 4836 { 4837 handle_t *current_handle = ext4_journal_current_handle(); 4838 handle_t *handle; 4839 4840 handle = ext4_journal_start(inode, 2); 4841 if (IS_ERR(handle)) 4842 goto out; 4843 if (current_handle && 4844 current_handle->h_transaction != handle->h_transaction) { 4845 /* This task has a transaction open against a different fs */ 4846 printk(KERN_EMERG "%s: transactions do not match!\n", 4847 __func__); 4848 } else { 4849 jbd_debug(5, "marking dirty. outer handle=%p\n", 4850 current_handle); 4851 ext4_mark_inode_dirty(handle, inode); 4852 } 4853 ext4_journal_stop(handle); 4854 out: 4855 return; 4856 } 4857 4858 #if 0 4859 /* 4860 * Bind an inode's backing buffer_head into this transaction, to prevent 4861 * it from being flushed to disk early. Unlike 4862 * ext4_reserve_inode_write, this leaves behind no bh reference and 4863 * returns no iloc structure, so the caller needs to repeat the iloc 4864 * lookup to mark the inode dirty later. 4865 */ 4866 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4867 { 4868 struct ext4_iloc iloc; 4869 4870 int err = 0; 4871 if (handle) { 4872 err = ext4_get_inode_loc(inode, &iloc); 4873 if (!err) { 4874 BUFFER_TRACE(iloc.bh, "get_write_access"); 4875 err = jbd2_journal_get_write_access(handle, iloc.bh); 4876 if (!err) 4877 err = ext4_journal_dirty_metadata(handle, 4878 iloc.bh); 4879 brelse(iloc.bh); 4880 } 4881 } 4882 ext4_std_error(inode->i_sb, err); 4883 return err; 4884 } 4885 #endif 4886 4887 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4888 { 4889 journal_t *journal; 4890 handle_t *handle; 4891 int err; 4892 4893 /* 4894 * We have to be very careful here: changing a data block's 4895 * journaling status dynamically is dangerous. If we write a 4896 * data block to the journal, change the status and then delete 4897 * that block, we risk forgetting to revoke the old log record 4898 * from the journal and so a subsequent replay can corrupt data. 4899 * So, first we make sure that the journal is empty and that 4900 * nobody is changing anything. 4901 */ 4902 4903 journal = EXT4_JOURNAL(inode); 4904 if (is_journal_aborted(journal)) 4905 return -EROFS; 4906 4907 jbd2_journal_lock_updates(journal); 4908 jbd2_journal_flush(journal); 4909 4910 /* 4911 * OK, there are no updates running now, and all cached data is 4912 * synced to disk. We are now in a completely consistent state 4913 * which doesn't have anything in the journal, and we know that 4914 * no filesystem updates are running, so it is safe to modify 4915 * the inode's in-core data-journaling state flag now. 4916 */ 4917 4918 if (val) 4919 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL; 4920 else 4921 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL; 4922 ext4_set_aops(inode); 4923 4924 jbd2_journal_unlock_updates(journal); 4925 4926 /* Finally we can mark the inode as dirty. */ 4927 4928 handle = ext4_journal_start(inode, 1); 4929 if (IS_ERR(handle)) 4930 return PTR_ERR(handle); 4931 4932 err = ext4_mark_inode_dirty(handle, inode); 4933 handle->h_sync = 1; 4934 ext4_journal_stop(handle); 4935 ext4_std_error(inode->i_sb, err); 4936 4937 return err; 4938 } 4939 4940 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 4941 { 4942 return !buffer_mapped(bh); 4943 } 4944 4945 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page) 4946 { 4947 loff_t size; 4948 unsigned long len; 4949 int ret = -EINVAL; 4950 void *fsdata; 4951 struct file *file = vma->vm_file; 4952 struct inode *inode = file->f_path.dentry->d_inode; 4953 struct address_space *mapping = inode->i_mapping; 4954 4955 /* 4956 * Get i_alloc_sem to stop truncates messing with the inode. We cannot 4957 * get i_mutex because we are already holding mmap_sem. 4958 */ 4959 down_read(&inode->i_alloc_sem); 4960 size = i_size_read(inode); 4961 if (page->mapping != mapping || size <= page_offset(page) 4962 || !PageUptodate(page)) { 4963 /* page got truncated from under us? */ 4964 goto out_unlock; 4965 } 4966 ret = 0; 4967 if (PageMappedToDisk(page)) 4968 goto out_unlock; 4969 4970 if (page->index == size >> PAGE_CACHE_SHIFT) 4971 len = size & ~PAGE_CACHE_MASK; 4972 else 4973 len = PAGE_CACHE_SIZE; 4974 4975 if (page_has_buffers(page)) { 4976 /* return if we have all the buffers mapped */ 4977 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 4978 ext4_bh_unmapped)) 4979 goto out_unlock; 4980 } 4981 /* 4982 * OK, we need to fill the hole... Do write_begin write_end 4983 * to do block allocation/reservation.We are not holding 4984 * inode.i__mutex here. That allow * parallel write_begin, 4985 * write_end call. lock_page prevent this from happening 4986 * on the same page though 4987 */ 4988 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page), 4989 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 4990 if (ret < 0) 4991 goto out_unlock; 4992 ret = mapping->a_ops->write_end(file, mapping, page_offset(page), 4993 len, len, page, fsdata); 4994 if (ret < 0) 4995 goto out_unlock; 4996 ret = 0; 4997 out_unlock: 4998 up_read(&inode->i_alloc_sem); 4999 return ret; 5000 } 5001