1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Goal-directed block allocation by Stephen Tweedie 16 * (sct@redhat.com), 1993, 1998 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 20 * (jj@sunsite.ms.mff.cuni.cz) 21 * 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 23 */ 24 25 #include <linux/module.h> 26 #include <linux/fs.h> 27 #include <linux/time.h> 28 #include <linux/jbd2.h> 29 #include <linux/highuid.h> 30 #include <linux/pagemap.h> 31 #include <linux/quotaops.h> 32 #include <linux/string.h> 33 #include <linux/buffer_head.h> 34 #include <linux/writeback.h> 35 #include <linux/pagevec.h> 36 #include <linux/mpage.h> 37 #include <linux/namei.h> 38 #include <linux/uio.h> 39 #include <linux/bio.h> 40 #include <linux/workqueue.h> 41 42 #include "ext4_jbd2.h" 43 #include "xattr.h" 44 #include "acl.h" 45 #include "ext4_extents.h" 46 47 #include <trace/events/ext4.h> 48 49 #define MPAGE_DA_EXTENT_TAIL 0x01 50 51 static inline int ext4_begin_ordered_truncate(struct inode *inode, 52 loff_t new_size) 53 { 54 return jbd2_journal_begin_ordered_truncate( 55 EXT4_SB(inode->i_sb)->s_journal, 56 &EXT4_I(inode)->jinode, 57 new_size); 58 } 59 60 static void ext4_invalidatepage(struct page *page, unsigned long offset); 61 62 /* 63 * Test whether an inode is a fast symlink. 64 */ 65 static int ext4_inode_is_fast_symlink(struct inode *inode) 66 { 67 int ea_blocks = EXT4_I(inode)->i_file_acl ? 68 (inode->i_sb->s_blocksize >> 9) : 0; 69 70 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 71 } 72 73 /* 74 * Work out how many blocks we need to proceed with the next chunk of a 75 * truncate transaction. 76 */ 77 static unsigned long blocks_for_truncate(struct inode *inode) 78 { 79 ext4_lblk_t needed; 80 81 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); 82 83 /* Give ourselves just enough room to cope with inodes in which 84 * i_blocks is corrupt: we've seen disk corruptions in the past 85 * which resulted in random data in an inode which looked enough 86 * like a regular file for ext4 to try to delete it. Things 87 * will go a bit crazy if that happens, but at least we should 88 * try not to panic the whole kernel. */ 89 if (needed < 2) 90 needed = 2; 91 92 /* But we need to bound the transaction so we don't overflow the 93 * journal. */ 94 if (needed > EXT4_MAX_TRANS_DATA) 95 needed = EXT4_MAX_TRANS_DATA; 96 97 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed; 98 } 99 100 /* 101 * Truncate transactions can be complex and absolutely huge. So we need to 102 * be able to restart the transaction at a conventient checkpoint to make 103 * sure we don't overflow the journal. 104 * 105 * start_transaction gets us a new handle for a truncate transaction, 106 * and extend_transaction tries to extend the existing one a bit. If 107 * extend fails, we need to propagate the failure up and restart the 108 * transaction in the top-level truncate loop. --sct 109 */ 110 static handle_t *start_transaction(struct inode *inode) 111 { 112 handle_t *result; 113 114 result = ext4_journal_start(inode, blocks_for_truncate(inode)); 115 if (!IS_ERR(result)) 116 return result; 117 118 ext4_std_error(inode->i_sb, PTR_ERR(result)); 119 return result; 120 } 121 122 /* 123 * Try to extend this transaction for the purposes of truncation. 124 * 125 * Returns 0 if we managed to create more room. If we can't create more 126 * room, and the transaction must be restarted we return 1. 127 */ 128 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 129 { 130 if (!ext4_handle_valid(handle)) 131 return 0; 132 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1)) 133 return 0; 134 if (!ext4_journal_extend(handle, blocks_for_truncate(inode))) 135 return 0; 136 return 1; 137 } 138 139 /* 140 * Restart the transaction associated with *handle. This does a commit, 141 * so before we call here everything must be consistently dirtied against 142 * this transaction. 143 */ 144 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 145 int nblocks) 146 { 147 int ret; 148 149 /* 150 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this 151 * moment, get_block can be called only for blocks inside i_size since 152 * page cache has been already dropped and writes are blocked by 153 * i_mutex. So we can safely drop the i_data_sem here. 154 */ 155 BUG_ON(EXT4_JOURNAL(inode) == NULL); 156 jbd_debug(2, "restarting handle %p\n", handle); 157 up_write(&EXT4_I(inode)->i_data_sem); 158 ret = ext4_journal_restart(handle, blocks_for_truncate(inode)); 159 down_write(&EXT4_I(inode)->i_data_sem); 160 ext4_discard_preallocations(inode); 161 162 return ret; 163 } 164 165 /* 166 * Called at the last iput() if i_nlink is zero. 167 */ 168 void ext4_delete_inode(struct inode *inode) 169 { 170 handle_t *handle; 171 int err; 172 173 if (ext4_should_order_data(inode)) 174 ext4_begin_ordered_truncate(inode, 0); 175 truncate_inode_pages(&inode->i_data, 0); 176 177 if (is_bad_inode(inode)) 178 goto no_delete; 179 180 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3); 181 if (IS_ERR(handle)) { 182 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 183 /* 184 * If we're going to skip the normal cleanup, we still need to 185 * make sure that the in-core orphan linked list is properly 186 * cleaned up. 187 */ 188 ext4_orphan_del(NULL, inode); 189 goto no_delete; 190 } 191 192 if (IS_SYNC(inode)) 193 ext4_handle_sync(handle); 194 inode->i_size = 0; 195 err = ext4_mark_inode_dirty(handle, inode); 196 if (err) { 197 ext4_warning(inode->i_sb, __func__, 198 "couldn't mark inode dirty (err %d)", err); 199 goto stop_handle; 200 } 201 if (inode->i_blocks) 202 ext4_truncate(inode); 203 204 /* 205 * ext4_ext_truncate() doesn't reserve any slop when it 206 * restarts journal transactions; therefore there may not be 207 * enough credits left in the handle to remove the inode from 208 * the orphan list and set the dtime field. 209 */ 210 if (!ext4_handle_has_enough_credits(handle, 3)) { 211 err = ext4_journal_extend(handle, 3); 212 if (err > 0) 213 err = ext4_journal_restart(handle, 3); 214 if (err != 0) { 215 ext4_warning(inode->i_sb, __func__, 216 "couldn't extend journal (err %d)", err); 217 stop_handle: 218 ext4_journal_stop(handle); 219 goto no_delete; 220 } 221 } 222 223 /* 224 * Kill off the orphan record which ext4_truncate created. 225 * AKPM: I think this can be inside the above `if'. 226 * Note that ext4_orphan_del() has to be able to cope with the 227 * deletion of a non-existent orphan - this is because we don't 228 * know if ext4_truncate() actually created an orphan record. 229 * (Well, we could do this if we need to, but heck - it works) 230 */ 231 ext4_orphan_del(handle, inode); 232 EXT4_I(inode)->i_dtime = get_seconds(); 233 234 /* 235 * One subtle ordering requirement: if anything has gone wrong 236 * (transaction abort, IO errors, whatever), then we can still 237 * do these next steps (the fs will already have been marked as 238 * having errors), but we can't free the inode if the mark_dirty 239 * fails. 240 */ 241 if (ext4_mark_inode_dirty(handle, inode)) 242 /* If that failed, just do the required in-core inode clear. */ 243 clear_inode(inode); 244 else 245 ext4_free_inode(handle, inode); 246 ext4_journal_stop(handle); 247 return; 248 no_delete: 249 clear_inode(inode); /* We must guarantee clearing of inode... */ 250 } 251 252 typedef struct { 253 __le32 *p; 254 __le32 key; 255 struct buffer_head *bh; 256 } Indirect; 257 258 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 259 { 260 p->key = *(p->p = v); 261 p->bh = bh; 262 } 263 264 /** 265 * ext4_block_to_path - parse the block number into array of offsets 266 * @inode: inode in question (we are only interested in its superblock) 267 * @i_block: block number to be parsed 268 * @offsets: array to store the offsets in 269 * @boundary: set this non-zero if the referred-to block is likely to be 270 * followed (on disk) by an indirect block. 271 * 272 * To store the locations of file's data ext4 uses a data structure common 273 * for UNIX filesystems - tree of pointers anchored in the inode, with 274 * data blocks at leaves and indirect blocks in intermediate nodes. 275 * This function translates the block number into path in that tree - 276 * return value is the path length and @offsets[n] is the offset of 277 * pointer to (n+1)th node in the nth one. If @block is out of range 278 * (negative or too large) warning is printed and zero returned. 279 * 280 * Note: function doesn't find node addresses, so no IO is needed. All 281 * we need to know is the capacity of indirect blocks (taken from the 282 * inode->i_sb). 283 */ 284 285 /* 286 * Portability note: the last comparison (check that we fit into triple 287 * indirect block) is spelled differently, because otherwise on an 288 * architecture with 32-bit longs and 8Kb pages we might get into trouble 289 * if our filesystem had 8Kb blocks. We might use long long, but that would 290 * kill us on x86. Oh, well, at least the sign propagation does not matter - 291 * i_block would have to be negative in the very beginning, so we would not 292 * get there at all. 293 */ 294 295 static int ext4_block_to_path(struct inode *inode, 296 ext4_lblk_t i_block, 297 ext4_lblk_t offsets[4], int *boundary) 298 { 299 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 300 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 301 const long direct_blocks = EXT4_NDIR_BLOCKS, 302 indirect_blocks = ptrs, 303 double_blocks = (1 << (ptrs_bits * 2)); 304 int n = 0; 305 int final = 0; 306 307 if (i_block < direct_blocks) { 308 offsets[n++] = i_block; 309 final = direct_blocks; 310 } else if ((i_block -= direct_blocks) < indirect_blocks) { 311 offsets[n++] = EXT4_IND_BLOCK; 312 offsets[n++] = i_block; 313 final = ptrs; 314 } else if ((i_block -= indirect_blocks) < double_blocks) { 315 offsets[n++] = EXT4_DIND_BLOCK; 316 offsets[n++] = i_block >> ptrs_bits; 317 offsets[n++] = i_block & (ptrs - 1); 318 final = ptrs; 319 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 320 offsets[n++] = EXT4_TIND_BLOCK; 321 offsets[n++] = i_block >> (ptrs_bits * 2); 322 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 323 offsets[n++] = i_block & (ptrs - 1); 324 final = ptrs; 325 } else { 326 ext4_warning(inode->i_sb, "ext4_block_to_path", 327 "block %lu > max in inode %lu", 328 i_block + direct_blocks + 329 indirect_blocks + double_blocks, inode->i_ino); 330 } 331 if (boundary) 332 *boundary = final - 1 - (i_block & (ptrs - 1)); 333 return n; 334 } 335 336 static int __ext4_check_blockref(const char *function, struct inode *inode, 337 __le32 *p, unsigned int max) 338 { 339 __le32 *bref = p; 340 unsigned int blk; 341 342 while (bref < p+max) { 343 blk = le32_to_cpu(*bref++); 344 if (blk && 345 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb), 346 blk, 1))) { 347 ext4_error(inode->i_sb, function, 348 "invalid block reference %u " 349 "in inode #%lu", blk, inode->i_ino); 350 return -EIO; 351 } 352 } 353 return 0; 354 } 355 356 357 #define ext4_check_indirect_blockref(inode, bh) \ 358 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \ 359 EXT4_ADDR_PER_BLOCK((inode)->i_sb)) 360 361 #define ext4_check_inode_blockref(inode) \ 362 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \ 363 EXT4_NDIR_BLOCKS) 364 365 /** 366 * ext4_get_branch - read the chain of indirect blocks leading to data 367 * @inode: inode in question 368 * @depth: depth of the chain (1 - direct pointer, etc.) 369 * @offsets: offsets of pointers in inode/indirect blocks 370 * @chain: place to store the result 371 * @err: here we store the error value 372 * 373 * Function fills the array of triples <key, p, bh> and returns %NULL 374 * if everything went OK or the pointer to the last filled triple 375 * (incomplete one) otherwise. Upon the return chain[i].key contains 376 * the number of (i+1)-th block in the chain (as it is stored in memory, 377 * i.e. little-endian 32-bit), chain[i].p contains the address of that 378 * number (it points into struct inode for i==0 and into the bh->b_data 379 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 380 * block for i>0 and NULL for i==0. In other words, it holds the block 381 * numbers of the chain, addresses they were taken from (and where we can 382 * verify that chain did not change) and buffer_heads hosting these 383 * numbers. 384 * 385 * Function stops when it stumbles upon zero pointer (absent block) 386 * (pointer to last triple returned, *@err == 0) 387 * or when it gets an IO error reading an indirect block 388 * (ditto, *@err == -EIO) 389 * or when it reads all @depth-1 indirect blocks successfully and finds 390 * the whole chain, all way to the data (returns %NULL, *err == 0). 391 * 392 * Need to be called with 393 * down_read(&EXT4_I(inode)->i_data_sem) 394 */ 395 static Indirect *ext4_get_branch(struct inode *inode, int depth, 396 ext4_lblk_t *offsets, 397 Indirect chain[4], int *err) 398 { 399 struct super_block *sb = inode->i_sb; 400 Indirect *p = chain; 401 struct buffer_head *bh; 402 403 *err = 0; 404 /* i_data is not going away, no lock needed */ 405 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 406 if (!p->key) 407 goto no_block; 408 while (--depth) { 409 bh = sb_getblk(sb, le32_to_cpu(p->key)); 410 if (unlikely(!bh)) 411 goto failure; 412 413 if (!bh_uptodate_or_lock(bh)) { 414 if (bh_submit_read(bh) < 0) { 415 put_bh(bh); 416 goto failure; 417 } 418 /* validate block references */ 419 if (ext4_check_indirect_blockref(inode, bh)) { 420 put_bh(bh); 421 goto failure; 422 } 423 } 424 425 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 426 /* Reader: end */ 427 if (!p->key) 428 goto no_block; 429 } 430 return NULL; 431 432 failure: 433 *err = -EIO; 434 no_block: 435 return p; 436 } 437 438 /** 439 * ext4_find_near - find a place for allocation with sufficient locality 440 * @inode: owner 441 * @ind: descriptor of indirect block. 442 * 443 * This function returns the preferred place for block allocation. 444 * It is used when heuristic for sequential allocation fails. 445 * Rules are: 446 * + if there is a block to the left of our position - allocate near it. 447 * + if pointer will live in indirect block - allocate near that block. 448 * + if pointer will live in inode - allocate in the same 449 * cylinder group. 450 * 451 * In the latter case we colour the starting block by the callers PID to 452 * prevent it from clashing with concurrent allocations for a different inode 453 * in the same block group. The PID is used here so that functionally related 454 * files will be close-by on-disk. 455 * 456 * Caller must make sure that @ind is valid and will stay that way. 457 */ 458 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 459 { 460 struct ext4_inode_info *ei = EXT4_I(inode); 461 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 462 __le32 *p; 463 ext4_fsblk_t bg_start; 464 ext4_fsblk_t last_block; 465 ext4_grpblk_t colour; 466 ext4_group_t block_group; 467 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb)); 468 469 /* Try to find previous block */ 470 for (p = ind->p - 1; p >= start; p--) { 471 if (*p) 472 return le32_to_cpu(*p); 473 } 474 475 /* No such thing, so let's try location of indirect block */ 476 if (ind->bh) 477 return ind->bh->b_blocknr; 478 479 /* 480 * It is going to be referred to from the inode itself? OK, just put it 481 * into the same cylinder group then. 482 */ 483 block_group = ei->i_block_group; 484 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) { 485 block_group &= ~(flex_size-1); 486 if (S_ISREG(inode->i_mode)) 487 block_group++; 488 } 489 bg_start = ext4_group_first_block_no(inode->i_sb, block_group); 490 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1; 491 492 /* 493 * If we are doing delayed allocation, we don't need take 494 * colour into account. 495 */ 496 if (test_opt(inode->i_sb, DELALLOC)) 497 return bg_start; 498 499 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block) 500 colour = (current->pid % 16) * 501 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 502 else 503 colour = (current->pid % 16) * ((last_block - bg_start) / 16); 504 return bg_start + colour; 505 } 506 507 /** 508 * ext4_find_goal - find a preferred place for allocation. 509 * @inode: owner 510 * @block: block we want 511 * @partial: pointer to the last triple within a chain 512 * 513 * Normally this function find the preferred place for block allocation, 514 * returns it. 515 * Because this is only used for non-extent files, we limit the block nr 516 * to 32 bits. 517 */ 518 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 519 Indirect *partial) 520 { 521 ext4_fsblk_t goal; 522 523 /* 524 * XXX need to get goal block from mballoc's data structures 525 */ 526 527 goal = ext4_find_near(inode, partial); 528 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS; 529 return goal; 530 } 531 532 /** 533 * ext4_blks_to_allocate: Look up the block map and count the number 534 * of direct blocks need to be allocated for the given branch. 535 * 536 * @branch: chain of indirect blocks 537 * @k: number of blocks need for indirect blocks 538 * @blks: number of data blocks to be mapped. 539 * @blocks_to_boundary: the offset in the indirect block 540 * 541 * return the total number of blocks to be allocate, including the 542 * direct and indirect blocks. 543 */ 544 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks, 545 int blocks_to_boundary) 546 { 547 unsigned int count = 0; 548 549 /* 550 * Simple case, [t,d]Indirect block(s) has not allocated yet 551 * then it's clear blocks on that path have not allocated 552 */ 553 if (k > 0) { 554 /* right now we don't handle cross boundary allocation */ 555 if (blks < blocks_to_boundary + 1) 556 count += blks; 557 else 558 count += blocks_to_boundary + 1; 559 return count; 560 } 561 562 count++; 563 while (count < blks && count <= blocks_to_boundary && 564 le32_to_cpu(*(branch[0].p + count)) == 0) { 565 count++; 566 } 567 return count; 568 } 569 570 /** 571 * ext4_alloc_blocks: multiple allocate blocks needed for a branch 572 * @indirect_blks: the number of blocks need to allocate for indirect 573 * blocks 574 * 575 * @new_blocks: on return it will store the new block numbers for 576 * the indirect blocks(if needed) and the first direct block, 577 * @blks: on return it will store the total number of allocated 578 * direct blocks 579 */ 580 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, 581 ext4_lblk_t iblock, ext4_fsblk_t goal, 582 int indirect_blks, int blks, 583 ext4_fsblk_t new_blocks[4], int *err) 584 { 585 struct ext4_allocation_request ar; 586 int target, i; 587 unsigned long count = 0, blk_allocated = 0; 588 int index = 0; 589 ext4_fsblk_t current_block = 0; 590 int ret = 0; 591 592 /* 593 * Here we try to allocate the requested multiple blocks at once, 594 * on a best-effort basis. 595 * To build a branch, we should allocate blocks for 596 * the indirect blocks(if not allocated yet), and at least 597 * the first direct block of this branch. That's the 598 * minimum number of blocks need to allocate(required) 599 */ 600 /* first we try to allocate the indirect blocks */ 601 target = indirect_blks; 602 while (target > 0) { 603 count = target; 604 /* allocating blocks for indirect blocks and direct blocks */ 605 current_block = ext4_new_meta_blocks(handle, inode, 606 goal, &count, err); 607 if (*err) 608 goto failed_out; 609 610 BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS); 611 612 target -= count; 613 /* allocate blocks for indirect blocks */ 614 while (index < indirect_blks && count) { 615 new_blocks[index++] = current_block++; 616 count--; 617 } 618 if (count > 0) { 619 /* 620 * save the new block number 621 * for the first direct block 622 */ 623 new_blocks[index] = current_block; 624 printk(KERN_INFO "%s returned more blocks than " 625 "requested\n", __func__); 626 WARN_ON(1); 627 break; 628 } 629 } 630 631 target = blks - count ; 632 blk_allocated = count; 633 if (!target) 634 goto allocated; 635 /* Now allocate data blocks */ 636 memset(&ar, 0, sizeof(ar)); 637 ar.inode = inode; 638 ar.goal = goal; 639 ar.len = target; 640 ar.logical = iblock; 641 if (S_ISREG(inode->i_mode)) 642 /* enable in-core preallocation only for regular files */ 643 ar.flags = EXT4_MB_HINT_DATA; 644 645 current_block = ext4_mb_new_blocks(handle, &ar, err); 646 BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS); 647 648 if (*err && (target == blks)) { 649 /* 650 * if the allocation failed and we didn't allocate 651 * any blocks before 652 */ 653 goto failed_out; 654 } 655 if (!*err) { 656 if (target == blks) { 657 /* 658 * save the new block number 659 * for the first direct block 660 */ 661 new_blocks[index] = current_block; 662 } 663 blk_allocated += ar.len; 664 } 665 allocated: 666 /* total number of blocks allocated for direct blocks */ 667 ret = blk_allocated; 668 *err = 0; 669 return ret; 670 failed_out: 671 for (i = 0; i < index; i++) 672 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0); 673 return ret; 674 } 675 676 /** 677 * ext4_alloc_branch - allocate and set up a chain of blocks. 678 * @inode: owner 679 * @indirect_blks: number of allocated indirect blocks 680 * @blks: number of allocated direct blocks 681 * @offsets: offsets (in the blocks) to store the pointers to next. 682 * @branch: place to store the chain in. 683 * 684 * This function allocates blocks, zeroes out all but the last one, 685 * links them into chain and (if we are synchronous) writes them to disk. 686 * In other words, it prepares a branch that can be spliced onto the 687 * inode. It stores the information about that chain in the branch[], in 688 * the same format as ext4_get_branch() would do. We are calling it after 689 * we had read the existing part of chain and partial points to the last 690 * triple of that (one with zero ->key). Upon the exit we have the same 691 * picture as after the successful ext4_get_block(), except that in one 692 * place chain is disconnected - *branch->p is still zero (we did not 693 * set the last link), but branch->key contains the number that should 694 * be placed into *branch->p to fill that gap. 695 * 696 * If allocation fails we free all blocks we've allocated (and forget 697 * their buffer_heads) and return the error value the from failed 698 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 699 * as described above and return 0. 700 */ 701 static int ext4_alloc_branch(handle_t *handle, struct inode *inode, 702 ext4_lblk_t iblock, int indirect_blks, 703 int *blks, ext4_fsblk_t goal, 704 ext4_lblk_t *offsets, Indirect *branch) 705 { 706 int blocksize = inode->i_sb->s_blocksize; 707 int i, n = 0; 708 int err = 0; 709 struct buffer_head *bh; 710 int num; 711 ext4_fsblk_t new_blocks[4]; 712 ext4_fsblk_t current_block; 713 714 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks, 715 *blks, new_blocks, &err); 716 if (err) 717 return err; 718 719 branch[0].key = cpu_to_le32(new_blocks[0]); 720 /* 721 * metadata blocks and data blocks are allocated. 722 */ 723 for (n = 1; n <= indirect_blks; n++) { 724 /* 725 * Get buffer_head for parent block, zero it out 726 * and set the pointer to new one, then send 727 * parent to disk. 728 */ 729 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 730 branch[n].bh = bh; 731 lock_buffer(bh); 732 BUFFER_TRACE(bh, "call get_create_access"); 733 err = ext4_journal_get_create_access(handle, bh); 734 if (err) { 735 /* Don't brelse(bh) here; it's done in 736 * ext4_journal_forget() below */ 737 unlock_buffer(bh); 738 goto failed; 739 } 740 741 memset(bh->b_data, 0, blocksize); 742 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 743 branch[n].key = cpu_to_le32(new_blocks[n]); 744 *branch[n].p = branch[n].key; 745 if (n == indirect_blks) { 746 current_block = new_blocks[n]; 747 /* 748 * End of chain, update the last new metablock of 749 * the chain to point to the new allocated 750 * data blocks numbers 751 */ 752 for (i = 1; i < num; i++) 753 *(branch[n].p + i) = cpu_to_le32(++current_block); 754 } 755 BUFFER_TRACE(bh, "marking uptodate"); 756 set_buffer_uptodate(bh); 757 unlock_buffer(bh); 758 759 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 760 err = ext4_handle_dirty_metadata(handle, inode, bh); 761 if (err) 762 goto failed; 763 } 764 *blks = num; 765 return err; 766 failed: 767 /* Allocation failed, free what we already allocated */ 768 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0); 769 for (i = 1; i <= n ; i++) { 770 /* 771 * branch[i].bh is newly allocated, so there is no 772 * need to revoke the block, which is why we don't 773 * need to set EXT4_FREE_BLOCKS_METADATA. 774 */ 775 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 776 EXT4_FREE_BLOCKS_FORGET); 777 } 778 for (i = n+1; i < indirect_blks; i++) 779 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0); 780 781 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0); 782 783 return err; 784 } 785 786 /** 787 * ext4_splice_branch - splice the allocated branch onto inode. 788 * @inode: owner 789 * @block: (logical) number of block we are adding 790 * @chain: chain of indirect blocks (with a missing link - see 791 * ext4_alloc_branch) 792 * @where: location of missing link 793 * @num: number of indirect blocks we are adding 794 * @blks: number of direct blocks we are adding 795 * 796 * This function fills the missing link and does all housekeeping needed in 797 * inode (->i_blocks, etc.). In case of success we end up with the full 798 * chain to new block and return 0. 799 */ 800 static int ext4_splice_branch(handle_t *handle, struct inode *inode, 801 ext4_lblk_t block, Indirect *where, int num, 802 int blks) 803 { 804 int i; 805 int err = 0; 806 ext4_fsblk_t current_block; 807 808 /* 809 * If we're splicing into a [td]indirect block (as opposed to the 810 * inode) then we need to get write access to the [td]indirect block 811 * before the splice. 812 */ 813 if (where->bh) { 814 BUFFER_TRACE(where->bh, "get_write_access"); 815 err = ext4_journal_get_write_access(handle, where->bh); 816 if (err) 817 goto err_out; 818 } 819 /* That's it */ 820 821 *where->p = where->key; 822 823 /* 824 * Update the host buffer_head or inode to point to more just allocated 825 * direct blocks blocks 826 */ 827 if (num == 0 && blks > 1) { 828 current_block = le32_to_cpu(where->key) + 1; 829 for (i = 1; i < blks; i++) 830 *(where->p + i) = cpu_to_le32(current_block++); 831 } 832 833 /* We are done with atomic stuff, now do the rest of housekeeping */ 834 /* had we spliced it onto indirect block? */ 835 if (where->bh) { 836 /* 837 * If we spliced it onto an indirect block, we haven't 838 * altered the inode. Note however that if it is being spliced 839 * onto an indirect block at the very end of the file (the 840 * file is growing) then we *will* alter the inode to reflect 841 * the new i_size. But that is not done here - it is done in 842 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 843 */ 844 jbd_debug(5, "splicing indirect only\n"); 845 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata"); 846 err = ext4_handle_dirty_metadata(handle, inode, where->bh); 847 if (err) 848 goto err_out; 849 } else { 850 /* 851 * OK, we spliced it into the inode itself on a direct block. 852 */ 853 ext4_mark_inode_dirty(handle, inode); 854 jbd_debug(5, "splicing direct\n"); 855 } 856 return err; 857 858 err_out: 859 for (i = 1; i <= num; i++) { 860 /* 861 * branch[i].bh is newly allocated, so there is no 862 * need to revoke the block, which is why we don't 863 * need to set EXT4_FREE_BLOCKS_METADATA. 864 */ 865 ext4_free_blocks(handle, inode, where[i].bh, 0, 1, 866 EXT4_FREE_BLOCKS_FORGET); 867 } 868 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key), 869 blks, 0); 870 871 return err; 872 } 873 874 /* 875 * The ext4_ind_get_blocks() function handles non-extents inodes 876 * (i.e., using the traditional indirect/double-indirect i_blocks 877 * scheme) for ext4_get_blocks(). 878 * 879 * Allocation strategy is simple: if we have to allocate something, we will 880 * have to go the whole way to leaf. So let's do it before attaching anything 881 * to tree, set linkage between the newborn blocks, write them if sync is 882 * required, recheck the path, free and repeat if check fails, otherwise 883 * set the last missing link (that will protect us from any truncate-generated 884 * removals - all blocks on the path are immune now) and possibly force the 885 * write on the parent block. 886 * That has a nice additional property: no special recovery from the failed 887 * allocations is needed - we simply release blocks and do not touch anything 888 * reachable from inode. 889 * 890 * `handle' can be NULL if create == 0. 891 * 892 * return > 0, # of blocks mapped or allocated. 893 * return = 0, if plain lookup failed. 894 * return < 0, error case. 895 * 896 * The ext4_ind_get_blocks() function should be called with 897 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem 898 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or 899 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system 900 * blocks. 901 */ 902 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode, 903 ext4_lblk_t iblock, unsigned int maxblocks, 904 struct buffer_head *bh_result, 905 int flags) 906 { 907 int err = -EIO; 908 ext4_lblk_t offsets[4]; 909 Indirect chain[4]; 910 Indirect *partial; 911 ext4_fsblk_t goal; 912 int indirect_blks; 913 int blocks_to_boundary = 0; 914 int depth; 915 int count = 0; 916 ext4_fsblk_t first_block = 0; 917 918 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)); 919 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0); 920 depth = ext4_block_to_path(inode, iblock, offsets, 921 &blocks_to_boundary); 922 923 if (depth == 0) 924 goto out; 925 926 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 927 928 /* Simplest case - block found, no allocation needed */ 929 if (!partial) { 930 first_block = le32_to_cpu(chain[depth - 1].key); 931 clear_buffer_new(bh_result); 932 count++; 933 /*map more blocks*/ 934 while (count < maxblocks && count <= blocks_to_boundary) { 935 ext4_fsblk_t blk; 936 937 blk = le32_to_cpu(*(chain[depth-1].p + count)); 938 939 if (blk == first_block + count) 940 count++; 941 else 942 break; 943 } 944 goto got_it; 945 } 946 947 /* Next simple case - plain lookup or failed read of indirect block */ 948 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO) 949 goto cleanup; 950 951 /* 952 * Okay, we need to do block allocation. 953 */ 954 goal = ext4_find_goal(inode, iblock, partial); 955 956 /* the number of blocks need to allocate for [d,t]indirect blocks */ 957 indirect_blks = (chain + depth) - partial - 1; 958 959 /* 960 * Next look up the indirect map to count the totoal number of 961 * direct blocks to allocate for this branch. 962 */ 963 count = ext4_blks_to_allocate(partial, indirect_blks, 964 maxblocks, blocks_to_boundary); 965 /* 966 * Block out ext4_truncate while we alter the tree 967 */ 968 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks, 969 &count, goal, 970 offsets + (partial - chain), partial); 971 972 /* 973 * The ext4_splice_branch call will free and forget any buffers 974 * on the new chain if there is a failure, but that risks using 975 * up transaction credits, especially for bitmaps where the 976 * credits cannot be returned. Can we handle this somehow? We 977 * may need to return -EAGAIN upwards in the worst case. --sct 978 */ 979 if (!err) 980 err = ext4_splice_branch(handle, inode, iblock, 981 partial, indirect_blks, count); 982 if (err) 983 goto cleanup; 984 985 set_buffer_new(bh_result); 986 987 ext4_update_inode_fsync_trans(handle, inode, 1); 988 got_it: 989 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); 990 if (count > blocks_to_boundary) 991 set_buffer_boundary(bh_result); 992 err = count; 993 /* Clean up and exit */ 994 partial = chain + depth - 1; /* the whole chain */ 995 cleanup: 996 while (partial > chain) { 997 BUFFER_TRACE(partial->bh, "call brelse"); 998 brelse(partial->bh); 999 partial--; 1000 } 1001 BUFFER_TRACE(bh_result, "returned"); 1002 out: 1003 return err; 1004 } 1005 1006 qsize_t ext4_get_reserved_space(struct inode *inode) 1007 { 1008 unsigned long long total; 1009 1010 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1011 total = EXT4_I(inode)->i_reserved_data_blocks + 1012 EXT4_I(inode)->i_reserved_meta_blocks; 1013 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1014 1015 return (total << inode->i_blkbits); 1016 } 1017 /* 1018 * Calculate the number of metadata blocks need to reserve 1019 * to allocate @blocks for non extent file based file 1020 */ 1021 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks) 1022 { 1023 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1024 int ind_blks, dind_blks, tind_blks; 1025 1026 /* number of new indirect blocks needed */ 1027 ind_blks = (blocks + icap - 1) / icap; 1028 1029 dind_blks = (ind_blks + icap - 1) / icap; 1030 1031 tind_blks = 1; 1032 1033 return ind_blks + dind_blks + tind_blks; 1034 } 1035 1036 /* 1037 * Calculate the number of metadata blocks need to reserve 1038 * to allocate given number of blocks 1039 */ 1040 static int ext4_calc_metadata_amount(struct inode *inode, int blocks) 1041 { 1042 if (!blocks) 1043 return 0; 1044 1045 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) 1046 return ext4_ext_calc_metadata_amount(inode, blocks); 1047 1048 return ext4_indirect_calc_metadata_amount(inode, blocks); 1049 } 1050 1051 static void ext4_da_update_reserve_space(struct inode *inode, int used) 1052 { 1053 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1054 int total, mdb, mdb_free; 1055 1056 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1057 /* recalculate the number of metablocks still need to be reserved */ 1058 total = EXT4_I(inode)->i_reserved_data_blocks - used; 1059 mdb = ext4_calc_metadata_amount(inode, total); 1060 1061 /* figure out how many metablocks to release */ 1062 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1063 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb; 1064 1065 if (mdb_free) { 1066 /* Account for allocated meta_blocks */ 1067 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks; 1068 1069 /* update fs dirty blocks counter */ 1070 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free); 1071 EXT4_I(inode)->i_allocated_meta_blocks = 0; 1072 EXT4_I(inode)->i_reserved_meta_blocks = mdb; 1073 } 1074 1075 /* update per-inode reservations */ 1076 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks); 1077 EXT4_I(inode)->i_reserved_data_blocks -= used; 1078 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1079 1080 /* 1081 * free those over-booking quota for metadata blocks 1082 */ 1083 if (mdb_free) 1084 vfs_dq_release_reservation_block(inode, mdb_free); 1085 1086 /* 1087 * If we have done all the pending block allocations and if 1088 * there aren't any writers on the inode, we can discard the 1089 * inode's preallocations. 1090 */ 1091 if (!total && (atomic_read(&inode->i_writecount) == 0)) 1092 ext4_discard_preallocations(inode); 1093 } 1094 1095 static int check_block_validity(struct inode *inode, const char *msg, 1096 sector_t logical, sector_t phys, int len) 1097 { 1098 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) { 1099 ext4_error(inode->i_sb, msg, 1100 "inode #%lu logical block %llu mapped to %llu " 1101 "(size %d)", inode->i_ino, 1102 (unsigned long long) logical, 1103 (unsigned long long) phys, len); 1104 return -EIO; 1105 } 1106 return 0; 1107 } 1108 1109 /* 1110 * Return the number of contiguous dirty pages in a given inode 1111 * starting at page frame idx. 1112 */ 1113 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx, 1114 unsigned int max_pages) 1115 { 1116 struct address_space *mapping = inode->i_mapping; 1117 pgoff_t index; 1118 struct pagevec pvec; 1119 pgoff_t num = 0; 1120 int i, nr_pages, done = 0; 1121 1122 if (max_pages == 0) 1123 return 0; 1124 pagevec_init(&pvec, 0); 1125 while (!done) { 1126 index = idx; 1127 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 1128 PAGECACHE_TAG_DIRTY, 1129 (pgoff_t)PAGEVEC_SIZE); 1130 if (nr_pages == 0) 1131 break; 1132 for (i = 0; i < nr_pages; i++) { 1133 struct page *page = pvec.pages[i]; 1134 struct buffer_head *bh, *head; 1135 1136 lock_page(page); 1137 if (unlikely(page->mapping != mapping) || 1138 !PageDirty(page) || 1139 PageWriteback(page) || 1140 page->index != idx) { 1141 done = 1; 1142 unlock_page(page); 1143 break; 1144 } 1145 if (page_has_buffers(page)) { 1146 bh = head = page_buffers(page); 1147 do { 1148 if (!buffer_delay(bh) && 1149 !buffer_unwritten(bh)) 1150 done = 1; 1151 bh = bh->b_this_page; 1152 } while (!done && (bh != head)); 1153 } 1154 unlock_page(page); 1155 if (done) 1156 break; 1157 idx++; 1158 num++; 1159 if (num >= max_pages) 1160 break; 1161 } 1162 pagevec_release(&pvec); 1163 } 1164 return num; 1165 } 1166 1167 /* 1168 * The ext4_get_blocks() function tries to look up the requested blocks, 1169 * and returns if the blocks are already mapped. 1170 * 1171 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 1172 * and store the allocated blocks in the result buffer head and mark it 1173 * mapped. 1174 * 1175 * If file type is extents based, it will call ext4_ext_get_blocks(), 1176 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping 1177 * based files 1178 * 1179 * On success, it returns the number of blocks being mapped or allocate. 1180 * if create==0 and the blocks are pre-allocated and uninitialized block, 1181 * the result buffer head is unmapped. If the create ==1, it will make sure 1182 * the buffer head is mapped. 1183 * 1184 * It returns 0 if plain look up failed (blocks have not been allocated), in 1185 * that casem, buffer head is unmapped 1186 * 1187 * It returns the error in case of allocation failure. 1188 */ 1189 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block, 1190 unsigned int max_blocks, struct buffer_head *bh, 1191 int flags) 1192 { 1193 int retval; 1194 1195 clear_buffer_mapped(bh); 1196 clear_buffer_unwritten(bh); 1197 1198 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u," 1199 "logical block %lu\n", inode->i_ino, flags, max_blocks, 1200 (unsigned long)block); 1201 /* 1202 * Try to see if we can get the block without requesting a new 1203 * file system block. 1204 */ 1205 down_read((&EXT4_I(inode)->i_data_sem)); 1206 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 1207 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 1208 bh, 0); 1209 } else { 1210 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks, 1211 bh, 0); 1212 } 1213 up_read((&EXT4_I(inode)->i_data_sem)); 1214 1215 if (retval > 0 && buffer_mapped(bh)) { 1216 int ret = check_block_validity(inode, "file system corruption", 1217 block, bh->b_blocknr, retval); 1218 if (ret != 0) 1219 return ret; 1220 } 1221 1222 /* If it is only a block(s) look up */ 1223 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 1224 return retval; 1225 1226 /* 1227 * Returns if the blocks have already allocated 1228 * 1229 * Note that if blocks have been preallocated 1230 * ext4_ext_get_block() returns th create = 0 1231 * with buffer head unmapped. 1232 */ 1233 if (retval > 0 && buffer_mapped(bh)) 1234 return retval; 1235 1236 /* 1237 * When we call get_blocks without the create flag, the 1238 * BH_Unwritten flag could have gotten set if the blocks 1239 * requested were part of a uninitialized extent. We need to 1240 * clear this flag now that we are committed to convert all or 1241 * part of the uninitialized extent to be an initialized 1242 * extent. This is because we need to avoid the combination 1243 * of BH_Unwritten and BH_Mapped flags being simultaneously 1244 * set on the buffer_head. 1245 */ 1246 clear_buffer_unwritten(bh); 1247 1248 /* 1249 * New blocks allocate and/or writing to uninitialized extent 1250 * will possibly result in updating i_data, so we take 1251 * the write lock of i_data_sem, and call get_blocks() 1252 * with create == 1 flag. 1253 */ 1254 down_write((&EXT4_I(inode)->i_data_sem)); 1255 1256 /* 1257 * if the caller is from delayed allocation writeout path 1258 * we have already reserved fs blocks for allocation 1259 * let the underlying get_block() function know to 1260 * avoid double accounting 1261 */ 1262 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1263 EXT4_I(inode)->i_delalloc_reserved_flag = 1; 1264 /* 1265 * We need to check for EXT4 here because migrate 1266 * could have changed the inode type in between 1267 */ 1268 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 1269 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 1270 bh, flags); 1271 } else { 1272 retval = ext4_ind_get_blocks(handle, inode, block, 1273 max_blocks, bh, flags); 1274 1275 if (retval > 0 && buffer_new(bh)) { 1276 /* 1277 * We allocated new blocks which will result in 1278 * i_data's format changing. Force the migrate 1279 * to fail by clearing migrate flags 1280 */ 1281 EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE; 1282 } 1283 } 1284 1285 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1286 EXT4_I(inode)->i_delalloc_reserved_flag = 0; 1287 1288 /* 1289 * Update reserved blocks/metadata blocks after successful 1290 * block allocation which had been deferred till now. 1291 */ 1292 if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE)) 1293 ext4_da_update_reserve_space(inode, retval); 1294 1295 up_write((&EXT4_I(inode)->i_data_sem)); 1296 if (retval > 0 && buffer_mapped(bh)) { 1297 int ret = check_block_validity(inode, "file system " 1298 "corruption after allocation", 1299 block, bh->b_blocknr, retval); 1300 if (ret != 0) 1301 return ret; 1302 } 1303 return retval; 1304 } 1305 1306 /* Maximum number of blocks we map for direct IO at once. */ 1307 #define DIO_MAX_BLOCKS 4096 1308 1309 int ext4_get_block(struct inode *inode, sector_t iblock, 1310 struct buffer_head *bh_result, int create) 1311 { 1312 handle_t *handle = ext4_journal_current_handle(); 1313 int ret = 0, started = 0; 1314 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 1315 int dio_credits; 1316 1317 if (create && !handle) { 1318 /* Direct IO write... */ 1319 if (max_blocks > DIO_MAX_BLOCKS) 1320 max_blocks = DIO_MAX_BLOCKS; 1321 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks); 1322 handle = ext4_journal_start(inode, dio_credits); 1323 if (IS_ERR(handle)) { 1324 ret = PTR_ERR(handle); 1325 goto out; 1326 } 1327 started = 1; 1328 } 1329 1330 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result, 1331 create ? EXT4_GET_BLOCKS_CREATE : 0); 1332 if (ret > 0) { 1333 bh_result->b_size = (ret << inode->i_blkbits); 1334 ret = 0; 1335 } 1336 if (started) 1337 ext4_journal_stop(handle); 1338 out: 1339 return ret; 1340 } 1341 1342 /* 1343 * `handle' can be NULL if create is zero 1344 */ 1345 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 1346 ext4_lblk_t block, int create, int *errp) 1347 { 1348 struct buffer_head dummy; 1349 int fatal = 0, err; 1350 int flags = 0; 1351 1352 J_ASSERT(handle != NULL || create == 0); 1353 1354 dummy.b_state = 0; 1355 dummy.b_blocknr = -1000; 1356 buffer_trace_init(&dummy.b_history); 1357 if (create) 1358 flags |= EXT4_GET_BLOCKS_CREATE; 1359 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags); 1360 /* 1361 * ext4_get_blocks() returns number of blocks mapped. 0 in 1362 * case of a HOLE. 1363 */ 1364 if (err > 0) { 1365 if (err > 1) 1366 WARN_ON(1); 1367 err = 0; 1368 } 1369 *errp = err; 1370 if (!err && buffer_mapped(&dummy)) { 1371 struct buffer_head *bh; 1372 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 1373 if (!bh) { 1374 *errp = -EIO; 1375 goto err; 1376 } 1377 if (buffer_new(&dummy)) { 1378 J_ASSERT(create != 0); 1379 J_ASSERT(handle != NULL); 1380 1381 /* 1382 * Now that we do not always journal data, we should 1383 * keep in mind whether this should always journal the 1384 * new buffer as metadata. For now, regular file 1385 * writes use ext4_get_block instead, so it's not a 1386 * problem. 1387 */ 1388 lock_buffer(bh); 1389 BUFFER_TRACE(bh, "call get_create_access"); 1390 fatal = ext4_journal_get_create_access(handle, bh); 1391 if (!fatal && !buffer_uptodate(bh)) { 1392 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1393 set_buffer_uptodate(bh); 1394 } 1395 unlock_buffer(bh); 1396 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 1397 err = ext4_handle_dirty_metadata(handle, inode, bh); 1398 if (!fatal) 1399 fatal = err; 1400 } else { 1401 BUFFER_TRACE(bh, "not a new buffer"); 1402 } 1403 if (fatal) { 1404 *errp = fatal; 1405 brelse(bh); 1406 bh = NULL; 1407 } 1408 return bh; 1409 } 1410 err: 1411 return NULL; 1412 } 1413 1414 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1415 ext4_lblk_t block, int create, int *err) 1416 { 1417 struct buffer_head *bh; 1418 1419 bh = ext4_getblk(handle, inode, block, create, err); 1420 if (!bh) 1421 return bh; 1422 if (buffer_uptodate(bh)) 1423 return bh; 1424 ll_rw_block(READ_META, 1, &bh); 1425 wait_on_buffer(bh); 1426 if (buffer_uptodate(bh)) 1427 return bh; 1428 put_bh(bh); 1429 *err = -EIO; 1430 return NULL; 1431 } 1432 1433 static int walk_page_buffers(handle_t *handle, 1434 struct buffer_head *head, 1435 unsigned from, 1436 unsigned to, 1437 int *partial, 1438 int (*fn)(handle_t *handle, 1439 struct buffer_head *bh)) 1440 { 1441 struct buffer_head *bh; 1442 unsigned block_start, block_end; 1443 unsigned blocksize = head->b_size; 1444 int err, ret = 0; 1445 struct buffer_head *next; 1446 1447 for (bh = head, block_start = 0; 1448 ret == 0 && (bh != head || !block_start); 1449 block_start = block_end, bh = next) { 1450 next = bh->b_this_page; 1451 block_end = block_start + blocksize; 1452 if (block_end <= from || block_start >= to) { 1453 if (partial && !buffer_uptodate(bh)) 1454 *partial = 1; 1455 continue; 1456 } 1457 err = (*fn)(handle, bh); 1458 if (!ret) 1459 ret = err; 1460 } 1461 return ret; 1462 } 1463 1464 /* 1465 * To preserve ordering, it is essential that the hole instantiation and 1466 * the data write be encapsulated in a single transaction. We cannot 1467 * close off a transaction and start a new one between the ext4_get_block() 1468 * and the commit_write(). So doing the jbd2_journal_start at the start of 1469 * prepare_write() is the right place. 1470 * 1471 * Also, this function can nest inside ext4_writepage() -> 1472 * block_write_full_page(). In that case, we *know* that ext4_writepage() 1473 * has generated enough buffer credits to do the whole page. So we won't 1474 * block on the journal in that case, which is good, because the caller may 1475 * be PF_MEMALLOC. 1476 * 1477 * By accident, ext4 can be reentered when a transaction is open via 1478 * quota file writes. If we were to commit the transaction while thus 1479 * reentered, there can be a deadlock - we would be holding a quota 1480 * lock, and the commit would never complete if another thread had a 1481 * transaction open and was blocking on the quota lock - a ranking 1482 * violation. 1483 * 1484 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1485 * will _not_ run commit under these circumstances because handle->h_ref 1486 * is elevated. We'll still have enough credits for the tiny quotafile 1487 * write. 1488 */ 1489 static int do_journal_get_write_access(handle_t *handle, 1490 struct buffer_head *bh) 1491 { 1492 if (!buffer_mapped(bh) || buffer_freed(bh)) 1493 return 0; 1494 return ext4_journal_get_write_access(handle, bh); 1495 } 1496 1497 /* 1498 * Truncate blocks that were not used by write. We have to truncate the 1499 * pagecache as well so that corresponding buffers get properly unmapped. 1500 */ 1501 static void ext4_truncate_failed_write(struct inode *inode) 1502 { 1503 truncate_inode_pages(inode->i_mapping, inode->i_size); 1504 ext4_truncate(inode); 1505 } 1506 1507 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1508 loff_t pos, unsigned len, unsigned flags, 1509 struct page **pagep, void **fsdata) 1510 { 1511 struct inode *inode = mapping->host; 1512 int ret, needed_blocks; 1513 handle_t *handle; 1514 int retries = 0; 1515 struct page *page; 1516 pgoff_t index; 1517 unsigned from, to; 1518 1519 trace_ext4_write_begin(inode, pos, len, flags); 1520 /* 1521 * Reserve one block more for addition to orphan list in case 1522 * we allocate blocks but write fails for some reason 1523 */ 1524 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1525 index = pos >> PAGE_CACHE_SHIFT; 1526 from = pos & (PAGE_CACHE_SIZE - 1); 1527 to = from + len; 1528 1529 retry: 1530 handle = ext4_journal_start(inode, needed_blocks); 1531 if (IS_ERR(handle)) { 1532 ret = PTR_ERR(handle); 1533 goto out; 1534 } 1535 1536 /* We cannot recurse into the filesystem as the transaction is already 1537 * started */ 1538 flags |= AOP_FLAG_NOFS; 1539 1540 page = grab_cache_page_write_begin(mapping, index, flags); 1541 if (!page) { 1542 ext4_journal_stop(handle); 1543 ret = -ENOMEM; 1544 goto out; 1545 } 1546 *pagep = page; 1547 1548 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 1549 ext4_get_block); 1550 1551 if (!ret && ext4_should_journal_data(inode)) { 1552 ret = walk_page_buffers(handle, page_buffers(page), 1553 from, to, NULL, do_journal_get_write_access); 1554 } 1555 1556 if (ret) { 1557 unlock_page(page); 1558 page_cache_release(page); 1559 /* 1560 * block_write_begin may have instantiated a few blocks 1561 * outside i_size. Trim these off again. Don't need 1562 * i_size_read because we hold i_mutex. 1563 * 1564 * Add inode to orphan list in case we crash before 1565 * truncate finishes 1566 */ 1567 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1568 ext4_orphan_add(handle, inode); 1569 1570 ext4_journal_stop(handle); 1571 if (pos + len > inode->i_size) { 1572 ext4_truncate_failed_write(inode); 1573 /* 1574 * If truncate failed early the inode might 1575 * still be on the orphan list; we need to 1576 * make sure the inode is removed from the 1577 * orphan list in that case. 1578 */ 1579 if (inode->i_nlink) 1580 ext4_orphan_del(NULL, inode); 1581 } 1582 } 1583 1584 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1585 goto retry; 1586 out: 1587 return ret; 1588 } 1589 1590 /* For write_end() in data=journal mode */ 1591 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1592 { 1593 if (!buffer_mapped(bh) || buffer_freed(bh)) 1594 return 0; 1595 set_buffer_uptodate(bh); 1596 return ext4_handle_dirty_metadata(handle, NULL, bh); 1597 } 1598 1599 static int ext4_generic_write_end(struct file *file, 1600 struct address_space *mapping, 1601 loff_t pos, unsigned len, unsigned copied, 1602 struct page *page, void *fsdata) 1603 { 1604 int i_size_changed = 0; 1605 struct inode *inode = mapping->host; 1606 handle_t *handle = ext4_journal_current_handle(); 1607 1608 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1609 1610 /* 1611 * No need to use i_size_read() here, the i_size 1612 * cannot change under us because we hold i_mutex. 1613 * 1614 * But it's important to update i_size while still holding page lock: 1615 * page writeout could otherwise come in and zero beyond i_size. 1616 */ 1617 if (pos + copied > inode->i_size) { 1618 i_size_write(inode, pos + copied); 1619 i_size_changed = 1; 1620 } 1621 1622 if (pos + copied > EXT4_I(inode)->i_disksize) { 1623 /* We need to mark inode dirty even if 1624 * new_i_size is less that inode->i_size 1625 * bu greater than i_disksize.(hint delalloc) 1626 */ 1627 ext4_update_i_disksize(inode, (pos + copied)); 1628 i_size_changed = 1; 1629 } 1630 unlock_page(page); 1631 page_cache_release(page); 1632 1633 /* 1634 * Don't mark the inode dirty under page lock. First, it unnecessarily 1635 * makes the holding time of page lock longer. Second, it forces lock 1636 * ordering of page lock and transaction start for journaling 1637 * filesystems. 1638 */ 1639 if (i_size_changed) 1640 ext4_mark_inode_dirty(handle, inode); 1641 1642 return copied; 1643 } 1644 1645 /* 1646 * We need to pick up the new inode size which generic_commit_write gave us 1647 * `file' can be NULL - eg, when called from page_symlink(). 1648 * 1649 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1650 * buffers are managed internally. 1651 */ 1652 static int ext4_ordered_write_end(struct file *file, 1653 struct address_space *mapping, 1654 loff_t pos, unsigned len, unsigned copied, 1655 struct page *page, void *fsdata) 1656 { 1657 handle_t *handle = ext4_journal_current_handle(); 1658 struct inode *inode = mapping->host; 1659 int ret = 0, ret2; 1660 1661 trace_ext4_ordered_write_end(inode, pos, len, copied); 1662 ret = ext4_jbd2_file_inode(handle, inode); 1663 1664 if (ret == 0) { 1665 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1666 page, fsdata); 1667 copied = ret2; 1668 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1669 /* if we have allocated more blocks and copied 1670 * less. We will have blocks allocated outside 1671 * inode->i_size. So truncate them 1672 */ 1673 ext4_orphan_add(handle, inode); 1674 if (ret2 < 0) 1675 ret = ret2; 1676 } 1677 ret2 = ext4_journal_stop(handle); 1678 if (!ret) 1679 ret = ret2; 1680 1681 if (pos + len > inode->i_size) { 1682 ext4_truncate_failed_write(inode); 1683 /* 1684 * If truncate failed early the inode might still be 1685 * on the orphan list; we need to make sure the inode 1686 * is removed from the orphan list in that case. 1687 */ 1688 if (inode->i_nlink) 1689 ext4_orphan_del(NULL, inode); 1690 } 1691 1692 1693 return ret ? ret : copied; 1694 } 1695 1696 static int ext4_writeback_write_end(struct file *file, 1697 struct address_space *mapping, 1698 loff_t pos, unsigned len, unsigned copied, 1699 struct page *page, void *fsdata) 1700 { 1701 handle_t *handle = ext4_journal_current_handle(); 1702 struct inode *inode = mapping->host; 1703 int ret = 0, ret2; 1704 1705 trace_ext4_writeback_write_end(inode, pos, len, copied); 1706 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1707 page, fsdata); 1708 copied = ret2; 1709 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1710 /* if we have allocated more blocks and copied 1711 * less. We will have blocks allocated outside 1712 * inode->i_size. So truncate them 1713 */ 1714 ext4_orphan_add(handle, inode); 1715 1716 if (ret2 < 0) 1717 ret = ret2; 1718 1719 ret2 = ext4_journal_stop(handle); 1720 if (!ret) 1721 ret = ret2; 1722 1723 if (pos + len > inode->i_size) { 1724 ext4_truncate_failed_write(inode); 1725 /* 1726 * If truncate failed early the inode might still be 1727 * on the orphan list; we need to make sure the inode 1728 * is removed from the orphan list in that case. 1729 */ 1730 if (inode->i_nlink) 1731 ext4_orphan_del(NULL, inode); 1732 } 1733 1734 return ret ? ret : copied; 1735 } 1736 1737 static int ext4_journalled_write_end(struct file *file, 1738 struct address_space *mapping, 1739 loff_t pos, unsigned len, unsigned copied, 1740 struct page *page, void *fsdata) 1741 { 1742 handle_t *handle = ext4_journal_current_handle(); 1743 struct inode *inode = mapping->host; 1744 int ret = 0, ret2; 1745 int partial = 0; 1746 unsigned from, to; 1747 loff_t new_i_size; 1748 1749 trace_ext4_journalled_write_end(inode, pos, len, copied); 1750 from = pos & (PAGE_CACHE_SIZE - 1); 1751 to = from + len; 1752 1753 if (copied < len) { 1754 if (!PageUptodate(page)) 1755 copied = 0; 1756 page_zero_new_buffers(page, from+copied, to); 1757 } 1758 1759 ret = walk_page_buffers(handle, page_buffers(page), from, 1760 to, &partial, write_end_fn); 1761 if (!partial) 1762 SetPageUptodate(page); 1763 new_i_size = pos + copied; 1764 if (new_i_size > inode->i_size) 1765 i_size_write(inode, pos+copied); 1766 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 1767 if (new_i_size > EXT4_I(inode)->i_disksize) { 1768 ext4_update_i_disksize(inode, new_i_size); 1769 ret2 = ext4_mark_inode_dirty(handle, inode); 1770 if (!ret) 1771 ret = ret2; 1772 } 1773 1774 unlock_page(page); 1775 page_cache_release(page); 1776 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1777 /* if we have allocated more blocks and copied 1778 * less. We will have blocks allocated outside 1779 * inode->i_size. So truncate them 1780 */ 1781 ext4_orphan_add(handle, inode); 1782 1783 ret2 = ext4_journal_stop(handle); 1784 if (!ret) 1785 ret = ret2; 1786 if (pos + len > inode->i_size) { 1787 ext4_truncate_failed_write(inode); 1788 /* 1789 * If truncate failed early the inode might still be 1790 * on the orphan list; we need to make sure the inode 1791 * is removed from the orphan list in that case. 1792 */ 1793 if (inode->i_nlink) 1794 ext4_orphan_del(NULL, inode); 1795 } 1796 1797 return ret ? ret : copied; 1798 } 1799 1800 static int ext4_da_reserve_space(struct inode *inode, int nrblocks) 1801 { 1802 int retries = 0; 1803 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1804 unsigned long md_needed, mdblocks, total = 0; 1805 1806 /* 1807 * recalculate the amount of metadata blocks to reserve 1808 * in order to allocate nrblocks 1809 * worse case is one extent per block 1810 */ 1811 repeat: 1812 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1813 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks; 1814 mdblocks = ext4_calc_metadata_amount(inode, total); 1815 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks); 1816 1817 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks; 1818 total = md_needed + nrblocks; 1819 1820 /* 1821 * Make quota reservation here to prevent quota overflow 1822 * later. Real quota accounting is done at pages writeout 1823 * time. 1824 */ 1825 if (vfs_dq_reserve_block(inode, total)) { 1826 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1827 return -EDQUOT; 1828 } 1829 1830 if (ext4_claim_free_blocks(sbi, total)) { 1831 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1832 vfs_dq_release_reservation_block(inode, total); 1833 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1834 yield(); 1835 goto repeat; 1836 } 1837 return -ENOSPC; 1838 } 1839 EXT4_I(inode)->i_reserved_data_blocks += nrblocks; 1840 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks; 1841 1842 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1843 return 0; /* success */ 1844 } 1845 1846 static void ext4_da_release_space(struct inode *inode, int to_free) 1847 { 1848 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1849 int total, mdb, mdb_free, release; 1850 1851 if (!to_free) 1852 return; /* Nothing to release, exit */ 1853 1854 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1855 1856 if (!EXT4_I(inode)->i_reserved_data_blocks) { 1857 /* 1858 * if there is no reserved blocks, but we try to free some 1859 * then the counter is messed up somewhere. 1860 * but since this function is called from invalidate 1861 * page, it's harmless to return without any action 1862 */ 1863 printk(KERN_INFO "ext4 delalloc try to release %d reserved " 1864 "blocks for inode %lu, but there is no reserved " 1865 "data blocks\n", to_free, inode->i_ino); 1866 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1867 return; 1868 } 1869 1870 /* recalculate the number of metablocks still need to be reserved */ 1871 total = EXT4_I(inode)->i_reserved_data_blocks - to_free; 1872 mdb = ext4_calc_metadata_amount(inode, total); 1873 1874 /* figure out how many metablocks to release */ 1875 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1876 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb; 1877 1878 release = to_free + mdb_free; 1879 1880 /* update fs dirty blocks counter for truncate case */ 1881 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release); 1882 1883 /* update per-inode reservations */ 1884 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks); 1885 EXT4_I(inode)->i_reserved_data_blocks -= to_free; 1886 1887 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1888 EXT4_I(inode)->i_reserved_meta_blocks = mdb; 1889 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1890 1891 vfs_dq_release_reservation_block(inode, release); 1892 } 1893 1894 static void ext4_da_page_release_reservation(struct page *page, 1895 unsigned long offset) 1896 { 1897 int to_release = 0; 1898 struct buffer_head *head, *bh; 1899 unsigned int curr_off = 0; 1900 1901 head = page_buffers(page); 1902 bh = head; 1903 do { 1904 unsigned int next_off = curr_off + bh->b_size; 1905 1906 if ((offset <= curr_off) && (buffer_delay(bh))) { 1907 to_release++; 1908 clear_buffer_delay(bh); 1909 } 1910 curr_off = next_off; 1911 } while ((bh = bh->b_this_page) != head); 1912 ext4_da_release_space(page->mapping->host, to_release); 1913 } 1914 1915 /* 1916 * Delayed allocation stuff 1917 */ 1918 1919 /* 1920 * mpage_da_submit_io - walks through extent of pages and try to write 1921 * them with writepage() call back 1922 * 1923 * @mpd->inode: inode 1924 * @mpd->first_page: first page of the extent 1925 * @mpd->next_page: page after the last page of the extent 1926 * 1927 * By the time mpage_da_submit_io() is called we expect all blocks 1928 * to be allocated. this may be wrong if allocation failed. 1929 * 1930 * As pages are already locked by write_cache_pages(), we can't use it 1931 */ 1932 static int mpage_da_submit_io(struct mpage_da_data *mpd) 1933 { 1934 long pages_skipped; 1935 struct pagevec pvec; 1936 unsigned long index, end; 1937 int ret = 0, err, nr_pages, i; 1938 struct inode *inode = mpd->inode; 1939 struct address_space *mapping = inode->i_mapping; 1940 1941 BUG_ON(mpd->next_page <= mpd->first_page); 1942 /* 1943 * We need to start from the first_page to the next_page - 1 1944 * to make sure we also write the mapped dirty buffer_heads. 1945 * If we look at mpd->b_blocknr we would only be looking 1946 * at the currently mapped buffer_heads. 1947 */ 1948 index = mpd->first_page; 1949 end = mpd->next_page - 1; 1950 1951 pagevec_init(&pvec, 0); 1952 while (index <= end) { 1953 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1954 if (nr_pages == 0) 1955 break; 1956 for (i = 0; i < nr_pages; i++) { 1957 struct page *page = pvec.pages[i]; 1958 1959 index = page->index; 1960 if (index > end) 1961 break; 1962 index++; 1963 1964 BUG_ON(!PageLocked(page)); 1965 BUG_ON(PageWriteback(page)); 1966 1967 pages_skipped = mpd->wbc->pages_skipped; 1968 err = mapping->a_ops->writepage(page, mpd->wbc); 1969 if (!err && (pages_skipped == mpd->wbc->pages_skipped)) 1970 /* 1971 * have successfully written the page 1972 * without skipping the same 1973 */ 1974 mpd->pages_written++; 1975 /* 1976 * In error case, we have to continue because 1977 * remaining pages are still locked 1978 * XXX: unlock and re-dirty them? 1979 */ 1980 if (ret == 0) 1981 ret = err; 1982 } 1983 pagevec_release(&pvec); 1984 } 1985 return ret; 1986 } 1987 1988 /* 1989 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers 1990 * 1991 * @mpd->inode - inode to walk through 1992 * @exbh->b_blocknr - first block on a disk 1993 * @exbh->b_size - amount of space in bytes 1994 * @logical - first logical block to start assignment with 1995 * 1996 * the function goes through all passed space and put actual disk 1997 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten 1998 */ 1999 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical, 2000 struct buffer_head *exbh) 2001 { 2002 struct inode *inode = mpd->inode; 2003 struct address_space *mapping = inode->i_mapping; 2004 int blocks = exbh->b_size >> inode->i_blkbits; 2005 sector_t pblock = exbh->b_blocknr, cur_logical; 2006 struct buffer_head *head, *bh; 2007 pgoff_t index, end; 2008 struct pagevec pvec; 2009 int nr_pages, i; 2010 2011 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 2012 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 2013 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2014 2015 pagevec_init(&pvec, 0); 2016 2017 while (index <= end) { 2018 /* XXX: optimize tail */ 2019 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 2020 if (nr_pages == 0) 2021 break; 2022 for (i = 0; i < nr_pages; i++) { 2023 struct page *page = pvec.pages[i]; 2024 2025 index = page->index; 2026 if (index > end) 2027 break; 2028 index++; 2029 2030 BUG_ON(!PageLocked(page)); 2031 BUG_ON(PageWriteback(page)); 2032 BUG_ON(!page_has_buffers(page)); 2033 2034 bh = page_buffers(page); 2035 head = bh; 2036 2037 /* skip blocks out of the range */ 2038 do { 2039 if (cur_logical >= logical) 2040 break; 2041 cur_logical++; 2042 } while ((bh = bh->b_this_page) != head); 2043 2044 do { 2045 if (cur_logical >= logical + blocks) 2046 break; 2047 2048 if (buffer_delay(bh) || 2049 buffer_unwritten(bh)) { 2050 2051 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev); 2052 2053 if (buffer_delay(bh)) { 2054 clear_buffer_delay(bh); 2055 bh->b_blocknr = pblock; 2056 } else { 2057 /* 2058 * unwritten already should have 2059 * blocknr assigned. Verify that 2060 */ 2061 clear_buffer_unwritten(bh); 2062 BUG_ON(bh->b_blocknr != pblock); 2063 } 2064 2065 } else if (buffer_mapped(bh)) 2066 BUG_ON(bh->b_blocknr != pblock); 2067 2068 cur_logical++; 2069 pblock++; 2070 } while ((bh = bh->b_this_page) != head); 2071 } 2072 pagevec_release(&pvec); 2073 } 2074 } 2075 2076 2077 /* 2078 * __unmap_underlying_blocks - just a helper function to unmap 2079 * set of blocks described by @bh 2080 */ 2081 static inline void __unmap_underlying_blocks(struct inode *inode, 2082 struct buffer_head *bh) 2083 { 2084 struct block_device *bdev = inode->i_sb->s_bdev; 2085 int blocks, i; 2086 2087 blocks = bh->b_size >> inode->i_blkbits; 2088 for (i = 0; i < blocks; i++) 2089 unmap_underlying_metadata(bdev, bh->b_blocknr + i); 2090 } 2091 2092 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd, 2093 sector_t logical, long blk_cnt) 2094 { 2095 int nr_pages, i; 2096 pgoff_t index, end; 2097 struct pagevec pvec; 2098 struct inode *inode = mpd->inode; 2099 struct address_space *mapping = inode->i_mapping; 2100 2101 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 2102 end = (logical + blk_cnt - 1) >> 2103 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2104 while (index <= end) { 2105 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 2106 if (nr_pages == 0) 2107 break; 2108 for (i = 0; i < nr_pages; i++) { 2109 struct page *page = pvec.pages[i]; 2110 index = page->index; 2111 if (index > end) 2112 break; 2113 index++; 2114 2115 BUG_ON(!PageLocked(page)); 2116 BUG_ON(PageWriteback(page)); 2117 block_invalidatepage(page, 0); 2118 ClearPageUptodate(page); 2119 unlock_page(page); 2120 } 2121 } 2122 return; 2123 } 2124 2125 static void ext4_print_free_blocks(struct inode *inode) 2126 { 2127 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2128 printk(KERN_CRIT "Total free blocks count %lld\n", 2129 ext4_count_free_blocks(inode->i_sb)); 2130 printk(KERN_CRIT "Free/Dirty block details\n"); 2131 printk(KERN_CRIT "free_blocks=%lld\n", 2132 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter)); 2133 printk(KERN_CRIT "dirty_blocks=%lld\n", 2134 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter)); 2135 printk(KERN_CRIT "Block reservation details\n"); 2136 printk(KERN_CRIT "i_reserved_data_blocks=%u\n", 2137 EXT4_I(inode)->i_reserved_data_blocks); 2138 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n", 2139 EXT4_I(inode)->i_reserved_meta_blocks); 2140 return; 2141 } 2142 2143 /* 2144 * mpage_da_map_blocks - go through given space 2145 * 2146 * @mpd - bh describing space 2147 * 2148 * The function skips space we know is already mapped to disk blocks. 2149 * 2150 */ 2151 static int mpage_da_map_blocks(struct mpage_da_data *mpd) 2152 { 2153 int err, blks, get_blocks_flags; 2154 struct buffer_head new; 2155 sector_t next = mpd->b_blocknr; 2156 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits; 2157 loff_t disksize = EXT4_I(mpd->inode)->i_disksize; 2158 handle_t *handle = NULL; 2159 2160 /* 2161 * We consider only non-mapped and non-allocated blocks 2162 */ 2163 if ((mpd->b_state & (1 << BH_Mapped)) && 2164 !(mpd->b_state & (1 << BH_Delay)) && 2165 !(mpd->b_state & (1 << BH_Unwritten))) 2166 return 0; 2167 2168 /* 2169 * If we didn't accumulate anything to write simply return 2170 */ 2171 if (!mpd->b_size) 2172 return 0; 2173 2174 handle = ext4_journal_current_handle(); 2175 BUG_ON(!handle); 2176 2177 /* 2178 * Call ext4_get_blocks() to allocate any delayed allocation 2179 * blocks, or to convert an uninitialized extent to be 2180 * initialized (in the case where we have written into 2181 * one or more preallocated blocks). 2182 * 2183 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to 2184 * indicate that we are on the delayed allocation path. This 2185 * affects functions in many different parts of the allocation 2186 * call path. This flag exists primarily because we don't 2187 * want to change *many* call functions, so ext4_get_blocks() 2188 * will set the magic i_delalloc_reserved_flag once the 2189 * inode's allocation semaphore is taken. 2190 * 2191 * If the blocks in questions were delalloc blocks, set 2192 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting 2193 * variables are updated after the blocks have been allocated. 2194 */ 2195 new.b_state = 0; 2196 get_blocks_flags = (EXT4_GET_BLOCKS_CREATE | 2197 EXT4_GET_BLOCKS_DELALLOC_RESERVE); 2198 if (mpd->b_state & (1 << BH_Delay)) 2199 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE; 2200 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks, 2201 &new, get_blocks_flags); 2202 if (blks < 0) { 2203 err = blks; 2204 /* 2205 * If get block returns with error we simply 2206 * return. Later writepage will redirty the page and 2207 * writepages will find the dirty page again 2208 */ 2209 if (err == -EAGAIN) 2210 return 0; 2211 2212 if (err == -ENOSPC && 2213 ext4_count_free_blocks(mpd->inode->i_sb)) { 2214 mpd->retval = err; 2215 return 0; 2216 } 2217 2218 /* 2219 * get block failure will cause us to loop in 2220 * writepages, because a_ops->writepage won't be able 2221 * to make progress. The page will be redirtied by 2222 * writepage and writepages will again try to write 2223 * the same. 2224 */ 2225 ext4_msg(mpd->inode->i_sb, KERN_CRIT, 2226 "delayed block allocation failed for inode %lu at " 2227 "logical offset %llu with max blocks %zd with " 2228 "error %d\n", mpd->inode->i_ino, 2229 (unsigned long long) next, 2230 mpd->b_size >> mpd->inode->i_blkbits, err); 2231 printk(KERN_CRIT "This should not happen!! " 2232 "Data will be lost\n"); 2233 if (err == -ENOSPC) { 2234 ext4_print_free_blocks(mpd->inode); 2235 } 2236 /* invalidate all the pages */ 2237 ext4_da_block_invalidatepages(mpd, next, 2238 mpd->b_size >> mpd->inode->i_blkbits); 2239 return err; 2240 } 2241 BUG_ON(blks == 0); 2242 2243 new.b_size = (blks << mpd->inode->i_blkbits); 2244 2245 if (buffer_new(&new)) 2246 __unmap_underlying_blocks(mpd->inode, &new); 2247 2248 /* 2249 * If blocks are delayed marked, we need to 2250 * put actual blocknr and drop delayed bit 2251 */ 2252 if ((mpd->b_state & (1 << BH_Delay)) || 2253 (mpd->b_state & (1 << BH_Unwritten))) 2254 mpage_put_bnr_to_bhs(mpd, next, &new); 2255 2256 if (ext4_should_order_data(mpd->inode)) { 2257 err = ext4_jbd2_file_inode(handle, mpd->inode); 2258 if (err) 2259 return err; 2260 } 2261 2262 /* 2263 * Update on-disk size along with block allocation. 2264 */ 2265 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits; 2266 if (disksize > i_size_read(mpd->inode)) 2267 disksize = i_size_read(mpd->inode); 2268 if (disksize > EXT4_I(mpd->inode)->i_disksize) { 2269 ext4_update_i_disksize(mpd->inode, disksize); 2270 return ext4_mark_inode_dirty(handle, mpd->inode); 2271 } 2272 2273 return 0; 2274 } 2275 2276 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 2277 (1 << BH_Delay) | (1 << BH_Unwritten)) 2278 2279 /* 2280 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 2281 * 2282 * @mpd->lbh - extent of blocks 2283 * @logical - logical number of the block in the file 2284 * @bh - bh of the block (used to access block's state) 2285 * 2286 * the function is used to collect contig. blocks in same state 2287 */ 2288 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 2289 sector_t logical, size_t b_size, 2290 unsigned long b_state) 2291 { 2292 sector_t next; 2293 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits; 2294 2295 /* check if thereserved journal credits might overflow */ 2296 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) { 2297 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 2298 /* 2299 * With non-extent format we are limited by the journal 2300 * credit available. Total credit needed to insert 2301 * nrblocks contiguous blocks is dependent on the 2302 * nrblocks. So limit nrblocks. 2303 */ 2304 goto flush_it; 2305 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > 2306 EXT4_MAX_TRANS_DATA) { 2307 /* 2308 * Adding the new buffer_head would make it cross the 2309 * allowed limit for which we have journal credit 2310 * reserved. So limit the new bh->b_size 2311 */ 2312 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << 2313 mpd->inode->i_blkbits; 2314 /* we will do mpage_da_submit_io in the next loop */ 2315 } 2316 } 2317 /* 2318 * First block in the extent 2319 */ 2320 if (mpd->b_size == 0) { 2321 mpd->b_blocknr = logical; 2322 mpd->b_size = b_size; 2323 mpd->b_state = b_state & BH_FLAGS; 2324 return; 2325 } 2326 2327 next = mpd->b_blocknr + nrblocks; 2328 /* 2329 * Can we merge the block to our big extent? 2330 */ 2331 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) { 2332 mpd->b_size += b_size; 2333 return; 2334 } 2335 2336 flush_it: 2337 /* 2338 * We couldn't merge the block to our extent, so we 2339 * need to flush current extent and start new one 2340 */ 2341 if (mpage_da_map_blocks(mpd) == 0) 2342 mpage_da_submit_io(mpd); 2343 mpd->io_done = 1; 2344 return; 2345 } 2346 2347 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 2348 { 2349 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 2350 } 2351 2352 /* 2353 * __mpage_da_writepage - finds extent of pages and blocks 2354 * 2355 * @page: page to consider 2356 * @wbc: not used, we just follow rules 2357 * @data: context 2358 * 2359 * The function finds extents of pages and scan them for all blocks. 2360 */ 2361 static int __mpage_da_writepage(struct page *page, 2362 struct writeback_control *wbc, void *data) 2363 { 2364 struct mpage_da_data *mpd = data; 2365 struct inode *inode = mpd->inode; 2366 struct buffer_head *bh, *head; 2367 sector_t logical; 2368 2369 if (mpd->io_done) { 2370 /* 2371 * Rest of the page in the page_vec 2372 * redirty then and skip then. We will 2373 * try to write them again after 2374 * starting a new transaction 2375 */ 2376 redirty_page_for_writepage(wbc, page); 2377 unlock_page(page); 2378 return MPAGE_DA_EXTENT_TAIL; 2379 } 2380 /* 2381 * Can we merge this page to current extent? 2382 */ 2383 if (mpd->next_page != page->index) { 2384 /* 2385 * Nope, we can't. So, we map non-allocated blocks 2386 * and start IO on them using writepage() 2387 */ 2388 if (mpd->next_page != mpd->first_page) { 2389 if (mpage_da_map_blocks(mpd) == 0) 2390 mpage_da_submit_io(mpd); 2391 /* 2392 * skip rest of the page in the page_vec 2393 */ 2394 mpd->io_done = 1; 2395 redirty_page_for_writepage(wbc, page); 2396 unlock_page(page); 2397 return MPAGE_DA_EXTENT_TAIL; 2398 } 2399 2400 /* 2401 * Start next extent of pages ... 2402 */ 2403 mpd->first_page = page->index; 2404 2405 /* 2406 * ... and blocks 2407 */ 2408 mpd->b_size = 0; 2409 mpd->b_state = 0; 2410 mpd->b_blocknr = 0; 2411 } 2412 2413 mpd->next_page = page->index + 1; 2414 logical = (sector_t) page->index << 2415 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2416 2417 if (!page_has_buffers(page)) { 2418 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE, 2419 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2420 if (mpd->io_done) 2421 return MPAGE_DA_EXTENT_TAIL; 2422 } else { 2423 /* 2424 * Page with regular buffer heads, just add all dirty ones 2425 */ 2426 head = page_buffers(page); 2427 bh = head; 2428 do { 2429 BUG_ON(buffer_locked(bh)); 2430 /* 2431 * We need to try to allocate 2432 * unmapped blocks in the same page. 2433 * Otherwise we won't make progress 2434 * with the page in ext4_writepage 2435 */ 2436 if (ext4_bh_delay_or_unwritten(NULL, bh)) { 2437 mpage_add_bh_to_extent(mpd, logical, 2438 bh->b_size, 2439 bh->b_state); 2440 if (mpd->io_done) 2441 return MPAGE_DA_EXTENT_TAIL; 2442 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) { 2443 /* 2444 * mapped dirty buffer. We need to update 2445 * the b_state because we look at 2446 * b_state in mpage_da_map_blocks. We don't 2447 * update b_size because if we find an 2448 * unmapped buffer_head later we need to 2449 * use the b_state flag of that buffer_head. 2450 */ 2451 if (mpd->b_size == 0) 2452 mpd->b_state = bh->b_state & BH_FLAGS; 2453 } 2454 logical++; 2455 } while ((bh = bh->b_this_page) != head); 2456 } 2457 2458 return 0; 2459 } 2460 2461 /* 2462 * This is a special get_blocks_t callback which is used by 2463 * ext4_da_write_begin(). It will either return mapped block or 2464 * reserve space for a single block. 2465 * 2466 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 2467 * We also have b_blocknr = -1 and b_bdev initialized properly 2468 * 2469 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 2470 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 2471 * initialized properly. 2472 */ 2473 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 2474 struct buffer_head *bh_result, int create) 2475 { 2476 int ret = 0; 2477 sector_t invalid_block = ~((sector_t) 0xffff); 2478 2479 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 2480 invalid_block = ~0; 2481 2482 BUG_ON(create == 0); 2483 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 2484 2485 /* 2486 * first, we need to know whether the block is allocated already 2487 * preallocated blocks are unmapped but should treated 2488 * the same as allocated blocks. 2489 */ 2490 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0); 2491 if ((ret == 0) && !buffer_delay(bh_result)) { 2492 /* the block isn't (pre)allocated yet, let's reserve space */ 2493 /* 2494 * XXX: __block_prepare_write() unmaps passed block, 2495 * is it OK? 2496 */ 2497 ret = ext4_da_reserve_space(inode, 1); 2498 if (ret) 2499 /* not enough space to reserve */ 2500 return ret; 2501 2502 map_bh(bh_result, inode->i_sb, invalid_block); 2503 set_buffer_new(bh_result); 2504 set_buffer_delay(bh_result); 2505 } else if (ret > 0) { 2506 bh_result->b_size = (ret << inode->i_blkbits); 2507 if (buffer_unwritten(bh_result)) { 2508 /* A delayed write to unwritten bh should 2509 * be marked new and mapped. Mapped ensures 2510 * that we don't do get_block multiple times 2511 * when we write to the same offset and new 2512 * ensures that we do proper zero out for 2513 * partial write. 2514 */ 2515 set_buffer_new(bh_result); 2516 set_buffer_mapped(bh_result); 2517 } 2518 ret = 0; 2519 } 2520 2521 return ret; 2522 } 2523 2524 /* 2525 * This function is used as a standard get_block_t calback function 2526 * when there is no desire to allocate any blocks. It is used as a 2527 * callback function for block_prepare_write(), nobh_writepage(), and 2528 * block_write_full_page(). These functions should only try to map a 2529 * single block at a time. 2530 * 2531 * Since this function doesn't do block allocations even if the caller 2532 * requests it by passing in create=1, it is critically important that 2533 * any caller checks to make sure that any buffer heads are returned 2534 * by this function are either all already mapped or marked for 2535 * delayed allocation before calling nobh_writepage() or 2536 * block_write_full_page(). Otherwise, b_blocknr could be left 2537 * unitialized, and the page write functions will be taken by 2538 * surprise. 2539 */ 2540 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 2541 struct buffer_head *bh_result, int create) 2542 { 2543 int ret = 0; 2544 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 2545 2546 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 2547 2548 /* 2549 * we don't want to do block allocation in writepage 2550 * so call get_block_wrap with create = 0 2551 */ 2552 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0); 2553 if (ret > 0) { 2554 bh_result->b_size = (ret << inode->i_blkbits); 2555 ret = 0; 2556 } 2557 return ret; 2558 } 2559 2560 static int bget_one(handle_t *handle, struct buffer_head *bh) 2561 { 2562 get_bh(bh); 2563 return 0; 2564 } 2565 2566 static int bput_one(handle_t *handle, struct buffer_head *bh) 2567 { 2568 put_bh(bh); 2569 return 0; 2570 } 2571 2572 static int __ext4_journalled_writepage(struct page *page, 2573 unsigned int len) 2574 { 2575 struct address_space *mapping = page->mapping; 2576 struct inode *inode = mapping->host; 2577 struct buffer_head *page_bufs; 2578 handle_t *handle = NULL; 2579 int ret = 0; 2580 int err; 2581 2582 page_bufs = page_buffers(page); 2583 BUG_ON(!page_bufs); 2584 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one); 2585 /* As soon as we unlock the page, it can go away, but we have 2586 * references to buffers so we are safe */ 2587 unlock_page(page); 2588 2589 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 2590 if (IS_ERR(handle)) { 2591 ret = PTR_ERR(handle); 2592 goto out; 2593 } 2594 2595 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL, 2596 do_journal_get_write_access); 2597 2598 err = walk_page_buffers(handle, page_bufs, 0, len, NULL, 2599 write_end_fn); 2600 if (ret == 0) 2601 ret = err; 2602 err = ext4_journal_stop(handle); 2603 if (!ret) 2604 ret = err; 2605 2606 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one); 2607 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 2608 out: 2609 return ret; 2610 } 2611 2612 /* 2613 * Note that we don't need to start a transaction unless we're journaling data 2614 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2615 * need to file the inode to the transaction's list in ordered mode because if 2616 * we are writing back data added by write(), the inode is already there and if 2617 * we are writing back data modified via mmap(), noone guarantees in which 2618 * transaction the data will hit the disk. In case we are journaling data, we 2619 * cannot start transaction directly because transaction start ranks above page 2620 * lock so we have to do some magic. 2621 * 2622 * This function can get called via... 2623 * - ext4_da_writepages after taking page lock (have journal handle) 2624 * - journal_submit_inode_data_buffers (no journal handle) 2625 * - shrink_page_list via pdflush (no journal handle) 2626 * - grab_page_cache when doing write_begin (have journal handle) 2627 * 2628 * We don't do any block allocation in this function. If we have page with 2629 * multiple blocks we need to write those buffer_heads that are mapped. This 2630 * is important for mmaped based write. So if we do with blocksize 1K 2631 * truncate(f, 1024); 2632 * a = mmap(f, 0, 4096); 2633 * a[0] = 'a'; 2634 * truncate(f, 4096); 2635 * we have in the page first buffer_head mapped via page_mkwrite call back 2636 * but other bufer_heads would be unmapped but dirty(dirty done via the 2637 * do_wp_page). So writepage should write the first block. If we modify 2638 * the mmap area beyond 1024 we will again get a page_fault and the 2639 * page_mkwrite callback will do the block allocation and mark the 2640 * buffer_heads mapped. 2641 * 2642 * We redirty the page if we have any buffer_heads that is either delay or 2643 * unwritten in the page. 2644 * 2645 * We can get recursively called as show below. 2646 * 2647 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2648 * ext4_writepage() 2649 * 2650 * But since we don't do any block allocation we should not deadlock. 2651 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2652 */ 2653 static int ext4_writepage(struct page *page, 2654 struct writeback_control *wbc) 2655 { 2656 int ret = 0; 2657 loff_t size; 2658 unsigned int len; 2659 struct buffer_head *page_bufs; 2660 struct inode *inode = page->mapping->host; 2661 2662 trace_ext4_writepage(inode, page); 2663 size = i_size_read(inode); 2664 if (page->index == size >> PAGE_CACHE_SHIFT) 2665 len = size & ~PAGE_CACHE_MASK; 2666 else 2667 len = PAGE_CACHE_SIZE; 2668 2669 if (page_has_buffers(page)) { 2670 page_bufs = page_buffers(page); 2671 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2672 ext4_bh_delay_or_unwritten)) { 2673 /* 2674 * We don't want to do block allocation 2675 * So redirty the page and return 2676 * We may reach here when we do a journal commit 2677 * via journal_submit_inode_data_buffers. 2678 * If we don't have mapping block we just ignore 2679 * them. We can also reach here via shrink_page_list 2680 */ 2681 redirty_page_for_writepage(wbc, page); 2682 unlock_page(page); 2683 return 0; 2684 } 2685 } else { 2686 /* 2687 * The test for page_has_buffers() is subtle: 2688 * We know the page is dirty but it lost buffers. That means 2689 * that at some moment in time after write_begin()/write_end() 2690 * has been called all buffers have been clean and thus they 2691 * must have been written at least once. So they are all 2692 * mapped and we can happily proceed with mapping them 2693 * and writing the page. 2694 * 2695 * Try to initialize the buffer_heads and check whether 2696 * all are mapped and non delay. We don't want to 2697 * do block allocation here. 2698 */ 2699 ret = block_prepare_write(page, 0, len, 2700 noalloc_get_block_write); 2701 if (!ret) { 2702 page_bufs = page_buffers(page); 2703 /* check whether all are mapped and non delay */ 2704 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2705 ext4_bh_delay_or_unwritten)) { 2706 redirty_page_for_writepage(wbc, page); 2707 unlock_page(page); 2708 return 0; 2709 } 2710 } else { 2711 /* 2712 * We can't do block allocation here 2713 * so just redity the page and unlock 2714 * and return 2715 */ 2716 redirty_page_for_writepage(wbc, page); 2717 unlock_page(page); 2718 return 0; 2719 } 2720 /* now mark the buffer_heads as dirty and uptodate */ 2721 block_commit_write(page, 0, len); 2722 } 2723 2724 if (PageChecked(page) && ext4_should_journal_data(inode)) { 2725 /* 2726 * It's mmapped pagecache. Add buffers and journal it. There 2727 * doesn't seem much point in redirtying the page here. 2728 */ 2729 ClearPageChecked(page); 2730 return __ext4_journalled_writepage(page, len); 2731 } 2732 2733 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode)) 2734 ret = nobh_writepage(page, noalloc_get_block_write, wbc); 2735 else 2736 ret = block_write_full_page(page, noalloc_get_block_write, 2737 wbc); 2738 2739 return ret; 2740 } 2741 2742 /* 2743 * This is called via ext4_da_writepages() to 2744 * calulate the total number of credits to reserve to fit 2745 * a single extent allocation into a single transaction, 2746 * ext4_da_writpeages() will loop calling this before 2747 * the block allocation. 2748 */ 2749 2750 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2751 { 2752 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 2753 2754 /* 2755 * With non-extent format the journal credit needed to 2756 * insert nrblocks contiguous block is dependent on 2757 * number of contiguous block. So we will limit 2758 * number of contiguous block to a sane value 2759 */ 2760 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) && 2761 (max_blocks > EXT4_MAX_TRANS_DATA)) 2762 max_blocks = EXT4_MAX_TRANS_DATA; 2763 2764 return ext4_chunk_trans_blocks(inode, max_blocks); 2765 } 2766 2767 static int ext4_da_writepages(struct address_space *mapping, 2768 struct writeback_control *wbc) 2769 { 2770 pgoff_t index; 2771 int range_whole = 0; 2772 handle_t *handle = NULL; 2773 struct mpage_da_data mpd; 2774 struct inode *inode = mapping->host; 2775 int no_nrwrite_index_update; 2776 int pages_written = 0; 2777 long pages_skipped; 2778 unsigned int max_pages; 2779 int range_cyclic, cycled = 1, io_done = 0; 2780 int needed_blocks, ret = 0; 2781 long desired_nr_to_write, nr_to_writebump = 0; 2782 loff_t range_start = wbc->range_start; 2783 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2784 2785 trace_ext4_da_writepages(inode, wbc); 2786 2787 /* 2788 * No pages to write? This is mainly a kludge to avoid starting 2789 * a transaction for special inodes like journal inode on last iput() 2790 * because that could violate lock ordering on umount 2791 */ 2792 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2793 return 0; 2794 2795 /* 2796 * If the filesystem has aborted, it is read-only, so return 2797 * right away instead of dumping stack traces later on that 2798 * will obscure the real source of the problem. We test 2799 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2800 * the latter could be true if the filesystem is mounted 2801 * read-only, and in that case, ext4_da_writepages should 2802 * *never* be called, so if that ever happens, we would want 2803 * the stack trace. 2804 */ 2805 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2806 return -EROFS; 2807 2808 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2809 range_whole = 1; 2810 2811 range_cyclic = wbc->range_cyclic; 2812 if (wbc->range_cyclic) { 2813 index = mapping->writeback_index; 2814 if (index) 2815 cycled = 0; 2816 wbc->range_start = index << PAGE_CACHE_SHIFT; 2817 wbc->range_end = LLONG_MAX; 2818 wbc->range_cyclic = 0; 2819 } else 2820 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2821 2822 /* 2823 * This works around two forms of stupidity. The first is in 2824 * the writeback code, which caps the maximum number of pages 2825 * written to be 1024 pages. This is wrong on multiple 2826 * levels; different architectues have a different page size, 2827 * which changes the maximum amount of data which gets 2828 * written. Secondly, 4 megabytes is way too small. XFS 2829 * forces this value to be 16 megabytes by multiplying 2830 * nr_to_write parameter by four, and then relies on its 2831 * allocator to allocate larger extents to make them 2832 * contiguous. Unfortunately this brings us to the second 2833 * stupidity, which is that ext4's mballoc code only allocates 2834 * at most 2048 blocks. So we force contiguous writes up to 2835 * the number of dirty blocks in the inode, or 2836 * sbi->max_writeback_mb_bump whichever is smaller. 2837 */ 2838 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT); 2839 if (!range_cyclic && range_whole) 2840 desired_nr_to_write = wbc->nr_to_write * 8; 2841 else 2842 desired_nr_to_write = ext4_num_dirty_pages(inode, index, 2843 max_pages); 2844 if (desired_nr_to_write > max_pages) 2845 desired_nr_to_write = max_pages; 2846 2847 if (wbc->nr_to_write < desired_nr_to_write) { 2848 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write; 2849 wbc->nr_to_write = desired_nr_to_write; 2850 } 2851 2852 mpd.wbc = wbc; 2853 mpd.inode = mapping->host; 2854 2855 /* 2856 * we don't want write_cache_pages to update 2857 * nr_to_write and writeback_index 2858 */ 2859 no_nrwrite_index_update = wbc->no_nrwrite_index_update; 2860 wbc->no_nrwrite_index_update = 1; 2861 pages_skipped = wbc->pages_skipped; 2862 2863 retry: 2864 while (!ret && wbc->nr_to_write > 0) { 2865 2866 /* 2867 * we insert one extent at a time. So we need 2868 * credit needed for single extent allocation. 2869 * journalled mode is currently not supported 2870 * by delalloc 2871 */ 2872 BUG_ON(ext4_should_journal_data(inode)); 2873 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2874 2875 /* start a new transaction*/ 2876 handle = ext4_journal_start(inode, needed_blocks); 2877 if (IS_ERR(handle)) { 2878 ret = PTR_ERR(handle); 2879 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2880 "%ld pages, ino %lu; err %d\n", __func__, 2881 wbc->nr_to_write, inode->i_ino, ret); 2882 goto out_writepages; 2883 } 2884 2885 /* 2886 * Now call __mpage_da_writepage to find the next 2887 * contiguous region of logical blocks that need 2888 * blocks to be allocated by ext4. We don't actually 2889 * submit the blocks for I/O here, even though 2890 * write_cache_pages thinks it will, and will set the 2891 * pages as clean for write before calling 2892 * __mpage_da_writepage(). 2893 */ 2894 mpd.b_size = 0; 2895 mpd.b_state = 0; 2896 mpd.b_blocknr = 0; 2897 mpd.first_page = 0; 2898 mpd.next_page = 0; 2899 mpd.io_done = 0; 2900 mpd.pages_written = 0; 2901 mpd.retval = 0; 2902 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, 2903 &mpd); 2904 /* 2905 * If we have a contiguous extent of pages and we 2906 * haven't done the I/O yet, map the blocks and submit 2907 * them for I/O. 2908 */ 2909 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 2910 if (mpage_da_map_blocks(&mpd) == 0) 2911 mpage_da_submit_io(&mpd); 2912 mpd.io_done = 1; 2913 ret = MPAGE_DA_EXTENT_TAIL; 2914 } 2915 trace_ext4_da_write_pages(inode, &mpd); 2916 wbc->nr_to_write -= mpd.pages_written; 2917 2918 ext4_journal_stop(handle); 2919 2920 if ((mpd.retval == -ENOSPC) && sbi->s_journal) { 2921 /* commit the transaction which would 2922 * free blocks released in the transaction 2923 * and try again 2924 */ 2925 jbd2_journal_force_commit_nested(sbi->s_journal); 2926 wbc->pages_skipped = pages_skipped; 2927 ret = 0; 2928 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 2929 /* 2930 * got one extent now try with 2931 * rest of the pages 2932 */ 2933 pages_written += mpd.pages_written; 2934 wbc->pages_skipped = pages_skipped; 2935 ret = 0; 2936 io_done = 1; 2937 } else if (wbc->nr_to_write) 2938 /* 2939 * There is no more writeout needed 2940 * or we requested for a noblocking writeout 2941 * and we found the device congested 2942 */ 2943 break; 2944 } 2945 if (!io_done && !cycled) { 2946 cycled = 1; 2947 index = 0; 2948 wbc->range_start = index << PAGE_CACHE_SHIFT; 2949 wbc->range_end = mapping->writeback_index - 1; 2950 goto retry; 2951 } 2952 if (pages_skipped != wbc->pages_skipped) 2953 ext4_msg(inode->i_sb, KERN_CRIT, 2954 "This should not happen leaving %s " 2955 "with nr_to_write = %ld ret = %d\n", 2956 __func__, wbc->nr_to_write, ret); 2957 2958 /* Update index */ 2959 index += pages_written; 2960 wbc->range_cyclic = range_cyclic; 2961 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2962 /* 2963 * set the writeback_index so that range_cyclic 2964 * mode will write it back later 2965 */ 2966 mapping->writeback_index = index; 2967 2968 out_writepages: 2969 if (!no_nrwrite_index_update) 2970 wbc->no_nrwrite_index_update = 0; 2971 if (wbc->nr_to_write > nr_to_writebump) 2972 wbc->nr_to_write -= nr_to_writebump; 2973 wbc->range_start = range_start; 2974 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written); 2975 return ret; 2976 } 2977 2978 #define FALL_BACK_TO_NONDELALLOC 1 2979 static int ext4_nonda_switch(struct super_block *sb) 2980 { 2981 s64 free_blocks, dirty_blocks; 2982 struct ext4_sb_info *sbi = EXT4_SB(sb); 2983 2984 /* 2985 * switch to non delalloc mode if we are running low 2986 * on free block. The free block accounting via percpu 2987 * counters can get slightly wrong with percpu_counter_batch getting 2988 * accumulated on each CPU without updating global counters 2989 * Delalloc need an accurate free block accounting. So switch 2990 * to non delalloc when we are near to error range. 2991 */ 2992 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter); 2993 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter); 2994 if (2 * free_blocks < 3 * dirty_blocks || 2995 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) { 2996 /* 2997 * free block count is less that 150% of dirty blocks 2998 * or free blocks is less that watermark 2999 */ 3000 return 1; 3001 } 3002 return 0; 3003 } 3004 3005 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 3006 loff_t pos, unsigned len, unsigned flags, 3007 struct page **pagep, void **fsdata) 3008 { 3009 int ret, retries = 0; 3010 struct page *page; 3011 pgoff_t index; 3012 unsigned from, to; 3013 struct inode *inode = mapping->host; 3014 handle_t *handle; 3015 3016 index = pos >> PAGE_CACHE_SHIFT; 3017 from = pos & (PAGE_CACHE_SIZE - 1); 3018 to = from + len; 3019 3020 if (ext4_nonda_switch(inode->i_sb)) { 3021 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 3022 return ext4_write_begin(file, mapping, pos, 3023 len, flags, pagep, fsdata); 3024 } 3025 *fsdata = (void *)0; 3026 trace_ext4_da_write_begin(inode, pos, len, flags); 3027 retry: 3028 /* 3029 * With delayed allocation, we don't log the i_disksize update 3030 * if there is delayed block allocation. But we still need 3031 * to journalling the i_disksize update if writes to the end 3032 * of file which has an already mapped buffer. 3033 */ 3034 handle = ext4_journal_start(inode, 1); 3035 if (IS_ERR(handle)) { 3036 ret = PTR_ERR(handle); 3037 goto out; 3038 } 3039 /* We cannot recurse into the filesystem as the transaction is already 3040 * started */ 3041 flags |= AOP_FLAG_NOFS; 3042 3043 page = grab_cache_page_write_begin(mapping, index, flags); 3044 if (!page) { 3045 ext4_journal_stop(handle); 3046 ret = -ENOMEM; 3047 goto out; 3048 } 3049 *pagep = page; 3050 3051 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 3052 ext4_da_get_block_prep); 3053 if (ret < 0) { 3054 unlock_page(page); 3055 ext4_journal_stop(handle); 3056 page_cache_release(page); 3057 /* 3058 * block_write_begin may have instantiated a few blocks 3059 * outside i_size. Trim these off again. Don't need 3060 * i_size_read because we hold i_mutex. 3061 */ 3062 if (pos + len > inode->i_size) 3063 ext4_truncate_failed_write(inode); 3064 } 3065 3066 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3067 goto retry; 3068 out: 3069 return ret; 3070 } 3071 3072 /* 3073 * Check if we should update i_disksize 3074 * when write to the end of file but not require block allocation 3075 */ 3076 static int ext4_da_should_update_i_disksize(struct page *page, 3077 unsigned long offset) 3078 { 3079 struct buffer_head *bh; 3080 struct inode *inode = page->mapping->host; 3081 unsigned int idx; 3082 int i; 3083 3084 bh = page_buffers(page); 3085 idx = offset >> inode->i_blkbits; 3086 3087 for (i = 0; i < idx; i++) 3088 bh = bh->b_this_page; 3089 3090 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3091 return 0; 3092 return 1; 3093 } 3094 3095 static int ext4_da_write_end(struct file *file, 3096 struct address_space *mapping, 3097 loff_t pos, unsigned len, unsigned copied, 3098 struct page *page, void *fsdata) 3099 { 3100 struct inode *inode = mapping->host; 3101 int ret = 0, ret2; 3102 handle_t *handle = ext4_journal_current_handle(); 3103 loff_t new_i_size; 3104 unsigned long start, end; 3105 int write_mode = (int)(unsigned long)fsdata; 3106 3107 if (write_mode == FALL_BACK_TO_NONDELALLOC) { 3108 if (ext4_should_order_data(inode)) { 3109 return ext4_ordered_write_end(file, mapping, pos, 3110 len, copied, page, fsdata); 3111 } else if (ext4_should_writeback_data(inode)) { 3112 return ext4_writeback_write_end(file, mapping, pos, 3113 len, copied, page, fsdata); 3114 } else { 3115 BUG(); 3116 } 3117 } 3118 3119 trace_ext4_da_write_end(inode, pos, len, copied); 3120 start = pos & (PAGE_CACHE_SIZE - 1); 3121 end = start + copied - 1; 3122 3123 /* 3124 * generic_write_end() will run mark_inode_dirty() if i_size 3125 * changes. So let's piggyback the i_disksize mark_inode_dirty 3126 * into that. 3127 */ 3128 3129 new_i_size = pos + copied; 3130 if (new_i_size > EXT4_I(inode)->i_disksize) { 3131 if (ext4_da_should_update_i_disksize(page, end)) { 3132 down_write(&EXT4_I(inode)->i_data_sem); 3133 if (new_i_size > EXT4_I(inode)->i_disksize) { 3134 /* 3135 * Updating i_disksize when extending file 3136 * without needing block allocation 3137 */ 3138 if (ext4_should_order_data(inode)) 3139 ret = ext4_jbd2_file_inode(handle, 3140 inode); 3141 3142 EXT4_I(inode)->i_disksize = new_i_size; 3143 } 3144 up_write(&EXT4_I(inode)->i_data_sem); 3145 /* We need to mark inode dirty even if 3146 * new_i_size is less that inode->i_size 3147 * bu greater than i_disksize.(hint delalloc) 3148 */ 3149 ext4_mark_inode_dirty(handle, inode); 3150 } 3151 } 3152 ret2 = generic_write_end(file, mapping, pos, len, copied, 3153 page, fsdata); 3154 copied = ret2; 3155 if (ret2 < 0) 3156 ret = ret2; 3157 ret2 = ext4_journal_stop(handle); 3158 if (!ret) 3159 ret = ret2; 3160 3161 return ret ? ret : copied; 3162 } 3163 3164 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 3165 { 3166 /* 3167 * Drop reserved blocks 3168 */ 3169 BUG_ON(!PageLocked(page)); 3170 if (!page_has_buffers(page)) 3171 goto out; 3172 3173 ext4_da_page_release_reservation(page, offset); 3174 3175 out: 3176 ext4_invalidatepage(page, offset); 3177 3178 return; 3179 } 3180 3181 /* 3182 * Force all delayed allocation blocks to be allocated for a given inode. 3183 */ 3184 int ext4_alloc_da_blocks(struct inode *inode) 3185 { 3186 trace_ext4_alloc_da_blocks(inode); 3187 3188 if (!EXT4_I(inode)->i_reserved_data_blocks && 3189 !EXT4_I(inode)->i_reserved_meta_blocks) 3190 return 0; 3191 3192 /* 3193 * We do something simple for now. The filemap_flush() will 3194 * also start triggering a write of the data blocks, which is 3195 * not strictly speaking necessary (and for users of 3196 * laptop_mode, not even desirable). However, to do otherwise 3197 * would require replicating code paths in: 3198 * 3199 * ext4_da_writepages() -> 3200 * write_cache_pages() ---> (via passed in callback function) 3201 * __mpage_da_writepage() --> 3202 * mpage_add_bh_to_extent() 3203 * mpage_da_map_blocks() 3204 * 3205 * The problem is that write_cache_pages(), located in 3206 * mm/page-writeback.c, marks pages clean in preparation for 3207 * doing I/O, which is not desirable if we're not planning on 3208 * doing I/O at all. 3209 * 3210 * We could call write_cache_pages(), and then redirty all of 3211 * the pages by calling redirty_page_for_writeback() but that 3212 * would be ugly in the extreme. So instead we would need to 3213 * replicate parts of the code in the above functions, 3214 * simplifying them becuase we wouldn't actually intend to 3215 * write out the pages, but rather only collect contiguous 3216 * logical block extents, call the multi-block allocator, and 3217 * then update the buffer heads with the block allocations. 3218 * 3219 * For now, though, we'll cheat by calling filemap_flush(), 3220 * which will map the blocks, and start the I/O, but not 3221 * actually wait for the I/O to complete. 3222 */ 3223 return filemap_flush(inode->i_mapping); 3224 } 3225 3226 /* 3227 * bmap() is special. It gets used by applications such as lilo and by 3228 * the swapper to find the on-disk block of a specific piece of data. 3229 * 3230 * Naturally, this is dangerous if the block concerned is still in the 3231 * journal. If somebody makes a swapfile on an ext4 data-journaling 3232 * filesystem and enables swap, then they may get a nasty shock when the 3233 * data getting swapped to that swapfile suddenly gets overwritten by 3234 * the original zero's written out previously to the journal and 3235 * awaiting writeback in the kernel's buffer cache. 3236 * 3237 * So, if we see any bmap calls here on a modified, data-journaled file, 3238 * take extra steps to flush any blocks which might be in the cache. 3239 */ 3240 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3241 { 3242 struct inode *inode = mapping->host; 3243 journal_t *journal; 3244 int err; 3245 3246 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3247 test_opt(inode->i_sb, DELALLOC)) { 3248 /* 3249 * With delalloc we want to sync the file 3250 * so that we can make sure we allocate 3251 * blocks for file 3252 */ 3253 filemap_write_and_wait(mapping); 3254 } 3255 3256 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) { 3257 /* 3258 * This is a REALLY heavyweight approach, but the use of 3259 * bmap on dirty files is expected to be extremely rare: 3260 * only if we run lilo or swapon on a freshly made file 3261 * do we expect this to happen. 3262 * 3263 * (bmap requires CAP_SYS_RAWIO so this does not 3264 * represent an unprivileged user DOS attack --- we'd be 3265 * in trouble if mortal users could trigger this path at 3266 * will.) 3267 * 3268 * NB. EXT4_STATE_JDATA is not set on files other than 3269 * regular files. If somebody wants to bmap a directory 3270 * or symlink and gets confused because the buffer 3271 * hasn't yet been flushed to disk, they deserve 3272 * everything they get. 3273 */ 3274 3275 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA; 3276 journal = EXT4_JOURNAL(inode); 3277 jbd2_journal_lock_updates(journal); 3278 err = jbd2_journal_flush(journal); 3279 jbd2_journal_unlock_updates(journal); 3280 3281 if (err) 3282 return 0; 3283 } 3284 3285 return generic_block_bmap(mapping, block, ext4_get_block); 3286 } 3287 3288 static int ext4_readpage(struct file *file, struct page *page) 3289 { 3290 return mpage_readpage(page, ext4_get_block); 3291 } 3292 3293 static int 3294 ext4_readpages(struct file *file, struct address_space *mapping, 3295 struct list_head *pages, unsigned nr_pages) 3296 { 3297 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 3298 } 3299 3300 static void ext4_invalidatepage(struct page *page, unsigned long offset) 3301 { 3302 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3303 3304 /* 3305 * If it's a full truncate we just forget about the pending dirtying 3306 */ 3307 if (offset == 0) 3308 ClearPageChecked(page); 3309 3310 if (journal) 3311 jbd2_journal_invalidatepage(journal, page, offset); 3312 else 3313 block_invalidatepage(page, offset); 3314 } 3315 3316 static int ext4_releasepage(struct page *page, gfp_t wait) 3317 { 3318 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3319 3320 WARN_ON(PageChecked(page)); 3321 if (!page_has_buffers(page)) 3322 return 0; 3323 if (journal) 3324 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3325 else 3326 return try_to_free_buffers(page); 3327 } 3328 3329 /* 3330 * O_DIRECT for ext3 (or indirect map) based files 3331 * 3332 * If the O_DIRECT write will extend the file then add this inode to the 3333 * orphan list. So recovery will truncate it back to the original size 3334 * if the machine crashes during the write. 3335 * 3336 * If the O_DIRECT write is intantiating holes inside i_size and the machine 3337 * crashes then stale disk data _may_ be exposed inside the file. But current 3338 * VFS code falls back into buffered path in that case so we are safe. 3339 */ 3340 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb, 3341 const struct iovec *iov, loff_t offset, 3342 unsigned long nr_segs) 3343 { 3344 struct file *file = iocb->ki_filp; 3345 struct inode *inode = file->f_mapping->host; 3346 struct ext4_inode_info *ei = EXT4_I(inode); 3347 handle_t *handle; 3348 ssize_t ret; 3349 int orphan = 0; 3350 size_t count = iov_length(iov, nr_segs); 3351 int retries = 0; 3352 3353 if (rw == WRITE) { 3354 loff_t final_size = offset + count; 3355 3356 if (final_size > inode->i_size) { 3357 /* Credits for sb + inode write */ 3358 handle = ext4_journal_start(inode, 2); 3359 if (IS_ERR(handle)) { 3360 ret = PTR_ERR(handle); 3361 goto out; 3362 } 3363 ret = ext4_orphan_add(handle, inode); 3364 if (ret) { 3365 ext4_journal_stop(handle); 3366 goto out; 3367 } 3368 orphan = 1; 3369 ei->i_disksize = inode->i_size; 3370 ext4_journal_stop(handle); 3371 } 3372 } 3373 3374 retry: 3375 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 3376 offset, nr_segs, 3377 ext4_get_block, NULL); 3378 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3379 goto retry; 3380 3381 if (orphan) { 3382 int err; 3383 3384 /* Credits for sb + inode write */ 3385 handle = ext4_journal_start(inode, 2); 3386 if (IS_ERR(handle)) { 3387 /* This is really bad luck. We've written the data 3388 * but cannot extend i_size. Bail out and pretend 3389 * the write failed... */ 3390 ret = PTR_ERR(handle); 3391 goto out; 3392 } 3393 if (inode->i_nlink) 3394 ext4_orphan_del(handle, inode); 3395 if (ret > 0) { 3396 loff_t end = offset + ret; 3397 if (end > inode->i_size) { 3398 ei->i_disksize = end; 3399 i_size_write(inode, end); 3400 /* 3401 * We're going to return a positive `ret' 3402 * here due to non-zero-length I/O, so there's 3403 * no way of reporting error returns from 3404 * ext4_mark_inode_dirty() to userspace. So 3405 * ignore it. 3406 */ 3407 ext4_mark_inode_dirty(handle, inode); 3408 } 3409 } 3410 err = ext4_journal_stop(handle); 3411 if (ret == 0) 3412 ret = err; 3413 } 3414 out: 3415 return ret; 3416 } 3417 3418 static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock, 3419 struct buffer_head *bh_result, int create) 3420 { 3421 handle_t *handle = NULL; 3422 int ret = 0; 3423 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 3424 int dio_credits; 3425 3426 ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n", 3427 inode->i_ino, create); 3428 /* 3429 * DIO VFS code passes create = 0 flag for write to 3430 * the middle of file. It does this to avoid block 3431 * allocation for holes, to prevent expose stale data 3432 * out when there is parallel buffered read (which does 3433 * not hold the i_mutex lock) while direct IO write has 3434 * not completed. DIO request on holes finally falls back 3435 * to buffered IO for this reason. 3436 * 3437 * For ext4 extent based file, since we support fallocate, 3438 * new allocated extent as uninitialized, for holes, we 3439 * could fallocate blocks for holes, thus parallel 3440 * buffered IO read will zero out the page when read on 3441 * a hole while parallel DIO write to the hole has not completed. 3442 * 3443 * when we come here, we know it's a direct IO write to 3444 * to the middle of file (<i_size) 3445 * so it's safe to override the create flag from VFS. 3446 */ 3447 create = EXT4_GET_BLOCKS_DIO_CREATE_EXT; 3448 3449 if (max_blocks > DIO_MAX_BLOCKS) 3450 max_blocks = DIO_MAX_BLOCKS; 3451 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks); 3452 handle = ext4_journal_start(inode, dio_credits); 3453 if (IS_ERR(handle)) { 3454 ret = PTR_ERR(handle); 3455 goto out; 3456 } 3457 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result, 3458 create); 3459 if (ret > 0) { 3460 bh_result->b_size = (ret << inode->i_blkbits); 3461 ret = 0; 3462 } 3463 ext4_journal_stop(handle); 3464 out: 3465 return ret; 3466 } 3467 3468 static void ext4_free_io_end(ext4_io_end_t *io) 3469 { 3470 BUG_ON(!io); 3471 iput(io->inode); 3472 kfree(io); 3473 } 3474 static void dump_aio_dio_list(struct inode * inode) 3475 { 3476 #ifdef EXT4_DEBUG 3477 struct list_head *cur, *before, *after; 3478 ext4_io_end_t *io, *io0, *io1; 3479 3480 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){ 3481 ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino); 3482 return; 3483 } 3484 3485 ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino); 3486 list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){ 3487 cur = &io->list; 3488 before = cur->prev; 3489 io0 = container_of(before, ext4_io_end_t, list); 3490 after = cur->next; 3491 io1 = container_of(after, ext4_io_end_t, list); 3492 3493 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n", 3494 io, inode->i_ino, io0, io1); 3495 } 3496 #endif 3497 } 3498 3499 /* 3500 * check a range of space and convert unwritten extents to written. 3501 */ 3502 static int ext4_end_aio_dio_nolock(ext4_io_end_t *io) 3503 { 3504 struct inode *inode = io->inode; 3505 loff_t offset = io->offset; 3506 size_t size = io->size; 3507 int ret = 0; 3508 3509 ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p," 3510 "list->prev 0x%p\n", 3511 io, inode->i_ino, io->list.next, io->list.prev); 3512 3513 if (list_empty(&io->list)) 3514 return ret; 3515 3516 if (io->flag != DIO_AIO_UNWRITTEN) 3517 return ret; 3518 3519 if (offset + size <= i_size_read(inode)) 3520 ret = ext4_convert_unwritten_extents(inode, offset, size); 3521 3522 if (ret < 0) { 3523 printk(KERN_EMERG "%s: failed to convert unwritten" 3524 "extents to written extents, error is %d" 3525 " io is still on inode %lu aio dio list\n", 3526 __func__, ret, inode->i_ino); 3527 return ret; 3528 } 3529 3530 /* clear the DIO AIO unwritten flag */ 3531 io->flag = 0; 3532 return ret; 3533 } 3534 /* 3535 * work on completed aio dio IO, to convert unwritten extents to extents 3536 */ 3537 static void ext4_end_aio_dio_work(struct work_struct *work) 3538 { 3539 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work); 3540 struct inode *inode = io->inode; 3541 int ret = 0; 3542 3543 mutex_lock(&inode->i_mutex); 3544 ret = ext4_end_aio_dio_nolock(io); 3545 if (ret >= 0) { 3546 if (!list_empty(&io->list)) 3547 list_del_init(&io->list); 3548 ext4_free_io_end(io); 3549 } 3550 mutex_unlock(&inode->i_mutex); 3551 } 3552 /* 3553 * This function is called from ext4_sync_file(). 3554 * 3555 * When AIO DIO IO is completed, the work to convert unwritten 3556 * extents to written is queued on workqueue but may not get immediately 3557 * scheduled. When fsync is called, we need to ensure the 3558 * conversion is complete before fsync returns. 3559 * The inode keeps track of a list of completed AIO from DIO path 3560 * that might needs to do the conversion. This function walks through 3561 * the list and convert the related unwritten extents to written. 3562 */ 3563 int flush_aio_dio_completed_IO(struct inode *inode) 3564 { 3565 ext4_io_end_t *io; 3566 int ret = 0; 3567 int ret2 = 0; 3568 3569 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)) 3570 return ret; 3571 3572 dump_aio_dio_list(inode); 3573 while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){ 3574 io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next, 3575 ext4_io_end_t, list); 3576 /* 3577 * Calling ext4_end_aio_dio_nolock() to convert completed 3578 * IO to written. 3579 * 3580 * When ext4_sync_file() is called, run_queue() may already 3581 * about to flush the work corresponding to this io structure. 3582 * It will be upset if it founds the io structure related 3583 * to the work-to-be schedule is freed. 3584 * 3585 * Thus we need to keep the io structure still valid here after 3586 * convertion finished. The io structure has a flag to 3587 * avoid double converting from both fsync and background work 3588 * queue work. 3589 */ 3590 ret = ext4_end_aio_dio_nolock(io); 3591 if (ret < 0) 3592 ret2 = ret; 3593 else 3594 list_del_init(&io->list); 3595 } 3596 return (ret2 < 0) ? ret2 : 0; 3597 } 3598 3599 static ext4_io_end_t *ext4_init_io_end (struct inode *inode) 3600 { 3601 ext4_io_end_t *io = NULL; 3602 3603 io = kmalloc(sizeof(*io), GFP_NOFS); 3604 3605 if (io) { 3606 igrab(inode); 3607 io->inode = inode; 3608 io->flag = 0; 3609 io->offset = 0; 3610 io->size = 0; 3611 io->error = 0; 3612 INIT_WORK(&io->work, ext4_end_aio_dio_work); 3613 INIT_LIST_HEAD(&io->list); 3614 } 3615 3616 return io; 3617 } 3618 3619 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3620 ssize_t size, void *private) 3621 { 3622 ext4_io_end_t *io_end = iocb->private; 3623 struct workqueue_struct *wq; 3624 3625 /* if not async direct IO or dio with 0 bytes write, just return */ 3626 if (!io_end || !size) 3627 return; 3628 3629 ext_debug("ext4_end_io_dio(): io_end 0x%p" 3630 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n", 3631 iocb->private, io_end->inode->i_ino, iocb, offset, 3632 size); 3633 3634 /* if not aio dio with unwritten extents, just free io and return */ 3635 if (io_end->flag != DIO_AIO_UNWRITTEN){ 3636 ext4_free_io_end(io_end); 3637 iocb->private = NULL; 3638 return; 3639 } 3640 3641 io_end->offset = offset; 3642 io_end->size = size; 3643 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq; 3644 3645 /* queue the work to convert unwritten extents to written */ 3646 queue_work(wq, &io_end->work); 3647 3648 /* Add the io_end to per-inode completed aio dio list*/ 3649 list_add_tail(&io_end->list, 3650 &EXT4_I(io_end->inode)->i_aio_dio_complete_list); 3651 iocb->private = NULL; 3652 } 3653 /* 3654 * For ext4 extent files, ext4 will do direct-io write to holes, 3655 * preallocated extents, and those write extend the file, no need to 3656 * fall back to buffered IO. 3657 * 3658 * For holes, we fallocate those blocks, mark them as unintialized 3659 * If those blocks were preallocated, we mark sure they are splited, but 3660 * still keep the range to write as unintialized. 3661 * 3662 * The unwrritten extents will be converted to written when DIO is completed. 3663 * For async direct IO, since the IO may still pending when return, we 3664 * set up an end_io call back function, which will do the convertion 3665 * when async direct IO completed. 3666 * 3667 * If the O_DIRECT write will extend the file then add this inode to the 3668 * orphan list. So recovery will truncate it back to the original size 3669 * if the machine crashes during the write. 3670 * 3671 */ 3672 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 3673 const struct iovec *iov, loff_t offset, 3674 unsigned long nr_segs) 3675 { 3676 struct file *file = iocb->ki_filp; 3677 struct inode *inode = file->f_mapping->host; 3678 ssize_t ret; 3679 size_t count = iov_length(iov, nr_segs); 3680 3681 loff_t final_size = offset + count; 3682 if (rw == WRITE && final_size <= inode->i_size) { 3683 /* 3684 * We could direct write to holes and fallocate. 3685 * 3686 * Allocated blocks to fill the hole are marked as uninitialized 3687 * to prevent paralel buffered read to expose the stale data 3688 * before DIO complete the data IO. 3689 * 3690 * As to previously fallocated extents, ext4 get_block 3691 * will just simply mark the buffer mapped but still 3692 * keep the extents uninitialized. 3693 * 3694 * for non AIO case, we will convert those unwritten extents 3695 * to written after return back from blockdev_direct_IO. 3696 * 3697 * for async DIO, the conversion needs to be defered when 3698 * the IO is completed. The ext4 end_io callback function 3699 * will be called to take care of the conversion work. 3700 * Here for async case, we allocate an io_end structure to 3701 * hook to the iocb. 3702 */ 3703 iocb->private = NULL; 3704 EXT4_I(inode)->cur_aio_dio = NULL; 3705 if (!is_sync_kiocb(iocb)) { 3706 iocb->private = ext4_init_io_end(inode); 3707 if (!iocb->private) 3708 return -ENOMEM; 3709 /* 3710 * we save the io structure for current async 3711 * direct IO, so that later ext4_get_blocks() 3712 * could flag the io structure whether there 3713 * is a unwritten extents needs to be converted 3714 * when IO is completed. 3715 */ 3716 EXT4_I(inode)->cur_aio_dio = iocb->private; 3717 } 3718 3719 ret = blockdev_direct_IO(rw, iocb, inode, 3720 inode->i_sb->s_bdev, iov, 3721 offset, nr_segs, 3722 ext4_get_block_dio_write, 3723 ext4_end_io_dio); 3724 if (iocb->private) 3725 EXT4_I(inode)->cur_aio_dio = NULL; 3726 /* 3727 * The io_end structure takes a reference to the inode, 3728 * that structure needs to be destroyed and the 3729 * reference to the inode need to be dropped, when IO is 3730 * complete, even with 0 byte write, or failed. 3731 * 3732 * In the successful AIO DIO case, the io_end structure will be 3733 * desctroyed and the reference to the inode will be dropped 3734 * after the end_io call back function is called. 3735 * 3736 * In the case there is 0 byte write, or error case, since 3737 * VFS direct IO won't invoke the end_io call back function, 3738 * we need to free the end_io structure here. 3739 */ 3740 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) { 3741 ext4_free_io_end(iocb->private); 3742 iocb->private = NULL; 3743 } else if (ret > 0 && (EXT4_I(inode)->i_state & 3744 EXT4_STATE_DIO_UNWRITTEN)) { 3745 int err; 3746 /* 3747 * for non AIO case, since the IO is already 3748 * completed, we could do the convertion right here 3749 */ 3750 err = ext4_convert_unwritten_extents(inode, 3751 offset, ret); 3752 if (err < 0) 3753 ret = err; 3754 EXT4_I(inode)->i_state &= ~EXT4_STATE_DIO_UNWRITTEN; 3755 } 3756 return ret; 3757 } 3758 3759 /* for write the the end of file case, we fall back to old way */ 3760 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3761 } 3762 3763 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3764 const struct iovec *iov, loff_t offset, 3765 unsigned long nr_segs) 3766 { 3767 struct file *file = iocb->ki_filp; 3768 struct inode *inode = file->f_mapping->host; 3769 3770 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) 3771 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 3772 3773 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3774 } 3775 3776 /* 3777 * Pages can be marked dirty completely asynchronously from ext4's journalling 3778 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3779 * much here because ->set_page_dirty is called under VFS locks. The page is 3780 * not necessarily locked. 3781 * 3782 * We cannot just dirty the page and leave attached buffers clean, because the 3783 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3784 * or jbddirty because all the journalling code will explode. 3785 * 3786 * So what we do is to mark the page "pending dirty" and next time writepage 3787 * is called, propagate that into the buffers appropriately. 3788 */ 3789 static int ext4_journalled_set_page_dirty(struct page *page) 3790 { 3791 SetPageChecked(page); 3792 return __set_page_dirty_nobuffers(page); 3793 } 3794 3795 static const struct address_space_operations ext4_ordered_aops = { 3796 .readpage = ext4_readpage, 3797 .readpages = ext4_readpages, 3798 .writepage = ext4_writepage, 3799 .sync_page = block_sync_page, 3800 .write_begin = ext4_write_begin, 3801 .write_end = ext4_ordered_write_end, 3802 .bmap = ext4_bmap, 3803 .invalidatepage = ext4_invalidatepage, 3804 .releasepage = ext4_releasepage, 3805 .direct_IO = ext4_direct_IO, 3806 .migratepage = buffer_migrate_page, 3807 .is_partially_uptodate = block_is_partially_uptodate, 3808 .error_remove_page = generic_error_remove_page, 3809 }; 3810 3811 static const struct address_space_operations ext4_writeback_aops = { 3812 .readpage = ext4_readpage, 3813 .readpages = ext4_readpages, 3814 .writepage = ext4_writepage, 3815 .sync_page = block_sync_page, 3816 .write_begin = ext4_write_begin, 3817 .write_end = ext4_writeback_write_end, 3818 .bmap = ext4_bmap, 3819 .invalidatepage = ext4_invalidatepage, 3820 .releasepage = ext4_releasepage, 3821 .direct_IO = ext4_direct_IO, 3822 .migratepage = buffer_migrate_page, 3823 .is_partially_uptodate = block_is_partially_uptodate, 3824 .error_remove_page = generic_error_remove_page, 3825 }; 3826 3827 static const struct address_space_operations ext4_journalled_aops = { 3828 .readpage = ext4_readpage, 3829 .readpages = ext4_readpages, 3830 .writepage = ext4_writepage, 3831 .sync_page = block_sync_page, 3832 .write_begin = ext4_write_begin, 3833 .write_end = ext4_journalled_write_end, 3834 .set_page_dirty = ext4_journalled_set_page_dirty, 3835 .bmap = ext4_bmap, 3836 .invalidatepage = ext4_invalidatepage, 3837 .releasepage = ext4_releasepage, 3838 .is_partially_uptodate = block_is_partially_uptodate, 3839 .error_remove_page = generic_error_remove_page, 3840 }; 3841 3842 static const struct address_space_operations ext4_da_aops = { 3843 .readpage = ext4_readpage, 3844 .readpages = ext4_readpages, 3845 .writepage = ext4_writepage, 3846 .writepages = ext4_da_writepages, 3847 .sync_page = block_sync_page, 3848 .write_begin = ext4_da_write_begin, 3849 .write_end = ext4_da_write_end, 3850 .bmap = ext4_bmap, 3851 .invalidatepage = ext4_da_invalidatepage, 3852 .releasepage = ext4_releasepage, 3853 .direct_IO = ext4_direct_IO, 3854 .migratepage = buffer_migrate_page, 3855 .is_partially_uptodate = block_is_partially_uptodate, 3856 .error_remove_page = generic_error_remove_page, 3857 }; 3858 3859 void ext4_set_aops(struct inode *inode) 3860 { 3861 if (ext4_should_order_data(inode) && 3862 test_opt(inode->i_sb, DELALLOC)) 3863 inode->i_mapping->a_ops = &ext4_da_aops; 3864 else if (ext4_should_order_data(inode)) 3865 inode->i_mapping->a_ops = &ext4_ordered_aops; 3866 else if (ext4_should_writeback_data(inode) && 3867 test_opt(inode->i_sb, DELALLOC)) 3868 inode->i_mapping->a_ops = &ext4_da_aops; 3869 else if (ext4_should_writeback_data(inode)) 3870 inode->i_mapping->a_ops = &ext4_writeback_aops; 3871 else 3872 inode->i_mapping->a_ops = &ext4_journalled_aops; 3873 } 3874 3875 /* 3876 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3877 * up to the end of the block which corresponds to `from'. 3878 * This required during truncate. We need to physically zero the tail end 3879 * of that block so it doesn't yield old data if the file is later grown. 3880 */ 3881 int ext4_block_truncate_page(handle_t *handle, 3882 struct address_space *mapping, loff_t from) 3883 { 3884 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3885 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3886 unsigned blocksize, length, pos; 3887 ext4_lblk_t iblock; 3888 struct inode *inode = mapping->host; 3889 struct buffer_head *bh; 3890 struct page *page; 3891 int err = 0; 3892 3893 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3894 mapping_gfp_mask(mapping) & ~__GFP_FS); 3895 if (!page) 3896 return -EINVAL; 3897 3898 blocksize = inode->i_sb->s_blocksize; 3899 length = blocksize - (offset & (blocksize - 1)); 3900 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3901 3902 /* 3903 * For "nobh" option, we can only work if we don't need to 3904 * read-in the page - otherwise we create buffers to do the IO. 3905 */ 3906 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) && 3907 ext4_should_writeback_data(inode) && PageUptodate(page)) { 3908 zero_user(page, offset, length); 3909 set_page_dirty(page); 3910 goto unlock; 3911 } 3912 3913 if (!page_has_buffers(page)) 3914 create_empty_buffers(page, blocksize, 0); 3915 3916 /* Find the buffer that contains "offset" */ 3917 bh = page_buffers(page); 3918 pos = blocksize; 3919 while (offset >= pos) { 3920 bh = bh->b_this_page; 3921 iblock++; 3922 pos += blocksize; 3923 } 3924 3925 err = 0; 3926 if (buffer_freed(bh)) { 3927 BUFFER_TRACE(bh, "freed: skip"); 3928 goto unlock; 3929 } 3930 3931 if (!buffer_mapped(bh)) { 3932 BUFFER_TRACE(bh, "unmapped"); 3933 ext4_get_block(inode, iblock, bh, 0); 3934 /* unmapped? It's a hole - nothing to do */ 3935 if (!buffer_mapped(bh)) { 3936 BUFFER_TRACE(bh, "still unmapped"); 3937 goto unlock; 3938 } 3939 } 3940 3941 /* Ok, it's mapped. Make sure it's up-to-date */ 3942 if (PageUptodate(page)) 3943 set_buffer_uptodate(bh); 3944 3945 if (!buffer_uptodate(bh)) { 3946 err = -EIO; 3947 ll_rw_block(READ, 1, &bh); 3948 wait_on_buffer(bh); 3949 /* Uhhuh. Read error. Complain and punt. */ 3950 if (!buffer_uptodate(bh)) 3951 goto unlock; 3952 } 3953 3954 if (ext4_should_journal_data(inode)) { 3955 BUFFER_TRACE(bh, "get write access"); 3956 err = ext4_journal_get_write_access(handle, bh); 3957 if (err) 3958 goto unlock; 3959 } 3960 3961 zero_user(page, offset, length); 3962 3963 BUFFER_TRACE(bh, "zeroed end of block"); 3964 3965 err = 0; 3966 if (ext4_should_journal_data(inode)) { 3967 err = ext4_handle_dirty_metadata(handle, inode, bh); 3968 } else { 3969 if (ext4_should_order_data(inode)) 3970 err = ext4_jbd2_file_inode(handle, inode); 3971 mark_buffer_dirty(bh); 3972 } 3973 3974 unlock: 3975 unlock_page(page); 3976 page_cache_release(page); 3977 return err; 3978 } 3979 3980 /* 3981 * Probably it should be a library function... search for first non-zero word 3982 * or memcmp with zero_page, whatever is better for particular architecture. 3983 * Linus? 3984 */ 3985 static inline int all_zeroes(__le32 *p, __le32 *q) 3986 { 3987 while (p < q) 3988 if (*p++) 3989 return 0; 3990 return 1; 3991 } 3992 3993 /** 3994 * ext4_find_shared - find the indirect blocks for partial truncation. 3995 * @inode: inode in question 3996 * @depth: depth of the affected branch 3997 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 3998 * @chain: place to store the pointers to partial indirect blocks 3999 * @top: place to the (detached) top of branch 4000 * 4001 * This is a helper function used by ext4_truncate(). 4002 * 4003 * When we do truncate() we may have to clean the ends of several 4004 * indirect blocks but leave the blocks themselves alive. Block is 4005 * partially truncated if some data below the new i_size is refered 4006 * from it (and it is on the path to the first completely truncated 4007 * data block, indeed). We have to free the top of that path along 4008 * with everything to the right of the path. Since no allocation 4009 * past the truncation point is possible until ext4_truncate() 4010 * finishes, we may safely do the latter, but top of branch may 4011 * require special attention - pageout below the truncation point 4012 * might try to populate it. 4013 * 4014 * We atomically detach the top of branch from the tree, store the 4015 * block number of its root in *@top, pointers to buffer_heads of 4016 * partially truncated blocks - in @chain[].bh and pointers to 4017 * their last elements that should not be removed - in 4018 * @chain[].p. Return value is the pointer to last filled element 4019 * of @chain. 4020 * 4021 * The work left to caller to do the actual freeing of subtrees: 4022 * a) free the subtree starting from *@top 4023 * b) free the subtrees whose roots are stored in 4024 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 4025 * c) free the subtrees growing from the inode past the @chain[0]. 4026 * (no partially truncated stuff there). */ 4027 4028 static Indirect *ext4_find_shared(struct inode *inode, int depth, 4029 ext4_lblk_t offsets[4], Indirect chain[4], 4030 __le32 *top) 4031 { 4032 Indirect *partial, *p; 4033 int k, err; 4034 4035 *top = 0; 4036 /* Make k index the deepest non-null offset + 1 */ 4037 for (k = depth; k > 1 && !offsets[k-1]; k--) 4038 ; 4039 partial = ext4_get_branch(inode, k, offsets, chain, &err); 4040 /* Writer: pointers */ 4041 if (!partial) 4042 partial = chain + k-1; 4043 /* 4044 * If the branch acquired continuation since we've looked at it - 4045 * fine, it should all survive and (new) top doesn't belong to us. 4046 */ 4047 if (!partial->key && *partial->p) 4048 /* Writer: end */ 4049 goto no_top; 4050 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 4051 ; 4052 /* 4053 * OK, we've found the last block that must survive. The rest of our 4054 * branch should be detached before unlocking. However, if that rest 4055 * of branch is all ours and does not grow immediately from the inode 4056 * it's easier to cheat and just decrement partial->p. 4057 */ 4058 if (p == chain + k - 1 && p > chain) { 4059 p->p--; 4060 } else { 4061 *top = *p->p; 4062 /* Nope, don't do this in ext4. Must leave the tree intact */ 4063 #if 0 4064 *p->p = 0; 4065 #endif 4066 } 4067 /* Writer: end */ 4068 4069 while (partial > p) { 4070 brelse(partial->bh); 4071 partial--; 4072 } 4073 no_top: 4074 return partial; 4075 } 4076 4077 /* 4078 * Zero a number of block pointers in either an inode or an indirect block. 4079 * If we restart the transaction we must again get write access to the 4080 * indirect block for further modification. 4081 * 4082 * We release `count' blocks on disk, but (last - first) may be greater 4083 * than `count' because there can be holes in there. 4084 */ 4085 static void ext4_clear_blocks(handle_t *handle, struct inode *inode, 4086 struct buffer_head *bh, 4087 ext4_fsblk_t block_to_free, 4088 unsigned long count, __le32 *first, 4089 __le32 *last) 4090 { 4091 __le32 *p; 4092 int flags = EXT4_FREE_BLOCKS_FORGET; 4093 4094 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 4095 flags |= EXT4_FREE_BLOCKS_METADATA; 4096 4097 if (try_to_extend_transaction(handle, inode)) { 4098 if (bh) { 4099 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4100 ext4_handle_dirty_metadata(handle, inode, bh); 4101 } 4102 ext4_mark_inode_dirty(handle, inode); 4103 ext4_truncate_restart_trans(handle, inode, 4104 blocks_for_truncate(inode)); 4105 if (bh) { 4106 BUFFER_TRACE(bh, "retaking write access"); 4107 ext4_journal_get_write_access(handle, bh); 4108 } 4109 } 4110 4111 for (p = first; p < last; p++) 4112 *p = 0; 4113 4114 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags); 4115 } 4116 4117 /** 4118 * ext4_free_data - free a list of data blocks 4119 * @handle: handle for this transaction 4120 * @inode: inode we are dealing with 4121 * @this_bh: indirect buffer_head which contains *@first and *@last 4122 * @first: array of block numbers 4123 * @last: points immediately past the end of array 4124 * 4125 * We are freeing all blocks refered from that array (numbers are stored as 4126 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 4127 * 4128 * We accumulate contiguous runs of blocks to free. Conveniently, if these 4129 * blocks are contiguous then releasing them at one time will only affect one 4130 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 4131 * actually use a lot of journal space. 4132 * 4133 * @this_bh will be %NULL if @first and @last point into the inode's direct 4134 * block pointers. 4135 */ 4136 static void ext4_free_data(handle_t *handle, struct inode *inode, 4137 struct buffer_head *this_bh, 4138 __le32 *first, __le32 *last) 4139 { 4140 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 4141 unsigned long count = 0; /* Number of blocks in the run */ 4142 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 4143 corresponding to 4144 block_to_free */ 4145 ext4_fsblk_t nr; /* Current block # */ 4146 __le32 *p; /* Pointer into inode/ind 4147 for current block */ 4148 int err; 4149 4150 if (this_bh) { /* For indirect block */ 4151 BUFFER_TRACE(this_bh, "get_write_access"); 4152 err = ext4_journal_get_write_access(handle, this_bh); 4153 /* Important: if we can't update the indirect pointers 4154 * to the blocks, we can't free them. */ 4155 if (err) 4156 return; 4157 } 4158 4159 for (p = first; p < last; p++) { 4160 nr = le32_to_cpu(*p); 4161 if (nr) { 4162 /* accumulate blocks to free if they're contiguous */ 4163 if (count == 0) { 4164 block_to_free = nr; 4165 block_to_free_p = p; 4166 count = 1; 4167 } else if (nr == block_to_free + count) { 4168 count++; 4169 } else { 4170 ext4_clear_blocks(handle, inode, this_bh, 4171 block_to_free, 4172 count, block_to_free_p, p); 4173 block_to_free = nr; 4174 block_to_free_p = p; 4175 count = 1; 4176 } 4177 } 4178 } 4179 4180 if (count > 0) 4181 ext4_clear_blocks(handle, inode, this_bh, block_to_free, 4182 count, block_to_free_p, p); 4183 4184 if (this_bh) { 4185 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata"); 4186 4187 /* 4188 * The buffer head should have an attached journal head at this 4189 * point. However, if the data is corrupted and an indirect 4190 * block pointed to itself, it would have been detached when 4191 * the block was cleared. Check for this instead of OOPSing. 4192 */ 4193 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh)) 4194 ext4_handle_dirty_metadata(handle, inode, this_bh); 4195 else 4196 ext4_error(inode->i_sb, __func__, 4197 "circular indirect block detected, " 4198 "inode=%lu, block=%llu", 4199 inode->i_ino, 4200 (unsigned long long) this_bh->b_blocknr); 4201 } 4202 } 4203 4204 /** 4205 * ext4_free_branches - free an array of branches 4206 * @handle: JBD handle for this transaction 4207 * @inode: inode we are dealing with 4208 * @parent_bh: the buffer_head which contains *@first and *@last 4209 * @first: array of block numbers 4210 * @last: pointer immediately past the end of array 4211 * @depth: depth of the branches to free 4212 * 4213 * We are freeing all blocks refered from these branches (numbers are 4214 * stored as little-endian 32-bit) and updating @inode->i_blocks 4215 * appropriately. 4216 */ 4217 static void ext4_free_branches(handle_t *handle, struct inode *inode, 4218 struct buffer_head *parent_bh, 4219 __le32 *first, __le32 *last, int depth) 4220 { 4221 ext4_fsblk_t nr; 4222 __le32 *p; 4223 4224 if (ext4_handle_is_aborted(handle)) 4225 return; 4226 4227 if (depth--) { 4228 struct buffer_head *bh; 4229 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 4230 p = last; 4231 while (--p >= first) { 4232 nr = le32_to_cpu(*p); 4233 if (!nr) 4234 continue; /* A hole */ 4235 4236 /* Go read the buffer for the next level down */ 4237 bh = sb_bread(inode->i_sb, nr); 4238 4239 /* 4240 * A read failure? Report error and clear slot 4241 * (should be rare). 4242 */ 4243 if (!bh) { 4244 ext4_error(inode->i_sb, "ext4_free_branches", 4245 "Read failure, inode=%lu, block=%llu", 4246 inode->i_ino, nr); 4247 continue; 4248 } 4249 4250 /* This zaps the entire block. Bottom up. */ 4251 BUFFER_TRACE(bh, "free child branches"); 4252 ext4_free_branches(handle, inode, bh, 4253 (__le32 *) bh->b_data, 4254 (__le32 *) bh->b_data + addr_per_block, 4255 depth); 4256 4257 /* 4258 * We've probably journalled the indirect block several 4259 * times during the truncate. But it's no longer 4260 * needed and we now drop it from the transaction via 4261 * jbd2_journal_revoke(). 4262 * 4263 * That's easy if it's exclusively part of this 4264 * transaction. But if it's part of the committing 4265 * transaction then jbd2_journal_forget() will simply 4266 * brelse() it. That means that if the underlying 4267 * block is reallocated in ext4_get_block(), 4268 * unmap_underlying_metadata() will find this block 4269 * and will try to get rid of it. damn, damn. 4270 * 4271 * If this block has already been committed to the 4272 * journal, a revoke record will be written. And 4273 * revoke records must be emitted *before* clearing 4274 * this block's bit in the bitmaps. 4275 */ 4276 ext4_forget(handle, 1, inode, bh, bh->b_blocknr); 4277 4278 /* 4279 * Everything below this this pointer has been 4280 * released. Now let this top-of-subtree go. 4281 * 4282 * We want the freeing of this indirect block to be 4283 * atomic in the journal with the updating of the 4284 * bitmap block which owns it. So make some room in 4285 * the journal. 4286 * 4287 * We zero the parent pointer *after* freeing its 4288 * pointee in the bitmaps, so if extend_transaction() 4289 * for some reason fails to put the bitmap changes and 4290 * the release into the same transaction, recovery 4291 * will merely complain about releasing a free block, 4292 * rather than leaking blocks. 4293 */ 4294 if (ext4_handle_is_aborted(handle)) 4295 return; 4296 if (try_to_extend_transaction(handle, inode)) { 4297 ext4_mark_inode_dirty(handle, inode); 4298 ext4_truncate_restart_trans(handle, inode, 4299 blocks_for_truncate(inode)); 4300 } 4301 4302 ext4_free_blocks(handle, inode, 0, nr, 1, 4303 EXT4_FREE_BLOCKS_METADATA); 4304 4305 if (parent_bh) { 4306 /* 4307 * The block which we have just freed is 4308 * pointed to by an indirect block: journal it 4309 */ 4310 BUFFER_TRACE(parent_bh, "get_write_access"); 4311 if (!ext4_journal_get_write_access(handle, 4312 parent_bh)){ 4313 *p = 0; 4314 BUFFER_TRACE(parent_bh, 4315 "call ext4_handle_dirty_metadata"); 4316 ext4_handle_dirty_metadata(handle, 4317 inode, 4318 parent_bh); 4319 } 4320 } 4321 } 4322 } else { 4323 /* We have reached the bottom of the tree. */ 4324 BUFFER_TRACE(parent_bh, "free data blocks"); 4325 ext4_free_data(handle, inode, parent_bh, first, last); 4326 } 4327 } 4328 4329 int ext4_can_truncate(struct inode *inode) 4330 { 4331 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4332 return 0; 4333 if (S_ISREG(inode->i_mode)) 4334 return 1; 4335 if (S_ISDIR(inode->i_mode)) 4336 return 1; 4337 if (S_ISLNK(inode->i_mode)) 4338 return !ext4_inode_is_fast_symlink(inode); 4339 return 0; 4340 } 4341 4342 /* 4343 * ext4_truncate() 4344 * 4345 * We block out ext4_get_block() block instantiations across the entire 4346 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4347 * simultaneously on behalf of the same inode. 4348 * 4349 * As we work through the truncate and commmit bits of it to the journal there 4350 * is one core, guiding principle: the file's tree must always be consistent on 4351 * disk. We must be able to restart the truncate after a crash. 4352 * 4353 * The file's tree may be transiently inconsistent in memory (although it 4354 * probably isn't), but whenever we close off and commit a journal transaction, 4355 * the contents of (the filesystem + the journal) must be consistent and 4356 * restartable. It's pretty simple, really: bottom up, right to left (although 4357 * left-to-right works OK too). 4358 * 4359 * Note that at recovery time, journal replay occurs *before* the restart of 4360 * truncate against the orphan inode list. 4361 * 4362 * The committed inode has the new, desired i_size (which is the same as 4363 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4364 * that this inode's truncate did not complete and it will again call 4365 * ext4_truncate() to have another go. So there will be instantiated blocks 4366 * to the right of the truncation point in a crashed ext4 filesystem. But 4367 * that's fine - as long as they are linked from the inode, the post-crash 4368 * ext4_truncate() run will find them and release them. 4369 */ 4370 void ext4_truncate(struct inode *inode) 4371 { 4372 handle_t *handle; 4373 struct ext4_inode_info *ei = EXT4_I(inode); 4374 __le32 *i_data = ei->i_data; 4375 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 4376 struct address_space *mapping = inode->i_mapping; 4377 ext4_lblk_t offsets[4]; 4378 Indirect chain[4]; 4379 Indirect *partial; 4380 __le32 nr = 0; 4381 int n; 4382 ext4_lblk_t last_block; 4383 unsigned blocksize = inode->i_sb->s_blocksize; 4384 4385 if (!ext4_can_truncate(inode)) 4386 return; 4387 4388 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4389 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE; 4390 4391 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 4392 ext4_ext_truncate(inode); 4393 return; 4394 } 4395 4396 handle = start_transaction(inode); 4397 if (IS_ERR(handle)) 4398 return; /* AKPM: return what? */ 4399 4400 last_block = (inode->i_size + blocksize-1) 4401 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 4402 4403 if (inode->i_size & (blocksize - 1)) 4404 if (ext4_block_truncate_page(handle, mapping, inode->i_size)) 4405 goto out_stop; 4406 4407 n = ext4_block_to_path(inode, last_block, offsets, NULL); 4408 if (n == 0) 4409 goto out_stop; /* error */ 4410 4411 /* 4412 * OK. This truncate is going to happen. We add the inode to the 4413 * orphan list, so that if this truncate spans multiple transactions, 4414 * and we crash, we will resume the truncate when the filesystem 4415 * recovers. It also marks the inode dirty, to catch the new size. 4416 * 4417 * Implication: the file must always be in a sane, consistent 4418 * truncatable state while each transaction commits. 4419 */ 4420 if (ext4_orphan_add(handle, inode)) 4421 goto out_stop; 4422 4423 /* 4424 * From here we block out all ext4_get_block() callers who want to 4425 * modify the block allocation tree. 4426 */ 4427 down_write(&ei->i_data_sem); 4428 4429 ext4_discard_preallocations(inode); 4430 4431 /* 4432 * The orphan list entry will now protect us from any crash which 4433 * occurs before the truncate completes, so it is now safe to propagate 4434 * the new, shorter inode size (held for now in i_size) into the 4435 * on-disk inode. We do this via i_disksize, which is the value which 4436 * ext4 *really* writes onto the disk inode. 4437 */ 4438 ei->i_disksize = inode->i_size; 4439 4440 if (n == 1) { /* direct blocks */ 4441 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 4442 i_data + EXT4_NDIR_BLOCKS); 4443 goto do_indirects; 4444 } 4445 4446 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 4447 /* Kill the top of shared branch (not detached) */ 4448 if (nr) { 4449 if (partial == chain) { 4450 /* Shared branch grows from the inode */ 4451 ext4_free_branches(handle, inode, NULL, 4452 &nr, &nr+1, (chain+n-1) - partial); 4453 *partial->p = 0; 4454 /* 4455 * We mark the inode dirty prior to restart, 4456 * and prior to stop. No need for it here. 4457 */ 4458 } else { 4459 /* Shared branch grows from an indirect block */ 4460 BUFFER_TRACE(partial->bh, "get_write_access"); 4461 ext4_free_branches(handle, inode, partial->bh, 4462 partial->p, 4463 partial->p+1, (chain+n-1) - partial); 4464 } 4465 } 4466 /* Clear the ends of indirect blocks on the shared branch */ 4467 while (partial > chain) { 4468 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 4469 (__le32*)partial->bh->b_data+addr_per_block, 4470 (chain+n-1) - partial); 4471 BUFFER_TRACE(partial->bh, "call brelse"); 4472 brelse(partial->bh); 4473 partial--; 4474 } 4475 do_indirects: 4476 /* Kill the remaining (whole) subtrees */ 4477 switch (offsets[0]) { 4478 default: 4479 nr = i_data[EXT4_IND_BLOCK]; 4480 if (nr) { 4481 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 4482 i_data[EXT4_IND_BLOCK] = 0; 4483 } 4484 case EXT4_IND_BLOCK: 4485 nr = i_data[EXT4_DIND_BLOCK]; 4486 if (nr) { 4487 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 4488 i_data[EXT4_DIND_BLOCK] = 0; 4489 } 4490 case EXT4_DIND_BLOCK: 4491 nr = i_data[EXT4_TIND_BLOCK]; 4492 if (nr) { 4493 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 4494 i_data[EXT4_TIND_BLOCK] = 0; 4495 } 4496 case EXT4_TIND_BLOCK: 4497 ; 4498 } 4499 4500 up_write(&ei->i_data_sem); 4501 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4502 ext4_mark_inode_dirty(handle, inode); 4503 4504 /* 4505 * In a multi-transaction truncate, we only make the final transaction 4506 * synchronous 4507 */ 4508 if (IS_SYNC(inode)) 4509 ext4_handle_sync(handle); 4510 out_stop: 4511 /* 4512 * If this was a simple ftruncate(), and the file will remain alive 4513 * then we need to clear up the orphan record which we created above. 4514 * However, if this was a real unlink then we were called by 4515 * ext4_delete_inode(), and we allow that function to clean up the 4516 * orphan info for us. 4517 */ 4518 if (inode->i_nlink) 4519 ext4_orphan_del(handle, inode); 4520 4521 ext4_journal_stop(handle); 4522 } 4523 4524 /* 4525 * ext4_get_inode_loc returns with an extra refcount against the inode's 4526 * underlying buffer_head on success. If 'in_mem' is true, we have all 4527 * data in memory that is needed to recreate the on-disk version of this 4528 * inode. 4529 */ 4530 static int __ext4_get_inode_loc(struct inode *inode, 4531 struct ext4_iloc *iloc, int in_mem) 4532 { 4533 struct ext4_group_desc *gdp; 4534 struct buffer_head *bh; 4535 struct super_block *sb = inode->i_sb; 4536 ext4_fsblk_t block; 4537 int inodes_per_block, inode_offset; 4538 4539 iloc->bh = NULL; 4540 if (!ext4_valid_inum(sb, inode->i_ino)) 4541 return -EIO; 4542 4543 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4544 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4545 if (!gdp) 4546 return -EIO; 4547 4548 /* 4549 * Figure out the offset within the block group inode table 4550 */ 4551 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb)); 4552 inode_offset = ((inode->i_ino - 1) % 4553 EXT4_INODES_PER_GROUP(sb)); 4554 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4555 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4556 4557 bh = sb_getblk(sb, block); 4558 if (!bh) { 4559 ext4_error(sb, "ext4_get_inode_loc", "unable to read " 4560 "inode block - inode=%lu, block=%llu", 4561 inode->i_ino, block); 4562 return -EIO; 4563 } 4564 if (!buffer_uptodate(bh)) { 4565 lock_buffer(bh); 4566 4567 /* 4568 * If the buffer has the write error flag, we have failed 4569 * to write out another inode in the same block. In this 4570 * case, we don't have to read the block because we may 4571 * read the old inode data successfully. 4572 */ 4573 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4574 set_buffer_uptodate(bh); 4575 4576 if (buffer_uptodate(bh)) { 4577 /* someone brought it uptodate while we waited */ 4578 unlock_buffer(bh); 4579 goto has_buffer; 4580 } 4581 4582 /* 4583 * If we have all information of the inode in memory and this 4584 * is the only valid inode in the block, we need not read the 4585 * block. 4586 */ 4587 if (in_mem) { 4588 struct buffer_head *bitmap_bh; 4589 int i, start; 4590 4591 start = inode_offset & ~(inodes_per_block - 1); 4592 4593 /* Is the inode bitmap in cache? */ 4594 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4595 if (!bitmap_bh) 4596 goto make_io; 4597 4598 /* 4599 * If the inode bitmap isn't in cache then the 4600 * optimisation may end up performing two reads instead 4601 * of one, so skip it. 4602 */ 4603 if (!buffer_uptodate(bitmap_bh)) { 4604 brelse(bitmap_bh); 4605 goto make_io; 4606 } 4607 for (i = start; i < start + inodes_per_block; i++) { 4608 if (i == inode_offset) 4609 continue; 4610 if (ext4_test_bit(i, bitmap_bh->b_data)) 4611 break; 4612 } 4613 brelse(bitmap_bh); 4614 if (i == start + inodes_per_block) { 4615 /* all other inodes are free, so skip I/O */ 4616 memset(bh->b_data, 0, bh->b_size); 4617 set_buffer_uptodate(bh); 4618 unlock_buffer(bh); 4619 goto has_buffer; 4620 } 4621 } 4622 4623 make_io: 4624 /* 4625 * If we need to do any I/O, try to pre-readahead extra 4626 * blocks from the inode table. 4627 */ 4628 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4629 ext4_fsblk_t b, end, table; 4630 unsigned num; 4631 4632 table = ext4_inode_table(sb, gdp); 4633 /* s_inode_readahead_blks is always a power of 2 */ 4634 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1); 4635 if (table > b) 4636 b = table; 4637 end = b + EXT4_SB(sb)->s_inode_readahead_blks; 4638 num = EXT4_INODES_PER_GROUP(sb); 4639 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4640 EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 4641 num -= ext4_itable_unused_count(sb, gdp); 4642 table += num / inodes_per_block; 4643 if (end > table) 4644 end = table; 4645 while (b <= end) 4646 sb_breadahead(sb, b++); 4647 } 4648 4649 /* 4650 * There are other valid inodes in the buffer, this inode 4651 * has in-inode xattrs, or we don't have this inode in memory. 4652 * Read the block from disk. 4653 */ 4654 get_bh(bh); 4655 bh->b_end_io = end_buffer_read_sync; 4656 submit_bh(READ_META, bh); 4657 wait_on_buffer(bh); 4658 if (!buffer_uptodate(bh)) { 4659 ext4_error(sb, __func__, 4660 "unable to read inode block - inode=%lu, " 4661 "block=%llu", inode->i_ino, block); 4662 brelse(bh); 4663 return -EIO; 4664 } 4665 } 4666 has_buffer: 4667 iloc->bh = bh; 4668 return 0; 4669 } 4670 4671 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4672 { 4673 /* We have all inode data except xattrs in memory here. */ 4674 return __ext4_get_inode_loc(inode, iloc, 4675 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR)); 4676 } 4677 4678 void ext4_set_inode_flags(struct inode *inode) 4679 { 4680 unsigned int flags = EXT4_I(inode)->i_flags; 4681 4682 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 4683 if (flags & EXT4_SYNC_FL) 4684 inode->i_flags |= S_SYNC; 4685 if (flags & EXT4_APPEND_FL) 4686 inode->i_flags |= S_APPEND; 4687 if (flags & EXT4_IMMUTABLE_FL) 4688 inode->i_flags |= S_IMMUTABLE; 4689 if (flags & EXT4_NOATIME_FL) 4690 inode->i_flags |= S_NOATIME; 4691 if (flags & EXT4_DIRSYNC_FL) 4692 inode->i_flags |= S_DIRSYNC; 4693 } 4694 4695 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 4696 void ext4_get_inode_flags(struct ext4_inode_info *ei) 4697 { 4698 unsigned int flags = ei->vfs_inode.i_flags; 4699 4700 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 4701 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL); 4702 if (flags & S_SYNC) 4703 ei->i_flags |= EXT4_SYNC_FL; 4704 if (flags & S_APPEND) 4705 ei->i_flags |= EXT4_APPEND_FL; 4706 if (flags & S_IMMUTABLE) 4707 ei->i_flags |= EXT4_IMMUTABLE_FL; 4708 if (flags & S_NOATIME) 4709 ei->i_flags |= EXT4_NOATIME_FL; 4710 if (flags & S_DIRSYNC) 4711 ei->i_flags |= EXT4_DIRSYNC_FL; 4712 } 4713 4714 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4715 struct ext4_inode_info *ei) 4716 { 4717 blkcnt_t i_blocks ; 4718 struct inode *inode = &(ei->vfs_inode); 4719 struct super_block *sb = inode->i_sb; 4720 4721 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4722 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 4723 /* we are using combined 48 bit field */ 4724 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4725 le32_to_cpu(raw_inode->i_blocks_lo); 4726 if (ei->i_flags & EXT4_HUGE_FILE_FL) { 4727 /* i_blocks represent file system block size */ 4728 return i_blocks << (inode->i_blkbits - 9); 4729 } else { 4730 return i_blocks; 4731 } 4732 } else { 4733 return le32_to_cpu(raw_inode->i_blocks_lo); 4734 } 4735 } 4736 4737 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4738 { 4739 struct ext4_iloc iloc; 4740 struct ext4_inode *raw_inode; 4741 struct ext4_inode_info *ei; 4742 struct inode *inode; 4743 journal_t *journal = EXT4_SB(sb)->s_journal; 4744 long ret; 4745 int block; 4746 4747 inode = iget_locked(sb, ino); 4748 if (!inode) 4749 return ERR_PTR(-ENOMEM); 4750 if (!(inode->i_state & I_NEW)) 4751 return inode; 4752 4753 ei = EXT4_I(inode); 4754 iloc.bh = 0; 4755 4756 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4757 if (ret < 0) 4758 goto bad_inode; 4759 raw_inode = ext4_raw_inode(&iloc); 4760 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4761 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4762 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4763 if (!(test_opt(inode->i_sb, NO_UID32))) { 4764 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4765 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4766 } 4767 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 4768 4769 ei->i_state = 0; 4770 ei->i_dir_start_lookup = 0; 4771 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4772 /* We now have enough fields to check if the inode was active or not. 4773 * This is needed because nfsd might try to access dead inodes 4774 * the test is that same one that e2fsck uses 4775 * NeilBrown 1999oct15 4776 */ 4777 if (inode->i_nlink == 0) { 4778 if (inode->i_mode == 0 || 4779 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 4780 /* this inode is deleted */ 4781 ret = -ESTALE; 4782 goto bad_inode; 4783 } 4784 /* The only unlinked inodes we let through here have 4785 * valid i_mode and are being read by the orphan 4786 * recovery code: that's fine, we're about to complete 4787 * the process of deleting those. */ 4788 } 4789 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4790 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4791 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4792 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 4793 ei->i_file_acl |= 4794 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4795 inode->i_size = ext4_isize(raw_inode); 4796 ei->i_disksize = inode->i_size; 4797 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4798 ei->i_block_group = iloc.block_group; 4799 ei->i_last_alloc_group = ~0; 4800 /* 4801 * NOTE! The in-memory inode i_data array is in little-endian order 4802 * even on big-endian machines: we do NOT byteswap the block numbers! 4803 */ 4804 for (block = 0; block < EXT4_N_BLOCKS; block++) 4805 ei->i_data[block] = raw_inode->i_block[block]; 4806 INIT_LIST_HEAD(&ei->i_orphan); 4807 4808 /* 4809 * Set transaction id's of transactions that have to be committed 4810 * to finish f[data]sync. We set them to currently running transaction 4811 * as we cannot be sure that the inode or some of its metadata isn't 4812 * part of the transaction - the inode could have been reclaimed and 4813 * now it is reread from disk. 4814 */ 4815 if (journal) { 4816 transaction_t *transaction; 4817 tid_t tid; 4818 4819 spin_lock(&journal->j_state_lock); 4820 if (journal->j_running_transaction) 4821 transaction = journal->j_running_transaction; 4822 else 4823 transaction = journal->j_committing_transaction; 4824 if (transaction) 4825 tid = transaction->t_tid; 4826 else 4827 tid = journal->j_commit_sequence; 4828 spin_unlock(&journal->j_state_lock); 4829 ei->i_sync_tid = tid; 4830 ei->i_datasync_tid = tid; 4831 } 4832 4833 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4834 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4835 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4836 EXT4_INODE_SIZE(inode->i_sb)) { 4837 ret = -EIO; 4838 goto bad_inode; 4839 } 4840 if (ei->i_extra_isize == 0) { 4841 /* The extra space is currently unused. Use it. */ 4842 ei->i_extra_isize = sizeof(struct ext4_inode) - 4843 EXT4_GOOD_OLD_INODE_SIZE; 4844 } else { 4845 __le32 *magic = (void *)raw_inode + 4846 EXT4_GOOD_OLD_INODE_SIZE + 4847 ei->i_extra_isize; 4848 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 4849 ei->i_state |= EXT4_STATE_XATTR; 4850 } 4851 } else 4852 ei->i_extra_isize = 0; 4853 4854 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4855 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4856 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4857 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4858 4859 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4860 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4861 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4862 inode->i_version |= 4863 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4864 } 4865 4866 ret = 0; 4867 if (ei->i_file_acl && 4868 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4869 ext4_error(sb, __func__, 4870 "bad extended attribute block %llu in inode #%lu", 4871 ei->i_file_acl, inode->i_ino); 4872 ret = -EIO; 4873 goto bad_inode; 4874 } else if (ei->i_flags & EXT4_EXTENTS_FL) { 4875 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4876 (S_ISLNK(inode->i_mode) && 4877 !ext4_inode_is_fast_symlink(inode))) 4878 /* Validate extent which is part of inode */ 4879 ret = ext4_ext_check_inode(inode); 4880 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4881 (S_ISLNK(inode->i_mode) && 4882 !ext4_inode_is_fast_symlink(inode))) { 4883 /* Validate block references which are part of inode */ 4884 ret = ext4_check_inode_blockref(inode); 4885 } 4886 if (ret) 4887 goto bad_inode; 4888 4889 if (S_ISREG(inode->i_mode)) { 4890 inode->i_op = &ext4_file_inode_operations; 4891 inode->i_fop = &ext4_file_operations; 4892 ext4_set_aops(inode); 4893 } else if (S_ISDIR(inode->i_mode)) { 4894 inode->i_op = &ext4_dir_inode_operations; 4895 inode->i_fop = &ext4_dir_operations; 4896 } else if (S_ISLNK(inode->i_mode)) { 4897 if (ext4_inode_is_fast_symlink(inode)) { 4898 inode->i_op = &ext4_fast_symlink_inode_operations; 4899 nd_terminate_link(ei->i_data, inode->i_size, 4900 sizeof(ei->i_data) - 1); 4901 } else { 4902 inode->i_op = &ext4_symlink_inode_operations; 4903 ext4_set_aops(inode); 4904 } 4905 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4906 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4907 inode->i_op = &ext4_special_inode_operations; 4908 if (raw_inode->i_block[0]) 4909 init_special_inode(inode, inode->i_mode, 4910 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4911 else 4912 init_special_inode(inode, inode->i_mode, 4913 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4914 } else { 4915 ret = -EIO; 4916 ext4_error(inode->i_sb, __func__, 4917 "bogus i_mode (%o) for inode=%lu", 4918 inode->i_mode, inode->i_ino); 4919 goto bad_inode; 4920 } 4921 brelse(iloc.bh); 4922 ext4_set_inode_flags(inode); 4923 unlock_new_inode(inode); 4924 return inode; 4925 4926 bad_inode: 4927 brelse(iloc.bh); 4928 iget_failed(inode); 4929 return ERR_PTR(ret); 4930 } 4931 4932 static int ext4_inode_blocks_set(handle_t *handle, 4933 struct ext4_inode *raw_inode, 4934 struct ext4_inode_info *ei) 4935 { 4936 struct inode *inode = &(ei->vfs_inode); 4937 u64 i_blocks = inode->i_blocks; 4938 struct super_block *sb = inode->i_sb; 4939 4940 if (i_blocks <= ~0U) { 4941 /* 4942 * i_blocks can be represnted in a 32 bit variable 4943 * as multiple of 512 bytes 4944 */ 4945 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4946 raw_inode->i_blocks_high = 0; 4947 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 4948 return 0; 4949 } 4950 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4951 return -EFBIG; 4952 4953 if (i_blocks <= 0xffffffffffffULL) { 4954 /* 4955 * i_blocks can be represented in a 48 bit variable 4956 * as multiple of 512 bytes 4957 */ 4958 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4959 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4960 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 4961 } else { 4962 ei->i_flags |= EXT4_HUGE_FILE_FL; 4963 /* i_block is stored in file system block size */ 4964 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4965 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4966 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4967 } 4968 return 0; 4969 } 4970 4971 /* 4972 * Post the struct inode info into an on-disk inode location in the 4973 * buffer-cache. This gobbles the caller's reference to the 4974 * buffer_head in the inode location struct. 4975 * 4976 * The caller must have write access to iloc->bh. 4977 */ 4978 static int ext4_do_update_inode(handle_t *handle, 4979 struct inode *inode, 4980 struct ext4_iloc *iloc) 4981 { 4982 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4983 struct ext4_inode_info *ei = EXT4_I(inode); 4984 struct buffer_head *bh = iloc->bh; 4985 int err = 0, rc, block; 4986 4987 /* For fields not not tracking in the in-memory inode, 4988 * initialise them to zero for new inodes. */ 4989 if (ei->i_state & EXT4_STATE_NEW) 4990 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4991 4992 ext4_get_inode_flags(ei); 4993 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4994 if (!(test_opt(inode->i_sb, NO_UID32))) { 4995 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 4996 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 4997 /* 4998 * Fix up interoperability with old kernels. Otherwise, old inodes get 4999 * re-used with the upper 16 bits of the uid/gid intact 5000 */ 5001 if (!ei->i_dtime) { 5002 raw_inode->i_uid_high = 5003 cpu_to_le16(high_16_bits(inode->i_uid)); 5004 raw_inode->i_gid_high = 5005 cpu_to_le16(high_16_bits(inode->i_gid)); 5006 } else { 5007 raw_inode->i_uid_high = 0; 5008 raw_inode->i_gid_high = 0; 5009 } 5010 } else { 5011 raw_inode->i_uid_low = 5012 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 5013 raw_inode->i_gid_low = 5014 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 5015 raw_inode->i_uid_high = 0; 5016 raw_inode->i_gid_high = 0; 5017 } 5018 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5019 5020 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5021 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5022 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5023 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5024 5025 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 5026 goto out_brelse; 5027 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5028 raw_inode->i_flags = cpu_to_le32(ei->i_flags); 5029 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 5030 cpu_to_le32(EXT4_OS_HURD)) 5031 raw_inode->i_file_acl_high = 5032 cpu_to_le16(ei->i_file_acl >> 32); 5033 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5034 ext4_isize_set(raw_inode, ei->i_disksize); 5035 if (ei->i_disksize > 0x7fffffffULL) { 5036 struct super_block *sb = inode->i_sb; 5037 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 5038 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 5039 EXT4_SB(sb)->s_es->s_rev_level == 5040 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 5041 /* If this is the first large file 5042 * created, add a flag to the superblock. 5043 */ 5044 err = ext4_journal_get_write_access(handle, 5045 EXT4_SB(sb)->s_sbh); 5046 if (err) 5047 goto out_brelse; 5048 ext4_update_dynamic_rev(sb); 5049 EXT4_SET_RO_COMPAT_FEATURE(sb, 5050 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 5051 sb->s_dirt = 1; 5052 ext4_handle_sync(handle); 5053 err = ext4_handle_dirty_metadata(handle, inode, 5054 EXT4_SB(sb)->s_sbh); 5055 } 5056 } 5057 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5058 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5059 if (old_valid_dev(inode->i_rdev)) { 5060 raw_inode->i_block[0] = 5061 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5062 raw_inode->i_block[1] = 0; 5063 } else { 5064 raw_inode->i_block[0] = 0; 5065 raw_inode->i_block[1] = 5066 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5067 raw_inode->i_block[2] = 0; 5068 } 5069 } else 5070 for (block = 0; block < EXT4_N_BLOCKS; block++) 5071 raw_inode->i_block[block] = ei->i_data[block]; 5072 5073 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 5074 if (ei->i_extra_isize) { 5075 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5076 raw_inode->i_version_hi = 5077 cpu_to_le32(inode->i_version >> 32); 5078 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 5079 } 5080 5081 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5082 rc = ext4_handle_dirty_metadata(handle, inode, bh); 5083 if (!err) 5084 err = rc; 5085 ei->i_state &= ~EXT4_STATE_NEW; 5086 5087 ext4_update_inode_fsync_trans(handle, inode, 0); 5088 out_brelse: 5089 brelse(bh); 5090 ext4_std_error(inode->i_sb, err); 5091 return err; 5092 } 5093 5094 /* 5095 * ext4_write_inode() 5096 * 5097 * We are called from a few places: 5098 * 5099 * - Within generic_file_write() for O_SYNC files. 5100 * Here, there will be no transaction running. We wait for any running 5101 * trasnaction to commit. 5102 * 5103 * - Within sys_sync(), kupdate and such. 5104 * We wait on commit, if tol to. 5105 * 5106 * - Within prune_icache() (PF_MEMALLOC == true) 5107 * Here we simply return. We can't afford to block kswapd on the 5108 * journal commit. 5109 * 5110 * In all cases it is actually safe for us to return without doing anything, 5111 * because the inode has been copied into a raw inode buffer in 5112 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 5113 * knfsd. 5114 * 5115 * Note that we are absolutely dependent upon all inode dirtiers doing the 5116 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5117 * which we are interested. 5118 * 5119 * It would be a bug for them to not do this. The code: 5120 * 5121 * mark_inode_dirty(inode) 5122 * stuff(); 5123 * inode->i_size = expr; 5124 * 5125 * is in error because a kswapd-driven write_inode() could occur while 5126 * `stuff()' is running, and the new i_size will be lost. Plus the inode 5127 * will no longer be on the superblock's dirty inode list. 5128 */ 5129 int ext4_write_inode(struct inode *inode, int wait) 5130 { 5131 int err; 5132 5133 if (current->flags & PF_MEMALLOC) 5134 return 0; 5135 5136 if (EXT4_SB(inode->i_sb)->s_journal) { 5137 if (ext4_journal_current_handle()) { 5138 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5139 dump_stack(); 5140 return -EIO; 5141 } 5142 5143 if (!wait) 5144 return 0; 5145 5146 err = ext4_force_commit(inode->i_sb); 5147 } else { 5148 struct ext4_iloc iloc; 5149 5150 err = ext4_get_inode_loc(inode, &iloc); 5151 if (err) 5152 return err; 5153 if (wait) 5154 sync_dirty_buffer(iloc.bh); 5155 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5156 ext4_error(inode->i_sb, __func__, 5157 "IO error syncing inode, " 5158 "inode=%lu, block=%llu", 5159 inode->i_ino, 5160 (unsigned long long)iloc.bh->b_blocknr); 5161 err = -EIO; 5162 } 5163 } 5164 return err; 5165 } 5166 5167 /* 5168 * ext4_setattr() 5169 * 5170 * Called from notify_change. 5171 * 5172 * We want to trap VFS attempts to truncate the file as soon as 5173 * possible. In particular, we want to make sure that when the VFS 5174 * shrinks i_size, we put the inode on the orphan list and modify 5175 * i_disksize immediately, so that during the subsequent flushing of 5176 * dirty pages and freeing of disk blocks, we can guarantee that any 5177 * commit will leave the blocks being flushed in an unused state on 5178 * disk. (On recovery, the inode will get truncated and the blocks will 5179 * be freed, so we have a strong guarantee that no future commit will 5180 * leave these blocks visible to the user.) 5181 * 5182 * Another thing we have to assure is that if we are in ordered mode 5183 * and inode is still attached to the committing transaction, we must 5184 * we start writeout of all the dirty pages which are being truncated. 5185 * This way we are sure that all the data written in the previous 5186 * transaction are already on disk (truncate waits for pages under 5187 * writeback). 5188 * 5189 * Called with inode->i_mutex down. 5190 */ 5191 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5192 { 5193 struct inode *inode = dentry->d_inode; 5194 int error, rc = 0; 5195 const unsigned int ia_valid = attr->ia_valid; 5196 5197 error = inode_change_ok(inode, attr); 5198 if (error) 5199 return error; 5200 5201 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 5202 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 5203 handle_t *handle; 5204 5205 /* (user+group)*(old+new) structure, inode write (sb, 5206 * inode block, ? - but truncate inode update has it) */ 5207 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+ 5208 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3); 5209 if (IS_ERR(handle)) { 5210 error = PTR_ERR(handle); 5211 goto err_out; 5212 } 5213 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0; 5214 if (error) { 5215 ext4_journal_stop(handle); 5216 return error; 5217 } 5218 /* Update corresponding info in inode so that everything is in 5219 * one transaction */ 5220 if (attr->ia_valid & ATTR_UID) 5221 inode->i_uid = attr->ia_uid; 5222 if (attr->ia_valid & ATTR_GID) 5223 inode->i_gid = attr->ia_gid; 5224 error = ext4_mark_inode_dirty(handle, inode); 5225 ext4_journal_stop(handle); 5226 } 5227 5228 if (attr->ia_valid & ATTR_SIZE) { 5229 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) { 5230 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5231 5232 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5233 error = -EFBIG; 5234 goto err_out; 5235 } 5236 } 5237 } 5238 5239 if (S_ISREG(inode->i_mode) && 5240 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) { 5241 handle_t *handle; 5242 5243 handle = ext4_journal_start(inode, 3); 5244 if (IS_ERR(handle)) { 5245 error = PTR_ERR(handle); 5246 goto err_out; 5247 } 5248 5249 error = ext4_orphan_add(handle, inode); 5250 EXT4_I(inode)->i_disksize = attr->ia_size; 5251 rc = ext4_mark_inode_dirty(handle, inode); 5252 if (!error) 5253 error = rc; 5254 ext4_journal_stop(handle); 5255 5256 if (ext4_should_order_data(inode)) { 5257 error = ext4_begin_ordered_truncate(inode, 5258 attr->ia_size); 5259 if (error) { 5260 /* Do as much error cleanup as possible */ 5261 handle = ext4_journal_start(inode, 3); 5262 if (IS_ERR(handle)) { 5263 ext4_orphan_del(NULL, inode); 5264 goto err_out; 5265 } 5266 ext4_orphan_del(handle, inode); 5267 ext4_journal_stop(handle); 5268 goto err_out; 5269 } 5270 } 5271 } 5272 5273 rc = inode_setattr(inode, attr); 5274 5275 /* If inode_setattr's call to ext4_truncate failed to get a 5276 * transaction handle at all, we need to clean up the in-core 5277 * orphan list manually. */ 5278 if (inode->i_nlink) 5279 ext4_orphan_del(NULL, inode); 5280 5281 if (!rc && (ia_valid & ATTR_MODE)) 5282 rc = ext4_acl_chmod(inode); 5283 5284 err_out: 5285 ext4_std_error(inode->i_sb, error); 5286 if (!error) 5287 error = rc; 5288 return error; 5289 } 5290 5291 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 5292 struct kstat *stat) 5293 { 5294 struct inode *inode; 5295 unsigned long delalloc_blocks; 5296 5297 inode = dentry->d_inode; 5298 generic_fillattr(inode, stat); 5299 5300 /* 5301 * We can't update i_blocks if the block allocation is delayed 5302 * otherwise in the case of system crash before the real block 5303 * allocation is done, we will have i_blocks inconsistent with 5304 * on-disk file blocks. 5305 * We always keep i_blocks updated together with real 5306 * allocation. But to not confuse with user, stat 5307 * will return the blocks that include the delayed allocation 5308 * blocks for this file. 5309 */ 5310 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 5311 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks; 5312 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 5313 5314 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 5315 return 0; 5316 } 5317 5318 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks, 5319 int chunk) 5320 { 5321 int indirects; 5322 5323 /* if nrblocks are contiguous */ 5324 if (chunk) { 5325 /* 5326 * With N contiguous data blocks, it need at most 5327 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks 5328 * 2 dindirect blocks 5329 * 1 tindirect block 5330 */ 5331 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb); 5332 return indirects + 3; 5333 } 5334 /* 5335 * if nrblocks are not contiguous, worse case, each block touch 5336 * a indirect block, and each indirect block touch a double indirect 5337 * block, plus a triple indirect block 5338 */ 5339 indirects = nrblocks * 2 + 1; 5340 return indirects; 5341 } 5342 5343 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 5344 { 5345 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) 5346 return ext4_indirect_trans_blocks(inode, nrblocks, chunk); 5347 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 5348 } 5349 5350 /* 5351 * Account for index blocks, block groups bitmaps and block group 5352 * descriptor blocks if modify datablocks and index blocks 5353 * worse case, the indexs blocks spread over different block groups 5354 * 5355 * If datablocks are discontiguous, they are possible to spread over 5356 * different block groups too. If they are contiuguous, with flexbg, 5357 * they could still across block group boundary. 5358 * 5359 * Also account for superblock, inode, quota and xattr blocks 5360 */ 5361 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 5362 { 5363 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5364 int gdpblocks; 5365 int idxblocks; 5366 int ret = 0; 5367 5368 /* 5369 * How many index blocks need to touch to modify nrblocks? 5370 * The "Chunk" flag indicating whether the nrblocks is 5371 * physically contiguous on disk 5372 * 5373 * For Direct IO and fallocate, they calls get_block to allocate 5374 * one single extent at a time, so they could set the "Chunk" flag 5375 */ 5376 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 5377 5378 ret = idxblocks; 5379 5380 /* 5381 * Now let's see how many group bitmaps and group descriptors need 5382 * to account 5383 */ 5384 groups = idxblocks; 5385 if (chunk) 5386 groups += 1; 5387 else 5388 groups += nrblocks; 5389 5390 gdpblocks = groups; 5391 if (groups > ngroups) 5392 groups = ngroups; 5393 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5394 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5395 5396 /* bitmaps and block group descriptor blocks */ 5397 ret += groups + gdpblocks; 5398 5399 /* Blocks for super block, inode, quota and xattr blocks */ 5400 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5401 5402 return ret; 5403 } 5404 5405 /* 5406 * Calulate the total number of credits to reserve to fit 5407 * the modification of a single pages into a single transaction, 5408 * which may include multiple chunks of block allocations. 5409 * 5410 * This could be called via ext4_write_begin() 5411 * 5412 * We need to consider the worse case, when 5413 * one new block per extent. 5414 */ 5415 int ext4_writepage_trans_blocks(struct inode *inode) 5416 { 5417 int bpp = ext4_journal_blocks_per_page(inode); 5418 int ret; 5419 5420 ret = ext4_meta_trans_blocks(inode, bpp, 0); 5421 5422 /* Account for data blocks for journalled mode */ 5423 if (ext4_should_journal_data(inode)) 5424 ret += bpp; 5425 return ret; 5426 } 5427 5428 /* 5429 * Calculate the journal credits for a chunk of data modification. 5430 * 5431 * This is called from DIO, fallocate or whoever calling 5432 * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks. 5433 * 5434 * journal buffers for data blocks are not included here, as DIO 5435 * and fallocate do no need to journal data buffers. 5436 */ 5437 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5438 { 5439 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5440 } 5441 5442 /* 5443 * The caller must have previously called ext4_reserve_inode_write(). 5444 * Give this, we know that the caller already has write access to iloc->bh. 5445 */ 5446 int ext4_mark_iloc_dirty(handle_t *handle, 5447 struct inode *inode, struct ext4_iloc *iloc) 5448 { 5449 int err = 0; 5450 5451 if (test_opt(inode->i_sb, I_VERSION)) 5452 inode_inc_iversion(inode); 5453 5454 /* the do_update_inode consumes one bh->b_count */ 5455 get_bh(iloc->bh); 5456 5457 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5458 err = ext4_do_update_inode(handle, inode, iloc); 5459 put_bh(iloc->bh); 5460 return err; 5461 } 5462 5463 /* 5464 * On success, We end up with an outstanding reference count against 5465 * iloc->bh. This _must_ be cleaned up later. 5466 */ 5467 5468 int 5469 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5470 struct ext4_iloc *iloc) 5471 { 5472 int err; 5473 5474 err = ext4_get_inode_loc(inode, iloc); 5475 if (!err) { 5476 BUFFER_TRACE(iloc->bh, "get_write_access"); 5477 err = ext4_journal_get_write_access(handle, iloc->bh); 5478 if (err) { 5479 brelse(iloc->bh); 5480 iloc->bh = NULL; 5481 } 5482 } 5483 ext4_std_error(inode->i_sb, err); 5484 return err; 5485 } 5486 5487 /* 5488 * Expand an inode by new_extra_isize bytes. 5489 * Returns 0 on success or negative error number on failure. 5490 */ 5491 static int ext4_expand_extra_isize(struct inode *inode, 5492 unsigned int new_extra_isize, 5493 struct ext4_iloc iloc, 5494 handle_t *handle) 5495 { 5496 struct ext4_inode *raw_inode; 5497 struct ext4_xattr_ibody_header *header; 5498 struct ext4_xattr_entry *entry; 5499 5500 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 5501 return 0; 5502 5503 raw_inode = ext4_raw_inode(&iloc); 5504 5505 header = IHDR(inode, raw_inode); 5506 entry = IFIRST(header); 5507 5508 /* No extended attributes present */ 5509 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) || 5510 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5511 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 5512 new_extra_isize); 5513 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5514 return 0; 5515 } 5516 5517 /* try to expand with EAs present */ 5518 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 5519 raw_inode, handle); 5520 } 5521 5522 /* 5523 * What we do here is to mark the in-core inode as clean with respect to inode 5524 * dirtiness (it may still be data-dirty). 5525 * This means that the in-core inode may be reaped by prune_icache 5526 * without having to perform any I/O. This is a very good thing, 5527 * because *any* task may call prune_icache - even ones which 5528 * have a transaction open against a different journal. 5529 * 5530 * Is this cheating? Not really. Sure, we haven't written the 5531 * inode out, but prune_icache isn't a user-visible syncing function. 5532 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5533 * we start and wait on commits. 5534 * 5535 * Is this efficient/effective? Well, we're being nice to the system 5536 * by cleaning up our inodes proactively so they can be reaped 5537 * without I/O. But we are potentially leaving up to five seconds' 5538 * worth of inodes floating about which prune_icache wants us to 5539 * write out. One way to fix that would be to get prune_icache() 5540 * to do a write_super() to free up some memory. It has the desired 5541 * effect. 5542 */ 5543 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5544 { 5545 struct ext4_iloc iloc; 5546 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5547 static unsigned int mnt_count; 5548 int err, ret; 5549 5550 might_sleep(); 5551 err = ext4_reserve_inode_write(handle, inode, &iloc); 5552 if (ext4_handle_valid(handle) && 5553 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5554 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) { 5555 /* 5556 * We need extra buffer credits since we may write into EA block 5557 * with this same handle. If journal_extend fails, then it will 5558 * only result in a minor loss of functionality for that inode. 5559 * If this is felt to be critical, then e2fsck should be run to 5560 * force a large enough s_min_extra_isize. 5561 */ 5562 if ((jbd2_journal_extend(handle, 5563 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 5564 ret = ext4_expand_extra_isize(inode, 5565 sbi->s_want_extra_isize, 5566 iloc, handle); 5567 if (ret) { 5568 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND; 5569 if (mnt_count != 5570 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5571 ext4_warning(inode->i_sb, __func__, 5572 "Unable to expand inode %lu. Delete" 5573 " some EAs or run e2fsck.", 5574 inode->i_ino); 5575 mnt_count = 5576 le16_to_cpu(sbi->s_es->s_mnt_count); 5577 } 5578 } 5579 } 5580 } 5581 if (!err) 5582 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5583 return err; 5584 } 5585 5586 /* 5587 * ext4_dirty_inode() is called from __mark_inode_dirty() 5588 * 5589 * We're really interested in the case where a file is being extended. 5590 * i_size has been changed by generic_commit_write() and we thus need 5591 * to include the updated inode in the current transaction. 5592 * 5593 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks 5594 * are allocated to the file. 5595 * 5596 * If the inode is marked synchronous, we don't honour that here - doing 5597 * so would cause a commit on atime updates, which we don't bother doing. 5598 * We handle synchronous inodes at the highest possible level. 5599 */ 5600 void ext4_dirty_inode(struct inode *inode) 5601 { 5602 handle_t *handle; 5603 5604 handle = ext4_journal_start(inode, 2); 5605 if (IS_ERR(handle)) 5606 goto out; 5607 5608 ext4_mark_inode_dirty(handle, inode); 5609 5610 ext4_journal_stop(handle); 5611 out: 5612 return; 5613 } 5614 5615 #if 0 5616 /* 5617 * Bind an inode's backing buffer_head into this transaction, to prevent 5618 * it from being flushed to disk early. Unlike 5619 * ext4_reserve_inode_write, this leaves behind no bh reference and 5620 * returns no iloc structure, so the caller needs to repeat the iloc 5621 * lookup to mark the inode dirty later. 5622 */ 5623 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5624 { 5625 struct ext4_iloc iloc; 5626 5627 int err = 0; 5628 if (handle) { 5629 err = ext4_get_inode_loc(inode, &iloc); 5630 if (!err) { 5631 BUFFER_TRACE(iloc.bh, "get_write_access"); 5632 err = jbd2_journal_get_write_access(handle, iloc.bh); 5633 if (!err) 5634 err = ext4_handle_dirty_metadata(handle, 5635 inode, 5636 iloc.bh); 5637 brelse(iloc.bh); 5638 } 5639 } 5640 ext4_std_error(inode->i_sb, err); 5641 return err; 5642 } 5643 #endif 5644 5645 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5646 { 5647 journal_t *journal; 5648 handle_t *handle; 5649 int err; 5650 5651 /* 5652 * We have to be very careful here: changing a data block's 5653 * journaling status dynamically is dangerous. If we write a 5654 * data block to the journal, change the status and then delete 5655 * that block, we risk forgetting to revoke the old log record 5656 * from the journal and so a subsequent replay can corrupt data. 5657 * So, first we make sure that the journal is empty and that 5658 * nobody is changing anything. 5659 */ 5660 5661 journal = EXT4_JOURNAL(inode); 5662 if (!journal) 5663 return 0; 5664 if (is_journal_aborted(journal)) 5665 return -EROFS; 5666 5667 jbd2_journal_lock_updates(journal); 5668 jbd2_journal_flush(journal); 5669 5670 /* 5671 * OK, there are no updates running now, and all cached data is 5672 * synced to disk. We are now in a completely consistent state 5673 * which doesn't have anything in the journal, and we know that 5674 * no filesystem updates are running, so it is safe to modify 5675 * the inode's in-core data-journaling state flag now. 5676 */ 5677 5678 if (val) 5679 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL; 5680 else 5681 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL; 5682 ext4_set_aops(inode); 5683 5684 jbd2_journal_unlock_updates(journal); 5685 5686 /* Finally we can mark the inode as dirty. */ 5687 5688 handle = ext4_journal_start(inode, 1); 5689 if (IS_ERR(handle)) 5690 return PTR_ERR(handle); 5691 5692 err = ext4_mark_inode_dirty(handle, inode); 5693 ext4_handle_sync(handle); 5694 ext4_journal_stop(handle); 5695 ext4_std_error(inode->i_sb, err); 5696 5697 return err; 5698 } 5699 5700 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5701 { 5702 return !buffer_mapped(bh); 5703 } 5704 5705 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5706 { 5707 struct page *page = vmf->page; 5708 loff_t size; 5709 unsigned long len; 5710 int ret = -EINVAL; 5711 void *fsdata; 5712 struct file *file = vma->vm_file; 5713 struct inode *inode = file->f_path.dentry->d_inode; 5714 struct address_space *mapping = inode->i_mapping; 5715 5716 /* 5717 * Get i_alloc_sem to stop truncates messing with the inode. We cannot 5718 * get i_mutex because we are already holding mmap_sem. 5719 */ 5720 down_read(&inode->i_alloc_sem); 5721 size = i_size_read(inode); 5722 if (page->mapping != mapping || size <= page_offset(page) 5723 || !PageUptodate(page)) { 5724 /* page got truncated from under us? */ 5725 goto out_unlock; 5726 } 5727 ret = 0; 5728 if (PageMappedToDisk(page)) 5729 goto out_unlock; 5730 5731 if (page->index == size >> PAGE_CACHE_SHIFT) 5732 len = size & ~PAGE_CACHE_MASK; 5733 else 5734 len = PAGE_CACHE_SIZE; 5735 5736 lock_page(page); 5737 /* 5738 * return if we have all the buffers mapped. This avoid 5739 * the need to call write_begin/write_end which does a 5740 * journal_start/journal_stop which can block and take 5741 * long time 5742 */ 5743 if (page_has_buffers(page)) { 5744 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 5745 ext4_bh_unmapped)) { 5746 unlock_page(page); 5747 goto out_unlock; 5748 } 5749 } 5750 unlock_page(page); 5751 /* 5752 * OK, we need to fill the hole... Do write_begin write_end 5753 * to do block allocation/reservation.We are not holding 5754 * inode.i__mutex here. That allow * parallel write_begin, 5755 * write_end call. lock_page prevent this from happening 5756 * on the same page though 5757 */ 5758 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page), 5759 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 5760 if (ret < 0) 5761 goto out_unlock; 5762 ret = mapping->a_ops->write_end(file, mapping, page_offset(page), 5763 len, len, page, fsdata); 5764 if (ret < 0) 5765 goto out_unlock; 5766 ret = 0; 5767 out_unlock: 5768 if (ret) 5769 ret = VM_FAULT_SIGBUS; 5770 up_read(&inode->i_alloc_sem); 5771 return ret; 5772 } 5773