1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/dax.h> 27 #include <linux/quotaops.h> 28 #include <linux/string.h> 29 #include <linux/buffer_head.h> 30 #include <linux/writeback.h> 31 #include <linux/pagevec.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/uio.h> 35 #include <linux/bio.h> 36 #include <linux/workqueue.h> 37 #include <linux/kernel.h> 38 #include <linux/printk.h> 39 #include <linux/slab.h> 40 #include <linux/bitops.h> 41 #include <linux/iomap.h> 42 #include <linux/iversion.h> 43 44 #include "ext4_jbd2.h" 45 #include "xattr.h" 46 #include "acl.h" 47 #include "truncate.h" 48 49 #include <trace/events/ext4.h> 50 51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 52 struct ext4_inode_info *ei) 53 { 54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 55 __u32 csum; 56 __u16 dummy_csum = 0; 57 int offset = offsetof(struct ext4_inode, i_checksum_lo); 58 unsigned int csum_size = sizeof(dummy_csum); 59 60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 62 offset += csum_size; 63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 64 EXT4_GOOD_OLD_INODE_SIZE - offset); 65 66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 67 offset = offsetof(struct ext4_inode, i_checksum_hi); 68 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 69 EXT4_GOOD_OLD_INODE_SIZE, 70 offset - EXT4_GOOD_OLD_INODE_SIZE); 71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 73 csum_size); 74 offset += csum_size; 75 } 76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 77 EXT4_INODE_SIZE(inode->i_sb) - offset); 78 } 79 80 return csum; 81 } 82 83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 84 struct ext4_inode_info *ei) 85 { 86 __u32 provided, calculated; 87 88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 89 cpu_to_le32(EXT4_OS_LINUX) || 90 !ext4_has_metadata_csum(inode->i_sb)) 91 return 1; 92 93 provided = le16_to_cpu(raw->i_checksum_lo); 94 calculated = ext4_inode_csum(inode, raw, ei); 95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 98 else 99 calculated &= 0xFFFF; 100 101 return provided == calculated; 102 } 103 104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 105 struct ext4_inode_info *ei) 106 { 107 __u32 csum; 108 109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 110 cpu_to_le32(EXT4_OS_LINUX) || 111 !ext4_has_metadata_csum(inode->i_sb)) 112 return; 113 114 csum = ext4_inode_csum(inode, raw, ei); 115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 118 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 119 } 120 121 static inline int ext4_begin_ordered_truncate(struct inode *inode, 122 loff_t new_size) 123 { 124 trace_ext4_begin_ordered_truncate(inode, new_size); 125 /* 126 * If jinode is zero, then we never opened the file for 127 * writing, so there's no need to call 128 * jbd2_journal_begin_ordered_truncate() since there's no 129 * outstanding writes we need to flush. 130 */ 131 if (!EXT4_I(inode)->jinode) 132 return 0; 133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 134 EXT4_I(inode)->jinode, 135 new_size); 136 } 137 138 static void ext4_invalidatepage(struct page *page, unsigned int offset, 139 unsigned int length); 140 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 143 int pextents); 144 145 /* 146 * Test whether an inode is a fast symlink. 147 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 148 */ 149 int ext4_inode_is_fast_symlink(struct inode *inode) 150 { 151 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 152 int ea_blocks = EXT4_I(inode)->i_file_acl ? 153 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 154 155 if (ext4_has_inline_data(inode)) 156 return 0; 157 158 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 159 } 160 return S_ISLNK(inode->i_mode) && inode->i_size && 161 (inode->i_size < EXT4_N_BLOCKS * 4); 162 } 163 164 /* 165 * Called at the last iput() if i_nlink is zero. 166 */ 167 void ext4_evict_inode(struct inode *inode) 168 { 169 handle_t *handle; 170 int err; 171 /* 172 * Credits for final inode cleanup and freeing: 173 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 174 * (xattr block freeing), bitmap, group descriptor (inode freeing) 175 */ 176 int extra_credits = 6; 177 struct ext4_xattr_inode_array *ea_inode_array = NULL; 178 179 trace_ext4_evict_inode(inode); 180 181 if (inode->i_nlink) { 182 /* 183 * When journalling data dirty buffers are tracked only in the 184 * journal. So although mm thinks everything is clean and 185 * ready for reaping the inode might still have some pages to 186 * write in the running transaction or waiting to be 187 * checkpointed. Thus calling jbd2_journal_invalidatepage() 188 * (via truncate_inode_pages()) to discard these buffers can 189 * cause data loss. Also even if we did not discard these 190 * buffers, we would have no way to find them after the inode 191 * is reaped and thus user could see stale data if he tries to 192 * read them before the transaction is checkpointed. So be 193 * careful and force everything to disk here... We use 194 * ei->i_datasync_tid to store the newest transaction 195 * containing inode's data. 196 * 197 * Note that directories do not have this problem because they 198 * don't use page cache. 199 */ 200 if (inode->i_ino != EXT4_JOURNAL_INO && 201 ext4_should_journal_data(inode) && 202 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 203 inode->i_data.nrpages) { 204 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 205 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 206 207 jbd2_complete_transaction(journal, commit_tid); 208 filemap_write_and_wait(&inode->i_data); 209 } 210 truncate_inode_pages_final(&inode->i_data); 211 212 goto no_delete; 213 } 214 215 if (is_bad_inode(inode)) 216 goto no_delete; 217 dquot_initialize(inode); 218 219 if (ext4_should_order_data(inode)) 220 ext4_begin_ordered_truncate(inode, 0); 221 truncate_inode_pages_final(&inode->i_data); 222 223 /* 224 * For inodes with journalled data, transaction commit could have 225 * dirtied the inode. Flush worker is ignoring it because of I_FREEING 226 * flag but we still need to remove the inode from the writeback lists. 227 */ 228 if (!list_empty_careful(&inode->i_io_list)) { 229 WARN_ON_ONCE(!ext4_should_journal_data(inode)); 230 inode_io_list_del(inode); 231 } 232 233 /* 234 * Protect us against freezing - iput() caller didn't have to have any 235 * protection against it 236 */ 237 sb_start_intwrite(inode->i_sb); 238 239 if (!IS_NOQUOTA(inode)) 240 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 241 242 /* 243 * Block bitmap, group descriptor, and inode are accounted in both 244 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 245 */ 246 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 247 ext4_blocks_for_truncate(inode) + extra_credits - 3); 248 if (IS_ERR(handle)) { 249 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 250 /* 251 * If we're going to skip the normal cleanup, we still need to 252 * make sure that the in-core orphan linked list is properly 253 * cleaned up. 254 */ 255 ext4_orphan_del(NULL, inode); 256 sb_end_intwrite(inode->i_sb); 257 goto no_delete; 258 } 259 260 if (IS_SYNC(inode)) 261 ext4_handle_sync(handle); 262 263 /* 264 * Set inode->i_size to 0 before calling ext4_truncate(). We need 265 * special handling of symlinks here because i_size is used to 266 * determine whether ext4_inode_info->i_data contains symlink data or 267 * block mappings. Setting i_size to 0 will remove its fast symlink 268 * status. Erase i_data so that it becomes a valid empty block map. 269 */ 270 if (ext4_inode_is_fast_symlink(inode)) 271 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 272 inode->i_size = 0; 273 err = ext4_mark_inode_dirty(handle, inode); 274 if (err) { 275 ext4_warning(inode->i_sb, 276 "couldn't mark inode dirty (err %d)", err); 277 goto stop_handle; 278 } 279 if (inode->i_blocks) { 280 err = ext4_truncate(inode); 281 if (err) { 282 ext4_error_err(inode->i_sb, -err, 283 "couldn't truncate inode %lu (err %d)", 284 inode->i_ino, err); 285 goto stop_handle; 286 } 287 } 288 289 /* Remove xattr references. */ 290 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 291 extra_credits); 292 if (err) { 293 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 294 stop_handle: 295 ext4_journal_stop(handle); 296 ext4_orphan_del(NULL, inode); 297 sb_end_intwrite(inode->i_sb); 298 ext4_xattr_inode_array_free(ea_inode_array); 299 goto no_delete; 300 } 301 302 /* 303 * Kill off the orphan record which ext4_truncate created. 304 * AKPM: I think this can be inside the above `if'. 305 * Note that ext4_orphan_del() has to be able to cope with the 306 * deletion of a non-existent orphan - this is because we don't 307 * know if ext4_truncate() actually created an orphan record. 308 * (Well, we could do this if we need to, but heck - it works) 309 */ 310 ext4_orphan_del(handle, inode); 311 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 312 313 /* 314 * One subtle ordering requirement: if anything has gone wrong 315 * (transaction abort, IO errors, whatever), then we can still 316 * do these next steps (the fs will already have been marked as 317 * having errors), but we can't free the inode if the mark_dirty 318 * fails. 319 */ 320 if (ext4_mark_inode_dirty(handle, inode)) 321 /* If that failed, just do the required in-core inode clear. */ 322 ext4_clear_inode(inode); 323 else 324 ext4_free_inode(handle, inode); 325 ext4_journal_stop(handle); 326 sb_end_intwrite(inode->i_sb); 327 ext4_xattr_inode_array_free(ea_inode_array); 328 return; 329 no_delete: 330 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 331 } 332 333 #ifdef CONFIG_QUOTA 334 qsize_t *ext4_get_reserved_space(struct inode *inode) 335 { 336 return &EXT4_I(inode)->i_reserved_quota; 337 } 338 #endif 339 340 /* 341 * Called with i_data_sem down, which is important since we can call 342 * ext4_discard_preallocations() from here. 343 */ 344 void ext4_da_update_reserve_space(struct inode *inode, 345 int used, int quota_claim) 346 { 347 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 348 struct ext4_inode_info *ei = EXT4_I(inode); 349 350 spin_lock(&ei->i_block_reservation_lock); 351 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 352 if (unlikely(used > ei->i_reserved_data_blocks)) { 353 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 354 "with only %d reserved data blocks", 355 __func__, inode->i_ino, used, 356 ei->i_reserved_data_blocks); 357 WARN_ON(1); 358 used = ei->i_reserved_data_blocks; 359 } 360 361 /* Update per-inode reservations */ 362 ei->i_reserved_data_blocks -= used; 363 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 364 365 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 366 367 /* Update quota subsystem for data blocks */ 368 if (quota_claim) 369 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 370 else { 371 /* 372 * We did fallocate with an offset that is already delayed 373 * allocated. So on delayed allocated writeback we should 374 * not re-claim the quota for fallocated blocks. 375 */ 376 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 377 } 378 379 /* 380 * If we have done all the pending block allocations and if 381 * there aren't any writers on the inode, we can discard the 382 * inode's preallocations. 383 */ 384 if ((ei->i_reserved_data_blocks == 0) && 385 !inode_is_open_for_write(inode)) 386 ext4_discard_preallocations(inode, 0); 387 } 388 389 static int __check_block_validity(struct inode *inode, const char *func, 390 unsigned int line, 391 struct ext4_map_blocks *map) 392 { 393 if (ext4_has_feature_journal(inode->i_sb) && 394 (inode->i_ino == 395 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 396 return 0; 397 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 398 ext4_error_inode(inode, func, line, map->m_pblk, 399 "lblock %lu mapped to illegal pblock %llu " 400 "(length %d)", (unsigned long) map->m_lblk, 401 map->m_pblk, map->m_len); 402 return -EFSCORRUPTED; 403 } 404 return 0; 405 } 406 407 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 408 ext4_lblk_t len) 409 { 410 int ret; 411 412 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 413 return fscrypt_zeroout_range(inode, lblk, pblk, len); 414 415 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 416 if (ret > 0) 417 ret = 0; 418 419 return ret; 420 } 421 422 #define check_block_validity(inode, map) \ 423 __check_block_validity((inode), __func__, __LINE__, (map)) 424 425 #ifdef ES_AGGRESSIVE_TEST 426 static void ext4_map_blocks_es_recheck(handle_t *handle, 427 struct inode *inode, 428 struct ext4_map_blocks *es_map, 429 struct ext4_map_blocks *map, 430 int flags) 431 { 432 int retval; 433 434 map->m_flags = 0; 435 /* 436 * There is a race window that the result is not the same. 437 * e.g. xfstests #223 when dioread_nolock enables. The reason 438 * is that we lookup a block mapping in extent status tree with 439 * out taking i_data_sem. So at the time the unwritten extent 440 * could be converted. 441 */ 442 down_read(&EXT4_I(inode)->i_data_sem); 443 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 444 retval = ext4_ext_map_blocks(handle, inode, map, 0); 445 } else { 446 retval = ext4_ind_map_blocks(handle, inode, map, 0); 447 } 448 up_read((&EXT4_I(inode)->i_data_sem)); 449 450 /* 451 * We don't check m_len because extent will be collpased in status 452 * tree. So the m_len might not equal. 453 */ 454 if (es_map->m_lblk != map->m_lblk || 455 es_map->m_flags != map->m_flags || 456 es_map->m_pblk != map->m_pblk) { 457 printk("ES cache assertion failed for inode: %lu " 458 "es_cached ex [%d/%d/%llu/%x] != " 459 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 460 inode->i_ino, es_map->m_lblk, es_map->m_len, 461 es_map->m_pblk, es_map->m_flags, map->m_lblk, 462 map->m_len, map->m_pblk, map->m_flags, 463 retval, flags); 464 } 465 } 466 #endif /* ES_AGGRESSIVE_TEST */ 467 468 /* 469 * The ext4_map_blocks() function tries to look up the requested blocks, 470 * and returns if the blocks are already mapped. 471 * 472 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 473 * and store the allocated blocks in the result buffer head and mark it 474 * mapped. 475 * 476 * If file type is extents based, it will call ext4_ext_map_blocks(), 477 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 478 * based files 479 * 480 * On success, it returns the number of blocks being mapped or allocated. if 481 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 482 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 483 * 484 * It returns 0 if plain look up failed (blocks have not been allocated), in 485 * that case, @map is returned as unmapped but we still do fill map->m_len to 486 * indicate the length of a hole starting at map->m_lblk. 487 * 488 * It returns the error in case of allocation failure. 489 */ 490 int ext4_map_blocks(handle_t *handle, struct inode *inode, 491 struct ext4_map_blocks *map, int flags) 492 { 493 struct extent_status es; 494 int retval; 495 int ret = 0; 496 #ifdef ES_AGGRESSIVE_TEST 497 struct ext4_map_blocks orig_map; 498 499 memcpy(&orig_map, map, sizeof(*map)); 500 #endif 501 502 map->m_flags = 0; 503 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 504 flags, map->m_len, (unsigned long) map->m_lblk); 505 506 /* 507 * ext4_map_blocks returns an int, and m_len is an unsigned int 508 */ 509 if (unlikely(map->m_len > INT_MAX)) 510 map->m_len = INT_MAX; 511 512 /* We can handle the block number less than EXT_MAX_BLOCKS */ 513 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 514 return -EFSCORRUPTED; 515 516 /* Lookup extent status tree firstly */ 517 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 518 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 519 map->m_pblk = ext4_es_pblock(&es) + 520 map->m_lblk - es.es_lblk; 521 map->m_flags |= ext4_es_is_written(&es) ? 522 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 523 retval = es.es_len - (map->m_lblk - es.es_lblk); 524 if (retval > map->m_len) 525 retval = map->m_len; 526 map->m_len = retval; 527 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 528 map->m_pblk = 0; 529 retval = es.es_len - (map->m_lblk - es.es_lblk); 530 if (retval > map->m_len) 531 retval = map->m_len; 532 map->m_len = retval; 533 retval = 0; 534 } else { 535 BUG(); 536 } 537 #ifdef ES_AGGRESSIVE_TEST 538 ext4_map_blocks_es_recheck(handle, inode, map, 539 &orig_map, flags); 540 #endif 541 goto found; 542 } 543 544 /* 545 * Try to see if we can get the block without requesting a new 546 * file system block. 547 */ 548 down_read(&EXT4_I(inode)->i_data_sem); 549 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 550 retval = ext4_ext_map_blocks(handle, inode, map, 0); 551 } else { 552 retval = ext4_ind_map_blocks(handle, inode, map, 0); 553 } 554 if (retval > 0) { 555 unsigned int status; 556 557 if (unlikely(retval != map->m_len)) { 558 ext4_warning(inode->i_sb, 559 "ES len assertion failed for inode " 560 "%lu: retval %d != map->m_len %d", 561 inode->i_ino, retval, map->m_len); 562 WARN_ON(1); 563 } 564 565 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 566 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 567 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 568 !(status & EXTENT_STATUS_WRITTEN) && 569 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 570 map->m_lblk + map->m_len - 1)) 571 status |= EXTENT_STATUS_DELAYED; 572 ret = ext4_es_insert_extent(inode, map->m_lblk, 573 map->m_len, map->m_pblk, status); 574 if (ret < 0) 575 retval = ret; 576 } 577 up_read((&EXT4_I(inode)->i_data_sem)); 578 579 found: 580 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 581 ret = check_block_validity(inode, map); 582 if (ret != 0) 583 return ret; 584 } 585 586 /* If it is only a block(s) look up */ 587 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 588 return retval; 589 590 /* 591 * Returns if the blocks have already allocated 592 * 593 * Note that if blocks have been preallocated 594 * ext4_ext_get_block() returns the create = 0 595 * with buffer head unmapped. 596 */ 597 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 598 /* 599 * If we need to convert extent to unwritten 600 * we continue and do the actual work in 601 * ext4_ext_map_blocks() 602 */ 603 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 604 return retval; 605 606 /* 607 * Here we clear m_flags because after allocating an new extent, 608 * it will be set again. 609 */ 610 map->m_flags &= ~EXT4_MAP_FLAGS; 611 612 /* 613 * New blocks allocate and/or writing to unwritten extent 614 * will possibly result in updating i_data, so we take 615 * the write lock of i_data_sem, and call get_block() 616 * with create == 1 flag. 617 */ 618 down_write(&EXT4_I(inode)->i_data_sem); 619 620 /* 621 * We need to check for EXT4 here because migrate 622 * could have changed the inode type in between 623 */ 624 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 625 retval = ext4_ext_map_blocks(handle, inode, map, flags); 626 } else { 627 retval = ext4_ind_map_blocks(handle, inode, map, flags); 628 629 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 630 /* 631 * We allocated new blocks which will result in 632 * i_data's format changing. Force the migrate 633 * to fail by clearing migrate flags 634 */ 635 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 636 } 637 638 /* 639 * Update reserved blocks/metadata blocks after successful 640 * block allocation which had been deferred till now. We don't 641 * support fallocate for non extent files. So we can update 642 * reserve space here. 643 */ 644 if ((retval > 0) && 645 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 646 ext4_da_update_reserve_space(inode, retval, 1); 647 } 648 649 if (retval > 0) { 650 unsigned int status; 651 652 if (unlikely(retval != map->m_len)) { 653 ext4_warning(inode->i_sb, 654 "ES len assertion failed for inode " 655 "%lu: retval %d != map->m_len %d", 656 inode->i_ino, retval, map->m_len); 657 WARN_ON(1); 658 } 659 660 /* 661 * We have to zeroout blocks before inserting them into extent 662 * status tree. Otherwise someone could look them up there and 663 * use them before they are really zeroed. We also have to 664 * unmap metadata before zeroing as otherwise writeback can 665 * overwrite zeros with stale data from block device. 666 */ 667 if (flags & EXT4_GET_BLOCKS_ZERO && 668 map->m_flags & EXT4_MAP_MAPPED && 669 map->m_flags & EXT4_MAP_NEW) { 670 ret = ext4_issue_zeroout(inode, map->m_lblk, 671 map->m_pblk, map->m_len); 672 if (ret) { 673 retval = ret; 674 goto out_sem; 675 } 676 } 677 678 /* 679 * If the extent has been zeroed out, we don't need to update 680 * extent status tree. 681 */ 682 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 683 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 684 if (ext4_es_is_written(&es)) 685 goto out_sem; 686 } 687 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 688 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 689 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 690 !(status & EXTENT_STATUS_WRITTEN) && 691 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 692 map->m_lblk + map->m_len - 1)) 693 status |= EXTENT_STATUS_DELAYED; 694 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 695 map->m_pblk, status); 696 if (ret < 0) { 697 retval = ret; 698 goto out_sem; 699 } 700 } 701 702 out_sem: 703 up_write((&EXT4_I(inode)->i_data_sem)); 704 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 705 ret = check_block_validity(inode, map); 706 if (ret != 0) 707 return ret; 708 709 /* 710 * Inodes with freshly allocated blocks where contents will be 711 * visible after transaction commit must be on transaction's 712 * ordered data list. 713 */ 714 if (map->m_flags & EXT4_MAP_NEW && 715 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 716 !(flags & EXT4_GET_BLOCKS_ZERO) && 717 !ext4_is_quota_file(inode) && 718 ext4_should_order_data(inode)) { 719 loff_t start_byte = 720 (loff_t)map->m_lblk << inode->i_blkbits; 721 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 722 723 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 724 ret = ext4_jbd2_inode_add_wait(handle, inode, 725 start_byte, length); 726 else 727 ret = ext4_jbd2_inode_add_write(handle, inode, 728 start_byte, length); 729 if (ret) 730 return ret; 731 } 732 } 733 734 if (retval < 0) 735 ext_debug(inode, "failed with err %d\n", retval); 736 return retval; 737 } 738 739 /* 740 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 741 * we have to be careful as someone else may be manipulating b_state as well. 742 */ 743 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 744 { 745 unsigned long old_state; 746 unsigned long new_state; 747 748 flags &= EXT4_MAP_FLAGS; 749 750 /* Dummy buffer_head? Set non-atomically. */ 751 if (!bh->b_page) { 752 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 753 return; 754 } 755 /* 756 * Someone else may be modifying b_state. Be careful! This is ugly but 757 * once we get rid of using bh as a container for mapping information 758 * to pass to / from get_block functions, this can go away. 759 */ 760 do { 761 old_state = READ_ONCE(bh->b_state); 762 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 763 } while (unlikely( 764 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 765 } 766 767 static int _ext4_get_block(struct inode *inode, sector_t iblock, 768 struct buffer_head *bh, int flags) 769 { 770 struct ext4_map_blocks map; 771 int ret = 0; 772 773 if (ext4_has_inline_data(inode)) 774 return -ERANGE; 775 776 map.m_lblk = iblock; 777 map.m_len = bh->b_size >> inode->i_blkbits; 778 779 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 780 flags); 781 if (ret > 0) { 782 map_bh(bh, inode->i_sb, map.m_pblk); 783 ext4_update_bh_state(bh, map.m_flags); 784 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 785 ret = 0; 786 } else if (ret == 0) { 787 /* hole case, need to fill in bh->b_size */ 788 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 789 } 790 return ret; 791 } 792 793 int ext4_get_block(struct inode *inode, sector_t iblock, 794 struct buffer_head *bh, int create) 795 { 796 return _ext4_get_block(inode, iblock, bh, 797 create ? EXT4_GET_BLOCKS_CREATE : 0); 798 } 799 800 /* 801 * Get block function used when preparing for buffered write if we require 802 * creating an unwritten extent if blocks haven't been allocated. The extent 803 * will be converted to written after the IO is complete. 804 */ 805 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 806 struct buffer_head *bh_result, int create) 807 { 808 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 809 inode->i_ino, create); 810 return _ext4_get_block(inode, iblock, bh_result, 811 EXT4_GET_BLOCKS_IO_CREATE_EXT); 812 } 813 814 /* Maximum number of blocks we map for direct IO at once. */ 815 #define DIO_MAX_BLOCKS 4096 816 817 /* 818 * `handle' can be NULL if create is zero 819 */ 820 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 821 ext4_lblk_t block, int map_flags) 822 { 823 struct ext4_map_blocks map; 824 struct buffer_head *bh; 825 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 826 int err; 827 828 J_ASSERT(handle != NULL || create == 0); 829 830 map.m_lblk = block; 831 map.m_len = 1; 832 err = ext4_map_blocks(handle, inode, &map, map_flags); 833 834 if (err == 0) 835 return create ? ERR_PTR(-ENOSPC) : NULL; 836 if (err < 0) 837 return ERR_PTR(err); 838 839 bh = sb_getblk(inode->i_sb, map.m_pblk); 840 if (unlikely(!bh)) 841 return ERR_PTR(-ENOMEM); 842 if (map.m_flags & EXT4_MAP_NEW) { 843 J_ASSERT(create != 0); 844 J_ASSERT(handle != NULL); 845 846 /* 847 * Now that we do not always journal data, we should 848 * keep in mind whether this should always journal the 849 * new buffer as metadata. For now, regular file 850 * writes use ext4_get_block instead, so it's not a 851 * problem. 852 */ 853 lock_buffer(bh); 854 BUFFER_TRACE(bh, "call get_create_access"); 855 err = ext4_journal_get_create_access(handle, bh); 856 if (unlikely(err)) { 857 unlock_buffer(bh); 858 goto errout; 859 } 860 if (!buffer_uptodate(bh)) { 861 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 862 set_buffer_uptodate(bh); 863 } 864 unlock_buffer(bh); 865 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 866 err = ext4_handle_dirty_metadata(handle, inode, bh); 867 if (unlikely(err)) 868 goto errout; 869 } else 870 BUFFER_TRACE(bh, "not a new buffer"); 871 return bh; 872 errout: 873 brelse(bh); 874 return ERR_PTR(err); 875 } 876 877 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 878 ext4_lblk_t block, int map_flags) 879 { 880 struct buffer_head *bh; 881 882 bh = ext4_getblk(handle, inode, block, map_flags); 883 if (IS_ERR(bh)) 884 return bh; 885 if (!bh || ext4_buffer_uptodate(bh)) 886 return bh; 887 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh); 888 wait_on_buffer(bh); 889 if (buffer_uptodate(bh)) 890 return bh; 891 put_bh(bh); 892 return ERR_PTR(-EIO); 893 } 894 895 /* Read a contiguous batch of blocks. */ 896 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 897 bool wait, struct buffer_head **bhs) 898 { 899 int i, err; 900 901 for (i = 0; i < bh_count; i++) { 902 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 903 if (IS_ERR(bhs[i])) { 904 err = PTR_ERR(bhs[i]); 905 bh_count = i; 906 goto out_brelse; 907 } 908 } 909 910 for (i = 0; i < bh_count; i++) 911 /* Note that NULL bhs[i] is valid because of holes. */ 912 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 913 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, 914 &bhs[i]); 915 916 if (!wait) 917 return 0; 918 919 for (i = 0; i < bh_count; i++) 920 if (bhs[i]) 921 wait_on_buffer(bhs[i]); 922 923 for (i = 0; i < bh_count; i++) { 924 if (bhs[i] && !buffer_uptodate(bhs[i])) { 925 err = -EIO; 926 goto out_brelse; 927 } 928 } 929 return 0; 930 931 out_brelse: 932 for (i = 0; i < bh_count; i++) { 933 brelse(bhs[i]); 934 bhs[i] = NULL; 935 } 936 return err; 937 } 938 939 int ext4_walk_page_buffers(handle_t *handle, 940 struct buffer_head *head, 941 unsigned from, 942 unsigned to, 943 int *partial, 944 int (*fn)(handle_t *handle, 945 struct buffer_head *bh)) 946 { 947 struct buffer_head *bh; 948 unsigned block_start, block_end; 949 unsigned blocksize = head->b_size; 950 int err, ret = 0; 951 struct buffer_head *next; 952 953 for (bh = head, block_start = 0; 954 ret == 0 && (bh != head || !block_start); 955 block_start = block_end, bh = next) { 956 next = bh->b_this_page; 957 block_end = block_start + blocksize; 958 if (block_end <= from || block_start >= to) { 959 if (partial && !buffer_uptodate(bh)) 960 *partial = 1; 961 continue; 962 } 963 err = (*fn)(handle, bh); 964 if (!ret) 965 ret = err; 966 } 967 return ret; 968 } 969 970 /* 971 * To preserve ordering, it is essential that the hole instantiation and 972 * the data write be encapsulated in a single transaction. We cannot 973 * close off a transaction and start a new one between the ext4_get_block() 974 * and the commit_write(). So doing the jbd2_journal_start at the start of 975 * prepare_write() is the right place. 976 * 977 * Also, this function can nest inside ext4_writepage(). In that case, we 978 * *know* that ext4_writepage() has generated enough buffer credits to do the 979 * whole page. So we won't block on the journal in that case, which is good, 980 * because the caller may be PF_MEMALLOC. 981 * 982 * By accident, ext4 can be reentered when a transaction is open via 983 * quota file writes. If we were to commit the transaction while thus 984 * reentered, there can be a deadlock - we would be holding a quota 985 * lock, and the commit would never complete if another thread had a 986 * transaction open and was blocking on the quota lock - a ranking 987 * violation. 988 * 989 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 990 * will _not_ run commit under these circumstances because handle->h_ref 991 * is elevated. We'll still have enough credits for the tiny quotafile 992 * write. 993 */ 994 int do_journal_get_write_access(handle_t *handle, 995 struct buffer_head *bh) 996 { 997 int dirty = buffer_dirty(bh); 998 int ret; 999 1000 if (!buffer_mapped(bh) || buffer_freed(bh)) 1001 return 0; 1002 /* 1003 * __block_write_begin() could have dirtied some buffers. Clean 1004 * the dirty bit as jbd2_journal_get_write_access() could complain 1005 * otherwise about fs integrity issues. Setting of the dirty bit 1006 * by __block_write_begin() isn't a real problem here as we clear 1007 * the bit before releasing a page lock and thus writeback cannot 1008 * ever write the buffer. 1009 */ 1010 if (dirty) 1011 clear_buffer_dirty(bh); 1012 BUFFER_TRACE(bh, "get write access"); 1013 ret = ext4_journal_get_write_access(handle, bh); 1014 if (!ret && dirty) 1015 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1016 return ret; 1017 } 1018 1019 #ifdef CONFIG_FS_ENCRYPTION 1020 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1021 get_block_t *get_block) 1022 { 1023 unsigned from = pos & (PAGE_SIZE - 1); 1024 unsigned to = from + len; 1025 struct inode *inode = page->mapping->host; 1026 unsigned block_start, block_end; 1027 sector_t block; 1028 int err = 0; 1029 unsigned blocksize = inode->i_sb->s_blocksize; 1030 unsigned bbits; 1031 struct buffer_head *bh, *head, *wait[2]; 1032 int nr_wait = 0; 1033 int i; 1034 1035 BUG_ON(!PageLocked(page)); 1036 BUG_ON(from > PAGE_SIZE); 1037 BUG_ON(to > PAGE_SIZE); 1038 BUG_ON(from > to); 1039 1040 if (!page_has_buffers(page)) 1041 create_empty_buffers(page, blocksize, 0); 1042 head = page_buffers(page); 1043 bbits = ilog2(blocksize); 1044 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1045 1046 for (bh = head, block_start = 0; bh != head || !block_start; 1047 block++, block_start = block_end, bh = bh->b_this_page) { 1048 block_end = block_start + blocksize; 1049 if (block_end <= from || block_start >= to) { 1050 if (PageUptodate(page)) { 1051 if (!buffer_uptodate(bh)) 1052 set_buffer_uptodate(bh); 1053 } 1054 continue; 1055 } 1056 if (buffer_new(bh)) 1057 clear_buffer_new(bh); 1058 if (!buffer_mapped(bh)) { 1059 WARN_ON(bh->b_size != blocksize); 1060 err = get_block(inode, block, bh, 1); 1061 if (err) 1062 break; 1063 if (buffer_new(bh)) { 1064 if (PageUptodate(page)) { 1065 clear_buffer_new(bh); 1066 set_buffer_uptodate(bh); 1067 mark_buffer_dirty(bh); 1068 continue; 1069 } 1070 if (block_end > to || block_start < from) 1071 zero_user_segments(page, to, block_end, 1072 block_start, from); 1073 continue; 1074 } 1075 } 1076 if (PageUptodate(page)) { 1077 if (!buffer_uptodate(bh)) 1078 set_buffer_uptodate(bh); 1079 continue; 1080 } 1081 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1082 !buffer_unwritten(bh) && 1083 (block_start < from || block_end > to)) { 1084 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1085 wait[nr_wait++] = bh; 1086 } 1087 } 1088 /* 1089 * If we issued read requests, let them complete. 1090 */ 1091 for (i = 0; i < nr_wait; i++) { 1092 wait_on_buffer(wait[i]); 1093 if (!buffer_uptodate(wait[i])) 1094 err = -EIO; 1095 } 1096 if (unlikely(err)) { 1097 page_zero_new_buffers(page, from, to); 1098 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1099 for (i = 0; i < nr_wait; i++) { 1100 int err2; 1101 1102 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize, 1103 bh_offset(wait[i])); 1104 if (err2) { 1105 clear_buffer_uptodate(wait[i]); 1106 err = err2; 1107 } 1108 } 1109 } 1110 1111 return err; 1112 } 1113 #endif 1114 1115 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1116 loff_t pos, unsigned len, unsigned flags, 1117 struct page **pagep, void **fsdata) 1118 { 1119 struct inode *inode = mapping->host; 1120 int ret, needed_blocks; 1121 handle_t *handle; 1122 int retries = 0; 1123 struct page *page; 1124 pgoff_t index; 1125 unsigned from, to; 1126 1127 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1128 return -EIO; 1129 1130 trace_ext4_write_begin(inode, pos, len, flags); 1131 /* 1132 * Reserve one block more for addition to orphan list in case 1133 * we allocate blocks but write fails for some reason 1134 */ 1135 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1136 index = pos >> PAGE_SHIFT; 1137 from = pos & (PAGE_SIZE - 1); 1138 to = from + len; 1139 1140 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1141 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1142 flags, pagep); 1143 if (ret < 0) 1144 return ret; 1145 if (ret == 1) 1146 return 0; 1147 } 1148 1149 /* 1150 * grab_cache_page_write_begin() can take a long time if the 1151 * system is thrashing due to memory pressure, or if the page 1152 * is being written back. So grab it first before we start 1153 * the transaction handle. This also allows us to allocate 1154 * the page (if needed) without using GFP_NOFS. 1155 */ 1156 retry_grab: 1157 page = grab_cache_page_write_begin(mapping, index, flags); 1158 if (!page) 1159 return -ENOMEM; 1160 unlock_page(page); 1161 1162 retry_journal: 1163 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1164 if (IS_ERR(handle)) { 1165 put_page(page); 1166 return PTR_ERR(handle); 1167 } 1168 1169 lock_page(page); 1170 if (page->mapping != mapping) { 1171 /* The page got truncated from under us */ 1172 unlock_page(page); 1173 put_page(page); 1174 ext4_journal_stop(handle); 1175 goto retry_grab; 1176 } 1177 /* In case writeback began while the page was unlocked */ 1178 wait_for_stable_page(page); 1179 1180 #ifdef CONFIG_FS_ENCRYPTION 1181 if (ext4_should_dioread_nolock(inode)) 1182 ret = ext4_block_write_begin(page, pos, len, 1183 ext4_get_block_unwritten); 1184 else 1185 ret = ext4_block_write_begin(page, pos, len, 1186 ext4_get_block); 1187 #else 1188 if (ext4_should_dioread_nolock(inode)) 1189 ret = __block_write_begin(page, pos, len, 1190 ext4_get_block_unwritten); 1191 else 1192 ret = __block_write_begin(page, pos, len, ext4_get_block); 1193 #endif 1194 if (!ret && ext4_should_journal_data(inode)) { 1195 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1196 from, to, NULL, 1197 do_journal_get_write_access); 1198 } 1199 1200 if (ret) { 1201 bool extended = (pos + len > inode->i_size) && 1202 !ext4_verity_in_progress(inode); 1203 1204 unlock_page(page); 1205 /* 1206 * __block_write_begin may have instantiated a few blocks 1207 * outside i_size. Trim these off again. Don't need 1208 * i_size_read because we hold i_mutex. 1209 * 1210 * Add inode to orphan list in case we crash before 1211 * truncate finishes 1212 */ 1213 if (extended && ext4_can_truncate(inode)) 1214 ext4_orphan_add(handle, inode); 1215 1216 ext4_journal_stop(handle); 1217 if (extended) { 1218 ext4_truncate_failed_write(inode); 1219 /* 1220 * If truncate failed early the inode might 1221 * still be on the orphan list; we need to 1222 * make sure the inode is removed from the 1223 * orphan list in that case. 1224 */ 1225 if (inode->i_nlink) 1226 ext4_orphan_del(NULL, inode); 1227 } 1228 1229 if (ret == -ENOSPC && 1230 ext4_should_retry_alloc(inode->i_sb, &retries)) 1231 goto retry_journal; 1232 put_page(page); 1233 return ret; 1234 } 1235 *pagep = page; 1236 return ret; 1237 } 1238 1239 /* For write_end() in data=journal mode */ 1240 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1241 { 1242 int ret; 1243 if (!buffer_mapped(bh) || buffer_freed(bh)) 1244 return 0; 1245 set_buffer_uptodate(bh); 1246 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1247 clear_buffer_meta(bh); 1248 clear_buffer_prio(bh); 1249 return ret; 1250 } 1251 1252 /* 1253 * We need to pick up the new inode size which generic_commit_write gave us 1254 * `file' can be NULL - eg, when called from page_symlink(). 1255 * 1256 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1257 * buffers are managed internally. 1258 */ 1259 static int ext4_write_end(struct file *file, 1260 struct address_space *mapping, 1261 loff_t pos, unsigned len, unsigned copied, 1262 struct page *page, void *fsdata) 1263 { 1264 handle_t *handle = ext4_journal_current_handle(); 1265 struct inode *inode = mapping->host; 1266 loff_t old_size = inode->i_size; 1267 int ret = 0, ret2; 1268 int i_size_changed = 0; 1269 int inline_data = ext4_has_inline_data(inode); 1270 bool verity = ext4_verity_in_progress(inode); 1271 1272 trace_ext4_write_end(inode, pos, len, copied); 1273 if (inline_data) { 1274 ret = ext4_write_inline_data_end(inode, pos, len, 1275 copied, page); 1276 if (ret < 0) { 1277 unlock_page(page); 1278 put_page(page); 1279 goto errout; 1280 } 1281 copied = ret; 1282 } else 1283 copied = block_write_end(file, mapping, pos, 1284 len, copied, page, fsdata); 1285 /* 1286 * it's important to update i_size while still holding page lock: 1287 * page writeout could otherwise come in and zero beyond i_size. 1288 * 1289 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1290 * blocks are being written past EOF, so skip the i_size update. 1291 */ 1292 if (!verity) 1293 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1294 unlock_page(page); 1295 put_page(page); 1296 1297 if (old_size < pos && !verity) 1298 pagecache_isize_extended(inode, old_size, pos); 1299 /* 1300 * Don't mark the inode dirty under page lock. First, it unnecessarily 1301 * makes the holding time of page lock longer. Second, it forces lock 1302 * ordering of page lock and transaction start for journaling 1303 * filesystems. 1304 */ 1305 if (i_size_changed || inline_data) 1306 ret = ext4_mark_inode_dirty(handle, inode); 1307 1308 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1309 /* if we have allocated more blocks and copied 1310 * less. We will have blocks allocated outside 1311 * inode->i_size. So truncate them 1312 */ 1313 ext4_orphan_add(handle, inode); 1314 errout: 1315 ret2 = ext4_journal_stop(handle); 1316 if (!ret) 1317 ret = ret2; 1318 1319 if (pos + len > inode->i_size && !verity) { 1320 ext4_truncate_failed_write(inode); 1321 /* 1322 * If truncate failed early the inode might still be 1323 * on the orphan list; we need to make sure the inode 1324 * is removed from the orphan list in that case. 1325 */ 1326 if (inode->i_nlink) 1327 ext4_orphan_del(NULL, inode); 1328 } 1329 1330 return ret ? ret : copied; 1331 } 1332 1333 /* 1334 * This is a private version of page_zero_new_buffers() which doesn't 1335 * set the buffer to be dirty, since in data=journalled mode we need 1336 * to call ext4_handle_dirty_metadata() instead. 1337 */ 1338 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1339 struct page *page, 1340 unsigned from, unsigned to) 1341 { 1342 unsigned int block_start = 0, block_end; 1343 struct buffer_head *head, *bh; 1344 1345 bh = head = page_buffers(page); 1346 do { 1347 block_end = block_start + bh->b_size; 1348 if (buffer_new(bh)) { 1349 if (block_end > from && block_start < to) { 1350 if (!PageUptodate(page)) { 1351 unsigned start, size; 1352 1353 start = max(from, block_start); 1354 size = min(to, block_end) - start; 1355 1356 zero_user(page, start, size); 1357 write_end_fn(handle, bh); 1358 } 1359 clear_buffer_new(bh); 1360 } 1361 } 1362 block_start = block_end; 1363 bh = bh->b_this_page; 1364 } while (bh != head); 1365 } 1366 1367 static int ext4_journalled_write_end(struct file *file, 1368 struct address_space *mapping, 1369 loff_t pos, unsigned len, unsigned copied, 1370 struct page *page, void *fsdata) 1371 { 1372 handle_t *handle = ext4_journal_current_handle(); 1373 struct inode *inode = mapping->host; 1374 loff_t old_size = inode->i_size; 1375 int ret = 0, ret2; 1376 int partial = 0; 1377 unsigned from, to; 1378 int size_changed = 0; 1379 int inline_data = ext4_has_inline_data(inode); 1380 bool verity = ext4_verity_in_progress(inode); 1381 1382 trace_ext4_journalled_write_end(inode, pos, len, copied); 1383 from = pos & (PAGE_SIZE - 1); 1384 to = from + len; 1385 1386 BUG_ON(!ext4_handle_valid(handle)); 1387 1388 if (inline_data) { 1389 ret = ext4_write_inline_data_end(inode, pos, len, 1390 copied, page); 1391 if (ret < 0) { 1392 unlock_page(page); 1393 put_page(page); 1394 goto errout; 1395 } 1396 copied = ret; 1397 } else if (unlikely(copied < len) && !PageUptodate(page)) { 1398 copied = 0; 1399 ext4_journalled_zero_new_buffers(handle, page, from, to); 1400 } else { 1401 if (unlikely(copied < len)) 1402 ext4_journalled_zero_new_buffers(handle, page, 1403 from + copied, to); 1404 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1405 from + copied, &partial, 1406 write_end_fn); 1407 if (!partial) 1408 SetPageUptodate(page); 1409 } 1410 if (!verity) 1411 size_changed = ext4_update_inode_size(inode, pos + copied); 1412 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1413 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1414 unlock_page(page); 1415 put_page(page); 1416 1417 if (old_size < pos && !verity) 1418 pagecache_isize_extended(inode, old_size, pos); 1419 1420 if (size_changed || inline_data) { 1421 ret2 = ext4_mark_inode_dirty(handle, inode); 1422 if (!ret) 1423 ret = ret2; 1424 } 1425 1426 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1427 /* if we have allocated more blocks and copied 1428 * less. We will have blocks allocated outside 1429 * inode->i_size. So truncate them 1430 */ 1431 ext4_orphan_add(handle, inode); 1432 1433 errout: 1434 ret2 = ext4_journal_stop(handle); 1435 if (!ret) 1436 ret = ret2; 1437 if (pos + len > inode->i_size && !verity) { 1438 ext4_truncate_failed_write(inode); 1439 /* 1440 * If truncate failed early the inode might still be 1441 * on the orphan list; we need to make sure the inode 1442 * is removed from the orphan list in that case. 1443 */ 1444 if (inode->i_nlink) 1445 ext4_orphan_del(NULL, inode); 1446 } 1447 1448 return ret ? ret : copied; 1449 } 1450 1451 /* 1452 * Reserve space for a single cluster 1453 */ 1454 static int ext4_da_reserve_space(struct inode *inode) 1455 { 1456 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1457 struct ext4_inode_info *ei = EXT4_I(inode); 1458 int ret; 1459 1460 /* 1461 * We will charge metadata quota at writeout time; this saves 1462 * us from metadata over-estimation, though we may go over by 1463 * a small amount in the end. Here we just reserve for data. 1464 */ 1465 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1466 if (ret) 1467 return ret; 1468 1469 spin_lock(&ei->i_block_reservation_lock); 1470 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1471 spin_unlock(&ei->i_block_reservation_lock); 1472 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1473 return -ENOSPC; 1474 } 1475 ei->i_reserved_data_blocks++; 1476 trace_ext4_da_reserve_space(inode); 1477 spin_unlock(&ei->i_block_reservation_lock); 1478 1479 return 0; /* success */ 1480 } 1481 1482 void ext4_da_release_space(struct inode *inode, int to_free) 1483 { 1484 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1485 struct ext4_inode_info *ei = EXT4_I(inode); 1486 1487 if (!to_free) 1488 return; /* Nothing to release, exit */ 1489 1490 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1491 1492 trace_ext4_da_release_space(inode, to_free); 1493 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1494 /* 1495 * if there aren't enough reserved blocks, then the 1496 * counter is messed up somewhere. Since this 1497 * function is called from invalidate page, it's 1498 * harmless to return without any action. 1499 */ 1500 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1501 "ino %lu, to_free %d with only %d reserved " 1502 "data blocks", inode->i_ino, to_free, 1503 ei->i_reserved_data_blocks); 1504 WARN_ON(1); 1505 to_free = ei->i_reserved_data_blocks; 1506 } 1507 ei->i_reserved_data_blocks -= to_free; 1508 1509 /* update fs dirty data blocks counter */ 1510 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1511 1512 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1513 1514 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1515 } 1516 1517 /* 1518 * Delayed allocation stuff 1519 */ 1520 1521 struct mpage_da_data { 1522 struct inode *inode; 1523 struct writeback_control *wbc; 1524 1525 pgoff_t first_page; /* The first page to write */ 1526 pgoff_t next_page; /* Current page to examine */ 1527 pgoff_t last_page; /* Last page to examine */ 1528 /* 1529 * Extent to map - this can be after first_page because that can be 1530 * fully mapped. We somewhat abuse m_flags to store whether the extent 1531 * is delalloc or unwritten. 1532 */ 1533 struct ext4_map_blocks map; 1534 struct ext4_io_submit io_submit; /* IO submission data */ 1535 unsigned int do_map:1; 1536 unsigned int scanned_until_end:1; 1537 }; 1538 1539 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1540 bool invalidate) 1541 { 1542 int nr_pages, i; 1543 pgoff_t index, end; 1544 struct pagevec pvec; 1545 struct inode *inode = mpd->inode; 1546 struct address_space *mapping = inode->i_mapping; 1547 1548 /* This is necessary when next_page == 0. */ 1549 if (mpd->first_page >= mpd->next_page) 1550 return; 1551 1552 mpd->scanned_until_end = 0; 1553 index = mpd->first_page; 1554 end = mpd->next_page - 1; 1555 if (invalidate) { 1556 ext4_lblk_t start, last; 1557 start = index << (PAGE_SHIFT - inode->i_blkbits); 1558 last = end << (PAGE_SHIFT - inode->i_blkbits); 1559 ext4_es_remove_extent(inode, start, last - start + 1); 1560 } 1561 1562 pagevec_init(&pvec); 1563 while (index <= end) { 1564 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end); 1565 if (nr_pages == 0) 1566 break; 1567 for (i = 0; i < nr_pages; i++) { 1568 struct page *page = pvec.pages[i]; 1569 1570 BUG_ON(!PageLocked(page)); 1571 BUG_ON(PageWriteback(page)); 1572 if (invalidate) { 1573 if (page_mapped(page)) 1574 clear_page_dirty_for_io(page); 1575 block_invalidatepage(page, 0, PAGE_SIZE); 1576 ClearPageUptodate(page); 1577 } 1578 unlock_page(page); 1579 } 1580 pagevec_release(&pvec); 1581 } 1582 } 1583 1584 static void ext4_print_free_blocks(struct inode *inode) 1585 { 1586 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1587 struct super_block *sb = inode->i_sb; 1588 struct ext4_inode_info *ei = EXT4_I(inode); 1589 1590 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1591 EXT4_C2B(EXT4_SB(inode->i_sb), 1592 ext4_count_free_clusters(sb))); 1593 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1594 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1595 (long long) EXT4_C2B(EXT4_SB(sb), 1596 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1597 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1598 (long long) EXT4_C2B(EXT4_SB(sb), 1599 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1600 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1601 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1602 ei->i_reserved_data_blocks); 1603 return; 1604 } 1605 1606 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1607 { 1608 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1609 } 1610 1611 /* 1612 * ext4_insert_delayed_block - adds a delayed block to the extents status 1613 * tree, incrementing the reserved cluster/block 1614 * count or making a pending reservation 1615 * where needed 1616 * 1617 * @inode - file containing the newly added block 1618 * @lblk - logical block to be added 1619 * 1620 * Returns 0 on success, negative error code on failure. 1621 */ 1622 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1623 { 1624 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1625 int ret; 1626 bool allocated = false; 1627 1628 /* 1629 * If the cluster containing lblk is shared with a delayed, 1630 * written, or unwritten extent in a bigalloc file system, it's 1631 * already been accounted for and does not need to be reserved. 1632 * A pending reservation must be made for the cluster if it's 1633 * shared with a written or unwritten extent and doesn't already 1634 * have one. Written and unwritten extents can be purged from the 1635 * extents status tree if the system is under memory pressure, so 1636 * it's necessary to examine the extent tree if a search of the 1637 * extents status tree doesn't get a match. 1638 */ 1639 if (sbi->s_cluster_ratio == 1) { 1640 ret = ext4_da_reserve_space(inode); 1641 if (ret != 0) /* ENOSPC */ 1642 goto errout; 1643 } else { /* bigalloc */ 1644 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1645 if (!ext4_es_scan_clu(inode, 1646 &ext4_es_is_mapped, lblk)) { 1647 ret = ext4_clu_mapped(inode, 1648 EXT4_B2C(sbi, lblk)); 1649 if (ret < 0) 1650 goto errout; 1651 if (ret == 0) { 1652 ret = ext4_da_reserve_space(inode); 1653 if (ret != 0) /* ENOSPC */ 1654 goto errout; 1655 } else { 1656 allocated = true; 1657 } 1658 } else { 1659 allocated = true; 1660 } 1661 } 1662 } 1663 1664 ret = ext4_es_insert_delayed_block(inode, lblk, allocated); 1665 1666 errout: 1667 return ret; 1668 } 1669 1670 /* 1671 * This function is grabs code from the very beginning of 1672 * ext4_map_blocks, but assumes that the caller is from delayed write 1673 * time. This function looks up the requested blocks and sets the 1674 * buffer delay bit under the protection of i_data_sem. 1675 */ 1676 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1677 struct ext4_map_blocks *map, 1678 struct buffer_head *bh) 1679 { 1680 struct extent_status es; 1681 int retval; 1682 sector_t invalid_block = ~((sector_t) 0xffff); 1683 #ifdef ES_AGGRESSIVE_TEST 1684 struct ext4_map_blocks orig_map; 1685 1686 memcpy(&orig_map, map, sizeof(*map)); 1687 #endif 1688 1689 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1690 invalid_block = ~0; 1691 1692 map->m_flags = 0; 1693 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1694 (unsigned long) map->m_lblk); 1695 1696 /* Lookup extent status tree firstly */ 1697 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1698 if (ext4_es_is_hole(&es)) { 1699 retval = 0; 1700 down_read(&EXT4_I(inode)->i_data_sem); 1701 goto add_delayed; 1702 } 1703 1704 /* 1705 * Delayed extent could be allocated by fallocate. 1706 * So we need to check it. 1707 */ 1708 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1709 map_bh(bh, inode->i_sb, invalid_block); 1710 set_buffer_new(bh); 1711 set_buffer_delay(bh); 1712 return 0; 1713 } 1714 1715 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1716 retval = es.es_len - (iblock - es.es_lblk); 1717 if (retval > map->m_len) 1718 retval = map->m_len; 1719 map->m_len = retval; 1720 if (ext4_es_is_written(&es)) 1721 map->m_flags |= EXT4_MAP_MAPPED; 1722 else if (ext4_es_is_unwritten(&es)) 1723 map->m_flags |= EXT4_MAP_UNWRITTEN; 1724 else 1725 BUG(); 1726 1727 #ifdef ES_AGGRESSIVE_TEST 1728 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1729 #endif 1730 return retval; 1731 } 1732 1733 /* 1734 * Try to see if we can get the block without requesting a new 1735 * file system block. 1736 */ 1737 down_read(&EXT4_I(inode)->i_data_sem); 1738 if (ext4_has_inline_data(inode)) 1739 retval = 0; 1740 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1741 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1742 else 1743 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1744 1745 add_delayed: 1746 if (retval == 0) { 1747 int ret; 1748 1749 /* 1750 * XXX: __block_prepare_write() unmaps passed block, 1751 * is it OK? 1752 */ 1753 1754 ret = ext4_insert_delayed_block(inode, map->m_lblk); 1755 if (ret != 0) { 1756 retval = ret; 1757 goto out_unlock; 1758 } 1759 1760 map_bh(bh, inode->i_sb, invalid_block); 1761 set_buffer_new(bh); 1762 set_buffer_delay(bh); 1763 } else if (retval > 0) { 1764 int ret; 1765 unsigned int status; 1766 1767 if (unlikely(retval != map->m_len)) { 1768 ext4_warning(inode->i_sb, 1769 "ES len assertion failed for inode " 1770 "%lu: retval %d != map->m_len %d", 1771 inode->i_ino, retval, map->m_len); 1772 WARN_ON(1); 1773 } 1774 1775 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1776 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1777 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1778 map->m_pblk, status); 1779 if (ret != 0) 1780 retval = ret; 1781 } 1782 1783 out_unlock: 1784 up_read((&EXT4_I(inode)->i_data_sem)); 1785 1786 return retval; 1787 } 1788 1789 /* 1790 * This is a special get_block_t callback which is used by 1791 * ext4_da_write_begin(). It will either return mapped block or 1792 * reserve space for a single block. 1793 * 1794 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1795 * We also have b_blocknr = -1 and b_bdev initialized properly 1796 * 1797 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1798 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1799 * initialized properly. 1800 */ 1801 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1802 struct buffer_head *bh, int create) 1803 { 1804 struct ext4_map_blocks map; 1805 int ret = 0; 1806 1807 BUG_ON(create == 0); 1808 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1809 1810 map.m_lblk = iblock; 1811 map.m_len = 1; 1812 1813 /* 1814 * first, we need to know whether the block is allocated already 1815 * preallocated blocks are unmapped but should treated 1816 * the same as allocated blocks. 1817 */ 1818 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1819 if (ret <= 0) 1820 return ret; 1821 1822 map_bh(bh, inode->i_sb, map.m_pblk); 1823 ext4_update_bh_state(bh, map.m_flags); 1824 1825 if (buffer_unwritten(bh)) { 1826 /* A delayed write to unwritten bh should be marked 1827 * new and mapped. Mapped ensures that we don't do 1828 * get_block multiple times when we write to the same 1829 * offset and new ensures that we do proper zero out 1830 * for partial write. 1831 */ 1832 set_buffer_new(bh); 1833 set_buffer_mapped(bh); 1834 } 1835 return 0; 1836 } 1837 1838 static int bget_one(handle_t *handle, struct buffer_head *bh) 1839 { 1840 get_bh(bh); 1841 return 0; 1842 } 1843 1844 static int bput_one(handle_t *handle, struct buffer_head *bh) 1845 { 1846 put_bh(bh); 1847 return 0; 1848 } 1849 1850 static int __ext4_journalled_writepage(struct page *page, 1851 unsigned int len) 1852 { 1853 struct address_space *mapping = page->mapping; 1854 struct inode *inode = mapping->host; 1855 struct buffer_head *page_bufs = NULL; 1856 handle_t *handle = NULL; 1857 int ret = 0, err = 0; 1858 int inline_data = ext4_has_inline_data(inode); 1859 struct buffer_head *inode_bh = NULL; 1860 1861 ClearPageChecked(page); 1862 1863 if (inline_data) { 1864 BUG_ON(page->index != 0); 1865 BUG_ON(len > ext4_get_max_inline_size(inode)); 1866 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1867 if (inode_bh == NULL) 1868 goto out; 1869 } else { 1870 page_bufs = page_buffers(page); 1871 if (!page_bufs) { 1872 BUG(); 1873 goto out; 1874 } 1875 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1876 NULL, bget_one); 1877 } 1878 /* 1879 * We need to release the page lock before we start the 1880 * journal, so grab a reference so the page won't disappear 1881 * out from under us. 1882 */ 1883 get_page(page); 1884 unlock_page(page); 1885 1886 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1887 ext4_writepage_trans_blocks(inode)); 1888 if (IS_ERR(handle)) { 1889 ret = PTR_ERR(handle); 1890 put_page(page); 1891 goto out_no_pagelock; 1892 } 1893 BUG_ON(!ext4_handle_valid(handle)); 1894 1895 lock_page(page); 1896 put_page(page); 1897 if (page->mapping != mapping) { 1898 /* The page got truncated from under us */ 1899 ext4_journal_stop(handle); 1900 ret = 0; 1901 goto out; 1902 } 1903 1904 if (inline_data) { 1905 ret = ext4_mark_inode_dirty(handle, inode); 1906 } else { 1907 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1908 do_journal_get_write_access); 1909 1910 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1911 write_end_fn); 1912 } 1913 if (ret == 0) 1914 ret = err; 1915 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1916 err = ext4_journal_stop(handle); 1917 if (!ret) 1918 ret = err; 1919 1920 if (!ext4_has_inline_data(inode)) 1921 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1922 NULL, bput_one); 1923 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1924 out: 1925 unlock_page(page); 1926 out_no_pagelock: 1927 brelse(inode_bh); 1928 return ret; 1929 } 1930 1931 /* 1932 * Note that we don't need to start a transaction unless we're journaling data 1933 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1934 * need to file the inode to the transaction's list in ordered mode because if 1935 * we are writing back data added by write(), the inode is already there and if 1936 * we are writing back data modified via mmap(), no one guarantees in which 1937 * transaction the data will hit the disk. In case we are journaling data, we 1938 * cannot start transaction directly because transaction start ranks above page 1939 * lock so we have to do some magic. 1940 * 1941 * This function can get called via... 1942 * - ext4_writepages after taking page lock (have journal handle) 1943 * - journal_submit_inode_data_buffers (no journal handle) 1944 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1945 * - grab_page_cache when doing write_begin (have journal handle) 1946 * 1947 * We don't do any block allocation in this function. If we have page with 1948 * multiple blocks we need to write those buffer_heads that are mapped. This 1949 * is important for mmaped based write. So if we do with blocksize 1K 1950 * truncate(f, 1024); 1951 * a = mmap(f, 0, 4096); 1952 * a[0] = 'a'; 1953 * truncate(f, 4096); 1954 * we have in the page first buffer_head mapped via page_mkwrite call back 1955 * but other buffer_heads would be unmapped but dirty (dirty done via the 1956 * do_wp_page). So writepage should write the first block. If we modify 1957 * the mmap area beyond 1024 we will again get a page_fault and the 1958 * page_mkwrite callback will do the block allocation and mark the 1959 * buffer_heads mapped. 1960 * 1961 * We redirty the page if we have any buffer_heads that is either delay or 1962 * unwritten in the page. 1963 * 1964 * We can get recursively called as show below. 1965 * 1966 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1967 * ext4_writepage() 1968 * 1969 * But since we don't do any block allocation we should not deadlock. 1970 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1971 */ 1972 static int ext4_writepage(struct page *page, 1973 struct writeback_control *wbc) 1974 { 1975 int ret = 0; 1976 loff_t size; 1977 unsigned int len; 1978 struct buffer_head *page_bufs = NULL; 1979 struct inode *inode = page->mapping->host; 1980 struct ext4_io_submit io_submit; 1981 bool keep_towrite = false; 1982 1983 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 1984 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 1985 unlock_page(page); 1986 return -EIO; 1987 } 1988 1989 trace_ext4_writepage(page); 1990 size = i_size_read(inode); 1991 if (page->index == size >> PAGE_SHIFT && 1992 !ext4_verity_in_progress(inode)) 1993 len = size & ~PAGE_MASK; 1994 else 1995 len = PAGE_SIZE; 1996 1997 page_bufs = page_buffers(page); 1998 /* 1999 * We cannot do block allocation or other extent handling in this 2000 * function. If there are buffers needing that, we have to redirty 2001 * the page. But we may reach here when we do a journal commit via 2002 * journal_submit_inode_data_buffers() and in that case we must write 2003 * allocated buffers to achieve data=ordered mode guarantees. 2004 * 2005 * Also, if there is only one buffer per page (the fs block 2006 * size == the page size), if one buffer needs block 2007 * allocation or needs to modify the extent tree to clear the 2008 * unwritten flag, we know that the page can't be written at 2009 * all, so we might as well refuse the write immediately. 2010 * Unfortunately if the block size != page size, we can't as 2011 * easily detect this case using ext4_walk_page_buffers(), but 2012 * for the extremely common case, this is an optimization that 2013 * skips a useless round trip through ext4_bio_write_page(). 2014 */ 2015 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2016 ext4_bh_delay_or_unwritten)) { 2017 redirty_page_for_writepage(wbc, page); 2018 if ((current->flags & PF_MEMALLOC) || 2019 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2020 /* 2021 * For memory cleaning there's no point in writing only 2022 * some buffers. So just bail out. Warn if we came here 2023 * from direct reclaim. 2024 */ 2025 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2026 == PF_MEMALLOC); 2027 unlock_page(page); 2028 return 0; 2029 } 2030 keep_towrite = true; 2031 } 2032 2033 if (PageChecked(page) && ext4_should_journal_data(inode)) 2034 /* 2035 * It's mmapped pagecache. Add buffers and journal it. There 2036 * doesn't seem much point in redirtying the page here. 2037 */ 2038 return __ext4_journalled_writepage(page, len); 2039 2040 ext4_io_submit_init(&io_submit, wbc); 2041 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2042 if (!io_submit.io_end) { 2043 redirty_page_for_writepage(wbc, page); 2044 unlock_page(page); 2045 return -ENOMEM; 2046 } 2047 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 2048 ext4_io_submit(&io_submit); 2049 /* Drop io_end reference we got from init */ 2050 ext4_put_io_end_defer(io_submit.io_end); 2051 return ret; 2052 } 2053 2054 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2055 { 2056 int len; 2057 loff_t size; 2058 int err; 2059 2060 BUG_ON(page->index != mpd->first_page); 2061 clear_page_dirty_for_io(page); 2062 /* 2063 * We have to be very careful here! Nothing protects writeback path 2064 * against i_size changes and the page can be writeably mapped into 2065 * page tables. So an application can be growing i_size and writing 2066 * data through mmap while writeback runs. clear_page_dirty_for_io() 2067 * write-protects our page in page tables and the page cannot get 2068 * written to again until we release page lock. So only after 2069 * clear_page_dirty_for_io() we are safe to sample i_size for 2070 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2071 * on the barrier provided by TestClearPageDirty in 2072 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2073 * after page tables are updated. 2074 */ 2075 size = i_size_read(mpd->inode); 2076 if (page->index == size >> PAGE_SHIFT && 2077 !ext4_verity_in_progress(mpd->inode)) 2078 len = size & ~PAGE_MASK; 2079 else 2080 len = PAGE_SIZE; 2081 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 2082 if (!err) 2083 mpd->wbc->nr_to_write--; 2084 mpd->first_page++; 2085 2086 return err; 2087 } 2088 2089 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 2090 2091 /* 2092 * mballoc gives us at most this number of blocks... 2093 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2094 * The rest of mballoc seems to handle chunks up to full group size. 2095 */ 2096 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2097 2098 /* 2099 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2100 * 2101 * @mpd - extent of blocks 2102 * @lblk - logical number of the block in the file 2103 * @bh - buffer head we want to add to the extent 2104 * 2105 * The function is used to collect contig. blocks in the same state. If the 2106 * buffer doesn't require mapping for writeback and we haven't started the 2107 * extent of buffers to map yet, the function returns 'true' immediately - the 2108 * caller can write the buffer right away. Otherwise the function returns true 2109 * if the block has been added to the extent, false if the block couldn't be 2110 * added. 2111 */ 2112 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2113 struct buffer_head *bh) 2114 { 2115 struct ext4_map_blocks *map = &mpd->map; 2116 2117 /* Buffer that doesn't need mapping for writeback? */ 2118 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2119 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2120 /* So far no extent to map => we write the buffer right away */ 2121 if (map->m_len == 0) 2122 return true; 2123 return false; 2124 } 2125 2126 /* First block in the extent? */ 2127 if (map->m_len == 0) { 2128 /* We cannot map unless handle is started... */ 2129 if (!mpd->do_map) 2130 return false; 2131 map->m_lblk = lblk; 2132 map->m_len = 1; 2133 map->m_flags = bh->b_state & BH_FLAGS; 2134 return true; 2135 } 2136 2137 /* Don't go larger than mballoc is willing to allocate */ 2138 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2139 return false; 2140 2141 /* Can we merge the block to our big extent? */ 2142 if (lblk == map->m_lblk + map->m_len && 2143 (bh->b_state & BH_FLAGS) == map->m_flags) { 2144 map->m_len++; 2145 return true; 2146 } 2147 return false; 2148 } 2149 2150 /* 2151 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2152 * 2153 * @mpd - extent of blocks for mapping 2154 * @head - the first buffer in the page 2155 * @bh - buffer we should start processing from 2156 * @lblk - logical number of the block in the file corresponding to @bh 2157 * 2158 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2159 * the page for IO if all buffers in this page were mapped and there's no 2160 * accumulated extent of buffers to map or add buffers in the page to the 2161 * extent of buffers to map. The function returns 1 if the caller can continue 2162 * by processing the next page, 0 if it should stop adding buffers to the 2163 * extent to map because we cannot extend it anymore. It can also return value 2164 * < 0 in case of error during IO submission. 2165 */ 2166 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2167 struct buffer_head *head, 2168 struct buffer_head *bh, 2169 ext4_lblk_t lblk) 2170 { 2171 struct inode *inode = mpd->inode; 2172 int err; 2173 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2174 >> inode->i_blkbits; 2175 2176 if (ext4_verity_in_progress(inode)) 2177 blocks = EXT_MAX_BLOCKS; 2178 2179 do { 2180 BUG_ON(buffer_locked(bh)); 2181 2182 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2183 /* Found extent to map? */ 2184 if (mpd->map.m_len) 2185 return 0; 2186 /* Buffer needs mapping and handle is not started? */ 2187 if (!mpd->do_map) 2188 return 0; 2189 /* Everything mapped so far and we hit EOF */ 2190 break; 2191 } 2192 } while (lblk++, (bh = bh->b_this_page) != head); 2193 /* So far everything mapped? Submit the page for IO. */ 2194 if (mpd->map.m_len == 0) { 2195 err = mpage_submit_page(mpd, head->b_page); 2196 if (err < 0) 2197 return err; 2198 } 2199 if (lblk >= blocks) { 2200 mpd->scanned_until_end = 1; 2201 return 0; 2202 } 2203 return 1; 2204 } 2205 2206 /* 2207 * mpage_process_page - update page buffers corresponding to changed extent and 2208 * may submit fully mapped page for IO 2209 * 2210 * @mpd - description of extent to map, on return next extent to map 2211 * @m_lblk - logical block mapping. 2212 * @m_pblk - corresponding physical mapping. 2213 * @map_bh - determines on return whether this page requires any further 2214 * mapping or not. 2215 * Scan given page buffers corresponding to changed extent and update buffer 2216 * state according to new extent state. 2217 * We map delalloc buffers to their physical location, clear unwritten bits. 2218 * If the given page is not fully mapped, we update @map to the next extent in 2219 * the given page that needs mapping & return @map_bh as true. 2220 */ 2221 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page, 2222 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2223 bool *map_bh) 2224 { 2225 struct buffer_head *head, *bh; 2226 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2227 ext4_lblk_t lblk = *m_lblk; 2228 ext4_fsblk_t pblock = *m_pblk; 2229 int err = 0; 2230 int blkbits = mpd->inode->i_blkbits; 2231 ssize_t io_end_size = 0; 2232 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2233 2234 bh = head = page_buffers(page); 2235 do { 2236 if (lblk < mpd->map.m_lblk) 2237 continue; 2238 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2239 /* 2240 * Buffer after end of mapped extent. 2241 * Find next buffer in the page to map. 2242 */ 2243 mpd->map.m_len = 0; 2244 mpd->map.m_flags = 0; 2245 io_end_vec->size += io_end_size; 2246 io_end_size = 0; 2247 2248 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2249 if (err > 0) 2250 err = 0; 2251 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2252 io_end_vec = ext4_alloc_io_end_vec(io_end); 2253 if (IS_ERR(io_end_vec)) { 2254 err = PTR_ERR(io_end_vec); 2255 goto out; 2256 } 2257 io_end_vec->offset = mpd->map.m_lblk << blkbits; 2258 } 2259 *map_bh = true; 2260 goto out; 2261 } 2262 if (buffer_delay(bh)) { 2263 clear_buffer_delay(bh); 2264 bh->b_blocknr = pblock++; 2265 } 2266 clear_buffer_unwritten(bh); 2267 io_end_size += (1 << blkbits); 2268 } while (lblk++, (bh = bh->b_this_page) != head); 2269 2270 io_end_vec->size += io_end_size; 2271 io_end_size = 0; 2272 *map_bh = false; 2273 out: 2274 *m_lblk = lblk; 2275 *m_pblk = pblock; 2276 return err; 2277 } 2278 2279 /* 2280 * mpage_map_buffers - update buffers corresponding to changed extent and 2281 * submit fully mapped pages for IO 2282 * 2283 * @mpd - description of extent to map, on return next extent to map 2284 * 2285 * Scan buffers corresponding to changed extent (we expect corresponding pages 2286 * to be already locked) and update buffer state according to new extent state. 2287 * We map delalloc buffers to their physical location, clear unwritten bits, 2288 * and mark buffers as uninit when we perform writes to unwritten extents 2289 * and do extent conversion after IO is finished. If the last page is not fully 2290 * mapped, we update @map to the next extent in the last page that needs 2291 * mapping. Otherwise we submit the page for IO. 2292 */ 2293 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2294 { 2295 struct pagevec pvec; 2296 int nr_pages, i; 2297 struct inode *inode = mpd->inode; 2298 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2299 pgoff_t start, end; 2300 ext4_lblk_t lblk; 2301 ext4_fsblk_t pblock; 2302 int err; 2303 bool map_bh = false; 2304 2305 start = mpd->map.m_lblk >> bpp_bits; 2306 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2307 lblk = start << bpp_bits; 2308 pblock = mpd->map.m_pblk; 2309 2310 pagevec_init(&pvec); 2311 while (start <= end) { 2312 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, 2313 &start, end); 2314 if (nr_pages == 0) 2315 break; 2316 for (i = 0; i < nr_pages; i++) { 2317 struct page *page = pvec.pages[i]; 2318 2319 err = mpage_process_page(mpd, page, &lblk, &pblock, 2320 &map_bh); 2321 /* 2322 * If map_bh is true, means page may require further bh 2323 * mapping, or maybe the page was submitted for IO. 2324 * So we return to call further extent mapping. 2325 */ 2326 if (err < 0 || map_bh) 2327 goto out; 2328 /* Page fully mapped - let IO run! */ 2329 err = mpage_submit_page(mpd, page); 2330 if (err < 0) 2331 goto out; 2332 } 2333 pagevec_release(&pvec); 2334 } 2335 /* Extent fully mapped and matches with page boundary. We are done. */ 2336 mpd->map.m_len = 0; 2337 mpd->map.m_flags = 0; 2338 return 0; 2339 out: 2340 pagevec_release(&pvec); 2341 return err; 2342 } 2343 2344 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2345 { 2346 struct inode *inode = mpd->inode; 2347 struct ext4_map_blocks *map = &mpd->map; 2348 int get_blocks_flags; 2349 int err, dioread_nolock; 2350 2351 trace_ext4_da_write_pages_extent(inode, map); 2352 /* 2353 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2354 * to convert an unwritten extent to be initialized (in the case 2355 * where we have written into one or more preallocated blocks). It is 2356 * possible that we're going to need more metadata blocks than 2357 * previously reserved. However we must not fail because we're in 2358 * writeback and there is nothing we can do about it so it might result 2359 * in data loss. So use reserved blocks to allocate metadata if 2360 * possible. 2361 * 2362 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2363 * the blocks in question are delalloc blocks. This indicates 2364 * that the blocks and quotas has already been checked when 2365 * the data was copied into the page cache. 2366 */ 2367 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2368 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2369 EXT4_GET_BLOCKS_IO_SUBMIT; 2370 dioread_nolock = ext4_should_dioread_nolock(inode); 2371 if (dioread_nolock) 2372 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2373 if (map->m_flags & BIT(BH_Delay)) 2374 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2375 2376 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2377 if (err < 0) 2378 return err; 2379 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2380 if (!mpd->io_submit.io_end->handle && 2381 ext4_handle_valid(handle)) { 2382 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2383 handle->h_rsv_handle = NULL; 2384 } 2385 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2386 } 2387 2388 BUG_ON(map->m_len == 0); 2389 return 0; 2390 } 2391 2392 /* 2393 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2394 * mpd->len and submit pages underlying it for IO 2395 * 2396 * @handle - handle for journal operations 2397 * @mpd - extent to map 2398 * @give_up_on_write - we set this to true iff there is a fatal error and there 2399 * is no hope of writing the data. The caller should discard 2400 * dirty pages to avoid infinite loops. 2401 * 2402 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2403 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2404 * them to initialized or split the described range from larger unwritten 2405 * extent. Note that we need not map all the described range since allocation 2406 * can return less blocks or the range is covered by more unwritten extents. We 2407 * cannot map more because we are limited by reserved transaction credits. On 2408 * the other hand we always make sure that the last touched page is fully 2409 * mapped so that it can be written out (and thus forward progress is 2410 * guaranteed). After mapping we submit all mapped pages for IO. 2411 */ 2412 static int mpage_map_and_submit_extent(handle_t *handle, 2413 struct mpage_da_data *mpd, 2414 bool *give_up_on_write) 2415 { 2416 struct inode *inode = mpd->inode; 2417 struct ext4_map_blocks *map = &mpd->map; 2418 int err; 2419 loff_t disksize; 2420 int progress = 0; 2421 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2422 struct ext4_io_end_vec *io_end_vec; 2423 2424 io_end_vec = ext4_alloc_io_end_vec(io_end); 2425 if (IS_ERR(io_end_vec)) 2426 return PTR_ERR(io_end_vec); 2427 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2428 do { 2429 err = mpage_map_one_extent(handle, mpd); 2430 if (err < 0) { 2431 struct super_block *sb = inode->i_sb; 2432 2433 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2434 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2435 goto invalidate_dirty_pages; 2436 /* 2437 * Let the uper layers retry transient errors. 2438 * In the case of ENOSPC, if ext4_count_free_blocks() 2439 * is non-zero, a commit should free up blocks. 2440 */ 2441 if ((err == -ENOMEM) || 2442 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2443 if (progress) 2444 goto update_disksize; 2445 return err; 2446 } 2447 ext4_msg(sb, KERN_CRIT, 2448 "Delayed block allocation failed for " 2449 "inode %lu at logical offset %llu with" 2450 " max blocks %u with error %d", 2451 inode->i_ino, 2452 (unsigned long long)map->m_lblk, 2453 (unsigned)map->m_len, -err); 2454 ext4_msg(sb, KERN_CRIT, 2455 "This should not happen!! Data will " 2456 "be lost\n"); 2457 if (err == -ENOSPC) 2458 ext4_print_free_blocks(inode); 2459 invalidate_dirty_pages: 2460 *give_up_on_write = true; 2461 return err; 2462 } 2463 progress = 1; 2464 /* 2465 * Update buffer state, submit mapped pages, and get us new 2466 * extent to map 2467 */ 2468 err = mpage_map_and_submit_buffers(mpd); 2469 if (err < 0) 2470 goto update_disksize; 2471 } while (map->m_len); 2472 2473 update_disksize: 2474 /* 2475 * Update on-disk size after IO is submitted. Races with 2476 * truncate are avoided by checking i_size under i_data_sem. 2477 */ 2478 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2479 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2480 int err2; 2481 loff_t i_size; 2482 2483 down_write(&EXT4_I(inode)->i_data_sem); 2484 i_size = i_size_read(inode); 2485 if (disksize > i_size) 2486 disksize = i_size; 2487 if (disksize > EXT4_I(inode)->i_disksize) 2488 EXT4_I(inode)->i_disksize = disksize; 2489 up_write(&EXT4_I(inode)->i_data_sem); 2490 err2 = ext4_mark_inode_dirty(handle, inode); 2491 if (err2) { 2492 ext4_error_err(inode->i_sb, -err2, 2493 "Failed to mark inode %lu dirty", 2494 inode->i_ino); 2495 } 2496 if (!err) 2497 err = err2; 2498 } 2499 return err; 2500 } 2501 2502 /* 2503 * Calculate the total number of credits to reserve for one writepages 2504 * iteration. This is called from ext4_writepages(). We map an extent of 2505 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2506 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2507 * bpp - 1 blocks in bpp different extents. 2508 */ 2509 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2510 { 2511 int bpp = ext4_journal_blocks_per_page(inode); 2512 2513 return ext4_meta_trans_blocks(inode, 2514 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2515 } 2516 2517 /* 2518 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2519 * and underlying extent to map 2520 * 2521 * @mpd - where to look for pages 2522 * 2523 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2524 * IO immediately. When we find a page which isn't mapped we start accumulating 2525 * extent of buffers underlying these pages that needs mapping (formed by 2526 * either delayed or unwritten buffers). We also lock the pages containing 2527 * these buffers. The extent found is returned in @mpd structure (starting at 2528 * mpd->lblk with length mpd->len blocks). 2529 * 2530 * Note that this function can attach bios to one io_end structure which are 2531 * neither logically nor physically contiguous. Although it may seem as an 2532 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2533 * case as we need to track IO to all buffers underlying a page in one io_end. 2534 */ 2535 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2536 { 2537 struct address_space *mapping = mpd->inode->i_mapping; 2538 struct pagevec pvec; 2539 unsigned int nr_pages; 2540 long left = mpd->wbc->nr_to_write; 2541 pgoff_t index = mpd->first_page; 2542 pgoff_t end = mpd->last_page; 2543 xa_mark_t tag; 2544 int i, err = 0; 2545 int blkbits = mpd->inode->i_blkbits; 2546 ext4_lblk_t lblk; 2547 struct buffer_head *head; 2548 2549 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2550 tag = PAGECACHE_TAG_TOWRITE; 2551 else 2552 tag = PAGECACHE_TAG_DIRTY; 2553 2554 pagevec_init(&pvec); 2555 mpd->map.m_len = 0; 2556 mpd->next_page = index; 2557 while (index <= end) { 2558 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2559 tag); 2560 if (nr_pages == 0) 2561 break; 2562 2563 for (i = 0; i < nr_pages; i++) { 2564 struct page *page = pvec.pages[i]; 2565 2566 /* 2567 * Accumulated enough dirty pages? This doesn't apply 2568 * to WB_SYNC_ALL mode. For integrity sync we have to 2569 * keep going because someone may be concurrently 2570 * dirtying pages, and we might have synced a lot of 2571 * newly appeared dirty pages, but have not synced all 2572 * of the old dirty pages. 2573 */ 2574 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2575 goto out; 2576 2577 /* If we can't merge this page, we are done. */ 2578 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2579 goto out; 2580 2581 lock_page(page); 2582 /* 2583 * If the page is no longer dirty, or its mapping no 2584 * longer corresponds to inode we are writing (which 2585 * means it has been truncated or invalidated), or the 2586 * page is already under writeback and we are not doing 2587 * a data integrity writeback, skip the page 2588 */ 2589 if (!PageDirty(page) || 2590 (PageWriteback(page) && 2591 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2592 unlikely(page->mapping != mapping)) { 2593 unlock_page(page); 2594 continue; 2595 } 2596 2597 wait_on_page_writeback(page); 2598 BUG_ON(PageWriteback(page)); 2599 2600 if (mpd->map.m_len == 0) 2601 mpd->first_page = page->index; 2602 mpd->next_page = page->index + 1; 2603 /* Add all dirty buffers to mpd */ 2604 lblk = ((ext4_lblk_t)page->index) << 2605 (PAGE_SHIFT - blkbits); 2606 head = page_buffers(page); 2607 err = mpage_process_page_bufs(mpd, head, head, lblk); 2608 if (err <= 0) 2609 goto out; 2610 err = 0; 2611 left--; 2612 } 2613 pagevec_release(&pvec); 2614 cond_resched(); 2615 } 2616 mpd->scanned_until_end = 1; 2617 return 0; 2618 out: 2619 pagevec_release(&pvec); 2620 return err; 2621 } 2622 2623 static int ext4_writepages(struct address_space *mapping, 2624 struct writeback_control *wbc) 2625 { 2626 pgoff_t writeback_index = 0; 2627 long nr_to_write = wbc->nr_to_write; 2628 int range_whole = 0; 2629 int cycled = 1; 2630 handle_t *handle = NULL; 2631 struct mpage_da_data mpd; 2632 struct inode *inode = mapping->host; 2633 int needed_blocks, rsv_blocks = 0, ret = 0; 2634 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2635 struct blk_plug plug; 2636 bool give_up_on_write = false; 2637 2638 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2639 return -EIO; 2640 2641 percpu_down_read(&sbi->s_writepages_rwsem); 2642 trace_ext4_writepages(inode, wbc); 2643 2644 /* 2645 * No pages to write? This is mainly a kludge to avoid starting 2646 * a transaction for special inodes like journal inode on last iput() 2647 * because that could violate lock ordering on umount 2648 */ 2649 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2650 goto out_writepages; 2651 2652 if (ext4_should_journal_data(inode)) { 2653 ret = generic_writepages(mapping, wbc); 2654 goto out_writepages; 2655 } 2656 2657 /* 2658 * If the filesystem has aborted, it is read-only, so return 2659 * right away instead of dumping stack traces later on that 2660 * will obscure the real source of the problem. We test 2661 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because 2662 * the latter could be true if the filesystem is mounted 2663 * read-only, and in that case, ext4_writepages should 2664 * *never* be called, so if that ever happens, we would want 2665 * the stack trace. 2666 */ 2667 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2668 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2669 ret = -EROFS; 2670 goto out_writepages; 2671 } 2672 2673 /* 2674 * If we have inline data and arrive here, it means that 2675 * we will soon create the block for the 1st page, so 2676 * we'd better clear the inline data here. 2677 */ 2678 if (ext4_has_inline_data(inode)) { 2679 /* Just inode will be modified... */ 2680 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2681 if (IS_ERR(handle)) { 2682 ret = PTR_ERR(handle); 2683 goto out_writepages; 2684 } 2685 BUG_ON(ext4_test_inode_state(inode, 2686 EXT4_STATE_MAY_INLINE_DATA)); 2687 ext4_destroy_inline_data(handle, inode); 2688 ext4_journal_stop(handle); 2689 } 2690 2691 if (ext4_should_dioread_nolock(inode)) { 2692 /* 2693 * We may need to convert up to one extent per block in 2694 * the page and we may dirty the inode. 2695 */ 2696 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2697 PAGE_SIZE >> inode->i_blkbits); 2698 } 2699 2700 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2701 range_whole = 1; 2702 2703 if (wbc->range_cyclic) { 2704 writeback_index = mapping->writeback_index; 2705 if (writeback_index) 2706 cycled = 0; 2707 mpd.first_page = writeback_index; 2708 mpd.last_page = -1; 2709 } else { 2710 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2711 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2712 } 2713 2714 mpd.inode = inode; 2715 mpd.wbc = wbc; 2716 ext4_io_submit_init(&mpd.io_submit, wbc); 2717 retry: 2718 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2719 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2720 blk_start_plug(&plug); 2721 2722 /* 2723 * First writeback pages that don't need mapping - we can avoid 2724 * starting a transaction unnecessarily and also avoid being blocked 2725 * in the block layer on device congestion while having transaction 2726 * started. 2727 */ 2728 mpd.do_map = 0; 2729 mpd.scanned_until_end = 0; 2730 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2731 if (!mpd.io_submit.io_end) { 2732 ret = -ENOMEM; 2733 goto unplug; 2734 } 2735 ret = mpage_prepare_extent_to_map(&mpd); 2736 /* Unlock pages we didn't use */ 2737 mpage_release_unused_pages(&mpd, false); 2738 /* Submit prepared bio */ 2739 ext4_io_submit(&mpd.io_submit); 2740 ext4_put_io_end_defer(mpd.io_submit.io_end); 2741 mpd.io_submit.io_end = NULL; 2742 if (ret < 0) 2743 goto unplug; 2744 2745 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) { 2746 /* For each extent of pages we use new io_end */ 2747 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2748 if (!mpd.io_submit.io_end) { 2749 ret = -ENOMEM; 2750 break; 2751 } 2752 2753 /* 2754 * We have two constraints: We find one extent to map and we 2755 * must always write out whole page (makes a difference when 2756 * blocksize < pagesize) so that we don't block on IO when we 2757 * try to write out the rest of the page. Journalled mode is 2758 * not supported by delalloc. 2759 */ 2760 BUG_ON(ext4_should_journal_data(inode)); 2761 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2762 2763 /* start a new transaction */ 2764 handle = ext4_journal_start_with_reserve(inode, 2765 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2766 if (IS_ERR(handle)) { 2767 ret = PTR_ERR(handle); 2768 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2769 "%ld pages, ino %lu; err %d", __func__, 2770 wbc->nr_to_write, inode->i_ino, ret); 2771 /* Release allocated io_end */ 2772 ext4_put_io_end(mpd.io_submit.io_end); 2773 mpd.io_submit.io_end = NULL; 2774 break; 2775 } 2776 mpd.do_map = 1; 2777 2778 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2779 ret = mpage_prepare_extent_to_map(&mpd); 2780 if (!ret && mpd.map.m_len) 2781 ret = mpage_map_and_submit_extent(handle, &mpd, 2782 &give_up_on_write); 2783 /* 2784 * Caution: If the handle is synchronous, 2785 * ext4_journal_stop() can wait for transaction commit 2786 * to finish which may depend on writeback of pages to 2787 * complete or on page lock to be released. In that 2788 * case, we have to wait until after after we have 2789 * submitted all the IO, released page locks we hold, 2790 * and dropped io_end reference (for extent conversion 2791 * to be able to complete) before stopping the handle. 2792 */ 2793 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2794 ext4_journal_stop(handle); 2795 handle = NULL; 2796 mpd.do_map = 0; 2797 } 2798 /* Unlock pages we didn't use */ 2799 mpage_release_unused_pages(&mpd, give_up_on_write); 2800 /* Submit prepared bio */ 2801 ext4_io_submit(&mpd.io_submit); 2802 2803 /* 2804 * Drop our io_end reference we got from init. We have 2805 * to be careful and use deferred io_end finishing if 2806 * we are still holding the transaction as we can 2807 * release the last reference to io_end which may end 2808 * up doing unwritten extent conversion. 2809 */ 2810 if (handle) { 2811 ext4_put_io_end_defer(mpd.io_submit.io_end); 2812 ext4_journal_stop(handle); 2813 } else 2814 ext4_put_io_end(mpd.io_submit.io_end); 2815 mpd.io_submit.io_end = NULL; 2816 2817 if (ret == -ENOSPC && sbi->s_journal) { 2818 /* 2819 * Commit the transaction which would 2820 * free blocks released in the transaction 2821 * and try again 2822 */ 2823 jbd2_journal_force_commit_nested(sbi->s_journal); 2824 ret = 0; 2825 continue; 2826 } 2827 /* Fatal error - ENOMEM, EIO... */ 2828 if (ret) 2829 break; 2830 } 2831 unplug: 2832 blk_finish_plug(&plug); 2833 if (!ret && !cycled && wbc->nr_to_write > 0) { 2834 cycled = 1; 2835 mpd.last_page = writeback_index - 1; 2836 mpd.first_page = 0; 2837 goto retry; 2838 } 2839 2840 /* Update index */ 2841 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2842 /* 2843 * Set the writeback_index so that range_cyclic 2844 * mode will write it back later 2845 */ 2846 mapping->writeback_index = mpd.first_page; 2847 2848 out_writepages: 2849 trace_ext4_writepages_result(inode, wbc, ret, 2850 nr_to_write - wbc->nr_to_write); 2851 percpu_up_read(&sbi->s_writepages_rwsem); 2852 return ret; 2853 } 2854 2855 static int ext4_dax_writepages(struct address_space *mapping, 2856 struct writeback_control *wbc) 2857 { 2858 int ret; 2859 long nr_to_write = wbc->nr_to_write; 2860 struct inode *inode = mapping->host; 2861 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2862 2863 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2864 return -EIO; 2865 2866 percpu_down_read(&sbi->s_writepages_rwsem); 2867 trace_ext4_writepages(inode, wbc); 2868 2869 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc); 2870 trace_ext4_writepages_result(inode, wbc, ret, 2871 nr_to_write - wbc->nr_to_write); 2872 percpu_up_read(&sbi->s_writepages_rwsem); 2873 return ret; 2874 } 2875 2876 static int ext4_nonda_switch(struct super_block *sb) 2877 { 2878 s64 free_clusters, dirty_clusters; 2879 struct ext4_sb_info *sbi = EXT4_SB(sb); 2880 2881 /* 2882 * switch to non delalloc mode if we are running low 2883 * on free block. The free block accounting via percpu 2884 * counters can get slightly wrong with percpu_counter_batch getting 2885 * accumulated on each CPU without updating global counters 2886 * Delalloc need an accurate free block accounting. So switch 2887 * to non delalloc when we are near to error range. 2888 */ 2889 free_clusters = 2890 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2891 dirty_clusters = 2892 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2893 /* 2894 * Start pushing delalloc when 1/2 of free blocks are dirty. 2895 */ 2896 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2897 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2898 2899 if (2 * free_clusters < 3 * dirty_clusters || 2900 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2901 /* 2902 * free block count is less than 150% of dirty blocks 2903 * or free blocks is less than watermark 2904 */ 2905 return 1; 2906 } 2907 return 0; 2908 } 2909 2910 /* We always reserve for an inode update; the superblock could be there too */ 2911 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2912 { 2913 if (likely(ext4_has_feature_large_file(inode->i_sb))) 2914 return 1; 2915 2916 if (pos + len <= 0x7fffffffULL) 2917 return 1; 2918 2919 /* We might need to update the superblock to set LARGE_FILE */ 2920 return 2; 2921 } 2922 2923 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2924 loff_t pos, unsigned len, unsigned flags, 2925 struct page **pagep, void **fsdata) 2926 { 2927 int ret, retries = 0; 2928 struct page *page; 2929 pgoff_t index; 2930 struct inode *inode = mapping->host; 2931 handle_t *handle; 2932 2933 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2934 return -EIO; 2935 2936 index = pos >> PAGE_SHIFT; 2937 2938 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) || 2939 ext4_verity_in_progress(inode)) { 2940 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2941 return ext4_write_begin(file, mapping, pos, 2942 len, flags, pagep, fsdata); 2943 } 2944 *fsdata = (void *)0; 2945 trace_ext4_da_write_begin(inode, pos, len, flags); 2946 2947 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2948 ret = ext4_da_write_inline_data_begin(mapping, inode, 2949 pos, len, flags, 2950 pagep, fsdata); 2951 if (ret < 0) 2952 return ret; 2953 if (ret == 1) 2954 return 0; 2955 } 2956 2957 /* 2958 * grab_cache_page_write_begin() can take a long time if the 2959 * system is thrashing due to memory pressure, or if the page 2960 * is being written back. So grab it first before we start 2961 * the transaction handle. This also allows us to allocate 2962 * the page (if needed) without using GFP_NOFS. 2963 */ 2964 retry_grab: 2965 page = grab_cache_page_write_begin(mapping, index, flags); 2966 if (!page) 2967 return -ENOMEM; 2968 unlock_page(page); 2969 2970 /* 2971 * With delayed allocation, we don't log the i_disksize update 2972 * if there is delayed block allocation. But we still need 2973 * to journalling the i_disksize update if writes to the end 2974 * of file which has an already mapped buffer. 2975 */ 2976 retry_journal: 2977 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2978 ext4_da_write_credits(inode, pos, len)); 2979 if (IS_ERR(handle)) { 2980 put_page(page); 2981 return PTR_ERR(handle); 2982 } 2983 2984 lock_page(page); 2985 if (page->mapping != mapping) { 2986 /* The page got truncated from under us */ 2987 unlock_page(page); 2988 put_page(page); 2989 ext4_journal_stop(handle); 2990 goto retry_grab; 2991 } 2992 /* In case writeback began while the page was unlocked */ 2993 wait_for_stable_page(page); 2994 2995 #ifdef CONFIG_FS_ENCRYPTION 2996 ret = ext4_block_write_begin(page, pos, len, 2997 ext4_da_get_block_prep); 2998 #else 2999 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3000 #endif 3001 if (ret < 0) { 3002 unlock_page(page); 3003 ext4_journal_stop(handle); 3004 /* 3005 * block_write_begin may have instantiated a few blocks 3006 * outside i_size. Trim these off again. Don't need 3007 * i_size_read because we hold i_mutex. 3008 */ 3009 if (pos + len > inode->i_size) 3010 ext4_truncate_failed_write(inode); 3011 3012 if (ret == -ENOSPC && 3013 ext4_should_retry_alloc(inode->i_sb, &retries)) 3014 goto retry_journal; 3015 3016 put_page(page); 3017 return ret; 3018 } 3019 3020 *pagep = page; 3021 return ret; 3022 } 3023 3024 /* 3025 * Check if we should update i_disksize 3026 * when write to the end of file but not require block allocation 3027 */ 3028 static int ext4_da_should_update_i_disksize(struct page *page, 3029 unsigned long offset) 3030 { 3031 struct buffer_head *bh; 3032 struct inode *inode = page->mapping->host; 3033 unsigned int idx; 3034 int i; 3035 3036 bh = page_buffers(page); 3037 idx = offset >> inode->i_blkbits; 3038 3039 for (i = 0; i < idx; i++) 3040 bh = bh->b_this_page; 3041 3042 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3043 return 0; 3044 return 1; 3045 } 3046 3047 static int ext4_da_write_end(struct file *file, 3048 struct address_space *mapping, 3049 loff_t pos, unsigned len, unsigned copied, 3050 struct page *page, void *fsdata) 3051 { 3052 struct inode *inode = mapping->host; 3053 int ret = 0, ret2; 3054 handle_t *handle = ext4_journal_current_handle(); 3055 loff_t new_i_size; 3056 unsigned long start, end; 3057 int write_mode = (int)(unsigned long)fsdata; 3058 3059 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3060 return ext4_write_end(file, mapping, pos, 3061 len, copied, page, fsdata); 3062 3063 trace_ext4_da_write_end(inode, pos, len, copied); 3064 start = pos & (PAGE_SIZE - 1); 3065 end = start + copied - 1; 3066 3067 /* 3068 * generic_write_end() will run mark_inode_dirty() if i_size 3069 * changes. So let's piggyback the i_disksize mark_inode_dirty 3070 * into that. 3071 */ 3072 new_i_size = pos + copied; 3073 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 3074 if (ext4_has_inline_data(inode) || 3075 ext4_da_should_update_i_disksize(page, end)) { 3076 ext4_update_i_disksize(inode, new_i_size); 3077 /* We need to mark inode dirty even if 3078 * new_i_size is less that inode->i_size 3079 * bu greater than i_disksize.(hint delalloc) 3080 */ 3081 ret = ext4_mark_inode_dirty(handle, inode); 3082 } 3083 } 3084 3085 if (write_mode != CONVERT_INLINE_DATA && 3086 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3087 ext4_has_inline_data(inode)) 3088 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 3089 page); 3090 else 3091 ret2 = generic_write_end(file, mapping, pos, len, copied, 3092 page, fsdata); 3093 3094 copied = ret2; 3095 if (ret2 < 0) 3096 ret = ret2; 3097 ret2 = ext4_journal_stop(handle); 3098 if (unlikely(ret2 && !ret)) 3099 ret = ret2; 3100 3101 return ret ? ret : copied; 3102 } 3103 3104 /* 3105 * Force all delayed allocation blocks to be allocated for a given inode. 3106 */ 3107 int ext4_alloc_da_blocks(struct inode *inode) 3108 { 3109 trace_ext4_alloc_da_blocks(inode); 3110 3111 if (!EXT4_I(inode)->i_reserved_data_blocks) 3112 return 0; 3113 3114 /* 3115 * We do something simple for now. The filemap_flush() will 3116 * also start triggering a write of the data blocks, which is 3117 * not strictly speaking necessary (and for users of 3118 * laptop_mode, not even desirable). However, to do otherwise 3119 * would require replicating code paths in: 3120 * 3121 * ext4_writepages() -> 3122 * write_cache_pages() ---> (via passed in callback function) 3123 * __mpage_da_writepage() --> 3124 * mpage_add_bh_to_extent() 3125 * mpage_da_map_blocks() 3126 * 3127 * The problem is that write_cache_pages(), located in 3128 * mm/page-writeback.c, marks pages clean in preparation for 3129 * doing I/O, which is not desirable if we're not planning on 3130 * doing I/O at all. 3131 * 3132 * We could call write_cache_pages(), and then redirty all of 3133 * the pages by calling redirty_page_for_writepage() but that 3134 * would be ugly in the extreme. So instead we would need to 3135 * replicate parts of the code in the above functions, 3136 * simplifying them because we wouldn't actually intend to 3137 * write out the pages, but rather only collect contiguous 3138 * logical block extents, call the multi-block allocator, and 3139 * then update the buffer heads with the block allocations. 3140 * 3141 * For now, though, we'll cheat by calling filemap_flush(), 3142 * which will map the blocks, and start the I/O, but not 3143 * actually wait for the I/O to complete. 3144 */ 3145 return filemap_flush(inode->i_mapping); 3146 } 3147 3148 /* 3149 * bmap() is special. It gets used by applications such as lilo and by 3150 * the swapper to find the on-disk block of a specific piece of data. 3151 * 3152 * Naturally, this is dangerous if the block concerned is still in the 3153 * journal. If somebody makes a swapfile on an ext4 data-journaling 3154 * filesystem and enables swap, then they may get a nasty shock when the 3155 * data getting swapped to that swapfile suddenly gets overwritten by 3156 * the original zero's written out previously to the journal and 3157 * awaiting writeback in the kernel's buffer cache. 3158 * 3159 * So, if we see any bmap calls here on a modified, data-journaled file, 3160 * take extra steps to flush any blocks which might be in the cache. 3161 */ 3162 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3163 { 3164 struct inode *inode = mapping->host; 3165 journal_t *journal; 3166 int err; 3167 3168 /* 3169 * We can get here for an inline file via the FIBMAP ioctl 3170 */ 3171 if (ext4_has_inline_data(inode)) 3172 return 0; 3173 3174 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3175 test_opt(inode->i_sb, DELALLOC)) { 3176 /* 3177 * With delalloc we want to sync the file 3178 * so that we can make sure we allocate 3179 * blocks for file 3180 */ 3181 filemap_write_and_wait(mapping); 3182 } 3183 3184 if (EXT4_JOURNAL(inode) && 3185 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3186 /* 3187 * This is a REALLY heavyweight approach, but the use of 3188 * bmap on dirty files is expected to be extremely rare: 3189 * only if we run lilo or swapon on a freshly made file 3190 * do we expect this to happen. 3191 * 3192 * (bmap requires CAP_SYS_RAWIO so this does not 3193 * represent an unprivileged user DOS attack --- we'd be 3194 * in trouble if mortal users could trigger this path at 3195 * will.) 3196 * 3197 * NB. EXT4_STATE_JDATA is not set on files other than 3198 * regular files. If somebody wants to bmap a directory 3199 * or symlink and gets confused because the buffer 3200 * hasn't yet been flushed to disk, they deserve 3201 * everything they get. 3202 */ 3203 3204 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3205 journal = EXT4_JOURNAL(inode); 3206 jbd2_journal_lock_updates(journal); 3207 err = jbd2_journal_flush(journal); 3208 jbd2_journal_unlock_updates(journal); 3209 3210 if (err) 3211 return 0; 3212 } 3213 3214 return iomap_bmap(mapping, block, &ext4_iomap_ops); 3215 } 3216 3217 static int ext4_readpage(struct file *file, struct page *page) 3218 { 3219 int ret = -EAGAIN; 3220 struct inode *inode = page->mapping->host; 3221 3222 trace_ext4_readpage(page); 3223 3224 if (ext4_has_inline_data(inode)) 3225 ret = ext4_readpage_inline(inode, page); 3226 3227 if (ret == -EAGAIN) 3228 return ext4_mpage_readpages(inode, NULL, page); 3229 3230 return ret; 3231 } 3232 3233 static void ext4_readahead(struct readahead_control *rac) 3234 { 3235 struct inode *inode = rac->mapping->host; 3236 3237 /* If the file has inline data, no need to do readahead. */ 3238 if (ext4_has_inline_data(inode)) 3239 return; 3240 3241 ext4_mpage_readpages(inode, rac, NULL); 3242 } 3243 3244 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3245 unsigned int length) 3246 { 3247 trace_ext4_invalidatepage(page, offset, length); 3248 3249 /* No journalling happens on data buffers when this function is used */ 3250 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3251 3252 block_invalidatepage(page, offset, length); 3253 } 3254 3255 static int __ext4_journalled_invalidatepage(struct page *page, 3256 unsigned int offset, 3257 unsigned int length) 3258 { 3259 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3260 3261 trace_ext4_journalled_invalidatepage(page, offset, length); 3262 3263 /* 3264 * If it's a full truncate we just forget about the pending dirtying 3265 */ 3266 if (offset == 0 && length == PAGE_SIZE) 3267 ClearPageChecked(page); 3268 3269 return jbd2_journal_invalidatepage(journal, page, offset, length); 3270 } 3271 3272 /* Wrapper for aops... */ 3273 static void ext4_journalled_invalidatepage(struct page *page, 3274 unsigned int offset, 3275 unsigned int length) 3276 { 3277 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3278 } 3279 3280 static int ext4_releasepage(struct page *page, gfp_t wait) 3281 { 3282 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3283 3284 trace_ext4_releasepage(page); 3285 3286 /* Page has dirty journalled data -> cannot release */ 3287 if (PageChecked(page)) 3288 return 0; 3289 if (journal) 3290 return jbd2_journal_try_to_free_buffers(journal, page); 3291 else 3292 return try_to_free_buffers(page); 3293 } 3294 3295 static bool ext4_inode_datasync_dirty(struct inode *inode) 3296 { 3297 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3298 3299 if (journal) 3300 return !jbd2_transaction_committed(journal, 3301 EXT4_I(inode)->i_datasync_tid); 3302 /* Any metadata buffers to write? */ 3303 if (!list_empty(&inode->i_mapping->private_list)) 3304 return true; 3305 return inode->i_state & I_DIRTY_DATASYNC; 3306 } 3307 3308 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3309 struct ext4_map_blocks *map, loff_t offset, 3310 loff_t length) 3311 { 3312 u8 blkbits = inode->i_blkbits; 3313 3314 /* 3315 * Writes that span EOF might trigger an I/O size update on completion, 3316 * so consider them to be dirty for the purpose of O_DSYNC, even if 3317 * there is no other metadata changes being made or are pending. 3318 */ 3319 iomap->flags = 0; 3320 if (ext4_inode_datasync_dirty(inode) || 3321 offset + length > i_size_read(inode)) 3322 iomap->flags |= IOMAP_F_DIRTY; 3323 3324 if (map->m_flags & EXT4_MAP_NEW) 3325 iomap->flags |= IOMAP_F_NEW; 3326 3327 iomap->bdev = inode->i_sb->s_bdev; 3328 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3329 iomap->offset = (u64) map->m_lblk << blkbits; 3330 iomap->length = (u64) map->m_len << blkbits; 3331 3332 if ((map->m_flags & EXT4_MAP_MAPPED) && 3333 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3334 iomap->flags |= IOMAP_F_MERGED; 3335 3336 /* 3337 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3338 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3339 * set. In order for any allocated unwritten extents to be converted 3340 * into written extents correctly within the ->end_io() handler, we 3341 * need to ensure that the iomap->type is set appropriately. Hence, the 3342 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3343 * been set first. 3344 */ 3345 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3346 iomap->type = IOMAP_UNWRITTEN; 3347 iomap->addr = (u64) map->m_pblk << blkbits; 3348 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3349 iomap->type = IOMAP_MAPPED; 3350 iomap->addr = (u64) map->m_pblk << blkbits; 3351 } else { 3352 iomap->type = IOMAP_HOLE; 3353 iomap->addr = IOMAP_NULL_ADDR; 3354 } 3355 } 3356 3357 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3358 unsigned int flags) 3359 { 3360 handle_t *handle; 3361 u8 blkbits = inode->i_blkbits; 3362 int ret, dio_credits, m_flags = 0, retries = 0; 3363 3364 /* 3365 * Trim the mapping request to the maximum value that we can map at 3366 * once for direct I/O. 3367 */ 3368 if (map->m_len > DIO_MAX_BLOCKS) 3369 map->m_len = DIO_MAX_BLOCKS; 3370 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3371 3372 retry: 3373 /* 3374 * Either we allocate blocks and then don't get an unwritten extent, so 3375 * in that case we have reserved enough credits. Or, the blocks are 3376 * already allocated and unwritten. In that case, the extent conversion 3377 * fits into the credits as well. 3378 */ 3379 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3380 if (IS_ERR(handle)) 3381 return PTR_ERR(handle); 3382 3383 /* 3384 * DAX and direct I/O are the only two operations that are currently 3385 * supported with IOMAP_WRITE. 3386 */ 3387 WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT)); 3388 if (IS_DAX(inode)) 3389 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3390 /* 3391 * We use i_size instead of i_disksize here because delalloc writeback 3392 * can complete at any point during the I/O and subsequently push the 3393 * i_disksize out to i_size. This could be beyond where direct I/O is 3394 * happening and thus expose allocated blocks to direct I/O reads. 3395 */ 3396 else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode)) 3397 m_flags = EXT4_GET_BLOCKS_CREATE; 3398 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3399 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3400 3401 ret = ext4_map_blocks(handle, inode, map, m_flags); 3402 3403 /* 3404 * We cannot fill holes in indirect tree based inodes as that could 3405 * expose stale data in the case of a crash. Use the magic error code 3406 * to fallback to buffered I/O. 3407 */ 3408 if (!m_flags && !ret) 3409 ret = -ENOTBLK; 3410 3411 ext4_journal_stop(handle); 3412 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3413 goto retry; 3414 3415 return ret; 3416 } 3417 3418 3419 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3420 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3421 { 3422 int ret; 3423 struct ext4_map_blocks map; 3424 u8 blkbits = inode->i_blkbits; 3425 3426 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3427 return -EINVAL; 3428 3429 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3430 return -ERANGE; 3431 3432 /* 3433 * Calculate the first and last logical blocks respectively. 3434 */ 3435 map.m_lblk = offset >> blkbits; 3436 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3437 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3438 3439 if (flags & IOMAP_WRITE) 3440 ret = ext4_iomap_alloc(inode, &map, flags); 3441 else 3442 ret = ext4_map_blocks(NULL, inode, &map, 0); 3443 3444 if (ret < 0) 3445 return ret; 3446 3447 ext4_set_iomap(inode, iomap, &map, offset, length); 3448 3449 return 0; 3450 } 3451 3452 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3453 loff_t length, unsigned flags, struct iomap *iomap, 3454 struct iomap *srcmap) 3455 { 3456 int ret; 3457 3458 /* 3459 * Even for writes we don't need to allocate blocks, so just pretend 3460 * we are reading to save overhead of starting a transaction. 3461 */ 3462 flags &= ~IOMAP_WRITE; 3463 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3464 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED); 3465 return ret; 3466 } 3467 3468 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3469 ssize_t written, unsigned flags, struct iomap *iomap) 3470 { 3471 /* 3472 * Check to see whether an error occurred while writing out the data to 3473 * the allocated blocks. If so, return the magic error code so that we 3474 * fallback to buffered I/O and attempt to complete the remainder of 3475 * the I/O. Any blocks that may have been allocated in preparation for 3476 * the direct I/O will be reused during buffered I/O. 3477 */ 3478 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0) 3479 return -ENOTBLK; 3480 3481 return 0; 3482 } 3483 3484 const struct iomap_ops ext4_iomap_ops = { 3485 .iomap_begin = ext4_iomap_begin, 3486 .iomap_end = ext4_iomap_end, 3487 }; 3488 3489 const struct iomap_ops ext4_iomap_overwrite_ops = { 3490 .iomap_begin = ext4_iomap_overwrite_begin, 3491 .iomap_end = ext4_iomap_end, 3492 }; 3493 3494 static bool ext4_iomap_is_delalloc(struct inode *inode, 3495 struct ext4_map_blocks *map) 3496 { 3497 struct extent_status es; 3498 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1; 3499 3500 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3501 map->m_lblk, end, &es); 3502 3503 if (!es.es_len || es.es_lblk > end) 3504 return false; 3505 3506 if (es.es_lblk > map->m_lblk) { 3507 map->m_len = es.es_lblk - map->m_lblk; 3508 return false; 3509 } 3510 3511 offset = map->m_lblk - es.es_lblk; 3512 map->m_len = es.es_len - offset; 3513 3514 return true; 3515 } 3516 3517 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3518 loff_t length, unsigned int flags, 3519 struct iomap *iomap, struct iomap *srcmap) 3520 { 3521 int ret; 3522 bool delalloc = false; 3523 struct ext4_map_blocks map; 3524 u8 blkbits = inode->i_blkbits; 3525 3526 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3527 return -EINVAL; 3528 3529 if (ext4_has_inline_data(inode)) { 3530 ret = ext4_inline_data_iomap(inode, iomap); 3531 if (ret != -EAGAIN) { 3532 if (ret == 0 && offset >= iomap->length) 3533 ret = -ENOENT; 3534 return ret; 3535 } 3536 } 3537 3538 /* 3539 * Calculate the first and last logical block respectively. 3540 */ 3541 map.m_lblk = offset >> blkbits; 3542 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3543 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3544 3545 /* 3546 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3547 * So handle it here itself instead of querying ext4_map_blocks(). 3548 * Since ext4_map_blocks() will warn about it and will return 3549 * -EIO error. 3550 */ 3551 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3552 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3553 3554 if (offset >= sbi->s_bitmap_maxbytes) { 3555 map.m_flags = 0; 3556 goto set_iomap; 3557 } 3558 } 3559 3560 ret = ext4_map_blocks(NULL, inode, &map, 0); 3561 if (ret < 0) 3562 return ret; 3563 if (ret == 0) 3564 delalloc = ext4_iomap_is_delalloc(inode, &map); 3565 3566 set_iomap: 3567 ext4_set_iomap(inode, iomap, &map, offset, length); 3568 if (delalloc && iomap->type == IOMAP_HOLE) 3569 iomap->type = IOMAP_DELALLOC; 3570 3571 return 0; 3572 } 3573 3574 const struct iomap_ops ext4_iomap_report_ops = { 3575 .iomap_begin = ext4_iomap_begin_report, 3576 }; 3577 3578 /* 3579 * Pages can be marked dirty completely asynchronously from ext4's journalling 3580 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3581 * much here because ->set_page_dirty is called under VFS locks. The page is 3582 * not necessarily locked. 3583 * 3584 * We cannot just dirty the page and leave attached buffers clean, because the 3585 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3586 * or jbddirty because all the journalling code will explode. 3587 * 3588 * So what we do is to mark the page "pending dirty" and next time writepage 3589 * is called, propagate that into the buffers appropriately. 3590 */ 3591 static int ext4_journalled_set_page_dirty(struct page *page) 3592 { 3593 SetPageChecked(page); 3594 return __set_page_dirty_nobuffers(page); 3595 } 3596 3597 static int ext4_set_page_dirty(struct page *page) 3598 { 3599 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page)); 3600 WARN_ON_ONCE(!page_has_buffers(page)); 3601 return __set_page_dirty_buffers(page); 3602 } 3603 3604 static const struct address_space_operations ext4_aops = { 3605 .readpage = ext4_readpage, 3606 .readahead = ext4_readahead, 3607 .writepage = ext4_writepage, 3608 .writepages = ext4_writepages, 3609 .write_begin = ext4_write_begin, 3610 .write_end = ext4_write_end, 3611 .set_page_dirty = ext4_set_page_dirty, 3612 .bmap = ext4_bmap, 3613 .invalidatepage = ext4_invalidatepage, 3614 .releasepage = ext4_releasepage, 3615 .direct_IO = noop_direct_IO, 3616 .migratepage = buffer_migrate_page, 3617 .is_partially_uptodate = block_is_partially_uptodate, 3618 .error_remove_page = generic_error_remove_page, 3619 }; 3620 3621 static const struct address_space_operations ext4_journalled_aops = { 3622 .readpage = ext4_readpage, 3623 .readahead = ext4_readahead, 3624 .writepage = ext4_writepage, 3625 .writepages = ext4_writepages, 3626 .write_begin = ext4_write_begin, 3627 .write_end = ext4_journalled_write_end, 3628 .set_page_dirty = ext4_journalled_set_page_dirty, 3629 .bmap = ext4_bmap, 3630 .invalidatepage = ext4_journalled_invalidatepage, 3631 .releasepage = ext4_releasepage, 3632 .direct_IO = noop_direct_IO, 3633 .is_partially_uptodate = block_is_partially_uptodate, 3634 .error_remove_page = generic_error_remove_page, 3635 }; 3636 3637 static const struct address_space_operations ext4_da_aops = { 3638 .readpage = ext4_readpage, 3639 .readahead = ext4_readahead, 3640 .writepage = ext4_writepage, 3641 .writepages = ext4_writepages, 3642 .write_begin = ext4_da_write_begin, 3643 .write_end = ext4_da_write_end, 3644 .set_page_dirty = ext4_set_page_dirty, 3645 .bmap = ext4_bmap, 3646 .invalidatepage = ext4_invalidatepage, 3647 .releasepage = ext4_releasepage, 3648 .direct_IO = noop_direct_IO, 3649 .migratepage = buffer_migrate_page, 3650 .is_partially_uptodate = block_is_partially_uptodate, 3651 .error_remove_page = generic_error_remove_page, 3652 }; 3653 3654 static const struct address_space_operations ext4_dax_aops = { 3655 .writepages = ext4_dax_writepages, 3656 .direct_IO = noop_direct_IO, 3657 .set_page_dirty = noop_set_page_dirty, 3658 .bmap = ext4_bmap, 3659 .invalidatepage = noop_invalidatepage, 3660 }; 3661 3662 void ext4_set_aops(struct inode *inode) 3663 { 3664 switch (ext4_inode_journal_mode(inode)) { 3665 case EXT4_INODE_ORDERED_DATA_MODE: 3666 case EXT4_INODE_WRITEBACK_DATA_MODE: 3667 break; 3668 case EXT4_INODE_JOURNAL_DATA_MODE: 3669 inode->i_mapping->a_ops = &ext4_journalled_aops; 3670 return; 3671 default: 3672 BUG(); 3673 } 3674 if (IS_DAX(inode)) 3675 inode->i_mapping->a_ops = &ext4_dax_aops; 3676 else if (test_opt(inode->i_sb, DELALLOC)) 3677 inode->i_mapping->a_ops = &ext4_da_aops; 3678 else 3679 inode->i_mapping->a_ops = &ext4_aops; 3680 } 3681 3682 static int __ext4_block_zero_page_range(handle_t *handle, 3683 struct address_space *mapping, loff_t from, loff_t length) 3684 { 3685 ext4_fsblk_t index = from >> PAGE_SHIFT; 3686 unsigned offset = from & (PAGE_SIZE-1); 3687 unsigned blocksize, pos; 3688 ext4_lblk_t iblock; 3689 struct inode *inode = mapping->host; 3690 struct buffer_head *bh; 3691 struct page *page; 3692 int err = 0; 3693 3694 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3695 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3696 if (!page) 3697 return -ENOMEM; 3698 3699 blocksize = inode->i_sb->s_blocksize; 3700 3701 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3702 3703 if (!page_has_buffers(page)) 3704 create_empty_buffers(page, blocksize, 0); 3705 3706 /* Find the buffer that contains "offset" */ 3707 bh = page_buffers(page); 3708 pos = blocksize; 3709 while (offset >= pos) { 3710 bh = bh->b_this_page; 3711 iblock++; 3712 pos += blocksize; 3713 } 3714 if (buffer_freed(bh)) { 3715 BUFFER_TRACE(bh, "freed: skip"); 3716 goto unlock; 3717 } 3718 if (!buffer_mapped(bh)) { 3719 BUFFER_TRACE(bh, "unmapped"); 3720 ext4_get_block(inode, iblock, bh, 0); 3721 /* unmapped? It's a hole - nothing to do */ 3722 if (!buffer_mapped(bh)) { 3723 BUFFER_TRACE(bh, "still unmapped"); 3724 goto unlock; 3725 } 3726 } 3727 3728 /* Ok, it's mapped. Make sure it's up-to-date */ 3729 if (PageUptodate(page)) 3730 set_buffer_uptodate(bh); 3731 3732 if (!buffer_uptodate(bh)) { 3733 err = -EIO; 3734 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 3735 wait_on_buffer(bh); 3736 /* Uhhuh. Read error. Complain and punt. */ 3737 if (!buffer_uptodate(bh)) 3738 goto unlock; 3739 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 3740 /* We expect the key to be set. */ 3741 BUG_ON(!fscrypt_has_encryption_key(inode)); 3742 err = fscrypt_decrypt_pagecache_blocks(page, blocksize, 3743 bh_offset(bh)); 3744 if (err) { 3745 clear_buffer_uptodate(bh); 3746 goto unlock; 3747 } 3748 } 3749 } 3750 if (ext4_should_journal_data(inode)) { 3751 BUFFER_TRACE(bh, "get write access"); 3752 err = ext4_journal_get_write_access(handle, bh); 3753 if (err) 3754 goto unlock; 3755 } 3756 zero_user(page, offset, length); 3757 BUFFER_TRACE(bh, "zeroed end of block"); 3758 3759 if (ext4_should_journal_data(inode)) { 3760 err = ext4_handle_dirty_metadata(handle, inode, bh); 3761 } else { 3762 err = 0; 3763 mark_buffer_dirty(bh); 3764 if (ext4_should_order_data(inode)) 3765 err = ext4_jbd2_inode_add_write(handle, inode, from, 3766 length); 3767 } 3768 3769 unlock: 3770 unlock_page(page); 3771 put_page(page); 3772 return err; 3773 } 3774 3775 /* 3776 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3777 * starting from file offset 'from'. The range to be zero'd must 3778 * be contained with in one block. If the specified range exceeds 3779 * the end of the block it will be shortened to end of the block 3780 * that cooresponds to 'from' 3781 */ 3782 static int ext4_block_zero_page_range(handle_t *handle, 3783 struct address_space *mapping, loff_t from, loff_t length) 3784 { 3785 struct inode *inode = mapping->host; 3786 unsigned offset = from & (PAGE_SIZE-1); 3787 unsigned blocksize = inode->i_sb->s_blocksize; 3788 unsigned max = blocksize - (offset & (blocksize - 1)); 3789 3790 /* 3791 * correct length if it does not fall between 3792 * 'from' and the end of the block 3793 */ 3794 if (length > max || length < 0) 3795 length = max; 3796 3797 if (IS_DAX(inode)) { 3798 return iomap_zero_range(inode, from, length, NULL, 3799 &ext4_iomap_ops); 3800 } 3801 return __ext4_block_zero_page_range(handle, mapping, from, length); 3802 } 3803 3804 /* 3805 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3806 * up to the end of the block which corresponds to `from'. 3807 * This required during truncate. We need to physically zero the tail end 3808 * of that block so it doesn't yield old data if the file is later grown. 3809 */ 3810 static int ext4_block_truncate_page(handle_t *handle, 3811 struct address_space *mapping, loff_t from) 3812 { 3813 unsigned offset = from & (PAGE_SIZE-1); 3814 unsigned length; 3815 unsigned blocksize; 3816 struct inode *inode = mapping->host; 3817 3818 /* If we are processing an encrypted inode during orphan list handling */ 3819 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3820 return 0; 3821 3822 blocksize = inode->i_sb->s_blocksize; 3823 length = blocksize - (offset & (blocksize - 1)); 3824 3825 return ext4_block_zero_page_range(handle, mapping, from, length); 3826 } 3827 3828 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3829 loff_t lstart, loff_t length) 3830 { 3831 struct super_block *sb = inode->i_sb; 3832 struct address_space *mapping = inode->i_mapping; 3833 unsigned partial_start, partial_end; 3834 ext4_fsblk_t start, end; 3835 loff_t byte_end = (lstart + length - 1); 3836 int err = 0; 3837 3838 partial_start = lstart & (sb->s_blocksize - 1); 3839 partial_end = byte_end & (sb->s_blocksize - 1); 3840 3841 start = lstart >> sb->s_blocksize_bits; 3842 end = byte_end >> sb->s_blocksize_bits; 3843 3844 /* Handle partial zero within the single block */ 3845 if (start == end && 3846 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3847 err = ext4_block_zero_page_range(handle, mapping, 3848 lstart, length); 3849 return err; 3850 } 3851 /* Handle partial zero out on the start of the range */ 3852 if (partial_start) { 3853 err = ext4_block_zero_page_range(handle, mapping, 3854 lstart, sb->s_blocksize); 3855 if (err) 3856 return err; 3857 } 3858 /* Handle partial zero out on the end of the range */ 3859 if (partial_end != sb->s_blocksize - 1) 3860 err = ext4_block_zero_page_range(handle, mapping, 3861 byte_end - partial_end, 3862 partial_end + 1); 3863 return err; 3864 } 3865 3866 int ext4_can_truncate(struct inode *inode) 3867 { 3868 if (S_ISREG(inode->i_mode)) 3869 return 1; 3870 if (S_ISDIR(inode->i_mode)) 3871 return 1; 3872 if (S_ISLNK(inode->i_mode)) 3873 return !ext4_inode_is_fast_symlink(inode); 3874 return 0; 3875 } 3876 3877 /* 3878 * We have to make sure i_disksize gets properly updated before we truncate 3879 * page cache due to hole punching or zero range. Otherwise i_disksize update 3880 * can get lost as it may have been postponed to submission of writeback but 3881 * that will never happen after we truncate page cache. 3882 */ 3883 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3884 loff_t len) 3885 { 3886 handle_t *handle; 3887 int ret; 3888 3889 loff_t size = i_size_read(inode); 3890 3891 WARN_ON(!inode_is_locked(inode)); 3892 if (offset > size || offset + len < size) 3893 return 0; 3894 3895 if (EXT4_I(inode)->i_disksize >= size) 3896 return 0; 3897 3898 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3899 if (IS_ERR(handle)) 3900 return PTR_ERR(handle); 3901 ext4_update_i_disksize(inode, size); 3902 ret = ext4_mark_inode_dirty(handle, inode); 3903 ext4_journal_stop(handle); 3904 3905 return ret; 3906 } 3907 3908 static void ext4_wait_dax_page(struct ext4_inode_info *ei) 3909 { 3910 up_write(&ei->i_mmap_sem); 3911 schedule(); 3912 down_write(&ei->i_mmap_sem); 3913 } 3914 3915 int ext4_break_layouts(struct inode *inode) 3916 { 3917 struct ext4_inode_info *ei = EXT4_I(inode); 3918 struct page *page; 3919 int error; 3920 3921 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem))) 3922 return -EINVAL; 3923 3924 do { 3925 page = dax_layout_busy_page(inode->i_mapping); 3926 if (!page) 3927 return 0; 3928 3929 error = ___wait_var_event(&page->_refcount, 3930 atomic_read(&page->_refcount) == 1, 3931 TASK_INTERRUPTIBLE, 0, 0, 3932 ext4_wait_dax_page(ei)); 3933 } while (error == 0); 3934 3935 return error; 3936 } 3937 3938 /* 3939 * ext4_punch_hole: punches a hole in a file by releasing the blocks 3940 * associated with the given offset and length 3941 * 3942 * @inode: File inode 3943 * @offset: The offset where the hole will begin 3944 * @len: The length of the hole 3945 * 3946 * Returns: 0 on success or negative on failure 3947 */ 3948 3949 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3950 { 3951 struct super_block *sb = inode->i_sb; 3952 ext4_lblk_t first_block, stop_block; 3953 struct address_space *mapping = inode->i_mapping; 3954 loff_t first_block_offset, last_block_offset; 3955 handle_t *handle; 3956 unsigned int credits; 3957 int ret = 0, ret2 = 0; 3958 3959 trace_ext4_punch_hole(inode, offset, length, 0); 3960 3961 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 3962 if (ext4_has_inline_data(inode)) { 3963 down_write(&EXT4_I(inode)->i_mmap_sem); 3964 ret = ext4_convert_inline_data(inode); 3965 up_write(&EXT4_I(inode)->i_mmap_sem); 3966 if (ret) 3967 return ret; 3968 } 3969 3970 /* 3971 * Write out all dirty pages to avoid race conditions 3972 * Then release them. 3973 */ 3974 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3975 ret = filemap_write_and_wait_range(mapping, offset, 3976 offset + length - 1); 3977 if (ret) 3978 return ret; 3979 } 3980 3981 inode_lock(inode); 3982 3983 /* No need to punch hole beyond i_size */ 3984 if (offset >= inode->i_size) 3985 goto out_mutex; 3986 3987 /* 3988 * If the hole extends beyond i_size, set the hole 3989 * to end after the page that contains i_size 3990 */ 3991 if (offset + length > inode->i_size) { 3992 length = inode->i_size + 3993 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 3994 offset; 3995 } 3996 3997 if (offset & (sb->s_blocksize - 1) || 3998 (offset + length) & (sb->s_blocksize - 1)) { 3999 /* 4000 * Attach jinode to inode for jbd2 if we do any zeroing of 4001 * partial block 4002 */ 4003 ret = ext4_inode_attach_jinode(inode); 4004 if (ret < 0) 4005 goto out_mutex; 4006 4007 } 4008 4009 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4010 inode_dio_wait(inode); 4011 4012 /* 4013 * Prevent page faults from reinstantiating pages we have released from 4014 * page cache. 4015 */ 4016 down_write(&EXT4_I(inode)->i_mmap_sem); 4017 4018 ret = ext4_break_layouts(inode); 4019 if (ret) 4020 goto out_dio; 4021 4022 first_block_offset = round_up(offset, sb->s_blocksize); 4023 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4024 4025 /* Now release the pages and zero block aligned part of pages*/ 4026 if (last_block_offset > first_block_offset) { 4027 ret = ext4_update_disksize_before_punch(inode, offset, length); 4028 if (ret) 4029 goto out_dio; 4030 truncate_pagecache_range(inode, first_block_offset, 4031 last_block_offset); 4032 } 4033 4034 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4035 credits = ext4_writepage_trans_blocks(inode); 4036 else 4037 credits = ext4_blocks_for_truncate(inode); 4038 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4039 if (IS_ERR(handle)) { 4040 ret = PTR_ERR(handle); 4041 ext4_std_error(sb, ret); 4042 goto out_dio; 4043 } 4044 4045 ret = ext4_zero_partial_blocks(handle, inode, offset, 4046 length); 4047 if (ret) 4048 goto out_stop; 4049 4050 first_block = (offset + sb->s_blocksize - 1) >> 4051 EXT4_BLOCK_SIZE_BITS(sb); 4052 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4053 4054 /* If there are blocks to remove, do it */ 4055 if (stop_block > first_block) { 4056 4057 down_write(&EXT4_I(inode)->i_data_sem); 4058 ext4_discard_preallocations(inode, 0); 4059 4060 ret = ext4_es_remove_extent(inode, first_block, 4061 stop_block - first_block); 4062 if (ret) { 4063 up_write(&EXT4_I(inode)->i_data_sem); 4064 goto out_stop; 4065 } 4066 4067 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4068 ret = ext4_ext_remove_space(inode, first_block, 4069 stop_block - 1); 4070 else 4071 ret = ext4_ind_remove_space(handle, inode, first_block, 4072 stop_block); 4073 4074 up_write(&EXT4_I(inode)->i_data_sem); 4075 } 4076 if (IS_SYNC(inode)) 4077 ext4_handle_sync(handle); 4078 4079 inode->i_mtime = inode->i_ctime = current_time(inode); 4080 ret2 = ext4_mark_inode_dirty(handle, inode); 4081 if (unlikely(ret2)) 4082 ret = ret2; 4083 if (ret >= 0) 4084 ext4_update_inode_fsync_trans(handle, inode, 1); 4085 out_stop: 4086 ext4_journal_stop(handle); 4087 out_dio: 4088 up_write(&EXT4_I(inode)->i_mmap_sem); 4089 out_mutex: 4090 inode_unlock(inode); 4091 return ret; 4092 } 4093 4094 int ext4_inode_attach_jinode(struct inode *inode) 4095 { 4096 struct ext4_inode_info *ei = EXT4_I(inode); 4097 struct jbd2_inode *jinode; 4098 4099 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4100 return 0; 4101 4102 jinode = jbd2_alloc_inode(GFP_KERNEL); 4103 spin_lock(&inode->i_lock); 4104 if (!ei->jinode) { 4105 if (!jinode) { 4106 spin_unlock(&inode->i_lock); 4107 return -ENOMEM; 4108 } 4109 ei->jinode = jinode; 4110 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4111 jinode = NULL; 4112 } 4113 spin_unlock(&inode->i_lock); 4114 if (unlikely(jinode != NULL)) 4115 jbd2_free_inode(jinode); 4116 return 0; 4117 } 4118 4119 /* 4120 * ext4_truncate() 4121 * 4122 * We block out ext4_get_block() block instantiations across the entire 4123 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4124 * simultaneously on behalf of the same inode. 4125 * 4126 * As we work through the truncate and commit bits of it to the journal there 4127 * is one core, guiding principle: the file's tree must always be consistent on 4128 * disk. We must be able to restart the truncate after a crash. 4129 * 4130 * The file's tree may be transiently inconsistent in memory (although it 4131 * probably isn't), but whenever we close off and commit a journal transaction, 4132 * the contents of (the filesystem + the journal) must be consistent and 4133 * restartable. It's pretty simple, really: bottom up, right to left (although 4134 * left-to-right works OK too). 4135 * 4136 * Note that at recovery time, journal replay occurs *before* the restart of 4137 * truncate against the orphan inode list. 4138 * 4139 * The committed inode has the new, desired i_size (which is the same as 4140 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4141 * that this inode's truncate did not complete and it will again call 4142 * ext4_truncate() to have another go. So there will be instantiated blocks 4143 * to the right of the truncation point in a crashed ext4 filesystem. But 4144 * that's fine - as long as they are linked from the inode, the post-crash 4145 * ext4_truncate() run will find them and release them. 4146 */ 4147 int ext4_truncate(struct inode *inode) 4148 { 4149 struct ext4_inode_info *ei = EXT4_I(inode); 4150 unsigned int credits; 4151 int err = 0, err2; 4152 handle_t *handle; 4153 struct address_space *mapping = inode->i_mapping; 4154 4155 /* 4156 * There is a possibility that we're either freeing the inode 4157 * or it's a completely new inode. In those cases we might not 4158 * have i_mutex locked because it's not necessary. 4159 */ 4160 if (!(inode->i_state & (I_NEW|I_FREEING))) 4161 WARN_ON(!inode_is_locked(inode)); 4162 trace_ext4_truncate_enter(inode); 4163 4164 if (!ext4_can_truncate(inode)) 4165 goto out_trace; 4166 4167 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4168 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4169 4170 if (ext4_has_inline_data(inode)) { 4171 int has_inline = 1; 4172 4173 err = ext4_inline_data_truncate(inode, &has_inline); 4174 if (err || has_inline) 4175 goto out_trace; 4176 } 4177 4178 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4179 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4180 if (ext4_inode_attach_jinode(inode) < 0) 4181 goto out_trace; 4182 } 4183 4184 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4185 credits = ext4_writepage_trans_blocks(inode); 4186 else 4187 credits = ext4_blocks_for_truncate(inode); 4188 4189 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4190 if (IS_ERR(handle)) { 4191 err = PTR_ERR(handle); 4192 goto out_trace; 4193 } 4194 4195 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4196 ext4_block_truncate_page(handle, mapping, inode->i_size); 4197 4198 /* 4199 * We add the inode to the orphan list, so that if this 4200 * truncate spans multiple transactions, and we crash, we will 4201 * resume the truncate when the filesystem recovers. It also 4202 * marks the inode dirty, to catch the new size. 4203 * 4204 * Implication: the file must always be in a sane, consistent 4205 * truncatable state while each transaction commits. 4206 */ 4207 err = ext4_orphan_add(handle, inode); 4208 if (err) 4209 goto out_stop; 4210 4211 down_write(&EXT4_I(inode)->i_data_sem); 4212 4213 ext4_discard_preallocations(inode, 0); 4214 4215 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4216 err = ext4_ext_truncate(handle, inode); 4217 else 4218 ext4_ind_truncate(handle, inode); 4219 4220 up_write(&ei->i_data_sem); 4221 if (err) 4222 goto out_stop; 4223 4224 if (IS_SYNC(inode)) 4225 ext4_handle_sync(handle); 4226 4227 out_stop: 4228 /* 4229 * If this was a simple ftruncate() and the file will remain alive, 4230 * then we need to clear up the orphan record which we created above. 4231 * However, if this was a real unlink then we were called by 4232 * ext4_evict_inode(), and we allow that function to clean up the 4233 * orphan info for us. 4234 */ 4235 if (inode->i_nlink) 4236 ext4_orphan_del(handle, inode); 4237 4238 inode->i_mtime = inode->i_ctime = current_time(inode); 4239 err2 = ext4_mark_inode_dirty(handle, inode); 4240 if (unlikely(err2 && !err)) 4241 err = err2; 4242 ext4_journal_stop(handle); 4243 4244 out_trace: 4245 trace_ext4_truncate_exit(inode); 4246 return err; 4247 } 4248 4249 /* 4250 * ext4_get_inode_loc returns with an extra refcount against the inode's 4251 * underlying buffer_head on success. If 'in_mem' is true, we have all 4252 * data in memory that is needed to recreate the on-disk version of this 4253 * inode. 4254 */ 4255 static int __ext4_get_inode_loc(struct inode *inode, 4256 struct ext4_iloc *iloc, int in_mem) 4257 { 4258 struct ext4_group_desc *gdp; 4259 struct buffer_head *bh; 4260 struct super_block *sb = inode->i_sb; 4261 ext4_fsblk_t block; 4262 struct blk_plug plug; 4263 int inodes_per_block, inode_offset; 4264 4265 iloc->bh = NULL; 4266 if (inode->i_ino < EXT4_ROOT_INO || 4267 inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4268 return -EFSCORRUPTED; 4269 4270 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4271 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4272 if (!gdp) 4273 return -EIO; 4274 4275 /* 4276 * Figure out the offset within the block group inode table 4277 */ 4278 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4279 inode_offset = ((inode->i_ino - 1) % 4280 EXT4_INODES_PER_GROUP(sb)); 4281 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4282 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4283 4284 bh = sb_getblk(sb, block); 4285 if (unlikely(!bh)) 4286 return -ENOMEM; 4287 if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO)) 4288 goto simulate_eio; 4289 if (!buffer_uptodate(bh)) { 4290 lock_buffer(bh); 4291 4292 /* 4293 * If the buffer has the write error flag, we have failed 4294 * to write out another inode in the same block. In this 4295 * case, we don't have to read the block because we may 4296 * read the old inode data successfully. 4297 */ 4298 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4299 set_buffer_uptodate(bh); 4300 4301 if (buffer_uptodate(bh)) { 4302 /* someone brought it uptodate while we waited */ 4303 unlock_buffer(bh); 4304 goto has_buffer; 4305 } 4306 4307 /* 4308 * If we have all information of the inode in memory and this 4309 * is the only valid inode in the block, we need not read the 4310 * block. 4311 */ 4312 if (in_mem) { 4313 struct buffer_head *bitmap_bh; 4314 int i, start; 4315 4316 start = inode_offset & ~(inodes_per_block - 1); 4317 4318 /* Is the inode bitmap in cache? */ 4319 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4320 if (unlikely(!bitmap_bh)) 4321 goto make_io; 4322 4323 /* 4324 * If the inode bitmap isn't in cache then the 4325 * optimisation may end up performing two reads instead 4326 * of one, so skip it. 4327 */ 4328 if (!buffer_uptodate(bitmap_bh)) { 4329 brelse(bitmap_bh); 4330 goto make_io; 4331 } 4332 for (i = start; i < start + inodes_per_block; i++) { 4333 if (i == inode_offset) 4334 continue; 4335 if (ext4_test_bit(i, bitmap_bh->b_data)) 4336 break; 4337 } 4338 brelse(bitmap_bh); 4339 if (i == start + inodes_per_block) { 4340 /* all other inodes are free, so skip I/O */ 4341 memset(bh->b_data, 0, bh->b_size); 4342 set_buffer_uptodate(bh); 4343 unlock_buffer(bh); 4344 goto has_buffer; 4345 } 4346 } 4347 4348 make_io: 4349 /* 4350 * If we need to do any I/O, try to pre-readahead extra 4351 * blocks from the inode table. 4352 */ 4353 blk_start_plug(&plug); 4354 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4355 ext4_fsblk_t b, end, table; 4356 unsigned num; 4357 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4358 4359 table = ext4_inode_table(sb, gdp); 4360 /* s_inode_readahead_blks is always a power of 2 */ 4361 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4362 if (table > b) 4363 b = table; 4364 end = b + ra_blks; 4365 num = EXT4_INODES_PER_GROUP(sb); 4366 if (ext4_has_group_desc_csum(sb)) 4367 num -= ext4_itable_unused_count(sb, gdp); 4368 table += num / inodes_per_block; 4369 if (end > table) 4370 end = table; 4371 while (b <= end) 4372 sb_breadahead_unmovable(sb, b++); 4373 } 4374 4375 /* 4376 * There are other valid inodes in the buffer, this inode 4377 * has in-inode xattrs, or we don't have this inode in memory. 4378 * Read the block from disk. 4379 */ 4380 trace_ext4_load_inode(inode); 4381 get_bh(bh); 4382 bh->b_end_io = end_buffer_read_sync; 4383 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 4384 blk_finish_plug(&plug); 4385 wait_on_buffer(bh); 4386 if (!buffer_uptodate(bh)) { 4387 simulate_eio: 4388 ext4_error_inode_block(inode, block, EIO, 4389 "unable to read itable block"); 4390 brelse(bh); 4391 return -EIO; 4392 } 4393 } 4394 has_buffer: 4395 iloc->bh = bh; 4396 return 0; 4397 } 4398 4399 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4400 { 4401 /* We have all inode data except xattrs in memory here. */ 4402 return __ext4_get_inode_loc(inode, iloc, 4403 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4404 } 4405 4406 static bool ext4_should_enable_dax(struct inode *inode) 4407 { 4408 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4409 4410 if (test_opt2(inode->i_sb, DAX_NEVER)) 4411 return false; 4412 if (!S_ISREG(inode->i_mode)) 4413 return false; 4414 if (ext4_should_journal_data(inode)) 4415 return false; 4416 if (ext4_has_inline_data(inode)) 4417 return false; 4418 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4419 return false; 4420 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4421 return false; 4422 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4423 return false; 4424 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4425 return true; 4426 4427 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4428 } 4429 4430 void ext4_set_inode_flags(struct inode *inode, bool init) 4431 { 4432 unsigned int flags = EXT4_I(inode)->i_flags; 4433 unsigned int new_fl = 0; 4434 4435 WARN_ON_ONCE(IS_DAX(inode) && init); 4436 4437 if (flags & EXT4_SYNC_FL) 4438 new_fl |= S_SYNC; 4439 if (flags & EXT4_APPEND_FL) 4440 new_fl |= S_APPEND; 4441 if (flags & EXT4_IMMUTABLE_FL) 4442 new_fl |= S_IMMUTABLE; 4443 if (flags & EXT4_NOATIME_FL) 4444 new_fl |= S_NOATIME; 4445 if (flags & EXT4_DIRSYNC_FL) 4446 new_fl |= S_DIRSYNC; 4447 4448 /* Because of the way inode_set_flags() works we must preserve S_DAX 4449 * here if already set. */ 4450 new_fl |= (inode->i_flags & S_DAX); 4451 if (init && ext4_should_enable_dax(inode)) 4452 new_fl |= S_DAX; 4453 4454 if (flags & EXT4_ENCRYPT_FL) 4455 new_fl |= S_ENCRYPTED; 4456 if (flags & EXT4_CASEFOLD_FL) 4457 new_fl |= S_CASEFOLD; 4458 if (flags & EXT4_VERITY_FL) 4459 new_fl |= S_VERITY; 4460 inode_set_flags(inode, new_fl, 4461 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4462 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4463 } 4464 4465 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4466 struct ext4_inode_info *ei) 4467 { 4468 blkcnt_t i_blocks ; 4469 struct inode *inode = &(ei->vfs_inode); 4470 struct super_block *sb = inode->i_sb; 4471 4472 if (ext4_has_feature_huge_file(sb)) { 4473 /* we are using combined 48 bit field */ 4474 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4475 le32_to_cpu(raw_inode->i_blocks_lo); 4476 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4477 /* i_blocks represent file system block size */ 4478 return i_blocks << (inode->i_blkbits - 9); 4479 } else { 4480 return i_blocks; 4481 } 4482 } else { 4483 return le32_to_cpu(raw_inode->i_blocks_lo); 4484 } 4485 } 4486 4487 static inline int ext4_iget_extra_inode(struct inode *inode, 4488 struct ext4_inode *raw_inode, 4489 struct ext4_inode_info *ei) 4490 { 4491 __le32 *magic = (void *)raw_inode + 4492 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4493 4494 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <= 4495 EXT4_INODE_SIZE(inode->i_sb) && 4496 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4497 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4498 return ext4_find_inline_data_nolock(inode); 4499 } else 4500 EXT4_I(inode)->i_inline_off = 0; 4501 return 0; 4502 } 4503 4504 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4505 { 4506 if (!ext4_has_feature_project(inode->i_sb)) 4507 return -EOPNOTSUPP; 4508 *projid = EXT4_I(inode)->i_projid; 4509 return 0; 4510 } 4511 4512 /* 4513 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4514 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4515 * set. 4516 */ 4517 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4518 { 4519 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4520 inode_set_iversion_raw(inode, val); 4521 else 4522 inode_set_iversion_queried(inode, val); 4523 } 4524 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4525 { 4526 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4527 return inode_peek_iversion_raw(inode); 4528 else 4529 return inode_peek_iversion(inode); 4530 } 4531 4532 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4533 ext4_iget_flags flags, const char *function, 4534 unsigned int line) 4535 { 4536 struct ext4_iloc iloc; 4537 struct ext4_inode *raw_inode; 4538 struct ext4_inode_info *ei; 4539 struct inode *inode; 4540 journal_t *journal = EXT4_SB(sb)->s_journal; 4541 long ret; 4542 loff_t size; 4543 int block; 4544 uid_t i_uid; 4545 gid_t i_gid; 4546 projid_t i_projid; 4547 4548 if ((!(flags & EXT4_IGET_SPECIAL) && 4549 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) || 4550 (ino < EXT4_ROOT_INO) || 4551 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) { 4552 if (flags & EXT4_IGET_HANDLE) 4553 return ERR_PTR(-ESTALE); 4554 __ext4_error(sb, function, line, EFSCORRUPTED, 0, 4555 "inode #%lu: comm %s: iget: illegal inode #", 4556 ino, current->comm); 4557 return ERR_PTR(-EFSCORRUPTED); 4558 } 4559 4560 inode = iget_locked(sb, ino); 4561 if (!inode) 4562 return ERR_PTR(-ENOMEM); 4563 if (!(inode->i_state & I_NEW)) 4564 return inode; 4565 4566 ei = EXT4_I(inode); 4567 iloc.bh = NULL; 4568 4569 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4570 if (ret < 0) 4571 goto bad_inode; 4572 raw_inode = ext4_raw_inode(&iloc); 4573 4574 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) { 4575 ext4_error_inode(inode, function, line, 0, 4576 "iget: root inode unallocated"); 4577 ret = -EFSCORRUPTED; 4578 goto bad_inode; 4579 } 4580 4581 if ((flags & EXT4_IGET_HANDLE) && 4582 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4583 ret = -ESTALE; 4584 goto bad_inode; 4585 } 4586 4587 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4588 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4589 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4590 EXT4_INODE_SIZE(inode->i_sb) || 4591 (ei->i_extra_isize & 3)) { 4592 ext4_error_inode(inode, function, line, 0, 4593 "iget: bad extra_isize %u " 4594 "(inode size %u)", 4595 ei->i_extra_isize, 4596 EXT4_INODE_SIZE(inode->i_sb)); 4597 ret = -EFSCORRUPTED; 4598 goto bad_inode; 4599 } 4600 } else 4601 ei->i_extra_isize = 0; 4602 4603 /* Precompute checksum seed for inode metadata */ 4604 if (ext4_has_metadata_csum(sb)) { 4605 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4606 __u32 csum; 4607 __le32 inum = cpu_to_le32(inode->i_ino); 4608 __le32 gen = raw_inode->i_generation; 4609 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4610 sizeof(inum)); 4611 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4612 sizeof(gen)); 4613 } 4614 4615 if (!ext4_inode_csum_verify(inode, raw_inode, ei) || 4616 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) { 4617 ext4_error_inode_err(inode, function, line, 0, EFSBADCRC, 4618 "iget: checksum invalid"); 4619 ret = -EFSBADCRC; 4620 goto bad_inode; 4621 } 4622 4623 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4624 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4625 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4626 if (ext4_has_feature_project(sb) && 4627 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4628 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4629 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4630 else 4631 i_projid = EXT4_DEF_PROJID; 4632 4633 if (!(test_opt(inode->i_sb, NO_UID32))) { 4634 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4635 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4636 } 4637 i_uid_write(inode, i_uid); 4638 i_gid_write(inode, i_gid); 4639 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4640 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4641 4642 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4643 ei->i_inline_off = 0; 4644 ei->i_dir_start_lookup = 0; 4645 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4646 /* We now have enough fields to check if the inode was active or not. 4647 * This is needed because nfsd might try to access dead inodes 4648 * the test is that same one that e2fsck uses 4649 * NeilBrown 1999oct15 4650 */ 4651 if (inode->i_nlink == 0) { 4652 if ((inode->i_mode == 0 || 4653 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4654 ino != EXT4_BOOT_LOADER_INO) { 4655 /* this inode is deleted */ 4656 ret = -ESTALE; 4657 goto bad_inode; 4658 } 4659 /* The only unlinked inodes we let through here have 4660 * valid i_mode and are being read by the orphan 4661 * recovery code: that's fine, we're about to complete 4662 * the process of deleting those. 4663 * OR it is the EXT4_BOOT_LOADER_INO which is 4664 * not initialized on a new filesystem. */ 4665 } 4666 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4667 ext4_set_inode_flags(inode, true); 4668 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4669 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4670 if (ext4_has_feature_64bit(sb)) 4671 ei->i_file_acl |= 4672 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4673 inode->i_size = ext4_isize(sb, raw_inode); 4674 if ((size = i_size_read(inode)) < 0) { 4675 ext4_error_inode(inode, function, line, 0, 4676 "iget: bad i_size value: %lld", size); 4677 ret = -EFSCORRUPTED; 4678 goto bad_inode; 4679 } 4680 /* 4681 * If dir_index is not enabled but there's dir with INDEX flag set, 4682 * we'd normally treat htree data as empty space. But with metadata 4683 * checksumming that corrupts checksums so forbid that. 4684 */ 4685 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) && 4686 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4687 ext4_error_inode(inode, function, line, 0, 4688 "iget: Dir with htree data on filesystem without dir_index feature."); 4689 ret = -EFSCORRUPTED; 4690 goto bad_inode; 4691 } 4692 ei->i_disksize = inode->i_size; 4693 #ifdef CONFIG_QUOTA 4694 ei->i_reserved_quota = 0; 4695 #endif 4696 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4697 ei->i_block_group = iloc.block_group; 4698 ei->i_last_alloc_group = ~0; 4699 /* 4700 * NOTE! The in-memory inode i_data array is in little-endian order 4701 * even on big-endian machines: we do NOT byteswap the block numbers! 4702 */ 4703 for (block = 0; block < EXT4_N_BLOCKS; block++) 4704 ei->i_data[block] = raw_inode->i_block[block]; 4705 INIT_LIST_HEAD(&ei->i_orphan); 4706 4707 /* 4708 * Set transaction id's of transactions that have to be committed 4709 * to finish f[data]sync. We set them to currently running transaction 4710 * as we cannot be sure that the inode or some of its metadata isn't 4711 * part of the transaction - the inode could have been reclaimed and 4712 * now it is reread from disk. 4713 */ 4714 if (journal) { 4715 transaction_t *transaction; 4716 tid_t tid; 4717 4718 read_lock(&journal->j_state_lock); 4719 if (journal->j_running_transaction) 4720 transaction = journal->j_running_transaction; 4721 else 4722 transaction = journal->j_committing_transaction; 4723 if (transaction) 4724 tid = transaction->t_tid; 4725 else 4726 tid = journal->j_commit_sequence; 4727 read_unlock(&journal->j_state_lock); 4728 ei->i_sync_tid = tid; 4729 ei->i_datasync_tid = tid; 4730 } 4731 4732 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4733 if (ei->i_extra_isize == 0) { 4734 /* The extra space is currently unused. Use it. */ 4735 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4736 ei->i_extra_isize = sizeof(struct ext4_inode) - 4737 EXT4_GOOD_OLD_INODE_SIZE; 4738 } else { 4739 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4740 if (ret) 4741 goto bad_inode; 4742 } 4743 } 4744 4745 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4746 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4747 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4748 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4749 4750 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4751 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4752 4753 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4754 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4755 ivers |= 4756 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4757 } 4758 ext4_inode_set_iversion_queried(inode, ivers); 4759 } 4760 4761 ret = 0; 4762 if (ei->i_file_acl && 4763 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 4764 ext4_error_inode(inode, function, line, 0, 4765 "iget: bad extended attribute block %llu", 4766 ei->i_file_acl); 4767 ret = -EFSCORRUPTED; 4768 goto bad_inode; 4769 } else if (!ext4_has_inline_data(inode)) { 4770 /* validate the block references in the inode */ 4771 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4772 (S_ISLNK(inode->i_mode) && 4773 !ext4_inode_is_fast_symlink(inode))) { 4774 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4775 ret = ext4_ext_check_inode(inode); 4776 else 4777 ret = ext4_ind_check_inode(inode); 4778 } 4779 } 4780 if (ret) 4781 goto bad_inode; 4782 4783 if (S_ISREG(inode->i_mode)) { 4784 inode->i_op = &ext4_file_inode_operations; 4785 inode->i_fop = &ext4_file_operations; 4786 ext4_set_aops(inode); 4787 } else if (S_ISDIR(inode->i_mode)) { 4788 inode->i_op = &ext4_dir_inode_operations; 4789 inode->i_fop = &ext4_dir_operations; 4790 } else if (S_ISLNK(inode->i_mode)) { 4791 /* VFS does not allow setting these so must be corruption */ 4792 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4793 ext4_error_inode(inode, function, line, 0, 4794 "iget: immutable or append flags " 4795 "not allowed on symlinks"); 4796 ret = -EFSCORRUPTED; 4797 goto bad_inode; 4798 } 4799 if (IS_ENCRYPTED(inode)) { 4800 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4801 ext4_set_aops(inode); 4802 } else if (ext4_inode_is_fast_symlink(inode)) { 4803 inode->i_link = (char *)ei->i_data; 4804 inode->i_op = &ext4_fast_symlink_inode_operations; 4805 nd_terminate_link(ei->i_data, inode->i_size, 4806 sizeof(ei->i_data) - 1); 4807 } else { 4808 inode->i_op = &ext4_symlink_inode_operations; 4809 ext4_set_aops(inode); 4810 } 4811 inode_nohighmem(inode); 4812 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4813 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4814 inode->i_op = &ext4_special_inode_operations; 4815 if (raw_inode->i_block[0]) 4816 init_special_inode(inode, inode->i_mode, 4817 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4818 else 4819 init_special_inode(inode, inode->i_mode, 4820 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4821 } else if (ino == EXT4_BOOT_LOADER_INO) { 4822 make_bad_inode(inode); 4823 } else { 4824 ret = -EFSCORRUPTED; 4825 ext4_error_inode(inode, function, line, 0, 4826 "iget: bogus i_mode (%o)", inode->i_mode); 4827 goto bad_inode; 4828 } 4829 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) 4830 ext4_error_inode(inode, function, line, 0, 4831 "casefold flag without casefold feature"); 4832 brelse(iloc.bh); 4833 4834 unlock_new_inode(inode); 4835 return inode; 4836 4837 bad_inode: 4838 brelse(iloc.bh); 4839 iget_failed(inode); 4840 return ERR_PTR(ret); 4841 } 4842 4843 static int ext4_inode_blocks_set(handle_t *handle, 4844 struct ext4_inode *raw_inode, 4845 struct ext4_inode_info *ei) 4846 { 4847 struct inode *inode = &(ei->vfs_inode); 4848 u64 i_blocks = READ_ONCE(inode->i_blocks); 4849 struct super_block *sb = inode->i_sb; 4850 4851 if (i_blocks <= ~0U) { 4852 /* 4853 * i_blocks can be represented in a 32 bit variable 4854 * as multiple of 512 bytes 4855 */ 4856 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4857 raw_inode->i_blocks_high = 0; 4858 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4859 return 0; 4860 } 4861 if (!ext4_has_feature_huge_file(sb)) 4862 return -EFBIG; 4863 4864 if (i_blocks <= 0xffffffffffffULL) { 4865 /* 4866 * i_blocks can be represented in a 48 bit variable 4867 * as multiple of 512 bytes 4868 */ 4869 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4870 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4871 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4872 } else { 4873 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4874 /* i_block is stored in file system block size */ 4875 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4876 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4877 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4878 } 4879 return 0; 4880 } 4881 4882 static void __ext4_update_other_inode_time(struct super_block *sb, 4883 unsigned long orig_ino, 4884 unsigned long ino, 4885 struct ext4_inode *raw_inode) 4886 { 4887 struct inode *inode; 4888 4889 inode = find_inode_by_ino_rcu(sb, ino); 4890 if (!inode) 4891 return; 4892 4893 if ((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4894 I_DIRTY_INODE)) || 4895 ((inode->i_state & I_DIRTY_TIME) == 0)) 4896 return; 4897 4898 spin_lock(&inode->i_lock); 4899 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4900 I_DIRTY_INODE)) == 0) && 4901 (inode->i_state & I_DIRTY_TIME)) { 4902 struct ext4_inode_info *ei = EXT4_I(inode); 4903 4904 inode->i_state &= ~I_DIRTY_TIME; 4905 spin_unlock(&inode->i_lock); 4906 4907 spin_lock(&ei->i_raw_lock); 4908 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4909 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4910 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4911 ext4_inode_csum_set(inode, raw_inode, ei); 4912 spin_unlock(&ei->i_raw_lock); 4913 trace_ext4_other_inode_update_time(inode, orig_ino); 4914 return; 4915 } 4916 spin_unlock(&inode->i_lock); 4917 } 4918 4919 /* 4920 * Opportunistically update the other time fields for other inodes in 4921 * the same inode table block. 4922 */ 4923 static void ext4_update_other_inodes_time(struct super_block *sb, 4924 unsigned long orig_ino, char *buf) 4925 { 4926 unsigned long ino; 4927 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4928 int inode_size = EXT4_INODE_SIZE(sb); 4929 4930 /* 4931 * Calculate the first inode in the inode table block. Inode 4932 * numbers are one-based. That is, the first inode in a block 4933 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 4934 */ 4935 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 4936 rcu_read_lock(); 4937 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 4938 if (ino == orig_ino) 4939 continue; 4940 __ext4_update_other_inode_time(sb, orig_ino, ino, 4941 (struct ext4_inode *)buf); 4942 } 4943 rcu_read_unlock(); 4944 } 4945 4946 /* 4947 * Post the struct inode info into an on-disk inode location in the 4948 * buffer-cache. This gobbles the caller's reference to the 4949 * buffer_head in the inode location struct. 4950 * 4951 * The caller must have write access to iloc->bh. 4952 */ 4953 static int ext4_do_update_inode(handle_t *handle, 4954 struct inode *inode, 4955 struct ext4_iloc *iloc) 4956 { 4957 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4958 struct ext4_inode_info *ei = EXT4_I(inode); 4959 struct buffer_head *bh = iloc->bh; 4960 struct super_block *sb = inode->i_sb; 4961 int err = 0, rc, block; 4962 int need_datasync = 0, set_large_file = 0; 4963 uid_t i_uid; 4964 gid_t i_gid; 4965 projid_t i_projid; 4966 4967 spin_lock(&ei->i_raw_lock); 4968 4969 /* For fields not tracked in the in-memory inode, 4970 * initialise them to zero for new inodes. */ 4971 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4972 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4973 4974 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4975 i_uid = i_uid_read(inode); 4976 i_gid = i_gid_read(inode); 4977 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4978 if (!(test_opt(inode->i_sb, NO_UID32))) { 4979 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4980 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4981 /* 4982 * Fix up interoperability with old kernels. Otherwise, old inodes get 4983 * re-used with the upper 16 bits of the uid/gid intact 4984 */ 4985 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 4986 raw_inode->i_uid_high = 0; 4987 raw_inode->i_gid_high = 0; 4988 } else { 4989 raw_inode->i_uid_high = 4990 cpu_to_le16(high_16_bits(i_uid)); 4991 raw_inode->i_gid_high = 4992 cpu_to_le16(high_16_bits(i_gid)); 4993 } 4994 } else { 4995 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4996 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4997 raw_inode->i_uid_high = 0; 4998 raw_inode->i_gid_high = 0; 4999 } 5000 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5001 5002 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5003 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5004 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5005 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5006 5007 err = ext4_inode_blocks_set(handle, raw_inode, ei); 5008 if (err) { 5009 spin_unlock(&ei->i_raw_lock); 5010 goto out_brelse; 5011 } 5012 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5013 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 5014 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 5015 raw_inode->i_file_acl_high = 5016 cpu_to_le16(ei->i_file_acl >> 32); 5017 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5018 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) { 5019 ext4_isize_set(raw_inode, ei->i_disksize); 5020 need_datasync = 1; 5021 } 5022 if (ei->i_disksize > 0x7fffffffULL) { 5023 if (!ext4_has_feature_large_file(sb) || 5024 EXT4_SB(sb)->s_es->s_rev_level == 5025 cpu_to_le32(EXT4_GOOD_OLD_REV)) 5026 set_large_file = 1; 5027 } 5028 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5029 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5030 if (old_valid_dev(inode->i_rdev)) { 5031 raw_inode->i_block[0] = 5032 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5033 raw_inode->i_block[1] = 0; 5034 } else { 5035 raw_inode->i_block[0] = 0; 5036 raw_inode->i_block[1] = 5037 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5038 raw_inode->i_block[2] = 0; 5039 } 5040 } else if (!ext4_has_inline_data(inode)) { 5041 for (block = 0; block < EXT4_N_BLOCKS; block++) 5042 raw_inode->i_block[block] = ei->i_data[block]; 5043 } 5044 5045 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5046 u64 ivers = ext4_inode_peek_iversion(inode); 5047 5048 raw_inode->i_disk_version = cpu_to_le32(ivers); 5049 if (ei->i_extra_isize) { 5050 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5051 raw_inode->i_version_hi = 5052 cpu_to_le32(ivers >> 32); 5053 raw_inode->i_extra_isize = 5054 cpu_to_le16(ei->i_extra_isize); 5055 } 5056 } 5057 5058 BUG_ON(!ext4_has_feature_project(inode->i_sb) && 5059 i_projid != EXT4_DEF_PROJID); 5060 5061 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 5062 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 5063 raw_inode->i_projid = cpu_to_le32(i_projid); 5064 5065 ext4_inode_csum_set(inode, raw_inode, ei); 5066 spin_unlock(&ei->i_raw_lock); 5067 if (inode->i_sb->s_flags & SB_LAZYTIME) 5068 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5069 bh->b_data); 5070 5071 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5072 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 5073 if (!err) 5074 err = rc; 5075 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5076 if (set_large_file) { 5077 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5078 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 5079 if (err) 5080 goto out_brelse; 5081 ext4_set_feature_large_file(sb); 5082 ext4_handle_sync(handle); 5083 err = ext4_handle_dirty_super(handle, sb); 5084 } 5085 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5086 out_brelse: 5087 brelse(bh); 5088 ext4_std_error(inode->i_sb, err); 5089 return err; 5090 } 5091 5092 /* 5093 * ext4_write_inode() 5094 * 5095 * We are called from a few places: 5096 * 5097 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5098 * Here, there will be no transaction running. We wait for any running 5099 * transaction to commit. 5100 * 5101 * - Within flush work (sys_sync(), kupdate and such). 5102 * We wait on commit, if told to. 5103 * 5104 * - Within iput_final() -> write_inode_now() 5105 * We wait on commit, if told to. 5106 * 5107 * In all cases it is actually safe for us to return without doing anything, 5108 * because the inode has been copied into a raw inode buffer in 5109 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5110 * writeback. 5111 * 5112 * Note that we are absolutely dependent upon all inode dirtiers doing the 5113 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5114 * which we are interested. 5115 * 5116 * It would be a bug for them to not do this. The code: 5117 * 5118 * mark_inode_dirty(inode) 5119 * stuff(); 5120 * inode->i_size = expr; 5121 * 5122 * is in error because write_inode() could occur while `stuff()' is running, 5123 * and the new i_size will be lost. Plus the inode will no longer be on the 5124 * superblock's dirty inode list. 5125 */ 5126 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5127 { 5128 int err; 5129 5130 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) || 5131 sb_rdonly(inode->i_sb)) 5132 return 0; 5133 5134 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5135 return -EIO; 5136 5137 if (EXT4_SB(inode->i_sb)->s_journal) { 5138 if (ext4_journal_current_handle()) { 5139 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5140 dump_stack(); 5141 return -EIO; 5142 } 5143 5144 /* 5145 * No need to force transaction in WB_SYNC_NONE mode. Also 5146 * ext4_sync_fs() will force the commit after everything is 5147 * written. 5148 */ 5149 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5150 return 0; 5151 5152 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal, 5153 EXT4_I(inode)->i_sync_tid); 5154 } else { 5155 struct ext4_iloc iloc; 5156 5157 err = __ext4_get_inode_loc(inode, &iloc, 0); 5158 if (err) 5159 return err; 5160 /* 5161 * sync(2) will flush the whole buffer cache. No need to do 5162 * it here separately for each inode. 5163 */ 5164 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5165 sync_dirty_buffer(iloc.bh); 5166 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5167 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5168 "IO error syncing inode"); 5169 err = -EIO; 5170 } 5171 brelse(iloc.bh); 5172 } 5173 return err; 5174 } 5175 5176 /* 5177 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 5178 * buffers that are attached to a page stradding i_size and are undergoing 5179 * commit. In that case we have to wait for commit to finish and try again. 5180 */ 5181 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5182 { 5183 struct page *page; 5184 unsigned offset; 5185 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5186 tid_t commit_tid = 0; 5187 int ret; 5188 5189 offset = inode->i_size & (PAGE_SIZE - 1); 5190 /* 5191 * If the page is fully truncated, we don't need to wait for any commit 5192 * (and we even should not as __ext4_journalled_invalidatepage() may 5193 * strip all buffers from the page but keep the page dirty which can then 5194 * confuse e.g. concurrent ext4_writepage() seeing dirty page without 5195 * buffers). Also we don't need to wait for any commit if all buffers in 5196 * the page remain valid. This is most beneficial for the common case of 5197 * blocksize == PAGESIZE. 5198 */ 5199 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5200 return; 5201 while (1) { 5202 page = find_lock_page(inode->i_mapping, 5203 inode->i_size >> PAGE_SHIFT); 5204 if (!page) 5205 return; 5206 ret = __ext4_journalled_invalidatepage(page, offset, 5207 PAGE_SIZE - offset); 5208 unlock_page(page); 5209 put_page(page); 5210 if (ret != -EBUSY) 5211 return; 5212 commit_tid = 0; 5213 read_lock(&journal->j_state_lock); 5214 if (journal->j_committing_transaction) 5215 commit_tid = journal->j_committing_transaction->t_tid; 5216 read_unlock(&journal->j_state_lock); 5217 if (commit_tid) 5218 jbd2_log_wait_commit(journal, commit_tid); 5219 } 5220 } 5221 5222 /* 5223 * ext4_setattr() 5224 * 5225 * Called from notify_change. 5226 * 5227 * We want to trap VFS attempts to truncate the file as soon as 5228 * possible. In particular, we want to make sure that when the VFS 5229 * shrinks i_size, we put the inode on the orphan list and modify 5230 * i_disksize immediately, so that during the subsequent flushing of 5231 * dirty pages and freeing of disk blocks, we can guarantee that any 5232 * commit will leave the blocks being flushed in an unused state on 5233 * disk. (On recovery, the inode will get truncated and the blocks will 5234 * be freed, so we have a strong guarantee that no future commit will 5235 * leave these blocks visible to the user.) 5236 * 5237 * Another thing we have to assure is that if we are in ordered mode 5238 * and inode is still attached to the committing transaction, we must 5239 * we start writeout of all the dirty pages which are being truncated. 5240 * This way we are sure that all the data written in the previous 5241 * transaction are already on disk (truncate waits for pages under 5242 * writeback). 5243 * 5244 * Called with inode->i_mutex down. 5245 */ 5246 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5247 { 5248 struct inode *inode = d_inode(dentry); 5249 int error, rc = 0; 5250 int orphan = 0; 5251 const unsigned int ia_valid = attr->ia_valid; 5252 5253 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5254 return -EIO; 5255 5256 if (unlikely(IS_IMMUTABLE(inode))) 5257 return -EPERM; 5258 5259 if (unlikely(IS_APPEND(inode) && 5260 (ia_valid & (ATTR_MODE | ATTR_UID | 5261 ATTR_GID | ATTR_TIMES_SET)))) 5262 return -EPERM; 5263 5264 error = setattr_prepare(dentry, attr); 5265 if (error) 5266 return error; 5267 5268 error = fscrypt_prepare_setattr(dentry, attr); 5269 if (error) 5270 return error; 5271 5272 error = fsverity_prepare_setattr(dentry, attr); 5273 if (error) 5274 return error; 5275 5276 if (is_quota_modification(inode, attr)) { 5277 error = dquot_initialize(inode); 5278 if (error) 5279 return error; 5280 } 5281 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5282 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5283 handle_t *handle; 5284 5285 /* (user+group)*(old+new) structure, inode write (sb, 5286 * inode block, ? - but truncate inode update has it) */ 5287 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5288 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5289 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5290 if (IS_ERR(handle)) { 5291 error = PTR_ERR(handle); 5292 goto err_out; 5293 } 5294 5295 /* dquot_transfer() calls back ext4_get_inode_usage() which 5296 * counts xattr inode references. 5297 */ 5298 down_read(&EXT4_I(inode)->xattr_sem); 5299 error = dquot_transfer(inode, attr); 5300 up_read(&EXT4_I(inode)->xattr_sem); 5301 5302 if (error) { 5303 ext4_journal_stop(handle); 5304 return error; 5305 } 5306 /* Update corresponding info in inode so that everything is in 5307 * one transaction */ 5308 if (attr->ia_valid & ATTR_UID) 5309 inode->i_uid = attr->ia_uid; 5310 if (attr->ia_valid & ATTR_GID) 5311 inode->i_gid = attr->ia_gid; 5312 error = ext4_mark_inode_dirty(handle, inode); 5313 ext4_journal_stop(handle); 5314 if (unlikely(error)) 5315 return error; 5316 } 5317 5318 if (attr->ia_valid & ATTR_SIZE) { 5319 handle_t *handle; 5320 loff_t oldsize = inode->i_size; 5321 int shrink = (attr->ia_size < inode->i_size); 5322 5323 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5324 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5325 5326 if (attr->ia_size > sbi->s_bitmap_maxbytes) 5327 return -EFBIG; 5328 } 5329 if (!S_ISREG(inode->i_mode)) 5330 return -EINVAL; 5331 5332 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5333 inode_inc_iversion(inode); 5334 5335 if (shrink) { 5336 if (ext4_should_order_data(inode)) { 5337 error = ext4_begin_ordered_truncate(inode, 5338 attr->ia_size); 5339 if (error) 5340 goto err_out; 5341 } 5342 /* 5343 * Blocks are going to be removed from the inode. Wait 5344 * for dio in flight. 5345 */ 5346 inode_dio_wait(inode); 5347 } 5348 5349 down_write(&EXT4_I(inode)->i_mmap_sem); 5350 5351 rc = ext4_break_layouts(inode); 5352 if (rc) { 5353 up_write(&EXT4_I(inode)->i_mmap_sem); 5354 return rc; 5355 } 5356 5357 if (attr->ia_size != inode->i_size) { 5358 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5359 if (IS_ERR(handle)) { 5360 error = PTR_ERR(handle); 5361 goto out_mmap_sem; 5362 } 5363 if (ext4_handle_valid(handle) && shrink) { 5364 error = ext4_orphan_add(handle, inode); 5365 orphan = 1; 5366 } 5367 /* 5368 * Update c/mtime on truncate up, ext4_truncate() will 5369 * update c/mtime in shrink case below 5370 */ 5371 if (!shrink) { 5372 inode->i_mtime = current_time(inode); 5373 inode->i_ctime = inode->i_mtime; 5374 } 5375 down_write(&EXT4_I(inode)->i_data_sem); 5376 EXT4_I(inode)->i_disksize = attr->ia_size; 5377 rc = ext4_mark_inode_dirty(handle, inode); 5378 if (!error) 5379 error = rc; 5380 /* 5381 * We have to update i_size under i_data_sem together 5382 * with i_disksize to avoid races with writeback code 5383 * running ext4_wb_update_i_disksize(). 5384 */ 5385 if (!error) 5386 i_size_write(inode, attr->ia_size); 5387 up_write(&EXT4_I(inode)->i_data_sem); 5388 ext4_journal_stop(handle); 5389 if (error) 5390 goto out_mmap_sem; 5391 if (!shrink) { 5392 pagecache_isize_extended(inode, oldsize, 5393 inode->i_size); 5394 } else if (ext4_should_journal_data(inode)) { 5395 ext4_wait_for_tail_page_commit(inode); 5396 } 5397 } 5398 5399 /* 5400 * Truncate pagecache after we've waited for commit 5401 * in data=journal mode to make pages freeable. 5402 */ 5403 truncate_pagecache(inode, inode->i_size); 5404 /* 5405 * Call ext4_truncate() even if i_size didn't change to 5406 * truncate possible preallocated blocks. 5407 */ 5408 if (attr->ia_size <= oldsize) { 5409 rc = ext4_truncate(inode); 5410 if (rc) 5411 error = rc; 5412 } 5413 out_mmap_sem: 5414 up_write(&EXT4_I(inode)->i_mmap_sem); 5415 } 5416 5417 if (!error) { 5418 setattr_copy(inode, attr); 5419 mark_inode_dirty(inode); 5420 } 5421 5422 /* 5423 * If the call to ext4_truncate failed to get a transaction handle at 5424 * all, we need to clean up the in-core orphan list manually. 5425 */ 5426 if (orphan && inode->i_nlink) 5427 ext4_orphan_del(NULL, inode); 5428 5429 if (!error && (ia_valid & ATTR_MODE)) 5430 rc = posix_acl_chmod(inode, inode->i_mode); 5431 5432 err_out: 5433 ext4_std_error(inode->i_sb, error); 5434 if (!error) 5435 error = rc; 5436 return error; 5437 } 5438 5439 int ext4_getattr(const struct path *path, struct kstat *stat, 5440 u32 request_mask, unsigned int query_flags) 5441 { 5442 struct inode *inode = d_inode(path->dentry); 5443 struct ext4_inode *raw_inode; 5444 struct ext4_inode_info *ei = EXT4_I(inode); 5445 unsigned int flags; 5446 5447 if ((request_mask & STATX_BTIME) && 5448 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5449 stat->result_mask |= STATX_BTIME; 5450 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5451 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5452 } 5453 5454 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5455 if (flags & EXT4_APPEND_FL) 5456 stat->attributes |= STATX_ATTR_APPEND; 5457 if (flags & EXT4_COMPR_FL) 5458 stat->attributes |= STATX_ATTR_COMPRESSED; 5459 if (flags & EXT4_ENCRYPT_FL) 5460 stat->attributes |= STATX_ATTR_ENCRYPTED; 5461 if (flags & EXT4_IMMUTABLE_FL) 5462 stat->attributes |= STATX_ATTR_IMMUTABLE; 5463 if (flags & EXT4_NODUMP_FL) 5464 stat->attributes |= STATX_ATTR_NODUMP; 5465 if (flags & EXT4_VERITY_FL) 5466 stat->attributes |= STATX_ATTR_VERITY; 5467 5468 stat->attributes_mask |= (STATX_ATTR_APPEND | 5469 STATX_ATTR_COMPRESSED | 5470 STATX_ATTR_ENCRYPTED | 5471 STATX_ATTR_IMMUTABLE | 5472 STATX_ATTR_NODUMP | 5473 STATX_ATTR_VERITY); 5474 5475 generic_fillattr(inode, stat); 5476 return 0; 5477 } 5478 5479 int ext4_file_getattr(const struct path *path, struct kstat *stat, 5480 u32 request_mask, unsigned int query_flags) 5481 { 5482 struct inode *inode = d_inode(path->dentry); 5483 u64 delalloc_blocks; 5484 5485 ext4_getattr(path, stat, request_mask, query_flags); 5486 5487 /* 5488 * If there is inline data in the inode, the inode will normally not 5489 * have data blocks allocated (it may have an external xattr block). 5490 * Report at least one sector for such files, so tools like tar, rsync, 5491 * others don't incorrectly think the file is completely sparse. 5492 */ 5493 if (unlikely(ext4_has_inline_data(inode))) 5494 stat->blocks += (stat->size + 511) >> 9; 5495 5496 /* 5497 * We can't update i_blocks if the block allocation is delayed 5498 * otherwise in the case of system crash before the real block 5499 * allocation is done, we will have i_blocks inconsistent with 5500 * on-disk file blocks. 5501 * We always keep i_blocks updated together with real 5502 * allocation. But to not confuse with user, stat 5503 * will return the blocks that include the delayed allocation 5504 * blocks for this file. 5505 */ 5506 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5507 EXT4_I(inode)->i_reserved_data_blocks); 5508 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5509 return 0; 5510 } 5511 5512 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5513 int pextents) 5514 { 5515 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5516 return ext4_ind_trans_blocks(inode, lblocks); 5517 return ext4_ext_index_trans_blocks(inode, pextents); 5518 } 5519 5520 /* 5521 * Account for index blocks, block groups bitmaps and block group 5522 * descriptor blocks if modify datablocks and index blocks 5523 * worse case, the indexs blocks spread over different block groups 5524 * 5525 * If datablocks are discontiguous, they are possible to spread over 5526 * different block groups too. If they are contiguous, with flexbg, 5527 * they could still across block group boundary. 5528 * 5529 * Also account for superblock, inode, quota and xattr blocks 5530 */ 5531 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5532 int pextents) 5533 { 5534 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5535 int gdpblocks; 5536 int idxblocks; 5537 int ret = 0; 5538 5539 /* 5540 * How many index blocks need to touch to map @lblocks logical blocks 5541 * to @pextents physical extents? 5542 */ 5543 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5544 5545 ret = idxblocks; 5546 5547 /* 5548 * Now let's see how many group bitmaps and group descriptors need 5549 * to account 5550 */ 5551 groups = idxblocks + pextents; 5552 gdpblocks = groups; 5553 if (groups > ngroups) 5554 groups = ngroups; 5555 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5556 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5557 5558 /* bitmaps and block group descriptor blocks */ 5559 ret += groups + gdpblocks; 5560 5561 /* Blocks for super block, inode, quota and xattr blocks */ 5562 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5563 5564 return ret; 5565 } 5566 5567 /* 5568 * Calculate the total number of credits to reserve to fit 5569 * the modification of a single pages into a single transaction, 5570 * which may include multiple chunks of block allocations. 5571 * 5572 * This could be called via ext4_write_begin() 5573 * 5574 * We need to consider the worse case, when 5575 * one new block per extent. 5576 */ 5577 int ext4_writepage_trans_blocks(struct inode *inode) 5578 { 5579 int bpp = ext4_journal_blocks_per_page(inode); 5580 int ret; 5581 5582 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5583 5584 /* Account for data blocks for journalled mode */ 5585 if (ext4_should_journal_data(inode)) 5586 ret += bpp; 5587 return ret; 5588 } 5589 5590 /* 5591 * Calculate the journal credits for a chunk of data modification. 5592 * 5593 * This is called from DIO, fallocate or whoever calling 5594 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5595 * 5596 * journal buffers for data blocks are not included here, as DIO 5597 * and fallocate do no need to journal data buffers. 5598 */ 5599 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5600 { 5601 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5602 } 5603 5604 /* 5605 * The caller must have previously called ext4_reserve_inode_write(). 5606 * Give this, we know that the caller already has write access to iloc->bh. 5607 */ 5608 int ext4_mark_iloc_dirty(handle_t *handle, 5609 struct inode *inode, struct ext4_iloc *iloc) 5610 { 5611 int err = 0; 5612 5613 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 5614 put_bh(iloc->bh); 5615 return -EIO; 5616 } 5617 if (IS_I_VERSION(inode)) 5618 inode_inc_iversion(inode); 5619 5620 /* the do_update_inode consumes one bh->b_count */ 5621 get_bh(iloc->bh); 5622 5623 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5624 err = ext4_do_update_inode(handle, inode, iloc); 5625 put_bh(iloc->bh); 5626 return err; 5627 } 5628 5629 /* 5630 * On success, We end up with an outstanding reference count against 5631 * iloc->bh. This _must_ be cleaned up later. 5632 */ 5633 5634 int 5635 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5636 struct ext4_iloc *iloc) 5637 { 5638 int err; 5639 5640 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5641 return -EIO; 5642 5643 err = ext4_get_inode_loc(inode, iloc); 5644 if (!err) { 5645 BUFFER_TRACE(iloc->bh, "get_write_access"); 5646 err = ext4_journal_get_write_access(handle, iloc->bh); 5647 if (err) { 5648 brelse(iloc->bh); 5649 iloc->bh = NULL; 5650 } 5651 } 5652 ext4_std_error(inode->i_sb, err); 5653 return err; 5654 } 5655 5656 static int __ext4_expand_extra_isize(struct inode *inode, 5657 unsigned int new_extra_isize, 5658 struct ext4_iloc *iloc, 5659 handle_t *handle, int *no_expand) 5660 { 5661 struct ext4_inode *raw_inode; 5662 struct ext4_xattr_ibody_header *header; 5663 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5664 struct ext4_inode_info *ei = EXT4_I(inode); 5665 int error; 5666 5667 /* this was checked at iget time, but double check for good measure */ 5668 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5669 (ei->i_extra_isize & 3)) { 5670 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5671 ei->i_extra_isize, 5672 EXT4_INODE_SIZE(inode->i_sb)); 5673 return -EFSCORRUPTED; 5674 } 5675 if ((new_extra_isize < ei->i_extra_isize) || 5676 (new_extra_isize < 4) || 5677 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5678 return -EINVAL; /* Should never happen */ 5679 5680 raw_inode = ext4_raw_inode(iloc); 5681 5682 header = IHDR(inode, raw_inode); 5683 5684 /* No extended attributes present */ 5685 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5686 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5687 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5688 EXT4_I(inode)->i_extra_isize, 0, 5689 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5690 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5691 return 0; 5692 } 5693 5694 /* try to expand with EAs present */ 5695 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5696 raw_inode, handle); 5697 if (error) { 5698 /* 5699 * Inode size expansion failed; don't try again 5700 */ 5701 *no_expand = 1; 5702 } 5703 5704 return error; 5705 } 5706 5707 /* 5708 * Expand an inode by new_extra_isize bytes. 5709 * Returns 0 on success or negative error number on failure. 5710 */ 5711 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5712 unsigned int new_extra_isize, 5713 struct ext4_iloc iloc, 5714 handle_t *handle) 5715 { 5716 int no_expand; 5717 int error; 5718 5719 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5720 return -EOVERFLOW; 5721 5722 /* 5723 * In nojournal mode, we can immediately attempt to expand 5724 * the inode. When journaled, we first need to obtain extra 5725 * buffer credits since we may write into the EA block 5726 * with this same handle. If journal_extend fails, then it will 5727 * only result in a minor loss of functionality for that inode. 5728 * If this is felt to be critical, then e2fsck should be run to 5729 * force a large enough s_min_extra_isize. 5730 */ 5731 if (ext4_journal_extend(handle, 5732 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5733 return -ENOSPC; 5734 5735 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5736 return -EBUSY; 5737 5738 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5739 handle, &no_expand); 5740 ext4_write_unlock_xattr(inode, &no_expand); 5741 5742 return error; 5743 } 5744 5745 int ext4_expand_extra_isize(struct inode *inode, 5746 unsigned int new_extra_isize, 5747 struct ext4_iloc *iloc) 5748 { 5749 handle_t *handle; 5750 int no_expand; 5751 int error, rc; 5752 5753 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5754 brelse(iloc->bh); 5755 return -EOVERFLOW; 5756 } 5757 5758 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5759 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5760 if (IS_ERR(handle)) { 5761 error = PTR_ERR(handle); 5762 brelse(iloc->bh); 5763 return error; 5764 } 5765 5766 ext4_write_lock_xattr(inode, &no_expand); 5767 5768 BUFFER_TRACE(iloc->bh, "get_write_access"); 5769 error = ext4_journal_get_write_access(handle, iloc->bh); 5770 if (error) { 5771 brelse(iloc->bh); 5772 goto out_unlock; 5773 } 5774 5775 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5776 handle, &no_expand); 5777 5778 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5779 if (!error) 5780 error = rc; 5781 5782 out_unlock: 5783 ext4_write_unlock_xattr(inode, &no_expand); 5784 ext4_journal_stop(handle); 5785 return error; 5786 } 5787 5788 /* 5789 * What we do here is to mark the in-core inode as clean with respect to inode 5790 * dirtiness (it may still be data-dirty). 5791 * This means that the in-core inode may be reaped by prune_icache 5792 * without having to perform any I/O. This is a very good thing, 5793 * because *any* task may call prune_icache - even ones which 5794 * have a transaction open against a different journal. 5795 * 5796 * Is this cheating? Not really. Sure, we haven't written the 5797 * inode out, but prune_icache isn't a user-visible syncing function. 5798 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5799 * we start and wait on commits. 5800 */ 5801 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 5802 const char *func, unsigned int line) 5803 { 5804 struct ext4_iloc iloc; 5805 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5806 int err; 5807 5808 might_sleep(); 5809 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5810 err = ext4_reserve_inode_write(handle, inode, &iloc); 5811 if (err) 5812 goto out; 5813 5814 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5815 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5816 iloc, handle); 5817 5818 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5819 out: 5820 if (unlikely(err)) 5821 ext4_error_inode_err(inode, func, line, 0, err, 5822 "mark_inode_dirty error"); 5823 return err; 5824 } 5825 5826 /* 5827 * ext4_dirty_inode() is called from __mark_inode_dirty() 5828 * 5829 * We're really interested in the case where a file is being extended. 5830 * i_size has been changed by generic_commit_write() and we thus need 5831 * to include the updated inode in the current transaction. 5832 * 5833 * Also, dquot_alloc_block() will always dirty the inode when blocks 5834 * are allocated to the file. 5835 * 5836 * If the inode is marked synchronous, we don't honour that here - doing 5837 * so would cause a commit on atime updates, which we don't bother doing. 5838 * We handle synchronous inodes at the highest possible level. 5839 * 5840 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 5841 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 5842 * to copy into the on-disk inode structure are the timestamp files. 5843 */ 5844 void ext4_dirty_inode(struct inode *inode, int flags) 5845 { 5846 handle_t *handle; 5847 5848 if (flags == I_DIRTY_TIME) 5849 return; 5850 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5851 if (IS_ERR(handle)) 5852 goto out; 5853 5854 ext4_mark_inode_dirty(handle, inode); 5855 5856 ext4_journal_stop(handle); 5857 out: 5858 return; 5859 } 5860 5861 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5862 { 5863 journal_t *journal; 5864 handle_t *handle; 5865 int err; 5866 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5867 5868 /* 5869 * We have to be very careful here: changing a data block's 5870 * journaling status dynamically is dangerous. If we write a 5871 * data block to the journal, change the status and then delete 5872 * that block, we risk forgetting to revoke the old log record 5873 * from the journal and so a subsequent replay can corrupt data. 5874 * So, first we make sure that the journal is empty and that 5875 * nobody is changing anything. 5876 */ 5877 5878 journal = EXT4_JOURNAL(inode); 5879 if (!journal) 5880 return 0; 5881 if (is_journal_aborted(journal)) 5882 return -EROFS; 5883 5884 /* Wait for all existing dio workers */ 5885 inode_dio_wait(inode); 5886 5887 /* 5888 * Before flushing the journal and switching inode's aops, we have 5889 * to flush all dirty data the inode has. There can be outstanding 5890 * delayed allocations, there can be unwritten extents created by 5891 * fallocate or buffered writes in dioread_nolock mode covered by 5892 * dirty data which can be converted only after flushing the dirty 5893 * data (and journalled aops don't know how to handle these cases). 5894 */ 5895 if (val) { 5896 down_write(&EXT4_I(inode)->i_mmap_sem); 5897 err = filemap_write_and_wait(inode->i_mapping); 5898 if (err < 0) { 5899 up_write(&EXT4_I(inode)->i_mmap_sem); 5900 return err; 5901 } 5902 } 5903 5904 percpu_down_write(&sbi->s_writepages_rwsem); 5905 jbd2_journal_lock_updates(journal); 5906 5907 /* 5908 * OK, there are no updates running now, and all cached data is 5909 * synced to disk. We are now in a completely consistent state 5910 * which doesn't have anything in the journal, and we know that 5911 * no filesystem updates are running, so it is safe to modify 5912 * the inode's in-core data-journaling state flag now. 5913 */ 5914 5915 if (val) 5916 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5917 else { 5918 err = jbd2_journal_flush(journal); 5919 if (err < 0) { 5920 jbd2_journal_unlock_updates(journal); 5921 percpu_up_write(&sbi->s_writepages_rwsem); 5922 return err; 5923 } 5924 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5925 } 5926 ext4_set_aops(inode); 5927 5928 jbd2_journal_unlock_updates(journal); 5929 percpu_up_write(&sbi->s_writepages_rwsem); 5930 5931 if (val) 5932 up_write(&EXT4_I(inode)->i_mmap_sem); 5933 5934 /* Finally we can mark the inode as dirty. */ 5935 5936 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5937 if (IS_ERR(handle)) 5938 return PTR_ERR(handle); 5939 5940 err = ext4_mark_inode_dirty(handle, inode); 5941 ext4_handle_sync(handle); 5942 ext4_journal_stop(handle); 5943 ext4_std_error(inode->i_sb, err); 5944 5945 return err; 5946 } 5947 5948 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5949 { 5950 return !buffer_mapped(bh); 5951 } 5952 5953 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 5954 { 5955 struct vm_area_struct *vma = vmf->vma; 5956 struct page *page = vmf->page; 5957 loff_t size; 5958 unsigned long len; 5959 int err; 5960 vm_fault_t ret; 5961 struct file *file = vma->vm_file; 5962 struct inode *inode = file_inode(file); 5963 struct address_space *mapping = inode->i_mapping; 5964 handle_t *handle; 5965 get_block_t *get_block; 5966 int retries = 0; 5967 5968 if (unlikely(IS_IMMUTABLE(inode))) 5969 return VM_FAULT_SIGBUS; 5970 5971 sb_start_pagefault(inode->i_sb); 5972 file_update_time(vma->vm_file); 5973 5974 down_read(&EXT4_I(inode)->i_mmap_sem); 5975 5976 err = ext4_convert_inline_data(inode); 5977 if (err) 5978 goto out_ret; 5979 5980 /* Delalloc case is easy... */ 5981 if (test_opt(inode->i_sb, DELALLOC) && 5982 !ext4_should_journal_data(inode) && 5983 !ext4_nonda_switch(inode->i_sb)) { 5984 do { 5985 err = block_page_mkwrite(vma, vmf, 5986 ext4_da_get_block_prep); 5987 } while (err == -ENOSPC && 5988 ext4_should_retry_alloc(inode->i_sb, &retries)); 5989 goto out_ret; 5990 } 5991 5992 lock_page(page); 5993 size = i_size_read(inode); 5994 /* Page got truncated from under us? */ 5995 if (page->mapping != mapping || page_offset(page) > size) { 5996 unlock_page(page); 5997 ret = VM_FAULT_NOPAGE; 5998 goto out; 5999 } 6000 6001 if (page->index == size >> PAGE_SHIFT) 6002 len = size & ~PAGE_MASK; 6003 else 6004 len = PAGE_SIZE; 6005 /* 6006 * Return if we have all the buffers mapped. This avoids the need to do 6007 * journal_start/journal_stop which can block and take a long time 6008 */ 6009 if (page_has_buffers(page)) { 6010 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 6011 0, len, NULL, 6012 ext4_bh_unmapped)) { 6013 /* Wait so that we don't change page under IO */ 6014 wait_for_stable_page(page); 6015 ret = VM_FAULT_LOCKED; 6016 goto out; 6017 } 6018 } 6019 unlock_page(page); 6020 /* OK, we need to fill the hole... */ 6021 if (ext4_should_dioread_nolock(inode)) 6022 get_block = ext4_get_block_unwritten; 6023 else 6024 get_block = ext4_get_block; 6025 retry_alloc: 6026 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6027 ext4_writepage_trans_blocks(inode)); 6028 if (IS_ERR(handle)) { 6029 ret = VM_FAULT_SIGBUS; 6030 goto out; 6031 } 6032 err = block_page_mkwrite(vma, vmf, get_block); 6033 if (!err && ext4_should_journal_data(inode)) { 6034 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 6035 PAGE_SIZE, NULL, do_journal_get_write_access)) { 6036 unlock_page(page); 6037 ret = VM_FAULT_SIGBUS; 6038 ext4_journal_stop(handle); 6039 goto out; 6040 } 6041 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 6042 } 6043 ext4_journal_stop(handle); 6044 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6045 goto retry_alloc; 6046 out_ret: 6047 ret = block_page_mkwrite_return(err); 6048 out: 6049 up_read(&EXT4_I(inode)->i_mmap_sem); 6050 sb_end_pagefault(inode->i_sb); 6051 return ret; 6052 } 6053 6054 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf) 6055 { 6056 struct inode *inode = file_inode(vmf->vma->vm_file); 6057 vm_fault_t ret; 6058 6059 down_read(&EXT4_I(inode)->i_mmap_sem); 6060 ret = filemap_fault(vmf); 6061 up_read(&EXT4_I(inode)->i_mmap_sem); 6062 6063 return ret; 6064 } 6065