1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/time.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/string.h> 30 #include <linux/buffer_head.h> 31 #include <linux/writeback.h> 32 #include <linux/pagevec.h> 33 #include <linux/mpage.h> 34 #include <linux/rmap.h> 35 #include <linux/namei.h> 36 #include <linux/uio.h> 37 #include <linux/bio.h> 38 #include <linux/workqueue.h> 39 #include <linux/kernel.h> 40 #include <linux/printk.h> 41 #include <linux/slab.h> 42 #include <linux/bitops.h> 43 #include <linux/iomap.h> 44 #include <linux/iversion.h> 45 46 #include "ext4_jbd2.h" 47 #include "xattr.h" 48 #include "acl.h" 49 #include "truncate.h" 50 51 #include <trace/events/ext4.h> 52 53 static void ext4_journalled_zero_new_buffers(handle_t *handle, 54 struct inode *inode, 55 struct folio *folio, 56 unsigned from, unsigned to); 57 58 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 59 struct ext4_inode_info *ei) 60 { 61 __u32 csum; 62 __u16 dummy_csum = 0; 63 int offset = offsetof(struct ext4_inode, i_checksum_lo); 64 unsigned int csum_size = sizeof(dummy_csum); 65 66 csum = ext4_chksum(ei->i_csum_seed, (__u8 *)raw, offset); 67 csum = ext4_chksum(csum, (__u8 *)&dummy_csum, csum_size); 68 offset += csum_size; 69 csum = ext4_chksum(csum, (__u8 *)raw + offset, 70 EXT4_GOOD_OLD_INODE_SIZE - offset); 71 72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 73 offset = offsetof(struct ext4_inode, i_checksum_hi); 74 csum = ext4_chksum(csum, (__u8 *)raw + EXT4_GOOD_OLD_INODE_SIZE, 75 offset - EXT4_GOOD_OLD_INODE_SIZE); 76 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 77 csum = ext4_chksum(csum, (__u8 *)&dummy_csum, 78 csum_size); 79 offset += csum_size; 80 } 81 csum = ext4_chksum(csum, (__u8 *)raw + offset, 82 EXT4_INODE_SIZE(inode->i_sb) - offset); 83 } 84 85 return csum; 86 } 87 88 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 89 struct ext4_inode_info *ei) 90 { 91 __u32 provided, calculated; 92 93 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 94 cpu_to_le32(EXT4_OS_LINUX) || 95 !ext4_has_feature_metadata_csum(inode->i_sb)) 96 return 1; 97 98 provided = le16_to_cpu(raw->i_checksum_lo); 99 calculated = ext4_inode_csum(inode, raw, ei); 100 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 101 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 102 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 103 else 104 calculated &= 0xFFFF; 105 106 return provided == calculated; 107 } 108 109 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 110 struct ext4_inode_info *ei) 111 { 112 __u32 csum; 113 114 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 115 cpu_to_le32(EXT4_OS_LINUX) || 116 !ext4_has_feature_metadata_csum(inode->i_sb)) 117 return; 118 119 csum = ext4_inode_csum(inode, raw, ei); 120 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 121 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 122 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 123 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 124 } 125 126 static inline int ext4_begin_ordered_truncate(struct inode *inode, 127 loff_t new_size) 128 { 129 trace_ext4_begin_ordered_truncate(inode, new_size); 130 /* 131 * If jinode is zero, then we never opened the file for 132 * writing, so there's no need to call 133 * jbd2_journal_begin_ordered_truncate() since there's no 134 * outstanding writes we need to flush. 135 */ 136 if (!EXT4_I(inode)->jinode) 137 return 0; 138 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 139 EXT4_I(inode)->jinode, 140 new_size); 141 } 142 143 /* 144 * Test whether an inode is a fast symlink. 145 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 146 */ 147 int ext4_inode_is_fast_symlink(struct inode *inode) 148 { 149 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 150 int ea_blocks = EXT4_I(inode)->i_file_acl ? 151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 152 153 if (ext4_has_inline_data(inode)) 154 return 0; 155 156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 157 } 158 return S_ISLNK(inode->i_mode) && inode->i_size && 159 (inode->i_size < EXT4_N_BLOCKS * 4); 160 } 161 162 /* 163 * Called at the last iput() if i_nlink is zero. 164 */ 165 void ext4_evict_inode(struct inode *inode) 166 { 167 handle_t *handle; 168 int err; 169 /* 170 * Credits for final inode cleanup and freeing: 171 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 172 * (xattr block freeing), bitmap, group descriptor (inode freeing) 173 */ 174 int extra_credits = 6; 175 struct ext4_xattr_inode_array *ea_inode_array = NULL; 176 bool freeze_protected = false; 177 178 trace_ext4_evict_inode(inode); 179 180 dax_break_layout_final(inode); 181 182 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL) 183 ext4_evict_ea_inode(inode); 184 if (inode->i_nlink) { 185 truncate_inode_pages_final(&inode->i_data); 186 187 goto no_delete; 188 } 189 190 if (is_bad_inode(inode)) 191 goto no_delete; 192 dquot_initialize(inode); 193 194 if (ext4_should_order_data(inode)) 195 ext4_begin_ordered_truncate(inode, 0); 196 truncate_inode_pages_final(&inode->i_data); 197 198 /* 199 * For inodes with journalled data, transaction commit could have 200 * dirtied the inode. And for inodes with dioread_nolock, unwritten 201 * extents converting worker could merge extents and also have dirtied 202 * the inode. Flush worker is ignoring it because of I_FREEING flag but 203 * we still need to remove the inode from the writeback lists. 204 */ 205 if (!list_empty_careful(&inode->i_io_list)) 206 inode_io_list_del(inode); 207 208 /* 209 * Protect us against freezing - iput() caller didn't have to have any 210 * protection against it. When we are in a running transaction though, 211 * we are already protected against freezing and we cannot grab further 212 * protection due to lock ordering constraints. 213 */ 214 if (!ext4_journal_current_handle()) { 215 sb_start_intwrite(inode->i_sb); 216 freeze_protected = true; 217 } 218 219 if (!IS_NOQUOTA(inode)) 220 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 221 222 /* 223 * Block bitmap, group descriptor, and inode are accounted in both 224 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 225 */ 226 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 227 ext4_blocks_for_truncate(inode) + extra_credits - 3); 228 if (IS_ERR(handle)) { 229 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 230 /* 231 * If we're going to skip the normal cleanup, we still need to 232 * make sure that the in-core orphan linked list is properly 233 * cleaned up. 234 */ 235 ext4_orphan_del(NULL, inode); 236 if (freeze_protected) 237 sb_end_intwrite(inode->i_sb); 238 goto no_delete; 239 } 240 241 if (IS_SYNC(inode)) 242 ext4_handle_sync(handle); 243 244 /* 245 * Set inode->i_size to 0 before calling ext4_truncate(). We need 246 * special handling of symlinks here because i_size is used to 247 * determine whether ext4_inode_info->i_data contains symlink data or 248 * block mappings. Setting i_size to 0 will remove its fast symlink 249 * status. Erase i_data so that it becomes a valid empty block map. 250 */ 251 if (ext4_inode_is_fast_symlink(inode)) 252 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 253 inode->i_size = 0; 254 err = ext4_mark_inode_dirty(handle, inode); 255 if (err) { 256 ext4_warning(inode->i_sb, 257 "couldn't mark inode dirty (err %d)", err); 258 goto stop_handle; 259 } 260 if (inode->i_blocks) { 261 err = ext4_truncate(inode); 262 if (err) { 263 ext4_error_err(inode->i_sb, -err, 264 "couldn't truncate inode %lu (err %d)", 265 inode->i_ino, err); 266 goto stop_handle; 267 } 268 } 269 270 /* Remove xattr references. */ 271 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 272 extra_credits); 273 if (err) { 274 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 275 stop_handle: 276 ext4_journal_stop(handle); 277 ext4_orphan_del(NULL, inode); 278 if (freeze_protected) 279 sb_end_intwrite(inode->i_sb); 280 ext4_xattr_inode_array_free(ea_inode_array); 281 goto no_delete; 282 } 283 284 /* 285 * Kill off the orphan record which ext4_truncate created. 286 * AKPM: I think this can be inside the above `if'. 287 * Note that ext4_orphan_del() has to be able to cope with the 288 * deletion of a non-existent orphan - this is because we don't 289 * know if ext4_truncate() actually created an orphan record. 290 * (Well, we could do this if we need to, but heck - it works) 291 */ 292 ext4_orphan_del(handle, inode); 293 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 294 295 /* 296 * One subtle ordering requirement: if anything has gone wrong 297 * (transaction abort, IO errors, whatever), then we can still 298 * do these next steps (the fs will already have been marked as 299 * having errors), but we can't free the inode if the mark_dirty 300 * fails. 301 */ 302 if (ext4_mark_inode_dirty(handle, inode)) 303 /* If that failed, just do the required in-core inode clear. */ 304 ext4_clear_inode(inode); 305 else 306 ext4_free_inode(handle, inode); 307 ext4_journal_stop(handle); 308 if (freeze_protected) 309 sb_end_intwrite(inode->i_sb); 310 ext4_xattr_inode_array_free(ea_inode_array); 311 return; 312 no_delete: 313 /* 314 * Check out some where else accidentally dirty the evicting inode, 315 * which may probably cause inode use-after-free issues later. 316 */ 317 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list)); 318 319 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 320 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL); 321 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 322 } 323 324 #ifdef CONFIG_QUOTA 325 qsize_t *ext4_get_reserved_space(struct inode *inode) 326 { 327 return &EXT4_I(inode)->i_reserved_quota; 328 } 329 #endif 330 331 /* 332 * Called with i_data_sem down, which is important since we can call 333 * ext4_discard_preallocations() from here. 334 */ 335 void ext4_da_update_reserve_space(struct inode *inode, 336 int used, int quota_claim) 337 { 338 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 339 struct ext4_inode_info *ei = EXT4_I(inode); 340 341 spin_lock(&ei->i_block_reservation_lock); 342 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 343 if (unlikely(used > ei->i_reserved_data_blocks)) { 344 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 345 "with only %d reserved data blocks", 346 __func__, inode->i_ino, used, 347 ei->i_reserved_data_blocks); 348 WARN_ON(1); 349 used = ei->i_reserved_data_blocks; 350 } 351 352 /* Update per-inode reservations */ 353 ei->i_reserved_data_blocks -= used; 354 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 355 356 spin_unlock(&ei->i_block_reservation_lock); 357 358 /* Update quota subsystem for data blocks */ 359 if (quota_claim) 360 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 361 else { 362 /* 363 * We did fallocate with an offset that is already delayed 364 * allocated. So on delayed allocated writeback we should 365 * not re-claim the quota for fallocated blocks. 366 */ 367 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 368 } 369 370 /* 371 * If we have done all the pending block allocations and if 372 * there aren't any writers on the inode, we can discard the 373 * inode's preallocations. 374 */ 375 if ((ei->i_reserved_data_blocks == 0) && 376 !inode_is_open_for_write(inode)) 377 ext4_discard_preallocations(inode); 378 } 379 380 static int __check_block_validity(struct inode *inode, const char *func, 381 unsigned int line, 382 struct ext4_map_blocks *map) 383 { 384 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 385 386 if (journal && inode == journal->j_inode) 387 return 0; 388 389 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 390 ext4_error_inode(inode, func, line, map->m_pblk, 391 "lblock %lu mapped to illegal pblock %llu " 392 "(length %d)", (unsigned long) map->m_lblk, 393 map->m_pblk, map->m_len); 394 return -EFSCORRUPTED; 395 } 396 return 0; 397 } 398 399 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 400 ext4_lblk_t len) 401 { 402 int ret; 403 404 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 405 return fscrypt_zeroout_range(inode, lblk, pblk, len); 406 407 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 408 if (ret > 0) 409 ret = 0; 410 411 return ret; 412 } 413 414 /* 415 * For generic regular files, when updating the extent tree, Ext4 should 416 * hold the i_rwsem and invalidate_lock exclusively. This ensures 417 * exclusion against concurrent page faults, as well as reads and writes. 418 */ 419 #ifdef CONFIG_EXT4_DEBUG 420 void ext4_check_map_extents_env(struct inode *inode) 421 { 422 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 423 return; 424 425 if (!S_ISREG(inode->i_mode) || 426 IS_NOQUOTA(inode) || IS_VERITY(inode) || 427 is_special_ino(inode->i_sb, inode->i_ino) || 428 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) || 429 ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE) || 430 ext4_verity_in_progress(inode)) 431 return; 432 433 WARN_ON_ONCE(!inode_is_locked(inode) && 434 !rwsem_is_locked(&inode->i_mapping->invalidate_lock)); 435 } 436 #else 437 void ext4_check_map_extents_env(struct inode *inode) {} 438 #endif 439 440 #define check_block_validity(inode, map) \ 441 __check_block_validity((inode), __func__, __LINE__, (map)) 442 443 #ifdef ES_AGGRESSIVE_TEST 444 static void ext4_map_blocks_es_recheck(handle_t *handle, 445 struct inode *inode, 446 struct ext4_map_blocks *es_map, 447 struct ext4_map_blocks *map, 448 int flags) 449 { 450 int retval; 451 452 map->m_flags = 0; 453 /* 454 * There is a race window that the result is not the same. 455 * e.g. xfstests #223 when dioread_nolock enables. The reason 456 * is that we lookup a block mapping in extent status tree with 457 * out taking i_data_sem. So at the time the unwritten extent 458 * could be converted. 459 */ 460 down_read(&EXT4_I(inode)->i_data_sem); 461 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 462 retval = ext4_ext_map_blocks(handle, inode, map, 0); 463 } else { 464 retval = ext4_ind_map_blocks(handle, inode, map, 0); 465 } 466 up_read((&EXT4_I(inode)->i_data_sem)); 467 468 /* 469 * We don't check m_len because extent will be collpased in status 470 * tree. So the m_len might not equal. 471 */ 472 if (es_map->m_lblk != map->m_lblk || 473 es_map->m_flags != map->m_flags || 474 es_map->m_pblk != map->m_pblk) { 475 printk("ES cache assertion failed for inode: %lu " 476 "es_cached ex [%d/%d/%llu/%x] != " 477 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 478 inode->i_ino, es_map->m_lblk, es_map->m_len, 479 es_map->m_pblk, es_map->m_flags, map->m_lblk, 480 map->m_len, map->m_pblk, map->m_flags, 481 retval, flags); 482 } 483 } 484 #endif /* ES_AGGRESSIVE_TEST */ 485 486 static int ext4_map_query_blocks_next_in_leaf(handle_t *handle, 487 struct inode *inode, struct ext4_map_blocks *map, 488 unsigned int orig_mlen) 489 { 490 struct ext4_map_blocks map2; 491 unsigned int status, status2; 492 int retval; 493 494 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 495 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 496 497 WARN_ON_ONCE(!(map->m_flags & EXT4_MAP_QUERY_LAST_IN_LEAF)); 498 WARN_ON_ONCE(orig_mlen <= map->m_len); 499 500 /* Prepare map2 for lookup in next leaf block */ 501 map2.m_lblk = map->m_lblk + map->m_len; 502 map2.m_len = orig_mlen - map->m_len; 503 map2.m_flags = 0; 504 retval = ext4_ext_map_blocks(handle, inode, &map2, 0); 505 506 if (retval <= 0) { 507 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 508 map->m_pblk, status, false); 509 return map->m_len; 510 } 511 512 if (unlikely(retval != map2.m_len)) { 513 ext4_warning(inode->i_sb, 514 "ES len assertion failed for inode " 515 "%lu: retval %d != map->m_len %d", 516 inode->i_ino, retval, map2.m_len); 517 WARN_ON(1); 518 } 519 520 status2 = map2.m_flags & EXT4_MAP_UNWRITTEN ? 521 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 522 523 /* 524 * If map2 is contiguous with map, then let's insert it as a single 525 * extent in es cache and return the combined length of both the maps. 526 */ 527 if (map->m_pblk + map->m_len == map2.m_pblk && 528 status == status2) { 529 ext4_es_insert_extent(inode, map->m_lblk, 530 map->m_len + map2.m_len, map->m_pblk, 531 status, false); 532 map->m_len += map2.m_len; 533 } else { 534 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 535 map->m_pblk, status, false); 536 } 537 538 return map->m_len; 539 } 540 541 static int ext4_map_query_blocks(handle_t *handle, struct inode *inode, 542 struct ext4_map_blocks *map, int flags) 543 { 544 unsigned int status; 545 int retval; 546 unsigned int orig_mlen = map->m_len; 547 548 flags &= EXT4_EX_QUERY_FILTER; 549 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 550 retval = ext4_ext_map_blocks(handle, inode, map, flags); 551 else 552 retval = ext4_ind_map_blocks(handle, inode, map, flags); 553 554 if (retval <= 0) 555 return retval; 556 557 if (unlikely(retval != map->m_len)) { 558 ext4_warning(inode->i_sb, 559 "ES len assertion failed for inode " 560 "%lu: retval %d != map->m_len %d", 561 inode->i_ino, retval, map->m_len); 562 WARN_ON(1); 563 } 564 565 /* 566 * No need to query next in leaf: 567 * - if returned extent is not last in leaf or 568 * - if the last in leaf is the full requested range 569 */ 570 if (!(map->m_flags & EXT4_MAP_QUERY_LAST_IN_LEAF) || 571 map->m_len == orig_mlen) { 572 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 573 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 574 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 575 map->m_pblk, status, false); 576 return retval; 577 } 578 579 return ext4_map_query_blocks_next_in_leaf(handle, inode, map, 580 orig_mlen); 581 } 582 583 static int ext4_map_create_blocks(handle_t *handle, struct inode *inode, 584 struct ext4_map_blocks *map, int flags) 585 { 586 struct extent_status es; 587 unsigned int status; 588 int err, retval = 0; 589 590 /* 591 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE 592 * indicates that the blocks and quotas has already been 593 * checked when the data was copied into the page cache. 594 */ 595 if (map->m_flags & EXT4_MAP_DELAYED) 596 flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 597 598 /* 599 * Here we clear m_flags because after allocating an new extent, 600 * it will be set again. 601 */ 602 map->m_flags &= ~EXT4_MAP_FLAGS; 603 604 /* 605 * We need to check for EXT4 here because migrate could have 606 * changed the inode type in between. 607 */ 608 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 609 retval = ext4_ext_map_blocks(handle, inode, map, flags); 610 } else { 611 retval = ext4_ind_map_blocks(handle, inode, map, flags); 612 613 /* 614 * We allocated new blocks which will result in i_data's 615 * format changing. Force the migrate to fail by clearing 616 * migrate flags. 617 */ 618 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) 619 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 620 } 621 if (retval <= 0) 622 return retval; 623 624 if (unlikely(retval != map->m_len)) { 625 ext4_warning(inode->i_sb, 626 "ES len assertion failed for inode %lu: " 627 "retval %d != map->m_len %d", 628 inode->i_ino, retval, map->m_len); 629 WARN_ON(1); 630 } 631 632 /* 633 * We have to zeroout blocks before inserting them into extent 634 * status tree. Otherwise someone could look them up there and 635 * use them before they are really zeroed. We also have to 636 * unmap metadata before zeroing as otherwise writeback can 637 * overwrite zeros with stale data from block device. 638 */ 639 if (flags & EXT4_GET_BLOCKS_ZERO && 640 map->m_flags & EXT4_MAP_MAPPED && map->m_flags & EXT4_MAP_NEW) { 641 err = ext4_issue_zeroout(inode, map->m_lblk, map->m_pblk, 642 map->m_len); 643 if (err) 644 return err; 645 } 646 647 /* 648 * If the extent has been zeroed out, we don't need to update 649 * extent status tree. 650 */ 651 if (flags & EXT4_GET_BLOCKS_PRE_IO && 652 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 653 if (ext4_es_is_written(&es)) 654 return retval; 655 } 656 657 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 658 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 659 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, map->m_pblk, 660 status, flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE); 661 662 return retval; 663 } 664 665 /* 666 * The ext4_map_blocks() function tries to look up the requested blocks, 667 * and returns if the blocks are already mapped. 668 * 669 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 670 * and store the allocated blocks in the result buffer head and mark it 671 * mapped. 672 * 673 * If file type is extents based, it will call ext4_ext_map_blocks(), 674 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 675 * based files 676 * 677 * On success, it returns the number of blocks being mapped or allocated. 678 * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are 679 * pre-allocated and unwritten, the resulting @map is marked as unwritten. 680 * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped. 681 * 682 * It returns 0 if plain look up failed (blocks have not been allocated), in 683 * that case, @map is returned as unmapped but we still do fill map->m_len to 684 * indicate the length of a hole starting at map->m_lblk. 685 * 686 * It returns the error in case of allocation failure. 687 */ 688 int ext4_map_blocks(handle_t *handle, struct inode *inode, 689 struct ext4_map_blocks *map, int flags) 690 { 691 struct extent_status es; 692 int retval; 693 int ret = 0; 694 unsigned int orig_mlen = map->m_len; 695 #ifdef ES_AGGRESSIVE_TEST 696 struct ext4_map_blocks orig_map; 697 698 memcpy(&orig_map, map, sizeof(*map)); 699 #endif 700 701 map->m_flags = 0; 702 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 703 flags, map->m_len, (unsigned long) map->m_lblk); 704 705 /* 706 * ext4_map_blocks returns an int, and m_len is an unsigned int 707 */ 708 if (unlikely(map->m_len > INT_MAX)) 709 map->m_len = INT_MAX; 710 711 /* We can handle the block number less than EXT_MAX_BLOCKS */ 712 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 713 return -EFSCORRUPTED; 714 715 /* 716 * Callers from the context of data submission are the only exceptions 717 * for regular files that do not hold the i_rwsem or invalidate_lock. 718 * However, caching unrelated ranges is not permitted. 719 */ 720 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 721 WARN_ON_ONCE(!(flags & EXT4_EX_NOCACHE)); 722 else 723 ext4_check_map_extents_env(inode); 724 725 /* Lookup extent status tree firstly */ 726 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && 727 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 728 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 729 map->m_pblk = ext4_es_pblock(&es) + 730 map->m_lblk - es.es_lblk; 731 map->m_flags |= ext4_es_is_written(&es) ? 732 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 733 retval = es.es_len - (map->m_lblk - es.es_lblk); 734 if (retval > map->m_len) 735 retval = map->m_len; 736 map->m_len = retval; 737 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 738 map->m_pblk = 0; 739 map->m_flags |= ext4_es_is_delayed(&es) ? 740 EXT4_MAP_DELAYED : 0; 741 retval = es.es_len - (map->m_lblk - es.es_lblk); 742 if (retval > map->m_len) 743 retval = map->m_len; 744 map->m_len = retval; 745 retval = 0; 746 } else { 747 BUG(); 748 } 749 750 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 751 return retval; 752 #ifdef ES_AGGRESSIVE_TEST 753 ext4_map_blocks_es_recheck(handle, inode, map, 754 &orig_map, flags); 755 #endif 756 if (!(flags & EXT4_GET_BLOCKS_QUERY_LAST_IN_LEAF) || 757 orig_mlen == map->m_len) 758 goto found; 759 760 if (flags & EXT4_GET_BLOCKS_QUERY_LAST_IN_LEAF) 761 map->m_len = orig_mlen; 762 } 763 /* 764 * In the query cache no-wait mode, nothing we can do more if we 765 * cannot find extent in the cache. 766 */ 767 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 768 return 0; 769 770 /* 771 * Try to see if we can get the block without requesting a new 772 * file system block. 773 */ 774 down_read(&EXT4_I(inode)->i_data_sem); 775 retval = ext4_map_query_blocks(handle, inode, map, flags); 776 up_read((&EXT4_I(inode)->i_data_sem)); 777 778 found: 779 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 780 ret = check_block_validity(inode, map); 781 if (ret != 0) 782 return ret; 783 } 784 785 /* If it is only a block(s) look up */ 786 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 787 return retval; 788 789 /* 790 * Returns if the blocks have already allocated 791 * 792 * Note that if blocks have been preallocated 793 * ext4_ext_map_blocks() returns with buffer head unmapped 794 */ 795 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 796 /* 797 * If we need to convert extent to unwritten 798 * we continue and do the actual work in 799 * ext4_ext_map_blocks() 800 */ 801 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 802 return retval; 803 804 805 ext4_fc_track_inode(handle, inode); 806 /* 807 * New blocks allocate and/or writing to unwritten extent 808 * will possibly result in updating i_data, so we take 809 * the write lock of i_data_sem, and call get_block() 810 * with create == 1 flag. 811 */ 812 down_write(&EXT4_I(inode)->i_data_sem); 813 retval = ext4_map_create_blocks(handle, inode, map, flags); 814 up_write((&EXT4_I(inode)->i_data_sem)); 815 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 816 ret = check_block_validity(inode, map); 817 if (ret != 0) 818 return ret; 819 820 /* 821 * Inodes with freshly allocated blocks where contents will be 822 * visible after transaction commit must be on transaction's 823 * ordered data list. 824 */ 825 if (map->m_flags & EXT4_MAP_NEW && 826 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 827 !(flags & EXT4_GET_BLOCKS_ZERO) && 828 !ext4_is_quota_file(inode) && 829 ext4_should_order_data(inode)) { 830 loff_t start_byte = 831 (loff_t)map->m_lblk << inode->i_blkbits; 832 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 833 834 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 835 ret = ext4_jbd2_inode_add_wait(handle, inode, 836 start_byte, length); 837 else 838 ret = ext4_jbd2_inode_add_write(handle, inode, 839 start_byte, length); 840 if (ret) 841 return ret; 842 } 843 } 844 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN || 845 map->m_flags & EXT4_MAP_MAPPED)) 846 ext4_fc_track_range(handle, inode, map->m_lblk, 847 map->m_lblk + map->m_len - 1); 848 if (retval < 0) 849 ext_debug(inode, "failed with err %d\n", retval); 850 return retval; 851 } 852 853 /* 854 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 855 * we have to be careful as someone else may be manipulating b_state as well. 856 */ 857 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 858 { 859 unsigned long old_state; 860 unsigned long new_state; 861 862 flags &= EXT4_MAP_FLAGS; 863 864 /* Dummy buffer_head? Set non-atomically. */ 865 if (!bh->b_folio) { 866 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 867 return; 868 } 869 /* 870 * Someone else may be modifying b_state. Be careful! This is ugly but 871 * once we get rid of using bh as a container for mapping information 872 * to pass to / from get_block functions, this can go away. 873 */ 874 old_state = READ_ONCE(bh->b_state); 875 do { 876 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 877 } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state))); 878 } 879 880 static int _ext4_get_block(struct inode *inode, sector_t iblock, 881 struct buffer_head *bh, int flags) 882 { 883 struct ext4_map_blocks map; 884 int ret = 0; 885 886 if (ext4_has_inline_data(inode)) 887 return -ERANGE; 888 889 map.m_lblk = iblock; 890 map.m_len = bh->b_size >> inode->i_blkbits; 891 892 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 893 flags); 894 if (ret > 0) { 895 map_bh(bh, inode->i_sb, map.m_pblk); 896 ext4_update_bh_state(bh, map.m_flags); 897 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 898 ret = 0; 899 } else if (ret == 0) { 900 /* hole case, need to fill in bh->b_size */ 901 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 902 } 903 return ret; 904 } 905 906 int ext4_get_block(struct inode *inode, sector_t iblock, 907 struct buffer_head *bh, int create) 908 { 909 return _ext4_get_block(inode, iblock, bh, 910 create ? EXT4_GET_BLOCKS_CREATE : 0); 911 } 912 913 /* 914 * Get block function used when preparing for buffered write if we require 915 * creating an unwritten extent if blocks haven't been allocated. The extent 916 * will be converted to written after the IO is complete. 917 */ 918 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 919 struct buffer_head *bh_result, int create) 920 { 921 int ret = 0; 922 923 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 924 inode->i_ino, create); 925 ret = _ext4_get_block(inode, iblock, bh_result, 926 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT); 927 928 /* 929 * If the buffer is marked unwritten, mark it as new to make sure it is 930 * zeroed out correctly in case of partial writes. Otherwise, there is 931 * a chance of stale data getting exposed. 932 */ 933 if (ret == 0 && buffer_unwritten(bh_result)) 934 set_buffer_new(bh_result); 935 936 return ret; 937 } 938 939 /* Maximum number of blocks we map for direct IO at once. */ 940 #define DIO_MAX_BLOCKS 4096 941 942 /* 943 * `handle' can be NULL if create is zero 944 */ 945 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 946 ext4_lblk_t block, int map_flags) 947 { 948 struct ext4_map_blocks map; 949 struct buffer_head *bh; 950 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 951 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT; 952 int err; 953 954 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 955 || handle != NULL || create == 0); 956 ASSERT(create == 0 || !nowait); 957 958 map.m_lblk = block; 959 map.m_len = 1; 960 err = ext4_map_blocks(handle, inode, &map, map_flags); 961 962 if (err == 0) 963 return create ? ERR_PTR(-ENOSPC) : NULL; 964 if (err < 0) 965 return ERR_PTR(err); 966 967 if (nowait) 968 return sb_find_get_block(inode->i_sb, map.m_pblk); 969 970 /* 971 * Since bh could introduce extra ref count such as referred by 972 * journal_head etc. Try to avoid using __GFP_MOVABLE here 973 * as it may fail the migration when journal_head remains. 974 */ 975 bh = getblk_unmovable(inode->i_sb->s_bdev, map.m_pblk, 976 inode->i_sb->s_blocksize); 977 978 if (unlikely(!bh)) 979 return ERR_PTR(-ENOMEM); 980 if (map.m_flags & EXT4_MAP_NEW) { 981 ASSERT(create != 0); 982 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 983 || (handle != NULL)); 984 985 /* 986 * Now that we do not always journal data, we should 987 * keep in mind whether this should always journal the 988 * new buffer as metadata. For now, regular file 989 * writes use ext4_get_block instead, so it's not a 990 * problem. 991 */ 992 lock_buffer(bh); 993 BUFFER_TRACE(bh, "call get_create_access"); 994 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 995 EXT4_JTR_NONE); 996 if (unlikely(err)) { 997 unlock_buffer(bh); 998 goto errout; 999 } 1000 if (!buffer_uptodate(bh)) { 1001 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1002 set_buffer_uptodate(bh); 1003 } 1004 unlock_buffer(bh); 1005 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 1006 err = ext4_handle_dirty_metadata(handle, inode, bh); 1007 if (unlikely(err)) 1008 goto errout; 1009 } else 1010 BUFFER_TRACE(bh, "not a new buffer"); 1011 return bh; 1012 errout: 1013 brelse(bh); 1014 return ERR_PTR(err); 1015 } 1016 1017 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1018 ext4_lblk_t block, int map_flags) 1019 { 1020 struct buffer_head *bh; 1021 int ret; 1022 1023 bh = ext4_getblk(handle, inode, block, map_flags); 1024 if (IS_ERR(bh)) 1025 return bh; 1026 if (!bh || ext4_buffer_uptodate(bh)) 1027 return bh; 1028 1029 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 1030 if (ret) { 1031 put_bh(bh); 1032 return ERR_PTR(ret); 1033 } 1034 return bh; 1035 } 1036 1037 /* Read a contiguous batch of blocks. */ 1038 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 1039 bool wait, struct buffer_head **bhs) 1040 { 1041 int i, err; 1042 1043 for (i = 0; i < bh_count; i++) { 1044 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 1045 if (IS_ERR(bhs[i])) { 1046 err = PTR_ERR(bhs[i]); 1047 bh_count = i; 1048 goto out_brelse; 1049 } 1050 } 1051 1052 for (i = 0; i < bh_count; i++) 1053 /* Note that NULL bhs[i] is valid because of holes. */ 1054 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 1055 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 1056 1057 if (!wait) 1058 return 0; 1059 1060 for (i = 0; i < bh_count; i++) 1061 if (bhs[i]) 1062 wait_on_buffer(bhs[i]); 1063 1064 for (i = 0; i < bh_count; i++) { 1065 if (bhs[i] && !buffer_uptodate(bhs[i])) { 1066 err = -EIO; 1067 goto out_brelse; 1068 } 1069 } 1070 return 0; 1071 1072 out_brelse: 1073 for (i = 0; i < bh_count; i++) { 1074 brelse(bhs[i]); 1075 bhs[i] = NULL; 1076 } 1077 return err; 1078 } 1079 1080 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, 1081 struct buffer_head *head, 1082 unsigned from, 1083 unsigned to, 1084 int *partial, 1085 int (*fn)(handle_t *handle, struct inode *inode, 1086 struct buffer_head *bh)) 1087 { 1088 struct buffer_head *bh; 1089 unsigned block_start, block_end; 1090 unsigned blocksize = head->b_size; 1091 int err, ret = 0; 1092 struct buffer_head *next; 1093 1094 for (bh = head, block_start = 0; 1095 ret == 0 && (bh != head || !block_start); 1096 block_start = block_end, bh = next) { 1097 next = bh->b_this_page; 1098 block_end = block_start + blocksize; 1099 if (block_end <= from || block_start >= to) { 1100 if (partial && !buffer_uptodate(bh)) 1101 *partial = 1; 1102 continue; 1103 } 1104 err = (*fn)(handle, inode, bh); 1105 if (!ret) 1106 ret = err; 1107 } 1108 return ret; 1109 } 1110 1111 /* 1112 * Helper for handling dirtying of journalled data. We also mark the folio as 1113 * dirty so that writeback code knows about this page (and inode) contains 1114 * dirty data. ext4_writepages() then commits appropriate transaction to 1115 * make data stable. 1116 */ 1117 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh) 1118 { 1119 struct folio *folio = bh->b_folio; 1120 struct inode *inode = folio->mapping->host; 1121 1122 /* only regular files have a_ops */ 1123 if (S_ISREG(inode->i_mode)) 1124 folio_mark_dirty(folio); 1125 return ext4_handle_dirty_metadata(handle, NULL, bh); 1126 } 1127 1128 int do_journal_get_write_access(handle_t *handle, struct inode *inode, 1129 struct buffer_head *bh) 1130 { 1131 if (!buffer_mapped(bh) || buffer_freed(bh)) 1132 return 0; 1133 BUFFER_TRACE(bh, "get write access"); 1134 return ext4_journal_get_write_access(handle, inode->i_sb, bh, 1135 EXT4_JTR_NONE); 1136 } 1137 1138 int ext4_block_write_begin(handle_t *handle, struct folio *folio, 1139 loff_t pos, unsigned len, 1140 get_block_t *get_block) 1141 { 1142 unsigned int from = offset_in_folio(folio, pos); 1143 unsigned to = from + len; 1144 struct inode *inode = folio->mapping->host; 1145 unsigned block_start, block_end; 1146 sector_t block; 1147 int err = 0; 1148 unsigned blocksize = inode->i_sb->s_blocksize; 1149 unsigned bbits; 1150 struct buffer_head *bh, *head, *wait[2]; 1151 int nr_wait = 0; 1152 int i; 1153 bool should_journal_data = ext4_should_journal_data(inode); 1154 1155 BUG_ON(!folio_test_locked(folio)); 1156 BUG_ON(to > folio_size(folio)); 1157 BUG_ON(from > to); 1158 1159 head = folio_buffers(folio); 1160 if (!head) 1161 head = create_empty_buffers(folio, blocksize, 0); 1162 bbits = ilog2(blocksize); 1163 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 1164 1165 for (bh = head, block_start = 0; bh != head || !block_start; 1166 block++, block_start = block_end, bh = bh->b_this_page) { 1167 block_end = block_start + blocksize; 1168 if (block_end <= from || block_start >= to) { 1169 if (folio_test_uptodate(folio)) { 1170 set_buffer_uptodate(bh); 1171 } 1172 continue; 1173 } 1174 if (buffer_new(bh)) 1175 clear_buffer_new(bh); 1176 if (!buffer_mapped(bh)) { 1177 WARN_ON(bh->b_size != blocksize); 1178 err = get_block(inode, block, bh, 1); 1179 if (err) 1180 break; 1181 if (buffer_new(bh)) { 1182 /* 1183 * We may be zeroing partial buffers or all new 1184 * buffers in case of failure. Prepare JBD2 for 1185 * that. 1186 */ 1187 if (should_journal_data) 1188 do_journal_get_write_access(handle, 1189 inode, bh); 1190 if (folio_test_uptodate(folio)) { 1191 /* 1192 * Unlike __block_write_begin() we leave 1193 * dirtying of new uptodate buffers to 1194 * ->write_end() time or 1195 * folio_zero_new_buffers(). 1196 */ 1197 set_buffer_uptodate(bh); 1198 continue; 1199 } 1200 if (block_end > to || block_start < from) 1201 folio_zero_segments(folio, to, 1202 block_end, 1203 block_start, from); 1204 continue; 1205 } 1206 } 1207 if (folio_test_uptodate(folio)) { 1208 set_buffer_uptodate(bh); 1209 continue; 1210 } 1211 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1212 !buffer_unwritten(bh) && 1213 (block_start < from || block_end > to)) { 1214 ext4_read_bh_lock(bh, 0, false); 1215 wait[nr_wait++] = bh; 1216 } 1217 } 1218 /* 1219 * If we issued read requests, let them complete. 1220 */ 1221 for (i = 0; i < nr_wait; i++) { 1222 wait_on_buffer(wait[i]); 1223 if (!buffer_uptodate(wait[i])) 1224 err = -EIO; 1225 } 1226 if (unlikely(err)) { 1227 if (should_journal_data) 1228 ext4_journalled_zero_new_buffers(handle, inode, folio, 1229 from, to); 1230 else 1231 folio_zero_new_buffers(folio, from, to); 1232 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1233 for (i = 0; i < nr_wait; i++) { 1234 int err2; 1235 1236 err2 = fscrypt_decrypt_pagecache_blocks(folio, 1237 blocksize, bh_offset(wait[i])); 1238 if (err2) { 1239 clear_buffer_uptodate(wait[i]); 1240 err = err2; 1241 } 1242 } 1243 } 1244 1245 return err; 1246 } 1247 1248 /* 1249 * To preserve ordering, it is essential that the hole instantiation and 1250 * the data write be encapsulated in a single transaction. We cannot 1251 * close off a transaction and start a new one between the ext4_get_block() 1252 * and the ext4_write_end(). So doing the jbd2_journal_start at the start of 1253 * ext4_write_begin() is the right place. 1254 */ 1255 static int ext4_write_begin(const struct kiocb *iocb, 1256 struct address_space *mapping, 1257 loff_t pos, unsigned len, 1258 struct folio **foliop, void **fsdata) 1259 { 1260 struct inode *inode = mapping->host; 1261 int ret, needed_blocks; 1262 handle_t *handle; 1263 int retries = 0; 1264 struct folio *folio; 1265 pgoff_t index; 1266 unsigned from, to; 1267 1268 ret = ext4_emergency_state(inode->i_sb); 1269 if (unlikely(ret)) 1270 return ret; 1271 1272 trace_ext4_write_begin(inode, pos, len); 1273 /* 1274 * Reserve one block more for addition to orphan list in case 1275 * we allocate blocks but write fails for some reason 1276 */ 1277 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1278 index = pos >> PAGE_SHIFT; 1279 1280 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1281 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1282 foliop); 1283 if (ret < 0) 1284 return ret; 1285 if (ret == 1) 1286 return 0; 1287 } 1288 1289 /* 1290 * write_begin_get_folio() can take a long time if the 1291 * system is thrashing due to memory pressure, or if the folio 1292 * is being written back. So grab it first before we start 1293 * the transaction handle. This also allows us to allocate 1294 * the folio (if needed) without using GFP_NOFS. 1295 */ 1296 retry_grab: 1297 folio = write_begin_get_folio(iocb, mapping, index, len); 1298 if (IS_ERR(folio)) 1299 return PTR_ERR(folio); 1300 1301 if (pos + len > folio_pos(folio) + folio_size(folio)) 1302 len = folio_pos(folio) + folio_size(folio) - pos; 1303 1304 from = offset_in_folio(folio, pos); 1305 to = from + len; 1306 1307 /* 1308 * The same as page allocation, we prealloc buffer heads before 1309 * starting the handle. 1310 */ 1311 if (!folio_buffers(folio)) 1312 create_empty_buffers(folio, inode->i_sb->s_blocksize, 0); 1313 1314 folio_unlock(folio); 1315 1316 retry_journal: 1317 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1318 if (IS_ERR(handle)) { 1319 folio_put(folio); 1320 return PTR_ERR(handle); 1321 } 1322 1323 folio_lock(folio); 1324 if (folio->mapping != mapping) { 1325 /* The folio got truncated from under us */ 1326 folio_unlock(folio); 1327 folio_put(folio); 1328 ext4_journal_stop(handle); 1329 goto retry_grab; 1330 } 1331 /* In case writeback began while the folio was unlocked */ 1332 folio_wait_stable(folio); 1333 1334 if (ext4_should_dioread_nolock(inode)) 1335 ret = ext4_block_write_begin(handle, folio, pos, len, 1336 ext4_get_block_unwritten); 1337 else 1338 ret = ext4_block_write_begin(handle, folio, pos, len, 1339 ext4_get_block); 1340 if (!ret && ext4_should_journal_data(inode)) { 1341 ret = ext4_walk_page_buffers(handle, inode, 1342 folio_buffers(folio), from, to, 1343 NULL, do_journal_get_write_access); 1344 } 1345 1346 if (ret) { 1347 bool extended = (pos + len > inode->i_size) && 1348 !ext4_verity_in_progress(inode); 1349 1350 folio_unlock(folio); 1351 /* 1352 * ext4_block_write_begin may have instantiated a few blocks 1353 * outside i_size. Trim these off again. Don't need 1354 * i_size_read because we hold i_rwsem. 1355 * 1356 * Add inode to orphan list in case we crash before 1357 * truncate finishes 1358 */ 1359 if (extended && ext4_can_truncate(inode)) 1360 ext4_orphan_add(handle, inode); 1361 1362 ext4_journal_stop(handle); 1363 if (extended) { 1364 ext4_truncate_failed_write(inode); 1365 /* 1366 * If truncate failed early the inode might 1367 * still be on the orphan list; we need to 1368 * make sure the inode is removed from the 1369 * orphan list in that case. 1370 */ 1371 if (inode->i_nlink) 1372 ext4_orphan_del(NULL, inode); 1373 } 1374 1375 if (ret == -ENOSPC && 1376 ext4_should_retry_alloc(inode->i_sb, &retries)) 1377 goto retry_journal; 1378 folio_put(folio); 1379 return ret; 1380 } 1381 *foliop = folio; 1382 return ret; 1383 } 1384 1385 /* For write_end() in data=journal mode */ 1386 static int write_end_fn(handle_t *handle, struct inode *inode, 1387 struct buffer_head *bh) 1388 { 1389 int ret; 1390 if (!buffer_mapped(bh) || buffer_freed(bh)) 1391 return 0; 1392 set_buffer_uptodate(bh); 1393 ret = ext4_dirty_journalled_data(handle, bh); 1394 clear_buffer_meta(bh); 1395 clear_buffer_prio(bh); 1396 return ret; 1397 } 1398 1399 /* 1400 * We need to pick up the new inode size which generic_commit_write gave us 1401 * `iocb` can be NULL - eg, when called from page_symlink(). 1402 * 1403 * ext4 never places buffers on inode->i_mapping->i_private_list. metadata 1404 * buffers are managed internally. 1405 */ 1406 static int ext4_write_end(const struct kiocb *iocb, 1407 struct address_space *mapping, 1408 loff_t pos, unsigned len, unsigned copied, 1409 struct folio *folio, void *fsdata) 1410 { 1411 handle_t *handle = ext4_journal_current_handle(); 1412 struct inode *inode = mapping->host; 1413 loff_t old_size = inode->i_size; 1414 int ret = 0, ret2; 1415 int i_size_changed = 0; 1416 bool verity = ext4_verity_in_progress(inode); 1417 1418 trace_ext4_write_end(inode, pos, len, copied); 1419 1420 if (ext4_has_inline_data(inode) && 1421 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) 1422 return ext4_write_inline_data_end(inode, pos, len, copied, 1423 folio); 1424 1425 copied = block_write_end(pos, len, copied, folio); 1426 /* 1427 * it's important to update i_size while still holding folio lock: 1428 * page writeout could otherwise come in and zero beyond i_size. 1429 * 1430 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1431 * blocks are being written past EOF, so skip the i_size update. 1432 */ 1433 if (!verity) 1434 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1435 folio_unlock(folio); 1436 folio_put(folio); 1437 1438 if (old_size < pos && !verity) { 1439 pagecache_isize_extended(inode, old_size, pos); 1440 ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size); 1441 } 1442 /* 1443 * Don't mark the inode dirty under folio lock. First, it unnecessarily 1444 * makes the holding time of folio lock longer. Second, it forces lock 1445 * ordering of folio lock and transaction start for journaling 1446 * filesystems. 1447 */ 1448 if (i_size_changed) 1449 ret = ext4_mark_inode_dirty(handle, inode); 1450 1451 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1452 /* if we have allocated more blocks and copied 1453 * less. We will have blocks allocated outside 1454 * inode->i_size. So truncate them 1455 */ 1456 ext4_orphan_add(handle, inode); 1457 1458 ret2 = ext4_journal_stop(handle); 1459 if (!ret) 1460 ret = ret2; 1461 1462 if (pos + len > inode->i_size && !verity) { 1463 ext4_truncate_failed_write(inode); 1464 /* 1465 * If truncate failed early the inode might still be 1466 * on the orphan list; we need to make sure the inode 1467 * is removed from the orphan list in that case. 1468 */ 1469 if (inode->i_nlink) 1470 ext4_orphan_del(NULL, inode); 1471 } 1472 1473 return ret ? ret : copied; 1474 } 1475 1476 /* 1477 * This is a private version of folio_zero_new_buffers() which doesn't 1478 * set the buffer to be dirty, since in data=journalled mode we need 1479 * to call ext4_dirty_journalled_data() instead. 1480 */ 1481 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1482 struct inode *inode, 1483 struct folio *folio, 1484 unsigned from, unsigned to) 1485 { 1486 unsigned int block_start = 0, block_end; 1487 struct buffer_head *head, *bh; 1488 1489 bh = head = folio_buffers(folio); 1490 do { 1491 block_end = block_start + bh->b_size; 1492 if (buffer_new(bh)) { 1493 if (block_end > from && block_start < to) { 1494 if (!folio_test_uptodate(folio)) { 1495 unsigned start, size; 1496 1497 start = max(from, block_start); 1498 size = min(to, block_end) - start; 1499 1500 folio_zero_range(folio, start, size); 1501 } 1502 clear_buffer_new(bh); 1503 write_end_fn(handle, inode, bh); 1504 } 1505 } 1506 block_start = block_end; 1507 bh = bh->b_this_page; 1508 } while (bh != head); 1509 } 1510 1511 static int ext4_journalled_write_end(const struct kiocb *iocb, 1512 struct address_space *mapping, 1513 loff_t pos, unsigned len, unsigned copied, 1514 struct folio *folio, void *fsdata) 1515 { 1516 handle_t *handle = ext4_journal_current_handle(); 1517 struct inode *inode = mapping->host; 1518 loff_t old_size = inode->i_size; 1519 int ret = 0, ret2; 1520 int partial = 0; 1521 unsigned from, to; 1522 int size_changed = 0; 1523 bool verity = ext4_verity_in_progress(inode); 1524 1525 trace_ext4_journalled_write_end(inode, pos, len, copied); 1526 from = pos & (PAGE_SIZE - 1); 1527 to = from + len; 1528 1529 BUG_ON(!ext4_handle_valid(handle)); 1530 1531 if (ext4_has_inline_data(inode)) 1532 return ext4_write_inline_data_end(inode, pos, len, copied, 1533 folio); 1534 1535 if (unlikely(copied < len) && !folio_test_uptodate(folio)) { 1536 copied = 0; 1537 ext4_journalled_zero_new_buffers(handle, inode, folio, 1538 from, to); 1539 } else { 1540 if (unlikely(copied < len)) 1541 ext4_journalled_zero_new_buffers(handle, inode, folio, 1542 from + copied, to); 1543 ret = ext4_walk_page_buffers(handle, inode, 1544 folio_buffers(folio), 1545 from, from + copied, &partial, 1546 write_end_fn); 1547 if (!partial) 1548 folio_mark_uptodate(folio); 1549 } 1550 if (!verity) 1551 size_changed = ext4_update_inode_size(inode, pos + copied); 1552 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1553 folio_unlock(folio); 1554 folio_put(folio); 1555 1556 if (old_size < pos && !verity) { 1557 pagecache_isize_extended(inode, old_size, pos); 1558 ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size); 1559 } 1560 1561 if (size_changed) { 1562 ret2 = ext4_mark_inode_dirty(handle, inode); 1563 if (!ret) 1564 ret = ret2; 1565 } 1566 1567 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1568 /* if we have allocated more blocks and copied 1569 * less. We will have blocks allocated outside 1570 * inode->i_size. So truncate them 1571 */ 1572 ext4_orphan_add(handle, inode); 1573 1574 ret2 = ext4_journal_stop(handle); 1575 if (!ret) 1576 ret = ret2; 1577 if (pos + len > inode->i_size && !verity) { 1578 ext4_truncate_failed_write(inode); 1579 /* 1580 * If truncate failed early the inode might still be 1581 * on the orphan list; we need to make sure the inode 1582 * is removed from the orphan list in that case. 1583 */ 1584 if (inode->i_nlink) 1585 ext4_orphan_del(NULL, inode); 1586 } 1587 1588 return ret ? ret : copied; 1589 } 1590 1591 /* 1592 * Reserve space for 'nr_resv' clusters 1593 */ 1594 static int ext4_da_reserve_space(struct inode *inode, int nr_resv) 1595 { 1596 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1597 struct ext4_inode_info *ei = EXT4_I(inode); 1598 int ret; 1599 1600 /* 1601 * We will charge metadata quota at writeout time; this saves 1602 * us from metadata over-estimation, though we may go over by 1603 * a small amount in the end. Here we just reserve for data. 1604 */ 1605 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv)); 1606 if (ret) 1607 return ret; 1608 1609 spin_lock(&ei->i_block_reservation_lock); 1610 if (ext4_claim_free_clusters(sbi, nr_resv, 0)) { 1611 spin_unlock(&ei->i_block_reservation_lock); 1612 dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv)); 1613 return -ENOSPC; 1614 } 1615 ei->i_reserved_data_blocks += nr_resv; 1616 trace_ext4_da_reserve_space(inode, nr_resv); 1617 spin_unlock(&ei->i_block_reservation_lock); 1618 1619 return 0; /* success */ 1620 } 1621 1622 void ext4_da_release_space(struct inode *inode, int to_free) 1623 { 1624 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1625 struct ext4_inode_info *ei = EXT4_I(inode); 1626 1627 if (!to_free) 1628 return; /* Nothing to release, exit */ 1629 1630 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1631 1632 trace_ext4_da_release_space(inode, to_free); 1633 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1634 /* 1635 * if there aren't enough reserved blocks, then the 1636 * counter is messed up somewhere. Since this 1637 * function is called from invalidate page, it's 1638 * harmless to return without any action. 1639 */ 1640 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1641 "ino %lu, to_free %d with only %d reserved " 1642 "data blocks", inode->i_ino, to_free, 1643 ei->i_reserved_data_blocks); 1644 WARN_ON(1); 1645 to_free = ei->i_reserved_data_blocks; 1646 } 1647 ei->i_reserved_data_blocks -= to_free; 1648 1649 /* update fs dirty data blocks counter */ 1650 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1651 1652 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1653 1654 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1655 } 1656 1657 /* 1658 * Delayed allocation stuff 1659 */ 1660 1661 struct mpage_da_data { 1662 /* These are input fields for ext4_do_writepages() */ 1663 struct inode *inode; 1664 struct writeback_control *wbc; 1665 unsigned int can_map:1; /* Can writepages call map blocks? */ 1666 1667 /* These are internal state of ext4_do_writepages() */ 1668 pgoff_t first_page; /* The first page to write */ 1669 pgoff_t next_page; /* Current page to examine */ 1670 pgoff_t last_page; /* Last page to examine */ 1671 /* 1672 * Extent to map - this can be after first_page because that can be 1673 * fully mapped. We somewhat abuse m_flags to store whether the extent 1674 * is delalloc or unwritten. 1675 */ 1676 struct ext4_map_blocks map; 1677 struct ext4_io_submit io_submit; /* IO submission data */ 1678 unsigned int do_map:1; 1679 unsigned int scanned_until_end:1; 1680 unsigned int journalled_more_data:1; 1681 }; 1682 1683 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1684 bool invalidate) 1685 { 1686 unsigned nr, i; 1687 pgoff_t index, end; 1688 struct folio_batch fbatch; 1689 struct inode *inode = mpd->inode; 1690 struct address_space *mapping = inode->i_mapping; 1691 1692 /* This is necessary when next_page == 0. */ 1693 if (mpd->first_page >= mpd->next_page) 1694 return; 1695 1696 mpd->scanned_until_end = 0; 1697 index = mpd->first_page; 1698 end = mpd->next_page - 1; 1699 if (invalidate) { 1700 ext4_lblk_t start, last; 1701 start = index << (PAGE_SHIFT - inode->i_blkbits); 1702 last = end << (PAGE_SHIFT - inode->i_blkbits); 1703 1704 /* 1705 * avoid racing with extent status tree scans made by 1706 * ext4_insert_delayed_block() 1707 */ 1708 down_write(&EXT4_I(inode)->i_data_sem); 1709 ext4_es_remove_extent(inode, start, last - start + 1); 1710 up_write(&EXT4_I(inode)->i_data_sem); 1711 } 1712 1713 folio_batch_init(&fbatch); 1714 while (index <= end) { 1715 nr = filemap_get_folios(mapping, &index, end, &fbatch); 1716 if (nr == 0) 1717 break; 1718 for (i = 0; i < nr; i++) { 1719 struct folio *folio = fbatch.folios[i]; 1720 1721 if (folio->index < mpd->first_page) 1722 continue; 1723 if (folio_next_index(folio) - 1 > end) 1724 continue; 1725 BUG_ON(!folio_test_locked(folio)); 1726 BUG_ON(folio_test_writeback(folio)); 1727 if (invalidate) { 1728 if (folio_mapped(folio)) 1729 folio_clear_dirty_for_io(folio); 1730 block_invalidate_folio(folio, 0, 1731 folio_size(folio)); 1732 folio_clear_uptodate(folio); 1733 } 1734 folio_unlock(folio); 1735 } 1736 folio_batch_release(&fbatch); 1737 } 1738 } 1739 1740 static void ext4_print_free_blocks(struct inode *inode) 1741 { 1742 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1743 struct super_block *sb = inode->i_sb; 1744 struct ext4_inode_info *ei = EXT4_I(inode); 1745 1746 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1747 EXT4_C2B(EXT4_SB(inode->i_sb), 1748 ext4_count_free_clusters(sb))); 1749 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1750 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1751 (long long) EXT4_C2B(EXT4_SB(sb), 1752 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1753 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1754 (long long) EXT4_C2B(EXT4_SB(sb), 1755 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1756 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1757 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1758 ei->i_reserved_data_blocks); 1759 return; 1760 } 1761 1762 /* 1763 * Check whether the cluster containing lblk has been allocated or has 1764 * delalloc reservation. 1765 * 1766 * Returns 0 if the cluster doesn't have either, 1 if it has delalloc 1767 * reservation, 2 if it's already been allocated, negative error code on 1768 * failure. 1769 */ 1770 static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk) 1771 { 1772 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1773 int ret; 1774 1775 /* Has delalloc reservation? */ 1776 if (ext4_es_scan_clu(inode, &ext4_es_is_delayed, lblk)) 1777 return 1; 1778 1779 /* Already been allocated? */ 1780 if (ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk)) 1781 return 2; 1782 ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk)); 1783 if (ret < 0) 1784 return ret; 1785 if (ret > 0) 1786 return 2; 1787 1788 return 0; 1789 } 1790 1791 /* 1792 * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents 1793 * status tree, incrementing the reserved 1794 * cluster/block count or making pending 1795 * reservations where needed 1796 * 1797 * @inode - file containing the newly added block 1798 * @lblk - start logical block to be added 1799 * @len - length of blocks to be added 1800 * 1801 * Returns 0 on success, negative error code on failure. 1802 */ 1803 static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk, 1804 ext4_lblk_t len) 1805 { 1806 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1807 int ret; 1808 bool lclu_allocated = false; 1809 bool end_allocated = false; 1810 ext4_lblk_t resv_clu; 1811 ext4_lblk_t end = lblk + len - 1; 1812 1813 /* 1814 * If the cluster containing lblk or end is shared with a delayed, 1815 * written, or unwritten extent in a bigalloc file system, it's 1816 * already been accounted for and does not need to be reserved. 1817 * A pending reservation must be made for the cluster if it's 1818 * shared with a written or unwritten extent and doesn't already 1819 * have one. Written and unwritten extents can be purged from the 1820 * extents status tree if the system is under memory pressure, so 1821 * it's necessary to examine the extent tree if a search of the 1822 * extents status tree doesn't get a match. 1823 */ 1824 if (sbi->s_cluster_ratio == 1) { 1825 ret = ext4_da_reserve_space(inode, len); 1826 if (ret != 0) /* ENOSPC */ 1827 return ret; 1828 } else { /* bigalloc */ 1829 resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1; 1830 1831 ret = ext4_clu_alloc_state(inode, lblk); 1832 if (ret < 0) 1833 return ret; 1834 if (ret > 0) { 1835 resv_clu--; 1836 lclu_allocated = (ret == 2); 1837 } 1838 1839 if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) { 1840 ret = ext4_clu_alloc_state(inode, end); 1841 if (ret < 0) 1842 return ret; 1843 if (ret > 0) { 1844 resv_clu--; 1845 end_allocated = (ret == 2); 1846 } 1847 } 1848 1849 if (resv_clu) { 1850 ret = ext4_da_reserve_space(inode, resv_clu); 1851 if (ret != 0) /* ENOSPC */ 1852 return ret; 1853 } 1854 } 1855 1856 ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated, 1857 end_allocated); 1858 return 0; 1859 } 1860 1861 /* 1862 * Looks up the requested blocks and sets the delalloc extent map. 1863 * First try to look up for the extent entry that contains the requested 1864 * blocks in the extent status tree without i_data_sem, then try to look 1865 * up for the ondisk extent mapping with i_data_sem in read mode, 1866 * finally hold i_data_sem in write mode, looks up again and add a 1867 * delalloc extent entry if it still couldn't find any extent. Pass out 1868 * the mapped extent through @map and return 0 on success. 1869 */ 1870 static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map) 1871 { 1872 struct extent_status es; 1873 int retval; 1874 #ifdef ES_AGGRESSIVE_TEST 1875 struct ext4_map_blocks orig_map; 1876 1877 memcpy(&orig_map, map, sizeof(*map)); 1878 #endif 1879 1880 map->m_flags = 0; 1881 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1882 (unsigned long) map->m_lblk); 1883 1884 ext4_check_map_extents_env(inode); 1885 1886 /* Lookup extent status tree firstly */ 1887 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 1888 map->m_len = min_t(unsigned int, map->m_len, 1889 es.es_len - (map->m_lblk - es.es_lblk)); 1890 1891 if (ext4_es_is_hole(&es)) 1892 goto add_delayed; 1893 1894 found: 1895 /* 1896 * Delayed extent could be allocated by fallocate. 1897 * So we need to check it. 1898 */ 1899 if (ext4_es_is_delayed(&es)) { 1900 map->m_flags |= EXT4_MAP_DELAYED; 1901 return 0; 1902 } 1903 1904 map->m_pblk = ext4_es_pblock(&es) + map->m_lblk - es.es_lblk; 1905 if (ext4_es_is_written(&es)) 1906 map->m_flags |= EXT4_MAP_MAPPED; 1907 else if (ext4_es_is_unwritten(&es)) 1908 map->m_flags |= EXT4_MAP_UNWRITTEN; 1909 else 1910 BUG(); 1911 1912 #ifdef ES_AGGRESSIVE_TEST 1913 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1914 #endif 1915 return 0; 1916 } 1917 1918 /* 1919 * Try to see if we can get the block without requesting a new 1920 * file system block. 1921 */ 1922 down_read(&EXT4_I(inode)->i_data_sem); 1923 if (ext4_has_inline_data(inode)) 1924 retval = 0; 1925 else 1926 retval = ext4_map_query_blocks(NULL, inode, map, 0); 1927 up_read(&EXT4_I(inode)->i_data_sem); 1928 if (retval) 1929 return retval < 0 ? retval : 0; 1930 1931 add_delayed: 1932 down_write(&EXT4_I(inode)->i_data_sem); 1933 /* 1934 * Page fault path (ext4_page_mkwrite does not take i_rwsem) 1935 * and fallocate path (no folio lock) can race. Make sure we 1936 * lookup the extent status tree here again while i_data_sem 1937 * is held in write mode, before inserting a new da entry in 1938 * the extent status tree. 1939 */ 1940 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 1941 map->m_len = min_t(unsigned int, map->m_len, 1942 es.es_len - (map->m_lblk - es.es_lblk)); 1943 1944 if (!ext4_es_is_hole(&es)) { 1945 up_write(&EXT4_I(inode)->i_data_sem); 1946 goto found; 1947 } 1948 } else if (!ext4_has_inline_data(inode)) { 1949 retval = ext4_map_query_blocks(NULL, inode, map, 0); 1950 if (retval) { 1951 up_write(&EXT4_I(inode)->i_data_sem); 1952 return retval < 0 ? retval : 0; 1953 } 1954 } 1955 1956 map->m_flags |= EXT4_MAP_DELAYED; 1957 retval = ext4_insert_delayed_blocks(inode, map->m_lblk, map->m_len); 1958 up_write(&EXT4_I(inode)->i_data_sem); 1959 1960 return retval; 1961 } 1962 1963 /* 1964 * This is a special get_block_t callback which is used by 1965 * ext4_da_write_begin(). It will either return mapped block or 1966 * reserve space for a single block. 1967 * 1968 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1969 * We also have b_blocknr = -1 and b_bdev initialized properly 1970 * 1971 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1972 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1973 * initialized properly. 1974 */ 1975 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1976 struct buffer_head *bh, int create) 1977 { 1978 struct ext4_map_blocks map; 1979 sector_t invalid_block = ~((sector_t) 0xffff); 1980 int ret = 0; 1981 1982 BUG_ON(create == 0); 1983 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1984 1985 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1986 invalid_block = ~0; 1987 1988 map.m_lblk = iblock; 1989 map.m_len = 1; 1990 1991 /* 1992 * first, we need to know whether the block is allocated already 1993 * preallocated blocks are unmapped but should treated 1994 * the same as allocated blocks. 1995 */ 1996 ret = ext4_da_map_blocks(inode, &map); 1997 if (ret < 0) 1998 return ret; 1999 2000 if (map.m_flags & EXT4_MAP_DELAYED) { 2001 map_bh(bh, inode->i_sb, invalid_block); 2002 set_buffer_new(bh); 2003 set_buffer_delay(bh); 2004 return 0; 2005 } 2006 2007 map_bh(bh, inode->i_sb, map.m_pblk); 2008 ext4_update_bh_state(bh, map.m_flags); 2009 2010 if (buffer_unwritten(bh)) { 2011 /* A delayed write to unwritten bh should be marked 2012 * new and mapped. Mapped ensures that we don't do 2013 * get_block multiple times when we write to the same 2014 * offset and new ensures that we do proper zero out 2015 * for partial write. 2016 */ 2017 set_buffer_new(bh); 2018 set_buffer_mapped(bh); 2019 } 2020 return 0; 2021 } 2022 2023 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio) 2024 { 2025 mpd->first_page += folio_nr_pages(folio); 2026 folio_unlock(folio); 2027 } 2028 2029 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio) 2030 { 2031 size_t len; 2032 loff_t size; 2033 int err; 2034 2035 BUG_ON(folio->index != mpd->first_page); 2036 folio_clear_dirty_for_io(folio); 2037 /* 2038 * We have to be very careful here! Nothing protects writeback path 2039 * against i_size changes and the page can be writeably mapped into 2040 * page tables. So an application can be growing i_size and writing 2041 * data through mmap while writeback runs. folio_clear_dirty_for_io() 2042 * write-protects our page in page tables and the page cannot get 2043 * written to again until we release folio lock. So only after 2044 * folio_clear_dirty_for_io() we are safe to sample i_size for 2045 * ext4_bio_write_folio() to zero-out tail of the written page. We rely 2046 * on the barrier provided by folio_test_clear_dirty() in 2047 * folio_clear_dirty_for_io() to make sure i_size is really sampled only 2048 * after page tables are updated. 2049 */ 2050 size = i_size_read(mpd->inode); 2051 len = folio_size(folio); 2052 if (folio_pos(folio) + len > size && 2053 !ext4_verity_in_progress(mpd->inode)) 2054 len = size & (len - 1); 2055 err = ext4_bio_write_folio(&mpd->io_submit, folio, len); 2056 if (!err) 2057 mpd->wbc->nr_to_write -= folio_nr_pages(folio); 2058 2059 return err; 2060 } 2061 2062 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 2063 2064 /* 2065 * mballoc gives us at most this number of blocks... 2066 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2067 * The rest of mballoc seems to handle chunks up to full group size. 2068 */ 2069 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2070 2071 /* 2072 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2073 * 2074 * @mpd - extent of blocks 2075 * @lblk - logical number of the block in the file 2076 * @bh - buffer head we want to add to the extent 2077 * 2078 * The function is used to collect contig. blocks in the same state. If the 2079 * buffer doesn't require mapping for writeback and we haven't started the 2080 * extent of buffers to map yet, the function returns 'true' immediately - the 2081 * caller can write the buffer right away. Otherwise the function returns true 2082 * if the block has been added to the extent, false if the block couldn't be 2083 * added. 2084 */ 2085 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2086 struct buffer_head *bh) 2087 { 2088 struct ext4_map_blocks *map = &mpd->map; 2089 2090 /* Buffer that doesn't need mapping for writeback? */ 2091 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2092 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2093 /* So far no extent to map => we write the buffer right away */ 2094 if (map->m_len == 0) 2095 return true; 2096 return false; 2097 } 2098 2099 /* First block in the extent? */ 2100 if (map->m_len == 0) { 2101 /* We cannot map unless handle is started... */ 2102 if (!mpd->do_map) 2103 return false; 2104 map->m_lblk = lblk; 2105 map->m_len = 1; 2106 map->m_flags = bh->b_state & BH_FLAGS; 2107 return true; 2108 } 2109 2110 /* Don't go larger than mballoc is willing to allocate */ 2111 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2112 return false; 2113 2114 /* Can we merge the block to our big extent? */ 2115 if (lblk == map->m_lblk + map->m_len && 2116 (bh->b_state & BH_FLAGS) == map->m_flags) { 2117 map->m_len++; 2118 return true; 2119 } 2120 return false; 2121 } 2122 2123 /* 2124 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2125 * 2126 * @mpd - extent of blocks for mapping 2127 * @head - the first buffer in the page 2128 * @bh - buffer we should start processing from 2129 * @lblk - logical number of the block in the file corresponding to @bh 2130 * 2131 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2132 * the page for IO if all buffers in this page were mapped and there's no 2133 * accumulated extent of buffers to map or add buffers in the page to the 2134 * extent of buffers to map. The function returns 1 if the caller can continue 2135 * by processing the next page, 0 if it should stop adding buffers to the 2136 * extent to map because we cannot extend it anymore. It can also return value 2137 * < 0 in case of error during IO submission. 2138 */ 2139 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2140 struct buffer_head *head, 2141 struct buffer_head *bh, 2142 ext4_lblk_t lblk) 2143 { 2144 struct inode *inode = mpd->inode; 2145 int err; 2146 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2147 >> inode->i_blkbits; 2148 2149 if (ext4_verity_in_progress(inode)) 2150 blocks = EXT_MAX_BLOCKS; 2151 2152 do { 2153 BUG_ON(buffer_locked(bh)); 2154 2155 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2156 /* Found extent to map? */ 2157 if (mpd->map.m_len) 2158 return 0; 2159 /* Buffer needs mapping and handle is not started? */ 2160 if (!mpd->do_map) 2161 return 0; 2162 /* Everything mapped so far and we hit EOF */ 2163 break; 2164 } 2165 } while (lblk++, (bh = bh->b_this_page) != head); 2166 /* So far everything mapped? Submit the page for IO. */ 2167 if (mpd->map.m_len == 0) { 2168 err = mpage_submit_folio(mpd, head->b_folio); 2169 if (err < 0) 2170 return err; 2171 mpage_folio_done(mpd, head->b_folio); 2172 } 2173 if (lblk >= blocks) { 2174 mpd->scanned_until_end = 1; 2175 return 0; 2176 } 2177 return 1; 2178 } 2179 2180 /* 2181 * mpage_process_folio - update folio buffers corresponding to changed extent 2182 * and may submit fully mapped page for IO 2183 * @mpd: description of extent to map, on return next extent to map 2184 * @folio: Contains these buffers. 2185 * @m_lblk: logical block mapping. 2186 * @m_pblk: corresponding physical mapping. 2187 * @map_bh: determines on return whether this page requires any further 2188 * mapping or not. 2189 * 2190 * Scan given folio buffers corresponding to changed extent and update buffer 2191 * state according to new extent state. 2192 * We map delalloc buffers to their physical location, clear unwritten bits. 2193 * If the given folio is not fully mapped, we update @mpd to the next extent in 2194 * the given folio that needs mapping & return @map_bh as true. 2195 */ 2196 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio, 2197 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2198 bool *map_bh) 2199 { 2200 struct buffer_head *head, *bh; 2201 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2202 ext4_lblk_t lblk = *m_lblk; 2203 ext4_fsblk_t pblock = *m_pblk; 2204 int err = 0; 2205 int blkbits = mpd->inode->i_blkbits; 2206 ssize_t io_end_size = 0; 2207 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2208 2209 bh = head = folio_buffers(folio); 2210 do { 2211 if (lblk < mpd->map.m_lblk) 2212 continue; 2213 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2214 /* 2215 * Buffer after end of mapped extent. 2216 * Find next buffer in the folio to map. 2217 */ 2218 mpd->map.m_len = 0; 2219 mpd->map.m_flags = 0; 2220 io_end_vec->size += io_end_size; 2221 2222 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2223 if (err > 0) 2224 err = 0; 2225 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2226 io_end_vec = ext4_alloc_io_end_vec(io_end); 2227 if (IS_ERR(io_end_vec)) { 2228 err = PTR_ERR(io_end_vec); 2229 goto out; 2230 } 2231 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2232 } 2233 *map_bh = true; 2234 goto out; 2235 } 2236 if (buffer_delay(bh)) { 2237 clear_buffer_delay(bh); 2238 bh->b_blocknr = pblock++; 2239 } 2240 clear_buffer_unwritten(bh); 2241 io_end_size += (1 << blkbits); 2242 } while (lblk++, (bh = bh->b_this_page) != head); 2243 2244 io_end_vec->size += io_end_size; 2245 *map_bh = false; 2246 out: 2247 *m_lblk = lblk; 2248 *m_pblk = pblock; 2249 return err; 2250 } 2251 2252 /* 2253 * mpage_map_buffers - update buffers corresponding to changed extent and 2254 * submit fully mapped pages for IO 2255 * 2256 * @mpd - description of extent to map, on return next extent to map 2257 * 2258 * Scan buffers corresponding to changed extent (we expect corresponding pages 2259 * to be already locked) and update buffer state according to new extent state. 2260 * We map delalloc buffers to their physical location, clear unwritten bits, 2261 * and mark buffers as uninit when we perform writes to unwritten extents 2262 * and do extent conversion after IO is finished. If the last page is not fully 2263 * mapped, we update @map to the next extent in the last page that needs 2264 * mapping. Otherwise we submit the page for IO. 2265 */ 2266 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2267 { 2268 struct folio_batch fbatch; 2269 unsigned nr, i; 2270 struct inode *inode = mpd->inode; 2271 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2272 pgoff_t start, end; 2273 ext4_lblk_t lblk; 2274 ext4_fsblk_t pblock; 2275 int err; 2276 bool map_bh = false; 2277 2278 start = mpd->map.m_lblk >> bpp_bits; 2279 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2280 pblock = mpd->map.m_pblk; 2281 2282 folio_batch_init(&fbatch); 2283 while (start <= end) { 2284 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch); 2285 if (nr == 0) 2286 break; 2287 for (i = 0; i < nr; i++) { 2288 struct folio *folio = fbatch.folios[i]; 2289 2290 lblk = folio->index << bpp_bits; 2291 err = mpage_process_folio(mpd, folio, &lblk, &pblock, 2292 &map_bh); 2293 /* 2294 * If map_bh is true, means page may require further bh 2295 * mapping, or maybe the page was submitted for IO. 2296 * So we return to call further extent mapping. 2297 */ 2298 if (err < 0 || map_bh) 2299 goto out; 2300 /* Page fully mapped - let IO run! */ 2301 err = mpage_submit_folio(mpd, folio); 2302 if (err < 0) 2303 goto out; 2304 mpage_folio_done(mpd, folio); 2305 } 2306 folio_batch_release(&fbatch); 2307 } 2308 /* Extent fully mapped and matches with page boundary. We are done. */ 2309 mpd->map.m_len = 0; 2310 mpd->map.m_flags = 0; 2311 return 0; 2312 out: 2313 folio_batch_release(&fbatch); 2314 return err; 2315 } 2316 2317 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2318 { 2319 struct inode *inode = mpd->inode; 2320 struct ext4_map_blocks *map = &mpd->map; 2321 int get_blocks_flags; 2322 int err, dioread_nolock; 2323 2324 trace_ext4_da_write_pages_extent(inode, map); 2325 /* 2326 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2327 * to convert an unwritten extent to be initialized (in the case 2328 * where we have written into one or more preallocated blocks). It is 2329 * possible that we're going to need more metadata blocks than 2330 * previously reserved. However we must not fail because we're in 2331 * writeback and there is nothing we can do about it so it might result 2332 * in data loss. So use reserved blocks to allocate metadata if 2333 * possible. In addition, do not cache any unrelated extents, as it 2334 * only holds the folio lock but does not hold the i_rwsem or 2335 * invalidate_lock, which could corrupt the extent status tree. 2336 */ 2337 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2338 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2339 EXT4_GET_BLOCKS_IO_SUBMIT | 2340 EXT4_EX_NOCACHE; 2341 2342 dioread_nolock = ext4_should_dioread_nolock(inode); 2343 if (dioread_nolock) 2344 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2345 2346 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2347 if (err < 0) 2348 return err; 2349 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2350 if (!mpd->io_submit.io_end->handle && 2351 ext4_handle_valid(handle)) { 2352 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2353 handle->h_rsv_handle = NULL; 2354 } 2355 ext4_set_io_unwritten_flag(mpd->io_submit.io_end); 2356 } 2357 2358 BUG_ON(map->m_len == 0); 2359 return 0; 2360 } 2361 2362 /* 2363 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2364 * mpd->len and submit pages underlying it for IO 2365 * 2366 * @handle - handle for journal operations 2367 * @mpd - extent to map 2368 * @give_up_on_write - we set this to true iff there is a fatal error and there 2369 * is no hope of writing the data. The caller should discard 2370 * dirty pages to avoid infinite loops. 2371 * 2372 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2373 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2374 * them to initialized or split the described range from larger unwritten 2375 * extent. Note that we need not map all the described range since allocation 2376 * can return less blocks or the range is covered by more unwritten extents. We 2377 * cannot map more because we are limited by reserved transaction credits. On 2378 * the other hand we always make sure that the last touched page is fully 2379 * mapped so that it can be written out (and thus forward progress is 2380 * guaranteed). After mapping we submit all mapped pages for IO. 2381 */ 2382 static int mpage_map_and_submit_extent(handle_t *handle, 2383 struct mpage_da_data *mpd, 2384 bool *give_up_on_write) 2385 { 2386 struct inode *inode = mpd->inode; 2387 struct ext4_map_blocks *map = &mpd->map; 2388 int err; 2389 loff_t disksize; 2390 int progress = 0; 2391 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2392 struct ext4_io_end_vec *io_end_vec; 2393 2394 io_end_vec = ext4_alloc_io_end_vec(io_end); 2395 if (IS_ERR(io_end_vec)) 2396 return PTR_ERR(io_end_vec); 2397 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2398 do { 2399 err = mpage_map_one_extent(handle, mpd); 2400 if (err < 0) { 2401 struct super_block *sb = inode->i_sb; 2402 2403 if (ext4_emergency_state(sb)) 2404 goto invalidate_dirty_pages; 2405 /* 2406 * Let the uper layers retry transient errors. 2407 * In the case of ENOSPC, if ext4_count_free_blocks() 2408 * is non-zero, a commit should free up blocks. 2409 */ 2410 if ((err == -ENOMEM) || 2411 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2412 if (progress) 2413 goto update_disksize; 2414 return err; 2415 } 2416 ext4_msg(sb, KERN_CRIT, 2417 "Delayed block allocation failed for " 2418 "inode %lu at logical offset %llu with" 2419 " max blocks %u with error %d", 2420 inode->i_ino, 2421 (unsigned long long)map->m_lblk, 2422 (unsigned)map->m_len, -err); 2423 ext4_msg(sb, KERN_CRIT, 2424 "This should not happen!! Data will " 2425 "be lost\n"); 2426 if (err == -ENOSPC) 2427 ext4_print_free_blocks(inode); 2428 invalidate_dirty_pages: 2429 *give_up_on_write = true; 2430 return err; 2431 } 2432 progress = 1; 2433 /* 2434 * Update buffer state, submit mapped pages, and get us new 2435 * extent to map 2436 */ 2437 err = mpage_map_and_submit_buffers(mpd); 2438 if (err < 0) 2439 goto update_disksize; 2440 } while (map->m_len); 2441 2442 update_disksize: 2443 /* 2444 * Update on-disk size after IO is submitted. Races with 2445 * truncate are avoided by checking i_size under i_data_sem. 2446 */ 2447 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2448 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2449 int err2; 2450 loff_t i_size; 2451 2452 down_write(&EXT4_I(inode)->i_data_sem); 2453 i_size = i_size_read(inode); 2454 if (disksize > i_size) 2455 disksize = i_size; 2456 if (disksize > EXT4_I(inode)->i_disksize) 2457 EXT4_I(inode)->i_disksize = disksize; 2458 up_write(&EXT4_I(inode)->i_data_sem); 2459 err2 = ext4_mark_inode_dirty(handle, inode); 2460 if (err2) { 2461 ext4_error_err(inode->i_sb, -err2, 2462 "Failed to mark inode %lu dirty", 2463 inode->i_ino); 2464 } 2465 if (!err) 2466 err = err2; 2467 } 2468 return err; 2469 } 2470 2471 /* 2472 * Calculate the total number of credits to reserve for one writepages 2473 * iteration. This is called from ext4_writepages(). We map an extent of 2474 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2475 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2476 * bpp - 1 blocks in bpp different extents. 2477 */ 2478 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2479 { 2480 int bpp = ext4_journal_blocks_per_folio(inode); 2481 2482 return ext4_meta_trans_blocks(inode, 2483 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2484 } 2485 2486 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio, 2487 size_t len) 2488 { 2489 struct buffer_head *page_bufs = folio_buffers(folio); 2490 struct inode *inode = folio->mapping->host; 2491 int ret, err; 2492 2493 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2494 NULL, do_journal_get_write_access); 2495 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2496 NULL, write_end_fn); 2497 if (ret == 0) 2498 ret = err; 2499 err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len); 2500 if (ret == 0) 2501 ret = err; 2502 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2503 2504 return ret; 2505 } 2506 2507 static int mpage_journal_page_buffers(handle_t *handle, 2508 struct mpage_da_data *mpd, 2509 struct folio *folio) 2510 { 2511 struct inode *inode = mpd->inode; 2512 loff_t size = i_size_read(inode); 2513 size_t len = folio_size(folio); 2514 2515 folio_clear_checked(folio); 2516 mpd->wbc->nr_to_write -= folio_nr_pages(folio); 2517 2518 if (folio_pos(folio) + len > size && 2519 !ext4_verity_in_progress(inode)) 2520 len = size & (len - 1); 2521 2522 return ext4_journal_folio_buffers(handle, folio, len); 2523 } 2524 2525 /* 2526 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2527 * needing mapping, submit mapped pages 2528 * 2529 * @mpd - where to look for pages 2530 * 2531 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2532 * IO immediately. If we cannot map blocks, we submit just already mapped 2533 * buffers in the page for IO and keep page dirty. When we can map blocks and 2534 * we find a page which isn't mapped we start accumulating extent of buffers 2535 * underlying these pages that needs mapping (formed by either delayed or 2536 * unwritten buffers). We also lock the pages containing these buffers. The 2537 * extent found is returned in @mpd structure (starting at mpd->lblk with 2538 * length mpd->len blocks). 2539 * 2540 * Note that this function can attach bios to one io_end structure which are 2541 * neither logically nor physically contiguous. Although it may seem as an 2542 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2543 * case as we need to track IO to all buffers underlying a page in one io_end. 2544 */ 2545 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2546 { 2547 struct address_space *mapping = mpd->inode->i_mapping; 2548 struct folio_batch fbatch; 2549 unsigned int nr_folios; 2550 pgoff_t index = mpd->first_page; 2551 pgoff_t end = mpd->last_page; 2552 xa_mark_t tag; 2553 int i, err = 0; 2554 int blkbits = mpd->inode->i_blkbits; 2555 ext4_lblk_t lblk; 2556 struct buffer_head *head; 2557 handle_t *handle = NULL; 2558 int bpp = ext4_journal_blocks_per_folio(mpd->inode); 2559 2560 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2561 tag = PAGECACHE_TAG_TOWRITE; 2562 else 2563 tag = PAGECACHE_TAG_DIRTY; 2564 2565 mpd->map.m_len = 0; 2566 mpd->next_page = index; 2567 if (ext4_should_journal_data(mpd->inode)) { 2568 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE, 2569 bpp); 2570 if (IS_ERR(handle)) 2571 return PTR_ERR(handle); 2572 } 2573 folio_batch_init(&fbatch); 2574 while (index <= end) { 2575 nr_folios = filemap_get_folios_tag(mapping, &index, end, 2576 tag, &fbatch); 2577 if (nr_folios == 0) 2578 break; 2579 2580 for (i = 0; i < nr_folios; i++) { 2581 struct folio *folio = fbatch.folios[i]; 2582 2583 /* 2584 * Accumulated enough dirty pages? This doesn't apply 2585 * to WB_SYNC_ALL mode. For integrity sync we have to 2586 * keep going because someone may be concurrently 2587 * dirtying pages, and we might have synced a lot of 2588 * newly appeared dirty pages, but have not synced all 2589 * of the old dirty pages. 2590 */ 2591 if (mpd->wbc->sync_mode == WB_SYNC_NONE && 2592 mpd->wbc->nr_to_write <= 2593 mpd->map.m_len >> (PAGE_SHIFT - blkbits)) 2594 goto out; 2595 2596 /* If we can't merge this page, we are done. */ 2597 if (mpd->map.m_len > 0 && mpd->next_page != folio->index) 2598 goto out; 2599 2600 if (handle) { 2601 err = ext4_journal_ensure_credits(handle, bpp, 2602 0); 2603 if (err < 0) 2604 goto out; 2605 } 2606 2607 folio_lock(folio); 2608 /* 2609 * If the page is no longer dirty, or its mapping no 2610 * longer corresponds to inode we are writing (which 2611 * means it has been truncated or invalidated), or the 2612 * page is already under writeback and we are not doing 2613 * a data integrity writeback, skip the page 2614 */ 2615 if (!folio_test_dirty(folio) || 2616 (folio_test_writeback(folio) && 2617 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2618 unlikely(folio->mapping != mapping)) { 2619 folio_unlock(folio); 2620 continue; 2621 } 2622 2623 folio_wait_writeback(folio); 2624 BUG_ON(folio_test_writeback(folio)); 2625 2626 /* 2627 * Should never happen but for buggy code in 2628 * other subsystems that call 2629 * set_page_dirty() without properly warning 2630 * the file system first. See [1] for more 2631 * information. 2632 * 2633 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz 2634 */ 2635 if (!folio_buffers(folio)) { 2636 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index); 2637 folio_clear_dirty(folio); 2638 folio_unlock(folio); 2639 continue; 2640 } 2641 2642 if (mpd->map.m_len == 0) 2643 mpd->first_page = folio->index; 2644 mpd->next_page = folio_next_index(folio); 2645 /* 2646 * Writeout when we cannot modify metadata is simple. 2647 * Just submit the page. For data=journal mode we 2648 * first handle writeout of the page for checkpoint and 2649 * only after that handle delayed page dirtying. This 2650 * makes sure current data is checkpointed to the final 2651 * location before possibly journalling it again which 2652 * is desirable when the page is frequently dirtied 2653 * through a pin. 2654 */ 2655 if (!mpd->can_map) { 2656 err = mpage_submit_folio(mpd, folio); 2657 if (err < 0) 2658 goto out; 2659 /* Pending dirtying of journalled data? */ 2660 if (folio_test_checked(folio)) { 2661 err = mpage_journal_page_buffers(handle, 2662 mpd, folio); 2663 if (err < 0) 2664 goto out; 2665 mpd->journalled_more_data = 1; 2666 } 2667 mpage_folio_done(mpd, folio); 2668 } else { 2669 /* Add all dirty buffers to mpd */ 2670 lblk = ((ext4_lblk_t)folio->index) << 2671 (PAGE_SHIFT - blkbits); 2672 head = folio_buffers(folio); 2673 err = mpage_process_page_bufs(mpd, head, head, 2674 lblk); 2675 if (err <= 0) 2676 goto out; 2677 err = 0; 2678 } 2679 } 2680 folio_batch_release(&fbatch); 2681 cond_resched(); 2682 } 2683 mpd->scanned_until_end = 1; 2684 if (handle) 2685 ext4_journal_stop(handle); 2686 return 0; 2687 out: 2688 folio_batch_release(&fbatch); 2689 if (handle) 2690 ext4_journal_stop(handle); 2691 return err; 2692 } 2693 2694 static int ext4_do_writepages(struct mpage_da_data *mpd) 2695 { 2696 struct writeback_control *wbc = mpd->wbc; 2697 pgoff_t writeback_index = 0; 2698 long nr_to_write = wbc->nr_to_write; 2699 int range_whole = 0; 2700 int cycled = 1; 2701 handle_t *handle = NULL; 2702 struct inode *inode = mpd->inode; 2703 struct address_space *mapping = inode->i_mapping; 2704 int needed_blocks, rsv_blocks = 0, ret = 0; 2705 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2706 struct blk_plug plug; 2707 bool give_up_on_write = false; 2708 2709 trace_ext4_writepages(inode, wbc); 2710 2711 /* 2712 * No pages to write? This is mainly a kludge to avoid starting 2713 * a transaction for special inodes like journal inode on last iput() 2714 * because that could violate lock ordering on umount 2715 */ 2716 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2717 goto out_writepages; 2718 2719 /* 2720 * If the filesystem has aborted, it is read-only, so return 2721 * right away instead of dumping stack traces later on that 2722 * will obscure the real source of the problem. We test 2723 * fs shutdown state instead of sb->s_flag's SB_RDONLY because 2724 * the latter could be true if the filesystem is mounted 2725 * read-only, and in that case, ext4_writepages should 2726 * *never* be called, so if that ever happens, we would want 2727 * the stack trace. 2728 */ 2729 ret = ext4_emergency_state(mapping->host->i_sb); 2730 if (unlikely(ret)) 2731 goto out_writepages; 2732 2733 /* 2734 * If we have inline data and arrive here, it means that 2735 * we will soon create the block for the 1st page, so 2736 * we'd better clear the inline data here. 2737 */ 2738 if (ext4_has_inline_data(inode)) { 2739 /* Just inode will be modified... */ 2740 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2741 if (IS_ERR(handle)) { 2742 ret = PTR_ERR(handle); 2743 goto out_writepages; 2744 } 2745 BUG_ON(ext4_test_inode_state(inode, 2746 EXT4_STATE_MAY_INLINE_DATA)); 2747 ext4_destroy_inline_data(handle, inode); 2748 ext4_journal_stop(handle); 2749 } 2750 2751 /* 2752 * data=journal mode does not do delalloc so we just need to writeout / 2753 * journal already mapped buffers. On the other hand we need to commit 2754 * transaction to make data stable. We expect all the data to be 2755 * already in the journal (the only exception are DMA pinned pages 2756 * dirtied behind our back) so we commit transaction here and run the 2757 * writeback loop to checkpoint them. The checkpointing is not actually 2758 * necessary to make data persistent *but* quite a few places (extent 2759 * shifting operations, fsverity, ...) depend on being able to drop 2760 * pagecache pages after calling filemap_write_and_wait() and for that 2761 * checkpointing needs to happen. 2762 */ 2763 if (ext4_should_journal_data(inode)) { 2764 mpd->can_map = 0; 2765 if (wbc->sync_mode == WB_SYNC_ALL) 2766 ext4_fc_commit(sbi->s_journal, 2767 EXT4_I(inode)->i_datasync_tid); 2768 } 2769 mpd->journalled_more_data = 0; 2770 2771 if (ext4_should_dioread_nolock(inode)) { 2772 /* 2773 * We may need to convert up to one extent per block in 2774 * the page and we may dirty the inode. 2775 */ 2776 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2777 PAGE_SIZE >> inode->i_blkbits); 2778 } 2779 2780 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2781 range_whole = 1; 2782 2783 if (wbc->range_cyclic) { 2784 writeback_index = mapping->writeback_index; 2785 if (writeback_index) 2786 cycled = 0; 2787 mpd->first_page = writeback_index; 2788 mpd->last_page = -1; 2789 } else { 2790 mpd->first_page = wbc->range_start >> PAGE_SHIFT; 2791 mpd->last_page = wbc->range_end >> PAGE_SHIFT; 2792 } 2793 2794 ext4_io_submit_init(&mpd->io_submit, wbc); 2795 retry: 2796 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2797 tag_pages_for_writeback(mapping, mpd->first_page, 2798 mpd->last_page); 2799 blk_start_plug(&plug); 2800 2801 /* 2802 * First writeback pages that don't need mapping - we can avoid 2803 * starting a transaction unnecessarily and also avoid being blocked 2804 * in the block layer on device congestion while having transaction 2805 * started. 2806 */ 2807 mpd->do_map = 0; 2808 mpd->scanned_until_end = 0; 2809 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2810 if (!mpd->io_submit.io_end) { 2811 ret = -ENOMEM; 2812 goto unplug; 2813 } 2814 ret = mpage_prepare_extent_to_map(mpd); 2815 /* Unlock pages we didn't use */ 2816 mpage_release_unused_pages(mpd, false); 2817 /* Submit prepared bio */ 2818 ext4_io_submit(&mpd->io_submit); 2819 ext4_put_io_end_defer(mpd->io_submit.io_end); 2820 mpd->io_submit.io_end = NULL; 2821 if (ret < 0) 2822 goto unplug; 2823 2824 while (!mpd->scanned_until_end && wbc->nr_to_write > 0) { 2825 /* For each extent of pages we use new io_end */ 2826 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2827 if (!mpd->io_submit.io_end) { 2828 ret = -ENOMEM; 2829 break; 2830 } 2831 2832 WARN_ON_ONCE(!mpd->can_map); 2833 /* 2834 * We have two constraints: We find one extent to map and we 2835 * must always write out whole page (makes a difference when 2836 * blocksize < pagesize) so that we don't block on IO when we 2837 * try to write out the rest of the page. Journalled mode is 2838 * not supported by delalloc. 2839 */ 2840 BUG_ON(ext4_should_journal_data(inode)); 2841 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2842 2843 /* start a new transaction */ 2844 handle = ext4_journal_start_with_reserve(inode, 2845 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2846 if (IS_ERR(handle)) { 2847 ret = PTR_ERR(handle); 2848 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2849 "%ld pages, ino %lu; err %d", __func__, 2850 wbc->nr_to_write, inode->i_ino, ret); 2851 /* Release allocated io_end */ 2852 ext4_put_io_end(mpd->io_submit.io_end); 2853 mpd->io_submit.io_end = NULL; 2854 break; 2855 } 2856 mpd->do_map = 1; 2857 2858 trace_ext4_da_write_pages(inode, mpd->first_page, wbc); 2859 ret = mpage_prepare_extent_to_map(mpd); 2860 if (!ret && mpd->map.m_len) 2861 ret = mpage_map_and_submit_extent(handle, mpd, 2862 &give_up_on_write); 2863 /* 2864 * Caution: If the handle is synchronous, 2865 * ext4_journal_stop() can wait for transaction commit 2866 * to finish which may depend on writeback of pages to 2867 * complete or on page lock to be released. In that 2868 * case, we have to wait until after we have 2869 * submitted all the IO, released page locks we hold, 2870 * and dropped io_end reference (for extent conversion 2871 * to be able to complete) before stopping the handle. 2872 */ 2873 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2874 ext4_journal_stop(handle); 2875 handle = NULL; 2876 mpd->do_map = 0; 2877 } 2878 /* Unlock pages we didn't use */ 2879 mpage_release_unused_pages(mpd, give_up_on_write); 2880 /* Submit prepared bio */ 2881 ext4_io_submit(&mpd->io_submit); 2882 2883 /* 2884 * Drop our io_end reference we got from init. We have 2885 * to be careful and use deferred io_end finishing if 2886 * we are still holding the transaction as we can 2887 * release the last reference to io_end which may end 2888 * up doing unwritten extent conversion. 2889 */ 2890 if (handle) { 2891 ext4_put_io_end_defer(mpd->io_submit.io_end); 2892 ext4_journal_stop(handle); 2893 } else 2894 ext4_put_io_end(mpd->io_submit.io_end); 2895 mpd->io_submit.io_end = NULL; 2896 2897 if (ret == -ENOSPC && sbi->s_journal) { 2898 /* 2899 * Commit the transaction which would 2900 * free blocks released in the transaction 2901 * and try again 2902 */ 2903 jbd2_journal_force_commit_nested(sbi->s_journal); 2904 ret = 0; 2905 continue; 2906 } 2907 /* Fatal error - ENOMEM, EIO... */ 2908 if (ret) 2909 break; 2910 } 2911 unplug: 2912 blk_finish_plug(&plug); 2913 if (!ret && !cycled && wbc->nr_to_write > 0) { 2914 cycled = 1; 2915 mpd->last_page = writeback_index - 1; 2916 mpd->first_page = 0; 2917 goto retry; 2918 } 2919 2920 /* Update index */ 2921 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2922 /* 2923 * Set the writeback_index so that range_cyclic 2924 * mode will write it back later 2925 */ 2926 mapping->writeback_index = mpd->first_page; 2927 2928 out_writepages: 2929 trace_ext4_writepages_result(inode, wbc, ret, 2930 nr_to_write - wbc->nr_to_write); 2931 return ret; 2932 } 2933 2934 static int ext4_writepages(struct address_space *mapping, 2935 struct writeback_control *wbc) 2936 { 2937 struct super_block *sb = mapping->host->i_sb; 2938 struct mpage_da_data mpd = { 2939 .inode = mapping->host, 2940 .wbc = wbc, 2941 .can_map = 1, 2942 }; 2943 int ret; 2944 int alloc_ctx; 2945 2946 ret = ext4_emergency_state(sb); 2947 if (unlikely(ret)) 2948 return ret; 2949 2950 alloc_ctx = ext4_writepages_down_read(sb); 2951 ret = ext4_do_writepages(&mpd); 2952 /* 2953 * For data=journal writeback we could have come across pages marked 2954 * for delayed dirtying (PageChecked) which were just added to the 2955 * running transaction. Try once more to get them to stable storage. 2956 */ 2957 if (!ret && mpd.journalled_more_data) 2958 ret = ext4_do_writepages(&mpd); 2959 ext4_writepages_up_read(sb, alloc_ctx); 2960 2961 return ret; 2962 } 2963 2964 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode) 2965 { 2966 struct writeback_control wbc = { 2967 .sync_mode = WB_SYNC_ALL, 2968 .nr_to_write = LONG_MAX, 2969 .range_start = jinode->i_dirty_start, 2970 .range_end = jinode->i_dirty_end, 2971 }; 2972 struct mpage_da_data mpd = { 2973 .inode = jinode->i_vfs_inode, 2974 .wbc = &wbc, 2975 .can_map = 0, 2976 }; 2977 return ext4_do_writepages(&mpd); 2978 } 2979 2980 static int ext4_dax_writepages(struct address_space *mapping, 2981 struct writeback_control *wbc) 2982 { 2983 int ret; 2984 long nr_to_write = wbc->nr_to_write; 2985 struct inode *inode = mapping->host; 2986 int alloc_ctx; 2987 2988 ret = ext4_emergency_state(inode->i_sb); 2989 if (unlikely(ret)) 2990 return ret; 2991 2992 alloc_ctx = ext4_writepages_down_read(inode->i_sb); 2993 trace_ext4_writepages(inode, wbc); 2994 2995 ret = dax_writeback_mapping_range(mapping, 2996 EXT4_SB(inode->i_sb)->s_daxdev, wbc); 2997 trace_ext4_writepages_result(inode, wbc, ret, 2998 nr_to_write - wbc->nr_to_write); 2999 ext4_writepages_up_read(inode->i_sb, alloc_ctx); 3000 return ret; 3001 } 3002 3003 static int ext4_nonda_switch(struct super_block *sb) 3004 { 3005 s64 free_clusters, dirty_clusters; 3006 struct ext4_sb_info *sbi = EXT4_SB(sb); 3007 3008 /* 3009 * switch to non delalloc mode if we are running low 3010 * on free block. The free block accounting via percpu 3011 * counters can get slightly wrong with percpu_counter_batch getting 3012 * accumulated on each CPU without updating global counters 3013 * Delalloc need an accurate free block accounting. So switch 3014 * to non delalloc when we are near to error range. 3015 */ 3016 free_clusters = 3017 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 3018 dirty_clusters = 3019 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 3020 /* 3021 * Start pushing delalloc when 1/2 of free blocks are dirty. 3022 */ 3023 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 3024 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 3025 3026 if (2 * free_clusters < 3 * dirty_clusters || 3027 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 3028 /* 3029 * free block count is less than 150% of dirty blocks 3030 * or free blocks is less than watermark 3031 */ 3032 return 1; 3033 } 3034 return 0; 3035 } 3036 3037 static int ext4_da_write_begin(const struct kiocb *iocb, 3038 struct address_space *mapping, 3039 loff_t pos, unsigned len, 3040 struct folio **foliop, void **fsdata) 3041 { 3042 int ret, retries = 0; 3043 struct folio *folio; 3044 pgoff_t index; 3045 struct inode *inode = mapping->host; 3046 3047 ret = ext4_emergency_state(inode->i_sb); 3048 if (unlikely(ret)) 3049 return ret; 3050 3051 index = pos >> PAGE_SHIFT; 3052 3053 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) { 3054 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 3055 return ext4_write_begin(iocb, mapping, pos, 3056 len, foliop, fsdata); 3057 } 3058 *fsdata = (void *)0; 3059 trace_ext4_da_write_begin(inode, pos, len); 3060 3061 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 3062 ret = ext4_generic_write_inline_data(mapping, inode, pos, len, 3063 foliop, fsdata, true); 3064 if (ret < 0) 3065 return ret; 3066 if (ret == 1) 3067 return 0; 3068 } 3069 3070 retry: 3071 folio = write_begin_get_folio(iocb, mapping, index, len); 3072 if (IS_ERR(folio)) 3073 return PTR_ERR(folio); 3074 3075 if (pos + len > folio_pos(folio) + folio_size(folio)) 3076 len = folio_pos(folio) + folio_size(folio) - pos; 3077 3078 ret = ext4_block_write_begin(NULL, folio, pos, len, 3079 ext4_da_get_block_prep); 3080 if (ret < 0) { 3081 folio_unlock(folio); 3082 folio_put(folio); 3083 /* 3084 * block_write_begin may have instantiated a few blocks 3085 * outside i_size. Trim these off again. Don't need 3086 * i_size_read because we hold inode lock. 3087 */ 3088 if (pos + len > inode->i_size) 3089 ext4_truncate_failed_write(inode); 3090 3091 if (ret == -ENOSPC && 3092 ext4_should_retry_alloc(inode->i_sb, &retries)) 3093 goto retry; 3094 return ret; 3095 } 3096 3097 *foliop = folio; 3098 return ret; 3099 } 3100 3101 /* 3102 * Check if we should update i_disksize 3103 * when write to the end of file but not require block allocation 3104 */ 3105 static int ext4_da_should_update_i_disksize(struct folio *folio, 3106 unsigned long offset) 3107 { 3108 struct buffer_head *bh; 3109 struct inode *inode = folio->mapping->host; 3110 unsigned int idx; 3111 int i; 3112 3113 bh = folio_buffers(folio); 3114 idx = offset >> inode->i_blkbits; 3115 3116 for (i = 0; i < idx; i++) 3117 bh = bh->b_this_page; 3118 3119 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3120 return 0; 3121 return 1; 3122 } 3123 3124 static int ext4_da_do_write_end(struct address_space *mapping, 3125 loff_t pos, unsigned len, unsigned copied, 3126 struct folio *folio) 3127 { 3128 struct inode *inode = mapping->host; 3129 loff_t old_size = inode->i_size; 3130 bool disksize_changed = false; 3131 loff_t new_i_size, zero_len = 0; 3132 handle_t *handle; 3133 3134 if (unlikely(!folio_buffers(folio))) { 3135 folio_unlock(folio); 3136 folio_put(folio); 3137 return -EIO; 3138 } 3139 /* 3140 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES 3141 * flag, which all that's needed to trigger page writeback. 3142 */ 3143 copied = block_write_end(pos, len, copied, folio); 3144 new_i_size = pos + copied; 3145 3146 /* 3147 * It's important to update i_size while still holding folio lock, 3148 * because folio writeout could otherwise come in and zero beyond 3149 * i_size. 3150 * 3151 * Since we are holding inode lock, we are sure i_disksize <= 3152 * i_size. We also know that if i_disksize < i_size, there are 3153 * delalloc writes pending in the range up to i_size. If the end of 3154 * the current write is <= i_size, there's no need to touch 3155 * i_disksize since writeback will push i_disksize up to i_size 3156 * eventually. If the end of the current write is > i_size and 3157 * inside an allocated block which ext4_da_should_update_i_disksize() 3158 * checked, we need to update i_disksize here as certain 3159 * ext4_writepages() paths not allocating blocks and update i_disksize. 3160 */ 3161 if (new_i_size > inode->i_size) { 3162 unsigned long end; 3163 3164 i_size_write(inode, new_i_size); 3165 end = offset_in_folio(folio, new_i_size - 1); 3166 if (copied && ext4_da_should_update_i_disksize(folio, end)) { 3167 ext4_update_i_disksize(inode, new_i_size); 3168 disksize_changed = true; 3169 } 3170 } 3171 3172 folio_unlock(folio); 3173 folio_put(folio); 3174 3175 if (pos > old_size) { 3176 pagecache_isize_extended(inode, old_size, pos); 3177 zero_len = pos - old_size; 3178 } 3179 3180 if (!disksize_changed && !zero_len) 3181 return copied; 3182 3183 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3184 if (IS_ERR(handle)) 3185 return PTR_ERR(handle); 3186 if (zero_len) 3187 ext4_zero_partial_blocks(handle, inode, old_size, zero_len); 3188 ext4_mark_inode_dirty(handle, inode); 3189 ext4_journal_stop(handle); 3190 3191 return copied; 3192 } 3193 3194 static int ext4_da_write_end(const struct kiocb *iocb, 3195 struct address_space *mapping, 3196 loff_t pos, unsigned len, unsigned copied, 3197 struct folio *folio, void *fsdata) 3198 { 3199 struct inode *inode = mapping->host; 3200 int write_mode = (int)(unsigned long)fsdata; 3201 3202 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3203 return ext4_write_end(iocb, mapping, pos, 3204 len, copied, folio, fsdata); 3205 3206 trace_ext4_da_write_end(inode, pos, len, copied); 3207 3208 if (write_mode != CONVERT_INLINE_DATA && 3209 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3210 ext4_has_inline_data(inode)) 3211 return ext4_write_inline_data_end(inode, pos, len, copied, 3212 folio); 3213 3214 if (unlikely(copied < len) && !folio_test_uptodate(folio)) 3215 copied = 0; 3216 3217 return ext4_da_do_write_end(mapping, pos, len, copied, folio); 3218 } 3219 3220 /* 3221 * Force all delayed allocation blocks to be allocated for a given inode. 3222 */ 3223 int ext4_alloc_da_blocks(struct inode *inode) 3224 { 3225 trace_ext4_alloc_da_blocks(inode); 3226 3227 if (!EXT4_I(inode)->i_reserved_data_blocks) 3228 return 0; 3229 3230 /* 3231 * We do something simple for now. The filemap_flush() will 3232 * also start triggering a write of the data blocks, which is 3233 * not strictly speaking necessary (and for users of 3234 * laptop_mode, not even desirable). However, to do otherwise 3235 * would require replicating code paths in: 3236 * 3237 * ext4_writepages() -> 3238 * write_cache_pages() ---> (via passed in callback function) 3239 * __mpage_da_writepage() --> 3240 * mpage_add_bh_to_extent() 3241 * mpage_da_map_blocks() 3242 * 3243 * The problem is that write_cache_pages(), located in 3244 * mm/page-writeback.c, marks pages clean in preparation for 3245 * doing I/O, which is not desirable if we're not planning on 3246 * doing I/O at all. 3247 * 3248 * We could call write_cache_pages(), and then redirty all of 3249 * the pages by calling redirty_page_for_writepage() but that 3250 * would be ugly in the extreme. So instead we would need to 3251 * replicate parts of the code in the above functions, 3252 * simplifying them because we wouldn't actually intend to 3253 * write out the pages, but rather only collect contiguous 3254 * logical block extents, call the multi-block allocator, and 3255 * then update the buffer heads with the block allocations. 3256 * 3257 * For now, though, we'll cheat by calling filemap_flush(), 3258 * which will map the blocks, and start the I/O, but not 3259 * actually wait for the I/O to complete. 3260 */ 3261 return filemap_flush(inode->i_mapping); 3262 } 3263 3264 /* 3265 * bmap() is special. It gets used by applications such as lilo and by 3266 * the swapper to find the on-disk block of a specific piece of data. 3267 * 3268 * Naturally, this is dangerous if the block concerned is still in the 3269 * journal. If somebody makes a swapfile on an ext4 data-journaling 3270 * filesystem and enables swap, then they may get a nasty shock when the 3271 * data getting swapped to that swapfile suddenly gets overwritten by 3272 * the original zero's written out previously to the journal and 3273 * awaiting writeback in the kernel's buffer cache. 3274 * 3275 * So, if we see any bmap calls here on a modified, data-journaled file, 3276 * take extra steps to flush any blocks which might be in the cache. 3277 */ 3278 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3279 { 3280 struct inode *inode = mapping->host; 3281 sector_t ret = 0; 3282 3283 inode_lock_shared(inode); 3284 /* 3285 * We can get here for an inline file via the FIBMAP ioctl 3286 */ 3287 if (ext4_has_inline_data(inode)) 3288 goto out; 3289 3290 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3291 (test_opt(inode->i_sb, DELALLOC) || 3292 ext4_should_journal_data(inode))) { 3293 /* 3294 * With delalloc or journalled data we want to sync the file so 3295 * that we can make sure we allocate blocks for file and data 3296 * is in place for the user to see it 3297 */ 3298 filemap_write_and_wait(mapping); 3299 } 3300 3301 ret = iomap_bmap(mapping, block, &ext4_iomap_ops); 3302 3303 out: 3304 inode_unlock_shared(inode); 3305 return ret; 3306 } 3307 3308 static int ext4_read_folio(struct file *file, struct folio *folio) 3309 { 3310 int ret = -EAGAIN; 3311 struct inode *inode = folio->mapping->host; 3312 3313 trace_ext4_read_folio(inode, folio); 3314 3315 if (ext4_has_inline_data(inode)) 3316 ret = ext4_readpage_inline(inode, folio); 3317 3318 if (ret == -EAGAIN) 3319 return ext4_mpage_readpages(inode, NULL, folio); 3320 3321 return ret; 3322 } 3323 3324 static void ext4_readahead(struct readahead_control *rac) 3325 { 3326 struct inode *inode = rac->mapping->host; 3327 3328 /* If the file has inline data, no need to do readahead. */ 3329 if (ext4_has_inline_data(inode)) 3330 return; 3331 3332 ext4_mpage_readpages(inode, rac, NULL); 3333 } 3334 3335 static void ext4_invalidate_folio(struct folio *folio, size_t offset, 3336 size_t length) 3337 { 3338 trace_ext4_invalidate_folio(folio, offset, length); 3339 3340 /* No journalling happens on data buffers when this function is used */ 3341 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio))); 3342 3343 block_invalidate_folio(folio, offset, length); 3344 } 3345 3346 static int __ext4_journalled_invalidate_folio(struct folio *folio, 3347 size_t offset, size_t length) 3348 { 3349 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3350 3351 trace_ext4_journalled_invalidate_folio(folio, offset, length); 3352 3353 /* 3354 * If it's a full truncate we just forget about the pending dirtying 3355 */ 3356 if (offset == 0 && length == folio_size(folio)) 3357 folio_clear_checked(folio); 3358 3359 return jbd2_journal_invalidate_folio(journal, folio, offset, length); 3360 } 3361 3362 /* Wrapper for aops... */ 3363 static void ext4_journalled_invalidate_folio(struct folio *folio, 3364 size_t offset, 3365 size_t length) 3366 { 3367 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0); 3368 } 3369 3370 static bool ext4_release_folio(struct folio *folio, gfp_t wait) 3371 { 3372 struct inode *inode = folio->mapping->host; 3373 journal_t *journal = EXT4_JOURNAL(inode); 3374 3375 trace_ext4_release_folio(inode, folio); 3376 3377 /* Page has dirty journalled data -> cannot release */ 3378 if (folio_test_checked(folio)) 3379 return false; 3380 if (journal) 3381 return jbd2_journal_try_to_free_buffers(journal, folio); 3382 else 3383 return try_to_free_buffers(folio); 3384 } 3385 3386 static bool ext4_inode_datasync_dirty(struct inode *inode) 3387 { 3388 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3389 3390 if (journal) { 3391 if (jbd2_transaction_committed(journal, 3392 EXT4_I(inode)->i_datasync_tid)) 3393 return false; 3394 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3395 return !list_empty(&EXT4_I(inode)->i_fc_list); 3396 return true; 3397 } 3398 3399 /* Any metadata buffers to write? */ 3400 if (!list_empty(&inode->i_mapping->i_private_list)) 3401 return true; 3402 return inode->i_state & I_DIRTY_DATASYNC; 3403 } 3404 3405 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3406 struct ext4_map_blocks *map, loff_t offset, 3407 loff_t length, unsigned int flags) 3408 { 3409 u8 blkbits = inode->i_blkbits; 3410 3411 /* 3412 * Writes that span EOF might trigger an I/O size update on completion, 3413 * so consider them to be dirty for the purpose of O_DSYNC, even if 3414 * there is no other metadata changes being made or are pending. 3415 */ 3416 iomap->flags = 0; 3417 if (ext4_inode_datasync_dirty(inode) || 3418 offset + length > i_size_read(inode)) 3419 iomap->flags |= IOMAP_F_DIRTY; 3420 3421 if (map->m_flags & EXT4_MAP_NEW) 3422 iomap->flags |= IOMAP_F_NEW; 3423 3424 /* HW-offload atomics are always used */ 3425 if (flags & IOMAP_ATOMIC) 3426 iomap->flags |= IOMAP_F_ATOMIC_BIO; 3427 3428 if (flags & IOMAP_DAX) 3429 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3430 else 3431 iomap->bdev = inode->i_sb->s_bdev; 3432 iomap->offset = (u64) map->m_lblk << blkbits; 3433 iomap->length = (u64) map->m_len << blkbits; 3434 3435 if ((map->m_flags & EXT4_MAP_MAPPED) && 3436 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3437 iomap->flags |= IOMAP_F_MERGED; 3438 3439 /* 3440 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3441 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3442 * set. In order for any allocated unwritten extents to be converted 3443 * into written extents correctly within the ->end_io() handler, we 3444 * need to ensure that the iomap->type is set appropriately. Hence, the 3445 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3446 * been set first. 3447 */ 3448 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3449 iomap->type = IOMAP_UNWRITTEN; 3450 iomap->addr = (u64) map->m_pblk << blkbits; 3451 if (flags & IOMAP_DAX) 3452 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3453 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3454 iomap->type = IOMAP_MAPPED; 3455 iomap->addr = (u64) map->m_pblk << blkbits; 3456 if (flags & IOMAP_DAX) 3457 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3458 } else if (map->m_flags & EXT4_MAP_DELAYED) { 3459 iomap->type = IOMAP_DELALLOC; 3460 iomap->addr = IOMAP_NULL_ADDR; 3461 } else { 3462 iomap->type = IOMAP_HOLE; 3463 iomap->addr = IOMAP_NULL_ADDR; 3464 } 3465 } 3466 3467 static int ext4_map_blocks_atomic_write_slow(handle_t *handle, 3468 struct inode *inode, struct ext4_map_blocks *map) 3469 { 3470 ext4_lblk_t m_lblk = map->m_lblk; 3471 unsigned int m_len = map->m_len; 3472 unsigned int mapped_len = 0, m_flags = 0; 3473 ext4_fsblk_t next_pblk; 3474 bool check_next_pblk = false; 3475 int ret = 0; 3476 3477 WARN_ON_ONCE(!ext4_has_feature_bigalloc(inode->i_sb)); 3478 3479 /* 3480 * This is a slow path in case of mixed mapping. We use 3481 * EXT4_GET_BLOCKS_CREATE_ZERO flag here to make sure we get a single 3482 * contiguous mapped mapping. This will ensure any unwritten or hole 3483 * regions within the requested range is zeroed out and we return 3484 * a single contiguous mapped extent. 3485 */ 3486 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3487 3488 do { 3489 ret = ext4_map_blocks(handle, inode, map, m_flags); 3490 if (ret < 0 && ret != -ENOSPC) 3491 goto out_err; 3492 /* 3493 * This should never happen, but let's return an error code to 3494 * avoid an infinite loop in here. 3495 */ 3496 if (ret == 0) { 3497 ret = -EFSCORRUPTED; 3498 ext4_warning_inode(inode, 3499 "ext4_map_blocks() couldn't allocate blocks m_flags: 0x%x, ret:%d", 3500 m_flags, ret); 3501 goto out_err; 3502 } 3503 /* 3504 * With bigalloc we should never get ENOSPC nor discontiguous 3505 * physical extents. 3506 */ 3507 if ((check_next_pblk && next_pblk != map->m_pblk) || 3508 ret == -ENOSPC) { 3509 ext4_warning_inode(inode, 3510 "Non-contiguous allocation detected: expected %llu, got %llu, " 3511 "or ext4_map_blocks() returned out of space ret: %d", 3512 next_pblk, map->m_pblk, ret); 3513 ret = -EFSCORRUPTED; 3514 goto out_err; 3515 } 3516 next_pblk = map->m_pblk + map->m_len; 3517 check_next_pblk = true; 3518 3519 mapped_len += map->m_len; 3520 map->m_lblk += map->m_len; 3521 map->m_len = m_len - mapped_len; 3522 } while (mapped_len < m_len); 3523 3524 /* 3525 * We might have done some work in above loop, so we need to query the 3526 * start of the physical extent, based on the origin m_lblk and m_len. 3527 * Let's also ensure we were able to allocate the required range for 3528 * mixed mapping case. 3529 */ 3530 map->m_lblk = m_lblk; 3531 map->m_len = m_len; 3532 map->m_flags = 0; 3533 3534 ret = ext4_map_blocks(handle, inode, map, 3535 EXT4_GET_BLOCKS_QUERY_LAST_IN_LEAF); 3536 if (ret != m_len) { 3537 ext4_warning_inode(inode, 3538 "allocation failed for atomic write request m_lblk:%u, m_len:%u, ret:%d\n", 3539 m_lblk, m_len, ret); 3540 ret = -EINVAL; 3541 } 3542 return ret; 3543 3544 out_err: 3545 /* reset map before returning an error */ 3546 map->m_lblk = m_lblk; 3547 map->m_len = m_len; 3548 map->m_flags = 0; 3549 return ret; 3550 } 3551 3552 /* 3553 * ext4_map_blocks_atomic: Helper routine to ensure the entire requested 3554 * range in @map [lblk, lblk + len) is one single contiguous extent with no 3555 * mixed mappings. 3556 * 3557 * We first use m_flags passed to us by our caller (ext4_iomap_alloc()). 3558 * We only call EXT4_GET_BLOCKS_ZERO in the slow path, when the underlying 3559 * physical extent for the requested range does not have a single contiguous 3560 * mapping type i.e. (Hole, Mapped, or Unwritten) throughout. 3561 * In that case we will loop over the requested range to allocate and zero out 3562 * the unwritten / holes in between, to get a single mapped extent from 3563 * [m_lblk, m_lblk + m_len). Note that this is only possible because we know 3564 * this can be called only with bigalloc enabled filesystem where the underlying 3565 * cluster is already allocated. This avoids allocating discontiguous extents 3566 * in the slow path due to multiple calls to ext4_map_blocks(). 3567 * The slow path is mostly non-performance critical path, so it should be ok to 3568 * loop using ext4_map_blocks() with appropriate flags to allocate & zero the 3569 * underlying short holes/unwritten extents within the requested range. 3570 */ 3571 static int ext4_map_blocks_atomic_write(handle_t *handle, struct inode *inode, 3572 struct ext4_map_blocks *map, int m_flags, 3573 bool *force_commit) 3574 { 3575 ext4_lblk_t m_lblk = map->m_lblk; 3576 unsigned int m_len = map->m_len; 3577 int ret = 0; 3578 3579 WARN_ON_ONCE(m_len > 1 && !ext4_has_feature_bigalloc(inode->i_sb)); 3580 3581 ret = ext4_map_blocks(handle, inode, map, m_flags); 3582 if (ret < 0 || ret == m_len) 3583 goto out; 3584 /* 3585 * This is a mixed mapping case where we were not able to allocate 3586 * a single contiguous extent. In that case let's reset requested 3587 * mapping and call the slow path. 3588 */ 3589 map->m_lblk = m_lblk; 3590 map->m_len = m_len; 3591 map->m_flags = 0; 3592 3593 /* 3594 * slow path means we have mixed mapping, that means we will need 3595 * to force txn commit. 3596 */ 3597 *force_commit = true; 3598 return ext4_map_blocks_atomic_write_slow(handle, inode, map); 3599 out: 3600 return ret; 3601 } 3602 3603 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3604 unsigned int flags) 3605 { 3606 handle_t *handle; 3607 u8 blkbits = inode->i_blkbits; 3608 int ret, dio_credits, m_flags = 0, retries = 0; 3609 bool force_commit = false; 3610 3611 /* 3612 * Trim the mapping request to the maximum value that we can map at 3613 * once for direct I/O. 3614 */ 3615 if (map->m_len > DIO_MAX_BLOCKS) 3616 map->m_len = DIO_MAX_BLOCKS; 3617 3618 /* 3619 * journal credits estimation for atomic writes. We call 3620 * ext4_map_blocks(), to find if there could be a mixed mapping. If yes, 3621 * then let's assume the no. of pextents required can be m_len i.e. 3622 * every alternate block can be unwritten and hole. 3623 */ 3624 if (flags & IOMAP_ATOMIC) { 3625 unsigned int orig_mlen = map->m_len; 3626 3627 ret = ext4_map_blocks(NULL, inode, map, 0); 3628 if (ret < 0) 3629 return ret; 3630 if (map->m_len < orig_mlen) { 3631 map->m_len = orig_mlen; 3632 dio_credits = ext4_meta_trans_blocks(inode, orig_mlen, 3633 map->m_len); 3634 } else { 3635 dio_credits = ext4_chunk_trans_blocks(inode, 3636 map->m_len); 3637 } 3638 } else { 3639 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3640 } 3641 3642 retry: 3643 /* 3644 * Either we allocate blocks and then don't get an unwritten extent, so 3645 * in that case we have reserved enough credits. Or, the blocks are 3646 * already allocated and unwritten. In that case, the extent conversion 3647 * fits into the credits as well. 3648 */ 3649 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3650 if (IS_ERR(handle)) 3651 return PTR_ERR(handle); 3652 3653 /* 3654 * DAX and direct I/O are the only two operations that are currently 3655 * supported with IOMAP_WRITE. 3656 */ 3657 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT))); 3658 if (flags & IOMAP_DAX) 3659 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3660 /* 3661 * We use i_size instead of i_disksize here because delalloc writeback 3662 * can complete at any point during the I/O and subsequently push the 3663 * i_disksize out to i_size. This could be beyond where direct I/O is 3664 * happening and thus expose allocated blocks to direct I/O reads. 3665 */ 3666 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode)) 3667 m_flags = EXT4_GET_BLOCKS_CREATE; 3668 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3669 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3670 3671 if (flags & IOMAP_ATOMIC) 3672 ret = ext4_map_blocks_atomic_write(handle, inode, map, m_flags, 3673 &force_commit); 3674 else 3675 ret = ext4_map_blocks(handle, inode, map, m_flags); 3676 3677 /* 3678 * We cannot fill holes in indirect tree based inodes as that could 3679 * expose stale data in the case of a crash. Use the magic error code 3680 * to fallback to buffered I/O. 3681 */ 3682 if (!m_flags && !ret) 3683 ret = -ENOTBLK; 3684 3685 ext4_journal_stop(handle); 3686 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3687 goto retry; 3688 3689 /* 3690 * Force commit the current transaction if the allocation spans a mixed 3691 * mapping range. This ensures any pending metadata updates (like 3692 * unwritten to written extents conversion) in this range are in 3693 * consistent state with the file data blocks, before performing the 3694 * actual write I/O. If the commit fails, the whole I/O must be aborted 3695 * to prevent any possible torn writes. 3696 */ 3697 if (ret > 0 && force_commit) { 3698 int ret2; 3699 3700 ret2 = ext4_force_commit(inode->i_sb); 3701 if (ret2) 3702 return ret2; 3703 } 3704 3705 return ret; 3706 } 3707 3708 3709 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3710 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3711 { 3712 int ret; 3713 struct ext4_map_blocks map; 3714 u8 blkbits = inode->i_blkbits; 3715 unsigned int orig_mlen; 3716 3717 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3718 return -EINVAL; 3719 3720 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3721 return -ERANGE; 3722 3723 /* 3724 * Calculate the first and last logical blocks respectively. 3725 */ 3726 map.m_lblk = offset >> blkbits; 3727 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3728 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3729 orig_mlen = map.m_len; 3730 3731 if (flags & IOMAP_WRITE) { 3732 /* 3733 * We check here if the blocks are already allocated, then we 3734 * don't need to start a journal txn and we can directly return 3735 * the mapping information. This could boost performance 3736 * especially in multi-threaded overwrite requests. 3737 */ 3738 if (offset + length <= i_size_read(inode)) { 3739 ret = ext4_map_blocks(NULL, inode, &map, 0); 3740 /* 3741 * For atomic writes the entire requested length should 3742 * be mapped. 3743 */ 3744 if (map.m_flags & EXT4_MAP_MAPPED) { 3745 if ((!(flags & IOMAP_ATOMIC) && ret > 0) || 3746 (flags & IOMAP_ATOMIC && ret >= orig_mlen)) 3747 goto out; 3748 } 3749 map.m_len = orig_mlen; 3750 } 3751 ret = ext4_iomap_alloc(inode, &map, flags); 3752 } else { 3753 /* 3754 * This can be called for overwrites path from 3755 * ext4_iomap_overwrite_begin(). 3756 */ 3757 ret = ext4_map_blocks(NULL, inode, &map, 0); 3758 } 3759 3760 if (ret < 0) 3761 return ret; 3762 out: 3763 /* 3764 * When inline encryption is enabled, sometimes I/O to an encrypted file 3765 * has to be broken up to guarantee DUN contiguity. Handle this by 3766 * limiting the length of the mapping returned. 3767 */ 3768 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 3769 3770 /* 3771 * Before returning to iomap, let's ensure the allocated mapping 3772 * covers the entire requested length for atomic writes. 3773 */ 3774 if (flags & IOMAP_ATOMIC) { 3775 if (map.m_len < (length >> blkbits)) { 3776 WARN_ON_ONCE(1); 3777 return -EINVAL; 3778 } 3779 } 3780 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3781 3782 return 0; 3783 } 3784 3785 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3786 loff_t length, unsigned flags, struct iomap *iomap, 3787 struct iomap *srcmap) 3788 { 3789 int ret; 3790 3791 /* 3792 * Even for writes we don't need to allocate blocks, so just pretend 3793 * we are reading to save overhead of starting a transaction. 3794 */ 3795 flags &= ~IOMAP_WRITE; 3796 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3797 WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED); 3798 return ret; 3799 } 3800 3801 static inline bool ext4_want_directio_fallback(unsigned flags, ssize_t written) 3802 { 3803 /* must be a directio to fall back to buffered */ 3804 if ((flags & (IOMAP_WRITE | IOMAP_DIRECT)) != 3805 (IOMAP_WRITE | IOMAP_DIRECT)) 3806 return false; 3807 3808 /* atomic writes are all-or-nothing */ 3809 if (flags & IOMAP_ATOMIC) 3810 return false; 3811 3812 /* can only try again if we wrote nothing */ 3813 return written == 0; 3814 } 3815 3816 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3817 ssize_t written, unsigned flags, struct iomap *iomap) 3818 { 3819 /* 3820 * Check to see whether an error occurred while writing out the data to 3821 * the allocated blocks. If so, return the magic error code for 3822 * non-atomic write so that we fallback to buffered I/O and attempt to 3823 * complete the remainder of the I/O. 3824 * For non-atomic writes, any blocks that may have been 3825 * allocated in preparation for the direct I/O will be reused during 3826 * buffered I/O. For atomic write, we never fallback to buffered-io. 3827 */ 3828 if (ext4_want_directio_fallback(flags, written)) 3829 return -ENOTBLK; 3830 3831 return 0; 3832 } 3833 3834 const struct iomap_ops ext4_iomap_ops = { 3835 .iomap_begin = ext4_iomap_begin, 3836 .iomap_end = ext4_iomap_end, 3837 }; 3838 3839 const struct iomap_ops ext4_iomap_overwrite_ops = { 3840 .iomap_begin = ext4_iomap_overwrite_begin, 3841 .iomap_end = ext4_iomap_end, 3842 }; 3843 3844 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3845 loff_t length, unsigned int flags, 3846 struct iomap *iomap, struct iomap *srcmap) 3847 { 3848 int ret; 3849 struct ext4_map_blocks map; 3850 u8 blkbits = inode->i_blkbits; 3851 3852 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3853 return -EINVAL; 3854 3855 if (ext4_has_inline_data(inode)) { 3856 ret = ext4_inline_data_iomap(inode, iomap); 3857 if (ret != -EAGAIN) { 3858 if (ret == 0 && offset >= iomap->length) 3859 ret = -ENOENT; 3860 return ret; 3861 } 3862 } 3863 3864 /* 3865 * Calculate the first and last logical block respectively. 3866 */ 3867 map.m_lblk = offset >> blkbits; 3868 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3869 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3870 3871 /* 3872 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3873 * So handle it here itself instead of querying ext4_map_blocks(). 3874 * Since ext4_map_blocks() will warn about it and will return 3875 * -EIO error. 3876 */ 3877 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3878 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3879 3880 if (offset >= sbi->s_bitmap_maxbytes) { 3881 map.m_flags = 0; 3882 goto set_iomap; 3883 } 3884 } 3885 3886 ret = ext4_map_blocks(NULL, inode, &map, 0); 3887 if (ret < 0) 3888 return ret; 3889 set_iomap: 3890 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3891 3892 return 0; 3893 } 3894 3895 const struct iomap_ops ext4_iomap_report_ops = { 3896 .iomap_begin = ext4_iomap_begin_report, 3897 }; 3898 3899 /* 3900 * For data=journal mode, folio should be marked dirty only when it was 3901 * writeably mapped. When that happens, it was already attached to the 3902 * transaction and marked as jbddirty (we take care of this in 3903 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings 3904 * so we should have nothing to do here, except for the case when someone 3905 * had the page pinned and dirtied the page through this pin (e.g. by doing 3906 * direct IO to it). In that case we'd need to attach buffers here to the 3907 * transaction but we cannot due to lock ordering. We cannot just dirty the 3908 * folio and leave attached buffers clean, because the buffers' dirty state is 3909 * "definitive". We cannot just set the buffers dirty or jbddirty because all 3910 * the journalling code will explode. So what we do is to mark the folio 3911 * "pending dirty" and next time ext4_writepages() is called, attach buffers 3912 * to the transaction appropriately. 3913 */ 3914 static bool ext4_journalled_dirty_folio(struct address_space *mapping, 3915 struct folio *folio) 3916 { 3917 WARN_ON_ONCE(!folio_buffers(folio)); 3918 if (folio_maybe_dma_pinned(folio)) 3919 folio_set_checked(folio); 3920 return filemap_dirty_folio(mapping, folio); 3921 } 3922 3923 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio) 3924 { 3925 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio)); 3926 WARN_ON_ONCE(!folio_buffers(folio)); 3927 return block_dirty_folio(mapping, folio); 3928 } 3929 3930 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3931 struct file *file, sector_t *span) 3932 { 3933 return iomap_swapfile_activate(sis, file, span, 3934 &ext4_iomap_report_ops); 3935 } 3936 3937 static const struct address_space_operations ext4_aops = { 3938 .read_folio = ext4_read_folio, 3939 .readahead = ext4_readahead, 3940 .writepages = ext4_writepages, 3941 .write_begin = ext4_write_begin, 3942 .write_end = ext4_write_end, 3943 .dirty_folio = ext4_dirty_folio, 3944 .bmap = ext4_bmap, 3945 .invalidate_folio = ext4_invalidate_folio, 3946 .release_folio = ext4_release_folio, 3947 .migrate_folio = buffer_migrate_folio, 3948 .is_partially_uptodate = block_is_partially_uptodate, 3949 .error_remove_folio = generic_error_remove_folio, 3950 .swap_activate = ext4_iomap_swap_activate, 3951 }; 3952 3953 static const struct address_space_operations ext4_journalled_aops = { 3954 .read_folio = ext4_read_folio, 3955 .readahead = ext4_readahead, 3956 .writepages = ext4_writepages, 3957 .write_begin = ext4_write_begin, 3958 .write_end = ext4_journalled_write_end, 3959 .dirty_folio = ext4_journalled_dirty_folio, 3960 .bmap = ext4_bmap, 3961 .invalidate_folio = ext4_journalled_invalidate_folio, 3962 .release_folio = ext4_release_folio, 3963 .migrate_folio = buffer_migrate_folio_norefs, 3964 .is_partially_uptodate = block_is_partially_uptodate, 3965 .error_remove_folio = generic_error_remove_folio, 3966 .swap_activate = ext4_iomap_swap_activate, 3967 }; 3968 3969 static const struct address_space_operations ext4_da_aops = { 3970 .read_folio = ext4_read_folio, 3971 .readahead = ext4_readahead, 3972 .writepages = ext4_writepages, 3973 .write_begin = ext4_da_write_begin, 3974 .write_end = ext4_da_write_end, 3975 .dirty_folio = ext4_dirty_folio, 3976 .bmap = ext4_bmap, 3977 .invalidate_folio = ext4_invalidate_folio, 3978 .release_folio = ext4_release_folio, 3979 .migrate_folio = buffer_migrate_folio, 3980 .is_partially_uptodate = block_is_partially_uptodate, 3981 .error_remove_folio = generic_error_remove_folio, 3982 .swap_activate = ext4_iomap_swap_activate, 3983 }; 3984 3985 static const struct address_space_operations ext4_dax_aops = { 3986 .writepages = ext4_dax_writepages, 3987 .dirty_folio = noop_dirty_folio, 3988 .bmap = ext4_bmap, 3989 .swap_activate = ext4_iomap_swap_activate, 3990 }; 3991 3992 void ext4_set_aops(struct inode *inode) 3993 { 3994 switch (ext4_inode_journal_mode(inode)) { 3995 case EXT4_INODE_ORDERED_DATA_MODE: 3996 case EXT4_INODE_WRITEBACK_DATA_MODE: 3997 break; 3998 case EXT4_INODE_JOURNAL_DATA_MODE: 3999 inode->i_mapping->a_ops = &ext4_journalled_aops; 4000 return; 4001 default: 4002 BUG(); 4003 } 4004 if (IS_DAX(inode)) 4005 inode->i_mapping->a_ops = &ext4_dax_aops; 4006 else if (test_opt(inode->i_sb, DELALLOC)) 4007 inode->i_mapping->a_ops = &ext4_da_aops; 4008 else 4009 inode->i_mapping->a_ops = &ext4_aops; 4010 } 4011 4012 /* 4013 * Here we can't skip an unwritten buffer even though it usually reads zero 4014 * because it might have data in pagecache (eg, if called from ext4_zero_range, 4015 * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a 4016 * racing writeback can come later and flush the stale pagecache to disk. 4017 */ 4018 static int __ext4_block_zero_page_range(handle_t *handle, 4019 struct address_space *mapping, loff_t from, loff_t length) 4020 { 4021 unsigned int offset, blocksize, pos; 4022 ext4_lblk_t iblock; 4023 struct inode *inode = mapping->host; 4024 struct buffer_head *bh; 4025 struct folio *folio; 4026 int err = 0; 4027 4028 folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT, 4029 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 4030 mapping_gfp_constraint(mapping, ~__GFP_FS)); 4031 if (IS_ERR(folio)) 4032 return PTR_ERR(folio); 4033 4034 blocksize = inode->i_sb->s_blocksize; 4035 4036 iblock = folio->index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 4037 4038 bh = folio_buffers(folio); 4039 if (!bh) 4040 bh = create_empty_buffers(folio, blocksize, 0); 4041 4042 /* Find the buffer that contains "offset" */ 4043 offset = offset_in_folio(folio, from); 4044 pos = blocksize; 4045 while (offset >= pos) { 4046 bh = bh->b_this_page; 4047 iblock++; 4048 pos += blocksize; 4049 } 4050 if (buffer_freed(bh)) { 4051 BUFFER_TRACE(bh, "freed: skip"); 4052 goto unlock; 4053 } 4054 if (!buffer_mapped(bh)) { 4055 BUFFER_TRACE(bh, "unmapped"); 4056 ext4_get_block(inode, iblock, bh, 0); 4057 /* unmapped? It's a hole - nothing to do */ 4058 if (!buffer_mapped(bh)) { 4059 BUFFER_TRACE(bh, "still unmapped"); 4060 goto unlock; 4061 } 4062 } 4063 4064 /* Ok, it's mapped. Make sure it's up-to-date */ 4065 if (folio_test_uptodate(folio)) 4066 set_buffer_uptodate(bh); 4067 4068 if (!buffer_uptodate(bh)) { 4069 err = ext4_read_bh_lock(bh, 0, true); 4070 if (err) 4071 goto unlock; 4072 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 4073 /* We expect the key to be set. */ 4074 BUG_ON(!fscrypt_has_encryption_key(inode)); 4075 err = fscrypt_decrypt_pagecache_blocks(folio, 4076 blocksize, 4077 bh_offset(bh)); 4078 if (err) { 4079 clear_buffer_uptodate(bh); 4080 goto unlock; 4081 } 4082 } 4083 } 4084 if (ext4_should_journal_data(inode)) { 4085 BUFFER_TRACE(bh, "get write access"); 4086 err = ext4_journal_get_write_access(handle, inode->i_sb, bh, 4087 EXT4_JTR_NONE); 4088 if (err) 4089 goto unlock; 4090 } 4091 folio_zero_range(folio, offset, length); 4092 BUFFER_TRACE(bh, "zeroed end of block"); 4093 4094 if (ext4_should_journal_data(inode)) { 4095 err = ext4_dirty_journalled_data(handle, bh); 4096 } else { 4097 err = 0; 4098 mark_buffer_dirty(bh); 4099 if (ext4_should_order_data(inode)) 4100 err = ext4_jbd2_inode_add_write(handle, inode, from, 4101 length); 4102 } 4103 4104 unlock: 4105 folio_unlock(folio); 4106 folio_put(folio); 4107 return err; 4108 } 4109 4110 /* 4111 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 4112 * starting from file offset 'from'. The range to be zero'd must 4113 * be contained with in one block. If the specified range exceeds 4114 * the end of the block it will be shortened to end of the block 4115 * that corresponds to 'from' 4116 */ 4117 static int ext4_block_zero_page_range(handle_t *handle, 4118 struct address_space *mapping, loff_t from, loff_t length) 4119 { 4120 struct inode *inode = mapping->host; 4121 unsigned offset = from & (PAGE_SIZE-1); 4122 unsigned blocksize = inode->i_sb->s_blocksize; 4123 unsigned max = blocksize - (offset & (blocksize - 1)); 4124 4125 /* 4126 * correct length if it does not fall between 4127 * 'from' and the end of the block 4128 */ 4129 if (length > max || length < 0) 4130 length = max; 4131 4132 if (IS_DAX(inode)) { 4133 return dax_zero_range(inode, from, length, NULL, 4134 &ext4_iomap_ops); 4135 } 4136 return __ext4_block_zero_page_range(handle, mapping, from, length); 4137 } 4138 4139 /* 4140 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 4141 * up to the end of the block which corresponds to `from'. 4142 * This required during truncate. We need to physically zero the tail end 4143 * of that block so it doesn't yield old data if the file is later grown. 4144 */ 4145 static int ext4_block_truncate_page(handle_t *handle, 4146 struct address_space *mapping, loff_t from) 4147 { 4148 unsigned offset = from & (PAGE_SIZE-1); 4149 unsigned length; 4150 unsigned blocksize; 4151 struct inode *inode = mapping->host; 4152 4153 /* If we are processing an encrypted inode during orphan list handling */ 4154 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 4155 return 0; 4156 4157 blocksize = inode->i_sb->s_blocksize; 4158 length = blocksize - (offset & (blocksize - 1)); 4159 4160 return ext4_block_zero_page_range(handle, mapping, from, length); 4161 } 4162 4163 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 4164 loff_t lstart, loff_t length) 4165 { 4166 struct super_block *sb = inode->i_sb; 4167 struct address_space *mapping = inode->i_mapping; 4168 unsigned partial_start, partial_end; 4169 ext4_fsblk_t start, end; 4170 loff_t byte_end = (lstart + length - 1); 4171 int err = 0; 4172 4173 partial_start = lstart & (sb->s_blocksize - 1); 4174 partial_end = byte_end & (sb->s_blocksize - 1); 4175 4176 start = lstart >> sb->s_blocksize_bits; 4177 end = byte_end >> sb->s_blocksize_bits; 4178 4179 /* Handle partial zero within the single block */ 4180 if (start == end && 4181 (partial_start || (partial_end != sb->s_blocksize - 1))) { 4182 err = ext4_block_zero_page_range(handle, mapping, 4183 lstart, length); 4184 return err; 4185 } 4186 /* Handle partial zero out on the start of the range */ 4187 if (partial_start) { 4188 err = ext4_block_zero_page_range(handle, mapping, 4189 lstart, sb->s_blocksize); 4190 if (err) 4191 return err; 4192 } 4193 /* Handle partial zero out on the end of the range */ 4194 if (partial_end != sb->s_blocksize - 1) 4195 err = ext4_block_zero_page_range(handle, mapping, 4196 byte_end - partial_end, 4197 partial_end + 1); 4198 return err; 4199 } 4200 4201 int ext4_can_truncate(struct inode *inode) 4202 { 4203 if (S_ISREG(inode->i_mode)) 4204 return 1; 4205 if (S_ISDIR(inode->i_mode)) 4206 return 1; 4207 if (S_ISLNK(inode->i_mode)) 4208 return !ext4_inode_is_fast_symlink(inode); 4209 return 0; 4210 } 4211 4212 /* 4213 * We have to make sure i_disksize gets properly updated before we truncate 4214 * page cache due to hole punching or zero range. Otherwise i_disksize update 4215 * can get lost as it may have been postponed to submission of writeback but 4216 * that will never happen after we truncate page cache. 4217 */ 4218 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 4219 loff_t len) 4220 { 4221 handle_t *handle; 4222 int ret; 4223 4224 loff_t size = i_size_read(inode); 4225 4226 WARN_ON(!inode_is_locked(inode)); 4227 if (offset > size || offset + len < size) 4228 return 0; 4229 4230 if (EXT4_I(inode)->i_disksize >= size) 4231 return 0; 4232 4233 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 4234 if (IS_ERR(handle)) 4235 return PTR_ERR(handle); 4236 ext4_update_i_disksize(inode, size); 4237 ret = ext4_mark_inode_dirty(handle, inode); 4238 ext4_journal_stop(handle); 4239 4240 return ret; 4241 } 4242 4243 static inline void ext4_truncate_folio(struct inode *inode, 4244 loff_t start, loff_t end) 4245 { 4246 unsigned long blocksize = i_blocksize(inode); 4247 struct folio *folio; 4248 4249 /* Nothing to be done if no complete block needs to be truncated. */ 4250 if (round_up(start, blocksize) >= round_down(end, blocksize)) 4251 return; 4252 4253 folio = filemap_lock_folio(inode->i_mapping, start >> PAGE_SHIFT); 4254 if (IS_ERR(folio)) 4255 return; 4256 4257 if (folio_mkclean(folio)) 4258 folio_mark_dirty(folio); 4259 folio_unlock(folio); 4260 folio_put(folio); 4261 } 4262 4263 int ext4_truncate_page_cache_block_range(struct inode *inode, 4264 loff_t start, loff_t end) 4265 { 4266 unsigned long blocksize = i_blocksize(inode); 4267 int ret; 4268 4269 /* 4270 * For journalled data we need to write (and checkpoint) pages 4271 * before discarding page cache to avoid inconsitent data on disk 4272 * in case of crash before freeing or unwritten converting trans 4273 * is committed. 4274 */ 4275 if (ext4_should_journal_data(inode)) { 4276 ret = filemap_write_and_wait_range(inode->i_mapping, start, 4277 end - 1); 4278 if (ret) 4279 return ret; 4280 goto truncate_pagecache; 4281 } 4282 4283 /* 4284 * If the block size is less than the page size, the file's mapped 4285 * blocks within one page could be freed or converted to unwritten. 4286 * So it's necessary to remove writable userspace mappings, and then 4287 * ext4_page_mkwrite() can be called during subsequent write access 4288 * to these partial folios. 4289 */ 4290 if (!IS_ALIGNED(start | end, PAGE_SIZE) && 4291 blocksize < PAGE_SIZE && start < inode->i_size) { 4292 loff_t page_boundary = round_up(start, PAGE_SIZE); 4293 4294 ext4_truncate_folio(inode, start, min(page_boundary, end)); 4295 if (end > page_boundary) 4296 ext4_truncate_folio(inode, 4297 round_down(end, PAGE_SIZE), end); 4298 } 4299 4300 truncate_pagecache: 4301 truncate_pagecache_range(inode, start, end - 1); 4302 return 0; 4303 } 4304 4305 static void ext4_wait_dax_page(struct inode *inode) 4306 { 4307 filemap_invalidate_unlock(inode->i_mapping); 4308 schedule(); 4309 filemap_invalidate_lock(inode->i_mapping); 4310 } 4311 4312 int ext4_break_layouts(struct inode *inode) 4313 { 4314 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock))) 4315 return -EINVAL; 4316 4317 return dax_break_layout_inode(inode, ext4_wait_dax_page); 4318 } 4319 4320 /* 4321 * ext4_punch_hole: punches a hole in a file by releasing the blocks 4322 * associated with the given offset and length 4323 * 4324 * @inode: File inode 4325 * @offset: The offset where the hole will begin 4326 * @len: The length of the hole 4327 * 4328 * Returns: 0 on success or negative on failure 4329 */ 4330 4331 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 4332 { 4333 struct inode *inode = file_inode(file); 4334 struct super_block *sb = inode->i_sb; 4335 ext4_lblk_t start_lblk, end_lblk; 4336 loff_t max_end = sb->s_maxbytes; 4337 loff_t end = offset + length; 4338 handle_t *handle; 4339 unsigned int credits; 4340 int ret; 4341 4342 trace_ext4_punch_hole(inode, offset, length, 0); 4343 WARN_ON_ONCE(!inode_is_locked(inode)); 4344 4345 /* 4346 * For indirect-block based inodes, make sure that the hole within 4347 * one block before last range. 4348 */ 4349 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4350 max_end = EXT4_SB(sb)->s_bitmap_maxbytes - sb->s_blocksize; 4351 4352 /* No need to punch hole beyond i_size */ 4353 if (offset >= inode->i_size || offset >= max_end) 4354 return 0; 4355 4356 /* 4357 * If the hole extends beyond i_size, set the hole to end after 4358 * the page that contains i_size. 4359 */ 4360 if (end > inode->i_size) 4361 end = round_up(inode->i_size, PAGE_SIZE); 4362 if (end > max_end) 4363 end = max_end; 4364 length = end - offset; 4365 4366 /* 4367 * Attach jinode to inode for jbd2 if we do any zeroing of partial 4368 * block. 4369 */ 4370 if (!IS_ALIGNED(offset | end, sb->s_blocksize)) { 4371 ret = ext4_inode_attach_jinode(inode); 4372 if (ret < 0) 4373 return ret; 4374 } 4375 4376 4377 ret = ext4_update_disksize_before_punch(inode, offset, length); 4378 if (ret) 4379 return ret; 4380 4381 /* Now release the pages and zero block aligned part of pages*/ 4382 ret = ext4_truncate_page_cache_block_range(inode, offset, end); 4383 if (ret) 4384 return ret; 4385 4386 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4387 credits = ext4_writepage_trans_blocks(inode); 4388 else 4389 credits = ext4_blocks_for_truncate(inode); 4390 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4391 if (IS_ERR(handle)) { 4392 ret = PTR_ERR(handle); 4393 ext4_std_error(sb, ret); 4394 return ret; 4395 } 4396 4397 ret = ext4_zero_partial_blocks(handle, inode, offset, length); 4398 if (ret) 4399 goto out_handle; 4400 4401 /* If there are blocks to remove, do it */ 4402 start_lblk = EXT4_B_TO_LBLK(inode, offset); 4403 end_lblk = end >> inode->i_blkbits; 4404 4405 if (end_lblk > start_lblk) { 4406 ext4_lblk_t hole_len = end_lblk - start_lblk; 4407 4408 ext4_fc_track_inode(handle, inode); 4409 ext4_check_map_extents_env(inode); 4410 down_write(&EXT4_I(inode)->i_data_sem); 4411 ext4_discard_preallocations(inode); 4412 4413 ext4_es_remove_extent(inode, start_lblk, hole_len); 4414 4415 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4416 ret = ext4_ext_remove_space(inode, start_lblk, 4417 end_lblk - 1); 4418 else 4419 ret = ext4_ind_remove_space(handle, inode, start_lblk, 4420 end_lblk); 4421 if (ret) { 4422 up_write(&EXT4_I(inode)->i_data_sem); 4423 goto out_handle; 4424 } 4425 4426 ext4_es_insert_extent(inode, start_lblk, hole_len, ~0, 4427 EXTENT_STATUS_HOLE, 0); 4428 up_write(&EXT4_I(inode)->i_data_sem); 4429 } 4430 ext4_fc_track_range(handle, inode, start_lblk, end_lblk); 4431 4432 ret = ext4_mark_inode_dirty(handle, inode); 4433 if (unlikely(ret)) 4434 goto out_handle; 4435 4436 ext4_update_inode_fsync_trans(handle, inode, 1); 4437 if (IS_SYNC(inode)) 4438 ext4_handle_sync(handle); 4439 out_handle: 4440 ext4_journal_stop(handle); 4441 return ret; 4442 } 4443 4444 int ext4_inode_attach_jinode(struct inode *inode) 4445 { 4446 struct ext4_inode_info *ei = EXT4_I(inode); 4447 struct jbd2_inode *jinode; 4448 4449 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4450 return 0; 4451 4452 jinode = jbd2_alloc_inode(GFP_KERNEL); 4453 spin_lock(&inode->i_lock); 4454 if (!ei->jinode) { 4455 if (!jinode) { 4456 spin_unlock(&inode->i_lock); 4457 return -ENOMEM; 4458 } 4459 ei->jinode = jinode; 4460 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4461 jinode = NULL; 4462 } 4463 spin_unlock(&inode->i_lock); 4464 if (unlikely(jinode != NULL)) 4465 jbd2_free_inode(jinode); 4466 return 0; 4467 } 4468 4469 /* 4470 * ext4_truncate() 4471 * 4472 * We block out ext4_get_block() block instantiations across the entire 4473 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4474 * simultaneously on behalf of the same inode. 4475 * 4476 * As we work through the truncate and commit bits of it to the journal there 4477 * is one core, guiding principle: the file's tree must always be consistent on 4478 * disk. We must be able to restart the truncate after a crash. 4479 * 4480 * The file's tree may be transiently inconsistent in memory (although it 4481 * probably isn't), but whenever we close off and commit a journal transaction, 4482 * the contents of (the filesystem + the journal) must be consistent and 4483 * restartable. It's pretty simple, really: bottom up, right to left (although 4484 * left-to-right works OK too). 4485 * 4486 * Note that at recovery time, journal replay occurs *before* the restart of 4487 * truncate against the orphan inode list. 4488 * 4489 * The committed inode has the new, desired i_size (which is the same as 4490 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4491 * that this inode's truncate did not complete and it will again call 4492 * ext4_truncate() to have another go. So there will be instantiated blocks 4493 * to the right of the truncation point in a crashed ext4 filesystem. But 4494 * that's fine - as long as they are linked from the inode, the post-crash 4495 * ext4_truncate() run will find them and release them. 4496 */ 4497 int ext4_truncate(struct inode *inode) 4498 { 4499 struct ext4_inode_info *ei = EXT4_I(inode); 4500 unsigned int credits; 4501 int err = 0, err2; 4502 handle_t *handle; 4503 struct address_space *mapping = inode->i_mapping; 4504 4505 /* 4506 * There is a possibility that we're either freeing the inode 4507 * or it's a completely new inode. In those cases we might not 4508 * have i_rwsem locked because it's not necessary. 4509 */ 4510 if (!(inode->i_state & (I_NEW|I_FREEING))) 4511 WARN_ON(!inode_is_locked(inode)); 4512 trace_ext4_truncate_enter(inode); 4513 4514 if (!ext4_can_truncate(inode)) 4515 goto out_trace; 4516 4517 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4518 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4519 4520 if (ext4_has_inline_data(inode)) { 4521 int has_inline = 1; 4522 4523 err = ext4_inline_data_truncate(inode, &has_inline); 4524 if (err || has_inline) 4525 goto out_trace; 4526 } 4527 4528 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4529 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4530 err = ext4_inode_attach_jinode(inode); 4531 if (err) 4532 goto out_trace; 4533 } 4534 4535 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4536 credits = ext4_writepage_trans_blocks(inode); 4537 else 4538 credits = ext4_blocks_for_truncate(inode); 4539 4540 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4541 if (IS_ERR(handle)) { 4542 err = PTR_ERR(handle); 4543 goto out_trace; 4544 } 4545 4546 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4547 ext4_block_truncate_page(handle, mapping, inode->i_size); 4548 4549 /* 4550 * We add the inode to the orphan list, so that if this 4551 * truncate spans multiple transactions, and we crash, we will 4552 * resume the truncate when the filesystem recovers. It also 4553 * marks the inode dirty, to catch the new size. 4554 * 4555 * Implication: the file must always be in a sane, consistent 4556 * truncatable state while each transaction commits. 4557 */ 4558 err = ext4_orphan_add(handle, inode); 4559 if (err) 4560 goto out_stop; 4561 4562 ext4_fc_track_inode(handle, inode); 4563 ext4_check_map_extents_env(inode); 4564 4565 down_write(&EXT4_I(inode)->i_data_sem); 4566 ext4_discard_preallocations(inode); 4567 4568 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4569 err = ext4_ext_truncate(handle, inode); 4570 else 4571 ext4_ind_truncate(handle, inode); 4572 4573 up_write(&ei->i_data_sem); 4574 if (err) 4575 goto out_stop; 4576 4577 if (IS_SYNC(inode)) 4578 ext4_handle_sync(handle); 4579 4580 out_stop: 4581 /* 4582 * If this was a simple ftruncate() and the file will remain alive, 4583 * then we need to clear up the orphan record which we created above. 4584 * However, if this was a real unlink then we were called by 4585 * ext4_evict_inode(), and we allow that function to clean up the 4586 * orphan info for us. 4587 */ 4588 if (inode->i_nlink) 4589 ext4_orphan_del(handle, inode); 4590 4591 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 4592 err2 = ext4_mark_inode_dirty(handle, inode); 4593 if (unlikely(err2 && !err)) 4594 err = err2; 4595 ext4_journal_stop(handle); 4596 4597 out_trace: 4598 trace_ext4_truncate_exit(inode); 4599 return err; 4600 } 4601 4602 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4603 { 4604 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4605 return inode_peek_iversion_raw(inode); 4606 else 4607 return inode_peek_iversion(inode); 4608 } 4609 4610 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode, 4611 struct ext4_inode_info *ei) 4612 { 4613 struct inode *inode = &(ei->vfs_inode); 4614 u64 i_blocks = READ_ONCE(inode->i_blocks); 4615 struct super_block *sb = inode->i_sb; 4616 4617 if (i_blocks <= ~0U) { 4618 /* 4619 * i_blocks can be represented in a 32 bit variable 4620 * as multiple of 512 bytes 4621 */ 4622 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4623 raw_inode->i_blocks_high = 0; 4624 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4625 return 0; 4626 } 4627 4628 /* 4629 * This should never happen since sb->s_maxbytes should not have 4630 * allowed this, sb->s_maxbytes was set according to the huge_file 4631 * feature in ext4_fill_super(). 4632 */ 4633 if (!ext4_has_feature_huge_file(sb)) 4634 return -EFSCORRUPTED; 4635 4636 if (i_blocks <= 0xffffffffffffULL) { 4637 /* 4638 * i_blocks can be represented in a 48 bit variable 4639 * as multiple of 512 bytes 4640 */ 4641 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4642 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4643 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4644 } else { 4645 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4646 /* i_block is stored in file system block size */ 4647 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4648 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4649 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4650 } 4651 return 0; 4652 } 4653 4654 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode) 4655 { 4656 struct ext4_inode_info *ei = EXT4_I(inode); 4657 uid_t i_uid; 4658 gid_t i_gid; 4659 projid_t i_projid; 4660 int block; 4661 int err; 4662 4663 err = ext4_inode_blocks_set(raw_inode, ei); 4664 4665 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4666 i_uid = i_uid_read(inode); 4667 i_gid = i_gid_read(inode); 4668 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4669 if (!(test_opt(inode->i_sb, NO_UID32))) { 4670 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4671 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4672 /* 4673 * Fix up interoperability with old kernels. Otherwise, 4674 * old inodes get re-used with the upper 16 bits of the 4675 * uid/gid intact. 4676 */ 4677 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 4678 raw_inode->i_uid_high = 0; 4679 raw_inode->i_gid_high = 0; 4680 } else { 4681 raw_inode->i_uid_high = 4682 cpu_to_le16(high_16_bits(i_uid)); 4683 raw_inode->i_gid_high = 4684 cpu_to_le16(high_16_bits(i_gid)); 4685 } 4686 } else { 4687 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4688 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4689 raw_inode->i_uid_high = 0; 4690 raw_inode->i_gid_high = 0; 4691 } 4692 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4693 4694 EXT4_INODE_SET_CTIME(inode, raw_inode); 4695 EXT4_INODE_SET_MTIME(inode, raw_inode); 4696 EXT4_INODE_SET_ATIME(inode, raw_inode); 4697 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4698 4699 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4700 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4701 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4702 raw_inode->i_file_acl_high = 4703 cpu_to_le16(ei->i_file_acl >> 32); 4704 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4705 ext4_isize_set(raw_inode, ei->i_disksize); 4706 4707 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4708 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4709 if (old_valid_dev(inode->i_rdev)) { 4710 raw_inode->i_block[0] = 4711 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4712 raw_inode->i_block[1] = 0; 4713 } else { 4714 raw_inode->i_block[0] = 0; 4715 raw_inode->i_block[1] = 4716 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4717 raw_inode->i_block[2] = 0; 4718 } 4719 } else if (!ext4_has_inline_data(inode)) { 4720 for (block = 0; block < EXT4_N_BLOCKS; block++) 4721 raw_inode->i_block[block] = ei->i_data[block]; 4722 } 4723 4724 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4725 u64 ivers = ext4_inode_peek_iversion(inode); 4726 4727 raw_inode->i_disk_version = cpu_to_le32(ivers); 4728 if (ei->i_extra_isize) { 4729 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4730 raw_inode->i_version_hi = 4731 cpu_to_le32(ivers >> 32); 4732 raw_inode->i_extra_isize = 4733 cpu_to_le16(ei->i_extra_isize); 4734 } 4735 } 4736 4737 if (i_projid != EXT4_DEF_PROJID && 4738 !ext4_has_feature_project(inode->i_sb)) 4739 err = err ?: -EFSCORRUPTED; 4740 4741 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4742 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4743 raw_inode->i_projid = cpu_to_le32(i_projid); 4744 4745 ext4_inode_csum_set(inode, raw_inode, ei); 4746 return err; 4747 } 4748 4749 /* 4750 * ext4_get_inode_loc returns with an extra refcount against the inode's 4751 * underlying buffer_head on success. If we pass 'inode' and it does not 4752 * have in-inode xattr, we have all inode data in memory that is needed 4753 * to recreate the on-disk version of this inode. 4754 */ 4755 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4756 struct inode *inode, struct ext4_iloc *iloc, 4757 ext4_fsblk_t *ret_block) 4758 { 4759 struct ext4_group_desc *gdp; 4760 struct buffer_head *bh; 4761 ext4_fsblk_t block; 4762 struct blk_plug plug; 4763 int inodes_per_block, inode_offset; 4764 4765 iloc->bh = NULL; 4766 if (ino < EXT4_ROOT_INO || 4767 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4768 return -EFSCORRUPTED; 4769 4770 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4771 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4772 if (!gdp) 4773 return -EIO; 4774 4775 /* 4776 * Figure out the offset within the block group inode table 4777 */ 4778 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4779 inode_offset = ((ino - 1) % 4780 EXT4_INODES_PER_GROUP(sb)); 4781 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4782 4783 block = ext4_inode_table(sb, gdp); 4784 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) || 4785 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) { 4786 ext4_error(sb, "Invalid inode table block %llu in " 4787 "block_group %u", block, iloc->block_group); 4788 return -EFSCORRUPTED; 4789 } 4790 block += (inode_offset / inodes_per_block); 4791 4792 bh = sb_getblk(sb, block); 4793 if (unlikely(!bh)) 4794 return -ENOMEM; 4795 if (ext4_buffer_uptodate(bh)) 4796 goto has_buffer; 4797 4798 lock_buffer(bh); 4799 if (ext4_buffer_uptodate(bh)) { 4800 /* Someone brought it uptodate while we waited */ 4801 unlock_buffer(bh); 4802 goto has_buffer; 4803 } 4804 4805 /* 4806 * If we have all information of the inode in memory and this 4807 * is the only valid inode in the block, we need not read the 4808 * block. 4809 */ 4810 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4811 struct buffer_head *bitmap_bh; 4812 int i, start; 4813 4814 start = inode_offset & ~(inodes_per_block - 1); 4815 4816 /* Is the inode bitmap in cache? */ 4817 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4818 if (unlikely(!bitmap_bh)) 4819 goto make_io; 4820 4821 /* 4822 * If the inode bitmap isn't in cache then the 4823 * optimisation may end up performing two reads instead 4824 * of one, so skip it. 4825 */ 4826 if (!buffer_uptodate(bitmap_bh)) { 4827 brelse(bitmap_bh); 4828 goto make_io; 4829 } 4830 for (i = start; i < start + inodes_per_block; i++) { 4831 if (i == inode_offset) 4832 continue; 4833 if (ext4_test_bit(i, bitmap_bh->b_data)) 4834 break; 4835 } 4836 brelse(bitmap_bh); 4837 if (i == start + inodes_per_block) { 4838 struct ext4_inode *raw_inode = 4839 (struct ext4_inode *) (bh->b_data + iloc->offset); 4840 4841 /* all other inodes are free, so skip I/O */ 4842 memset(bh->b_data, 0, bh->b_size); 4843 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4844 ext4_fill_raw_inode(inode, raw_inode); 4845 set_buffer_uptodate(bh); 4846 unlock_buffer(bh); 4847 goto has_buffer; 4848 } 4849 } 4850 4851 make_io: 4852 /* 4853 * If we need to do any I/O, try to pre-readahead extra 4854 * blocks from the inode table. 4855 */ 4856 blk_start_plug(&plug); 4857 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4858 ext4_fsblk_t b, end, table; 4859 unsigned num; 4860 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4861 4862 table = ext4_inode_table(sb, gdp); 4863 /* s_inode_readahead_blks is always a power of 2 */ 4864 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4865 if (table > b) 4866 b = table; 4867 end = b + ra_blks; 4868 num = EXT4_INODES_PER_GROUP(sb); 4869 if (ext4_has_group_desc_csum(sb)) 4870 num -= ext4_itable_unused_count(sb, gdp); 4871 table += num / inodes_per_block; 4872 if (end > table) 4873 end = table; 4874 while (b <= end) 4875 ext4_sb_breadahead_unmovable(sb, b++); 4876 } 4877 4878 /* 4879 * There are other valid inodes in the buffer, this inode 4880 * has in-inode xattrs, or we don't have this inode in memory. 4881 * Read the block from disk. 4882 */ 4883 trace_ext4_load_inode(sb, ino); 4884 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL, 4885 ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO)); 4886 blk_finish_plug(&plug); 4887 wait_on_buffer(bh); 4888 if (!buffer_uptodate(bh)) { 4889 if (ret_block) 4890 *ret_block = block; 4891 brelse(bh); 4892 return -EIO; 4893 } 4894 has_buffer: 4895 iloc->bh = bh; 4896 return 0; 4897 } 4898 4899 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4900 struct ext4_iloc *iloc) 4901 { 4902 ext4_fsblk_t err_blk = 0; 4903 int ret; 4904 4905 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc, 4906 &err_blk); 4907 4908 if (ret == -EIO) 4909 ext4_error_inode_block(inode, err_blk, EIO, 4910 "unable to read itable block"); 4911 4912 return ret; 4913 } 4914 4915 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4916 { 4917 ext4_fsblk_t err_blk = 0; 4918 int ret; 4919 4920 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc, 4921 &err_blk); 4922 4923 if (ret == -EIO) 4924 ext4_error_inode_block(inode, err_blk, EIO, 4925 "unable to read itable block"); 4926 4927 return ret; 4928 } 4929 4930 4931 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4932 struct ext4_iloc *iloc) 4933 { 4934 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL); 4935 } 4936 4937 static bool ext4_should_enable_dax(struct inode *inode) 4938 { 4939 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4940 4941 if (test_opt2(inode->i_sb, DAX_NEVER)) 4942 return false; 4943 if (!S_ISREG(inode->i_mode)) 4944 return false; 4945 if (ext4_should_journal_data(inode)) 4946 return false; 4947 if (ext4_has_inline_data(inode)) 4948 return false; 4949 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4950 return false; 4951 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4952 return false; 4953 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4954 return false; 4955 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4956 return true; 4957 4958 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4959 } 4960 4961 void ext4_set_inode_flags(struct inode *inode, bool init) 4962 { 4963 unsigned int flags = EXT4_I(inode)->i_flags; 4964 unsigned int new_fl = 0; 4965 4966 WARN_ON_ONCE(IS_DAX(inode) && init); 4967 4968 if (flags & EXT4_SYNC_FL) 4969 new_fl |= S_SYNC; 4970 if (flags & EXT4_APPEND_FL) 4971 new_fl |= S_APPEND; 4972 if (flags & EXT4_IMMUTABLE_FL) 4973 new_fl |= S_IMMUTABLE; 4974 if (flags & EXT4_NOATIME_FL) 4975 new_fl |= S_NOATIME; 4976 if (flags & EXT4_DIRSYNC_FL) 4977 new_fl |= S_DIRSYNC; 4978 4979 /* Because of the way inode_set_flags() works we must preserve S_DAX 4980 * here if already set. */ 4981 new_fl |= (inode->i_flags & S_DAX); 4982 if (init && ext4_should_enable_dax(inode)) 4983 new_fl |= S_DAX; 4984 4985 if (flags & EXT4_ENCRYPT_FL) 4986 new_fl |= S_ENCRYPTED; 4987 if (flags & EXT4_CASEFOLD_FL) 4988 new_fl |= S_CASEFOLD; 4989 if (flags & EXT4_VERITY_FL) 4990 new_fl |= S_VERITY; 4991 inode_set_flags(inode, new_fl, 4992 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4993 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4994 } 4995 4996 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4997 struct ext4_inode_info *ei) 4998 { 4999 blkcnt_t i_blocks ; 5000 struct inode *inode = &(ei->vfs_inode); 5001 struct super_block *sb = inode->i_sb; 5002 5003 if (ext4_has_feature_huge_file(sb)) { 5004 /* we are using combined 48 bit field */ 5005 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 5006 le32_to_cpu(raw_inode->i_blocks_lo); 5007 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 5008 /* i_blocks represent file system block size */ 5009 return i_blocks << (inode->i_blkbits - 9); 5010 } else { 5011 return i_blocks; 5012 } 5013 } else { 5014 return le32_to_cpu(raw_inode->i_blocks_lo); 5015 } 5016 } 5017 5018 static inline int ext4_iget_extra_inode(struct inode *inode, 5019 struct ext4_inode *raw_inode, 5020 struct ext4_inode_info *ei) 5021 { 5022 __le32 *magic = (void *)raw_inode + 5023 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 5024 5025 if (EXT4_INODE_HAS_XATTR_SPACE(inode) && 5026 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 5027 int err; 5028 5029 err = xattr_check_inode(inode, IHDR(inode, raw_inode), 5030 ITAIL(inode, raw_inode)); 5031 if (err) 5032 return err; 5033 5034 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 5035 err = ext4_find_inline_data_nolock(inode); 5036 if (!err && ext4_has_inline_data(inode)) 5037 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 5038 return err; 5039 } else 5040 EXT4_I(inode)->i_inline_off = 0; 5041 return 0; 5042 } 5043 5044 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 5045 { 5046 if (!ext4_has_feature_project(inode->i_sb)) 5047 return -EOPNOTSUPP; 5048 *projid = EXT4_I(inode)->i_projid; 5049 return 0; 5050 } 5051 5052 /* 5053 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 5054 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 5055 * set. 5056 */ 5057 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 5058 { 5059 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 5060 inode_set_iversion_raw(inode, val); 5061 else 5062 inode_set_iversion_queried(inode, val); 5063 } 5064 5065 static int check_igot_inode(struct inode *inode, ext4_iget_flags flags, 5066 const char *function, unsigned int line) 5067 { 5068 const char *err_str; 5069 5070 if (flags & EXT4_IGET_EA_INODE) { 5071 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 5072 err_str = "missing EA_INODE flag"; 5073 goto error; 5074 } 5075 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5076 EXT4_I(inode)->i_file_acl) { 5077 err_str = "ea_inode with extended attributes"; 5078 goto error; 5079 } 5080 } else { 5081 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 5082 /* 5083 * open_by_handle_at() could provide an old inode number 5084 * that has since been reused for an ea_inode; this does 5085 * not indicate filesystem corruption 5086 */ 5087 if (flags & EXT4_IGET_HANDLE) 5088 return -ESTALE; 5089 err_str = "unexpected EA_INODE flag"; 5090 goto error; 5091 } 5092 } 5093 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) { 5094 err_str = "unexpected bad inode w/o EXT4_IGET_BAD"; 5095 goto error; 5096 } 5097 return 0; 5098 5099 error: 5100 ext4_error_inode(inode, function, line, 0, "%s", err_str); 5101 return -EFSCORRUPTED; 5102 } 5103 5104 bool ext4_should_enable_large_folio(struct inode *inode) 5105 { 5106 struct super_block *sb = inode->i_sb; 5107 5108 if (!S_ISREG(inode->i_mode)) 5109 return false; 5110 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA || 5111 ext4_test_inode_flag(inode, EXT4_INODE_JOURNAL_DATA)) 5112 return false; 5113 if (ext4_has_feature_verity(sb)) 5114 return false; 5115 if (ext4_has_feature_encrypt(sb)) 5116 return false; 5117 5118 return true; 5119 } 5120 5121 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 5122 ext4_iget_flags flags, const char *function, 5123 unsigned int line) 5124 { 5125 struct ext4_iloc iloc; 5126 struct ext4_inode *raw_inode; 5127 struct ext4_inode_info *ei; 5128 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 5129 struct inode *inode; 5130 journal_t *journal = EXT4_SB(sb)->s_journal; 5131 long ret; 5132 loff_t size; 5133 int block; 5134 uid_t i_uid; 5135 gid_t i_gid; 5136 projid_t i_projid; 5137 5138 if ((!(flags & EXT4_IGET_SPECIAL) && is_special_ino(sb, ino)) || 5139 (ino < EXT4_ROOT_INO) || 5140 (ino > le32_to_cpu(es->s_inodes_count))) { 5141 if (flags & EXT4_IGET_HANDLE) 5142 return ERR_PTR(-ESTALE); 5143 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 5144 "inode #%lu: comm %s: iget: illegal inode #", 5145 ino, current->comm); 5146 return ERR_PTR(-EFSCORRUPTED); 5147 } 5148 5149 inode = iget_locked(sb, ino); 5150 if (!inode) 5151 return ERR_PTR(-ENOMEM); 5152 if (!(inode->i_state & I_NEW)) { 5153 ret = check_igot_inode(inode, flags, function, line); 5154 if (ret) { 5155 iput(inode); 5156 return ERR_PTR(ret); 5157 } 5158 return inode; 5159 } 5160 5161 ei = EXT4_I(inode); 5162 iloc.bh = NULL; 5163 5164 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 5165 if (ret < 0) 5166 goto bad_inode; 5167 raw_inode = ext4_raw_inode(&iloc); 5168 5169 if ((flags & EXT4_IGET_HANDLE) && 5170 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 5171 ret = -ESTALE; 5172 goto bad_inode; 5173 } 5174 5175 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5176 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 5177 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 5178 EXT4_INODE_SIZE(inode->i_sb) || 5179 (ei->i_extra_isize & 3)) { 5180 ext4_error_inode(inode, function, line, 0, 5181 "iget: bad extra_isize %u " 5182 "(inode size %u)", 5183 ei->i_extra_isize, 5184 EXT4_INODE_SIZE(inode->i_sb)); 5185 ret = -EFSCORRUPTED; 5186 goto bad_inode; 5187 } 5188 } else 5189 ei->i_extra_isize = 0; 5190 5191 /* Precompute checksum seed for inode metadata */ 5192 if (ext4_has_feature_metadata_csum(sb)) { 5193 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5194 __u32 csum; 5195 __le32 inum = cpu_to_le32(inode->i_ino); 5196 __le32 gen = raw_inode->i_generation; 5197 csum = ext4_chksum(sbi->s_csum_seed, (__u8 *)&inum, 5198 sizeof(inum)); 5199 ei->i_csum_seed = ext4_chksum(csum, (__u8 *)&gen, sizeof(gen)); 5200 } 5201 5202 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 5203 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 5204 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 5205 ext4_error_inode_err(inode, function, line, 0, 5206 EFSBADCRC, "iget: checksum invalid"); 5207 ret = -EFSBADCRC; 5208 goto bad_inode; 5209 } 5210 5211 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 5212 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 5213 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 5214 if (ext4_has_feature_project(sb) && 5215 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 5216 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 5217 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 5218 else 5219 i_projid = EXT4_DEF_PROJID; 5220 5221 if (!(test_opt(inode->i_sb, NO_UID32))) { 5222 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 5223 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 5224 } 5225 i_uid_write(inode, i_uid); 5226 i_gid_write(inode, i_gid); 5227 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 5228 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 5229 5230 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 5231 ei->i_inline_off = 0; 5232 ei->i_dir_start_lookup = 0; 5233 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 5234 /* We now have enough fields to check if the inode was active or not. 5235 * This is needed because nfsd might try to access dead inodes 5236 * the test is that same one that e2fsck uses 5237 * NeilBrown 1999oct15 5238 */ 5239 if (inode->i_nlink == 0) { 5240 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL || 5241 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 5242 ino != EXT4_BOOT_LOADER_INO) { 5243 /* this inode is deleted or unallocated */ 5244 if (flags & EXT4_IGET_SPECIAL) { 5245 ext4_error_inode(inode, function, line, 0, 5246 "iget: special inode unallocated"); 5247 ret = -EFSCORRUPTED; 5248 } else 5249 ret = -ESTALE; 5250 goto bad_inode; 5251 } 5252 /* The only unlinked inodes we let through here have 5253 * valid i_mode and are being read by the orphan 5254 * recovery code: that's fine, we're about to complete 5255 * the process of deleting those. 5256 * OR it is the EXT4_BOOT_LOADER_INO which is 5257 * not initialized on a new filesystem. */ 5258 } 5259 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 5260 ext4_set_inode_flags(inode, true); 5261 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 5262 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 5263 if (ext4_has_feature_64bit(sb)) 5264 ei->i_file_acl |= 5265 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 5266 inode->i_size = ext4_isize(sb, raw_inode); 5267 size = i_size_read(inode); 5268 if (size < 0 || size > ext4_get_maxbytes(inode)) { 5269 ext4_error_inode(inode, function, line, 0, 5270 "iget: bad i_size value: %lld", size); 5271 ret = -EFSCORRUPTED; 5272 goto bad_inode; 5273 } 5274 /* 5275 * If dir_index is not enabled but there's dir with INDEX flag set, 5276 * we'd normally treat htree data as empty space. But with metadata 5277 * checksumming that corrupts checksums so forbid that. 5278 */ 5279 if (!ext4_has_feature_dir_index(sb) && 5280 ext4_has_feature_metadata_csum(sb) && 5281 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 5282 ext4_error_inode(inode, function, line, 0, 5283 "iget: Dir with htree data on filesystem without dir_index feature."); 5284 ret = -EFSCORRUPTED; 5285 goto bad_inode; 5286 } 5287 ei->i_disksize = inode->i_size; 5288 #ifdef CONFIG_QUOTA 5289 ei->i_reserved_quota = 0; 5290 #endif 5291 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 5292 ei->i_block_group = iloc.block_group; 5293 ei->i_last_alloc_group = ~0; 5294 /* 5295 * NOTE! The in-memory inode i_data array is in little-endian order 5296 * even on big-endian machines: we do NOT byteswap the block numbers! 5297 */ 5298 for (block = 0; block < EXT4_N_BLOCKS; block++) 5299 ei->i_data[block] = raw_inode->i_block[block]; 5300 INIT_LIST_HEAD(&ei->i_orphan); 5301 ext4_fc_init_inode(&ei->vfs_inode); 5302 5303 /* 5304 * Set transaction id's of transactions that have to be committed 5305 * to finish f[data]sync. We set them to currently running transaction 5306 * as we cannot be sure that the inode or some of its metadata isn't 5307 * part of the transaction - the inode could have been reclaimed and 5308 * now it is reread from disk. 5309 */ 5310 if (journal) { 5311 transaction_t *transaction; 5312 tid_t tid; 5313 5314 read_lock(&journal->j_state_lock); 5315 if (journal->j_running_transaction) 5316 transaction = journal->j_running_transaction; 5317 else 5318 transaction = journal->j_committing_transaction; 5319 if (transaction) 5320 tid = transaction->t_tid; 5321 else 5322 tid = journal->j_commit_sequence; 5323 read_unlock(&journal->j_state_lock); 5324 ei->i_sync_tid = tid; 5325 ei->i_datasync_tid = tid; 5326 } 5327 5328 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5329 if (ei->i_extra_isize == 0) { 5330 /* The extra space is currently unused. Use it. */ 5331 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 5332 ei->i_extra_isize = sizeof(struct ext4_inode) - 5333 EXT4_GOOD_OLD_INODE_SIZE; 5334 } else { 5335 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 5336 if (ret) 5337 goto bad_inode; 5338 } 5339 } 5340 5341 EXT4_INODE_GET_CTIME(inode, raw_inode); 5342 EXT4_INODE_GET_ATIME(inode, raw_inode); 5343 EXT4_INODE_GET_MTIME(inode, raw_inode); 5344 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 5345 5346 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5347 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 5348 5349 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5350 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5351 ivers |= 5352 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 5353 } 5354 ext4_inode_set_iversion_queried(inode, ivers); 5355 } 5356 5357 ret = 0; 5358 if (ei->i_file_acl && 5359 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 5360 ext4_error_inode(inode, function, line, 0, 5361 "iget: bad extended attribute block %llu", 5362 ei->i_file_acl); 5363 ret = -EFSCORRUPTED; 5364 goto bad_inode; 5365 } else if (!ext4_has_inline_data(inode)) { 5366 /* validate the block references in the inode */ 5367 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 5368 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 5369 (S_ISLNK(inode->i_mode) && 5370 !ext4_inode_is_fast_symlink(inode)))) { 5371 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5372 ret = ext4_ext_check_inode(inode); 5373 else 5374 ret = ext4_ind_check_inode(inode); 5375 } 5376 } 5377 if (ret) 5378 goto bad_inode; 5379 5380 if (S_ISREG(inode->i_mode)) { 5381 inode->i_op = &ext4_file_inode_operations; 5382 inode->i_fop = &ext4_file_operations; 5383 ext4_set_aops(inode); 5384 } else if (S_ISDIR(inode->i_mode)) { 5385 inode->i_op = &ext4_dir_inode_operations; 5386 inode->i_fop = &ext4_dir_operations; 5387 } else if (S_ISLNK(inode->i_mode)) { 5388 /* VFS does not allow setting these so must be corruption */ 5389 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 5390 ext4_error_inode(inode, function, line, 0, 5391 "iget: immutable or append flags " 5392 "not allowed on symlinks"); 5393 ret = -EFSCORRUPTED; 5394 goto bad_inode; 5395 } 5396 if (IS_ENCRYPTED(inode)) { 5397 inode->i_op = &ext4_encrypted_symlink_inode_operations; 5398 } else if (ext4_inode_is_fast_symlink(inode)) { 5399 inode->i_op = &ext4_fast_symlink_inode_operations; 5400 if (inode->i_size == 0 || 5401 inode->i_size >= sizeof(ei->i_data) || 5402 strnlen((char *)ei->i_data, inode->i_size + 1) != 5403 inode->i_size) { 5404 ext4_error_inode(inode, function, line, 0, 5405 "invalid fast symlink length %llu", 5406 (unsigned long long)inode->i_size); 5407 ret = -EFSCORRUPTED; 5408 goto bad_inode; 5409 } 5410 inode_set_cached_link(inode, (char *)ei->i_data, 5411 inode->i_size); 5412 } else { 5413 inode->i_op = &ext4_symlink_inode_operations; 5414 } 5415 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 5416 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 5417 inode->i_op = &ext4_special_inode_operations; 5418 if (raw_inode->i_block[0]) 5419 init_special_inode(inode, inode->i_mode, 5420 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 5421 else 5422 init_special_inode(inode, inode->i_mode, 5423 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 5424 } else if (ino == EXT4_BOOT_LOADER_INO) { 5425 make_bad_inode(inode); 5426 } else { 5427 ret = -EFSCORRUPTED; 5428 ext4_error_inode(inode, function, line, 0, 5429 "iget: bogus i_mode (%o)", inode->i_mode); 5430 goto bad_inode; 5431 } 5432 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) { 5433 ext4_error_inode(inode, function, line, 0, 5434 "casefold flag without casefold feature"); 5435 ret = -EFSCORRUPTED; 5436 goto bad_inode; 5437 } 5438 if (ext4_should_enable_large_folio(inode)) 5439 mapping_set_large_folios(inode->i_mapping); 5440 5441 ret = check_igot_inode(inode, flags, function, line); 5442 /* 5443 * -ESTALE here means there is nothing inherently wrong with the inode, 5444 * it's just not an inode we can return for an fhandle lookup. 5445 */ 5446 if (ret == -ESTALE) { 5447 brelse(iloc.bh); 5448 unlock_new_inode(inode); 5449 iput(inode); 5450 return ERR_PTR(-ESTALE); 5451 } 5452 if (ret) 5453 goto bad_inode; 5454 brelse(iloc.bh); 5455 5456 unlock_new_inode(inode); 5457 return inode; 5458 5459 bad_inode: 5460 brelse(iloc.bh); 5461 iget_failed(inode); 5462 return ERR_PTR(ret); 5463 } 5464 5465 static void __ext4_update_other_inode_time(struct super_block *sb, 5466 unsigned long orig_ino, 5467 unsigned long ino, 5468 struct ext4_inode *raw_inode) 5469 { 5470 struct inode *inode; 5471 5472 inode = find_inode_by_ino_rcu(sb, ino); 5473 if (!inode) 5474 return; 5475 5476 if (!inode_is_dirtytime_only(inode)) 5477 return; 5478 5479 spin_lock(&inode->i_lock); 5480 if (inode_is_dirtytime_only(inode)) { 5481 struct ext4_inode_info *ei = EXT4_I(inode); 5482 5483 inode->i_state &= ~I_DIRTY_TIME; 5484 spin_unlock(&inode->i_lock); 5485 5486 spin_lock(&ei->i_raw_lock); 5487 EXT4_INODE_SET_CTIME(inode, raw_inode); 5488 EXT4_INODE_SET_MTIME(inode, raw_inode); 5489 EXT4_INODE_SET_ATIME(inode, raw_inode); 5490 ext4_inode_csum_set(inode, raw_inode, ei); 5491 spin_unlock(&ei->i_raw_lock); 5492 trace_ext4_other_inode_update_time(inode, orig_ino); 5493 return; 5494 } 5495 spin_unlock(&inode->i_lock); 5496 } 5497 5498 /* 5499 * Opportunistically update the other time fields for other inodes in 5500 * the same inode table block. 5501 */ 5502 static void ext4_update_other_inodes_time(struct super_block *sb, 5503 unsigned long orig_ino, char *buf) 5504 { 5505 unsigned long ino; 5506 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5507 int inode_size = EXT4_INODE_SIZE(sb); 5508 5509 /* 5510 * Calculate the first inode in the inode table block. Inode 5511 * numbers are one-based. That is, the first inode in a block 5512 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5513 */ 5514 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5515 rcu_read_lock(); 5516 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5517 if (ino == orig_ino) 5518 continue; 5519 __ext4_update_other_inode_time(sb, orig_ino, ino, 5520 (struct ext4_inode *)buf); 5521 } 5522 rcu_read_unlock(); 5523 } 5524 5525 /* 5526 * Post the struct inode info into an on-disk inode location in the 5527 * buffer-cache. This gobbles the caller's reference to the 5528 * buffer_head in the inode location struct. 5529 * 5530 * The caller must have write access to iloc->bh. 5531 */ 5532 static int ext4_do_update_inode(handle_t *handle, 5533 struct inode *inode, 5534 struct ext4_iloc *iloc) 5535 { 5536 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5537 struct ext4_inode_info *ei = EXT4_I(inode); 5538 struct buffer_head *bh = iloc->bh; 5539 struct super_block *sb = inode->i_sb; 5540 int err; 5541 int need_datasync = 0, set_large_file = 0; 5542 5543 spin_lock(&ei->i_raw_lock); 5544 5545 /* 5546 * For fields not tracked in the in-memory inode, initialise them 5547 * to zero for new inodes. 5548 */ 5549 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5550 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5551 5552 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) 5553 need_datasync = 1; 5554 if (ei->i_disksize > 0x7fffffffULL) { 5555 if (!ext4_has_feature_large_file(sb) || 5556 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV)) 5557 set_large_file = 1; 5558 } 5559 5560 err = ext4_fill_raw_inode(inode, raw_inode); 5561 spin_unlock(&ei->i_raw_lock); 5562 if (err) { 5563 EXT4_ERROR_INODE(inode, "corrupted inode contents"); 5564 goto out_brelse; 5565 } 5566 5567 if (inode->i_sb->s_flags & SB_LAZYTIME) 5568 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5569 bh->b_data); 5570 5571 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5572 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5573 if (err) 5574 goto out_error; 5575 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5576 if (set_large_file) { 5577 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5578 err = ext4_journal_get_write_access(handle, sb, 5579 EXT4_SB(sb)->s_sbh, 5580 EXT4_JTR_NONE); 5581 if (err) 5582 goto out_error; 5583 lock_buffer(EXT4_SB(sb)->s_sbh); 5584 ext4_set_feature_large_file(sb); 5585 ext4_superblock_csum_set(sb); 5586 unlock_buffer(EXT4_SB(sb)->s_sbh); 5587 ext4_handle_sync(handle); 5588 err = ext4_handle_dirty_metadata(handle, NULL, 5589 EXT4_SB(sb)->s_sbh); 5590 } 5591 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5592 out_error: 5593 ext4_std_error(inode->i_sb, err); 5594 out_brelse: 5595 brelse(bh); 5596 return err; 5597 } 5598 5599 /* 5600 * ext4_write_inode() 5601 * 5602 * We are called from a few places: 5603 * 5604 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5605 * Here, there will be no transaction running. We wait for any running 5606 * transaction to commit. 5607 * 5608 * - Within flush work (sys_sync(), kupdate and such). 5609 * We wait on commit, if told to. 5610 * 5611 * - Within iput_final() -> write_inode_now() 5612 * We wait on commit, if told to. 5613 * 5614 * In all cases it is actually safe for us to return without doing anything, 5615 * because the inode has been copied into a raw inode buffer in 5616 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5617 * writeback. 5618 * 5619 * Note that we are absolutely dependent upon all inode dirtiers doing the 5620 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5621 * which we are interested. 5622 * 5623 * It would be a bug for them to not do this. The code: 5624 * 5625 * mark_inode_dirty(inode) 5626 * stuff(); 5627 * inode->i_size = expr; 5628 * 5629 * is in error because write_inode() could occur while `stuff()' is running, 5630 * and the new i_size will be lost. Plus the inode will no longer be on the 5631 * superblock's dirty inode list. 5632 */ 5633 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5634 { 5635 int err; 5636 5637 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 5638 return 0; 5639 5640 err = ext4_emergency_state(inode->i_sb); 5641 if (unlikely(err)) 5642 return err; 5643 5644 if (EXT4_SB(inode->i_sb)->s_journal) { 5645 if (ext4_journal_current_handle()) { 5646 ext4_debug("called recursively, non-PF_MEMALLOC!\n"); 5647 dump_stack(); 5648 return -EIO; 5649 } 5650 5651 /* 5652 * No need to force transaction in WB_SYNC_NONE mode. Also 5653 * ext4_sync_fs() will force the commit after everything is 5654 * written. 5655 */ 5656 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5657 return 0; 5658 5659 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5660 EXT4_I(inode)->i_sync_tid); 5661 } else { 5662 struct ext4_iloc iloc; 5663 5664 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5665 if (err) 5666 return err; 5667 /* 5668 * sync(2) will flush the whole buffer cache. No need to do 5669 * it here separately for each inode. 5670 */ 5671 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5672 sync_dirty_buffer(iloc.bh); 5673 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5674 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5675 "IO error syncing inode"); 5676 err = -EIO; 5677 } 5678 brelse(iloc.bh); 5679 } 5680 return err; 5681 } 5682 5683 /* 5684 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate 5685 * buffers that are attached to a folio straddling i_size and are undergoing 5686 * commit. In that case we have to wait for commit to finish and try again. 5687 */ 5688 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5689 { 5690 unsigned offset; 5691 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5692 tid_t commit_tid; 5693 int ret; 5694 bool has_transaction; 5695 5696 offset = inode->i_size & (PAGE_SIZE - 1); 5697 /* 5698 * If the folio is fully truncated, we don't need to wait for any commit 5699 * (and we even should not as __ext4_journalled_invalidate_folio() may 5700 * strip all buffers from the folio but keep the folio dirty which can then 5701 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without 5702 * buffers). Also we don't need to wait for any commit if all buffers in 5703 * the folio remain valid. This is most beneficial for the common case of 5704 * blocksize == PAGESIZE. 5705 */ 5706 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5707 return; 5708 while (1) { 5709 struct folio *folio = filemap_lock_folio(inode->i_mapping, 5710 inode->i_size >> PAGE_SHIFT); 5711 if (IS_ERR(folio)) 5712 return; 5713 ret = __ext4_journalled_invalidate_folio(folio, offset, 5714 folio_size(folio) - offset); 5715 folio_unlock(folio); 5716 folio_put(folio); 5717 if (ret != -EBUSY) 5718 return; 5719 has_transaction = false; 5720 read_lock(&journal->j_state_lock); 5721 if (journal->j_committing_transaction) { 5722 commit_tid = journal->j_committing_transaction->t_tid; 5723 has_transaction = true; 5724 } 5725 read_unlock(&journal->j_state_lock); 5726 if (has_transaction) 5727 jbd2_log_wait_commit(journal, commit_tid); 5728 } 5729 } 5730 5731 /* 5732 * ext4_setattr() 5733 * 5734 * Called from notify_change. 5735 * 5736 * We want to trap VFS attempts to truncate the file as soon as 5737 * possible. In particular, we want to make sure that when the VFS 5738 * shrinks i_size, we put the inode on the orphan list and modify 5739 * i_disksize immediately, so that during the subsequent flushing of 5740 * dirty pages and freeing of disk blocks, we can guarantee that any 5741 * commit will leave the blocks being flushed in an unused state on 5742 * disk. (On recovery, the inode will get truncated and the blocks will 5743 * be freed, so we have a strong guarantee that no future commit will 5744 * leave these blocks visible to the user.) 5745 * 5746 * Another thing we have to assure is that if we are in ordered mode 5747 * and inode is still attached to the committing transaction, we must 5748 * we start writeout of all the dirty pages which are being truncated. 5749 * This way we are sure that all the data written in the previous 5750 * transaction are already on disk (truncate waits for pages under 5751 * writeback). 5752 * 5753 * Called with inode->i_rwsem down. 5754 */ 5755 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5756 struct iattr *attr) 5757 { 5758 struct inode *inode = d_inode(dentry); 5759 int error, rc = 0; 5760 int orphan = 0; 5761 const unsigned int ia_valid = attr->ia_valid; 5762 bool inc_ivers = true; 5763 5764 error = ext4_emergency_state(inode->i_sb); 5765 if (unlikely(error)) 5766 return error; 5767 5768 if (unlikely(IS_IMMUTABLE(inode))) 5769 return -EPERM; 5770 5771 if (unlikely(IS_APPEND(inode) && 5772 (ia_valid & (ATTR_MODE | ATTR_UID | 5773 ATTR_GID | ATTR_TIMES_SET)))) 5774 return -EPERM; 5775 5776 error = setattr_prepare(idmap, dentry, attr); 5777 if (error) 5778 return error; 5779 5780 error = fscrypt_prepare_setattr(dentry, attr); 5781 if (error) 5782 return error; 5783 5784 error = fsverity_prepare_setattr(dentry, attr); 5785 if (error) 5786 return error; 5787 5788 if (is_quota_modification(idmap, inode, attr)) { 5789 error = dquot_initialize(inode); 5790 if (error) 5791 return error; 5792 } 5793 5794 if (i_uid_needs_update(idmap, attr, inode) || 5795 i_gid_needs_update(idmap, attr, inode)) { 5796 handle_t *handle; 5797 5798 /* (user+group)*(old+new) structure, inode write (sb, 5799 * inode block, ? - but truncate inode update has it) */ 5800 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5801 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5802 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5803 if (IS_ERR(handle)) { 5804 error = PTR_ERR(handle); 5805 goto err_out; 5806 } 5807 5808 /* dquot_transfer() calls back ext4_get_inode_usage() which 5809 * counts xattr inode references. 5810 */ 5811 down_read(&EXT4_I(inode)->xattr_sem); 5812 error = dquot_transfer(idmap, inode, attr); 5813 up_read(&EXT4_I(inode)->xattr_sem); 5814 5815 if (error) { 5816 ext4_journal_stop(handle); 5817 return error; 5818 } 5819 /* Update corresponding info in inode so that everything is in 5820 * one transaction */ 5821 i_uid_update(idmap, attr, inode); 5822 i_gid_update(idmap, attr, inode); 5823 error = ext4_mark_inode_dirty(handle, inode); 5824 ext4_journal_stop(handle); 5825 if (unlikely(error)) { 5826 return error; 5827 } 5828 } 5829 5830 if (attr->ia_valid & ATTR_SIZE) { 5831 handle_t *handle; 5832 loff_t oldsize = inode->i_size; 5833 loff_t old_disksize; 5834 int shrink = (attr->ia_size < inode->i_size); 5835 5836 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5837 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5838 5839 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5840 return -EFBIG; 5841 } 5842 } 5843 if (!S_ISREG(inode->i_mode)) { 5844 return -EINVAL; 5845 } 5846 5847 if (attr->ia_size == inode->i_size) 5848 inc_ivers = false; 5849 5850 if (shrink) { 5851 if (ext4_should_order_data(inode)) { 5852 error = ext4_begin_ordered_truncate(inode, 5853 attr->ia_size); 5854 if (error) 5855 goto err_out; 5856 } 5857 /* 5858 * Blocks are going to be removed from the inode. Wait 5859 * for dio in flight. 5860 */ 5861 inode_dio_wait(inode); 5862 } 5863 5864 filemap_invalidate_lock(inode->i_mapping); 5865 5866 rc = ext4_break_layouts(inode); 5867 if (rc) { 5868 filemap_invalidate_unlock(inode->i_mapping); 5869 goto err_out; 5870 } 5871 5872 if (attr->ia_size != inode->i_size) { 5873 /* attach jbd2 jinode for EOF folio tail zeroing */ 5874 if (attr->ia_size & (inode->i_sb->s_blocksize - 1) || 5875 oldsize & (inode->i_sb->s_blocksize - 1)) { 5876 error = ext4_inode_attach_jinode(inode); 5877 if (error) 5878 goto out_mmap_sem; 5879 } 5880 5881 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5882 if (IS_ERR(handle)) { 5883 error = PTR_ERR(handle); 5884 goto out_mmap_sem; 5885 } 5886 if (ext4_handle_valid(handle) && shrink) { 5887 error = ext4_orphan_add(handle, inode); 5888 orphan = 1; 5889 } 5890 /* 5891 * Update c/mtime and tail zero the EOF folio on 5892 * truncate up. ext4_truncate() handles the shrink case 5893 * below. 5894 */ 5895 if (!shrink) { 5896 inode_set_mtime_to_ts(inode, 5897 inode_set_ctime_current(inode)); 5898 if (oldsize & (inode->i_sb->s_blocksize - 1)) 5899 ext4_block_truncate_page(handle, 5900 inode->i_mapping, oldsize); 5901 } 5902 5903 if (shrink) 5904 ext4_fc_track_range(handle, inode, 5905 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5906 inode->i_sb->s_blocksize_bits, 5907 EXT_MAX_BLOCKS - 1); 5908 else 5909 ext4_fc_track_range( 5910 handle, inode, 5911 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5912 inode->i_sb->s_blocksize_bits, 5913 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5914 inode->i_sb->s_blocksize_bits); 5915 5916 down_write(&EXT4_I(inode)->i_data_sem); 5917 old_disksize = EXT4_I(inode)->i_disksize; 5918 EXT4_I(inode)->i_disksize = attr->ia_size; 5919 5920 /* 5921 * We have to update i_size under i_data_sem together 5922 * with i_disksize to avoid races with writeback code 5923 * running ext4_wb_update_i_disksize(). 5924 */ 5925 if (!error) 5926 i_size_write(inode, attr->ia_size); 5927 else 5928 EXT4_I(inode)->i_disksize = old_disksize; 5929 up_write(&EXT4_I(inode)->i_data_sem); 5930 rc = ext4_mark_inode_dirty(handle, inode); 5931 if (!error) 5932 error = rc; 5933 ext4_journal_stop(handle); 5934 if (error) 5935 goto out_mmap_sem; 5936 if (!shrink) { 5937 pagecache_isize_extended(inode, oldsize, 5938 inode->i_size); 5939 } else if (ext4_should_journal_data(inode)) { 5940 ext4_wait_for_tail_page_commit(inode); 5941 } 5942 } 5943 5944 /* 5945 * Truncate pagecache after we've waited for commit 5946 * in data=journal mode to make pages freeable. 5947 */ 5948 truncate_pagecache(inode, inode->i_size); 5949 /* 5950 * Call ext4_truncate() even if i_size didn't change to 5951 * truncate possible preallocated blocks. 5952 */ 5953 if (attr->ia_size <= oldsize) { 5954 rc = ext4_truncate(inode); 5955 if (rc) 5956 error = rc; 5957 } 5958 out_mmap_sem: 5959 filemap_invalidate_unlock(inode->i_mapping); 5960 } 5961 5962 if (!error) { 5963 if (inc_ivers) 5964 inode_inc_iversion(inode); 5965 setattr_copy(idmap, inode, attr); 5966 mark_inode_dirty(inode); 5967 } 5968 5969 /* 5970 * If the call to ext4_truncate failed to get a transaction handle at 5971 * all, we need to clean up the in-core orphan list manually. 5972 */ 5973 if (orphan && inode->i_nlink) 5974 ext4_orphan_del(NULL, inode); 5975 5976 if (!error && (ia_valid & ATTR_MODE)) 5977 rc = posix_acl_chmod(idmap, dentry, inode->i_mode); 5978 5979 err_out: 5980 if (error) 5981 ext4_std_error(inode->i_sb, error); 5982 if (!error) 5983 error = rc; 5984 return error; 5985 } 5986 5987 u32 ext4_dio_alignment(struct inode *inode) 5988 { 5989 if (fsverity_active(inode)) 5990 return 0; 5991 if (ext4_should_journal_data(inode)) 5992 return 0; 5993 if (ext4_has_inline_data(inode)) 5994 return 0; 5995 if (IS_ENCRYPTED(inode)) { 5996 if (!fscrypt_dio_supported(inode)) 5997 return 0; 5998 return i_blocksize(inode); 5999 } 6000 return 1; /* use the iomap defaults */ 6001 } 6002 6003 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path, 6004 struct kstat *stat, u32 request_mask, unsigned int query_flags) 6005 { 6006 struct inode *inode = d_inode(path->dentry); 6007 struct ext4_inode *raw_inode; 6008 struct ext4_inode_info *ei = EXT4_I(inode); 6009 unsigned int flags; 6010 6011 if ((request_mask & STATX_BTIME) && 6012 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 6013 stat->result_mask |= STATX_BTIME; 6014 stat->btime.tv_sec = ei->i_crtime.tv_sec; 6015 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 6016 } 6017 6018 /* 6019 * Return the DIO alignment restrictions if requested. We only return 6020 * this information when requested, since on encrypted files it might 6021 * take a fair bit of work to get if the file wasn't opened recently. 6022 */ 6023 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 6024 u32 dio_align = ext4_dio_alignment(inode); 6025 6026 stat->result_mask |= STATX_DIOALIGN; 6027 if (dio_align == 1) { 6028 struct block_device *bdev = inode->i_sb->s_bdev; 6029 6030 /* iomap defaults */ 6031 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1; 6032 stat->dio_offset_align = bdev_logical_block_size(bdev); 6033 } else { 6034 stat->dio_mem_align = dio_align; 6035 stat->dio_offset_align = dio_align; 6036 } 6037 } 6038 6039 if ((request_mask & STATX_WRITE_ATOMIC) && S_ISREG(inode->i_mode)) { 6040 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 6041 unsigned int awu_min = 0, awu_max = 0; 6042 6043 if (ext4_inode_can_atomic_write(inode)) { 6044 awu_min = sbi->s_awu_min; 6045 awu_max = sbi->s_awu_max; 6046 } 6047 6048 generic_fill_statx_atomic_writes(stat, awu_min, awu_max, 0); 6049 } 6050 6051 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 6052 if (flags & EXT4_APPEND_FL) 6053 stat->attributes |= STATX_ATTR_APPEND; 6054 if (flags & EXT4_COMPR_FL) 6055 stat->attributes |= STATX_ATTR_COMPRESSED; 6056 if (flags & EXT4_ENCRYPT_FL) 6057 stat->attributes |= STATX_ATTR_ENCRYPTED; 6058 if (flags & EXT4_IMMUTABLE_FL) 6059 stat->attributes |= STATX_ATTR_IMMUTABLE; 6060 if (flags & EXT4_NODUMP_FL) 6061 stat->attributes |= STATX_ATTR_NODUMP; 6062 if (flags & EXT4_VERITY_FL) 6063 stat->attributes |= STATX_ATTR_VERITY; 6064 6065 stat->attributes_mask |= (STATX_ATTR_APPEND | 6066 STATX_ATTR_COMPRESSED | 6067 STATX_ATTR_ENCRYPTED | 6068 STATX_ATTR_IMMUTABLE | 6069 STATX_ATTR_NODUMP | 6070 STATX_ATTR_VERITY); 6071 6072 generic_fillattr(idmap, request_mask, inode, stat); 6073 return 0; 6074 } 6075 6076 int ext4_file_getattr(struct mnt_idmap *idmap, 6077 const struct path *path, struct kstat *stat, 6078 u32 request_mask, unsigned int query_flags) 6079 { 6080 struct inode *inode = d_inode(path->dentry); 6081 u64 delalloc_blocks; 6082 6083 ext4_getattr(idmap, path, stat, request_mask, query_flags); 6084 6085 /* 6086 * If there is inline data in the inode, the inode will normally not 6087 * have data blocks allocated (it may have an external xattr block). 6088 * Report at least one sector for such files, so tools like tar, rsync, 6089 * others don't incorrectly think the file is completely sparse. 6090 */ 6091 if (unlikely(ext4_has_inline_data(inode))) 6092 stat->blocks += (stat->size + 511) >> 9; 6093 6094 /* 6095 * We can't update i_blocks if the block allocation is delayed 6096 * otherwise in the case of system crash before the real block 6097 * allocation is done, we will have i_blocks inconsistent with 6098 * on-disk file blocks. 6099 * We always keep i_blocks updated together with real 6100 * allocation. But to not confuse with user, stat 6101 * will return the blocks that include the delayed allocation 6102 * blocks for this file. 6103 */ 6104 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 6105 EXT4_I(inode)->i_reserved_data_blocks); 6106 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 6107 return 0; 6108 } 6109 6110 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 6111 int pextents) 6112 { 6113 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 6114 return ext4_ind_trans_blocks(inode, lblocks); 6115 return ext4_ext_index_trans_blocks(inode, pextents); 6116 } 6117 6118 /* 6119 * Account for index blocks, block groups bitmaps and block group 6120 * descriptor blocks if modify datablocks and index blocks 6121 * worse case, the indexs blocks spread over different block groups 6122 * 6123 * If datablocks are discontiguous, they are possible to spread over 6124 * different block groups too. If they are contiguous, with flexbg, 6125 * they could still across block group boundary. 6126 * 6127 * Also account for superblock, inode, quota and xattr blocks 6128 */ 6129 int ext4_meta_trans_blocks(struct inode *inode, int lblocks, int pextents) 6130 { 6131 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 6132 int gdpblocks; 6133 int idxblocks; 6134 int ret; 6135 6136 /* 6137 * How many index and lead blocks need to touch to map @lblocks 6138 * logical blocks to @pextents physical extents? 6139 */ 6140 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 6141 6142 /* 6143 * Now let's see how many group bitmaps and group descriptors need 6144 * to account 6145 */ 6146 groups = idxblocks; 6147 gdpblocks = groups; 6148 if (groups > ngroups) 6149 groups = ngroups; 6150 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 6151 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 6152 6153 /* bitmaps and block group descriptor blocks */ 6154 ret = idxblocks + groups + gdpblocks; 6155 6156 /* Blocks for super block, inode, quota and xattr blocks */ 6157 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 6158 6159 return ret; 6160 } 6161 6162 /* 6163 * Calculate the total number of credits to reserve to fit 6164 * the modification of a single pages into a single transaction, 6165 * which may include multiple chunks of block allocations. 6166 * 6167 * This could be called via ext4_write_begin() 6168 * 6169 * We need to consider the worse case, when 6170 * one new block per extent. 6171 */ 6172 int ext4_writepage_trans_blocks(struct inode *inode) 6173 { 6174 int bpp = ext4_journal_blocks_per_folio(inode); 6175 int ret; 6176 6177 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 6178 6179 /* Account for data blocks for journalled mode */ 6180 if (ext4_should_journal_data(inode)) 6181 ret += bpp; 6182 return ret; 6183 } 6184 6185 /* 6186 * Calculate the journal credits for a chunk of data modification. 6187 * 6188 * This is called from DIO, fallocate or whoever calling 6189 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 6190 * 6191 * journal buffers for data blocks are not included here, as DIO 6192 * and fallocate do no need to journal data buffers. 6193 */ 6194 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 6195 { 6196 return ext4_meta_trans_blocks(inode, nrblocks, 1); 6197 } 6198 6199 /* 6200 * The caller must have previously called ext4_reserve_inode_write(). 6201 * Give this, we know that the caller already has write access to iloc->bh. 6202 */ 6203 int ext4_mark_iloc_dirty(handle_t *handle, 6204 struct inode *inode, struct ext4_iloc *iloc) 6205 { 6206 int err = 0; 6207 6208 err = ext4_emergency_state(inode->i_sb); 6209 if (unlikely(err)) { 6210 put_bh(iloc->bh); 6211 return err; 6212 } 6213 ext4_fc_track_inode(handle, inode); 6214 6215 /* the do_update_inode consumes one bh->b_count */ 6216 get_bh(iloc->bh); 6217 6218 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 6219 err = ext4_do_update_inode(handle, inode, iloc); 6220 put_bh(iloc->bh); 6221 return err; 6222 } 6223 6224 /* 6225 * On success, We end up with an outstanding reference count against 6226 * iloc->bh. This _must_ be cleaned up later. 6227 */ 6228 6229 int 6230 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 6231 struct ext4_iloc *iloc) 6232 { 6233 int err; 6234 6235 err = ext4_emergency_state(inode->i_sb); 6236 if (unlikely(err)) 6237 return err; 6238 6239 err = ext4_get_inode_loc(inode, iloc); 6240 if (!err) { 6241 BUFFER_TRACE(iloc->bh, "get_write_access"); 6242 err = ext4_journal_get_write_access(handle, inode->i_sb, 6243 iloc->bh, EXT4_JTR_NONE); 6244 if (err) { 6245 brelse(iloc->bh); 6246 iloc->bh = NULL; 6247 } 6248 ext4_fc_track_inode(handle, inode); 6249 } 6250 ext4_std_error(inode->i_sb, err); 6251 return err; 6252 } 6253 6254 static int __ext4_expand_extra_isize(struct inode *inode, 6255 unsigned int new_extra_isize, 6256 struct ext4_iloc *iloc, 6257 handle_t *handle, int *no_expand) 6258 { 6259 struct ext4_inode *raw_inode; 6260 struct ext4_xattr_ibody_header *header; 6261 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 6262 struct ext4_inode_info *ei = EXT4_I(inode); 6263 int error; 6264 6265 /* this was checked at iget time, but double check for good measure */ 6266 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 6267 (ei->i_extra_isize & 3)) { 6268 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 6269 ei->i_extra_isize, 6270 EXT4_INODE_SIZE(inode->i_sb)); 6271 return -EFSCORRUPTED; 6272 } 6273 if ((new_extra_isize < ei->i_extra_isize) || 6274 (new_extra_isize < 4) || 6275 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 6276 return -EINVAL; /* Should never happen */ 6277 6278 raw_inode = ext4_raw_inode(iloc); 6279 6280 header = IHDR(inode, raw_inode); 6281 6282 /* No extended attributes present */ 6283 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 6284 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 6285 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 6286 EXT4_I(inode)->i_extra_isize, 0, 6287 new_extra_isize - EXT4_I(inode)->i_extra_isize); 6288 EXT4_I(inode)->i_extra_isize = new_extra_isize; 6289 return 0; 6290 } 6291 6292 /* 6293 * We may need to allocate external xattr block so we need quotas 6294 * initialized. Here we can be called with various locks held so we 6295 * cannot affort to initialize quotas ourselves. So just bail. 6296 */ 6297 if (dquot_initialize_needed(inode)) 6298 return -EAGAIN; 6299 6300 /* try to expand with EAs present */ 6301 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 6302 raw_inode, handle); 6303 if (error) { 6304 /* 6305 * Inode size expansion failed; don't try again 6306 */ 6307 *no_expand = 1; 6308 } 6309 6310 return error; 6311 } 6312 6313 /* 6314 * Expand an inode by new_extra_isize bytes. 6315 * Returns 0 on success or negative error number on failure. 6316 */ 6317 static int ext4_try_to_expand_extra_isize(struct inode *inode, 6318 unsigned int new_extra_isize, 6319 struct ext4_iloc iloc, 6320 handle_t *handle) 6321 { 6322 int no_expand; 6323 int error; 6324 6325 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 6326 return -EOVERFLOW; 6327 6328 /* 6329 * In nojournal mode, we can immediately attempt to expand 6330 * the inode. When journaled, we first need to obtain extra 6331 * buffer credits since we may write into the EA block 6332 * with this same handle. If journal_extend fails, then it will 6333 * only result in a minor loss of functionality for that inode. 6334 * If this is felt to be critical, then e2fsck should be run to 6335 * force a large enough s_min_extra_isize. 6336 */ 6337 if (ext4_journal_extend(handle, 6338 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 6339 return -ENOSPC; 6340 6341 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 6342 return -EBUSY; 6343 6344 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 6345 handle, &no_expand); 6346 ext4_write_unlock_xattr(inode, &no_expand); 6347 6348 return error; 6349 } 6350 6351 int ext4_expand_extra_isize(struct inode *inode, 6352 unsigned int new_extra_isize, 6353 struct ext4_iloc *iloc) 6354 { 6355 handle_t *handle; 6356 int no_expand; 6357 int error, rc; 6358 6359 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 6360 brelse(iloc->bh); 6361 return -EOVERFLOW; 6362 } 6363 6364 handle = ext4_journal_start(inode, EXT4_HT_INODE, 6365 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 6366 if (IS_ERR(handle)) { 6367 error = PTR_ERR(handle); 6368 brelse(iloc->bh); 6369 return error; 6370 } 6371 6372 ext4_write_lock_xattr(inode, &no_expand); 6373 6374 BUFFER_TRACE(iloc->bh, "get_write_access"); 6375 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh, 6376 EXT4_JTR_NONE); 6377 if (error) { 6378 brelse(iloc->bh); 6379 goto out_unlock; 6380 } 6381 6382 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 6383 handle, &no_expand); 6384 6385 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 6386 if (!error) 6387 error = rc; 6388 6389 out_unlock: 6390 ext4_write_unlock_xattr(inode, &no_expand); 6391 ext4_journal_stop(handle); 6392 return error; 6393 } 6394 6395 /* 6396 * What we do here is to mark the in-core inode as clean with respect to inode 6397 * dirtiness (it may still be data-dirty). 6398 * This means that the in-core inode may be reaped by prune_icache 6399 * without having to perform any I/O. This is a very good thing, 6400 * because *any* task may call prune_icache - even ones which 6401 * have a transaction open against a different journal. 6402 * 6403 * Is this cheating? Not really. Sure, we haven't written the 6404 * inode out, but prune_icache isn't a user-visible syncing function. 6405 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 6406 * we start and wait on commits. 6407 */ 6408 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 6409 const char *func, unsigned int line) 6410 { 6411 struct ext4_iloc iloc; 6412 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 6413 int err; 6414 6415 might_sleep(); 6416 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 6417 err = ext4_reserve_inode_write(handle, inode, &iloc); 6418 if (err) 6419 goto out; 6420 6421 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 6422 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 6423 iloc, handle); 6424 6425 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 6426 out: 6427 if (unlikely(err)) 6428 ext4_error_inode_err(inode, func, line, 0, err, 6429 "mark_inode_dirty error"); 6430 return err; 6431 } 6432 6433 /* 6434 * ext4_dirty_inode() is called from __mark_inode_dirty() 6435 * 6436 * We're really interested in the case where a file is being extended. 6437 * i_size has been changed by generic_commit_write() and we thus need 6438 * to include the updated inode in the current transaction. 6439 * 6440 * Also, dquot_alloc_block() will always dirty the inode when blocks 6441 * are allocated to the file. 6442 * 6443 * If the inode is marked synchronous, we don't honour that here - doing 6444 * so would cause a commit on atime updates, which we don't bother doing. 6445 * We handle synchronous inodes at the highest possible level. 6446 */ 6447 void ext4_dirty_inode(struct inode *inode, int flags) 6448 { 6449 handle_t *handle; 6450 6451 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 6452 if (IS_ERR(handle)) 6453 return; 6454 ext4_mark_inode_dirty(handle, inode); 6455 ext4_journal_stop(handle); 6456 } 6457 6458 int ext4_change_inode_journal_flag(struct inode *inode, int val) 6459 { 6460 journal_t *journal; 6461 handle_t *handle; 6462 int err; 6463 int alloc_ctx; 6464 6465 /* 6466 * We have to be very careful here: changing a data block's 6467 * journaling status dynamically is dangerous. If we write a 6468 * data block to the journal, change the status and then delete 6469 * that block, we risk forgetting to revoke the old log record 6470 * from the journal and so a subsequent replay can corrupt data. 6471 * So, first we make sure that the journal is empty and that 6472 * nobody is changing anything. 6473 */ 6474 6475 journal = EXT4_JOURNAL(inode); 6476 if (!journal) 6477 return 0; 6478 if (is_journal_aborted(journal)) 6479 return -EROFS; 6480 6481 /* Wait for all existing dio workers */ 6482 inode_dio_wait(inode); 6483 6484 /* 6485 * Before flushing the journal and switching inode's aops, we have 6486 * to flush all dirty data the inode has. There can be outstanding 6487 * delayed allocations, there can be unwritten extents created by 6488 * fallocate or buffered writes in dioread_nolock mode covered by 6489 * dirty data which can be converted only after flushing the dirty 6490 * data (and journalled aops don't know how to handle these cases). 6491 */ 6492 if (val) { 6493 filemap_invalidate_lock(inode->i_mapping); 6494 err = filemap_write_and_wait(inode->i_mapping); 6495 if (err < 0) { 6496 filemap_invalidate_unlock(inode->i_mapping); 6497 return err; 6498 } 6499 } 6500 6501 alloc_ctx = ext4_writepages_down_write(inode->i_sb); 6502 jbd2_journal_lock_updates(journal); 6503 6504 /* 6505 * OK, there are no updates running now, and all cached data is 6506 * synced to disk. We are now in a completely consistent state 6507 * which doesn't have anything in the journal, and we know that 6508 * no filesystem updates are running, so it is safe to modify 6509 * the inode's in-core data-journaling state flag now. 6510 */ 6511 6512 if (val) 6513 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6514 else { 6515 err = jbd2_journal_flush(journal, 0); 6516 if (err < 0) { 6517 jbd2_journal_unlock_updates(journal); 6518 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6519 return err; 6520 } 6521 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6522 } 6523 ext4_set_aops(inode); 6524 6525 jbd2_journal_unlock_updates(journal); 6526 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6527 6528 if (val) 6529 filemap_invalidate_unlock(inode->i_mapping); 6530 6531 /* Finally we can mark the inode as dirty. */ 6532 6533 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6534 if (IS_ERR(handle)) 6535 return PTR_ERR(handle); 6536 6537 ext4_fc_mark_ineligible(inode->i_sb, 6538 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle); 6539 err = ext4_mark_inode_dirty(handle, inode); 6540 ext4_handle_sync(handle); 6541 ext4_journal_stop(handle); 6542 ext4_std_error(inode->i_sb, err); 6543 6544 return err; 6545 } 6546 6547 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode, 6548 struct buffer_head *bh) 6549 { 6550 return !buffer_mapped(bh); 6551 } 6552 6553 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6554 { 6555 struct vm_area_struct *vma = vmf->vma; 6556 struct folio *folio = page_folio(vmf->page); 6557 loff_t size; 6558 unsigned long len; 6559 int err; 6560 vm_fault_t ret; 6561 struct file *file = vma->vm_file; 6562 struct inode *inode = file_inode(file); 6563 struct address_space *mapping = inode->i_mapping; 6564 handle_t *handle; 6565 get_block_t *get_block; 6566 int retries = 0; 6567 6568 if (unlikely(IS_IMMUTABLE(inode))) 6569 return VM_FAULT_SIGBUS; 6570 6571 sb_start_pagefault(inode->i_sb); 6572 file_update_time(vma->vm_file); 6573 6574 filemap_invalidate_lock_shared(mapping); 6575 6576 err = ext4_convert_inline_data(inode); 6577 if (err) 6578 goto out_ret; 6579 6580 /* 6581 * On data journalling we skip straight to the transaction handle: 6582 * there's no delalloc; page truncated will be checked later; the 6583 * early return w/ all buffers mapped (calculates size/len) can't 6584 * be used; and there's no dioread_nolock, so only ext4_get_block. 6585 */ 6586 if (ext4_should_journal_data(inode)) 6587 goto retry_alloc; 6588 6589 /* Delalloc case is easy... */ 6590 if (test_opt(inode->i_sb, DELALLOC) && 6591 !ext4_nonda_switch(inode->i_sb)) { 6592 do { 6593 err = block_page_mkwrite(vma, vmf, 6594 ext4_da_get_block_prep); 6595 } while (err == -ENOSPC && 6596 ext4_should_retry_alloc(inode->i_sb, &retries)); 6597 goto out_ret; 6598 } 6599 6600 folio_lock(folio); 6601 size = i_size_read(inode); 6602 /* Page got truncated from under us? */ 6603 if (folio->mapping != mapping || folio_pos(folio) > size) { 6604 folio_unlock(folio); 6605 ret = VM_FAULT_NOPAGE; 6606 goto out; 6607 } 6608 6609 len = folio_size(folio); 6610 if (folio_pos(folio) + len > size) 6611 len = size - folio_pos(folio); 6612 /* 6613 * Return if we have all the buffers mapped. This avoids the need to do 6614 * journal_start/journal_stop which can block and take a long time 6615 * 6616 * This cannot be done for data journalling, as we have to add the 6617 * inode to the transaction's list to writeprotect pages on commit. 6618 */ 6619 if (folio_buffers(folio)) { 6620 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio), 6621 0, len, NULL, 6622 ext4_bh_unmapped)) { 6623 /* Wait so that we don't change page under IO */ 6624 folio_wait_stable(folio); 6625 ret = VM_FAULT_LOCKED; 6626 goto out; 6627 } 6628 } 6629 folio_unlock(folio); 6630 /* OK, we need to fill the hole... */ 6631 if (ext4_should_dioread_nolock(inode)) 6632 get_block = ext4_get_block_unwritten; 6633 else 6634 get_block = ext4_get_block; 6635 retry_alloc: 6636 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6637 ext4_writepage_trans_blocks(inode)); 6638 if (IS_ERR(handle)) { 6639 ret = VM_FAULT_SIGBUS; 6640 goto out; 6641 } 6642 /* 6643 * Data journalling can't use block_page_mkwrite() because it 6644 * will set_buffer_dirty() before do_journal_get_write_access() 6645 * thus might hit warning messages for dirty metadata buffers. 6646 */ 6647 if (!ext4_should_journal_data(inode)) { 6648 err = block_page_mkwrite(vma, vmf, get_block); 6649 } else { 6650 folio_lock(folio); 6651 size = i_size_read(inode); 6652 /* Page got truncated from under us? */ 6653 if (folio->mapping != mapping || folio_pos(folio) > size) { 6654 ret = VM_FAULT_NOPAGE; 6655 goto out_error; 6656 } 6657 6658 len = folio_size(folio); 6659 if (folio_pos(folio) + len > size) 6660 len = size - folio_pos(folio); 6661 6662 err = ext4_block_write_begin(handle, folio, 0, len, 6663 ext4_get_block); 6664 if (!err) { 6665 ret = VM_FAULT_SIGBUS; 6666 if (ext4_journal_folio_buffers(handle, folio, len)) 6667 goto out_error; 6668 } else { 6669 folio_unlock(folio); 6670 } 6671 } 6672 ext4_journal_stop(handle); 6673 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6674 goto retry_alloc; 6675 out_ret: 6676 ret = vmf_fs_error(err); 6677 out: 6678 filemap_invalidate_unlock_shared(mapping); 6679 sb_end_pagefault(inode->i_sb); 6680 return ret; 6681 out_error: 6682 folio_unlock(folio); 6683 ext4_journal_stop(handle); 6684 goto out; 6685 } 6686