xref: /linux/fs/ext4/inode.c (revision 1d1997db870f4058676439ef7014390ba9e24eb2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43 
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48 
49 #include <trace/events/ext4.h>
50 
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52 
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 			      struct ext4_inode_info *ei)
55 {
56 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 	__u32 csum;
58 	__u16 dummy_csum = 0;
59 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
60 	unsigned int csum_size = sizeof(dummy_csum);
61 
62 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 	offset += csum_size;
65 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
67 
68 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69 		offset = offsetof(struct ext4_inode, i_checksum_hi);
70 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71 				   EXT4_GOOD_OLD_INODE_SIZE,
72 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
73 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75 					   csum_size);
76 			offset += csum_size;
77 		}
78 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
80 	}
81 
82 	return csum;
83 }
84 
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86 				  struct ext4_inode_info *ei)
87 {
88 	__u32 provided, calculated;
89 
90 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91 	    cpu_to_le32(EXT4_OS_LINUX) ||
92 	    !ext4_has_metadata_csum(inode->i_sb))
93 		return 1;
94 
95 	provided = le16_to_cpu(raw->i_checksum_lo);
96 	calculated = ext4_inode_csum(inode, raw, ei);
97 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 	else
101 		calculated &= 0xFFFF;
102 
103 	return provided == calculated;
104 }
105 
106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107 				struct ext4_inode_info *ei)
108 {
109 	__u32 csum;
110 
111 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112 	    cpu_to_le32(EXT4_OS_LINUX) ||
113 	    !ext4_has_metadata_csum(inode->i_sb))
114 		return;
115 
116 	csum = ext4_inode_csum(inode, raw, ei);
117 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122 
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124 					      loff_t new_size)
125 {
126 	trace_ext4_begin_ordered_truncate(inode, new_size);
127 	/*
128 	 * If jinode is zero, then we never opened the file for
129 	 * writing, so there's no need to call
130 	 * jbd2_journal_begin_ordered_truncate() since there's no
131 	 * outstanding writes we need to flush.
132 	 */
133 	if (!EXT4_I(inode)->jinode)
134 		return 0;
135 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136 						   EXT4_I(inode)->jinode,
137 						   new_size);
138 }
139 
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141 				unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145 				  int pextents);
146 
147 /*
148  * Test whether an inode is a fast symlink.
149  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150  */
151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
155 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156 
157 		if (ext4_has_inline_data(inode))
158 			return 0;
159 
160 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161 	}
162 	return S_ISLNK(inode->i_mode) && inode->i_size &&
163 	       (inode->i_size < EXT4_N_BLOCKS * 4);
164 }
165 
166 /*
167  * Called at the last iput() if i_nlink is zero.
168  */
169 void ext4_evict_inode(struct inode *inode)
170 {
171 	handle_t *handle;
172 	int err;
173 	/*
174 	 * Credits for final inode cleanup and freeing:
175 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
176 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
177 	 */
178 	int extra_credits = 6;
179 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
180 
181 	trace_ext4_evict_inode(inode);
182 
183 	if (inode->i_nlink) {
184 		/*
185 		 * When journalling data dirty buffers are tracked only in the
186 		 * journal. So although mm thinks everything is clean and
187 		 * ready for reaping the inode might still have some pages to
188 		 * write in the running transaction or waiting to be
189 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
190 		 * (via truncate_inode_pages()) to discard these buffers can
191 		 * cause data loss. Also even if we did not discard these
192 		 * buffers, we would have no way to find them after the inode
193 		 * is reaped and thus user could see stale data if he tries to
194 		 * read them before the transaction is checkpointed. So be
195 		 * careful and force everything to disk here... We use
196 		 * ei->i_datasync_tid to store the newest transaction
197 		 * containing inode's data.
198 		 *
199 		 * Note that directories do not have this problem because they
200 		 * don't use page cache.
201 		 */
202 		if (inode->i_ino != EXT4_JOURNAL_INO &&
203 		    ext4_should_journal_data(inode) &&
204 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
205 		    inode->i_data.nrpages) {
206 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
207 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
208 
209 			jbd2_complete_transaction(journal, commit_tid);
210 			filemap_write_and_wait(&inode->i_data);
211 		}
212 		truncate_inode_pages_final(&inode->i_data);
213 
214 		goto no_delete;
215 	}
216 
217 	if (is_bad_inode(inode))
218 		goto no_delete;
219 	dquot_initialize(inode);
220 
221 	if (ext4_should_order_data(inode))
222 		ext4_begin_ordered_truncate(inode, 0);
223 	truncate_inode_pages_final(&inode->i_data);
224 
225 	/*
226 	 * Protect us against freezing - iput() caller didn't have to have any
227 	 * protection against it
228 	 */
229 	sb_start_intwrite(inode->i_sb);
230 
231 	if (!IS_NOQUOTA(inode))
232 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
233 
234 	/*
235 	 * Block bitmap, group descriptor, and inode are accounted in both
236 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
237 	 */
238 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
240 	if (IS_ERR(handle)) {
241 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
242 		/*
243 		 * If we're going to skip the normal cleanup, we still need to
244 		 * make sure that the in-core orphan linked list is properly
245 		 * cleaned up.
246 		 */
247 		ext4_orphan_del(NULL, inode);
248 		sb_end_intwrite(inode->i_sb);
249 		goto no_delete;
250 	}
251 
252 	if (IS_SYNC(inode))
253 		ext4_handle_sync(handle);
254 
255 	/*
256 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
257 	 * special handling of symlinks here because i_size is used to
258 	 * determine whether ext4_inode_info->i_data contains symlink data or
259 	 * block mappings. Setting i_size to 0 will remove its fast symlink
260 	 * status. Erase i_data so that it becomes a valid empty block map.
261 	 */
262 	if (ext4_inode_is_fast_symlink(inode))
263 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
264 	inode->i_size = 0;
265 	err = ext4_mark_inode_dirty(handle, inode);
266 	if (err) {
267 		ext4_warning(inode->i_sb,
268 			     "couldn't mark inode dirty (err %d)", err);
269 		goto stop_handle;
270 	}
271 	if (inode->i_blocks) {
272 		err = ext4_truncate(inode);
273 		if (err) {
274 			ext4_error(inode->i_sb,
275 				   "couldn't truncate inode %lu (err %d)",
276 				   inode->i_ino, err);
277 			goto stop_handle;
278 		}
279 	}
280 
281 	/* Remove xattr references. */
282 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
283 				      extra_credits);
284 	if (err) {
285 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
286 stop_handle:
287 		ext4_journal_stop(handle);
288 		ext4_orphan_del(NULL, inode);
289 		sb_end_intwrite(inode->i_sb);
290 		ext4_xattr_inode_array_free(ea_inode_array);
291 		goto no_delete;
292 	}
293 
294 	/*
295 	 * Kill off the orphan record which ext4_truncate created.
296 	 * AKPM: I think this can be inside the above `if'.
297 	 * Note that ext4_orphan_del() has to be able to cope with the
298 	 * deletion of a non-existent orphan - this is because we don't
299 	 * know if ext4_truncate() actually created an orphan record.
300 	 * (Well, we could do this if we need to, but heck - it works)
301 	 */
302 	ext4_orphan_del(handle, inode);
303 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
304 
305 	/*
306 	 * One subtle ordering requirement: if anything has gone wrong
307 	 * (transaction abort, IO errors, whatever), then we can still
308 	 * do these next steps (the fs will already have been marked as
309 	 * having errors), but we can't free the inode if the mark_dirty
310 	 * fails.
311 	 */
312 	if (ext4_mark_inode_dirty(handle, inode))
313 		/* If that failed, just do the required in-core inode clear. */
314 		ext4_clear_inode(inode);
315 	else
316 		ext4_free_inode(handle, inode);
317 	ext4_journal_stop(handle);
318 	sb_end_intwrite(inode->i_sb);
319 	ext4_xattr_inode_array_free(ea_inode_array);
320 	return;
321 no_delete:
322 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
323 }
324 
325 #ifdef CONFIG_QUOTA
326 qsize_t *ext4_get_reserved_space(struct inode *inode)
327 {
328 	return &EXT4_I(inode)->i_reserved_quota;
329 }
330 #endif
331 
332 /*
333  * Called with i_data_sem down, which is important since we can call
334  * ext4_discard_preallocations() from here.
335  */
336 void ext4_da_update_reserve_space(struct inode *inode,
337 					int used, int quota_claim)
338 {
339 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
340 	struct ext4_inode_info *ei = EXT4_I(inode);
341 
342 	spin_lock(&ei->i_block_reservation_lock);
343 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
344 	if (unlikely(used > ei->i_reserved_data_blocks)) {
345 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
346 			 "with only %d reserved data blocks",
347 			 __func__, inode->i_ino, used,
348 			 ei->i_reserved_data_blocks);
349 		WARN_ON(1);
350 		used = ei->i_reserved_data_blocks;
351 	}
352 
353 	/* Update per-inode reservations */
354 	ei->i_reserved_data_blocks -= used;
355 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
356 
357 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
358 
359 	/* Update quota subsystem for data blocks */
360 	if (quota_claim)
361 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
362 	else {
363 		/*
364 		 * We did fallocate with an offset that is already delayed
365 		 * allocated. So on delayed allocated writeback we should
366 		 * not re-claim the quota for fallocated blocks.
367 		 */
368 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
369 	}
370 
371 	/*
372 	 * If we have done all the pending block allocations and if
373 	 * there aren't any writers on the inode, we can discard the
374 	 * inode's preallocations.
375 	 */
376 	if ((ei->i_reserved_data_blocks == 0) &&
377 	    !inode_is_open_for_write(inode))
378 		ext4_discard_preallocations(inode);
379 }
380 
381 static int __check_block_validity(struct inode *inode, const char *func,
382 				unsigned int line,
383 				struct ext4_map_blocks *map)
384 {
385 	if (ext4_has_feature_journal(inode->i_sb) &&
386 	    (inode->i_ino ==
387 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
388 		return 0;
389 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
390 				   map->m_len)) {
391 		ext4_error_inode(inode, func, line, map->m_pblk,
392 				 "lblock %lu mapped to illegal pblock %llu "
393 				 "(length %d)", (unsigned long) map->m_lblk,
394 				 map->m_pblk, map->m_len);
395 		return -EFSCORRUPTED;
396 	}
397 	return 0;
398 }
399 
400 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
401 		       ext4_lblk_t len)
402 {
403 	int ret;
404 
405 	if (IS_ENCRYPTED(inode))
406 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
407 
408 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
409 	if (ret > 0)
410 		ret = 0;
411 
412 	return ret;
413 }
414 
415 #define check_block_validity(inode, map)	\
416 	__check_block_validity((inode), __func__, __LINE__, (map))
417 
418 #ifdef ES_AGGRESSIVE_TEST
419 static void ext4_map_blocks_es_recheck(handle_t *handle,
420 				       struct inode *inode,
421 				       struct ext4_map_blocks *es_map,
422 				       struct ext4_map_blocks *map,
423 				       int flags)
424 {
425 	int retval;
426 
427 	map->m_flags = 0;
428 	/*
429 	 * There is a race window that the result is not the same.
430 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
431 	 * is that we lookup a block mapping in extent status tree with
432 	 * out taking i_data_sem.  So at the time the unwritten extent
433 	 * could be converted.
434 	 */
435 	down_read(&EXT4_I(inode)->i_data_sem);
436 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
437 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
438 					     EXT4_GET_BLOCKS_KEEP_SIZE);
439 	} else {
440 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
441 					     EXT4_GET_BLOCKS_KEEP_SIZE);
442 	}
443 	up_read((&EXT4_I(inode)->i_data_sem));
444 
445 	/*
446 	 * We don't check m_len because extent will be collpased in status
447 	 * tree.  So the m_len might not equal.
448 	 */
449 	if (es_map->m_lblk != map->m_lblk ||
450 	    es_map->m_flags != map->m_flags ||
451 	    es_map->m_pblk != map->m_pblk) {
452 		printk("ES cache assertion failed for inode: %lu "
453 		       "es_cached ex [%d/%d/%llu/%x] != "
454 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
455 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
456 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
457 		       map->m_len, map->m_pblk, map->m_flags,
458 		       retval, flags);
459 	}
460 }
461 #endif /* ES_AGGRESSIVE_TEST */
462 
463 /*
464  * The ext4_map_blocks() function tries to look up the requested blocks,
465  * and returns if the blocks are already mapped.
466  *
467  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
468  * and store the allocated blocks in the result buffer head and mark it
469  * mapped.
470  *
471  * If file type is extents based, it will call ext4_ext_map_blocks(),
472  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
473  * based files
474  *
475  * On success, it returns the number of blocks being mapped or allocated.  if
476  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
477  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
478  *
479  * It returns 0 if plain look up failed (blocks have not been allocated), in
480  * that case, @map is returned as unmapped but we still do fill map->m_len to
481  * indicate the length of a hole starting at map->m_lblk.
482  *
483  * It returns the error in case of allocation failure.
484  */
485 int ext4_map_blocks(handle_t *handle, struct inode *inode,
486 		    struct ext4_map_blocks *map, int flags)
487 {
488 	struct extent_status es;
489 	int retval;
490 	int ret = 0;
491 #ifdef ES_AGGRESSIVE_TEST
492 	struct ext4_map_blocks orig_map;
493 
494 	memcpy(&orig_map, map, sizeof(*map));
495 #endif
496 
497 	map->m_flags = 0;
498 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
499 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
500 		  (unsigned long) map->m_lblk);
501 
502 	/*
503 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
504 	 */
505 	if (unlikely(map->m_len > INT_MAX))
506 		map->m_len = INT_MAX;
507 
508 	/* We can handle the block number less than EXT_MAX_BLOCKS */
509 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
510 		return -EFSCORRUPTED;
511 
512 	/* Lookup extent status tree firstly */
513 	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
514 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
515 			map->m_pblk = ext4_es_pblock(&es) +
516 					map->m_lblk - es.es_lblk;
517 			map->m_flags |= ext4_es_is_written(&es) ?
518 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
519 			retval = es.es_len - (map->m_lblk - es.es_lblk);
520 			if (retval > map->m_len)
521 				retval = map->m_len;
522 			map->m_len = retval;
523 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
524 			map->m_pblk = 0;
525 			retval = es.es_len - (map->m_lblk - es.es_lblk);
526 			if (retval > map->m_len)
527 				retval = map->m_len;
528 			map->m_len = retval;
529 			retval = 0;
530 		} else {
531 			BUG();
532 		}
533 #ifdef ES_AGGRESSIVE_TEST
534 		ext4_map_blocks_es_recheck(handle, inode, map,
535 					   &orig_map, flags);
536 #endif
537 		goto found;
538 	}
539 
540 	/*
541 	 * Try to see if we can get the block without requesting a new
542 	 * file system block.
543 	 */
544 	down_read(&EXT4_I(inode)->i_data_sem);
545 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
546 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
547 					     EXT4_GET_BLOCKS_KEEP_SIZE);
548 	} else {
549 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
550 					     EXT4_GET_BLOCKS_KEEP_SIZE);
551 	}
552 	if (retval > 0) {
553 		unsigned int status;
554 
555 		if (unlikely(retval != map->m_len)) {
556 			ext4_warning(inode->i_sb,
557 				     "ES len assertion failed for inode "
558 				     "%lu: retval %d != map->m_len %d",
559 				     inode->i_ino, retval, map->m_len);
560 			WARN_ON(1);
561 		}
562 
563 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
564 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
565 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
566 		    !(status & EXTENT_STATUS_WRITTEN) &&
567 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
568 				       map->m_lblk + map->m_len - 1))
569 			status |= EXTENT_STATUS_DELAYED;
570 		ret = ext4_es_insert_extent(inode, map->m_lblk,
571 					    map->m_len, map->m_pblk, status);
572 		if (ret < 0)
573 			retval = ret;
574 	}
575 	up_read((&EXT4_I(inode)->i_data_sem));
576 
577 found:
578 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
579 		ret = check_block_validity(inode, map);
580 		if (ret != 0)
581 			return ret;
582 	}
583 
584 	/* If it is only a block(s) look up */
585 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
586 		return retval;
587 
588 	/*
589 	 * Returns if the blocks have already allocated
590 	 *
591 	 * Note that if blocks have been preallocated
592 	 * ext4_ext_get_block() returns the create = 0
593 	 * with buffer head unmapped.
594 	 */
595 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
596 		/*
597 		 * If we need to convert extent to unwritten
598 		 * we continue and do the actual work in
599 		 * ext4_ext_map_blocks()
600 		 */
601 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
602 			return retval;
603 
604 	/*
605 	 * Here we clear m_flags because after allocating an new extent,
606 	 * it will be set again.
607 	 */
608 	map->m_flags &= ~EXT4_MAP_FLAGS;
609 
610 	/*
611 	 * New blocks allocate and/or writing to unwritten extent
612 	 * will possibly result in updating i_data, so we take
613 	 * the write lock of i_data_sem, and call get_block()
614 	 * with create == 1 flag.
615 	 */
616 	down_write(&EXT4_I(inode)->i_data_sem);
617 
618 	/*
619 	 * We need to check for EXT4 here because migrate
620 	 * could have changed the inode type in between
621 	 */
622 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
623 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
624 	} else {
625 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
626 
627 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
628 			/*
629 			 * We allocated new blocks which will result in
630 			 * i_data's format changing.  Force the migrate
631 			 * to fail by clearing migrate flags
632 			 */
633 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
634 		}
635 
636 		/*
637 		 * Update reserved blocks/metadata blocks after successful
638 		 * block allocation which had been deferred till now. We don't
639 		 * support fallocate for non extent files. So we can update
640 		 * reserve space here.
641 		 */
642 		if ((retval > 0) &&
643 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
644 			ext4_da_update_reserve_space(inode, retval, 1);
645 	}
646 
647 	if (retval > 0) {
648 		unsigned int status;
649 
650 		if (unlikely(retval != map->m_len)) {
651 			ext4_warning(inode->i_sb,
652 				     "ES len assertion failed for inode "
653 				     "%lu: retval %d != map->m_len %d",
654 				     inode->i_ino, retval, map->m_len);
655 			WARN_ON(1);
656 		}
657 
658 		/*
659 		 * We have to zeroout blocks before inserting them into extent
660 		 * status tree. Otherwise someone could look them up there and
661 		 * use them before they are really zeroed. We also have to
662 		 * unmap metadata before zeroing as otherwise writeback can
663 		 * overwrite zeros with stale data from block device.
664 		 */
665 		if (flags & EXT4_GET_BLOCKS_ZERO &&
666 		    map->m_flags & EXT4_MAP_MAPPED &&
667 		    map->m_flags & EXT4_MAP_NEW) {
668 			ret = ext4_issue_zeroout(inode, map->m_lblk,
669 						 map->m_pblk, map->m_len);
670 			if (ret) {
671 				retval = ret;
672 				goto out_sem;
673 			}
674 		}
675 
676 		/*
677 		 * If the extent has been zeroed out, we don't need to update
678 		 * extent status tree.
679 		 */
680 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
681 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
682 			if (ext4_es_is_written(&es))
683 				goto out_sem;
684 		}
685 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
686 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
687 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
688 		    !(status & EXTENT_STATUS_WRITTEN) &&
689 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
690 				       map->m_lblk + map->m_len - 1))
691 			status |= EXTENT_STATUS_DELAYED;
692 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
693 					    map->m_pblk, status);
694 		if (ret < 0) {
695 			retval = ret;
696 			goto out_sem;
697 		}
698 	}
699 
700 out_sem:
701 	up_write((&EXT4_I(inode)->i_data_sem));
702 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
703 		ret = check_block_validity(inode, map);
704 		if (ret != 0)
705 			return ret;
706 
707 		/*
708 		 * Inodes with freshly allocated blocks where contents will be
709 		 * visible after transaction commit must be on transaction's
710 		 * ordered data list.
711 		 */
712 		if (map->m_flags & EXT4_MAP_NEW &&
713 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
714 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
715 		    !ext4_is_quota_file(inode) &&
716 		    ext4_should_order_data(inode)) {
717 			loff_t start_byte =
718 				(loff_t)map->m_lblk << inode->i_blkbits;
719 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
720 
721 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
722 				ret = ext4_jbd2_inode_add_wait(handle, inode,
723 						start_byte, length);
724 			else
725 				ret = ext4_jbd2_inode_add_write(handle, inode,
726 						start_byte, length);
727 			if (ret)
728 				return ret;
729 		}
730 	}
731 	return retval;
732 }
733 
734 /*
735  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
736  * we have to be careful as someone else may be manipulating b_state as well.
737  */
738 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
739 {
740 	unsigned long old_state;
741 	unsigned long new_state;
742 
743 	flags &= EXT4_MAP_FLAGS;
744 
745 	/* Dummy buffer_head? Set non-atomically. */
746 	if (!bh->b_page) {
747 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
748 		return;
749 	}
750 	/*
751 	 * Someone else may be modifying b_state. Be careful! This is ugly but
752 	 * once we get rid of using bh as a container for mapping information
753 	 * to pass to / from get_block functions, this can go away.
754 	 */
755 	do {
756 		old_state = READ_ONCE(bh->b_state);
757 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
758 	} while (unlikely(
759 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
760 }
761 
762 static int _ext4_get_block(struct inode *inode, sector_t iblock,
763 			   struct buffer_head *bh, int flags)
764 {
765 	struct ext4_map_blocks map;
766 	int ret = 0;
767 
768 	if (ext4_has_inline_data(inode))
769 		return -ERANGE;
770 
771 	map.m_lblk = iblock;
772 	map.m_len = bh->b_size >> inode->i_blkbits;
773 
774 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
775 			      flags);
776 	if (ret > 0) {
777 		map_bh(bh, inode->i_sb, map.m_pblk);
778 		ext4_update_bh_state(bh, map.m_flags);
779 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
780 		ret = 0;
781 	} else if (ret == 0) {
782 		/* hole case, need to fill in bh->b_size */
783 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
784 	}
785 	return ret;
786 }
787 
788 int ext4_get_block(struct inode *inode, sector_t iblock,
789 		   struct buffer_head *bh, int create)
790 {
791 	return _ext4_get_block(inode, iblock, bh,
792 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
793 }
794 
795 /*
796  * Get block function used when preparing for buffered write if we require
797  * creating an unwritten extent if blocks haven't been allocated.  The extent
798  * will be converted to written after the IO is complete.
799  */
800 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
801 			     struct buffer_head *bh_result, int create)
802 {
803 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
804 		   inode->i_ino, create);
805 	return _ext4_get_block(inode, iblock, bh_result,
806 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
807 }
808 
809 /* Maximum number of blocks we map for direct IO at once. */
810 #define DIO_MAX_BLOCKS 4096
811 
812 /*
813  * `handle' can be NULL if create is zero
814  */
815 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
816 				ext4_lblk_t block, int map_flags)
817 {
818 	struct ext4_map_blocks map;
819 	struct buffer_head *bh;
820 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
821 	int err;
822 
823 	J_ASSERT(handle != NULL || create == 0);
824 
825 	map.m_lblk = block;
826 	map.m_len = 1;
827 	err = ext4_map_blocks(handle, inode, &map, map_flags);
828 
829 	if (err == 0)
830 		return create ? ERR_PTR(-ENOSPC) : NULL;
831 	if (err < 0)
832 		return ERR_PTR(err);
833 
834 	bh = sb_getblk(inode->i_sb, map.m_pblk);
835 	if (unlikely(!bh))
836 		return ERR_PTR(-ENOMEM);
837 	if (map.m_flags & EXT4_MAP_NEW) {
838 		J_ASSERT(create != 0);
839 		J_ASSERT(handle != NULL);
840 
841 		/*
842 		 * Now that we do not always journal data, we should
843 		 * keep in mind whether this should always journal the
844 		 * new buffer as metadata.  For now, regular file
845 		 * writes use ext4_get_block instead, so it's not a
846 		 * problem.
847 		 */
848 		lock_buffer(bh);
849 		BUFFER_TRACE(bh, "call get_create_access");
850 		err = ext4_journal_get_create_access(handle, bh);
851 		if (unlikely(err)) {
852 			unlock_buffer(bh);
853 			goto errout;
854 		}
855 		if (!buffer_uptodate(bh)) {
856 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
857 			set_buffer_uptodate(bh);
858 		}
859 		unlock_buffer(bh);
860 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
861 		err = ext4_handle_dirty_metadata(handle, inode, bh);
862 		if (unlikely(err))
863 			goto errout;
864 	} else
865 		BUFFER_TRACE(bh, "not a new buffer");
866 	return bh;
867 errout:
868 	brelse(bh);
869 	return ERR_PTR(err);
870 }
871 
872 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
873 			       ext4_lblk_t block, int map_flags)
874 {
875 	struct buffer_head *bh;
876 
877 	bh = ext4_getblk(handle, inode, block, map_flags);
878 	if (IS_ERR(bh))
879 		return bh;
880 	if (!bh || ext4_buffer_uptodate(bh))
881 		return bh;
882 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
883 	wait_on_buffer(bh);
884 	if (buffer_uptodate(bh))
885 		return bh;
886 	put_bh(bh);
887 	return ERR_PTR(-EIO);
888 }
889 
890 /* Read a contiguous batch of blocks. */
891 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
892 		     bool wait, struct buffer_head **bhs)
893 {
894 	int i, err;
895 
896 	for (i = 0; i < bh_count; i++) {
897 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
898 		if (IS_ERR(bhs[i])) {
899 			err = PTR_ERR(bhs[i]);
900 			bh_count = i;
901 			goto out_brelse;
902 		}
903 	}
904 
905 	for (i = 0; i < bh_count; i++)
906 		/* Note that NULL bhs[i] is valid because of holes. */
907 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
908 			ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
909 				    &bhs[i]);
910 
911 	if (!wait)
912 		return 0;
913 
914 	for (i = 0; i < bh_count; i++)
915 		if (bhs[i])
916 			wait_on_buffer(bhs[i]);
917 
918 	for (i = 0; i < bh_count; i++) {
919 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
920 			err = -EIO;
921 			goto out_brelse;
922 		}
923 	}
924 	return 0;
925 
926 out_brelse:
927 	for (i = 0; i < bh_count; i++) {
928 		brelse(bhs[i]);
929 		bhs[i] = NULL;
930 	}
931 	return err;
932 }
933 
934 int ext4_walk_page_buffers(handle_t *handle,
935 			   struct buffer_head *head,
936 			   unsigned from,
937 			   unsigned to,
938 			   int *partial,
939 			   int (*fn)(handle_t *handle,
940 				     struct buffer_head *bh))
941 {
942 	struct buffer_head *bh;
943 	unsigned block_start, block_end;
944 	unsigned blocksize = head->b_size;
945 	int err, ret = 0;
946 	struct buffer_head *next;
947 
948 	for (bh = head, block_start = 0;
949 	     ret == 0 && (bh != head || !block_start);
950 	     block_start = block_end, bh = next) {
951 		next = bh->b_this_page;
952 		block_end = block_start + blocksize;
953 		if (block_end <= from || block_start >= to) {
954 			if (partial && !buffer_uptodate(bh))
955 				*partial = 1;
956 			continue;
957 		}
958 		err = (*fn)(handle, bh);
959 		if (!ret)
960 			ret = err;
961 	}
962 	return ret;
963 }
964 
965 /*
966  * To preserve ordering, it is essential that the hole instantiation and
967  * the data write be encapsulated in a single transaction.  We cannot
968  * close off a transaction and start a new one between the ext4_get_block()
969  * and the commit_write().  So doing the jbd2_journal_start at the start of
970  * prepare_write() is the right place.
971  *
972  * Also, this function can nest inside ext4_writepage().  In that case, we
973  * *know* that ext4_writepage() has generated enough buffer credits to do the
974  * whole page.  So we won't block on the journal in that case, which is good,
975  * because the caller may be PF_MEMALLOC.
976  *
977  * By accident, ext4 can be reentered when a transaction is open via
978  * quota file writes.  If we were to commit the transaction while thus
979  * reentered, there can be a deadlock - we would be holding a quota
980  * lock, and the commit would never complete if another thread had a
981  * transaction open and was blocking on the quota lock - a ranking
982  * violation.
983  *
984  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
985  * will _not_ run commit under these circumstances because handle->h_ref
986  * is elevated.  We'll still have enough credits for the tiny quotafile
987  * write.
988  */
989 int do_journal_get_write_access(handle_t *handle,
990 				struct buffer_head *bh)
991 {
992 	int dirty = buffer_dirty(bh);
993 	int ret;
994 
995 	if (!buffer_mapped(bh) || buffer_freed(bh))
996 		return 0;
997 	/*
998 	 * __block_write_begin() could have dirtied some buffers. Clean
999 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1000 	 * otherwise about fs integrity issues. Setting of the dirty bit
1001 	 * by __block_write_begin() isn't a real problem here as we clear
1002 	 * the bit before releasing a page lock and thus writeback cannot
1003 	 * ever write the buffer.
1004 	 */
1005 	if (dirty)
1006 		clear_buffer_dirty(bh);
1007 	BUFFER_TRACE(bh, "get write access");
1008 	ret = ext4_journal_get_write_access(handle, bh);
1009 	if (!ret && dirty)
1010 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1011 	return ret;
1012 }
1013 
1014 #ifdef CONFIG_FS_ENCRYPTION
1015 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1016 				  get_block_t *get_block)
1017 {
1018 	unsigned from = pos & (PAGE_SIZE - 1);
1019 	unsigned to = from + len;
1020 	struct inode *inode = page->mapping->host;
1021 	unsigned block_start, block_end;
1022 	sector_t block;
1023 	int err = 0;
1024 	unsigned blocksize = inode->i_sb->s_blocksize;
1025 	unsigned bbits;
1026 	struct buffer_head *bh, *head, *wait[2];
1027 	int nr_wait = 0;
1028 	int i;
1029 
1030 	BUG_ON(!PageLocked(page));
1031 	BUG_ON(from > PAGE_SIZE);
1032 	BUG_ON(to > PAGE_SIZE);
1033 	BUG_ON(from > to);
1034 
1035 	if (!page_has_buffers(page))
1036 		create_empty_buffers(page, blocksize, 0);
1037 	head = page_buffers(page);
1038 	bbits = ilog2(blocksize);
1039 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1040 
1041 	for (bh = head, block_start = 0; bh != head || !block_start;
1042 	    block++, block_start = block_end, bh = bh->b_this_page) {
1043 		block_end = block_start + blocksize;
1044 		if (block_end <= from || block_start >= to) {
1045 			if (PageUptodate(page)) {
1046 				if (!buffer_uptodate(bh))
1047 					set_buffer_uptodate(bh);
1048 			}
1049 			continue;
1050 		}
1051 		if (buffer_new(bh))
1052 			clear_buffer_new(bh);
1053 		if (!buffer_mapped(bh)) {
1054 			WARN_ON(bh->b_size != blocksize);
1055 			err = get_block(inode, block, bh, 1);
1056 			if (err)
1057 				break;
1058 			if (buffer_new(bh)) {
1059 				if (PageUptodate(page)) {
1060 					clear_buffer_new(bh);
1061 					set_buffer_uptodate(bh);
1062 					mark_buffer_dirty(bh);
1063 					continue;
1064 				}
1065 				if (block_end > to || block_start < from)
1066 					zero_user_segments(page, to, block_end,
1067 							   block_start, from);
1068 				continue;
1069 			}
1070 		}
1071 		if (PageUptodate(page)) {
1072 			if (!buffer_uptodate(bh))
1073 				set_buffer_uptodate(bh);
1074 			continue;
1075 		}
1076 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1077 		    !buffer_unwritten(bh) &&
1078 		    (block_start < from || block_end > to)) {
1079 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1080 			wait[nr_wait++] = bh;
1081 		}
1082 	}
1083 	/*
1084 	 * If we issued read requests, let them complete.
1085 	 */
1086 	for (i = 0; i < nr_wait; i++) {
1087 		wait_on_buffer(wait[i]);
1088 		if (!buffer_uptodate(wait[i]))
1089 			err = -EIO;
1090 	}
1091 	if (unlikely(err)) {
1092 		page_zero_new_buffers(page, from, to);
1093 	} else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) {
1094 		for (i = 0; i < nr_wait; i++) {
1095 			int err2;
1096 
1097 			err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1098 								bh_offset(wait[i]));
1099 			if (err2) {
1100 				clear_buffer_uptodate(wait[i]);
1101 				err = err2;
1102 			}
1103 		}
1104 	}
1105 
1106 	return err;
1107 }
1108 #endif
1109 
1110 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1111 			    loff_t pos, unsigned len, unsigned flags,
1112 			    struct page **pagep, void **fsdata)
1113 {
1114 	struct inode *inode = mapping->host;
1115 	int ret, needed_blocks;
1116 	handle_t *handle;
1117 	int retries = 0;
1118 	struct page *page;
1119 	pgoff_t index;
1120 	unsigned from, to;
1121 
1122 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1123 		return -EIO;
1124 
1125 	trace_ext4_write_begin(inode, pos, len, flags);
1126 	/*
1127 	 * Reserve one block more for addition to orphan list in case
1128 	 * we allocate blocks but write fails for some reason
1129 	 */
1130 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1131 	index = pos >> PAGE_SHIFT;
1132 	from = pos & (PAGE_SIZE - 1);
1133 	to = from + len;
1134 
1135 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1136 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1137 						    flags, pagep);
1138 		if (ret < 0)
1139 			return ret;
1140 		if (ret == 1)
1141 			return 0;
1142 	}
1143 
1144 	/*
1145 	 * grab_cache_page_write_begin() can take a long time if the
1146 	 * system is thrashing due to memory pressure, or if the page
1147 	 * is being written back.  So grab it first before we start
1148 	 * the transaction handle.  This also allows us to allocate
1149 	 * the page (if needed) without using GFP_NOFS.
1150 	 */
1151 retry_grab:
1152 	page = grab_cache_page_write_begin(mapping, index, flags);
1153 	if (!page)
1154 		return -ENOMEM;
1155 	unlock_page(page);
1156 
1157 retry_journal:
1158 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1159 	if (IS_ERR(handle)) {
1160 		put_page(page);
1161 		return PTR_ERR(handle);
1162 	}
1163 
1164 	lock_page(page);
1165 	if (page->mapping != mapping) {
1166 		/* The page got truncated from under us */
1167 		unlock_page(page);
1168 		put_page(page);
1169 		ext4_journal_stop(handle);
1170 		goto retry_grab;
1171 	}
1172 	/* In case writeback began while the page was unlocked */
1173 	wait_for_stable_page(page);
1174 
1175 #ifdef CONFIG_FS_ENCRYPTION
1176 	if (ext4_should_dioread_nolock(inode))
1177 		ret = ext4_block_write_begin(page, pos, len,
1178 					     ext4_get_block_unwritten);
1179 	else
1180 		ret = ext4_block_write_begin(page, pos, len,
1181 					     ext4_get_block);
1182 #else
1183 	if (ext4_should_dioread_nolock(inode))
1184 		ret = __block_write_begin(page, pos, len,
1185 					  ext4_get_block_unwritten);
1186 	else
1187 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1188 #endif
1189 	if (!ret && ext4_should_journal_data(inode)) {
1190 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1191 					     from, to, NULL,
1192 					     do_journal_get_write_access);
1193 	}
1194 
1195 	if (ret) {
1196 		bool extended = (pos + len > inode->i_size) &&
1197 				!ext4_verity_in_progress(inode);
1198 
1199 		unlock_page(page);
1200 		/*
1201 		 * __block_write_begin may have instantiated a few blocks
1202 		 * outside i_size.  Trim these off again. Don't need
1203 		 * i_size_read because we hold i_mutex.
1204 		 *
1205 		 * Add inode to orphan list in case we crash before
1206 		 * truncate finishes
1207 		 */
1208 		if (extended && ext4_can_truncate(inode))
1209 			ext4_orphan_add(handle, inode);
1210 
1211 		ext4_journal_stop(handle);
1212 		if (extended) {
1213 			ext4_truncate_failed_write(inode);
1214 			/*
1215 			 * If truncate failed early the inode might
1216 			 * still be on the orphan list; we need to
1217 			 * make sure the inode is removed from the
1218 			 * orphan list in that case.
1219 			 */
1220 			if (inode->i_nlink)
1221 				ext4_orphan_del(NULL, inode);
1222 		}
1223 
1224 		if (ret == -ENOSPC &&
1225 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1226 			goto retry_journal;
1227 		put_page(page);
1228 		return ret;
1229 	}
1230 	*pagep = page;
1231 	return ret;
1232 }
1233 
1234 /* For write_end() in data=journal mode */
1235 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1236 {
1237 	int ret;
1238 	if (!buffer_mapped(bh) || buffer_freed(bh))
1239 		return 0;
1240 	set_buffer_uptodate(bh);
1241 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1242 	clear_buffer_meta(bh);
1243 	clear_buffer_prio(bh);
1244 	return ret;
1245 }
1246 
1247 /*
1248  * We need to pick up the new inode size which generic_commit_write gave us
1249  * `file' can be NULL - eg, when called from page_symlink().
1250  *
1251  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1252  * buffers are managed internally.
1253  */
1254 static int ext4_write_end(struct file *file,
1255 			  struct address_space *mapping,
1256 			  loff_t pos, unsigned len, unsigned copied,
1257 			  struct page *page, void *fsdata)
1258 {
1259 	handle_t *handle = ext4_journal_current_handle();
1260 	struct inode *inode = mapping->host;
1261 	loff_t old_size = inode->i_size;
1262 	int ret = 0, ret2;
1263 	int i_size_changed = 0;
1264 	int inline_data = ext4_has_inline_data(inode);
1265 	bool verity = ext4_verity_in_progress(inode);
1266 
1267 	trace_ext4_write_end(inode, pos, len, copied);
1268 	if (inline_data) {
1269 		ret = ext4_write_inline_data_end(inode, pos, len,
1270 						 copied, page);
1271 		if (ret < 0) {
1272 			unlock_page(page);
1273 			put_page(page);
1274 			goto errout;
1275 		}
1276 		copied = ret;
1277 	} else
1278 		copied = block_write_end(file, mapping, pos,
1279 					 len, copied, page, fsdata);
1280 	/*
1281 	 * it's important to update i_size while still holding page lock:
1282 	 * page writeout could otherwise come in and zero beyond i_size.
1283 	 *
1284 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1285 	 * blocks are being written past EOF, so skip the i_size update.
1286 	 */
1287 	if (!verity)
1288 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1289 	unlock_page(page);
1290 	put_page(page);
1291 
1292 	if (old_size < pos && !verity)
1293 		pagecache_isize_extended(inode, old_size, pos);
1294 	/*
1295 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1296 	 * makes the holding time of page lock longer. Second, it forces lock
1297 	 * ordering of page lock and transaction start for journaling
1298 	 * filesystems.
1299 	 */
1300 	if (i_size_changed || inline_data)
1301 		ext4_mark_inode_dirty(handle, inode);
1302 
1303 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1304 		/* if we have allocated more blocks and copied
1305 		 * less. We will have blocks allocated outside
1306 		 * inode->i_size. So truncate them
1307 		 */
1308 		ext4_orphan_add(handle, inode);
1309 errout:
1310 	ret2 = ext4_journal_stop(handle);
1311 	if (!ret)
1312 		ret = ret2;
1313 
1314 	if (pos + len > inode->i_size && !verity) {
1315 		ext4_truncate_failed_write(inode);
1316 		/*
1317 		 * If truncate failed early the inode might still be
1318 		 * on the orphan list; we need to make sure the inode
1319 		 * is removed from the orphan list in that case.
1320 		 */
1321 		if (inode->i_nlink)
1322 			ext4_orphan_del(NULL, inode);
1323 	}
1324 
1325 	return ret ? ret : copied;
1326 }
1327 
1328 /*
1329  * This is a private version of page_zero_new_buffers() which doesn't
1330  * set the buffer to be dirty, since in data=journalled mode we need
1331  * to call ext4_handle_dirty_metadata() instead.
1332  */
1333 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1334 					    struct page *page,
1335 					    unsigned from, unsigned to)
1336 {
1337 	unsigned int block_start = 0, block_end;
1338 	struct buffer_head *head, *bh;
1339 
1340 	bh = head = page_buffers(page);
1341 	do {
1342 		block_end = block_start + bh->b_size;
1343 		if (buffer_new(bh)) {
1344 			if (block_end > from && block_start < to) {
1345 				if (!PageUptodate(page)) {
1346 					unsigned start, size;
1347 
1348 					start = max(from, block_start);
1349 					size = min(to, block_end) - start;
1350 
1351 					zero_user(page, start, size);
1352 					write_end_fn(handle, bh);
1353 				}
1354 				clear_buffer_new(bh);
1355 			}
1356 		}
1357 		block_start = block_end;
1358 		bh = bh->b_this_page;
1359 	} while (bh != head);
1360 }
1361 
1362 static int ext4_journalled_write_end(struct file *file,
1363 				     struct address_space *mapping,
1364 				     loff_t pos, unsigned len, unsigned copied,
1365 				     struct page *page, void *fsdata)
1366 {
1367 	handle_t *handle = ext4_journal_current_handle();
1368 	struct inode *inode = mapping->host;
1369 	loff_t old_size = inode->i_size;
1370 	int ret = 0, ret2;
1371 	int partial = 0;
1372 	unsigned from, to;
1373 	int size_changed = 0;
1374 	int inline_data = ext4_has_inline_data(inode);
1375 	bool verity = ext4_verity_in_progress(inode);
1376 
1377 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1378 	from = pos & (PAGE_SIZE - 1);
1379 	to = from + len;
1380 
1381 	BUG_ON(!ext4_handle_valid(handle));
1382 
1383 	if (inline_data) {
1384 		ret = ext4_write_inline_data_end(inode, pos, len,
1385 						 copied, page);
1386 		if (ret < 0) {
1387 			unlock_page(page);
1388 			put_page(page);
1389 			goto errout;
1390 		}
1391 		copied = ret;
1392 	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1393 		copied = 0;
1394 		ext4_journalled_zero_new_buffers(handle, page, from, to);
1395 	} else {
1396 		if (unlikely(copied < len))
1397 			ext4_journalled_zero_new_buffers(handle, page,
1398 							 from + copied, to);
1399 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1400 					     from + copied, &partial,
1401 					     write_end_fn);
1402 		if (!partial)
1403 			SetPageUptodate(page);
1404 	}
1405 	if (!verity)
1406 		size_changed = ext4_update_inode_size(inode, pos + copied);
1407 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1408 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1409 	unlock_page(page);
1410 	put_page(page);
1411 
1412 	if (old_size < pos && !verity)
1413 		pagecache_isize_extended(inode, old_size, pos);
1414 
1415 	if (size_changed || inline_data) {
1416 		ret2 = ext4_mark_inode_dirty(handle, inode);
1417 		if (!ret)
1418 			ret = ret2;
1419 	}
1420 
1421 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1422 		/* if we have allocated more blocks and copied
1423 		 * less. We will have blocks allocated outside
1424 		 * inode->i_size. So truncate them
1425 		 */
1426 		ext4_orphan_add(handle, inode);
1427 
1428 errout:
1429 	ret2 = ext4_journal_stop(handle);
1430 	if (!ret)
1431 		ret = ret2;
1432 	if (pos + len > inode->i_size && !verity) {
1433 		ext4_truncate_failed_write(inode);
1434 		/*
1435 		 * If truncate failed early the inode might still be
1436 		 * on the orphan list; we need to make sure the inode
1437 		 * is removed from the orphan list in that case.
1438 		 */
1439 		if (inode->i_nlink)
1440 			ext4_orphan_del(NULL, inode);
1441 	}
1442 
1443 	return ret ? ret : copied;
1444 }
1445 
1446 /*
1447  * Reserve space for a single cluster
1448  */
1449 static int ext4_da_reserve_space(struct inode *inode)
1450 {
1451 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1452 	struct ext4_inode_info *ei = EXT4_I(inode);
1453 	int ret;
1454 
1455 	/*
1456 	 * We will charge metadata quota at writeout time; this saves
1457 	 * us from metadata over-estimation, though we may go over by
1458 	 * a small amount in the end.  Here we just reserve for data.
1459 	 */
1460 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1461 	if (ret)
1462 		return ret;
1463 
1464 	spin_lock(&ei->i_block_reservation_lock);
1465 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1466 		spin_unlock(&ei->i_block_reservation_lock);
1467 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1468 		return -ENOSPC;
1469 	}
1470 	ei->i_reserved_data_blocks++;
1471 	trace_ext4_da_reserve_space(inode);
1472 	spin_unlock(&ei->i_block_reservation_lock);
1473 
1474 	return 0;       /* success */
1475 }
1476 
1477 void ext4_da_release_space(struct inode *inode, int to_free)
1478 {
1479 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1480 	struct ext4_inode_info *ei = EXT4_I(inode);
1481 
1482 	if (!to_free)
1483 		return;		/* Nothing to release, exit */
1484 
1485 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1486 
1487 	trace_ext4_da_release_space(inode, to_free);
1488 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1489 		/*
1490 		 * if there aren't enough reserved blocks, then the
1491 		 * counter is messed up somewhere.  Since this
1492 		 * function is called from invalidate page, it's
1493 		 * harmless to return without any action.
1494 		 */
1495 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1496 			 "ino %lu, to_free %d with only %d reserved "
1497 			 "data blocks", inode->i_ino, to_free,
1498 			 ei->i_reserved_data_blocks);
1499 		WARN_ON(1);
1500 		to_free = ei->i_reserved_data_blocks;
1501 	}
1502 	ei->i_reserved_data_blocks -= to_free;
1503 
1504 	/* update fs dirty data blocks counter */
1505 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1506 
1507 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1508 
1509 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1510 }
1511 
1512 /*
1513  * Delayed allocation stuff
1514  */
1515 
1516 struct mpage_da_data {
1517 	struct inode *inode;
1518 	struct writeback_control *wbc;
1519 
1520 	pgoff_t first_page;	/* The first page to write */
1521 	pgoff_t next_page;	/* Current page to examine */
1522 	pgoff_t last_page;	/* Last page to examine */
1523 	/*
1524 	 * Extent to map - this can be after first_page because that can be
1525 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1526 	 * is delalloc or unwritten.
1527 	 */
1528 	struct ext4_map_blocks map;
1529 	struct ext4_io_submit io_submit;	/* IO submission data */
1530 	unsigned int do_map:1;
1531 };
1532 
1533 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1534 				       bool invalidate)
1535 {
1536 	int nr_pages, i;
1537 	pgoff_t index, end;
1538 	struct pagevec pvec;
1539 	struct inode *inode = mpd->inode;
1540 	struct address_space *mapping = inode->i_mapping;
1541 
1542 	/* This is necessary when next_page == 0. */
1543 	if (mpd->first_page >= mpd->next_page)
1544 		return;
1545 
1546 	index = mpd->first_page;
1547 	end   = mpd->next_page - 1;
1548 	if (invalidate) {
1549 		ext4_lblk_t start, last;
1550 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1551 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1552 		ext4_es_remove_extent(inode, start, last - start + 1);
1553 	}
1554 
1555 	pagevec_init(&pvec);
1556 	while (index <= end) {
1557 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1558 		if (nr_pages == 0)
1559 			break;
1560 		for (i = 0; i < nr_pages; i++) {
1561 			struct page *page = pvec.pages[i];
1562 
1563 			BUG_ON(!PageLocked(page));
1564 			BUG_ON(PageWriteback(page));
1565 			if (invalidate) {
1566 				if (page_mapped(page))
1567 					clear_page_dirty_for_io(page);
1568 				block_invalidatepage(page, 0, PAGE_SIZE);
1569 				ClearPageUptodate(page);
1570 			}
1571 			unlock_page(page);
1572 		}
1573 		pagevec_release(&pvec);
1574 	}
1575 }
1576 
1577 static void ext4_print_free_blocks(struct inode *inode)
1578 {
1579 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1580 	struct super_block *sb = inode->i_sb;
1581 	struct ext4_inode_info *ei = EXT4_I(inode);
1582 
1583 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1584 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1585 			ext4_count_free_clusters(sb)));
1586 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1587 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1588 	       (long long) EXT4_C2B(EXT4_SB(sb),
1589 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1590 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1591 	       (long long) EXT4_C2B(EXT4_SB(sb),
1592 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1593 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1594 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1595 		 ei->i_reserved_data_blocks);
1596 	return;
1597 }
1598 
1599 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1600 {
1601 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1602 }
1603 
1604 /*
1605  * ext4_insert_delayed_block - adds a delayed block to the extents status
1606  *                             tree, incrementing the reserved cluster/block
1607  *                             count or making a pending reservation
1608  *                             where needed
1609  *
1610  * @inode - file containing the newly added block
1611  * @lblk - logical block to be added
1612  *
1613  * Returns 0 on success, negative error code on failure.
1614  */
1615 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1616 {
1617 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1618 	int ret;
1619 	bool allocated = false;
1620 
1621 	/*
1622 	 * If the cluster containing lblk is shared with a delayed,
1623 	 * written, or unwritten extent in a bigalloc file system, it's
1624 	 * already been accounted for and does not need to be reserved.
1625 	 * A pending reservation must be made for the cluster if it's
1626 	 * shared with a written or unwritten extent and doesn't already
1627 	 * have one.  Written and unwritten extents can be purged from the
1628 	 * extents status tree if the system is under memory pressure, so
1629 	 * it's necessary to examine the extent tree if a search of the
1630 	 * extents status tree doesn't get a match.
1631 	 */
1632 	if (sbi->s_cluster_ratio == 1) {
1633 		ret = ext4_da_reserve_space(inode);
1634 		if (ret != 0)   /* ENOSPC */
1635 			goto errout;
1636 	} else {   /* bigalloc */
1637 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1638 			if (!ext4_es_scan_clu(inode,
1639 					      &ext4_es_is_mapped, lblk)) {
1640 				ret = ext4_clu_mapped(inode,
1641 						      EXT4_B2C(sbi, lblk));
1642 				if (ret < 0)
1643 					goto errout;
1644 				if (ret == 0) {
1645 					ret = ext4_da_reserve_space(inode);
1646 					if (ret != 0)   /* ENOSPC */
1647 						goto errout;
1648 				} else {
1649 					allocated = true;
1650 				}
1651 			} else {
1652 				allocated = true;
1653 			}
1654 		}
1655 	}
1656 
1657 	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1658 
1659 errout:
1660 	return ret;
1661 }
1662 
1663 /*
1664  * This function is grabs code from the very beginning of
1665  * ext4_map_blocks, but assumes that the caller is from delayed write
1666  * time. This function looks up the requested blocks and sets the
1667  * buffer delay bit under the protection of i_data_sem.
1668  */
1669 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1670 			      struct ext4_map_blocks *map,
1671 			      struct buffer_head *bh)
1672 {
1673 	struct extent_status es;
1674 	int retval;
1675 	sector_t invalid_block = ~((sector_t) 0xffff);
1676 #ifdef ES_AGGRESSIVE_TEST
1677 	struct ext4_map_blocks orig_map;
1678 
1679 	memcpy(&orig_map, map, sizeof(*map));
1680 #endif
1681 
1682 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1683 		invalid_block = ~0;
1684 
1685 	map->m_flags = 0;
1686 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1687 		  "logical block %lu\n", inode->i_ino, map->m_len,
1688 		  (unsigned long) map->m_lblk);
1689 
1690 	/* Lookup extent status tree firstly */
1691 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1692 		if (ext4_es_is_hole(&es)) {
1693 			retval = 0;
1694 			down_read(&EXT4_I(inode)->i_data_sem);
1695 			goto add_delayed;
1696 		}
1697 
1698 		/*
1699 		 * Delayed extent could be allocated by fallocate.
1700 		 * So we need to check it.
1701 		 */
1702 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1703 			map_bh(bh, inode->i_sb, invalid_block);
1704 			set_buffer_new(bh);
1705 			set_buffer_delay(bh);
1706 			return 0;
1707 		}
1708 
1709 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1710 		retval = es.es_len - (iblock - es.es_lblk);
1711 		if (retval > map->m_len)
1712 			retval = map->m_len;
1713 		map->m_len = retval;
1714 		if (ext4_es_is_written(&es))
1715 			map->m_flags |= EXT4_MAP_MAPPED;
1716 		else if (ext4_es_is_unwritten(&es))
1717 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1718 		else
1719 			BUG();
1720 
1721 #ifdef ES_AGGRESSIVE_TEST
1722 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1723 #endif
1724 		return retval;
1725 	}
1726 
1727 	/*
1728 	 * Try to see if we can get the block without requesting a new
1729 	 * file system block.
1730 	 */
1731 	down_read(&EXT4_I(inode)->i_data_sem);
1732 	if (ext4_has_inline_data(inode))
1733 		retval = 0;
1734 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1735 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1736 	else
1737 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1738 
1739 add_delayed:
1740 	if (retval == 0) {
1741 		int ret;
1742 
1743 		/*
1744 		 * XXX: __block_prepare_write() unmaps passed block,
1745 		 * is it OK?
1746 		 */
1747 
1748 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1749 		if (ret != 0) {
1750 			retval = ret;
1751 			goto out_unlock;
1752 		}
1753 
1754 		map_bh(bh, inode->i_sb, invalid_block);
1755 		set_buffer_new(bh);
1756 		set_buffer_delay(bh);
1757 	} else if (retval > 0) {
1758 		int ret;
1759 		unsigned int status;
1760 
1761 		if (unlikely(retval != map->m_len)) {
1762 			ext4_warning(inode->i_sb,
1763 				     "ES len assertion failed for inode "
1764 				     "%lu: retval %d != map->m_len %d",
1765 				     inode->i_ino, retval, map->m_len);
1766 			WARN_ON(1);
1767 		}
1768 
1769 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1770 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1771 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1772 					    map->m_pblk, status);
1773 		if (ret != 0)
1774 			retval = ret;
1775 	}
1776 
1777 out_unlock:
1778 	up_read((&EXT4_I(inode)->i_data_sem));
1779 
1780 	return retval;
1781 }
1782 
1783 /*
1784  * This is a special get_block_t callback which is used by
1785  * ext4_da_write_begin().  It will either return mapped block or
1786  * reserve space for a single block.
1787  *
1788  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1789  * We also have b_blocknr = -1 and b_bdev initialized properly
1790  *
1791  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1792  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1793  * initialized properly.
1794  */
1795 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1796 			   struct buffer_head *bh, int create)
1797 {
1798 	struct ext4_map_blocks map;
1799 	int ret = 0;
1800 
1801 	BUG_ON(create == 0);
1802 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1803 
1804 	map.m_lblk = iblock;
1805 	map.m_len = 1;
1806 
1807 	/*
1808 	 * first, we need to know whether the block is allocated already
1809 	 * preallocated blocks are unmapped but should treated
1810 	 * the same as allocated blocks.
1811 	 */
1812 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1813 	if (ret <= 0)
1814 		return ret;
1815 
1816 	map_bh(bh, inode->i_sb, map.m_pblk);
1817 	ext4_update_bh_state(bh, map.m_flags);
1818 
1819 	if (buffer_unwritten(bh)) {
1820 		/* A delayed write to unwritten bh should be marked
1821 		 * new and mapped.  Mapped ensures that we don't do
1822 		 * get_block multiple times when we write to the same
1823 		 * offset and new ensures that we do proper zero out
1824 		 * for partial write.
1825 		 */
1826 		set_buffer_new(bh);
1827 		set_buffer_mapped(bh);
1828 	}
1829 	return 0;
1830 }
1831 
1832 static int bget_one(handle_t *handle, struct buffer_head *bh)
1833 {
1834 	get_bh(bh);
1835 	return 0;
1836 }
1837 
1838 static int bput_one(handle_t *handle, struct buffer_head *bh)
1839 {
1840 	put_bh(bh);
1841 	return 0;
1842 }
1843 
1844 static int __ext4_journalled_writepage(struct page *page,
1845 				       unsigned int len)
1846 {
1847 	struct address_space *mapping = page->mapping;
1848 	struct inode *inode = mapping->host;
1849 	struct buffer_head *page_bufs = NULL;
1850 	handle_t *handle = NULL;
1851 	int ret = 0, err = 0;
1852 	int inline_data = ext4_has_inline_data(inode);
1853 	struct buffer_head *inode_bh = NULL;
1854 
1855 	ClearPageChecked(page);
1856 
1857 	if (inline_data) {
1858 		BUG_ON(page->index != 0);
1859 		BUG_ON(len > ext4_get_max_inline_size(inode));
1860 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1861 		if (inode_bh == NULL)
1862 			goto out;
1863 	} else {
1864 		page_bufs = page_buffers(page);
1865 		if (!page_bufs) {
1866 			BUG();
1867 			goto out;
1868 		}
1869 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1870 				       NULL, bget_one);
1871 	}
1872 	/*
1873 	 * We need to release the page lock before we start the
1874 	 * journal, so grab a reference so the page won't disappear
1875 	 * out from under us.
1876 	 */
1877 	get_page(page);
1878 	unlock_page(page);
1879 
1880 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1881 				    ext4_writepage_trans_blocks(inode));
1882 	if (IS_ERR(handle)) {
1883 		ret = PTR_ERR(handle);
1884 		put_page(page);
1885 		goto out_no_pagelock;
1886 	}
1887 	BUG_ON(!ext4_handle_valid(handle));
1888 
1889 	lock_page(page);
1890 	put_page(page);
1891 	if (page->mapping != mapping) {
1892 		/* The page got truncated from under us */
1893 		ext4_journal_stop(handle);
1894 		ret = 0;
1895 		goto out;
1896 	}
1897 
1898 	if (inline_data) {
1899 		ret = ext4_mark_inode_dirty(handle, inode);
1900 	} else {
1901 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1902 					     do_journal_get_write_access);
1903 
1904 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1905 					     write_end_fn);
1906 	}
1907 	if (ret == 0)
1908 		ret = err;
1909 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1910 	err = ext4_journal_stop(handle);
1911 	if (!ret)
1912 		ret = err;
1913 
1914 	if (!ext4_has_inline_data(inode))
1915 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1916 				       NULL, bput_one);
1917 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1918 out:
1919 	unlock_page(page);
1920 out_no_pagelock:
1921 	brelse(inode_bh);
1922 	return ret;
1923 }
1924 
1925 /*
1926  * Note that we don't need to start a transaction unless we're journaling data
1927  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1928  * need to file the inode to the transaction's list in ordered mode because if
1929  * we are writing back data added by write(), the inode is already there and if
1930  * we are writing back data modified via mmap(), no one guarantees in which
1931  * transaction the data will hit the disk. In case we are journaling data, we
1932  * cannot start transaction directly because transaction start ranks above page
1933  * lock so we have to do some magic.
1934  *
1935  * This function can get called via...
1936  *   - ext4_writepages after taking page lock (have journal handle)
1937  *   - journal_submit_inode_data_buffers (no journal handle)
1938  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1939  *   - grab_page_cache when doing write_begin (have journal handle)
1940  *
1941  * We don't do any block allocation in this function. If we have page with
1942  * multiple blocks we need to write those buffer_heads that are mapped. This
1943  * is important for mmaped based write. So if we do with blocksize 1K
1944  * truncate(f, 1024);
1945  * a = mmap(f, 0, 4096);
1946  * a[0] = 'a';
1947  * truncate(f, 4096);
1948  * we have in the page first buffer_head mapped via page_mkwrite call back
1949  * but other buffer_heads would be unmapped but dirty (dirty done via the
1950  * do_wp_page). So writepage should write the first block. If we modify
1951  * the mmap area beyond 1024 we will again get a page_fault and the
1952  * page_mkwrite callback will do the block allocation and mark the
1953  * buffer_heads mapped.
1954  *
1955  * We redirty the page if we have any buffer_heads that is either delay or
1956  * unwritten in the page.
1957  *
1958  * We can get recursively called as show below.
1959  *
1960  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1961  *		ext4_writepage()
1962  *
1963  * But since we don't do any block allocation we should not deadlock.
1964  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1965  */
1966 static int ext4_writepage(struct page *page,
1967 			  struct writeback_control *wbc)
1968 {
1969 	int ret = 0;
1970 	loff_t size;
1971 	unsigned int len;
1972 	struct buffer_head *page_bufs = NULL;
1973 	struct inode *inode = page->mapping->host;
1974 	struct ext4_io_submit io_submit;
1975 	bool keep_towrite = false;
1976 
1977 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1978 		ext4_invalidatepage(page, 0, PAGE_SIZE);
1979 		unlock_page(page);
1980 		return -EIO;
1981 	}
1982 
1983 	trace_ext4_writepage(page);
1984 	size = i_size_read(inode);
1985 	if (page->index == size >> PAGE_SHIFT &&
1986 	    !ext4_verity_in_progress(inode))
1987 		len = size & ~PAGE_MASK;
1988 	else
1989 		len = PAGE_SIZE;
1990 
1991 	page_bufs = page_buffers(page);
1992 	/*
1993 	 * We cannot do block allocation or other extent handling in this
1994 	 * function. If there are buffers needing that, we have to redirty
1995 	 * the page. But we may reach here when we do a journal commit via
1996 	 * journal_submit_inode_data_buffers() and in that case we must write
1997 	 * allocated buffers to achieve data=ordered mode guarantees.
1998 	 *
1999 	 * Also, if there is only one buffer per page (the fs block
2000 	 * size == the page size), if one buffer needs block
2001 	 * allocation or needs to modify the extent tree to clear the
2002 	 * unwritten flag, we know that the page can't be written at
2003 	 * all, so we might as well refuse the write immediately.
2004 	 * Unfortunately if the block size != page size, we can't as
2005 	 * easily detect this case using ext4_walk_page_buffers(), but
2006 	 * for the extremely common case, this is an optimization that
2007 	 * skips a useless round trip through ext4_bio_write_page().
2008 	 */
2009 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2010 				   ext4_bh_delay_or_unwritten)) {
2011 		redirty_page_for_writepage(wbc, page);
2012 		if ((current->flags & PF_MEMALLOC) ||
2013 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2014 			/*
2015 			 * For memory cleaning there's no point in writing only
2016 			 * some buffers. So just bail out. Warn if we came here
2017 			 * from direct reclaim.
2018 			 */
2019 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2020 							== PF_MEMALLOC);
2021 			unlock_page(page);
2022 			return 0;
2023 		}
2024 		keep_towrite = true;
2025 	}
2026 
2027 	if (PageChecked(page) && ext4_should_journal_data(inode))
2028 		/*
2029 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2030 		 * doesn't seem much point in redirtying the page here.
2031 		 */
2032 		return __ext4_journalled_writepage(page, len);
2033 
2034 	ext4_io_submit_init(&io_submit, wbc);
2035 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2036 	if (!io_submit.io_end) {
2037 		redirty_page_for_writepage(wbc, page);
2038 		unlock_page(page);
2039 		return -ENOMEM;
2040 	}
2041 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2042 	ext4_io_submit(&io_submit);
2043 	/* Drop io_end reference we got from init */
2044 	ext4_put_io_end_defer(io_submit.io_end);
2045 	return ret;
2046 }
2047 
2048 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2049 {
2050 	int len;
2051 	loff_t size;
2052 	int err;
2053 
2054 	BUG_ON(page->index != mpd->first_page);
2055 	clear_page_dirty_for_io(page);
2056 	/*
2057 	 * We have to be very careful here!  Nothing protects writeback path
2058 	 * against i_size changes and the page can be writeably mapped into
2059 	 * page tables. So an application can be growing i_size and writing
2060 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2061 	 * write-protects our page in page tables and the page cannot get
2062 	 * written to again until we release page lock. So only after
2063 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2064 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2065 	 * on the barrier provided by TestClearPageDirty in
2066 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2067 	 * after page tables are updated.
2068 	 */
2069 	size = i_size_read(mpd->inode);
2070 	if (page->index == size >> PAGE_SHIFT &&
2071 	    !ext4_verity_in_progress(mpd->inode))
2072 		len = size & ~PAGE_MASK;
2073 	else
2074 		len = PAGE_SIZE;
2075 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2076 	if (!err)
2077 		mpd->wbc->nr_to_write--;
2078 	mpd->first_page++;
2079 
2080 	return err;
2081 }
2082 
2083 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2084 
2085 /*
2086  * mballoc gives us at most this number of blocks...
2087  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2088  * The rest of mballoc seems to handle chunks up to full group size.
2089  */
2090 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2091 
2092 /*
2093  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2094  *
2095  * @mpd - extent of blocks
2096  * @lblk - logical number of the block in the file
2097  * @bh - buffer head we want to add to the extent
2098  *
2099  * The function is used to collect contig. blocks in the same state. If the
2100  * buffer doesn't require mapping for writeback and we haven't started the
2101  * extent of buffers to map yet, the function returns 'true' immediately - the
2102  * caller can write the buffer right away. Otherwise the function returns true
2103  * if the block has been added to the extent, false if the block couldn't be
2104  * added.
2105  */
2106 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2107 				   struct buffer_head *bh)
2108 {
2109 	struct ext4_map_blocks *map = &mpd->map;
2110 
2111 	/* Buffer that doesn't need mapping for writeback? */
2112 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2113 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2114 		/* So far no extent to map => we write the buffer right away */
2115 		if (map->m_len == 0)
2116 			return true;
2117 		return false;
2118 	}
2119 
2120 	/* First block in the extent? */
2121 	if (map->m_len == 0) {
2122 		/* We cannot map unless handle is started... */
2123 		if (!mpd->do_map)
2124 			return false;
2125 		map->m_lblk = lblk;
2126 		map->m_len = 1;
2127 		map->m_flags = bh->b_state & BH_FLAGS;
2128 		return true;
2129 	}
2130 
2131 	/* Don't go larger than mballoc is willing to allocate */
2132 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2133 		return false;
2134 
2135 	/* Can we merge the block to our big extent? */
2136 	if (lblk == map->m_lblk + map->m_len &&
2137 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2138 		map->m_len++;
2139 		return true;
2140 	}
2141 	return false;
2142 }
2143 
2144 /*
2145  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2146  *
2147  * @mpd - extent of blocks for mapping
2148  * @head - the first buffer in the page
2149  * @bh - buffer we should start processing from
2150  * @lblk - logical number of the block in the file corresponding to @bh
2151  *
2152  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2153  * the page for IO if all buffers in this page were mapped and there's no
2154  * accumulated extent of buffers to map or add buffers in the page to the
2155  * extent of buffers to map. The function returns 1 if the caller can continue
2156  * by processing the next page, 0 if it should stop adding buffers to the
2157  * extent to map because we cannot extend it anymore. It can also return value
2158  * < 0 in case of error during IO submission.
2159  */
2160 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2161 				   struct buffer_head *head,
2162 				   struct buffer_head *bh,
2163 				   ext4_lblk_t lblk)
2164 {
2165 	struct inode *inode = mpd->inode;
2166 	int err;
2167 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2168 							>> inode->i_blkbits;
2169 
2170 	if (ext4_verity_in_progress(inode))
2171 		blocks = EXT_MAX_BLOCKS;
2172 
2173 	do {
2174 		BUG_ON(buffer_locked(bh));
2175 
2176 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2177 			/* Found extent to map? */
2178 			if (mpd->map.m_len)
2179 				return 0;
2180 			/* Buffer needs mapping and handle is not started? */
2181 			if (!mpd->do_map)
2182 				return 0;
2183 			/* Everything mapped so far and we hit EOF */
2184 			break;
2185 		}
2186 	} while (lblk++, (bh = bh->b_this_page) != head);
2187 	/* So far everything mapped? Submit the page for IO. */
2188 	if (mpd->map.m_len == 0) {
2189 		err = mpage_submit_page(mpd, head->b_page);
2190 		if (err < 0)
2191 			return err;
2192 	}
2193 	return lblk < blocks;
2194 }
2195 
2196 /*
2197  * mpage_process_page - update page buffers corresponding to changed extent and
2198  *		       may submit fully mapped page for IO
2199  *
2200  * @mpd		- description of extent to map, on return next extent to map
2201  * @m_lblk	- logical block mapping.
2202  * @m_pblk	- corresponding physical mapping.
2203  * @map_bh	- determines on return whether this page requires any further
2204  *		  mapping or not.
2205  * Scan given page buffers corresponding to changed extent and update buffer
2206  * state according to new extent state.
2207  * We map delalloc buffers to their physical location, clear unwritten bits.
2208  * If the given page is not fully mapped, we update @map to the next extent in
2209  * the given page that needs mapping & return @map_bh as true.
2210  */
2211 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2212 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2213 			      bool *map_bh)
2214 {
2215 	struct buffer_head *head, *bh;
2216 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2217 	ext4_lblk_t lblk = *m_lblk;
2218 	ext4_fsblk_t pblock = *m_pblk;
2219 	int err = 0;
2220 	int blkbits = mpd->inode->i_blkbits;
2221 	ssize_t io_end_size = 0;
2222 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2223 
2224 	bh = head = page_buffers(page);
2225 	do {
2226 		if (lblk < mpd->map.m_lblk)
2227 			continue;
2228 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2229 			/*
2230 			 * Buffer after end of mapped extent.
2231 			 * Find next buffer in the page to map.
2232 			 */
2233 			mpd->map.m_len = 0;
2234 			mpd->map.m_flags = 0;
2235 			io_end_vec->size += io_end_size;
2236 			io_end_size = 0;
2237 
2238 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2239 			if (err > 0)
2240 				err = 0;
2241 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2242 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2243 				if (IS_ERR(io_end_vec)) {
2244 					err = PTR_ERR(io_end_vec);
2245 					goto out;
2246 				}
2247 				io_end_vec->offset = mpd->map.m_lblk << blkbits;
2248 			}
2249 			*map_bh = true;
2250 			goto out;
2251 		}
2252 		if (buffer_delay(bh)) {
2253 			clear_buffer_delay(bh);
2254 			bh->b_blocknr = pblock++;
2255 		}
2256 		clear_buffer_unwritten(bh);
2257 		io_end_size += (1 << blkbits);
2258 	} while (lblk++, (bh = bh->b_this_page) != head);
2259 
2260 	io_end_vec->size += io_end_size;
2261 	io_end_size = 0;
2262 	*map_bh = false;
2263 out:
2264 	*m_lblk = lblk;
2265 	*m_pblk = pblock;
2266 	return err;
2267 }
2268 
2269 /*
2270  * mpage_map_buffers - update buffers corresponding to changed extent and
2271  *		       submit fully mapped pages for IO
2272  *
2273  * @mpd - description of extent to map, on return next extent to map
2274  *
2275  * Scan buffers corresponding to changed extent (we expect corresponding pages
2276  * to be already locked) and update buffer state according to new extent state.
2277  * We map delalloc buffers to their physical location, clear unwritten bits,
2278  * and mark buffers as uninit when we perform writes to unwritten extents
2279  * and do extent conversion after IO is finished. If the last page is not fully
2280  * mapped, we update @map to the next extent in the last page that needs
2281  * mapping. Otherwise we submit the page for IO.
2282  */
2283 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2284 {
2285 	struct pagevec pvec;
2286 	int nr_pages, i;
2287 	struct inode *inode = mpd->inode;
2288 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2289 	pgoff_t start, end;
2290 	ext4_lblk_t lblk;
2291 	ext4_fsblk_t pblock;
2292 	int err;
2293 	bool map_bh = false;
2294 
2295 	start = mpd->map.m_lblk >> bpp_bits;
2296 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2297 	lblk = start << bpp_bits;
2298 	pblock = mpd->map.m_pblk;
2299 
2300 	pagevec_init(&pvec);
2301 	while (start <= end) {
2302 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2303 						&start, end);
2304 		if (nr_pages == 0)
2305 			break;
2306 		for (i = 0; i < nr_pages; i++) {
2307 			struct page *page = pvec.pages[i];
2308 
2309 			err = mpage_process_page(mpd, page, &lblk, &pblock,
2310 						 &map_bh);
2311 			/*
2312 			 * If map_bh is true, means page may require further bh
2313 			 * mapping, or maybe the page was submitted for IO.
2314 			 * So we return to call further extent mapping.
2315 			 */
2316 			if (err < 0 || map_bh == true)
2317 				goto out;
2318 			/* Page fully mapped - let IO run! */
2319 			err = mpage_submit_page(mpd, page);
2320 			if (err < 0)
2321 				goto out;
2322 		}
2323 		pagevec_release(&pvec);
2324 	}
2325 	/* Extent fully mapped and matches with page boundary. We are done. */
2326 	mpd->map.m_len = 0;
2327 	mpd->map.m_flags = 0;
2328 	return 0;
2329 out:
2330 	pagevec_release(&pvec);
2331 	return err;
2332 }
2333 
2334 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2335 {
2336 	struct inode *inode = mpd->inode;
2337 	struct ext4_map_blocks *map = &mpd->map;
2338 	int get_blocks_flags;
2339 	int err, dioread_nolock;
2340 
2341 	trace_ext4_da_write_pages_extent(inode, map);
2342 	/*
2343 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2344 	 * to convert an unwritten extent to be initialized (in the case
2345 	 * where we have written into one or more preallocated blocks).  It is
2346 	 * possible that we're going to need more metadata blocks than
2347 	 * previously reserved. However we must not fail because we're in
2348 	 * writeback and there is nothing we can do about it so it might result
2349 	 * in data loss.  So use reserved blocks to allocate metadata if
2350 	 * possible.
2351 	 *
2352 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2353 	 * the blocks in question are delalloc blocks.  This indicates
2354 	 * that the blocks and quotas has already been checked when
2355 	 * the data was copied into the page cache.
2356 	 */
2357 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2358 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2359 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2360 	dioread_nolock = ext4_should_dioread_nolock(inode);
2361 	if (dioread_nolock)
2362 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2363 	if (map->m_flags & (1 << BH_Delay))
2364 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2365 
2366 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2367 	if (err < 0)
2368 		return err;
2369 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2370 		if (!mpd->io_submit.io_end->handle &&
2371 		    ext4_handle_valid(handle)) {
2372 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2373 			handle->h_rsv_handle = NULL;
2374 		}
2375 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2376 	}
2377 
2378 	BUG_ON(map->m_len == 0);
2379 	return 0;
2380 }
2381 
2382 /*
2383  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2384  *				 mpd->len and submit pages underlying it for IO
2385  *
2386  * @handle - handle for journal operations
2387  * @mpd - extent to map
2388  * @give_up_on_write - we set this to true iff there is a fatal error and there
2389  *                     is no hope of writing the data. The caller should discard
2390  *                     dirty pages to avoid infinite loops.
2391  *
2392  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2393  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2394  * them to initialized or split the described range from larger unwritten
2395  * extent. Note that we need not map all the described range since allocation
2396  * can return less blocks or the range is covered by more unwritten extents. We
2397  * cannot map more because we are limited by reserved transaction credits. On
2398  * the other hand we always make sure that the last touched page is fully
2399  * mapped so that it can be written out (and thus forward progress is
2400  * guaranteed). After mapping we submit all mapped pages for IO.
2401  */
2402 static int mpage_map_and_submit_extent(handle_t *handle,
2403 				       struct mpage_da_data *mpd,
2404 				       bool *give_up_on_write)
2405 {
2406 	struct inode *inode = mpd->inode;
2407 	struct ext4_map_blocks *map = &mpd->map;
2408 	int err;
2409 	loff_t disksize;
2410 	int progress = 0;
2411 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2412 	struct ext4_io_end_vec *io_end_vec;
2413 
2414 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2415 	if (IS_ERR(io_end_vec))
2416 		return PTR_ERR(io_end_vec);
2417 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2418 	do {
2419 		err = mpage_map_one_extent(handle, mpd);
2420 		if (err < 0) {
2421 			struct super_block *sb = inode->i_sb;
2422 
2423 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2424 			    EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2425 				goto invalidate_dirty_pages;
2426 			/*
2427 			 * Let the uper layers retry transient errors.
2428 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2429 			 * is non-zero, a commit should free up blocks.
2430 			 */
2431 			if ((err == -ENOMEM) ||
2432 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2433 				if (progress)
2434 					goto update_disksize;
2435 				return err;
2436 			}
2437 			ext4_msg(sb, KERN_CRIT,
2438 				 "Delayed block allocation failed for "
2439 				 "inode %lu at logical offset %llu with"
2440 				 " max blocks %u with error %d",
2441 				 inode->i_ino,
2442 				 (unsigned long long)map->m_lblk,
2443 				 (unsigned)map->m_len, -err);
2444 			ext4_msg(sb, KERN_CRIT,
2445 				 "This should not happen!! Data will "
2446 				 "be lost\n");
2447 			if (err == -ENOSPC)
2448 				ext4_print_free_blocks(inode);
2449 		invalidate_dirty_pages:
2450 			*give_up_on_write = true;
2451 			return err;
2452 		}
2453 		progress = 1;
2454 		/*
2455 		 * Update buffer state, submit mapped pages, and get us new
2456 		 * extent to map
2457 		 */
2458 		err = mpage_map_and_submit_buffers(mpd);
2459 		if (err < 0)
2460 			goto update_disksize;
2461 	} while (map->m_len);
2462 
2463 update_disksize:
2464 	/*
2465 	 * Update on-disk size after IO is submitted.  Races with
2466 	 * truncate are avoided by checking i_size under i_data_sem.
2467 	 */
2468 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2469 	if (disksize > EXT4_I(inode)->i_disksize) {
2470 		int err2;
2471 		loff_t i_size;
2472 
2473 		down_write(&EXT4_I(inode)->i_data_sem);
2474 		i_size = i_size_read(inode);
2475 		if (disksize > i_size)
2476 			disksize = i_size;
2477 		if (disksize > EXT4_I(inode)->i_disksize)
2478 			EXT4_I(inode)->i_disksize = disksize;
2479 		up_write(&EXT4_I(inode)->i_data_sem);
2480 		err2 = ext4_mark_inode_dirty(handle, inode);
2481 		if (err2)
2482 			ext4_error(inode->i_sb,
2483 				   "Failed to mark inode %lu dirty",
2484 				   inode->i_ino);
2485 		if (!err)
2486 			err = err2;
2487 	}
2488 	return err;
2489 }
2490 
2491 /*
2492  * Calculate the total number of credits to reserve for one writepages
2493  * iteration. This is called from ext4_writepages(). We map an extent of
2494  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2495  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2496  * bpp - 1 blocks in bpp different extents.
2497  */
2498 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2499 {
2500 	int bpp = ext4_journal_blocks_per_page(inode);
2501 
2502 	return ext4_meta_trans_blocks(inode,
2503 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2504 }
2505 
2506 /*
2507  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2508  * 				 and underlying extent to map
2509  *
2510  * @mpd - where to look for pages
2511  *
2512  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2513  * IO immediately. When we find a page which isn't mapped we start accumulating
2514  * extent of buffers underlying these pages that needs mapping (formed by
2515  * either delayed or unwritten buffers). We also lock the pages containing
2516  * these buffers. The extent found is returned in @mpd structure (starting at
2517  * mpd->lblk with length mpd->len blocks).
2518  *
2519  * Note that this function can attach bios to one io_end structure which are
2520  * neither logically nor physically contiguous. Although it may seem as an
2521  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2522  * case as we need to track IO to all buffers underlying a page in one io_end.
2523  */
2524 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2525 {
2526 	struct address_space *mapping = mpd->inode->i_mapping;
2527 	struct pagevec pvec;
2528 	unsigned int nr_pages;
2529 	long left = mpd->wbc->nr_to_write;
2530 	pgoff_t index = mpd->first_page;
2531 	pgoff_t end = mpd->last_page;
2532 	xa_mark_t tag;
2533 	int i, err = 0;
2534 	int blkbits = mpd->inode->i_blkbits;
2535 	ext4_lblk_t lblk;
2536 	struct buffer_head *head;
2537 
2538 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2539 		tag = PAGECACHE_TAG_TOWRITE;
2540 	else
2541 		tag = PAGECACHE_TAG_DIRTY;
2542 
2543 	pagevec_init(&pvec);
2544 	mpd->map.m_len = 0;
2545 	mpd->next_page = index;
2546 	while (index <= end) {
2547 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2548 				tag);
2549 		if (nr_pages == 0)
2550 			goto out;
2551 
2552 		for (i = 0; i < nr_pages; i++) {
2553 			struct page *page = pvec.pages[i];
2554 
2555 			/*
2556 			 * Accumulated enough dirty pages? This doesn't apply
2557 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2558 			 * keep going because someone may be concurrently
2559 			 * dirtying pages, and we might have synced a lot of
2560 			 * newly appeared dirty pages, but have not synced all
2561 			 * of the old dirty pages.
2562 			 */
2563 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2564 				goto out;
2565 
2566 			/* If we can't merge this page, we are done. */
2567 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2568 				goto out;
2569 
2570 			lock_page(page);
2571 			/*
2572 			 * If the page is no longer dirty, or its mapping no
2573 			 * longer corresponds to inode we are writing (which
2574 			 * means it has been truncated or invalidated), or the
2575 			 * page is already under writeback and we are not doing
2576 			 * a data integrity writeback, skip the page
2577 			 */
2578 			if (!PageDirty(page) ||
2579 			    (PageWriteback(page) &&
2580 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2581 			    unlikely(page->mapping != mapping)) {
2582 				unlock_page(page);
2583 				continue;
2584 			}
2585 
2586 			wait_on_page_writeback(page);
2587 			BUG_ON(PageWriteback(page));
2588 
2589 			if (mpd->map.m_len == 0)
2590 				mpd->first_page = page->index;
2591 			mpd->next_page = page->index + 1;
2592 			/* Add all dirty buffers to mpd */
2593 			lblk = ((ext4_lblk_t)page->index) <<
2594 				(PAGE_SHIFT - blkbits);
2595 			head = page_buffers(page);
2596 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2597 			if (err <= 0)
2598 				goto out;
2599 			err = 0;
2600 			left--;
2601 		}
2602 		pagevec_release(&pvec);
2603 		cond_resched();
2604 	}
2605 	return 0;
2606 out:
2607 	pagevec_release(&pvec);
2608 	return err;
2609 }
2610 
2611 static int ext4_writepages(struct address_space *mapping,
2612 			   struct writeback_control *wbc)
2613 {
2614 	pgoff_t	writeback_index = 0;
2615 	long nr_to_write = wbc->nr_to_write;
2616 	int range_whole = 0;
2617 	int cycled = 1;
2618 	handle_t *handle = NULL;
2619 	struct mpage_da_data mpd;
2620 	struct inode *inode = mapping->host;
2621 	int needed_blocks, rsv_blocks = 0, ret = 0;
2622 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2623 	bool done;
2624 	struct blk_plug plug;
2625 	bool give_up_on_write = false;
2626 
2627 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2628 		return -EIO;
2629 
2630 	percpu_down_read(&sbi->s_journal_flag_rwsem);
2631 	trace_ext4_writepages(inode, wbc);
2632 
2633 	/*
2634 	 * No pages to write? This is mainly a kludge to avoid starting
2635 	 * a transaction for special inodes like journal inode on last iput()
2636 	 * because that could violate lock ordering on umount
2637 	 */
2638 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2639 		goto out_writepages;
2640 
2641 	if (ext4_should_journal_data(inode)) {
2642 		ret = generic_writepages(mapping, wbc);
2643 		goto out_writepages;
2644 	}
2645 
2646 	/*
2647 	 * If the filesystem has aborted, it is read-only, so return
2648 	 * right away instead of dumping stack traces later on that
2649 	 * will obscure the real source of the problem.  We test
2650 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2651 	 * the latter could be true if the filesystem is mounted
2652 	 * read-only, and in that case, ext4_writepages should
2653 	 * *never* be called, so if that ever happens, we would want
2654 	 * the stack trace.
2655 	 */
2656 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2657 		     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2658 		ret = -EROFS;
2659 		goto out_writepages;
2660 	}
2661 
2662 	/*
2663 	 * If we have inline data and arrive here, it means that
2664 	 * we will soon create the block for the 1st page, so
2665 	 * we'd better clear the inline data here.
2666 	 */
2667 	if (ext4_has_inline_data(inode)) {
2668 		/* Just inode will be modified... */
2669 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2670 		if (IS_ERR(handle)) {
2671 			ret = PTR_ERR(handle);
2672 			goto out_writepages;
2673 		}
2674 		BUG_ON(ext4_test_inode_state(inode,
2675 				EXT4_STATE_MAY_INLINE_DATA));
2676 		ext4_destroy_inline_data(handle, inode);
2677 		ext4_journal_stop(handle);
2678 	}
2679 
2680 	if (ext4_should_dioread_nolock(inode)) {
2681 		/*
2682 		 * We may need to convert up to one extent per block in
2683 		 * the page and we may dirty the inode.
2684 		 */
2685 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2686 						PAGE_SIZE >> inode->i_blkbits);
2687 	}
2688 
2689 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2690 		range_whole = 1;
2691 
2692 	if (wbc->range_cyclic) {
2693 		writeback_index = mapping->writeback_index;
2694 		if (writeback_index)
2695 			cycled = 0;
2696 		mpd.first_page = writeback_index;
2697 		mpd.last_page = -1;
2698 	} else {
2699 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2700 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2701 	}
2702 
2703 	mpd.inode = inode;
2704 	mpd.wbc = wbc;
2705 	ext4_io_submit_init(&mpd.io_submit, wbc);
2706 retry:
2707 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2708 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2709 	done = false;
2710 	blk_start_plug(&plug);
2711 
2712 	/*
2713 	 * First writeback pages that don't need mapping - we can avoid
2714 	 * starting a transaction unnecessarily and also avoid being blocked
2715 	 * in the block layer on device congestion while having transaction
2716 	 * started.
2717 	 */
2718 	mpd.do_map = 0;
2719 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2720 	if (!mpd.io_submit.io_end) {
2721 		ret = -ENOMEM;
2722 		goto unplug;
2723 	}
2724 	ret = mpage_prepare_extent_to_map(&mpd);
2725 	/* Unlock pages we didn't use */
2726 	mpage_release_unused_pages(&mpd, false);
2727 	/* Submit prepared bio */
2728 	ext4_io_submit(&mpd.io_submit);
2729 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2730 	mpd.io_submit.io_end = NULL;
2731 	if (ret < 0)
2732 		goto unplug;
2733 
2734 	while (!done && mpd.first_page <= mpd.last_page) {
2735 		/* For each extent of pages we use new io_end */
2736 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2737 		if (!mpd.io_submit.io_end) {
2738 			ret = -ENOMEM;
2739 			break;
2740 		}
2741 
2742 		/*
2743 		 * We have two constraints: We find one extent to map and we
2744 		 * must always write out whole page (makes a difference when
2745 		 * blocksize < pagesize) so that we don't block on IO when we
2746 		 * try to write out the rest of the page. Journalled mode is
2747 		 * not supported by delalloc.
2748 		 */
2749 		BUG_ON(ext4_should_journal_data(inode));
2750 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2751 
2752 		/* start a new transaction */
2753 		handle = ext4_journal_start_with_reserve(inode,
2754 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2755 		if (IS_ERR(handle)) {
2756 			ret = PTR_ERR(handle);
2757 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2758 			       "%ld pages, ino %lu; err %d", __func__,
2759 				wbc->nr_to_write, inode->i_ino, ret);
2760 			/* Release allocated io_end */
2761 			ext4_put_io_end(mpd.io_submit.io_end);
2762 			mpd.io_submit.io_end = NULL;
2763 			break;
2764 		}
2765 		mpd.do_map = 1;
2766 
2767 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2768 		ret = mpage_prepare_extent_to_map(&mpd);
2769 		if (!ret) {
2770 			if (mpd.map.m_len)
2771 				ret = mpage_map_and_submit_extent(handle, &mpd,
2772 					&give_up_on_write);
2773 			else {
2774 				/*
2775 				 * We scanned the whole range (or exhausted
2776 				 * nr_to_write), submitted what was mapped and
2777 				 * didn't find anything needing mapping. We are
2778 				 * done.
2779 				 */
2780 				done = true;
2781 			}
2782 		}
2783 		/*
2784 		 * Caution: If the handle is synchronous,
2785 		 * ext4_journal_stop() can wait for transaction commit
2786 		 * to finish which may depend on writeback of pages to
2787 		 * complete or on page lock to be released.  In that
2788 		 * case, we have to wait until after after we have
2789 		 * submitted all the IO, released page locks we hold,
2790 		 * and dropped io_end reference (for extent conversion
2791 		 * to be able to complete) before stopping the handle.
2792 		 */
2793 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2794 			ext4_journal_stop(handle);
2795 			handle = NULL;
2796 			mpd.do_map = 0;
2797 		}
2798 		/* Unlock pages we didn't use */
2799 		mpage_release_unused_pages(&mpd, give_up_on_write);
2800 		/* Submit prepared bio */
2801 		ext4_io_submit(&mpd.io_submit);
2802 
2803 		/*
2804 		 * Drop our io_end reference we got from init. We have
2805 		 * to be careful and use deferred io_end finishing if
2806 		 * we are still holding the transaction as we can
2807 		 * release the last reference to io_end which may end
2808 		 * up doing unwritten extent conversion.
2809 		 */
2810 		if (handle) {
2811 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2812 			ext4_journal_stop(handle);
2813 		} else
2814 			ext4_put_io_end(mpd.io_submit.io_end);
2815 		mpd.io_submit.io_end = NULL;
2816 
2817 		if (ret == -ENOSPC && sbi->s_journal) {
2818 			/*
2819 			 * Commit the transaction which would
2820 			 * free blocks released in the transaction
2821 			 * and try again
2822 			 */
2823 			jbd2_journal_force_commit_nested(sbi->s_journal);
2824 			ret = 0;
2825 			continue;
2826 		}
2827 		/* Fatal error - ENOMEM, EIO... */
2828 		if (ret)
2829 			break;
2830 	}
2831 unplug:
2832 	blk_finish_plug(&plug);
2833 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2834 		cycled = 1;
2835 		mpd.last_page = writeback_index - 1;
2836 		mpd.first_page = 0;
2837 		goto retry;
2838 	}
2839 
2840 	/* Update index */
2841 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2842 		/*
2843 		 * Set the writeback_index so that range_cyclic
2844 		 * mode will write it back later
2845 		 */
2846 		mapping->writeback_index = mpd.first_page;
2847 
2848 out_writepages:
2849 	trace_ext4_writepages_result(inode, wbc, ret,
2850 				     nr_to_write - wbc->nr_to_write);
2851 	percpu_up_read(&sbi->s_journal_flag_rwsem);
2852 	return ret;
2853 }
2854 
2855 static int ext4_dax_writepages(struct address_space *mapping,
2856 			       struct writeback_control *wbc)
2857 {
2858 	int ret;
2859 	long nr_to_write = wbc->nr_to_write;
2860 	struct inode *inode = mapping->host;
2861 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2862 
2863 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2864 		return -EIO;
2865 
2866 	percpu_down_read(&sbi->s_journal_flag_rwsem);
2867 	trace_ext4_writepages(inode, wbc);
2868 
2869 	ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2870 	trace_ext4_writepages_result(inode, wbc, ret,
2871 				     nr_to_write - wbc->nr_to_write);
2872 	percpu_up_read(&sbi->s_journal_flag_rwsem);
2873 	return ret;
2874 }
2875 
2876 static int ext4_nonda_switch(struct super_block *sb)
2877 {
2878 	s64 free_clusters, dirty_clusters;
2879 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2880 
2881 	/*
2882 	 * switch to non delalloc mode if we are running low
2883 	 * on free block. The free block accounting via percpu
2884 	 * counters can get slightly wrong with percpu_counter_batch getting
2885 	 * accumulated on each CPU without updating global counters
2886 	 * Delalloc need an accurate free block accounting. So switch
2887 	 * to non delalloc when we are near to error range.
2888 	 */
2889 	free_clusters =
2890 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2891 	dirty_clusters =
2892 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2893 	/*
2894 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2895 	 */
2896 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2897 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2898 
2899 	if (2 * free_clusters < 3 * dirty_clusters ||
2900 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2901 		/*
2902 		 * free block count is less than 150% of dirty blocks
2903 		 * or free blocks is less than watermark
2904 		 */
2905 		return 1;
2906 	}
2907 	return 0;
2908 }
2909 
2910 /* We always reserve for an inode update; the superblock could be there too */
2911 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2912 {
2913 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2914 		return 1;
2915 
2916 	if (pos + len <= 0x7fffffffULL)
2917 		return 1;
2918 
2919 	/* We might need to update the superblock to set LARGE_FILE */
2920 	return 2;
2921 }
2922 
2923 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2924 			       loff_t pos, unsigned len, unsigned flags,
2925 			       struct page **pagep, void **fsdata)
2926 {
2927 	int ret, retries = 0;
2928 	struct page *page;
2929 	pgoff_t index;
2930 	struct inode *inode = mapping->host;
2931 	handle_t *handle;
2932 
2933 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2934 		return -EIO;
2935 
2936 	index = pos >> PAGE_SHIFT;
2937 
2938 	if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2939 	    ext4_verity_in_progress(inode)) {
2940 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2941 		return ext4_write_begin(file, mapping, pos,
2942 					len, flags, pagep, fsdata);
2943 	}
2944 	*fsdata = (void *)0;
2945 	trace_ext4_da_write_begin(inode, pos, len, flags);
2946 
2947 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2948 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2949 						      pos, len, flags,
2950 						      pagep, fsdata);
2951 		if (ret < 0)
2952 			return ret;
2953 		if (ret == 1)
2954 			return 0;
2955 	}
2956 
2957 	/*
2958 	 * grab_cache_page_write_begin() can take a long time if the
2959 	 * system is thrashing due to memory pressure, or if the page
2960 	 * is being written back.  So grab it first before we start
2961 	 * the transaction handle.  This also allows us to allocate
2962 	 * the page (if needed) without using GFP_NOFS.
2963 	 */
2964 retry_grab:
2965 	page = grab_cache_page_write_begin(mapping, index, flags);
2966 	if (!page)
2967 		return -ENOMEM;
2968 	unlock_page(page);
2969 
2970 	/*
2971 	 * With delayed allocation, we don't log the i_disksize update
2972 	 * if there is delayed block allocation. But we still need
2973 	 * to journalling the i_disksize update if writes to the end
2974 	 * of file which has an already mapped buffer.
2975 	 */
2976 retry_journal:
2977 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2978 				ext4_da_write_credits(inode, pos, len));
2979 	if (IS_ERR(handle)) {
2980 		put_page(page);
2981 		return PTR_ERR(handle);
2982 	}
2983 
2984 	lock_page(page);
2985 	if (page->mapping != mapping) {
2986 		/* The page got truncated from under us */
2987 		unlock_page(page);
2988 		put_page(page);
2989 		ext4_journal_stop(handle);
2990 		goto retry_grab;
2991 	}
2992 	/* In case writeback began while the page was unlocked */
2993 	wait_for_stable_page(page);
2994 
2995 #ifdef CONFIG_FS_ENCRYPTION
2996 	ret = ext4_block_write_begin(page, pos, len,
2997 				     ext4_da_get_block_prep);
2998 #else
2999 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3000 #endif
3001 	if (ret < 0) {
3002 		unlock_page(page);
3003 		ext4_journal_stop(handle);
3004 		/*
3005 		 * block_write_begin may have instantiated a few blocks
3006 		 * outside i_size.  Trim these off again. Don't need
3007 		 * i_size_read because we hold i_mutex.
3008 		 */
3009 		if (pos + len > inode->i_size)
3010 			ext4_truncate_failed_write(inode);
3011 
3012 		if (ret == -ENOSPC &&
3013 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3014 			goto retry_journal;
3015 
3016 		put_page(page);
3017 		return ret;
3018 	}
3019 
3020 	*pagep = page;
3021 	return ret;
3022 }
3023 
3024 /*
3025  * Check if we should update i_disksize
3026  * when write to the end of file but not require block allocation
3027  */
3028 static int ext4_da_should_update_i_disksize(struct page *page,
3029 					    unsigned long offset)
3030 {
3031 	struct buffer_head *bh;
3032 	struct inode *inode = page->mapping->host;
3033 	unsigned int idx;
3034 	int i;
3035 
3036 	bh = page_buffers(page);
3037 	idx = offset >> inode->i_blkbits;
3038 
3039 	for (i = 0; i < idx; i++)
3040 		bh = bh->b_this_page;
3041 
3042 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3043 		return 0;
3044 	return 1;
3045 }
3046 
3047 static int ext4_da_write_end(struct file *file,
3048 			     struct address_space *mapping,
3049 			     loff_t pos, unsigned len, unsigned copied,
3050 			     struct page *page, void *fsdata)
3051 {
3052 	struct inode *inode = mapping->host;
3053 	int ret = 0, ret2;
3054 	handle_t *handle = ext4_journal_current_handle();
3055 	loff_t new_i_size;
3056 	unsigned long start, end;
3057 	int write_mode = (int)(unsigned long)fsdata;
3058 
3059 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3060 		return ext4_write_end(file, mapping, pos,
3061 				      len, copied, page, fsdata);
3062 
3063 	trace_ext4_da_write_end(inode, pos, len, copied);
3064 	start = pos & (PAGE_SIZE - 1);
3065 	end = start + copied - 1;
3066 
3067 	/*
3068 	 * generic_write_end() will run mark_inode_dirty() if i_size
3069 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3070 	 * into that.
3071 	 */
3072 	new_i_size = pos + copied;
3073 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3074 		if (ext4_has_inline_data(inode) ||
3075 		    ext4_da_should_update_i_disksize(page, end)) {
3076 			ext4_update_i_disksize(inode, new_i_size);
3077 			/* We need to mark inode dirty even if
3078 			 * new_i_size is less that inode->i_size
3079 			 * bu greater than i_disksize.(hint delalloc)
3080 			 */
3081 			ext4_mark_inode_dirty(handle, inode);
3082 		}
3083 	}
3084 
3085 	if (write_mode != CONVERT_INLINE_DATA &&
3086 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3087 	    ext4_has_inline_data(inode))
3088 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3089 						     page);
3090 	else
3091 		ret2 = generic_write_end(file, mapping, pos, len, copied,
3092 							page, fsdata);
3093 
3094 	copied = ret2;
3095 	if (ret2 < 0)
3096 		ret = ret2;
3097 	ret2 = ext4_journal_stop(handle);
3098 	if (!ret)
3099 		ret = ret2;
3100 
3101 	return ret ? ret : copied;
3102 }
3103 
3104 /*
3105  * Force all delayed allocation blocks to be allocated for a given inode.
3106  */
3107 int ext4_alloc_da_blocks(struct inode *inode)
3108 {
3109 	trace_ext4_alloc_da_blocks(inode);
3110 
3111 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3112 		return 0;
3113 
3114 	/*
3115 	 * We do something simple for now.  The filemap_flush() will
3116 	 * also start triggering a write of the data blocks, which is
3117 	 * not strictly speaking necessary (and for users of
3118 	 * laptop_mode, not even desirable).  However, to do otherwise
3119 	 * would require replicating code paths in:
3120 	 *
3121 	 * ext4_writepages() ->
3122 	 *    write_cache_pages() ---> (via passed in callback function)
3123 	 *        __mpage_da_writepage() -->
3124 	 *           mpage_add_bh_to_extent()
3125 	 *           mpage_da_map_blocks()
3126 	 *
3127 	 * The problem is that write_cache_pages(), located in
3128 	 * mm/page-writeback.c, marks pages clean in preparation for
3129 	 * doing I/O, which is not desirable if we're not planning on
3130 	 * doing I/O at all.
3131 	 *
3132 	 * We could call write_cache_pages(), and then redirty all of
3133 	 * the pages by calling redirty_page_for_writepage() but that
3134 	 * would be ugly in the extreme.  So instead we would need to
3135 	 * replicate parts of the code in the above functions,
3136 	 * simplifying them because we wouldn't actually intend to
3137 	 * write out the pages, but rather only collect contiguous
3138 	 * logical block extents, call the multi-block allocator, and
3139 	 * then update the buffer heads with the block allocations.
3140 	 *
3141 	 * For now, though, we'll cheat by calling filemap_flush(),
3142 	 * which will map the blocks, and start the I/O, but not
3143 	 * actually wait for the I/O to complete.
3144 	 */
3145 	return filemap_flush(inode->i_mapping);
3146 }
3147 
3148 /*
3149  * bmap() is special.  It gets used by applications such as lilo and by
3150  * the swapper to find the on-disk block of a specific piece of data.
3151  *
3152  * Naturally, this is dangerous if the block concerned is still in the
3153  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3154  * filesystem and enables swap, then they may get a nasty shock when the
3155  * data getting swapped to that swapfile suddenly gets overwritten by
3156  * the original zero's written out previously to the journal and
3157  * awaiting writeback in the kernel's buffer cache.
3158  *
3159  * So, if we see any bmap calls here on a modified, data-journaled file,
3160  * take extra steps to flush any blocks which might be in the cache.
3161  */
3162 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3163 {
3164 	struct inode *inode = mapping->host;
3165 	journal_t *journal;
3166 	int err;
3167 
3168 	/*
3169 	 * We can get here for an inline file via the FIBMAP ioctl
3170 	 */
3171 	if (ext4_has_inline_data(inode))
3172 		return 0;
3173 
3174 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3175 			test_opt(inode->i_sb, DELALLOC)) {
3176 		/*
3177 		 * With delalloc we want to sync the file
3178 		 * so that we can make sure we allocate
3179 		 * blocks for file
3180 		 */
3181 		filemap_write_and_wait(mapping);
3182 	}
3183 
3184 	if (EXT4_JOURNAL(inode) &&
3185 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3186 		/*
3187 		 * This is a REALLY heavyweight approach, but the use of
3188 		 * bmap on dirty files is expected to be extremely rare:
3189 		 * only if we run lilo or swapon on a freshly made file
3190 		 * do we expect this to happen.
3191 		 *
3192 		 * (bmap requires CAP_SYS_RAWIO so this does not
3193 		 * represent an unprivileged user DOS attack --- we'd be
3194 		 * in trouble if mortal users could trigger this path at
3195 		 * will.)
3196 		 *
3197 		 * NB. EXT4_STATE_JDATA is not set on files other than
3198 		 * regular files.  If somebody wants to bmap a directory
3199 		 * or symlink and gets confused because the buffer
3200 		 * hasn't yet been flushed to disk, they deserve
3201 		 * everything they get.
3202 		 */
3203 
3204 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3205 		journal = EXT4_JOURNAL(inode);
3206 		jbd2_journal_lock_updates(journal);
3207 		err = jbd2_journal_flush(journal);
3208 		jbd2_journal_unlock_updates(journal);
3209 
3210 		if (err)
3211 			return 0;
3212 	}
3213 
3214 	return generic_block_bmap(mapping, block, ext4_get_block);
3215 }
3216 
3217 static int ext4_readpage(struct file *file, struct page *page)
3218 {
3219 	int ret = -EAGAIN;
3220 	struct inode *inode = page->mapping->host;
3221 
3222 	trace_ext4_readpage(page);
3223 
3224 	if (ext4_has_inline_data(inode))
3225 		ret = ext4_readpage_inline(inode, page);
3226 
3227 	if (ret == -EAGAIN)
3228 		return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3229 						false);
3230 
3231 	return ret;
3232 }
3233 
3234 static int
3235 ext4_readpages(struct file *file, struct address_space *mapping,
3236 		struct list_head *pages, unsigned nr_pages)
3237 {
3238 	struct inode *inode = mapping->host;
3239 
3240 	/* If the file has inline data, no need to do readpages. */
3241 	if (ext4_has_inline_data(inode))
3242 		return 0;
3243 
3244 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3245 }
3246 
3247 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3248 				unsigned int length)
3249 {
3250 	trace_ext4_invalidatepage(page, offset, length);
3251 
3252 	/* No journalling happens on data buffers when this function is used */
3253 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3254 
3255 	block_invalidatepage(page, offset, length);
3256 }
3257 
3258 static int __ext4_journalled_invalidatepage(struct page *page,
3259 					    unsigned int offset,
3260 					    unsigned int length)
3261 {
3262 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3263 
3264 	trace_ext4_journalled_invalidatepage(page, offset, length);
3265 
3266 	/*
3267 	 * If it's a full truncate we just forget about the pending dirtying
3268 	 */
3269 	if (offset == 0 && length == PAGE_SIZE)
3270 		ClearPageChecked(page);
3271 
3272 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3273 }
3274 
3275 /* Wrapper for aops... */
3276 static void ext4_journalled_invalidatepage(struct page *page,
3277 					   unsigned int offset,
3278 					   unsigned int length)
3279 {
3280 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3281 }
3282 
3283 static int ext4_releasepage(struct page *page, gfp_t wait)
3284 {
3285 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3286 
3287 	trace_ext4_releasepage(page);
3288 
3289 	/* Page has dirty journalled data -> cannot release */
3290 	if (PageChecked(page))
3291 		return 0;
3292 	if (journal)
3293 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3294 	else
3295 		return try_to_free_buffers(page);
3296 }
3297 
3298 static bool ext4_inode_datasync_dirty(struct inode *inode)
3299 {
3300 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3301 
3302 	if (journal)
3303 		return !jbd2_transaction_committed(journal,
3304 					EXT4_I(inode)->i_datasync_tid);
3305 	/* Any metadata buffers to write? */
3306 	if (!list_empty(&inode->i_mapping->private_list))
3307 		return true;
3308 	return inode->i_state & I_DIRTY_DATASYNC;
3309 }
3310 
3311 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3312 			   struct ext4_map_blocks *map, loff_t offset,
3313 			   loff_t length)
3314 {
3315 	u8 blkbits = inode->i_blkbits;
3316 
3317 	/*
3318 	 * Writes that span EOF might trigger an I/O size update on completion,
3319 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3320 	 * there is no other metadata changes being made or are pending.
3321 	 */
3322 	iomap->flags = 0;
3323 	if (ext4_inode_datasync_dirty(inode) ||
3324 	    offset + length > i_size_read(inode))
3325 		iomap->flags |= IOMAP_F_DIRTY;
3326 
3327 	if (map->m_flags & EXT4_MAP_NEW)
3328 		iomap->flags |= IOMAP_F_NEW;
3329 
3330 	iomap->bdev = inode->i_sb->s_bdev;
3331 	iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3332 	iomap->offset = (u64) map->m_lblk << blkbits;
3333 	iomap->length = (u64) map->m_len << blkbits;
3334 
3335 	/*
3336 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3337 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3338 	 * set. In order for any allocated unwritten extents to be converted
3339 	 * into written extents correctly within the ->end_io() handler, we
3340 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3341 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3342 	 * been set first.
3343 	 */
3344 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3345 		iomap->type = IOMAP_UNWRITTEN;
3346 		iomap->addr = (u64) map->m_pblk << blkbits;
3347 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3348 		iomap->type = IOMAP_MAPPED;
3349 		iomap->addr = (u64) map->m_pblk << blkbits;
3350 	} else {
3351 		iomap->type = IOMAP_HOLE;
3352 		iomap->addr = IOMAP_NULL_ADDR;
3353 	}
3354 }
3355 
3356 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3357 			    unsigned int flags)
3358 {
3359 	handle_t *handle;
3360 	u8 blkbits = inode->i_blkbits;
3361 	int ret, dio_credits, m_flags = 0, retries = 0;
3362 
3363 	/*
3364 	 * Trim the mapping request to the maximum value that we can map at
3365 	 * once for direct I/O.
3366 	 */
3367 	if (map->m_len > DIO_MAX_BLOCKS)
3368 		map->m_len = DIO_MAX_BLOCKS;
3369 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3370 
3371 retry:
3372 	/*
3373 	 * Either we allocate blocks and then don't get an unwritten extent, so
3374 	 * in that case we have reserved enough credits. Or, the blocks are
3375 	 * already allocated and unwritten. In that case, the extent conversion
3376 	 * fits into the credits as well.
3377 	 */
3378 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3379 	if (IS_ERR(handle))
3380 		return PTR_ERR(handle);
3381 
3382 	/*
3383 	 * DAX and direct I/O are the only two operations that are currently
3384 	 * supported with IOMAP_WRITE.
3385 	 */
3386 	WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3387 	if (IS_DAX(inode))
3388 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3389 	/*
3390 	 * We use i_size instead of i_disksize here because delalloc writeback
3391 	 * can complete at any point during the I/O and subsequently push the
3392 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3393 	 * happening and thus expose allocated blocks to direct I/O reads.
3394 	 */
3395 	else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode))
3396 		m_flags = EXT4_GET_BLOCKS_CREATE;
3397 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3398 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3399 
3400 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3401 
3402 	/*
3403 	 * We cannot fill holes in indirect tree based inodes as that could
3404 	 * expose stale data in the case of a crash. Use the magic error code
3405 	 * to fallback to buffered I/O.
3406 	 */
3407 	if (!m_flags && !ret)
3408 		ret = -ENOTBLK;
3409 
3410 	ext4_journal_stop(handle);
3411 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3412 		goto retry;
3413 
3414 	return ret;
3415 }
3416 
3417 
3418 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3419 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3420 {
3421 	int ret;
3422 	struct ext4_map_blocks map;
3423 	u8 blkbits = inode->i_blkbits;
3424 
3425 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3426 		return -EINVAL;
3427 
3428 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3429 		return -ERANGE;
3430 
3431 	/*
3432 	 * Calculate the first and last logical blocks respectively.
3433 	 */
3434 	map.m_lblk = offset >> blkbits;
3435 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3436 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3437 
3438 	if (flags & IOMAP_WRITE)
3439 		ret = ext4_iomap_alloc(inode, &map, flags);
3440 	else
3441 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3442 
3443 	if (ret < 0)
3444 		return ret;
3445 
3446 	ext4_set_iomap(inode, iomap, &map, offset, length);
3447 
3448 	return 0;
3449 }
3450 
3451 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3452 			  ssize_t written, unsigned flags, struct iomap *iomap)
3453 {
3454 	/*
3455 	 * Check to see whether an error occurred while writing out the data to
3456 	 * the allocated blocks. If so, return the magic error code so that we
3457 	 * fallback to buffered I/O and attempt to complete the remainder of
3458 	 * the I/O. Any blocks that may have been allocated in preparation for
3459 	 * the direct I/O will be reused during buffered I/O.
3460 	 */
3461 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3462 		return -ENOTBLK;
3463 
3464 	return 0;
3465 }
3466 
3467 const struct iomap_ops ext4_iomap_ops = {
3468 	.iomap_begin		= ext4_iomap_begin,
3469 	.iomap_end		= ext4_iomap_end,
3470 };
3471 
3472 static bool ext4_iomap_is_delalloc(struct inode *inode,
3473 				   struct ext4_map_blocks *map)
3474 {
3475 	struct extent_status es;
3476 	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3477 
3478 	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3479 				  map->m_lblk, end, &es);
3480 
3481 	if (!es.es_len || es.es_lblk > end)
3482 		return false;
3483 
3484 	if (es.es_lblk > map->m_lblk) {
3485 		map->m_len = es.es_lblk - map->m_lblk;
3486 		return false;
3487 	}
3488 
3489 	offset = map->m_lblk - es.es_lblk;
3490 	map->m_len = es.es_len - offset;
3491 
3492 	return true;
3493 }
3494 
3495 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3496 				   loff_t length, unsigned int flags,
3497 				   struct iomap *iomap, struct iomap *srcmap)
3498 {
3499 	int ret;
3500 	bool delalloc = false;
3501 	struct ext4_map_blocks map;
3502 	u8 blkbits = inode->i_blkbits;
3503 
3504 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3505 		return -EINVAL;
3506 
3507 	if (ext4_has_inline_data(inode)) {
3508 		ret = ext4_inline_data_iomap(inode, iomap);
3509 		if (ret != -EAGAIN) {
3510 			if (ret == 0 && offset >= iomap->length)
3511 				ret = -ENOENT;
3512 			return ret;
3513 		}
3514 	}
3515 
3516 	/*
3517 	 * Calculate the first and last logical block respectively.
3518 	 */
3519 	map.m_lblk = offset >> blkbits;
3520 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3521 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3522 
3523 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3524 	if (ret < 0)
3525 		return ret;
3526 	if (ret == 0)
3527 		delalloc = ext4_iomap_is_delalloc(inode, &map);
3528 
3529 	ext4_set_iomap(inode, iomap, &map, offset, length);
3530 	if (delalloc && iomap->type == IOMAP_HOLE)
3531 		iomap->type = IOMAP_DELALLOC;
3532 
3533 	return 0;
3534 }
3535 
3536 const struct iomap_ops ext4_iomap_report_ops = {
3537 	.iomap_begin = ext4_iomap_begin_report,
3538 };
3539 
3540 /*
3541  * Pages can be marked dirty completely asynchronously from ext4's journalling
3542  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3543  * much here because ->set_page_dirty is called under VFS locks.  The page is
3544  * not necessarily locked.
3545  *
3546  * We cannot just dirty the page and leave attached buffers clean, because the
3547  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3548  * or jbddirty because all the journalling code will explode.
3549  *
3550  * So what we do is to mark the page "pending dirty" and next time writepage
3551  * is called, propagate that into the buffers appropriately.
3552  */
3553 static int ext4_journalled_set_page_dirty(struct page *page)
3554 {
3555 	SetPageChecked(page);
3556 	return __set_page_dirty_nobuffers(page);
3557 }
3558 
3559 static int ext4_set_page_dirty(struct page *page)
3560 {
3561 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3562 	WARN_ON_ONCE(!page_has_buffers(page));
3563 	return __set_page_dirty_buffers(page);
3564 }
3565 
3566 static const struct address_space_operations ext4_aops = {
3567 	.readpage		= ext4_readpage,
3568 	.readpages		= ext4_readpages,
3569 	.writepage		= ext4_writepage,
3570 	.writepages		= ext4_writepages,
3571 	.write_begin		= ext4_write_begin,
3572 	.write_end		= ext4_write_end,
3573 	.set_page_dirty		= ext4_set_page_dirty,
3574 	.bmap			= ext4_bmap,
3575 	.invalidatepage		= ext4_invalidatepage,
3576 	.releasepage		= ext4_releasepage,
3577 	.direct_IO		= noop_direct_IO,
3578 	.migratepage		= buffer_migrate_page,
3579 	.is_partially_uptodate  = block_is_partially_uptodate,
3580 	.error_remove_page	= generic_error_remove_page,
3581 };
3582 
3583 static const struct address_space_operations ext4_journalled_aops = {
3584 	.readpage		= ext4_readpage,
3585 	.readpages		= ext4_readpages,
3586 	.writepage		= ext4_writepage,
3587 	.writepages		= ext4_writepages,
3588 	.write_begin		= ext4_write_begin,
3589 	.write_end		= ext4_journalled_write_end,
3590 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3591 	.bmap			= ext4_bmap,
3592 	.invalidatepage		= ext4_journalled_invalidatepage,
3593 	.releasepage		= ext4_releasepage,
3594 	.direct_IO		= noop_direct_IO,
3595 	.is_partially_uptodate  = block_is_partially_uptodate,
3596 	.error_remove_page	= generic_error_remove_page,
3597 };
3598 
3599 static const struct address_space_operations ext4_da_aops = {
3600 	.readpage		= ext4_readpage,
3601 	.readpages		= ext4_readpages,
3602 	.writepage		= ext4_writepage,
3603 	.writepages		= ext4_writepages,
3604 	.write_begin		= ext4_da_write_begin,
3605 	.write_end		= ext4_da_write_end,
3606 	.set_page_dirty		= ext4_set_page_dirty,
3607 	.bmap			= ext4_bmap,
3608 	.invalidatepage		= ext4_invalidatepage,
3609 	.releasepage		= ext4_releasepage,
3610 	.direct_IO		= noop_direct_IO,
3611 	.migratepage		= buffer_migrate_page,
3612 	.is_partially_uptodate  = block_is_partially_uptodate,
3613 	.error_remove_page	= generic_error_remove_page,
3614 };
3615 
3616 static const struct address_space_operations ext4_dax_aops = {
3617 	.writepages		= ext4_dax_writepages,
3618 	.direct_IO		= noop_direct_IO,
3619 	.set_page_dirty		= noop_set_page_dirty,
3620 	.bmap			= ext4_bmap,
3621 	.invalidatepage		= noop_invalidatepage,
3622 };
3623 
3624 void ext4_set_aops(struct inode *inode)
3625 {
3626 	switch (ext4_inode_journal_mode(inode)) {
3627 	case EXT4_INODE_ORDERED_DATA_MODE:
3628 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3629 		break;
3630 	case EXT4_INODE_JOURNAL_DATA_MODE:
3631 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3632 		return;
3633 	default:
3634 		BUG();
3635 	}
3636 	if (IS_DAX(inode))
3637 		inode->i_mapping->a_ops = &ext4_dax_aops;
3638 	else if (test_opt(inode->i_sb, DELALLOC))
3639 		inode->i_mapping->a_ops = &ext4_da_aops;
3640 	else
3641 		inode->i_mapping->a_ops = &ext4_aops;
3642 }
3643 
3644 static int __ext4_block_zero_page_range(handle_t *handle,
3645 		struct address_space *mapping, loff_t from, loff_t length)
3646 {
3647 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3648 	unsigned offset = from & (PAGE_SIZE-1);
3649 	unsigned blocksize, pos;
3650 	ext4_lblk_t iblock;
3651 	struct inode *inode = mapping->host;
3652 	struct buffer_head *bh;
3653 	struct page *page;
3654 	int err = 0;
3655 
3656 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3657 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3658 	if (!page)
3659 		return -ENOMEM;
3660 
3661 	blocksize = inode->i_sb->s_blocksize;
3662 
3663 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3664 
3665 	if (!page_has_buffers(page))
3666 		create_empty_buffers(page, blocksize, 0);
3667 
3668 	/* Find the buffer that contains "offset" */
3669 	bh = page_buffers(page);
3670 	pos = blocksize;
3671 	while (offset >= pos) {
3672 		bh = bh->b_this_page;
3673 		iblock++;
3674 		pos += blocksize;
3675 	}
3676 	if (buffer_freed(bh)) {
3677 		BUFFER_TRACE(bh, "freed: skip");
3678 		goto unlock;
3679 	}
3680 	if (!buffer_mapped(bh)) {
3681 		BUFFER_TRACE(bh, "unmapped");
3682 		ext4_get_block(inode, iblock, bh, 0);
3683 		/* unmapped? It's a hole - nothing to do */
3684 		if (!buffer_mapped(bh)) {
3685 			BUFFER_TRACE(bh, "still unmapped");
3686 			goto unlock;
3687 		}
3688 	}
3689 
3690 	/* Ok, it's mapped. Make sure it's up-to-date */
3691 	if (PageUptodate(page))
3692 		set_buffer_uptodate(bh);
3693 
3694 	if (!buffer_uptodate(bh)) {
3695 		err = -EIO;
3696 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3697 		wait_on_buffer(bh);
3698 		/* Uhhuh. Read error. Complain and punt. */
3699 		if (!buffer_uptodate(bh))
3700 			goto unlock;
3701 		if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
3702 			/* We expect the key to be set. */
3703 			BUG_ON(!fscrypt_has_encryption_key(inode));
3704 			WARN_ON_ONCE(fscrypt_decrypt_pagecache_blocks(
3705 					page, blocksize, bh_offset(bh)));
3706 		}
3707 	}
3708 	if (ext4_should_journal_data(inode)) {
3709 		BUFFER_TRACE(bh, "get write access");
3710 		err = ext4_journal_get_write_access(handle, bh);
3711 		if (err)
3712 			goto unlock;
3713 	}
3714 	zero_user(page, offset, length);
3715 	BUFFER_TRACE(bh, "zeroed end of block");
3716 
3717 	if (ext4_should_journal_data(inode)) {
3718 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3719 	} else {
3720 		err = 0;
3721 		mark_buffer_dirty(bh);
3722 		if (ext4_should_order_data(inode))
3723 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3724 					length);
3725 	}
3726 
3727 unlock:
3728 	unlock_page(page);
3729 	put_page(page);
3730 	return err;
3731 }
3732 
3733 /*
3734  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3735  * starting from file offset 'from'.  The range to be zero'd must
3736  * be contained with in one block.  If the specified range exceeds
3737  * the end of the block it will be shortened to end of the block
3738  * that cooresponds to 'from'
3739  */
3740 static int ext4_block_zero_page_range(handle_t *handle,
3741 		struct address_space *mapping, loff_t from, loff_t length)
3742 {
3743 	struct inode *inode = mapping->host;
3744 	unsigned offset = from & (PAGE_SIZE-1);
3745 	unsigned blocksize = inode->i_sb->s_blocksize;
3746 	unsigned max = blocksize - (offset & (blocksize - 1));
3747 
3748 	/*
3749 	 * correct length if it does not fall between
3750 	 * 'from' and the end of the block
3751 	 */
3752 	if (length > max || length < 0)
3753 		length = max;
3754 
3755 	if (IS_DAX(inode)) {
3756 		return iomap_zero_range(inode, from, length, NULL,
3757 					&ext4_iomap_ops);
3758 	}
3759 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3760 }
3761 
3762 /*
3763  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3764  * up to the end of the block which corresponds to `from'.
3765  * This required during truncate. We need to physically zero the tail end
3766  * of that block so it doesn't yield old data if the file is later grown.
3767  */
3768 static int ext4_block_truncate_page(handle_t *handle,
3769 		struct address_space *mapping, loff_t from)
3770 {
3771 	unsigned offset = from & (PAGE_SIZE-1);
3772 	unsigned length;
3773 	unsigned blocksize;
3774 	struct inode *inode = mapping->host;
3775 
3776 	/* If we are processing an encrypted inode during orphan list handling */
3777 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3778 		return 0;
3779 
3780 	blocksize = inode->i_sb->s_blocksize;
3781 	length = blocksize - (offset & (blocksize - 1));
3782 
3783 	return ext4_block_zero_page_range(handle, mapping, from, length);
3784 }
3785 
3786 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3787 			     loff_t lstart, loff_t length)
3788 {
3789 	struct super_block *sb = inode->i_sb;
3790 	struct address_space *mapping = inode->i_mapping;
3791 	unsigned partial_start, partial_end;
3792 	ext4_fsblk_t start, end;
3793 	loff_t byte_end = (lstart + length - 1);
3794 	int err = 0;
3795 
3796 	partial_start = lstart & (sb->s_blocksize - 1);
3797 	partial_end = byte_end & (sb->s_blocksize - 1);
3798 
3799 	start = lstart >> sb->s_blocksize_bits;
3800 	end = byte_end >> sb->s_blocksize_bits;
3801 
3802 	/* Handle partial zero within the single block */
3803 	if (start == end &&
3804 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3805 		err = ext4_block_zero_page_range(handle, mapping,
3806 						 lstart, length);
3807 		return err;
3808 	}
3809 	/* Handle partial zero out on the start of the range */
3810 	if (partial_start) {
3811 		err = ext4_block_zero_page_range(handle, mapping,
3812 						 lstart, sb->s_blocksize);
3813 		if (err)
3814 			return err;
3815 	}
3816 	/* Handle partial zero out on the end of the range */
3817 	if (partial_end != sb->s_blocksize - 1)
3818 		err = ext4_block_zero_page_range(handle, mapping,
3819 						 byte_end - partial_end,
3820 						 partial_end + 1);
3821 	return err;
3822 }
3823 
3824 int ext4_can_truncate(struct inode *inode)
3825 {
3826 	if (S_ISREG(inode->i_mode))
3827 		return 1;
3828 	if (S_ISDIR(inode->i_mode))
3829 		return 1;
3830 	if (S_ISLNK(inode->i_mode))
3831 		return !ext4_inode_is_fast_symlink(inode);
3832 	return 0;
3833 }
3834 
3835 /*
3836  * We have to make sure i_disksize gets properly updated before we truncate
3837  * page cache due to hole punching or zero range. Otherwise i_disksize update
3838  * can get lost as it may have been postponed to submission of writeback but
3839  * that will never happen after we truncate page cache.
3840  */
3841 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3842 				      loff_t len)
3843 {
3844 	handle_t *handle;
3845 	loff_t size = i_size_read(inode);
3846 
3847 	WARN_ON(!inode_is_locked(inode));
3848 	if (offset > size || offset + len < size)
3849 		return 0;
3850 
3851 	if (EXT4_I(inode)->i_disksize >= size)
3852 		return 0;
3853 
3854 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3855 	if (IS_ERR(handle))
3856 		return PTR_ERR(handle);
3857 	ext4_update_i_disksize(inode, size);
3858 	ext4_mark_inode_dirty(handle, inode);
3859 	ext4_journal_stop(handle);
3860 
3861 	return 0;
3862 }
3863 
3864 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3865 {
3866 	up_write(&ei->i_mmap_sem);
3867 	schedule();
3868 	down_write(&ei->i_mmap_sem);
3869 }
3870 
3871 int ext4_break_layouts(struct inode *inode)
3872 {
3873 	struct ext4_inode_info *ei = EXT4_I(inode);
3874 	struct page *page;
3875 	int error;
3876 
3877 	if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3878 		return -EINVAL;
3879 
3880 	do {
3881 		page = dax_layout_busy_page(inode->i_mapping);
3882 		if (!page)
3883 			return 0;
3884 
3885 		error = ___wait_var_event(&page->_refcount,
3886 				atomic_read(&page->_refcount) == 1,
3887 				TASK_INTERRUPTIBLE, 0, 0,
3888 				ext4_wait_dax_page(ei));
3889 	} while (error == 0);
3890 
3891 	return error;
3892 }
3893 
3894 /*
3895  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3896  * associated with the given offset and length
3897  *
3898  * @inode:  File inode
3899  * @offset: The offset where the hole will begin
3900  * @len:    The length of the hole
3901  *
3902  * Returns: 0 on success or negative on failure
3903  */
3904 
3905 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3906 {
3907 	struct super_block *sb = inode->i_sb;
3908 	ext4_lblk_t first_block, stop_block;
3909 	struct address_space *mapping = inode->i_mapping;
3910 	loff_t first_block_offset, last_block_offset;
3911 	handle_t *handle;
3912 	unsigned int credits;
3913 	int ret = 0;
3914 
3915 	if (!S_ISREG(inode->i_mode))
3916 		return -EOPNOTSUPP;
3917 
3918 	trace_ext4_punch_hole(inode, offset, length, 0);
3919 
3920 	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3921 	if (ext4_has_inline_data(inode)) {
3922 		down_write(&EXT4_I(inode)->i_mmap_sem);
3923 		ret = ext4_convert_inline_data(inode);
3924 		up_write(&EXT4_I(inode)->i_mmap_sem);
3925 		if (ret)
3926 			return ret;
3927 	}
3928 
3929 	/*
3930 	 * Write out all dirty pages to avoid race conditions
3931 	 * Then release them.
3932 	 */
3933 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3934 		ret = filemap_write_and_wait_range(mapping, offset,
3935 						   offset + length - 1);
3936 		if (ret)
3937 			return ret;
3938 	}
3939 
3940 	inode_lock(inode);
3941 
3942 	/* No need to punch hole beyond i_size */
3943 	if (offset >= inode->i_size)
3944 		goto out_mutex;
3945 
3946 	/*
3947 	 * If the hole extends beyond i_size, set the hole
3948 	 * to end after the page that contains i_size
3949 	 */
3950 	if (offset + length > inode->i_size) {
3951 		length = inode->i_size +
3952 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3953 		   offset;
3954 	}
3955 
3956 	if (offset & (sb->s_blocksize - 1) ||
3957 	    (offset + length) & (sb->s_blocksize - 1)) {
3958 		/*
3959 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3960 		 * partial block
3961 		 */
3962 		ret = ext4_inode_attach_jinode(inode);
3963 		if (ret < 0)
3964 			goto out_mutex;
3965 
3966 	}
3967 
3968 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3969 	inode_dio_wait(inode);
3970 
3971 	/*
3972 	 * Prevent page faults from reinstantiating pages we have released from
3973 	 * page cache.
3974 	 */
3975 	down_write(&EXT4_I(inode)->i_mmap_sem);
3976 
3977 	ret = ext4_break_layouts(inode);
3978 	if (ret)
3979 		goto out_dio;
3980 
3981 	first_block_offset = round_up(offset, sb->s_blocksize);
3982 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3983 
3984 	/* Now release the pages and zero block aligned part of pages*/
3985 	if (last_block_offset > first_block_offset) {
3986 		ret = ext4_update_disksize_before_punch(inode, offset, length);
3987 		if (ret)
3988 			goto out_dio;
3989 		truncate_pagecache_range(inode, first_block_offset,
3990 					 last_block_offset);
3991 	}
3992 
3993 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3994 		credits = ext4_writepage_trans_blocks(inode);
3995 	else
3996 		credits = ext4_blocks_for_truncate(inode);
3997 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3998 	if (IS_ERR(handle)) {
3999 		ret = PTR_ERR(handle);
4000 		ext4_std_error(sb, ret);
4001 		goto out_dio;
4002 	}
4003 
4004 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4005 				       length);
4006 	if (ret)
4007 		goto out_stop;
4008 
4009 	first_block = (offset + sb->s_blocksize - 1) >>
4010 		EXT4_BLOCK_SIZE_BITS(sb);
4011 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4012 
4013 	/* If there are blocks to remove, do it */
4014 	if (stop_block > first_block) {
4015 
4016 		down_write(&EXT4_I(inode)->i_data_sem);
4017 		ext4_discard_preallocations(inode);
4018 
4019 		ret = ext4_es_remove_extent(inode, first_block,
4020 					    stop_block - first_block);
4021 		if (ret) {
4022 			up_write(&EXT4_I(inode)->i_data_sem);
4023 			goto out_stop;
4024 		}
4025 
4026 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4027 			ret = ext4_ext_remove_space(inode, first_block,
4028 						    stop_block - 1);
4029 		else
4030 			ret = ext4_ind_remove_space(handle, inode, first_block,
4031 						    stop_block);
4032 
4033 		up_write(&EXT4_I(inode)->i_data_sem);
4034 	}
4035 	if (IS_SYNC(inode))
4036 		ext4_handle_sync(handle);
4037 
4038 	inode->i_mtime = inode->i_ctime = current_time(inode);
4039 	ext4_mark_inode_dirty(handle, inode);
4040 	if (ret >= 0)
4041 		ext4_update_inode_fsync_trans(handle, inode, 1);
4042 out_stop:
4043 	ext4_journal_stop(handle);
4044 out_dio:
4045 	up_write(&EXT4_I(inode)->i_mmap_sem);
4046 out_mutex:
4047 	inode_unlock(inode);
4048 	return ret;
4049 }
4050 
4051 int ext4_inode_attach_jinode(struct inode *inode)
4052 {
4053 	struct ext4_inode_info *ei = EXT4_I(inode);
4054 	struct jbd2_inode *jinode;
4055 
4056 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4057 		return 0;
4058 
4059 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4060 	spin_lock(&inode->i_lock);
4061 	if (!ei->jinode) {
4062 		if (!jinode) {
4063 			spin_unlock(&inode->i_lock);
4064 			return -ENOMEM;
4065 		}
4066 		ei->jinode = jinode;
4067 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4068 		jinode = NULL;
4069 	}
4070 	spin_unlock(&inode->i_lock);
4071 	if (unlikely(jinode != NULL))
4072 		jbd2_free_inode(jinode);
4073 	return 0;
4074 }
4075 
4076 /*
4077  * ext4_truncate()
4078  *
4079  * We block out ext4_get_block() block instantiations across the entire
4080  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4081  * simultaneously on behalf of the same inode.
4082  *
4083  * As we work through the truncate and commit bits of it to the journal there
4084  * is one core, guiding principle: the file's tree must always be consistent on
4085  * disk.  We must be able to restart the truncate after a crash.
4086  *
4087  * The file's tree may be transiently inconsistent in memory (although it
4088  * probably isn't), but whenever we close off and commit a journal transaction,
4089  * the contents of (the filesystem + the journal) must be consistent and
4090  * restartable.  It's pretty simple, really: bottom up, right to left (although
4091  * left-to-right works OK too).
4092  *
4093  * Note that at recovery time, journal replay occurs *before* the restart of
4094  * truncate against the orphan inode list.
4095  *
4096  * The committed inode has the new, desired i_size (which is the same as
4097  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4098  * that this inode's truncate did not complete and it will again call
4099  * ext4_truncate() to have another go.  So there will be instantiated blocks
4100  * to the right of the truncation point in a crashed ext4 filesystem.  But
4101  * that's fine - as long as they are linked from the inode, the post-crash
4102  * ext4_truncate() run will find them and release them.
4103  */
4104 int ext4_truncate(struct inode *inode)
4105 {
4106 	struct ext4_inode_info *ei = EXT4_I(inode);
4107 	unsigned int credits;
4108 	int err = 0;
4109 	handle_t *handle;
4110 	struct address_space *mapping = inode->i_mapping;
4111 
4112 	/*
4113 	 * There is a possibility that we're either freeing the inode
4114 	 * or it's a completely new inode. In those cases we might not
4115 	 * have i_mutex locked because it's not necessary.
4116 	 */
4117 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4118 		WARN_ON(!inode_is_locked(inode));
4119 	trace_ext4_truncate_enter(inode);
4120 
4121 	if (!ext4_can_truncate(inode))
4122 		return 0;
4123 
4124 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4125 
4126 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4127 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4128 
4129 	if (ext4_has_inline_data(inode)) {
4130 		int has_inline = 1;
4131 
4132 		err = ext4_inline_data_truncate(inode, &has_inline);
4133 		if (err)
4134 			return err;
4135 		if (has_inline)
4136 			return 0;
4137 	}
4138 
4139 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4140 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4141 		if (ext4_inode_attach_jinode(inode) < 0)
4142 			return 0;
4143 	}
4144 
4145 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4146 		credits = ext4_writepage_trans_blocks(inode);
4147 	else
4148 		credits = ext4_blocks_for_truncate(inode);
4149 
4150 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4151 	if (IS_ERR(handle))
4152 		return PTR_ERR(handle);
4153 
4154 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4155 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4156 
4157 	/*
4158 	 * We add the inode to the orphan list, so that if this
4159 	 * truncate spans multiple transactions, and we crash, we will
4160 	 * resume the truncate when the filesystem recovers.  It also
4161 	 * marks the inode dirty, to catch the new size.
4162 	 *
4163 	 * Implication: the file must always be in a sane, consistent
4164 	 * truncatable state while each transaction commits.
4165 	 */
4166 	err = ext4_orphan_add(handle, inode);
4167 	if (err)
4168 		goto out_stop;
4169 
4170 	down_write(&EXT4_I(inode)->i_data_sem);
4171 
4172 	ext4_discard_preallocations(inode);
4173 
4174 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4175 		err = ext4_ext_truncate(handle, inode);
4176 	else
4177 		ext4_ind_truncate(handle, inode);
4178 
4179 	up_write(&ei->i_data_sem);
4180 	if (err)
4181 		goto out_stop;
4182 
4183 	if (IS_SYNC(inode))
4184 		ext4_handle_sync(handle);
4185 
4186 out_stop:
4187 	/*
4188 	 * If this was a simple ftruncate() and the file will remain alive,
4189 	 * then we need to clear up the orphan record which we created above.
4190 	 * However, if this was a real unlink then we were called by
4191 	 * ext4_evict_inode(), and we allow that function to clean up the
4192 	 * orphan info for us.
4193 	 */
4194 	if (inode->i_nlink)
4195 		ext4_orphan_del(handle, inode);
4196 
4197 	inode->i_mtime = inode->i_ctime = current_time(inode);
4198 	ext4_mark_inode_dirty(handle, inode);
4199 	ext4_journal_stop(handle);
4200 
4201 	trace_ext4_truncate_exit(inode);
4202 	return err;
4203 }
4204 
4205 /*
4206  * ext4_get_inode_loc returns with an extra refcount against the inode's
4207  * underlying buffer_head on success. If 'in_mem' is true, we have all
4208  * data in memory that is needed to recreate the on-disk version of this
4209  * inode.
4210  */
4211 static int __ext4_get_inode_loc(struct inode *inode,
4212 				struct ext4_iloc *iloc, int in_mem)
4213 {
4214 	struct ext4_group_desc	*gdp;
4215 	struct buffer_head	*bh;
4216 	struct super_block	*sb = inode->i_sb;
4217 	ext4_fsblk_t		block;
4218 	struct blk_plug		plug;
4219 	int			inodes_per_block, inode_offset;
4220 
4221 	iloc->bh = NULL;
4222 	if (inode->i_ino < EXT4_ROOT_INO ||
4223 	    inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4224 		return -EFSCORRUPTED;
4225 
4226 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4227 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4228 	if (!gdp)
4229 		return -EIO;
4230 
4231 	/*
4232 	 * Figure out the offset within the block group inode table
4233 	 */
4234 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4235 	inode_offset = ((inode->i_ino - 1) %
4236 			EXT4_INODES_PER_GROUP(sb));
4237 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4238 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4239 
4240 	bh = sb_getblk(sb, block);
4241 	if (unlikely(!bh))
4242 		return -ENOMEM;
4243 	if (!buffer_uptodate(bh)) {
4244 		lock_buffer(bh);
4245 
4246 		/*
4247 		 * If the buffer has the write error flag, we have failed
4248 		 * to write out another inode in the same block.  In this
4249 		 * case, we don't have to read the block because we may
4250 		 * read the old inode data successfully.
4251 		 */
4252 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4253 			set_buffer_uptodate(bh);
4254 
4255 		if (buffer_uptodate(bh)) {
4256 			/* someone brought it uptodate while we waited */
4257 			unlock_buffer(bh);
4258 			goto has_buffer;
4259 		}
4260 
4261 		/*
4262 		 * If we have all information of the inode in memory and this
4263 		 * is the only valid inode in the block, we need not read the
4264 		 * block.
4265 		 */
4266 		if (in_mem) {
4267 			struct buffer_head *bitmap_bh;
4268 			int i, start;
4269 
4270 			start = inode_offset & ~(inodes_per_block - 1);
4271 
4272 			/* Is the inode bitmap in cache? */
4273 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4274 			if (unlikely(!bitmap_bh))
4275 				goto make_io;
4276 
4277 			/*
4278 			 * If the inode bitmap isn't in cache then the
4279 			 * optimisation may end up performing two reads instead
4280 			 * of one, so skip it.
4281 			 */
4282 			if (!buffer_uptodate(bitmap_bh)) {
4283 				brelse(bitmap_bh);
4284 				goto make_io;
4285 			}
4286 			for (i = start; i < start + inodes_per_block; i++) {
4287 				if (i == inode_offset)
4288 					continue;
4289 				if (ext4_test_bit(i, bitmap_bh->b_data))
4290 					break;
4291 			}
4292 			brelse(bitmap_bh);
4293 			if (i == start + inodes_per_block) {
4294 				/* all other inodes are free, so skip I/O */
4295 				memset(bh->b_data, 0, bh->b_size);
4296 				set_buffer_uptodate(bh);
4297 				unlock_buffer(bh);
4298 				goto has_buffer;
4299 			}
4300 		}
4301 
4302 make_io:
4303 		/*
4304 		 * If we need to do any I/O, try to pre-readahead extra
4305 		 * blocks from the inode table.
4306 		 */
4307 		blk_start_plug(&plug);
4308 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4309 			ext4_fsblk_t b, end, table;
4310 			unsigned num;
4311 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4312 
4313 			table = ext4_inode_table(sb, gdp);
4314 			/* s_inode_readahead_blks is always a power of 2 */
4315 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4316 			if (table > b)
4317 				b = table;
4318 			end = b + ra_blks;
4319 			num = EXT4_INODES_PER_GROUP(sb);
4320 			if (ext4_has_group_desc_csum(sb))
4321 				num -= ext4_itable_unused_count(sb, gdp);
4322 			table += num / inodes_per_block;
4323 			if (end > table)
4324 				end = table;
4325 			while (b <= end)
4326 				sb_breadahead(sb, b++);
4327 		}
4328 
4329 		/*
4330 		 * There are other valid inodes in the buffer, this inode
4331 		 * has in-inode xattrs, or we don't have this inode in memory.
4332 		 * Read the block from disk.
4333 		 */
4334 		trace_ext4_load_inode(inode);
4335 		get_bh(bh);
4336 		bh->b_end_io = end_buffer_read_sync;
4337 		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4338 		blk_finish_plug(&plug);
4339 		wait_on_buffer(bh);
4340 		if (!buffer_uptodate(bh)) {
4341 			EXT4_ERROR_INODE_BLOCK(inode, block,
4342 					       "unable to read itable block");
4343 			brelse(bh);
4344 			return -EIO;
4345 		}
4346 	}
4347 has_buffer:
4348 	iloc->bh = bh;
4349 	return 0;
4350 }
4351 
4352 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4353 {
4354 	/* We have all inode data except xattrs in memory here. */
4355 	return __ext4_get_inode_loc(inode, iloc,
4356 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4357 }
4358 
4359 static bool ext4_should_use_dax(struct inode *inode)
4360 {
4361 	if (!test_opt(inode->i_sb, DAX))
4362 		return false;
4363 	if (!S_ISREG(inode->i_mode))
4364 		return false;
4365 	if (ext4_should_journal_data(inode))
4366 		return false;
4367 	if (ext4_has_inline_data(inode))
4368 		return false;
4369 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4370 		return false;
4371 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4372 		return false;
4373 	return true;
4374 }
4375 
4376 void ext4_set_inode_flags(struct inode *inode)
4377 {
4378 	unsigned int flags = EXT4_I(inode)->i_flags;
4379 	unsigned int new_fl = 0;
4380 
4381 	if (flags & EXT4_SYNC_FL)
4382 		new_fl |= S_SYNC;
4383 	if (flags & EXT4_APPEND_FL)
4384 		new_fl |= S_APPEND;
4385 	if (flags & EXT4_IMMUTABLE_FL)
4386 		new_fl |= S_IMMUTABLE;
4387 	if (flags & EXT4_NOATIME_FL)
4388 		new_fl |= S_NOATIME;
4389 	if (flags & EXT4_DIRSYNC_FL)
4390 		new_fl |= S_DIRSYNC;
4391 	if (ext4_should_use_dax(inode))
4392 		new_fl |= S_DAX;
4393 	if (flags & EXT4_ENCRYPT_FL)
4394 		new_fl |= S_ENCRYPTED;
4395 	if (flags & EXT4_CASEFOLD_FL)
4396 		new_fl |= S_CASEFOLD;
4397 	if (flags & EXT4_VERITY_FL)
4398 		new_fl |= S_VERITY;
4399 	inode_set_flags(inode, new_fl,
4400 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4401 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4402 }
4403 
4404 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4405 				  struct ext4_inode_info *ei)
4406 {
4407 	blkcnt_t i_blocks ;
4408 	struct inode *inode = &(ei->vfs_inode);
4409 	struct super_block *sb = inode->i_sb;
4410 
4411 	if (ext4_has_feature_huge_file(sb)) {
4412 		/* we are using combined 48 bit field */
4413 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4414 					le32_to_cpu(raw_inode->i_blocks_lo);
4415 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4416 			/* i_blocks represent file system block size */
4417 			return i_blocks  << (inode->i_blkbits - 9);
4418 		} else {
4419 			return i_blocks;
4420 		}
4421 	} else {
4422 		return le32_to_cpu(raw_inode->i_blocks_lo);
4423 	}
4424 }
4425 
4426 static inline int ext4_iget_extra_inode(struct inode *inode,
4427 					 struct ext4_inode *raw_inode,
4428 					 struct ext4_inode_info *ei)
4429 {
4430 	__le32 *magic = (void *)raw_inode +
4431 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4432 
4433 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4434 	    EXT4_INODE_SIZE(inode->i_sb) &&
4435 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4436 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4437 		return ext4_find_inline_data_nolock(inode);
4438 	} else
4439 		EXT4_I(inode)->i_inline_off = 0;
4440 	return 0;
4441 }
4442 
4443 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4444 {
4445 	if (!ext4_has_feature_project(inode->i_sb))
4446 		return -EOPNOTSUPP;
4447 	*projid = EXT4_I(inode)->i_projid;
4448 	return 0;
4449 }
4450 
4451 /*
4452  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4453  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4454  * set.
4455  */
4456 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4457 {
4458 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4459 		inode_set_iversion_raw(inode, val);
4460 	else
4461 		inode_set_iversion_queried(inode, val);
4462 }
4463 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4464 {
4465 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4466 		return inode_peek_iversion_raw(inode);
4467 	else
4468 		return inode_peek_iversion(inode);
4469 }
4470 
4471 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4472 			  ext4_iget_flags flags, const char *function,
4473 			  unsigned int line)
4474 {
4475 	struct ext4_iloc iloc;
4476 	struct ext4_inode *raw_inode;
4477 	struct ext4_inode_info *ei;
4478 	struct inode *inode;
4479 	journal_t *journal = EXT4_SB(sb)->s_journal;
4480 	long ret;
4481 	loff_t size;
4482 	int block;
4483 	uid_t i_uid;
4484 	gid_t i_gid;
4485 	projid_t i_projid;
4486 
4487 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4488 	     (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4489 	    (ino < EXT4_ROOT_INO) ||
4490 	    (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4491 		if (flags & EXT4_IGET_HANDLE)
4492 			return ERR_PTR(-ESTALE);
4493 		__ext4_error(sb, function, line,
4494 			     "inode #%lu: comm %s: iget: illegal inode #",
4495 			     ino, current->comm);
4496 		return ERR_PTR(-EFSCORRUPTED);
4497 	}
4498 
4499 	inode = iget_locked(sb, ino);
4500 	if (!inode)
4501 		return ERR_PTR(-ENOMEM);
4502 	if (!(inode->i_state & I_NEW))
4503 		return inode;
4504 
4505 	ei = EXT4_I(inode);
4506 	iloc.bh = NULL;
4507 
4508 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4509 	if (ret < 0)
4510 		goto bad_inode;
4511 	raw_inode = ext4_raw_inode(&iloc);
4512 
4513 	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4514 		ext4_error_inode(inode, function, line, 0,
4515 				 "iget: root inode unallocated");
4516 		ret = -EFSCORRUPTED;
4517 		goto bad_inode;
4518 	}
4519 
4520 	if ((flags & EXT4_IGET_HANDLE) &&
4521 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4522 		ret = -ESTALE;
4523 		goto bad_inode;
4524 	}
4525 
4526 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4527 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4528 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4529 			EXT4_INODE_SIZE(inode->i_sb) ||
4530 		    (ei->i_extra_isize & 3)) {
4531 			ext4_error_inode(inode, function, line, 0,
4532 					 "iget: bad extra_isize %u "
4533 					 "(inode size %u)",
4534 					 ei->i_extra_isize,
4535 					 EXT4_INODE_SIZE(inode->i_sb));
4536 			ret = -EFSCORRUPTED;
4537 			goto bad_inode;
4538 		}
4539 	} else
4540 		ei->i_extra_isize = 0;
4541 
4542 	/* Precompute checksum seed for inode metadata */
4543 	if (ext4_has_metadata_csum(sb)) {
4544 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4545 		__u32 csum;
4546 		__le32 inum = cpu_to_le32(inode->i_ino);
4547 		__le32 gen = raw_inode->i_generation;
4548 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4549 				   sizeof(inum));
4550 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4551 					      sizeof(gen));
4552 	}
4553 
4554 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4555 		ext4_error_inode(inode, function, line, 0,
4556 				 "iget: checksum invalid");
4557 		ret = -EFSBADCRC;
4558 		goto bad_inode;
4559 	}
4560 
4561 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4562 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4563 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4564 	if (ext4_has_feature_project(sb) &&
4565 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4566 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4567 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4568 	else
4569 		i_projid = EXT4_DEF_PROJID;
4570 
4571 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4572 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4573 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4574 	}
4575 	i_uid_write(inode, i_uid);
4576 	i_gid_write(inode, i_gid);
4577 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4578 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4579 
4580 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4581 	ei->i_inline_off = 0;
4582 	ei->i_dir_start_lookup = 0;
4583 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4584 	/* We now have enough fields to check if the inode was active or not.
4585 	 * This is needed because nfsd might try to access dead inodes
4586 	 * the test is that same one that e2fsck uses
4587 	 * NeilBrown 1999oct15
4588 	 */
4589 	if (inode->i_nlink == 0) {
4590 		if ((inode->i_mode == 0 ||
4591 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4592 		    ino != EXT4_BOOT_LOADER_INO) {
4593 			/* this inode is deleted */
4594 			ret = -ESTALE;
4595 			goto bad_inode;
4596 		}
4597 		/* The only unlinked inodes we let through here have
4598 		 * valid i_mode and are being read by the orphan
4599 		 * recovery code: that's fine, we're about to complete
4600 		 * the process of deleting those.
4601 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4602 		 * not initialized on a new filesystem. */
4603 	}
4604 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4605 	ext4_set_inode_flags(inode);
4606 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4607 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4608 	if (ext4_has_feature_64bit(sb))
4609 		ei->i_file_acl |=
4610 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4611 	inode->i_size = ext4_isize(sb, raw_inode);
4612 	if ((size = i_size_read(inode)) < 0) {
4613 		ext4_error_inode(inode, function, line, 0,
4614 				 "iget: bad i_size value: %lld", size);
4615 		ret = -EFSCORRUPTED;
4616 		goto bad_inode;
4617 	}
4618 	ei->i_disksize = inode->i_size;
4619 #ifdef CONFIG_QUOTA
4620 	ei->i_reserved_quota = 0;
4621 #endif
4622 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4623 	ei->i_block_group = iloc.block_group;
4624 	ei->i_last_alloc_group = ~0;
4625 	/*
4626 	 * NOTE! The in-memory inode i_data array is in little-endian order
4627 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4628 	 */
4629 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4630 		ei->i_data[block] = raw_inode->i_block[block];
4631 	INIT_LIST_HEAD(&ei->i_orphan);
4632 
4633 	/*
4634 	 * Set transaction id's of transactions that have to be committed
4635 	 * to finish f[data]sync. We set them to currently running transaction
4636 	 * as we cannot be sure that the inode or some of its metadata isn't
4637 	 * part of the transaction - the inode could have been reclaimed and
4638 	 * now it is reread from disk.
4639 	 */
4640 	if (journal) {
4641 		transaction_t *transaction;
4642 		tid_t tid;
4643 
4644 		read_lock(&journal->j_state_lock);
4645 		if (journal->j_running_transaction)
4646 			transaction = journal->j_running_transaction;
4647 		else
4648 			transaction = journal->j_committing_transaction;
4649 		if (transaction)
4650 			tid = transaction->t_tid;
4651 		else
4652 			tid = journal->j_commit_sequence;
4653 		read_unlock(&journal->j_state_lock);
4654 		ei->i_sync_tid = tid;
4655 		ei->i_datasync_tid = tid;
4656 	}
4657 
4658 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4659 		if (ei->i_extra_isize == 0) {
4660 			/* The extra space is currently unused. Use it. */
4661 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4662 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4663 					    EXT4_GOOD_OLD_INODE_SIZE;
4664 		} else {
4665 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4666 			if (ret)
4667 				goto bad_inode;
4668 		}
4669 	}
4670 
4671 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4672 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4673 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4674 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4675 
4676 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4677 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4678 
4679 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4680 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4681 				ivers |=
4682 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4683 		}
4684 		ext4_inode_set_iversion_queried(inode, ivers);
4685 	}
4686 
4687 	ret = 0;
4688 	if (ei->i_file_acl &&
4689 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4690 		ext4_error_inode(inode, function, line, 0,
4691 				 "iget: bad extended attribute block %llu",
4692 				 ei->i_file_acl);
4693 		ret = -EFSCORRUPTED;
4694 		goto bad_inode;
4695 	} else if (!ext4_has_inline_data(inode)) {
4696 		/* validate the block references in the inode */
4697 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4698 		   (S_ISLNK(inode->i_mode) &&
4699 		    !ext4_inode_is_fast_symlink(inode))) {
4700 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4701 				ret = ext4_ext_check_inode(inode);
4702 			else
4703 				ret = ext4_ind_check_inode(inode);
4704 		}
4705 	}
4706 	if (ret)
4707 		goto bad_inode;
4708 
4709 	if (S_ISREG(inode->i_mode)) {
4710 		inode->i_op = &ext4_file_inode_operations;
4711 		inode->i_fop = &ext4_file_operations;
4712 		ext4_set_aops(inode);
4713 	} else if (S_ISDIR(inode->i_mode)) {
4714 		inode->i_op = &ext4_dir_inode_operations;
4715 		inode->i_fop = &ext4_dir_operations;
4716 	} else if (S_ISLNK(inode->i_mode)) {
4717 		/* VFS does not allow setting these so must be corruption */
4718 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4719 			ext4_error_inode(inode, function, line, 0,
4720 					 "iget: immutable or append flags "
4721 					 "not allowed on symlinks");
4722 			ret = -EFSCORRUPTED;
4723 			goto bad_inode;
4724 		}
4725 		if (IS_ENCRYPTED(inode)) {
4726 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4727 			ext4_set_aops(inode);
4728 		} else if (ext4_inode_is_fast_symlink(inode)) {
4729 			inode->i_link = (char *)ei->i_data;
4730 			inode->i_op = &ext4_fast_symlink_inode_operations;
4731 			nd_terminate_link(ei->i_data, inode->i_size,
4732 				sizeof(ei->i_data) - 1);
4733 		} else {
4734 			inode->i_op = &ext4_symlink_inode_operations;
4735 			ext4_set_aops(inode);
4736 		}
4737 		inode_nohighmem(inode);
4738 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4739 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4740 		inode->i_op = &ext4_special_inode_operations;
4741 		if (raw_inode->i_block[0])
4742 			init_special_inode(inode, inode->i_mode,
4743 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4744 		else
4745 			init_special_inode(inode, inode->i_mode,
4746 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4747 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4748 		make_bad_inode(inode);
4749 	} else {
4750 		ret = -EFSCORRUPTED;
4751 		ext4_error_inode(inode, function, line, 0,
4752 				 "iget: bogus i_mode (%o)", inode->i_mode);
4753 		goto bad_inode;
4754 	}
4755 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4756 		ext4_error_inode(inode, function, line, 0,
4757 				 "casefold flag without casefold feature");
4758 	brelse(iloc.bh);
4759 
4760 	unlock_new_inode(inode);
4761 	return inode;
4762 
4763 bad_inode:
4764 	brelse(iloc.bh);
4765 	iget_failed(inode);
4766 	return ERR_PTR(ret);
4767 }
4768 
4769 static int ext4_inode_blocks_set(handle_t *handle,
4770 				struct ext4_inode *raw_inode,
4771 				struct ext4_inode_info *ei)
4772 {
4773 	struct inode *inode = &(ei->vfs_inode);
4774 	u64 i_blocks = inode->i_blocks;
4775 	struct super_block *sb = inode->i_sb;
4776 
4777 	if (i_blocks <= ~0U) {
4778 		/*
4779 		 * i_blocks can be represented in a 32 bit variable
4780 		 * as multiple of 512 bytes
4781 		 */
4782 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4783 		raw_inode->i_blocks_high = 0;
4784 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4785 		return 0;
4786 	}
4787 	if (!ext4_has_feature_huge_file(sb))
4788 		return -EFBIG;
4789 
4790 	if (i_blocks <= 0xffffffffffffULL) {
4791 		/*
4792 		 * i_blocks can be represented in a 48 bit variable
4793 		 * as multiple of 512 bytes
4794 		 */
4795 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4796 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4797 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4798 	} else {
4799 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4800 		/* i_block is stored in file system block size */
4801 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4802 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4803 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4804 	}
4805 	return 0;
4806 }
4807 
4808 struct other_inode {
4809 	unsigned long		orig_ino;
4810 	struct ext4_inode	*raw_inode;
4811 };
4812 
4813 static int other_inode_match(struct inode * inode, unsigned long ino,
4814 			     void *data)
4815 {
4816 	struct other_inode *oi = (struct other_inode *) data;
4817 
4818 	if ((inode->i_ino != ino) ||
4819 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4820 			       I_DIRTY_INODE)) ||
4821 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4822 		return 0;
4823 	spin_lock(&inode->i_lock);
4824 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4825 				I_DIRTY_INODE)) == 0) &&
4826 	    (inode->i_state & I_DIRTY_TIME)) {
4827 		struct ext4_inode_info	*ei = EXT4_I(inode);
4828 
4829 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4830 		spin_unlock(&inode->i_lock);
4831 
4832 		spin_lock(&ei->i_raw_lock);
4833 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4834 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4835 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4836 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4837 		spin_unlock(&ei->i_raw_lock);
4838 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4839 		return -1;
4840 	}
4841 	spin_unlock(&inode->i_lock);
4842 	return -1;
4843 }
4844 
4845 /*
4846  * Opportunistically update the other time fields for other inodes in
4847  * the same inode table block.
4848  */
4849 static void ext4_update_other_inodes_time(struct super_block *sb,
4850 					  unsigned long orig_ino, char *buf)
4851 {
4852 	struct other_inode oi;
4853 	unsigned long ino;
4854 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4855 	int inode_size = EXT4_INODE_SIZE(sb);
4856 
4857 	oi.orig_ino = orig_ino;
4858 	/*
4859 	 * Calculate the first inode in the inode table block.  Inode
4860 	 * numbers are one-based.  That is, the first inode in a block
4861 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4862 	 */
4863 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4864 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4865 		if (ino == orig_ino)
4866 			continue;
4867 		oi.raw_inode = (struct ext4_inode *) buf;
4868 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4869 	}
4870 }
4871 
4872 /*
4873  * Post the struct inode info into an on-disk inode location in the
4874  * buffer-cache.  This gobbles the caller's reference to the
4875  * buffer_head in the inode location struct.
4876  *
4877  * The caller must have write access to iloc->bh.
4878  */
4879 static int ext4_do_update_inode(handle_t *handle,
4880 				struct inode *inode,
4881 				struct ext4_iloc *iloc)
4882 {
4883 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4884 	struct ext4_inode_info *ei = EXT4_I(inode);
4885 	struct buffer_head *bh = iloc->bh;
4886 	struct super_block *sb = inode->i_sb;
4887 	int err = 0, rc, block;
4888 	int need_datasync = 0, set_large_file = 0;
4889 	uid_t i_uid;
4890 	gid_t i_gid;
4891 	projid_t i_projid;
4892 
4893 	spin_lock(&ei->i_raw_lock);
4894 
4895 	/* For fields not tracked in the in-memory inode,
4896 	 * initialise them to zero for new inodes. */
4897 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4898 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4899 
4900 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4901 	i_uid = i_uid_read(inode);
4902 	i_gid = i_gid_read(inode);
4903 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4904 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4905 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4906 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4907 /*
4908  * Fix up interoperability with old kernels. Otherwise, old inodes get
4909  * re-used with the upper 16 bits of the uid/gid intact
4910  */
4911 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4912 			raw_inode->i_uid_high = 0;
4913 			raw_inode->i_gid_high = 0;
4914 		} else {
4915 			raw_inode->i_uid_high =
4916 				cpu_to_le16(high_16_bits(i_uid));
4917 			raw_inode->i_gid_high =
4918 				cpu_to_le16(high_16_bits(i_gid));
4919 		}
4920 	} else {
4921 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4922 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4923 		raw_inode->i_uid_high = 0;
4924 		raw_inode->i_gid_high = 0;
4925 	}
4926 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4927 
4928 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4929 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4930 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4931 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4932 
4933 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
4934 	if (err) {
4935 		spin_unlock(&ei->i_raw_lock);
4936 		goto out_brelse;
4937 	}
4938 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4939 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4940 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4941 		raw_inode->i_file_acl_high =
4942 			cpu_to_le16(ei->i_file_acl >> 32);
4943 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4944 	if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
4945 		ext4_isize_set(raw_inode, ei->i_disksize);
4946 		need_datasync = 1;
4947 	}
4948 	if (ei->i_disksize > 0x7fffffffULL) {
4949 		if (!ext4_has_feature_large_file(sb) ||
4950 				EXT4_SB(sb)->s_es->s_rev_level ==
4951 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
4952 			set_large_file = 1;
4953 	}
4954 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4955 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4956 		if (old_valid_dev(inode->i_rdev)) {
4957 			raw_inode->i_block[0] =
4958 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4959 			raw_inode->i_block[1] = 0;
4960 		} else {
4961 			raw_inode->i_block[0] = 0;
4962 			raw_inode->i_block[1] =
4963 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4964 			raw_inode->i_block[2] = 0;
4965 		}
4966 	} else if (!ext4_has_inline_data(inode)) {
4967 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4968 			raw_inode->i_block[block] = ei->i_data[block];
4969 	}
4970 
4971 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4972 		u64 ivers = ext4_inode_peek_iversion(inode);
4973 
4974 		raw_inode->i_disk_version = cpu_to_le32(ivers);
4975 		if (ei->i_extra_isize) {
4976 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4977 				raw_inode->i_version_hi =
4978 					cpu_to_le32(ivers >> 32);
4979 			raw_inode->i_extra_isize =
4980 				cpu_to_le16(ei->i_extra_isize);
4981 		}
4982 	}
4983 
4984 	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
4985 	       i_projid != EXT4_DEF_PROJID);
4986 
4987 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4988 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4989 		raw_inode->i_projid = cpu_to_le32(i_projid);
4990 
4991 	ext4_inode_csum_set(inode, raw_inode, ei);
4992 	spin_unlock(&ei->i_raw_lock);
4993 	if (inode->i_sb->s_flags & SB_LAZYTIME)
4994 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4995 					      bh->b_data);
4996 
4997 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4998 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4999 	if (!err)
5000 		err = rc;
5001 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5002 	if (set_large_file) {
5003 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5004 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5005 		if (err)
5006 			goto out_brelse;
5007 		ext4_set_feature_large_file(sb);
5008 		ext4_handle_sync(handle);
5009 		err = ext4_handle_dirty_super(handle, sb);
5010 	}
5011 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5012 out_brelse:
5013 	brelse(bh);
5014 	ext4_std_error(inode->i_sb, err);
5015 	return err;
5016 }
5017 
5018 /*
5019  * ext4_write_inode()
5020  *
5021  * We are called from a few places:
5022  *
5023  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5024  *   Here, there will be no transaction running. We wait for any running
5025  *   transaction to commit.
5026  *
5027  * - Within flush work (sys_sync(), kupdate and such).
5028  *   We wait on commit, if told to.
5029  *
5030  * - Within iput_final() -> write_inode_now()
5031  *   We wait on commit, if told to.
5032  *
5033  * In all cases it is actually safe for us to return without doing anything,
5034  * because the inode has been copied into a raw inode buffer in
5035  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5036  * writeback.
5037  *
5038  * Note that we are absolutely dependent upon all inode dirtiers doing the
5039  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5040  * which we are interested.
5041  *
5042  * It would be a bug for them to not do this.  The code:
5043  *
5044  *	mark_inode_dirty(inode)
5045  *	stuff();
5046  *	inode->i_size = expr;
5047  *
5048  * is in error because write_inode() could occur while `stuff()' is running,
5049  * and the new i_size will be lost.  Plus the inode will no longer be on the
5050  * superblock's dirty inode list.
5051  */
5052 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5053 {
5054 	int err;
5055 
5056 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5057 	    sb_rdonly(inode->i_sb))
5058 		return 0;
5059 
5060 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5061 		return -EIO;
5062 
5063 	if (EXT4_SB(inode->i_sb)->s_journal) {
5064 		if (ext4_journal_current_handle()) {
5065 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5066 			dump_stack();
5067 			return -EIO;
5068 		}
5069 
5070 		/*
5071 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5072 		 * ext4_sync_fs() will force the commit after everything is
5073 		 * written.
5074 		 */
5075 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5076 			return 0;
5077 
5078 		err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5079 						EXT4_I(inode)->i_sync_tid);
5080 	} else {
5081 		struct ext4_iloc iloc;
5082 
5083 		err = __ext4_get_inode_loc(inode, &iloc, 0);
5084 		if (err)
5085 			return err;
5086 		/*
5087 		 * sync(2) will flush the whole buffer cache. No need to do
5088 		 * it here separately for each inode.
5089 		 */
5090 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5091 			sync_dirty_buffer(iloc.bh);
5092 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5093 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5094 					 "IO error syncing inode");
5095 			err = -EIO;
5096 		}
5097 		brelse(iloc.bh);
5098 	}
5099 	return err;
5100 }
5101 
5102 /*
5103  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5104  * buffers that are attached to a page stradding i_size and are undergoing
5105  * commit. In that case we have to wait for commit to finish and try again.
5106  */
5107 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5108 {
5109 	struct page *page;
5110 	unsigned offset;
5111 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5112 	tid_t commit_tid = 0;
5113 	int ret;
5114 
5115 	offset = inode->i_size & (PAGE_SIZE - 1);
5116 	/*
5117 	 * If the page is fully truncated, we don't need to wait for any commit
5118 	 * (and we even should not as __ext4_journalled_invalidatepage() may
5119 	 * strip all buffers from the page but keep the page dirty which can then
5120 	 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5121 	 * buffers). Also we don't need to wait for any commit if all buffers in
5122 	 * the page remain valid. This is most beneficial for the common case of
5123 	 * blocksize == PAGESIZE.
5124 	 */
5125 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5126 		return;
5127 	while (1) {
5128 		page = find_lock_page(inode->i_mapping,
5129 				      inode->i_size >> PAGE_SHIFT);
5130 		if (!page)
5131 			return;
5132 		ret = __ext4_journalled_invalidatepage(page, offset,
5133 						PAGE_SIZE - offset);
5134 		unlock_page(page);
5135 		put_page(page);
5136 		if (ret != -EBUSY)
5137 			return;
5138 		commit_tid = 0;
5139 		read_lock(&journal->j_state_lock);
5140 		if (journal->j_committing_transaction)
5141 			commit_tid = journal->j_committing_transaction->t_tid;
5142 		read_unlock(&journal->j_state_lock);
5143 		if (commit_tid)
5144 			jbd2_log_wait_commit(journal, commit_tid);
5145 	}
5146 }
5147 
5148 /*
5149  * ext4_setattr()
5150  *
5151  * Called from notify_change.
5152  *
5153  * We want to trap VFS attempts to truncate the file as soon as
5154  * possible.  In particular, we want to make sure that when the VFS
5155  * shrinks i_size, we put the inode on the orphan list and modify
5156  * i_disksize immediately, so that during the subsequent flushing of
5157  * dirty pages and freeing of disk blocks, we can guarantee that any
5158  * commit will leave the blocks being flushed in an unused state on
5159  * disk.  (On recovery, the inode will get truncated and the blocks will
5160  * be freed, so we have a strong guarantee that no future commit will
5161  * leave these blocks visible to the user.)
5162  *
5163  * Another thing we have to assure is that if we are in ordered mode
5164  * and inode is still attached to the committing transaction, we must
5165  * we start writeout of all the dirty pages which are being truncated.
5166  * This way we are sure that all the data written in the previous
5167  * transaction are already on disk (truncate waits for pages under
5168  * writeback).
5169  *
5170  * Called with inode->i_mutex down.
5171  */
5172 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5173 {
5174 	struct inode *inode = d_inode(dentry);
5175 	int error, rc = 0;
5176 	int orphan = 0;
5177 	const unsigned int ia_valid = attr->ia_valid;
5178 
5179 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5180 		return -EIO;
5181 
5182 	if (unlikely(IS_IMMUTABLE(inode)))
5183 		return -EPERM;
5184 
5185 	if (unlikely(IS_APPEND(inode) &&
5186 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5187 				  ATTR_GID | ATTR_TIMES_SET))))
5188 		return -EPERM;
5189 
5190 	error = setattr_prepare(dentry, attr);
5191 	if (error)
5192 		return error;
5193 
5194 	error = fscrypt_prepare_setattr(dentry, attr);
5195 	if (error)
5196 		return error;
5197 
5198 	error = fsverity_prepare_setattr(dentry, attr);
5199 	if (error)
5200 		return error;
5201 
5202 	if (is_quota_modification(inode, attr)) {
5203 		error = dquot_initialize(inode);
5204 		if (error)
5205 			return error;
5206 	}
5207 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5208 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5209 		handle_t *handle;
5210 
5211 		/* (user+group)*(old+new) structure, inode write (sb,
5212 		 * inode block, ? - but truncate inode update has it) */
5213 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5214 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5215 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5216 		if (IS_ERR(handle)) {
5217 			error = PTR_ERR(handle);
5218 			goto err_out;
5219 		}
5220 
5221 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5222 		 * counts xattr inode references.
5223 		 */
5224 		down_read(&EXT4_I(inode)->xattr_sem);
5225 		error = dquot_transfer(inode, attr);
5226 		up_read(&EXT4_I(inode)->xattr_sem);
5227 
5228 		if (error) {
5229 			ext4_journal_stop(handle);
5230 			return error;
5231 		}
5232 		/* Update corresponding info in inode so that everything is in
5233 		 * one transaction */
5234 		if (attr->ia_valid & ATTR_UID)
5235 			inode->i_uid = attr->ia_uid;
5236 		if (attr->ia_valid & ATTR_GID)
5237 			inode->i_gid = attr->ia_gid;
5238 		error = ext4_mark_inode_dirty(handle, inode);
5239 		ext4_journal_stop(handle);
5240 	}
5241 
5242 	if (attr->ia_valid & ATTR_SIZE) {
5243 		handle_t *handle;
5244 		loff_t oldsize = inode->i_size;
5245 		int shrink = (attr->ia_size < inode->i_size);
5246 
5247 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5248 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5249 
5250 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5251 				return -EFBIG;
5252 		}
5253 		if (!S_ISREG(inode->i_mode))
5254 			return -EINVAL;
5255 
5256 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5257 			inode_inc_iversion(inode);
5258 
5259 		if (shrink) {
5260 			if (ext4_should_order_data(inode)) {
5261 				error = ext4_begin_ordered_truncate(inode,
5262 							    attr->ia_size);
5263 				if (error)
5264 					goto err_out;
5265 			}
5266 			/*
5267 			 * Blocks are going to be removed from the inode. Wait
5268 			 * for dio in flight.
5269 			 */
5270 			inode_dio_wait(inode);
5271 		}
5272 
5273 		down_write(&EXT4_I(inode)->i_mmap_sem);
5274 
5275 		rc = ext4_break_layouts(inode);
5276 		if (rc) {
5277 			up_write(&EXT4_I(inode)->i_mmap_sem);
5278 			return rc;
5279 		}
5280 
5281 		if (attr->ia_size != inode->i_size) {
5282 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5283 			if (IS_ERR(handle)) {
5284 				error = PTR_ERR(handle);
5285 				goto out_mmap_sem;
5286 			}
5287 			if (ext4_handle_valid(handle) && shrink) {
5288 				error = ext4_orphan_add(handle, inode);
5289 				orphan = 1;
5290 			}
5291 			/*
5292 			 * Update c/mtime on truncate up, ext4_truncate() will
5293 			 * update c/mtime in shrink case below
5294 			 */
5295 			if (!shrink) {
5296 				inode->i_mtime = current_time(inode);
5297 				inode->i_ctime = inode->i_mtime;
5298 			}
5299 			down_write(&EXT4_I(inode)->i_data_sem);
5300 			EXT4_I(inode)->i_disksize = attr->ia_size;
5301 			rc = ext4_mark_inode_dirty(handle, inode);
5302 			if (!error)
5303 				error = rc;
5304 			/*
5305 			 * We have to update i_size under i_data_sem together
5306 			 * with i_disksize to avoid races with writeback code
5307 			 * running ext4_wb_update_i_disksize().
5308 			 */
5309 			if (!error)
5310 				i_size_write(inode, attr->ia_size);
5311 			up_write(&EXT4_I(inode)->i_data_sem);
5312 			ext4_journal_stop(handle);
5313 			if (error)
5314 				goto out_mmap_sem;
5315 			if (!shrink) {
5316 				pagecache_isize_extended(inode, oldsize,
5317 							 inode->i_size);
5318 			} else if (ext4_should_journal_data(inode)) {
5319 				ext4_wait_for_tail_page_commit(inode);
5320 			}
5321 		}
5322 
5323 		/*
5324 		 * Truncate pagecache after we've waited for commit
5325 		 * in data=journal mode to make pages freeable.
5326 		 */
5327 		truncate_pagecache(inode, inode->i_size);
5328 		/*
5329 		 * Call ext4_truncate() even if i_size didn't change to
5330 		 * truncate possible preallocated blocks.
5331 		 */
5332 		if (attr->ia_size <= oldsize) {
5333 			rc = ext4_truncate(inode);
5334 			if (rc)
5335 				error = rc;
5336 		}
5337 out_mmap_sem:
5338 		up_write(&EXT4_I(inode)->i_mmap_sem);
5339 	}
5340 
5341 	if (!error) {
5342 		setattr_copy(inode, attr);
5343 		mark_inode_dirty(inode);
5344 	}
5345 
5346 	/*
5347 	 * If the call to ext4_truncate failed to get a transaction handle at
5348 	 * all, we need to clean up the in-core orphan list manually.
5349 	 */
5350 	if (orphan && inode->i_nlink)
5351 		ext4_orphan_del(NULL, inode);
5352 
5353 	if (!error && (ia_valid & ATTR_MODE))
5354 		rc = posix_acl_chmod(inode, inode->i_mode);
5355 
5356 err_out:
5357 	ext4_std_error(inode->i_sb, error);
5358 	if (!error)
5359 		error = rc;
5360 	return error;
5361 }
5362 
5363 int ext4_getattr(const struct path *path, struct kstat *stat,
5364 		 u32 request_mask, unsigned int query_flags)
5365 {
5366 	struct inode *inode = d_inode(path->dentry);
5367 	struct ext4_inode *raw_inode;
5368 	struct ext4_inode_info *ei = EXT4_I(inode);
5369 	unsigned int flags;
5370 
5371 	if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5372 		stat->result_mask |= STATX_BTIME;
5373 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5374 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5375 	}
5376 
5377 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5378 	if (flags & EXT4_APPEND_FL)
5379 		stat->attributes |= STATX_ATTR_APPEND;
5380 	if (flags & EXT4_COMPR_FL)
5381 		stat->attributes |= STATX_ATTR_COMPRESSED;
5382 	if (flags & EXT4_ENCRYPT_FL)
5383 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5384 	if (flags & EXT4_IMMUTABLE_FL)
5385 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5386 	if (flags & EXT4_NODUMP_FL)
5387 		stat->attributes |= STATX_ATTR_NODUMP;
5388 	if (flags & EXT4_VERITY_FL)
5389 		stat->attributes |= STATX_ATTR_VERITY;
5390 
5391 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5392 				  STATX_ATTR_COMPRESSED |
5393 				  STATX_ATTR_ENCRYPTED |
5394 				  STATX_ATTR_IMMUTABLE |
5395 				  STATX_ATTR_NODUMP |
5396 				  STATX_ATTR_VERITY);
5397 
5398 	generic_fillattr(inode, stat);
5399 	return 0;
5400 }
5401 
5402 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5403 		      u32 request_mask, unsigned int query_flags)
5404 {
5405 	struct inode *inode = d_inode(path->dentry);
5406 	u64 delalloc_blocks;
5407 
5408 	ext4_getattr(path, stat, request_mask, query_flags);
5409 
5410 	/*
5411 	 * If there is inline data in the inode, the inode will normally not
5412 	 * have data blocks allocated (it may have an external xattr block).
5413 	 * Report at least one sector for such files, so tools like tar, rsync,
5414 	 * others don't incorrectly think the file is completely sparse.
5415 	 */
5416 	if (unlikely(ext4_has_inline_data(inode)))
5417 		stat->blocks += (stat->size + 511) >> 9;
5418 
5419 	/*
5420 	 * We can't update i_blocks if the block allocation is delayed
5421 	 * otherwise in the case of system crash before the real block
5422 	 * allocation is done, we will have i_blocks inconsistent with
5423 	 * on-disk file blocks.
5424 	 * We always keep i_blocks updated together with real
5425 	 * allocation. But to not confuse with user, stat
5426 	 * will return the blocks that include the delayed allocation
5427 	 * blocks for this file.
5428 	 */
5429 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5430 				   EXT4_I(inode)->i_reserved_data_blocks);
5431 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5432 	return 0;
5433 }
5434 
5435 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5436 				   int pextents)
5437 {
5438 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5439 		return ext4_ind_trans_blocks(inode, lblocks);
5440 	return ext4_ext_index_trans_blocks(inode, pextents);
5441 }
5442 
5443 /*
5444  * Account for index blocks, block groups bitmaps and block group
5445  * descriptor blocks if modify datablocks and index blocks
5446  * worse case, the indexs blocks spread over different block groups
5447  *
5448  * If datablocks are discontiguous, they are possible to spread over
5449  * different block groups too. If they are contiguous, with flexbg,
5450  * they could still across block group boundary.
5451  *
5452  * Also account for superblock, inode, quota and xattr blocks
5453  */
5454 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5455 				  int pextents)
5456 {
5457 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5458 	int gdpblocks;
5459 	int idxblocks;
5460 	int ret = 0;
5461 
5462 	/*
5463 	 * How many index blocks need to touch to map @lblocks logical blocks
5464 	 * to @pextents physical extents?
5465 	 */
5466 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5467 
5468 	ret = idxblocks;
5469 
5470 	/*
5471 	 * Now let's see how many group bitmaps and group descriptors need
5472 	 * to account
5473 	 */
5474 	groups = idxblocks + pextents;
5475 	gdpblocks = groups;
5476 	if (groups > ngroups)
5477 		groups = ngroups;
5478 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5479 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5480 
5481 	/* bitmaps and block group descriptor blocks */
5482 	ret += groups + gdpblocks;
5483 
5484 	/* Blocks for super block, inode, quota and xattr blocks */
5485 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5486 
5487 	return ret;
5488 }
5489 
5490 /*
5491  * Calculate the total number of credits to reserve to fit
5492  * the modification of a single pages into a single transaction,
5493  * which may include multiple chunks of block allocations.
5494  *
5495  * This could be called via ext4_write_begin()
5496  *
5497  * We need to consider the worse case, when
5498  * one new block per extent.
5499  */
5500 int ext4_writepage_trans_blocks(struct inode *inode)
5501 {
5502 	int bpp = ext4_journal_blocks_per_page(inode);
5503 	int ret;
5504 
5505 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5506 
5507 	/* Account for data blocks for journalled mode */
5508 	if (ext4_should_journal_data(inode))
5509 		ret += bpp;
5510 	return ret;
5511 }
5512 
5513 /*
5514  * Calculate the journal credits for a chunk of data modification.
5515  *
5516  * This is called from DIO, fallocate or whoever calling
5517  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5518  *
5519  * journal buffers for data blocks are not included here, as DIO
5520  * and fallocate do no need to journal data buffers.
5521  */
5522 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5523 {
5524 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5525 }
5526 
5527 /*
5528  * The caller must have previously called ext4_reserve_inode_write().
5529  * Give this, we know that the caller already has write access to iloc->bh.
5530  */
5531 int ext4_mark_iloc_dirty(handle_t *handle,
5532 			 struct inode *inode, struct ext4_iloc *iloc)
5533 {
5534 	int err = 0;
5535 
5536 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5537 		put_bh(iloc->bh);
5538 		return -EIO;
5539 	}
5540 	if (IS_I_VERSION(inode))
5541 		inode_inc_iversion(inode);
5542 
5543 	/* the do_update_inode consumes one bh->b_count */
5544 	get_bh(iloc->bh);
5545 
5546 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5547 	err = ext4_do_update_inode(handle, inode, iloc);
5548 	put_bh(iloc->bh);
5549 	return err;
5550 }
5551 
5552 /*
5553  * On success, We end up with an outstanding reference count against
5554  * iloc->bh.  This _must_ be cleaned up later.
5555  */
5556 
5557 int
5558 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5559 			 struct ext4_iloc *iloc)
5560 {
5561 	int err;
5562 
5563 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5564 		return -EIO;
5565 
5566 	err = ext4_get_inode_loc(inode, iloc);
5567 	if (!err) {
5568 		BUFFER_TRACE(iloc->bh, "get_write_access");
5569 		err = ext4_journal_get_write_access(handle, iloc->bh);
5570 		if (err) {
5571 			brelse(iloc->bh);
5572 			iloc->bh = NULL;
5573 		}
5574 	}
5575 	ext4_std_error(inode->i_sb, err);
5576 	return err;
5577 }
5578 
5579 static int __ext4_expand_extra_isize(struct inode *inode,
5580 				     unsigned int new_extra_isize,
5581 				     struct ext4_iloc *iloc,
5582 				     handle_t *handle, int *no_expand)
5583 {
5584 	struct ext4_inode *raw_inode;
5585 	struct ext4_xattr_ibody_header *header;
5586 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5587 	struct ext4_inode_info *ei = EXT4_I(inode);
5588 	int error;
5589 
5590 	/* this was checked at iget time, but double check for good measure */
5591 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5592 	    (ei->i_extra_isize & 3)) {
5593 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5594 				 ei->i_extra_isize,
5595 				 EXT4_INODE_SIZE(inode->i_sb));
5596 		return -EFSCORRUPTED;
5597 	}
5598 	if ((new_extra_isize < ei->i_extra_isize) ||
5599 	    (new_extra_isize < 4) ||
5600 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5601 		return -EINVAL;	/* Should never happen */
5602 
5603 	raw_inode = ext4_raw_inode(iloc);
5604 
5605 	header = IHDR(inode, raw_inode);
5606 
5607 	/* No extended attributes present */
5608 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5609 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5610 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5611 		       EXT4_I(inode)->i_extra_isize, 0,
5612 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5613 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5614 		return 0;
5615 	}
5616 
5617 	/* try to expand with EAs present */
5618 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5619 					   raw_inode, handle);
5620 	if (error) {
5621 		/*
5622 		 * Inode size expansion failed; don't try again
5623 		 */
5624 		*no_expand = 1;
5625 	}
5626 
5627 	return error;
5628 }
5629 
5630 /*
5631  * Expand an inode by new_extra_isize bytes.
5632  * Returns 0 on success or negative error number on failure.
5633  */
5634 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5635 					  unsigned int new_extra_isize,
5636 					  struct ext4_iloc iloc,
5637 					  handle_t *handle)
5638 {
5639 	int no_expand;
5640 	int error;
5641 
5642 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5643 		return -EOVERFLOW;
5644 
5645 	/*
5646 	 * In nojournal mode, we can immediately attempt to expand
5647 	 * the inode.  When journaled, we first need to obtain extra
5648 	 * buffer credits since we may write into the EA block
5649 	 * with this same handle. If journal_extend fails, then it will
5650 	 * only result in a minor loss of functionality for that inode.
5651 	 * If this is felt to be critical, then e2fsck should be run to
5652 	 * force a large enough s_min_extra_isize.
5653 	 */
5654 	if (ext4_journal_extend(handle,
5655 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5656 		return -ENOSPC;
5657 
5658 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5659 		return -EBUSY;
5660 
5661 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5662 					  handle, &no_expand);
5663 	ext4_write_unlock_xattr(inode, &no_expand);
5664 
5665 	return error;
5666 }
5667 
5668 int ext4_expand_extra_isize(struct inode *inode,
5669 			    unsigned int new_extra_isize,
5670 			    struct ext4_iloc *iloc)
5671 {
5672 	handle_t *handle;
5673 	int no_expand;
5674 	int error, rc;
5675 
5676 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5677 		brelse(iloc->bh);
5678 		return -EOVERFLOW;
5679 	}
5680 
5681 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5682 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5683 	if (IS_ERR(handle)) {
5684 		error = PTR_ERR(handle);
5685 		brelse(iloc->bh);
5686 		return error;
5687 	}
5688 
5689 	ext4_write_lock_xattr(inode, &no_expand);
5690 
5691 	BUFFER_TRACE(iloc->bh, "get_write_access");
5692 	error = ext4_journal_get_write_access(handle, iloc->bh);
5693 	if (error) {
5694 		brelse(iloc->bh);
5695 		goto out_stop;
5696 	}
5697 
5698 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5699 					  handle, &no_expand);
5700 
5701 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5702 	if (!error)
5703 		error = rc;
5704 
5705 	ext4_write_unlock_xattr(inode, &no_expand);
5706 out_stop:
5707 	ext4_journal_stop(handle);
5708 	return error;
5709 }
5710 
5711 /*
5712  * What we do here is to mark the in-core inode as clean with respect to inode
5713  * dirtiness (it may still be data-dirty).
5714  * This means that the in-core inode may be reaped by prune_icache
5715  * without having to perform any I/O.  This is a very good thing,
5716  * because *any* task may call prune_icache - even ones which
5717  * have a transaction open against a different journal.
5718  *
5719  * Is this cheating?  Not really.  Sure, we haven't written the
5720  * inode out, but prune_icache isn't a user-visible syncing function.
5721  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5722  * we start and wait on commits.
5723  */
5724 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5725 {
5726 	struct ext4_iloc iloc;
5727 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5728 	int err;
5729 
5730 	might_sleep();
5731 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5732 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5733 	if (err)
5734 		return err;
5735 
5736 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5737 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5738 					       iloc, handle);
5739 
5740 	return ext4_mark_iloc_dirty(handle, inode, &iloc);
5741 }
5742 
5743 /*
5744  * ext4_dirty_inode() is called from __mark_inode_dirty()
5745  *
5746  * We're really interested in the case where a file is being extended.
5747  * i_size has been changed by generic_commit_write() and we thus need
5748  * to include the updated inode in the current transaction.
5749  *
5750  * Also, dquot_alloc_block() will always dirty the inode when blocks
5751  * are allocated to the file.
5752  *
5753  * If the inode is marked synchronous, we don't honour that here - doing
5754  * so would cause a commit on atime updates, which we don't bother doing.
5755  * We handle synchronous inodes at the highest possible level.
5756  *
5757  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5758  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5759  * to copy into the on-disk inode structure are the timestamp files.
5760  */
5761 void ext4_dirty_inode(struct inode *inode, int flags)
5762 {
5763 	handle_t *handle;
5764 
5765 	if (flags == I_DIRTY_TIME)
5766 		return;
5767 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5768 	if (IS_ERR(handle))
5769 		goto out;
5770 
5771 	ext4_mark_inode_dirty(handle, inode);
5772 
5773 	ext4_journal_stop(handle);
5774 out:
5775 	return;
5776 }
5777 
5778 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5779 {
5780 	journal_t *journal;
5781 	handle_t *handle;
5782 	int err;
5783 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5784 
5785 	/*
5786 	 * We have to be very careful here: changing a data block's
5787 	 * journaling status dynamically is dangerous.  If we write a
5788 	 * data block to the journal, change the status and then delete
5789 	 * that block, we risk forgetting to revoke the old log record
5790 	 * from the journal and so a subsequent replay can corrupt data.
5791 	 * So, first we make sure that the journal is empty and that
5792 	 * nobody is changing anything.
5793 	 */
5794 
5795 	journal = EXT4_JOURNAL(inode);
5796 	if (!journal)
5797 		return 0;
5798 	if (is_journal_aborted(journal))
5799 		return -EROFS;
5800 
5801 	/* Wait for all existing dio workers */
5802 	inode_dio_wait(inode);
5803 
5804 	/*
5805 	 * Before flushing the journal and switching inode's aops, we have
5806 	 * to flush all dirty data the inode has. There can be outstanding
5807 	 * delayed allocations, there can be unwritten extents created by
5808 	 * fallocate or buffered writes in dioread_nolock mode covered by
5809 	 * dirty data which can be converted only after flushing the dirty
5810 	 * data (and journalled aops don't know how to handle these cases).
5811 	 */
5812 	if (val) {
5813 		down_write(&EXT4_I(inode)->i_mmap_sem);
5814 		err = filemap_write_and_wait(inode->i_mapping);
5815 		if (err < 0) {
5816 			up_write(&EXT4_I(inode)->i_mmap_sem);
5817 			return err;
5818 		}
5819 	}
5820 
5821 	percpu_down_write(&sbi->s_journal_flag_rwsem);
5822 	jbd2_journal_lock_updates(journal);
5823 
5824 	/*
5825 	 * OK, there are no updates running now, and all cached data is
5826 	 * synced to disk.  We are now in a completely consistent state
5827 	 * which doesn't have anything in the journal, and we know that
5828 	 * no filesystem updates are running, so it is safe to modify
5829 	 * the inode's in-core data-journaling state flag now.
5830 	 */
5831 
5832 	if (val)
5833 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5834 	else {
5835 		err = jbd2_journal_flush(journal);
5836 		if (err < 0) {
5837 			jbd2_journal_unlock_updates(journal);
5838 			percpu_up_write(&sbi->s_journal_flag_rwsem);
5839 			return err;
5840 		}
5841 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5842 	}
5843 	ext4_set_aops(inode);
5844 
5845 	jbd2_journal_unlock_updates(journal);
5846 	percpu_up_write(&sbi->s_journal_flag_rwsem);
5847 
5848 	if (val)
5849 		up_write(&EXT4_I(inode)->i_mmap_sem);
5850 
5851 	/* Finally we can mark the inode as dirty. */
5852 
5853 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5854 	if (IS_ERR(handle))
5855 		return PTR_ERR(handle);
5856 
5857 	err = ext4_mark_inode_dirty(handle, inode);
5858 	ext4_handle_sync(handle);
5859 	ext4_journal_stop(handle);
5860 	ext4_std_error(inode->i_sb, err);
5861 
5862 	return err;
5863 }
5864 
5865 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5866 {
5867 	return !buffer_mapped(bh);
5868 }
5869 
5870 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
5871 {
5872 	struct vm_area_struct *vma = vmf->vma;
5873 	struct page *page = vmf->page;
5874 	loff_t size;
5875 	unsigned long len;
5876 	int err;
5877 	vm_fault_t ret;
5878 	struct file *file = vma->vm_file;
5879 	struct inode *inode = file_inode(file);
5880 	struct address_space *mapping = inode->i_mapping;
5881 	handle_t *handle;
5882 	get_block_t *get_block;
5883 	int retries = 0;
5884 
5885 	if (unlikely(IS_IMMUTABLE(inode)))
5886 		return VM_FAULT_SIGBUS;
5887 
5888 	sb_start_pagefault(inode->i_sb);
5889 	file_update_time(vma->vm_file);
5890 
5891 	down_read(&EXT4_I(inode)->i_mmap_sem);
5892 
5893 	err = ext4_convert_inline_data(inode);
5894 	if (err)
5895 		goto out_ret;
5896 
5897 	/* Delalloc case is easy... */
5898 	if (test_opt(inode->i_sb, DELALLOC) &&
5899 	    !ext4_should_journal_data(inode) &&
5900 	    !ext4_nonda_switch(inode->i_sb)) {
5901 		do {
5902 			err = block_page_mkwrite(vma, vmf,
5903 						   ext4_da_get_block_prep);
5904 		} while (err == -ENOSPC &&
5905 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5906 		goto out_ret;
5907 	}
5908 
5909 	lock_page(page);
5910 	size = i_size_read(inode);
5911 	/* Page got truncated from under us? */
5912 	if (page->mapping != mapping || page_offset(page) > size) {
5913 		unlock_page(page);
5914 		ret = VM_FAULT_NOPAGE;
5915 		goto out;
5916 	}
5917 
5918 	if (page->index == size >> PAGE_SHIFT)
5919 		len = size & ~PAGE_MASK;
5920 	else
5921 		len = PAGE_SIZE;
5922 	/*
5923 	 * Return if we have all the buffers mapped. This avoids the need to do
5924 	 * journal_start/journal_stop which can block and take a long time
5925 	 */
5926 	if (page_has_buffers(page)) {
5927 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5928 					    0, len, NULL,
5929 					    ext4_bh_unmapped)) {
5930 			/* Wait so that we don't change page under IO */
5931 			wait_for_stable_page(page);
5932 			ret = VM_FAULT_LOCKED;
5933 			goto out;
5934 		}
5935 	}
5936 	unlock_page(page);
5937 	/* OK, we need to fill the hole... */
5938 	if (ext4_should_dioread_nolock(inode))
5939 		get_block = ext4_get_block_unwritten;
5940 	else
5941 		get_block = ext4_get_block;
5942 retry_alloc:
5943 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5944 				    ext4_writepage_trans_blocks(inode));
5945 	if (IS_ERR(handle)) {
5946 		ret = VM_FAULT_SIGBUS;
5947 		goto out;
5948 	}
5949 	err = block_page_mkwrite(vma, vmf, get_block);
5950 	if (!err && ext4_should_journal_data(inode)) {
5951 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5952 			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
5953 			unlock_page(page);
5954 			ret = VM_FAULT_SIGBUS;
5955 			ext4_journal_stop(handle);
5956 			goto out;
5957 		}
5958 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5959 	}
5960 	ext4_journal_stop(handle);
5961 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5962 		goto retry_alloc;
5963 out_ret:
5964 	ret = block_page_mkwrite_return(err);
5965 out:
5966 	up_read(&EXT4_I(inode)->i_mmap_sem);
5967 	sb_end_pagefault(inode->i_sb);
5968 	return ret;
5969 }
5970 
5971 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
5972 {
5973 	struct inode *inode = file_inode(vmf->vma->vm_file);
5974 	vm_fault_t ret;
5975 
5976 	down_read(&EXT4_I(inode)->i_mmap_sem);
5977 	ret = filemap_fault(vmf);
5978 	up_read(&EXT4_I(inode)->i_mmap_sem);
5979 
5980 	return ret;
5981 }
5982