xref: /linux/fs/ext4/inode.c (revision 1448f8acf4cc61197a228bdb7126e7eeb92760fe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43 
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48 
49 #include <trace/events/ext4.h>
50 
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 			      struct ext4_inode_info *ei)
53 {
54 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 	__u32 csum;
56 	__u16 dummy_csum = 0;
57 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 	unsigned int csum_size = sizeof(dummy_csum);
59 
60 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 	offset += csum_size;
63 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
65 
66 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 		offset = offsetof(struct ext4_inode, i_checksum_hi);
68 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 				   EXT4_GOOD_OLD_INODE_SIZE,
70 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
71 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 					   csum_size);
74 			offset += csum_size;
75 		}
76 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
78 	}
79 
80 	return csum;
81 }
82 
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 				  struct ext4_inode_info *ei)
85 {
86 	__u32 provided, calculated;
87 
88 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 	    cpu_to_le32(EXT4_OS_LINUX) ||
90 	    !ext4_has_metadata_csum(inode->i_sb))
91 		return 1;
92 
93 	provided = le16_to_cpu(raw->i_checksum_lo);
94 	calculated = ext4_inode_csum(inode, raw, ei);
95 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 	else
99 		calculated &= 0xFFFF;
100 
101 	return provided == calculated;
102 }
103 
104 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 			 struct ext4_inode_info *ei)
106 {
107 	__u32 csum;
108 
109 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 	    cpu_to_le32(EXT4_OS_LINUX) ||
111 	    !ext4_has_metadata_csum(inode->i_sb))
112 		return;
113 
114 	csum = ext4_inode_csum(inode, raw, ei);
115 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120 
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 					      loff_t new_size)
123 {
124 	trace_ext4_begin_ordered_truncate(inode, new_size);
125 	/*
126 	 * If jinode is zero, then we never opened the file for
127 	 * writing, so there's no need to call
128 	 * jbd2_journal_begin_ordered_truncate() since there's no
129 	 * outstanding writes we need to flush.
130 	 */
131 	if (!EXT4_I(inode)->jinode)
132 		return 0;
133 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 						   EXT4_I(inode)->jinode,
135 						   new_size);
136 }
137 
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 				unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 				  int pextents);
144 
145 /*
146  * Test whether an inode is a fast symlink.
147  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148  */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
153 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
154 
155 		if (ext4_has_inline_data(inode))
156 			return 0;
157 
158 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159 	}
160 	return S_ISLNK(inode->i_mode) && inode->i_size &&
161 	       (inode->i_size < EXT4_N_BLOCKS * 4);
162 }
163 
164 /*
165  * Called at the last iput() if i_nlink is zero.
166  */
167 void ext4_evict_inode(struct inode *inode)
168 {
169 	handle_t *handle;
170 	int err;
171 	/*
172 	 * Credits for final inode cleanup and freeing:
173 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
175 	 */
176 	int extra_credits = 6;
177 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
178 	bool freeze_protected = false;
179 
180 	trace_ext4_evict_inode(inode);
181 
182 	if (inode->i_nlink) {
183 		/*
184 		 * When journalling data dirty buffers are tracked only in the
185 		 * journal. So although mm thinks everything is clean and
186 		 * ready for reaping the inode might still have some pages to
187 		 * write in the running transaction or waiting to be
188 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
189 		 * (via truncate_inode_pages()) to discard these buffers can
190 		 * cause data loss. Also even if we did not discard these
191 		 * buffers, we would have no way to find them after the inode
192 		 * is reaped and thus user could see stale data if he tries to
193 		 * read them before the transaction is checkpointed. So be
194 		 * careful and force everything to disk here... We use
195 		 * ei->i_datasync_tid to store the newest transaction
196 		 * containing inode's data.
197 		 *
198 		 * Note that directories do not have this problem because they
199 		 * don't use page cache.
200 		 */
201 		if (inode->i_ino != EXT4_JOURNAL_INO &&
202 		    ext4_should_journal_data(inode) &&
203 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
204 		    inode->i_data.nrpages) {
205 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
206 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
207 
208 			jbd2_complete_transaction(journal, commit_tid);
209 			filemap_write_and_wait(&inode->i_data);
210 		}
211 		truncate_inode_pages_final(&inode->i_data);
212 
213 		goto no_delete;
214 	}
215 
216 	if (is_bad_inode(inode))
217 		goto no_delete;
218 	dquot_initialize(inode);
219 
220 	if (ext4_should_order_data(inode))
221 		ext4_begin_ordered_truncate(inode, 0);
222 	truncate_inode_pages_final(&inode->i_data);
223 
224 	/*
225 	 * For inodes with journalled data, transaction commit could have
226 	 * dirtied the inode. Flush worker is ignoring it because of I_FREEING
227 	 * flag but we still need to remove the inode from the writeback lists.
228 	 */
229 	if (!list_empty_careful(&inode->i_io_list)) {
230 		WARN_ON_ONCE(!ext4_should_journal_data(inode));
231 		inode_io_list_del(inode);
232 	}
233 
234 	/*
235 	 * Protect us against freezing - iput() caller didn't have to have any
236 	 * protection against it. When we are in a running transaction though,
237 	 * we are already protected against freezing and we cannot grab further
238 	 * protection due to lock ordering constraints.
239 	 */
240 	if (!ext4_journal_current_handle()) {
241 		sb_start_intwrite(inode->i_sb);
242 		freeze_protected = true;
243 	}
244 
245 	if (!IS_NOQUOTA(inode))
246 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
247 
248 	/*
249 	 * Block bitmap, group descriptor, and inode are accounted in both
250 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
251 	 */
252 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
253 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
254 	if (IS_ERR(handle)) {
255 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
256 		/*
257 		 * If we're going to skip the normal cleanup, we still need to
258 		 * make sure that the in-core orphan linked list is properly
259 		 * cleaned up.
260 		 */
261 		ext4_orphan_del(NULL, inode);
262 		if (freeze_protected)
263 			sb_end_intwrite(inode->i_sb);
264 		goto no_delete;
265 	}
266 
267 	if (IS_SYNC(inode))
268 		ext4_handle_sync(handle);
269 
270 	/*
271 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
272 	 * special handling of symlinks here because i_size is used to
273 	 * determine whether ext4_inode_info->i_data contains symlink data or
274 	 * block mappings. Setting i_size to 0 will remove its fast symlink
275 	 * status. Erase i_data so that it becomes a valid empty block map.
276 	 */
277 	if (ext4_inode_is_fast_symlink(inode))
278 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
279 	inode->i_size = 0;
280 	err = ext4_mark_inode_dirty(handle, inode);
281 	if (err) {
282 		ext4_warning(inode->i_sb,
283 			     "couldn't mark inode dirty (err %d)", err);
284 		goto stop_handle;
285 	}
286 	if (inode->i_blocks) {
287 		err = ext4_truncate(inode);
288 		if (err) {
289 			ext4_error_err(inode->i_sb, -err,
290 				       "couldn't truncate inode %lu (err %d)",
291 				       inode->i_ino, err);
292 			goto stop_handle;
293 		}
294 	}
295 
296 	/* Remove xattr references. */
297 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
298 				      extra_credits);
299 	if (err) {
300 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
301 stop_handle:
302 		ext4_journal_stop(handle);
303 		ext4_orphan_del(NULL, inode);
304 		if (freeze_protected)
305 			sb_end_intwrite(inode->i_sb);
306 		ext4_xattr_inode_array_free(ea_inode_array);
307 		goto no_delete;
308 	}
309 
310 	/*
311 	 * Kill off the orphan record which ext4_truncate created.
312 	 * AKPM: I think this can be inside the above `if'.
313 	 * Note that ext4_orphan_del() has to be able to cope with the
314 	 * deletion of a non-existent orphan - this is because we don't
315 	 * know if ext4_truncate() actually created an orphan record.
316 	 * (Well, we could do this if we need to, but heck - it works)
317 	 */
318 	ext4_orphan_del(handle, inode);
319 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
320 
321 	/*
322 	 * One subtle ordering requirement: if anything has gone wrong
323 	 * (transaction abort, IO errors, whatever), then we can still
324 	 * do these next steps (the fs will already have been marked as
325 	 * having errors), but we can't free the inode if the mark_dirty
326 	 * fails.
327 	 */
328 	if (ext4_mark_inode_dirty(handle, inode))
329 		/* If that failed, just do the required in-core inode clear. */
330 		ext4_clear_inode(inode);
331 	else
332 		ext4_free_inode(handle, inode);
333 	ext4_journal_stop(handle);
334 	if (freeze_protected)
335 		sb_end_intwrite(inode->i_sb);
336 	ext4_xattr_inode_array_free(ea_inode_array);
337 	return;
338 no_delete:
339 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
340 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
341 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
342 }
343 
344 #ifdef CONFIG_QUOTA
345 qsize_t *ext4_get_reserved_space(struct inode *inode)
346 {
347 	return &EXT4_I(inode)->i_reserved_quota;
348 }
349 #endif
350 
351 /*
352  * Called with i_data_sem down, which is important since we can call
353  * ext4_discard_preallocations() from here.
354  */
355 void ext4_da_update_reserve_space(struct inode *inode,
356 					int used, int quota_claim)
357 {
358 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
359 	struct ext4_inode_info *ei = EXT4_I(inode);
360 
361 	spin_lock(&ei->i_block_reservation_lock);
362 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
363 	if (unlikely(used > ei->i_reserved_data_blocks)) {
364 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
365 			 "with only %d reserved data blocks",
366 			 __func__, inode->i_ino, used,
367 			 ei->i_reserved_data_blocks);
368 		WARN_ON(1);
369 		used = ei->i_reserved_data_blocks;
370 	}
371 
372 	/* Update per-inode reservations */
373 	ei->i_reserved_data_blocks -= used;
374 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
375 
376 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
377 
378 	/* Update quota subsystem for data blocks */
379 	if (quota_claim)
380 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
381 	else {
382 		/*
383 		 * We did fallocate with an offset that is already delayed
384 		 * allocated. So on delayed allocated writeback we should
385 		 * not re-claim the quota for fallocated blocks.
386 		 */
387 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
388 	}
389 
390 	/*
391 	 * If we have done all the pending block allocations and if
392 	 * there aren't any writers on the inode, we can discard the
393 	 * inode's preallocations.
394 	 */
395 	if ((ei->i_reserved_data_blocks == 0) &&
396 	    !inode_is_open_for_write(inode))
397 		ext4_discard_preallocations(inode, 0);
398 }
399 
400 static int __check_block_validity(struct inode *inode, const char *func,
401 				unsigned int line,
402 				struct ext4_map_blocks *map)
403 {
404 	if (ext4_has_feature_journal(inode->i_sb) &&
405 	    (inode->i_ino ==
406 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
407 		return 0;
408 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
409 		ext4_error_inode(inode, func, line, map->m_pblk,
410 				 "lblock %lu mapped to illegal pblock %llu "
411 				 "(length %d)", (unsigned long) map->m_lblk,
412 				 map->m_pblk, map->m_len);
413 		return -EFSCORRUPTED;
414 	}
415 	return 0;
416 }
417 
418 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
419 		       ext4_lblk_t len)
420 {
421 	int ret;
422 
423 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
424 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
425 
426 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
427 	if (ret > 0)
428 		ret = 0;
429 
430 	return ret;
431 }
432 
433 #define check_block_validity(inode, map)	\
434 	__check_block_validity((inode), __func__, __LINE__, (map))
435 
436 #ifdef ES_AGGRESSIVE_TEST
437 static void ext4_map_blocks_es_recheck(handle_t *handle,
438 				       struct inode *inode,
439 				       struct ext4_map_blocks *es_map,
440 				       struct ext4_map_blocks *map,
441 				       int flags)
442 {
443 	int retval;
444 
445 	map->m_flags = 0;
446 	/*
447 	 * There is a race window that the result is not the same.
448 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
449 	 * is that we lookup a block mapping in extent status tree with
450 	 * out taking i_data_sem.  So at the time the unwritten extent
451 	 * could be converted.
452 	 */
453 	down_read(&EXT4_I(inode)->i_data_sem);
454 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
455 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
456 	} else {
457 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
458 	}
459 	up_read((&EXT4_I(inode)->i_data_sem));
460 
461 	/*
462 	 * We don't check m_len because extent will be collpased in status
463 	 * tree.  So the m_len might not equal.
464 	 */
465 	if (es_map->m_lblk != map->m_lblk ||
466 	    es_map->m_flags != map->m_flags ||
467 	    es_map->m_pblk != map->m_pblk) {
468 		printk("ES cache assertion failed for inode: %lu "
469 		       "es_cached ex [%d/%d/%llu/%x] != "
470 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
472 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
473 		       map->m_len, map->m_pblk, map->m_flags,
474 		       retval, flags);
475 	}
476 }
477 #endif /* ES_AGGRESSIVE_TEST */
478 
479 /*
480  * The ext4_map_blocks() function tries to look up the requested blocks,
481  * and returns if the blocks are already mapped.
482  *
483  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484  * and store the allocated blocks in the result buffer head and mark it
485  * mapped.
486  *
487  * If file type is extents based, it will call ext4_ext_map_blocks(),
488  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
489  * based files
490  *
491  * On success, it returns the number of blocks being mapped or allocated.  if
492  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
493  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
494  *
495  * It returns 0 if plain look up failed (blocks have not been allocated), in
496  * that case, @map is returned as unmapped but we still do fill map->m_len to
497  * indicate the length of a hole starting at map->m_lblk.
498  *
499  * It returns the error in case of allocation failure.
500  */
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502 		    struct ext4_map_blocks *map, int flags)
503 {
504 	struct extent_status es;
505 	int retval;
506 	int ret = 0;
507 #ifdef ES_AGGRESSIVE_TEST
508 	struct ext4_map_blocks orig_map;
509 
510 	memcpy(&orig_map, map, sizeof(*map));
511 #endif
512 
513 	map->m_flags = 0;
514 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
515 		  flags, map->m_len, (unsigned long) map->m_lblk);
516 
517 	/*
518 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
519 	 */
520 	if (unlikely(map->m_len > INT_MAX))
521 		map->m_len = INT_MAX;
522 
523 	/* We can handle the block number less than EXT_MAX_BLOCKS */
524 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
525 		return -EFSCORRUPTED;
526 
527 	/* Lookup extent status tree firstly */
528 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
529 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
530 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
531 			map->m_pblk = ext4_es_pblock(&es) +
532 					map->m_lblk - es.es_lblk;
533 			map->m_flags |= ext4_es_is_written(&es) ?
534 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
535 			retval = es.es_len - (map->m_lblk - es.es_lblk);
536 			if (retval > map->m_len)
537 				retval = map->m_len;
538 			map->m_len = retval;
539 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
540 			map->m_pblk = 0;
541 			retval = es.es_len - (map->m_lblk - es.es_lblk);
542 			if (retval > map->m_len)
543 				retval = map->m_len;
544 			map->m_len = retval;
545 			retval = 0;
546 		} else {
547 			BUG();
548 		}
549 #ifdef ES_AGGRESSIVE_TEST
550 		ext4_map_blocks_es_recheck(handle, inode, map,
551 					   &orig_map, flags);
552 #endif
553 		goto found;
554 	}
555 
556 	/*
557 	 * Try to see if we can get the block without requesting a new
558 	 * file system block.
559 	 */
560 	down_read(&EXT4_I(inode)->i_data_sem);
561 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
562 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
563 	} else {
564 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
565 	}
566 	if (retval > 0) {
567 		unsigned int status;
568 
569 		if (unlikely(retval != map->m_len)) {
570 			ext4_warning(inode->i_sb,
571 				     "ES len assertion failed for inode "
572 				     "%lu: retval %d != map->m_len %d",
573 				     inode->i_ino, retval, map->m_len);
574 			WARN_ON(1);
575 		}
576 
577 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
578 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
579 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
580 		    !(status & EXTENT_STATUS_WRITTEN) &&
581 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
582 				       map->m_lblk + map->m_len - 1))
583 			status |= EXTENT_STATUS_DELAYED;
584 		ret = ext4_es_insert_extent(inode, map->m_lblk,
585 					    map->m_len, map->m_pblk, status);
586 		if (ret < 0)
587 			retval = ret;
588 	}
589 	up_read((&EXT4_I(inode)->i_data_sem));
590 
591 found:
592 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
593 		ret = check_block_validity(inode, map);
594 		if (ret != 0)
595 			return ret;
596 	}
597 
598 	/* If it is only a block(s) look up */
599 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
600 		return retval;
601 
602 	/*
603 	 * Returns if the blocks have already allocated
604 	 *
605 	 * Note that if blocks have been preallocated
606 	 * ext4_ext_get_block() returns the create = 0
607 	 * with buffer head unmapped.
608 	 */
609 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
610 		/*
611 		 * If we need to convert extent to unwritten
612 		 * we continue and do the actual work in
613 		 * ext4_ext_map_blocks()
614 		 */
615 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
616 			return retval;
617 
618 	/*
619 	 * Here we clear m_flags because after allocating an new extent,
620 	 * it will be set again.
621 	 */
622 	map->m_flags &= ~EXT4_MAP_FLAGS;
623 
624 	/*
625 	 * New blocks allocate and/or writing to unwritten extent
626 	 * will possibly result in updating i_data, so we take
627 	 * the write lock of i_data_sem, and call get_block()
628 	 * with create == 1 flag.
629 	 */
630 	down_write(&EXT4_I(inode)->i_data_sem);
631 
632 	/*
633 	 * We need to check for EXT4 here because migrate
634 	 * could have changed the inode type in between
635 	 */
636 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
637 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
638 	} else {
639 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
640 
641 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
642 			/*
643 			 * We allocated new blocks which will result in
644 			 * i_data's format changing.  Force the migrate
645 			 * to fail by clearing migrate flags
646 			 */
647 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
648 		}
649 
650 		/*
651 		 * Update reserved blocks/metadata blocks after successful
652 		 * block allocation which had been deferred till now. We don't
653 		 * support fallocate for non extent files. So we can update
654 		 * reserve space here.
655 		 */
656 		if ((retval > 0) &&
657 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
658 			ext4_da_update_reserve_space(inode, retval, 1);
659 	}
660 
661 	if (retval > 0) {
662 		unsigned int status;
663 
664 		if (unlikely(retval != map->m_len)) {
665 			ext4_warning(inode->i_sb,
666 				     "ES len assertion failed for inode "
667 				     "%lu: retval %d != map->m_len %d",
668 				     inode->i_ino, retval, map->m_len);
669 			WARN_ON(1);
670 		}
671 
672 		/*
673 		 * We have to zeroout blocks before inserting them into extent
674 		 * status tree. Otherwise someone could look them up there and
675 		 * use them before they are really zeroed. We also have to
676 		 * unmap metadata before zeroing as otherwise writeback can
677 		 * overwrite zeros with stale data from block device.
678 		 */
679 		if (flags & EXT4_GET_BLOCKS_ZERO &&
680 		    map->m_flags & EXT4_MAP_MAPPED &&
681 		    map->m_flags & EXT4_MAP_NEW) {
682 			ret = ext4_issue_zeroout(inode, map->m_lblk,
683 						 map->m_pblk, map->m_len);
684 			if (ret) {
685 				retval = ret;
686 				goto out_sem;
687 			}
688 		}
689 
690 		/*
691 		 * If the extent has been zeroed out, we don't need to update
692 		 * extent status tree.
693 		 */
694 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
695 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
696 			if (ext4_es_is_written(&es))
697 				goto out_sem;
698 		}
699 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
700 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
701 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
702 		    !(status & EXTENT_STATUS_WRITTEN) &&
703 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
704 				       map->m_lblk + map->m_len - 1))
705 			status |= EXTENT_STATUS_DELAYED;
706 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
707 					    map->m_pblk, status);
708 		if (ret < 0) {
709 			retval = ret;
710 			goto out_sem;
711 		}
712 	}
713 
714 out_sem:
715 	up_write((&EXT4_I(inode)->i_data_sem));
716 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
717 		ret = check_block_validity(inode, map);
718 		if (ret != 0)
719 			return ret;
720 
721 		/*
722 		 * Inodes with freshly allocated blocks where contents will be
723 		 * visible after transaction commit must be on transaction's
724 		 * ordered data list.
725 		 */
726 		if (map->m_flags & EXT4_MAP_NEW &&
727 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
728 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
729 		    !ext4_is_quota_file(inode) &&
730 		    ext4_should_order_data(inode)) {
731 			loff_t start_byte =
732 				(loff_t)map->m_lblk << inode->i_blkbits;
733 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
734 
735 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
736 				ret = ext4_jbd2_inode_add_wait(handle, inode,
737 						start_byte, length);
738 			else
739 				ret = ext4_jbd2_inode_add_write(handle, inode,
740 						start_byte, length);
741 			if (ret)
742 				return ret;
743 		}
744 		ext4_fc_track_range(handle, inode, map->m_lblk,
745 			    map->m_lblk + map->m_len - 1);
746 	}
747 
748 	if (retval < 0)
749 		ext_debug(inode, "failed with err %d\n", retval);
750 	return retval;
751 }
752 
753 /*
754  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
755  * we have to be careful as someone else may be manipulating b_state as well.
756  */
757 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
758 {
759 	unsigned long old_state;
760 	unsigned long new_state;
761 
762 	flags &= EXT4_MAP_FLAGS;
763 
764 	/* Dummy buffer_head? Set non-atomically. */
765 	if (!bh->b_page) {
766 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
767 		return;
768 	}
769 	/*
770 	 * Someone else may be modifying b_state. Be careful! This is ugly but
771 	 * once we get rid of using bh as a container for mapping information
772 	 * to pass to / from get_block functions, this can go away.
773 	 */
774 	do {
775 		old_state = READ_ONCE(bh->b_state);
776 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
777 	} while (unlikely(
778 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
779 }
780 
781 static int _ext4_get_block(struct inode *inode, sector_t iblock,
782 			   struct buffer_head *bh, int flags)
783 {
784 	struct ext4_map_blocks map;
785 	int ret = 0;
786 
787 	if (ext4_has_inline_data(inode))
788 		return -ERANGE;
789 
790 	map.m_lblk = iblock;
791 	map.m_len = bh->b_size >> inode->i_blkbits;
792 
793 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
794 			      flags);
795 	if (ret > 0) {
796 		map_bh(bh, inode->i_sb, map.m_pblk);
797 		ext4_update_bh_state(bh, map.m_flags);
798 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
799 		ret = 0;
800 	} else if (ret == 0) {
801 		/* hole case, need to fill in bh->b_size */
802 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
803 	}
804 	return ret;
805 }
806 
807 int ext4_get_block(struct inode *inode, sector_t iblock,
808 		   struct buffer_head *bh, int create)
809 {
810 	return _ext4_get_block(inode, iblock, bh,
811 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
812 }
813 
814 /*
815  * Get block function used when preparing for buffered write if we require
816  * creating an unwritten extent if blocks haven't been allocated.  The extent
817  * will be converted to written after the IO is complete.
818  */
819 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
820 			     struct buffer_head *bh_result, int create)
821 {
822 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
823 		   inode->i_ino, create);
824 	return _ext4_get_block(inode, iblock, bh_result,
825 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
826 }
827 
828 /* Maximum number of blocks we map for direct IO at once. */
829 #define DIO_MAX_BLOCKS 4096
830 
831 /*
832  * `handle' can be NULL if create is zero
833  */
834 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
835 				ext4_lblk_t block, int map_flags)
836 {
837 	struct ext4_map_blocks map;
838 	struct buffer_head *bh;
839 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
840 	int err;
841 
842 	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
843 		    || handle != NULL || create == 0);
844 
845 	map.m_lblk = block;
846 	map.m_len = 1;
847 	err = ext4_map_blocks(handle, inode, &map, map_flags);
848 
849 	if (err == 0)
850 		return create ? ERR_PTR(-ENOSPC) : NULL;
851 	if (err < 0)
852 		return ERR_PTR(err);
853 
854 	bh = sb_getblk(inode->i_sb, map.m_pblk);
855 	if (unlikely(!bh))
856 		return ERR_PTR(-ENOMEM);
857 	if (map.m_flags & EXT4_MAP_NEW) {
858 		ASSERT(create != 0);
859 		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
860 			    || (handle != NULL));
861 
862 		/*
863 		 * Now that we do not always journal data, we should
864 		 * keep in mind whether this should always journal the
865 		 * new buffer as metadata.  For now, regular file
866 		 * writes use ext4_get_block instead, so it's not a
867 		 * problem.
868 		 */
869 		lock_buffer(bh);
870 		BUFFER_TRACE(bh, "call get_create_access");
871 		err = ext4_journal_get_create_access(handle, bh);
872 		if (unlikely(err)) {
873 			unlock_buffer(bh);
874 			goto errout;
875 		}
876 		if (!buffer_uptodate(bh)) {
877 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
878 			set_buffer_uptodate(bh);
879 		}
880 		unlock_buffer(bh);
881 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
882 		err = ext4_handle_dirty_metadata(handle, inode, bh);
883 		if (unlikely(err))
884 			goto errout;
885 	} else
886 		BUFFER_TRACE(bh, "not a new buffer");
887 	return bh;
888 errout:
889 	brelse(bh);
890 	return ERR_PTR(err);
891 }
892 
893 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
894 			       ext4_lblk_t block, int map_flags)
895 {
896 	struct buffer_head *bh;
897 	int ret;
898 
899 	bh = ext4_getblk(handle, inode, block, map_flags);
900 	if (IS_ERR(bh))
901 		return bh;
902 	if (!bh || ext4_buffer_uptodate(bh))
903 		return bh;
904 
905 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
906 	if (ret) {
907 		put_bh(bh);
908 		return ERR_PTR(ret);
909 	}
910 	return bh;
911 }
912 
913 /* Read a contiguous batch of blocks. */
914 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
915 		     bool wait, struct buffer_head **bhs)
916 {
917 	int i, err;
918 
919 	for (i = 0; i < bh_count; i++) {
920 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
921 		if (IS_ERR(bhs[i])) {
922 			err = PTR_ERR(bhs[i]);
923 			bh_count = i;
924 			goto out_brelse;
925 		}
926 	}
927 
928 	for (i = 0; i < bh_count; i++)
929 		/* Note that NULL bhs[i] is valid because of holes. */
930 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
931 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
932 
933 	if (!wait)
934 		return 0;
935 
936 	for (i = 0; i < bh_count; i++)
937 		if (bhs[i])
938 			wait_on_buffer(bhs[i]);
939 
940 	for (i = 0; i < bh_count; i++) {
941 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
942 			err = -EIO;
943 			goto out_brelse;
944 		}
945 	}
946 	return 0;
947 
948 out_brelse:
949 	for (i = 0; i < bh_count; i++) {
950 		brelse(bhs[i]);
951 		bhs[i] = NULL;
952 	}
953 	return err;
954 }
955 
956 int ext4_walk_page_buffers(handle_t *handle,
957 			   struct buffer_head *head,
958 			   unsigned from,
959 			   unsigned to,
960 			   int *partial,
961 			   int (*fn)(handle_t *handle,
962 				     struct buffer_head *bh))
963 {
964 	struct buffer_head *bh;
965 	unsigned block_start, block_end;
966 	unsigned blocksize = head->b_size;
967 	int err, ret = 0;
968 	struct buffer_head *next;
969 
970 	for (bh = head, block_start = 0;
971 	     ret == 0 && (bh != head || !block_start);
972 	     block_start = block_end, bh = next) {
973 		next = bh->b_this_page;
974 		block_end = block_start + blocksize;
975 		if (block_end <= from || block_start >= to) {
976 			if (partial && !buffer_uptodate(bh))
977 				*partial = 1;
978 			continue;
979 		}
980 		err = (*fn)(handle, bh);
981 		if (!ret)
982 			ret = err;
983 	}
984 	return ret;
985 }
986 
987 /*
988  * To preserve ordering, it is essential that the hole instantiation and
989  * the data write be encapsulated in a single transaction.  We cannot
990  * close off a transaction and start a new one between the ext4_get_block()
991  * and the commit_write().  So doing the jbd2_journal_start at the start of
992  * prepare_write() is the right place.
993  *
994  * Also, this function can nest inside ext4_writepage().  In that case, we
995  * *know* that ext4_writepage() has generated enough buffer credits to do the
996  * whole page.  So we won't block on the journal in that case, which is good,
997  * because the caller may be PF_MEMALLOC.
998  *
999  * By accident, ext4 can be reentered when a transaction is open via
1000  * quota file writes.  If we were to commit the transaction while thus
1001  * reentered, there can be a deadlock - we would be holding a quota
1002  * lock, and the commit would never complete if another thread had a
1003  * transaction open and was blocking on the quota lock - a ranking
1004  * violation.
1005  *
1006  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1007  * will _not_ run commit under these circumstances because handle->h_ref
1008  * is elevated.  We'll still have enough credits for the tiny quotafile
1009  * write.
1010  */
1011 int do_journal_get_write_access(handle_t *handle,
1012 				struct buffer_head *bh)
1013 {
1014 	int dirty = buffer_dirty(bh);
1015 	int ret;
1016 
1017 	if (!buffer_mapped(bh) || buffer_freed(bh))
1018 		return 0;
1019 	/*
1020 	 * __block_write_begin() could have dirtied some buffers. Clean
1021 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1022 	 * otherwise about fs integrity issues. Setting of the dirty bit
1023 	 * by __block_write_begin() isn't a real problem here as we clear
1024 	 * the bit before releasing a page lock and thus writeback cannot
1025 	 * ever write the buffer.
1026 	 */
1027 	if (dirty)
1028 		clear_buffer_dirty(bh);
1029 	BUFFER_TRACE(bh, "get write access");
1030 	ret = ext4_journal_get_write_access(handle, bh);
1031 	if (!ret && dirty)
1032 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1033 	return ret;
1034 }
1035 
1036 #ifdef CONFIG_FS_ENCRYPTION
1037 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1038 				  get_block_t *get_block)
1039 {
1040 	unsigned from = pos & (PAGE_SIZE - 1);
1041 	unsigned to = from + len;
1042 	struct inode *inode = page->mapping->host;
1043 	unsigned block_start, block_end;
1044 	sector_t block;
1045 	int err = 0;
1046 	unsigned blocksize = inode->i_sb->s_blocksize;
1047 	unsigned bbits;
1048 	struct buffer_head *bh, *head, *wait[2];
1049 	int nr_wait = 0;
1050 	int i;
1051 
1052 	BUG_ON(!PageLocked(page));
1053 	BUG_ON(from > PAGE_SIZE);
1054 	BUG_ON(to > PAGE_SIZE);
1055 	BUG_ON(from > to);
1056 
1057 	if (!page_has_buffers(page))
1058 		create_empty_buffers(page, blocksize, 0);
1059 	head = page_buffers(page);
1060 	bbits = ilog2(blocksize);
1061 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1062 
1063 	for (bh = head, block_start = 0; bh != head || !block_start;
1064 	    block++, block_start = block_end, bh = bh->b_this_page) {
1065 		block_end = block_start + blocksize;
1066 		if (block_end <= from || block_start >= to) {
1067 			if (PageUptodate(page)) {
1068 				if (!buffer_uptodate(bh))
1069 					set_buffer_uptodate(bh);
1070 			}
1071 			continue;
1072 		}
1073 		if (buffer_new(bh))
1074 			clear_buffer_new(bh);
1075 		if (!buffer_mapped(bh)) {
1076 			WARN_ON(bh->b_size != blocksize);
1077 			err = get_block(inode, block, bh, 1);
1078 			if (err)
1079 				break;
1080 			if (buffer_new(bh)) {
1081 				if (PageUptodate(page)) {
1082 					clear_buffer_new(bh);
1083 					set_buffer_uptodate(bh);
1084 					mark_buffer_dirty(bh);
1085 					continue;
1086 				}
1087 				if (block_end > to || block_start < from)
1088 					zero_user_segments(page, to, block_end,
1089 							   block_start, from);
1090 				continue;
1091 			}
1092 		}
1093 		if (PageUptodate(page)) {
1094 			if (!buffer_uptodate(bh))
1095 				set_buffer_uptodate(bh);
1096 			continue;
1097 		}
1098 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1099 		    !buffer_unwritten(bh) &&
1100 		    (block_start < from || block_end > to)) {
1101 			ext4_read_bh_lock(bh, 0, false);
1102 			wait[nr_wait++] = bh;
1103 		}
1104 	}
1105 	/*
1106 	 * If we issued read requests, let them complete.
1107 	 */
1108 	for (i = 0; i < nr_wait; i++) {
1109 		wait_on_buffer(wait[i]);
1110 		if (!buffer_uptodate(wait[i]))
1111 			err = -EIO;
1112 	}
1113 	if (unlikely(err)) {
1114 		page_zero_new_buffers(page, from, to);
1115 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1116 		for (i = 0; i < nr_wait; i++) {
1117 			int err2;
1118 
1119 			err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1120 								bh_offset(wait[i]));
1121 			if (err2) {
1122 				clear_buffer_uptodate(wait[i]);
1123 				err = err2;
1124 			}
1125 		}
1126 	}
1127 
1128 	return err;
1129 }
1130 #endif
1131 
1132 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1133 			    loff_t pos, unsigned len, unsigned flags,
1134 			    struct page **pagep, void **fsdata)
1135 {
1136 	struct inode *inode = mapping->host;
1137 	int ret, needed_blocks;
1138 	handle_t *handle;
1139 	int retries = 0;
1140 	struct page *page;
1141 	pgoff_t index;
1142 	unsigned from, to;
1143 
1144 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1145 		return -EIO;
1146 
1147 	trace_ext4_write_begin(inode, pos, len, flags);
1148 	/*
1149 	 * Reserve one block more for addition to orphan list in case
1150 	 * we allocate blocks but write fails for some reason
1151 	 */
1152 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1153 	index = pos >> PAGE_SHIFT;
1154 	from = pos & (PAGE_SIZE - 1);
1155 	to = from + len;
1156 
1157 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1158 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1159 						    flags, pagep);
1160 		if (ret < 0)
1161 			return ret;
1162 		if (ret == 1)
1163 			return 0;
1164 	}
1165 
1166 	/*
1167 	 * grab_cache_page_write_begin() can take a long time if the
1168 	 * system is thrashing due to memory pressure, or if the page
1169 	 * is being written back.  So grab it first before we start
1170 	 * the transaction handle.  This also allows us to allocate
1171 	 * the page (if needed) without using GFP_NOFS.
1172 	 */
1173 retry_grab:
1174 	page = grab_cache_page_write_begin(mapping, index, flags);
1175 	if (!page)
1176 		return -ENOMEM;
1177 	unlock_page(page);
1178 
1179 retry_journal:
1180 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1181 	if (IS_ERR(handle)) {
1182 		put_page(page);
1183 		return PTR_ERR(handle);
1184 	}
1185 
1186 	lock_page(page);
1187 	if (page->mapping != mapping) {
1188 		/* The page got truncated from under us */
1189 		unlock_page(page);
1190 		put_page(page);
1191 		ext4_journal_stop(handle);
1192 		goto retry_grab;
1193 	}
1194 	/* In case writeback began while the page was unlocked */
1195 	wait_for_stable_page(page);
1196 
1197 #ifdef CONFIG_FS_ENCRYPTION
1198 	if (ext4_should_dioread_nolock(inode))
1199 		ret = ext4_block_write_begin(page, pos, len,
1200 					     ext4_get_block_unwritten);
1201 	else
1202 		ret = ext4_block_write_begin(page, pos, len,
1203 					     ext4_get_block);
1204 #else
1205 	if (ext4_should_dioread_nolock(inode))
1206 		ret = __block_write_begin(page, pos, len,
1207 					  ext4_get_block_unwritten);
1208 	else
1209 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1210 #endif
1211 	if (!ret && ext4_should_journal_data(inode)) {
1212 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1213 					     from, to, NULL,
1214 					     do_journal_get_write_access);
1215 	}
1216 
1217 	if (ret) {
1218 		bool extended = (pos + len > inode->i_size) &&
1219 				!ext4_verity_in_progress(inode);
1220 
1221 		unlock_page(page);
1222 		/*
1223 		 * __block_write_begin may have instantiated a few blocks
1224 		 * outside i_size.  Trim these off again. Don't need
1225 		 * i_size_read because we hold i_mutex.
1226 		 *
1227 		 * Add inode to orphan list in case we crash before
1228 		 * truncate finishes
1229 		 */
1230 		if (extended && ext4_can_truncate(inode))
1231 			ext4_orphan_add(handle, inode);
1232 
1233 		ext4_journal_stop(handle);
1234 		if (extended) {
1235 			ext4_truncate_failed_write(inode);
1236 			/*
1237 			 * If truncate failed early the inode might
1238 			 * still be on the orphan list; we need to
1239 			 * make sure the inode is removed from the
1240 			 * orphan list in that case.
1241 			 */
1242 			if (inode->i_nlink)
1243 				ext4_orphan_del(NULL, inode);
1244 		}
1245 
1246 		if (ret == -ENOSPC &&
1247 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1248 			goto retry_journal;
1249 		put_page(page);
1250 		return ret;
1251 	}
1252 	*pagep = page;
1253 	return ret;
1254 }
1255 
1256 /* For write_end() in data=journal mode */
1257 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1258 {
1259 	int ret;
1260 	if (!buffer_mapped(bh) || buffer_freed(bh))
1261 		return 0;
1262 	set_buffer_uptodate(bh);
1263 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1264 	clear_buffer_meta(bh);
1265 	clear_buffer_prio(bh);
1266 	return ret;
1267 }
1268 
1269 /*
1270  * We need to pick up the new inode size which generic_commit_write gave us
1271  * `file' can be NULL - eg, when called from page_symlink().
1272  *
1273  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1274  * buffers are managed internally.
1275  */
1276 static int ext4_write_end(struct file *file,
1277 			  struct address_space *mapping,
1278 			  loff_t pos, unsigned len, unsigned copied,
1279 			  struct page *page, void *fsdata)
1280 {
1281 	handle_t *handle = ext4_journal_current_handle();
1282 	struct inode *inode = mapping->host;
1283 	loff_t old_size = inode->i_size;
1284 	int ret = 0, ret2;
1285 	int i_size_changed = 0;
1286 	int inline_data = ext4_has_inline_data(inode);
1287 	bool verity = ext4_verity_in_progress(inode);
1288 
1289 	trace_ext4_write_end(inode, pos, len, copied);
1290 	if (inline_data) {
1291 		ret = ext4_write_inline_data_end(inode, pos, len,
1292 						 copied, page);
1293 		if (ret < 0) {
1294 			unlock_page(page);
1295 			put_page(page);
1296 			goto errout;
1297 		}
1298 		copied = ret;
1299 	} else
1300 		copied = block_write_end(file, mapping, pos,
1301 					 len, copied, page, fsdata);
1302 	/*
1303 	 * it's important to update i_size while still holding page lock:
1304 	 * page writeout could otherwise come in and zero beyond i_size.
1305 	 *
1306 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1307 	 * blocks are being written past EOF, so skip the i_size update.
1308 	 */
1309 	if (!verity)
1310 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1311 	unlock_page(page);
1312 	put_page(page);
1313 
1314 	if (old_size < pos && !verity)
1315 		pagecache_isize_extended(inode, old_size, pos);
1316 	/*
1317 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1318 	 * makes the holding time of page lock longer. Second, it forces lock
1319 	 * ordering of page lock and transaction start for journaling
1320 	 * filesystems.
1321 	 */
1322 	if (i_size_changed || inline_data)
1323 		ret = ext4_mark_inode_dirty(handle, inode);
1324 
1325 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1326 		/* if we have allocated more blocks and copied
1327 		 * less. We will have blocks allocated outside
1328 		 * inode->i_size. So truncate them
1329 		 */
1330 		ext4_orphan_add(handle, inode);
1331 errout:
1332 	ret2 = ext4_journal_stop(handle);
1333 	if (!ret)
1334 		ret = ret2;
1335 
1336 	if (pos + len > inode->i_size && !verity) {
1337 		ext4_truncate_failed_write(inode);
1338 		/*
1339 		 * If truncate failed early the inode might still be
1340 		 * on the orphan list; we need to make sure the inode
1341 		 * is removed from the orphan list in that case.
1342 		 */
1343 		if (inode->i_nlink)
1344 			ext4_orphan_del(NULL, inode);
1345 	}
1346 
1347 	return ret ? ret : copied;
1348 }
1349 
1350 /*
1351  * This is a private version of page_zero_new_buffers() which doesn't
1352  * set the buffer to be dirty, since in data=journalled mode we need
1353  * to call ext4_handle_dirty_metadata() instead.
1354  */
1355 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1356 					    struct page *page,
1357 					    unsigned from, unsigned to)
1358 {
1359 	unsigned int block_start = 0, block_end;
1360 	struct buffer_head *head, *bh;
1361 
1362 	bh = head = page_buffers(page);
1363 	do {
1364 		block_end = block_start + bh->b_size;
1365 		if (buffer_new(bh)) {
1366 			if (block_end > from && block_start < to) {
1367 				if (!PageUptodate(page)) {
1368 					unsigned start, size;
1369 
1370 					start = max(from, block_start);
1371 					size = min(to, block_end) - start;
1372 
1373 					zero_user(page, start, size);
1374 					write_end_fn(handle, bh);
1375 				}
1376 				clear_buffer_new(bh);
1377 			}
1378 		}
1379 		block_start = block_end;
1380 		bh = bh->b_this_page;
1381 	} while (bh != head);
1382 }
1383 
1384 static int ext4_journalled_write_end(struct file *file,
1385 				     struct address_space *mapping,
1386 				     loff_t pos, unsigned len, unsigned copied,
1387 				     struct page *page, void *fsdata)
1388 {
1389 	handle_t *handle = ext4_journal_current_handle();
1390 	struct inode *inode = mapping->host;
1391 	loff_t old_size = inode->i_size;
1392 	int ret = 0, ret2;
1393 	int partial = 0;
1394 	unsigned from, to;
1395 	int size_changed = 0;
1396 	int inline_data = ext4_has_inline_data(inode);
1397 	bool verity = ext4_verity_in_progress(inode);
1398 
1399 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1400 	from = pos & (PAGE_SIZE - 1);
1401 	to = from + len;
1402 
1403 	BUG_ON(!ext4_handle_valid(handle));
1404 
1405 	if (inline_data) {
1406 		ret = ext4_write_inline_data_end(inode, pos, len,
1407 						 copied, page);
1408 		if (ret < 0) {
1409 			unlock_page(page);
1410 			put_page(page);
1411 			goto errout;
1412 		}
1413 		copied = ret;
1414 	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1415 		copied = 0;
1416 		ext4_journalled_zero_new_buffers(handle, page, from, to);
1417 	} else {
1418 		if (unlikely(copied < len))
1419 			ext4_journalled_zero_new_buffers(handle, page,
1420 							 from + copied, to);
1421 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1422 					     from + copied, &partial,
1423 					     write_end_fn);
1424 		if (!partial)
1425 			SetPageUptodate(page);
1426 	}
1427 	if (!verity)
1428 		size_changed = ext4_update_inode_size(inode, pos + copied);
1429 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1430 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1431 	unlock_page(page);
1432 	put_page(page);
1433 
1434 	if (old_size < pos && !verity)
1435 		pagecache_isize_extended(inode, old_size, pos);
1436 
1437 	if (size_changed || inline_data) {
1438 		ret2 = ext4_mark_inode_dirty(handle, inode);
1439 		if (!ret)
1440 			ret = ret2;
1441 	}
1442 
1443 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1444 		/* if we have allocated more blocks and copied
1445 		 * less. We will have blocks allocated outside
1446 		 * inode->i_size. So truncate them
1447 		 */
1448 		ext4_orphan_add(handle, inode);
1449 
1450 errout:
1451 	ret2 = ext4_journal_stop(handle);
1452 	if (!ret)
1453 		ret = ret2;
1454 	if (pos + len > inode->i_size && !verity) {
1455 		ext4_truncate_failed_write(inode);
1456 		/*
1457 		 * If truncate failed early the inode might still be
1458 		 * on the orphan list; we need to make sure the inode
1459 		 * is removed from the orphan list in that case.
1460 		 */
1461 		if (inode->i_nlink)
1462 			ext4_orphan_del(NULL, inode);
1463 	}
1464 
1465 	return ret ? ret : copied;
1466 }
1467 
1468 /*
1469  * Reserve space for a single cluster
1470  */
1471 static int ext4_da_reserve_space(struct inode *inode)
1472 {
1473 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1474 	struct ext4_inode_info *ei = EXT4_I(inode);
1475 	int ret;
1476 
1477 	/*
1478 	 * We will charge metadata quota at writeout time; this saves
1479 	 * us from metadata over-estimation, though we may go over by
1480 	 * a small amount in the end.  Here we just reserve for data.
1481 	 */
1482 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1483 	if (ret)
1484 		return ret;
1485 
1486 	spin_lock(&ei->i_block_reservation_lock);
1487 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1488 		spin_unlock(&ei->i_block_reservation_lock);
1489 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1490 		return -ENOSPC;
1491 	}
1492 	ei->i_reserved_data_blocks++;
1493 	trace_ext4_da_reserve_space(inode);
1494 	spin_unlock(&ei->i_block_reservation_lock);
1495 
1496 	return 0;       /* success */
1497 }
1498 
1499 void ext4_da_release_space(struct inode *inode, int to_free)
1500 {
1501 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1502 	struct ext4_inode_info *ei = EXT4_I(inode);
1503 
1504 	if (!to_free)
1505 		return;		/* Nothing to release, exit */
1506 
1507 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1508 
1509 	trace_ext4_da_release_space(inode, to_free);
1510 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1511 		/*
1512 		 * if there aren't enough reserved blocks, then the
1513 		 * counter is messed up somewhere.  Since this
1514 		 * function is called from invalidate page, it's
1515 		 * harmless to return without any action.
1516 		 */
1517 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1518 			 "ino %lu, to_free %d with only %d reserved "
1519 			 "data blocks", inode->i_ino, to_free,
1520 			 ei->i_reserved_data_blocks);
1521 		WARN_ON(1);
1522 		to_free = ei->i_reserved_data_blocks;
1523 	}
1524 	ei->i_reserved_data_blocks -= to_free;
1525 
1526 	/* update fs dirty data blocks counter */
1527 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1528 
1529 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1530 
1531 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1532 }
1533 
1534 /*
1535  * Delayed allocation stuff
1536  */
1537 
1538 struct mpage_da_data {
1539 	struct inode *inode;
1540 	struct writeback_control *wbc;
1541 
1542 	pgoff_t first_page;	/* The first page to write */
1543 	pgoff_t next_page;	/* Current page to examine */
1544 	pgoff_t last_page;	/* Last page to examine */
1545 	/*
1546 	 * Extent to map - this can be after first_page because that can be
1547 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1548 	 * is delalloc or unwritten.
1549 	 */
1550 	struct ext4_map_blocks map;
1551 	struct ext4_io_submit io_submit;	/* IO submission data */
1552 	unsigned int do_map:1;
1553 	unsigned int scanned_until_end:1;
1554 };
1555 
1556 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1557 				       bool invalidate)
1558 {
1559 	int nr_pages, i;
1560 	pgoff_t index, end;
1561 	struct pagevec pvec;
1562 	struct inode *inode = mpd->inode;
1563 	struct address_space *mapping = inode->i_mapping;
1564 
1565 	/* This is necessary when next_page == 0. */
1566 	if (mpd->first_page >= mpd->next_page)
1567 		return;
1568 
1569 	mpd->scanned_until_end = 0;
1570 	index = mpd->first_page;
1571 	end   = mpd->next_page - 1;
1572 	if (invalidate) {
1573 		ext4_lblk_t start, last;
1574 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1575 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1576 		ext4_es_remove_extent(inode, start, last - start + 1);
1577 	}
1578 
1579 	pagevec_init(&pvec);
1580 	while (index <= end) {
1581 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1582 		if (nr_pages == 0)
1583 			break;
1584 		for (i = 0; i < nr_pages; i++) {
1585 			struct page *page = pvec.pages[i];
1586 
1587 			BUG_ON(!PageLocked(page));
1588 			BUG_ON(PageWriteback(page));
1589 			if (invalidate) {
1590 				if (page_mapped(page))
1591 					clear_page_dirty_for_io(page);
1592 				block_invalidatepage(page, 0, PAGE_SIZE);
1593 				ClearPageUptodate(page);
1594 			}
1595 			unlock_page(page);
1596 		}
1597 		pagevec_release(&pvec);
1598 	}
1599 }
1600 
1601 static void ext4_print_free_blocks(struct inode *inode)
1602 {
1603 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1604 	struct super_block *sb = inode->i_sb;
1605 	struct ext4_inode_info *ei = EXT4_I(inode);
1606 
1607 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1608 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1609 			ext4_count_free_clusters(sb)));
1610 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1611 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1612 	       (long long) EXT4_C2B(EXT4_SB(sb),
1613 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1614 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1615 	       (long long) EXT4_C2B(EXT4_SB(sb),
1616 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1617 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1618 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1619 		 ei->i_reserved_data_blocks);
1620 	return;
1621 }
1622 
1623 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1624 {
1625 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1626 }
1627 
1628 /*
1629  * ext4_insert_delayed_block - adds a delayed block to the extents status
1630  *                             tree, incrementing the reserved cluster/block
1631  *                             count or making a pending reservation
1632  *                             where needed
1633  *
1634  * @inode - file containing the newly added block
1635  * @lblk - logical block to be added
1636  *
1637  * Returns 0 on success, negative error code on failure.
1638  */
1639 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1640 {
1641 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1642 	int ret;
1643 	bool allocated = false;
1644 
1645 	/*
1646 	 * If the cluster containing lblk is shared with a delayed,
1647 	 * written, or unwritten extent in a bigalloc file system, it's
1648 	 * already been accounted for and does not need to be reserved.
1649 	 * A pending reservation must be made for the cluster if it's
1650 	 * shared with a written or unwritten extent and doesn't already
1651 	 * have one.  Written and unwritten extents can be purged from the
1652 	 * extents status tree if the system is under memory pressure, so
1653 	 * it's necessary to examine the extent tree if a search of the
1654 	 * extents status tree doesn't get a match.
1655 	 */
1656 	if (sbi->s_cluster_ratio == 1) {
1657 		ret = ext4_da_reserve_space(inode);
1658 		if (ret != 0)   /* ENOSPC */
1659 			goto errout;
1660 	} else {   /* bigalloc */
1661 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1662 			if (!ext4_es_scan_clu(inode,
1663 					      &ext4_es_is_mapped, lblk)) {
1664 				ret = ext4_clu_mapped(inode,
1665 						      EXT4_B2C(sbi, lblk));
1666 				if (ret < 0)
1667 					goto errout;
1668 				if (ret == 0) {
1669 					ret = ext4_da_reserve_space(inode);
1670 					if (ret != 0)   /* ENOSPC */
1671 						goto errout;
1672 				} else {
1673 					allocated = true;
1674 				}
1675 			} else {
1676 				allocated = true;
1677 			}
1678 		}
1679 	}
1680 
1681 	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1682 
1683 errout:
1684 	return ret;
1685 }
1686 
1687 /*
1688  * This function is grabs code from the very beginning of
1689  * ext4_map_blocks, but assumes that the caller is from delayed write
1690  * time. This function looks up the requested blocks and sets the
1691  * buffer delay bit under the protection of i_data_sem.
1692  */
1693 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1694 			      struct ext4_map_blocks *map,
1695 			      struct buffer_head *bh)
1696 {
1697 	struct extent_status es;
1698 	int retval;
1699 	sector_t invalid_block = ~((sector_t) 0xffff);
1700 #ifdef ES_AGGRESSIVE_TEST
1701 	struct ext4_map_blocks orig_map;
1702 
1703 	memcpy(&orig_map, map, sizeof(*map));
1704 #endif
1705 
1706 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1707 		invalid_block = ~0;
1708 
1709 	map->m_flags = 0;
1710 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1711 		  (unsigned long) map->m_lblk);
1712 
1713 	/* Lookup extent status tree firstly */
1714 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1715 		if (ext4_es_is_hole(&es)) {
1716 			retval = 0;
1717 			down_read(&EXT4_I(inode)->i_data_sem);
1718 			goto add_delayed;
1719 		}
1720 
1721 		/*
1722 		 * Delayed extent could be allocated by fallocate.
1723 		 * So we need to check it.
1724 		 */
1725 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1726 			map_bh(bh, inode->i_sb, invalid_block);
1727 			set_buffer_new(bh);
1728 			set_buffer_delay(bh);
1729 			return 0;
1730 		}
1731 
1732 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1733 		retval = es.es_len - (iblock - es.es_lblk);
1734 		if (retval > map->m_len)
1735 			retval = map->m_len;
1736 		map->m_len = retval;
1737 		if (ext4_es_is_written(&es))
1738 			map->m_flags |= EXT4_MAP_MAPPED;
1739 		else if (ext4_es_is_unwritten(&es))
1740 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1741 		else
1742 			BUG();
1743 
1744 #ifdef ES_AGGRESSIVE_TEST
1745 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1746 #endif
1747 		return retval;
1748 	}
1749 
1750 	/*
1751 	 * Try to see if we can get the block without requesting a new
1752 	 * file system block.
1753 	 */
1754 	down_read(&EXT4_I(inode)->i_data_sem);
1755 	if (ext4_has_inline_data(inode))
1756 		retval = 0;
1757 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1758 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1759 	else
1760 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1761 
1762 add_delayed:
1763 	if (retval == 0) {
1764 		int ret;
1765 
1766 		/*
1767 		 * XXX: __block_prepare_write() unmaps passed block,
1768 		 * is it OK?
1769 		 */
1770 
1771 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1772 		if (ret != 0) {
1773 			retval = ret;
1774 			goto out_unlock;
1775 		}
1776 
1777 		map_bh(bh, inode->i_sb, invalid_block);
1778 		set_buffer_new(bh);
1779 		set_buffer_delay(bh);
1780 	} else if (retval > 0) {
1781 		int ret;
1782 		unsigned int status;
1783 
1784 		if (unlikely(retval != map->m_len)) {
1785 			ext4_warning(inode->i_sb,
1786 				     "ES len assertion failed for inode "
1787 				     "%lu: retval %d != map->m_len %d",
1788 				     inode->i_ino, retval, map->m_len);
1789 			WARN_ON(1);
1790 		}
1791 
1792 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1793 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1794 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1795 					    map->m_pblk, status);
1796 		if (ret != 0)
1797 			retval = ret;
1798 	}
1799 
1800 out_unlock:
1801 	up_read((&EXT4_I(inode)->i_data_sem));
1802 
1803 	return retval;
1804 }
1805 
1806 /*
1807  * This is a special get_block_t callback which is used by
1808  * ext4_da_write_begin().  It will either return mapped block or
1809  * reserve space for a single block.
1810  *
1811  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1812  * We also have b_blocknr = -1 and b_bdev initialized properly
1813  *
1814  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1815  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1816  * initialized properly.
1817  */
1818 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1819 			   struct buffer_head *bh, int create)
1820 {
1821 	struct ext4_map_blocks map;
1822 	int ret = 0;
1823 
1824 	BUG_ON(create == 0);
1825 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1826 
1827 	map.m_lblk = iblock;
1828 	map.m_len = 1;
1829 
1830 	/*
1831 	 * first, we need to know whether the block is allocated already
1832 	 * preallocated blocks are unmapped but should treated
1833 	 * the same as allocated blocks.
1834 	 */
1835 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1836 	if (ret <= 0)
1837 		return ret;
1838 
1839 	map_bh(bh, inode->i_sb, map.m_pblk);
1840 	ext4_update_bh_state(bh, map.m_flags);
1841 
1842 	if (buffer_unwritten(bh)) {
1843 		/* A delayed write to unwritten bh should be marked
1844 		 * new and mapped.  Mapped ensures that we don't do
1845 		 * get_block multiple times when we write to the same
1846 		 * offset and new ensures that we do proper zero out
1847 		 * for partial write.
1848 		 */
1849 		set_buffer_new(bh);
1850 		set_buffer_mapped(bh);
1851 	}
1852 	return 0;
1853 }
1854 
1855 static int bget_one(handle_t *handle, struct buffer_head *bh)
1856 {
1857 	get_bh(bh);
1858 	return 0;
1859 }
1860 
1861 static int bput_one(handle_t *handle, struct buffer_head *bh)
1862 {
1863 	put_bh(bh);
1864 	return 0;
1865 }
1866 
1867 static int __ext4_journalled_writepage(struct page *page,
1868 				       unsigned int len)
1869 {
1870 	struct address_space *mapping = page->mapping;
1871 	struct inode *inode = mapping->host;
1872 	struct buffer_head *page_bufs = NULL;
1873 	handle_t *handle = NULL;
1874 	int ret = 0, err = 0;
1875 	int inline_data = ext4_has_inline_data(inode);
1876 	struct buffer_head *inode_bh = NULL;
1877 
1878 	ClearPageChecked(page);
1879 
1880 	if (inline_data) {
1881 		BUG_ON(page->index != 0);
1882 		BUG_ON(len > ext4_get_max_inline_size(inode));
1883 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1884 		if (inode_bh == NULL)
1885 			goto out;
1886 	} else {
1887 		page_bufs = page_buffers(page);
1888 		if (!page_bufs) {
1889 			BUG();
1890 			goto out;
1891 		}
1892 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1893 				       NULL, bget_one);
1894 	}
1895 	/*
1896 	 * We need to release the page lock before we start the
1897 	 * journal, so grab a reference so the page won't disappear
1898 	 * out from under us.
1899 	 */
1900 	get_page(page);
1901 	unlock_page(page);
1902 
1903 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1904 				    ext4_writepage_trans_blocks(inode));
1905 	if (IS_ERR(handle)) {
1906 		ret = PTR_ERR(handle);
1907 		put_page(page);
1908 		goto out_no_pagelock;
1909 	}
1910 	BUG_ON(!ext4_handle_valid(handle));
1911 
1912 	lock_page(page);
1913 	put_page(page);
1914 	if (page->mapping != mapping) {
1915 		/* The page got truncated from under us */
1916 		ext4_journal_stop(handle);
1917 		ret = 0;
1918 		goto out;
1919 	}
1920 
1921 	if (inline_data) {
1922 		ret = ext4_mark_inode_dirty(handle, inode);
1923 	} else {
1924 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1925 					     do_journal_get_write_access);
1926 
1927 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1928 					     write_end_fn);
1929 	}
1930 	if (ret == 0)
1931 		ret = err;
1932 	err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1933 	if (ret == 0)
1934 		ret = err;
1935 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1936 	err = ext4_journal_stop(handle);
1937 	if (!ret)
1938 		ret = err;
1939 
1940 	if (!ext4_has_inline_data(inode))
1941 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1942 				       NULL, bput_one);
1943 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1944 out:
1945 	unlock_page(page);
1946 out_no_pagelock:
1947 	brelse(inode_bh);
1948 	return ret;
1949 }
1950 
1951 /*
1952  * Note that we don't need to start a transaction unless we're journaling data
1953  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1954  * need to file the inode to the transaction's list in ordered mode because if
1955  * we are writing back data added by write(), the inode is already there and if
1956  * we are writing back data modified via mmap(), no one guarantees in which
1957  * transaction the data will hit the disk. In case we are journaling data, we
1958  * cannot start transaction directly because transaction start ranks above page
1959  * lock so we have to do some magic.
1960  *
1961  * This function can get called via...
1962  *   - ext4_writepages after taking page lock (have journal handle)
1963  *   - journal_submit_inode_data_buffers (no journal handle)
1964  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1965  *   - grab_page_cache when doing write_begin (have journal handle)
1966  *
1967  * We don't do any block allocation in this function. If we have page with
1968  * multiple blocks we need to write those buffer_heads that are mapped. This
1969  * is important for mmaped based write. So if we do with blocksize 1K
1970  * truncate(f, 1024);
1971  * a = mmap(f, 0, 4096);
1972  * a[0] = 'a';
1973  * truncate(f, 4096);
1974  * we have in the page first buffer_head mapped via page_mkwrite call back
1975  * but other buffer_heads would be unmapped but dirty (dirty done via the
1976  * do_wp_page). So writepage should write the first block. If we modify
1977  * the mmap area beyond 1024 we will again get a page_fault and the
1978  * page_mkwrite callback will do the block allocation and mark the
1979  * buffer_heads mapped.
1980  *
1981  * We redirty the page if we have any buffer_heads that is either delay or
1982  * unwritten in the page.
1983  *
1984  * We can get recursively called as show below.
1985  *
1986  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1987  *		ext4_writepage()
1988  *
1989  * But since we don't do any block allocation we should not deadlock.
1990  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1991  */
1992 static int ext4_writepage(struct page *page,
1993 			  struct writeback_control *wbc)
1994 {
1995 	int ret = 0;
1996 	loff_t size;
1997 	unsigned int len;
1998 	struct buffer_head *page_bufs = NULL;
1999 	struct inode *inode = page->mapping->host;
2000 	struct ext4_io_submit io_submit;
2001 	bool keep_towrite = false;
2002 
2003 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2004 		inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
2005 		unlock_page(page);
2006 		return -EIO;
2007 	}
2008 
2009 	trace_ext4_writepage(page);
2010 	size = i_size_read(inode);
2011 	if (page->index == size >> PAGE_SHIFT &&
2012 	    !ext4_verity_in_progress(inode))
2013 		len = size & ~PAGE_MASK;
2014 	else
2015 		len = PAGE_SIZE;
2016 
2017 	page_bufs = page_buffers(page);
2018 	/*
2019 	 * We cannot do block allocation or other extent handling in this
2020 	 * function. If there are buffers needing that, we have to redirty
2021 	 * the page. But we may reach here when we do a journal commit via
2022 	 * journal_submit_inode_data_buffers() and in that case we must write
2023 	 * allocated buffers to achieve data=ordered mode guarantees.
2024 	 *
2025 	 * Also, if there is only one buffer per page (the fs block
2026 	 * size == the page size), if one buffer needs block
2027 	 * allocation or needs to modify the extent tree to clear the
2028 	 * unwritten flag, we know that the page can't be written at
2029 	 * all, so we might as well refuse the write immediately.
2030 	 * Unfortunately if the block size != page size, we can't as
2031 	 * easily detect this case using ext4_walk_page_buffers(), but
2032 	 * for the extremely common case, this is an optimization that
2033 	 * skips a useless round trip through ext4_bio_write_page().
2034 	 */
2035 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2036 				   ext4_bh_delay_or_unwritten)) {
2037 		redirty_page_for_writepage(wbc, page);
2038 		if ((current->flags & PF_MEMALLOC) ||
2039 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2040 			/*
2041 			 * For memory cleaning there's no point in writing only
2042 			 * some buffers. So just bail out. Warn if we came here
2043 			 * from direct reclaim.
2044 			 */
2045 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2046 							== PF_MEMALLOC);
2047 			unlock_page(page);
2048 			return 0;
2049 		}
2050 		keep_towrite = true;
2051 	}
2052 
2053 	if (PageChecked(page) && ext4_should_journal_data(inode))
2054 		/*
2055 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2056 		 * doesn't seem much point in redirtying the page here.
2057 		 */
2058 		return __ext4_journalled_writepage(page, len);
2059 
2060 	ext4_io_submit_init(&io_submit, wbc);
2061 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2062 	if (!io_submit.io_end) {
2063 		redirty_page_for_writepage(wbc, page);
2064 		unlock_page(page);
2065 		return -ENOMEM;
2066 	}
2067 	ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2068 	ext4_io_submit(&io_submit);
2069 	/* Drop io_end reference we got from init */
2070 	ext4_put_io_end_defer(io_submit.io_end);
2071 	return ret;
2072 }
2073 
2074 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2075 {
2076 	int len;
2077 	loff_t size;
2078 	int err;
2079 
2080 	BUG_ON(page->index != mpd->first_page);
2081 	clear_page_dirty_for_io(page);
2082 	/*
2083 	 * We have to be very careful here!  Nothing protects writeback path
2084 	 * against i_size changes and the page can be writeably mapped into
2085 	 * page tables. So an application can be growing i_size and writing
2086 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2087 	 * write-protects our page in page tables and the page cannot get
2088 	 * written to again until we release page lock. So only after
2089 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2090 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2091 	 * on the barrier provided by TestClearPageDirty in
2092 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2093 	 * after page tables are updated.
2094 	 */
2095 	size = i_size_read(mpd->inode);
2096 	if (page->index == size >> PAGE_SHIFT &&
2097 	    !ext4_verity_in_progress(mpd->inode))
2098 		len = size & ~PAGE_MASK;
2099 	else
2100 		len = PAGE_SIZE;
2101 	err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2102 	if (!err)
2103 		mpd->wbc->nr_to_write--;
2104 	mpd->first_page++;
2105 
2106 	return err;
2107 }
2108 
2109 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2110 
2111 /*
2112  * mballoc gives us at most this number of blocks...
2113  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2114  * The rest of mballoc seems to handle chunks up to full group size.
2115  */
2116 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2117 
2118 /*
2119  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2120  *
2121  * @mpd - extent of blocks
2122  * @lblk - logical number of the block in the file
2123  * @bh - buffer head we want to add to the extent
2124  *
2125  * The function is used to collect contig. blocks in the same state. If the
2126  * buffer doesn't require mapping for writeback and we haven't started the
2127  * extent of buffers to map yet, the function returns 'true' immediately - the
2128  * caller can write the buffer right away. Otherwise the function returns true
2129  * if the block has been added to the extent, false if the block couldn't be
2130  * added.
2131  */
2132 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2133 				   struct buffer_head *bh)
2134 {
2135 	struct ext4_map_blocks *map = &mpd->map;
2136 
2137 	/* Buffer that doesn't need mapping for writeback? */
2138 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2139 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2140 		/* So far no extent to map => we write the buffer right away */
2141 		if (map->m_len == 0)
2142 			return true;
2143 		return false;
2144 	}
2145 
2146 	/* First block in the extent? */
2147 	if (map->m_len == 0) {
2148 		/* We cannot map unless handle is started... */
2149 		if (!mpd->do_map)
2150 			return false;
2151 		map->m_lblk = lblk;
2152 		map->m_len = 1;
2153 		map->m_flags = bh->b_state & BH_FLAGS;
2154 		return true;
2155 	}
2156 
2157 	/* Don't go larger than mballoc is willing to allocate */
2158 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2159 		return false;
2160 
2161 	/* Can we merge the block to our big extent? */
2162 	if (lblk == map->m_lblk + map->m_len &&
2163 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2164 		map->m_len++;
2165 		return true;
2166 	}
2167 	return false;
2168 }
2169 
2170 /*
2171  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2172  *
2173  * @mpd - extent of blocks for mapping
2174  * @head - the first buffer in the page
2175  * @bh - buffer we should start processing from
2176  * @lblk - logical number of the block in the file corresponding to @bh
2177  *
2178  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2179  * the page for IO if all buffers in this page were mapped and there's no
2180  * accumulated extent of buffers to map or add buffers in the page to the
2181  * extent of buffers to map. The function returns 1 if the caller can continue
2182  * by processing the next page, 0 if it should stop adding buffers to the
2183  * extent to map because we cannot extend it anymore. It can also return value
2184  * < 0 in case of error during IO submission.
2185  */
2186 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2187 				   struct buffer_head *head,
2188 				   struct buffer_head *bh,
2189 				   ext4_lblk_t lblk)
2190 {
2191 	struct inode *inode = mpd->inode;
2192 	int err;
2193 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2194 							>> inode->i_blkbits;
2195 
2196 	if (ext4_verity_in_progress(inode))
2197 		blocks = EXT_MAX_BLOCKS;
2198 
2199 	do {
2200 		BUG_ON(buffer_locked(bh));
2201 
2202 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2203 			/* Found extent to map? */
2204 			if (mpd->map.m_len)
2205 				return 0;
2206 			/* Buffer needs mapping and handle is not started? */
2207 			if (!mpd->do_map)
2208 				return 0;
2209 			/* Everything mapped so far and we hit EOF */
2210 			break;
2211 		}
2212 	} while (lblk++, (bh = bh->b_this_page) != head);
2213 	/* So far everything mapped? Submit the page for IO. */
2214 	if (mpd->map.m_len == 0) {
2215 		err = mpage_submit_page(mpd, head->b_page);
2216 		if (err < 0)
2217 			return err;
2218 	}
2219 	if (lblk >= blocks) {
2220 		mpd->scanned_until_end = 1;
2221 		return 0;
2222 	}
2223 	return 1;
2224 }
2225 
2226 /*
2227  * mpage_process_page - update page buffers corresponding to changed extent and
2228  *		       may submit fully mapped page for IO
2229  *
2230  * @mpd		- description of extent to map, on return next extent to map
2231  * @m_lblk	- logical block mapping.
2232  * @m_pblk	- corresponding physical mapping.
2233  * @map_bh	- determines on return whether this page requires any further
2234  *		  mapping or not.
2235  * Scan given page buffers corresponding to changed extent and update buffer
2236  * state according to new extent state.
2237  * We map delalloc buffers to their physical location, clear unwritten bits.
2238  * If the given page is not fully mapped, we update @map to the next extent in
2239  * the given page that needs mapping & return @map_bh as true.
2240  */
2241 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2242 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2243 			      bool *map_bh)
2244 {
2245 	struct buffer_head *head, *bh;
2246 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2247 	ext4_lblk_t lblk = *m_lblk;
2248 	ext4_fsblk_t pblock = *m_pblk;
2249 	int err = 0;
2250 	int blkbits = mpd->inode->i_blkbits;
2251 	ssize_t io_end_size = 0;
2252 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2253 
2254 	bh = head = page_buffers(page);
2255 	do {
2256 		if (lblk < mpd->map.m_lblk)
2257 			continue;
2258 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2259 			/*
2260 			 * Buffer after end of mapped extent.
2261 			 * Find next buffer in the page to map.
2262 			 */
2263 			mpd->map.m_len = 0;
2264 			mpd->map.m_flags = 0;
2265 			io_end_vec->size += io_end_size;
2266 			io_end_size = 0;
2267 
2268 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2269 			if (err > 0)
2270 				err = 0;
2271 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2272 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2273 				if (IS_ERR(io_end_vec)) {
2274 					err = PTR_ERR(io_end_vec);
2275 					goto out;
2276 				}
2277 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2278 			}
2279 			*map_bh = true;
2280 			goto out;
2281 		}
2282 		if (buffer_delay(bh)) {
2283 			clear_buffer_delay(bh);
2284 			bh->b_blocknr = pblock++;
2285 		}
2286 		clear_buffer_unwritten(bh);
2287 		io_end_size += (1 << blkbits);
2288 	} while (lblk++, (bh = bh->b_this_page) != head);
2289 
2290 	io_end_vec->size += io_end_size;
2291 	io_end_size = 0;
2292 	*map_bh = false;
2293 out:
2294 	*m_lblk = lblk;
2295 	*m_pblk = pblock;
2296 	return err;
2297 }
2298 
2299 /*
2300  * mpage_map_buffers - update buffers corresponding to changed extent and
2301  *		       submit fully mapped pages for IO
2302  *
2303  * @mpd - description of extent to map, on return next extent to map
2304  *
2305  * Scan buffers corresponding to changed extent (we expect corresponding pages
2306  * to be already locked) and update buffer state according to new extent state.
2307  * We map delalloc buffers to their physical location, clear unwritten bits,
2308  * and mark buffers as uninit when we perform writes to unwritten extents
2309  * and do extent conversion after IO is finished. If the last page is not fully
2310  * mapped, we update @map to the next extent in the last page that needs
2311  * mapping. Otherwise we submit the page for IO.
2312  */
2313 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2314 {
2315 	struct pagevec pvec;
2316 	int nr_pages, i;
2317 	struct inode *inode = mpd->inode;
2318 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2319 	pgoff_t start, end;
2320 	ext4_lblk_t lblk;
2321 	ext4_fsblk_t pblock;
2322 	int err;
2323 	bool map_bh = false;
2324 
2325 	start = mpd->map.m_lblk >> bpp_bits;
2326 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2327 	lblk = start << bpp_bits;
2328 	pblock = mpd->map.m_pblk;
2329 
2330 	pagevec_init(&pvec);
2331 	while (start <= end) {
2332 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2333 						&start, end);
2334 		if (nr_pages == 0)
2335 			break;
2336 		for (i = 0; i < nr_pages; i++) {
2337 			struct page *page = pvec.pages[i];
2338 
2339 			err = mpage_process_page(mpd, page, &lblk, &pblock,
2340 						 &map_bh);
2341 			/*
2342 			 * If map_bh is true, means page may require further bh
2343 			 * mapping, or maybe the page was submitted for IO.
2344 			 * So we return to call further extent mapping.
2345 			 */
2346 			if (err < 0 || map_bh)
2347 				goto out;
2348 			/* Page fully mapped - let IO run! */
2349 			err = mpage_submit_page(mpd, page);
2350 			if (err < 0)
2351 				goto out;
2352 		}
2353 		pagevec_release(&pvec);
2354 	}
2355 	/* Extent fully mapped and matches with page boundary. We are done. */
2356 	mpd->map.m_len = 0;
2357 	mpd->map.m_flags = 0;
2358 	return 0;
2359 out:
2360 	pagevec_release(&pvec);
2361 	return err;
2362 }
2363 
2364 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2365 {
2366 	struct inode *inode = mpd->inode;
2367 	struct ext4_map_blocks *map = &mpd->map;
2368 	int get_blocks_flags;
2369 	int err, dioread_nolock;
2370 
2371 	trace_ext4_da_write_pages_extent(inode, map);
2372 	/*
2373 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2374 	 * to convert an unwritten extent to be initialized (in the case
2375 	 * where we have written into one or more preallocated blocks).  It is
2376 	 * possible that we're going to need more metadata blocks than
2377 	 * previously reserved. However we must not fail because we're in
2378 	 * writeback and there is nothing we can do about it so it might result
2379 	 * in data loss.  So use reserved blocks to allocate metadata if
2380 	 * possible.
2381 	 *
2382 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2383 	 * the blocks in question are delalloc blocks.  This indicates
2384 	 * that the blocks and quotas has already been checked when
2385 	 * the data was copied into the page cache.
2386 	 */
2387 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2388 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2389 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2390 	dioread_nolock = ext4_should_dioread_nolock(inode);
2391 	if (dioread_nolock)
2392 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2393 	if (map->m_flags & BIT(BH_Delay))
2394 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2395 
2396 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2397 	if (err < 0)
2398 		return err;
2399 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2400 		if (!mpd->io_submit.io_end->handle &&
2401 		    ext4_handle_valid(handle)) {
2402 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2403 			handle->h_rsv_handle = NULL;
2404 		}
2405 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2406 	}
2407 
2408 	BUG_ON(map->m_len == 0);
2409 	return 0;
2410 }
2411 
2412 /*
2413  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2414  *				 mpd->len and submit pages underlying it for IO
2415  *
2416  * @handle - handle for journal operations
2417  * @mpd - extent to map
2418  * @give_up_on_write - we set this to true iff there is a fatal error and there
2419  *                     is no hope of writing the data. The caller should discard
2420  *                     dirty pages to avoid infinite loops.
2421  *
2422  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2423  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2424  * them to initialized or split the described range from larger unwritten
2425  * extent. Note that we need not map all the described range since allocation
2426  * can return less blocks or the range is covered by more unwritten extents. We
2427  * cannot map more because we are limited by reserved transaction credits. On
2428  * the other hand we always make sure that the last touched page is fully
2429  * mapped so that it can be written out (and thus forward progress is
2430  * guaranteed). After mapping we submit all mapped pages for IO.
2431  */
2432 static int mpage_map_and_submit_extent(handle_t *handle,
2433 				       struct mpage_da_data *mpd,
2434 				       bool *give_up_on_write)
2435 {
2436 	struct inode *inode = mpd->inode;
2437 	struct ext4_map_blocks *map = &mpd->map;
2438 	int err;
2439 	loff_t disksize;
2440 	int progress = 0;
2441 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2442 	struct ext4_io_end_vec *io_end_vec;
2443 
2444 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2445 	if (IS_ERR(io_end_vec))
2446 		return PTR_ERR(io_end_vec);
2447 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2448 	do {
2449 		err = mpage_map_one_extent(handle, mpd);
2450 		if (err < 0) {
2451 			struct super_block *sb = inode->i_sb;
2452 
2453 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2454 			    ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2455 				goto invalidate_dirty_pages;
2456 			/*
2457 			 * Let the uper layers retry transient errors.
2458 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2459 			 * is non-zero, a commit should free up blocks.
2460 			 */
2461 			if ((err == -ENOMEM) ||
2462 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2463 				if (progress)
2464 					goto update_disksize;
2465 				return err;
2466 			}
2467 			ext4_msg(sb, KERN_CRIT,
2468 				 "Delayed block allocation failed for "
2469 				 "inode %lu at logical offset %llu with"
2470 				 " max blocks %u with error %d",
2471 				 inode->i_ino,
2472 				 (unsigned long long)map->m_lblk,
2473 				 (unsigned)map->m_len, -err);
2474 			ext4_msg(sb, KERN_CRIT,
2475 				 "This should not happen!! Data will "
2476 				 "be lost\n");
2477 			if (err == -ENOSPC)
2478 				ext4_print_free_blocks(inode);
2479 		invalidate_dirty_pages:
2480 			*give_up_on_write = true;
2481 			return err;
2482 		}
2483 		progress = 1;
2484 		/*
2485 		 * Update buffer state, submit mapped pages, and get us new
2486 		 * extent to map
2487 		 */
2488 		err = mpage_map_and_submit_buffers(mpd);
2489 		if (err < 0)
2490 			goto update_disksize;
2491 	} while (map->m_len);
2492 
2493 update_disksize:
2494 	/*
2495 	 * Update on-disk size after IO is submitted.  Races with
2496 	 * truncate are avoided by checking i_size under i_data_sem.
2497 	 */
2498 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2499 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2500 		int err2;
2501 		loff_t i_size;
2502 
2503 		down_write(&EXT4_I(inode)->i_data_sem);
2504 		i_size = i_size_read(inode);
2505 		if (disksize > i_size)
2506 			disksize = i_size;
2507 		if (disksize > EXT4_I(inode)->i_disksize)
2508 			EXT4_I(inode)->i_disksize = disksize;
2509 		up_write(&EXT4_I(inode)->i_data_sem);
2510 		err2 = ext4_mark_inode_dirty(handle, inode);
2511 		if (err2) {
2512 			ext4_error_err(inode->i_sb, -err2,
2513 				       "Failed to mark inode %lu dirty",
2514 				       inode->i_ino);
2515 		}
2516 		if (!err)
2517 			err = err2;
2518 	}
2519 	return err;
2520 }
2521 
2522 /*
2523  * Calculate the total number of credits to reserve for one writepages
2524  * iteration. This is called from ext4_writepages(). We map an extent of
2525  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2526  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2527  * bpp - 1 blocks in bpp different extents.
2528  */
2529 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2530 {
2531 	int bpp = ext4_journal_blocks_per_page(inode);
2532 
2533 	return ext4_meta_trans_blocks(inode,
2534 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2535 }
2536 
2537 /*
2538  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2539  * 				 and underlying extent to map
2540  *
2541  * @mpd - where to look for pages
2542  *
2543  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2544  * IO immediately. When we find a page which isn't mapped we start accumulating
2545  * extent of buffers underlying these pages that needs mapping (formed by
2546  * either delayed or unwritten buffers). We also lock the pages containing
2547  * these buffers. The extent found is returned in @mpd structure (starting at
2548  * mpd->lblk with length mpd->len blocks).
2549  *
2550  * Note that this function can attach bios to one io_end structure which are
2551  * neither logically nor physically contiguous. Although it may seem as an
2552  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2553  * case as we need to track IO to all buffers underlying a page in one io_end.
2554  */
2555 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2556 {
2557 	struct address_space *mapping = mpd->inode->i_mapping;
2558 	struct pagevec pvec;
2559 	unsigned int nr_pages;
2560 	long left = mpd->wbc->nr_to_write;
2561 	pgoff_t index = mpd->first_page;
2562 	pgoff_t end = mpd->last_page;
2563 	xa_mark_t tag;
2564 	int i, err = 0;
2565 	int blkbits = mpd->inode->i_blkbits;
2566 	ext4_lblk_t lblk;
2567 	struct buffer_head *head;
2568 
2569 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2570 		tag = PAGECACHE_TAG_TOWRITE;
2571 	else
2572 		tag = PAGECACHE_TAG_DIRTY;
2573 
2574 	pagevec_init(&pvec);
2575 	mpd->map.m_len = 0;
2576 	mpd->next_page = index;
2577 	while (index <= end) {
2578 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2579 				tag);
2580 		if (nr_pages == 0)
2581 			break;
2582 
2583 		for (i = 0; i < nr_pages; i++) {
2584 			struct page *page = pvec.pages[i];
2585 
2586 			/*
2587 			 * Accumulated enough dirty pages? This doesn't apply
2588 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2589 			 * keep going because someone may be concurrently
2590 			 * dirtying pages, and we might have synced a lot of
2591 			 * newly appeared dirty pages, but have not synced all
2592 			 * of the old dirty pages.
2593 			 */
2594 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2595 				goto out;
2596 
2597 			/* If we can't merge this page, we are done. */
2598 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2599 				goto out;
2600 
2601 			lock_page(page);
2602 			/*
2603 			 * If the page is no longer dirty, or its mapping no
2604 			 * longer corresponds to inode we are writing (which
2605 			 * means it has been truncated or invalidated), or the
2606 			 * page is already under writeback and we are not doing
2607 			 * a data integrity writeback, skip the page
2608 			 */
2609 			if (!PageDirty(page) ||
2610 			    (PageWriteback(page) &&
2611 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2612 			    unlikely(page->mapping != mapping)) {
2613 				unlock_page(page);
2614 				continue;
2615 			}
2616 
2617 			wait_on_page_writeback(page);
2618 			BUG_ON(PageWriteback(page));
2619 
2620 			if (mpd->map.m_len == 0)
2621 				mpd->first_page = page->index;
2622 			mpd->next_page = page->index + 1;
2623 			/* Add all dirty buffers to mpd */
2624 			lblk = ((ext4_lblk_t)page->index) <<
2625 				(PAGE_SHIFT - blkbits);
2626 			head = page_buffers(page);
2627 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2628 			if (err <= 0)
2629 				goto out;
2630 			err = 0;
2631 			left--;
2632 		}
2633 		pagevec_release(&pvec);
2634 		cond_resched();
2635 	}
2636 	mpd->scanned_until_end = 1;
2637 	return 0;
2638 out:
2639 	pagevec_release(&pvec);
2640 	return err;
2641 }
2642 
2643 static int ext4_writepages(struct address_space *mapping,
2644 			   struct writeback_control *wbc)
2645 {
2646 	pgoff_t	writeback_index = 0;
2647 	long nr_to_write = wbc->nr_to_write;
2648 	int range_whole = 0;
2649 	int cycled = 1;
2650 	handle_t *handle = NULL;
2651 	struct mpage_da_data mpd;
2652 	struct inode *inode = mapping->host;
2653 	int needed_blocks, rsv_blocks = 0, ret = 0;
2654 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2655 	struct blk_plug plug;
2656 	bool give_up_on_write = false;
2657 
2658 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2659 		return -EIO;
2660 
2661 	percpu_down_read(&sbi->s_writepages_rwsem);
2662 	trace_ext4_writepages(inode, wbc);
2663 
2664 	/*
2665 	 * No pages to write? This is mainly a kludge to avoid starting
2666 	 * a transaction for special inodes like journal inode on last iput()
2667 	 * because that could violate lock ordering on umount
2668 	 */
2669 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2670 		goto out_writepages;
2671 
2672 	if (ext4_should_journal_data(inode)) {
2673 		ret = generic_writepages(mapping, wbc);
2674 		goto out_writepages;
2675 	}
2676 
2677 	/*
2678 	 * If the filesystem has aborted, it is read-only, so return
2679 	 * right away instead of dumping stack traces later on that
2680 	 * will obscure the real source of the problem.  We test
2681 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2682 	 * the latter could be true if the filesystem is mounted
2683 	 * read-only, and in that case, ext4_writepages should
2684 	 * *never* be called, so if that ever happens, we would want
2685 	 * the stack trace.
2686 	 */
2687 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2688 		     ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2689 		ret = -EROFS;
2690 		goto out_writepages;
2691 	}
2692 
2693 	/*
2694 	 * If we have inline data and arrive here, it means that
2695 	 * we will soon create the block for the 1st page, so
2696 	 * we'd better clear the inline data here.
2697 	 */
2698 	if (ext4_has_inline_data(inode)) {
2699 		/* Just inode will be modified... */
2700 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2701 		if (IS_ERR(handle)) {
2702 			ret = PTR_ERR(handle);
2703 			goto out_writepages;
2704 		}
2705 		BUG_ON(ext4_test_inode_state(inode,
2706 				EXT4_STATE_MAY_INLINE_DATA));
2707 		ext4_destroy_inline_data(handle, inode);
2708 		ext4_journal_stop(handle);
2709 	}
2710 
2711 	if (ext4_should_dioread_nolock(inode)) {
2712 		/*
2713 		 * We may need to convert up to one extent per block in
2714 		 * the page and we may dirty the inode.
2715 		 */
2716 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2717 						PAGE_SIZE >> inode->i_blkbits);
2718 	}
2719 
2720 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2721 		range_whole = 1;
2722 
2723 	if (wbc->range_cyclic) {
2724 		writeback_index = mapping->writeback_index;
2725 		if (writeback_index)
2726 			cycled = 0;
2727 		mpd.first_page = writeback_index;
2728 		mpd.last_page = -1;
2729 	} else {
2730 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2731 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2732 	}
2733 
2734 	mpd.inode = inode;
2735 	mpd.wbc = wbc;
2736 	ext4_io_submit_init(&mpd.io_submit, wbc);
2737 retry:
2738 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2739 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2740 	blk_start_plug(&plug);
2741 
2742 	/*
2743 	 * First writeback pages that don't need mapping - we can avoid
2744 	 * starting a transaction unnecessarily and also avoid being blocked
2745 	 * in the block layer on device congestion while having transaction
2746 	 * started.
2747 	 */
2748 	mpd.do_map = 0;
2749 	mpd.scanned_until_end = 0;
2750 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2751 	if (!mpd.io_submit.io_end) {
2752 		ret = -ENOMEM;
2753 		goto unplug;
2754 	}
2755 	ret = mpage_prepare_extent_to_map(&mpd);
2756 	/* Unlock pages we didn't use */
2757 	mpage_release_unused_pages(&mpd, false);
2758 	/* Submit prepared bio */
2759 	ext4_io_submit(&mpd.io_submit);
2760 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2761 	mpd.io_submit.io_end = NULL;
2762 	if (ret < 0)
2763 		goto unplug;
2764 
2765 	while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2766 		/* For each extent of pages we use new io_end */
2767 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2768 		if (!mpd.io_submit.io_end) {
2769 			ret = -ENOMEM;
2770 			break;
2771 		}
2772 
2773 		/*
2774 		 * We have two constraints: We find one extent to map and we
2775 		 * must always write out whole page (makes a difference when
2776 		 * blocksize < pagesize) so that we don't block on IO when we
2777 		 * try to write out the rest of the page. Journalled mode is
2778 		 * not supported by delalloc.
2779 		 */
2780 		BUG_ON(ext4_should_journal_data(inode));
2781 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2782 
2783 		/* start a new transaction */
2784 		handle = ext4_journal_start_with_reserve(inode,
2785 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2786 		if (IS_ERR(handle)) {
2787 			ret = PTR_ERR(handle);
2788 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2789 			       "%ld pages, ino %lu; err %d", __func__,
2790 				wbc->nr_to_write, inode->i_ino, ret);
2791 			/* Release allocated io_end */
2792 			ext4_put_io_end(mpd.io_submit.io_end);
2793 			mpd.io_submit.io_end = NULL;
2794 			break;
2795 		}
2796 		mpd.do_map = 1;
2797 
2798 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2799 		ret = mpage_prepare_extent_to_map(&mpd);
2800 		if (!ret && mpd.map.m_len)
2801 			ret = mpage_map_and_submit_extent(handle, &mpd,
2802 					&give_up_on_write);
2803 		/*
2804 		 * Caution: If the handle is synchronous,
2805 		 * ext4_journal_stop() can wait for transaction commit
2806 		 * to finish which may depend on writeback of pages to
2807 		 * complete or on page lock to be released.  In that
2808 		 * case, we have to wait until after we have
2809 		 * submitted all the IO, released page locks we hold,
2810 		 * and dropped io_end reference (for extent conversion
2811 		 * to be able to complete) before stopping the handle.
2812 		 */
2813 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2814 			ext4_journal_stop(handle);
2815 			handle = NULL;
2816 			mpd.do_map = 0;
2817 		}
2818 		/* Unlock pages we didn't use */
2819 		mpage_release_unused_pages(&mpd, give_up_on_write);
2820 		/* Submit prepared bio */
2821 		ext4_io_submit(&mpd.io_submit);
2822 
2823 		/*
2824 		 * Drop our io_end reference we got from init. We have
2825 		 * to be careful and use deferred io_end finishing if
2826 		 * we are still holding the transaction as we can
2827 		 * release the last reference to io_end which may end
2828 		 * up doing unwritten extent conversion.
2829 		 */
2830 		if (handle) {
2831 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2832 			ext4_journal_stop(handle);
2833 		} else
2834 			ext4_put_io_end(mpd.io_submit.io_end);
2835 		mpd.io_submit.io_end = NULL;
2836 
2837 		if (ret == -ENOSPC && sbi->s_journal) {
2838 			/*
2839 			 * Commit the transaction which would
2840 			 * free blocks released in the transaction
2841 			 * and try again
2842 			 */
2843 			jbd2_journal_force_commit_nested(sbi->s_journal);
2844 			ret = 0;
2845 			continue;
2846 		}
2847 		/* Fatal error - ENOMEM, EIO... */
2848 		if (ret)
2849 			break;
2850 	}
2851 unplug:
2852 	blk_finish_plug(&plug);
2853 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2854 		cycled = 1;
2855 		mpd.last_page = writeback_index - 1;
2856 		mpd.first_page = 0;
2857 		goto retry;
2858 	}
2859 
2860 	/* Update index */
2861 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2862 		/*
2863 		 * Set the writeback_index so that range_cyclic
2864 		 * mode will write it back later
2865 		 */
2866 		mapping->writeback_index = mpd.first_page;
2867 
2868 out_writepages:
2869 	trace_ext4_writepages_result(inode, wbc, ret,
2870 				     nr_to_write - wbc->nr_to_write);
2871 	percpu_up_read(&sbi->s_writepages_rwsem);
2872 	return ret;
2873 }
2874 
2875 static int ext4_dax_writepages(struct address_space *mapping,
2876 			       struct writeback_control *wbc)
2877 {
2878 	int ret;
2879 	long nr_to_write = wbc->nr_to_write;
2880 	struct inode *inode = mapping->host;
2881 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2882 
2883 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2884 		return -EIO;
2885 
2886 	percpu_down_read(&sbi->s_writepages_rwsem);
2887 	trace_ext4_writepages(inode, wbc);
2888 
2889 	ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2890 	trace_ext4_writepages_result(inode, wbc, ret,
2891 				     nr_to_write - wbc->nr_to_write);
2892 	percpu_up_read(&sbi->s_writepages_rwsem);
2893 	return ret;
2894 }
2895 
2896 static int ext4_nonda_switch(struct super_block *sb)
2897 {
2898 	s64 free_clusters, dirty_clusters;
2899 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2900 
2901 	/*
2902 	 * switch to non delalloc mode if we are running low
2903 	 * on free block. The free block accounting via percpu
2904 	 * counters can get slightly wrong with percpu_counter_batch getting
2905 	 * accumulated on each CPU without updating global counters
2906 	 * Delalloc need an accurate free block accounting. So switch
2907 	 * to non delalloc when we are near to error range.
2908 	 */
2909 	free_clusters =
2910 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2911 	dirty_clusters =
2912 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2913 	/*
2914 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2915 	 */
2916 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2917 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2918 
2919 	if (2 * free_clusters < 3 * dirty_clusters ||
2920 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2921 		/*
2922 		 * free block count is less than 150% of dirty blocks
2923 		 * or free blocks is less than watermark
2924 		 */
2925 		return 1;
2926 	}
2927 	return 0;
2928 }
2929 
2930 /* We always reserve for an inode update; the superblock could be there too */
2931 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2932 {
2933 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2934 		return 1;
2935 
2936 	if (pos + len <= 0x7fffffffULL)
2937 		return 1;
2938 
2939 	/* We might need to update the superblock to set LARGE_FILE */
2940 	return 2;
2941 }
2942 
2943 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2944 			       loff_t pos, unsigned len, unsigned flags,
2945 			       struct page **pagep, void **fsdata)
2946 {
2947 	int ret, retries = 0;
2948 	struct page *page;
2949 	pgoff_t index;
2950 	struct inode *inode = mapping->host;
2951 	handle_t *handle;
2952 
2953 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2954 		return -EIO;
2955 
2956 	index = pos >> PAGE_SHIFT;
2957 
2958 	if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2959 	    ext4_verity_in_progress(inode)) {
2960 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2961 		return ext4_write_begin(file, mapping, pos,
2962 					len, flags, pagep, fsdata);
2963 	}
2964 	*fsdata = (void *)0;
2965 	trace_ext4_da_write_begin(inode, pos, len, flags);
2966 
2967 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2968 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2969 						      pos, len, flags,
2970 						      pagep, fsdata);
2971 		if (ret < 0)
2972 			return ret;
2973 		if (ret == 1)
2974 			return 0;
2975 	}
2976 
2977 	/*
2978 	 * grab_cache_page_write_begin() can take a long time if the
2979 	 * system is thrashing due to memory pressure, or if the page
2980 	 * is being written back.  So grab it first before we start
2981 	 * the transaction handle.  This also allows us to allocate
2982 	 * the page (if needed) without using GFP_NOFS.
2983 	 */
2984 retry_grab:
2985 	page = grab_cache_page_write_begin(mapping, index, flags);
2986 	if (!page)
2987 		return -ENOMEM;
2988 	unlock_page(page);
2989 
2990 	/*
2991 	 * With delayed allocation, we don't log the i_disksize update
2992 	 * if there is delayed block allocation. But we still need
2993 	 * to journalling the i_disksize update if writes to the end
2994 	 * of file which has an already mapped buffer.
2995 	 */
2996 retry_journal:
2997 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2998 				ext4_da_write_credits(inode, pos, len));
2999 	if (IS_ERR(handle)) {
3000 		put_page(page);
3001 		return PTR_ERR(handle);
3002 	}
3003 
3004 	lock_page(page);
3005 	if (page->mapping != mapping) {
3006 		/* The page got truncated from under us */
3007 		unlock_page(page);
3008 		put_page(page);
3009 		ext4_journal_stop(handle);
3010 		goto retry_grab;
3011 	}
3012 	/* In case writeback began while the page was unlocked */
3013 	wait_for_stable_page(page);
3014 
3015 #ifdef CONFIG_FS_ENCRYPTION
3016 	ret = ext4_block_write_begin(page, pos, len,
3017 				     ext4_da_get_block_prep);
3018 #else
3019 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3020 #endif
3021 	if (ret < 0) {
3022 		unlock_page(page);
3023 		ext4_journal_stop(handle);
3024 		/*
3025 		 * block_write_begin may have instantiated a few blocks
3026 		 * outside i_size.  Trim these off again. Don't need
3027 		 * i_size_read because we hold i_mutex.
3028 		 */
3029 		if (pos + len > inode->i_size)
3030 			ext4_truncate_failed_write(inode);
3031 
3032 		if (ret == -ENOSPC &&
3033 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3034 			goto retry_journal;
3035 
3036 		put_page(page);
3037 		return ret;
3038 	}
3039 
3040 	*pagep = page;
3041 	return ret;
3042 }
3043 
3044 /*
3045  * Check if we should update i_disksize
3046  * when write to the end of file but not require block allocation
3047  */
3048 static int ext4_da_should_update_i_disksize(struct page *page,
3049 					    unsigned long offset)
3050 {
3051 	struct buffer_head *bh;
3052 	struct inode *inode = page->mapping->host;
3053 	unsigned int idx;
3054 	int i;
3055 
3056 	bh = page_buffers(page);
3057 	idx = offset >> inode->i_blkbits;
3058 
3059 	for (i = 0; i < idx; i++)
3060 		bh = bh->b_this_page;
3061 
3062 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3063 		return 0;
3064 	return 1;
3065 }
3066 
3067 static int ext4_da_write_end(struct file *file,
3068 			     struct address_space *mapping,
3069 			     loff_t pos, unsigned len, unsigned copied,
3070 			     struct page *page, void *fsdata)
3071 {
3072 	struct inode *inode = mapping->host;
3073 	int ret = 0, ret2;
3074 	handle_t *handle = ext4_journal_current_handle();
3075 	loff_t new_i_size;
3076 	unsigned long start, end;
3077 	int write_mode = (int)(unsigned long)fsdata;
3078 
3079 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3080 		return ext4_write_end(file, mapping, pos,
3081 				      len, copied, page, fsdata);
3082 
3083 	trace_ext4_da_write_end(inode, pos, len, copied);
3084 	start = pos & (PAGE_SIZE - 1);
3085 	end = start + copied - 1;
3086 
3087 	/*
3088 	 * generic_write_end() will run mark_inode_dirty() if i_size
3089 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3090 	 * into that.
3091 	 */
3092 	new_i_size = pos + copied;
3093 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3094 		if (ext4_has_inline_data(inode) ||
3095 		    ext4_da_should_update_i_disksize(page, end)) {
3096 			ext4_update_i_disksize(inode, new_i_size);
3097 			/* We need to mark inode dirty even if
3098 			 * new_i_size is less that inode->i_size
3099 			 * bu greater than i_disksize.(hint delalloc)
3100 			 */
3101 			ret = ext4_mark_inode_dirty(handle, inode);
3102 		}
3103 	}
3104 
3105 	if (write_mode != CONVERT_INLINE_DATA &&
3106 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3107 	    ext4_has_inline_data(inode))
3108 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3109 						     page);
3110 	else
3111 		ret2 = generic_write_end(file, mapping, pos, len, copied,
3112 							page, fsdata);
3113 
3114 	copied = ret2;
3115 	if (ret2 < 0)
3116 		ret = ret2;
3117 	ret2 = ext4_journal_stop(handle);
3118 	if (unlikely(ret2 && !ret))
3119 		ret = ret2;
3120 
3121 	return ret ? ret : copied;
3122 }
3123 
3124 /*
3125  * Force all delayed allocation blocks to be allocated for a given inode.
3126  */
3127 int ext4_alloc_da_blocks(struct inode *inode)
3128 {
3129 	trace_ext4_alloc_da_blocks(inode);
3130 
3131 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3132 		return 0;
3133 
3134 	/*
3135 	 * We do something simple for now.  The filemap_flush() will
3136 	 * also start triggering a write of the data blocks, which is
3137 	 * not strictly speaking necessary (and for users of
3138 	 * laptop_mode, not even desirable).  However, to do otherwise
3139 	 * would require replicating code paths in:
3140 	 *
3141 	 * ext4_writepages() ->
3142 	 *    write_cache_pages() ---> (via passed in callback function)
3143 	 *        __mpage_da_writepage() -->
3144 	 *           mpage_add_bh_to_extent()
3145 	 *           mpage_da_map_blocks()
3146 	 *
3147 	 * The problem is that write_cache_pages(), located in
3148 	 * mm/page-writeback.c, marks pages clean in preparation for
3149 	 * doing I/O, which is not desirable if we're not planning on
3150 	 * doing I/O at all.
3151 	 *
3152 	 * We could call write_cache_pages(), and then redirty all of
3153 	 * the pages by calling redirty_page_for_writepage() but that
3154 	 * would be ugly in the extreme.  So instead we would need to
3155 	 * replicate parts of the code in the above functions,
3156 	 * simplifying them because we wouldn't actually intend to
3157 	 * write out the pages, but rather only collect contiguous
3158 	 * logical block extents, call the multi-block allocator, and
3159 	 * then update the buffer heads with the block allocations.
3160 	 *
3161 	 * For now, though, we'll cheat by calling filemap_flush(),
3162 	 * which will map the blocks, and start the I/O, but not
3163 	 * actually wait for the I/O to complete.
3164 	 */
3165 	return filemap_flush(inode->i_mapping);
3166 }
3167 
3168 /*
3169  * bmap() is special.  It gets used by applications such as lilo and by
3170  * the swapper to find the on-disk block of a specific piece of data.
3171  *
3172  * Naturally, this is dangerous if the block concerned is still in the
3173  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3174  * filesystem and enables swap, then they may get a nasty shock when the
3175  * data getting swapped to that swapfile suddenly gets overwritten by
3176  * the original zero's written out previously to the journal and
3177  * awaiting writeback in the kernel's buffer cache.
3178  *
3179  * So, if we see any bmap calls here on a modified, data-journaled file,
3180  * take extra steps to flush any blocks which might be in the cache.
3181  */
3182 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3183 {
3184 	struct inode *inode = mapping->host;
3185 	journal_t *journal;
3186 	int err;
3187 
3188 	/*
3189 	 * We can get here for an inline file via the FIBMAP ioctl
3190 	 */
3191 	if (ext4_has_inline_data(inode))
3192 		return 0;
3193 
3194 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3195 			test_opt(inode->i_sb, DELALLOC)) {
3196 		/*
3197 		 * With delalloc we want to sync the file
3198 		 * so that we can make sure we allocate
3199 		 * blocks for file
3200 		 */
3201 		filemap_write_and_wait(mapping);
3202 	}
3203 
3204 	if (EXT4_JOURNAL(inode) &&
3205 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3206 		/*
3207 		 * This is a REALLY heavyweight approach, but the use of
3208 		 * bmap on dirty files is expected to be extremely rare:
3209 		 * only if we run lilo or swapon on a freshly made file
3210 		 * do we expect this to happen.
3211 		 *
3212 		 * (bmap requires CAP_SYS_RAWIO so this does not
3213 		 * represent an unprivileged user DOS attack --- we'd be
3214 		 * in trouble if mortal users could trigger this path at
3215 		 * will.)
3216 		 *
3217 		 * NB. EXT4_STATE_JDATA is not set on files other than
3218 		 * regular files.  If somebody wants to bmap a directory
3219 		 * or symlink and gets confused because the buffer
3220 		 * hasn't yet been flushed to disk, they deserve
3221 		 * everything they get.
3222 		 */
3223 
3224 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3225 		journal = EXT4_JOURNAL(inode);
3226 		jbd2_journal_lock_updates(journal);
3227 		err = jbd2_journal_flush(journal);
3228 		jbd2_journal_unlock_updates(journal);
3229 
3230 		if (err)
3231 			return 0;
3232 	}
3233 
3234 	return iomap_bmap(mapping, block, &ext4_iomap_ops);
3235 }
3236 
3237 static int ext4_readpage(struct file *file, struct page *page)
3238 {
3239 	int ret = -EAGAIN;
3240 	struct inode *inode = page->mapping->host;
3241 
3242 	trace_ext4_readpage(page);
3243 
3244 	if (ext4_has_inline_data(inode))
3245 		ret = ext4_readpage_inline(inode, page);
3246 
3247 	if (ret == -EAGAIN)
3248 		return ext4_mpage_readpages(inode, NULL, page);
3249 
3250 	return ret;
3251 }
3252 
3253 static void ext4_readahead(struct readahead_control *rac)
3254 {
3255 	struct inode *inode = rac->mapping->host;
3256 
3257 	/* If the file has inline data, no need to do readahead. */
3258 	if (ext4_has_inline_data(inode))
3259 		return;
3260 
3261 	ext4_mpage_readpages(inode, rac, NULL);
3262 }
3263 
3264 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3265 				unsigned int length)
3266 {
3267 	trace_ext4_invalidatepage(page, offset, length);
3268 
3269 	/* No journalling happens on data buffers when this function is used */
3270 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3271 
3272 	block_invalidatepage(page, offset, length);
3273 }
3274 
3275 static int __ext4_journalled_invalidatepage(struct page *page,
3276 					    unsigned int offset,
3277 					    unsigned int length)
3278 {
3279 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3280 
3281 	trace_ext4_journalled_invalidatepage(page, offset, length);
3282 
3283 	/*
3284 	 * If it's a full truncate we just forget about the pending dirtying
3285 	 */
3286 	if (offset == 0 && length == PAGE_SIZE)
3287 		ClearPageChecked(page);
3288 
3289 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3290 }
3291 
3292 /* Wrapper for aops... */
3293 static void ext4_journalled_invalidatepage(struct page *page,
3294 					   unsigned int offset,
3295 					   unsigned int length)
3296 {
3297 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3298 }
3299 
3300 static int ext4_releasepage(struct page *page, gfp_t wait)
3301 {
3302 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3303 
3304 	trace_ext4_releasepage(page);
3305 
3306 	/* Page has dirty journalled data -> cannot release */
3307 	if (PageChecked(page))
3308 		return 0;
3309 	if (journal)
3310 		return jbd2_journal_try_to_free_buffers(journal, page);
3311 	else
3312 		return try_to_free_buffers(page);
3313 }
3314 
3315 static bool ext4_inode_datasync_dirty(struct inode *inode)
3316 {
3317 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3318 
3319 	if (journal) {
3320 		if (jbd2_transaction_committed(journal,
3321 			EXT4_I(inode)->i_datasync_tid))
3322 			return false;
3323 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3324 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3325 		return true;
3326 	}
3327 
3328 	/* Any metadata buffers to write? */
3329 	if (!list_empty(&inode->i_mapping->private_list))
3330 		return true;
3331 	return inode->i_state & I_DIRTY_DATASYNC;
3332 }
3333 
3334 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3335 			   struct ext4_map_blocks *map, loff_t offset,
3336 			   loff_t length)
3337 {
3338 	u8 blkbits = inode->i_blkbits;
3339 
3340 	/*
3341 	 * Writes that span EOF might trigger an I/O size update on completion,
3342 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3343 	 * there is no other metadata changes being made or are pending.
3344 	 */
3345 	iomap->flags = 0;
3346 	if (ext4_inode_datasync_dirty(inode) ||
3347 	    offset + length > i_size_read(inode))
3348 		iomap->flags |= IOMAP_F_DIRTY;
3349 
3350 	if (map->m_flags & EXT4_MAP_NEW)
3351 		iomap->flags |= IOMAP_F_NEW;
3352 
3353 	iomap->bdev = inode->i_sb->s_bdev;
3354 	iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3355 	iomap->offset = (u64) map->m_lblk << blkbits;
3356 	iomap->length = (u64) map->m_len << blkbits;
3357 
3358 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3359 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3360 		iomap->flags |= IOMAP_F_MERGED;
3361 
3362 	/*
3363 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3364 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3365 	 * set. In order for any allocated unwritten extents to be converted
3366 	 * into written extents correctly within the ->end_io() handler, we
3367 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3368 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3369 	 * been set first.
3370 	 */
3371 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3372 		iomap->type = IOMAP_UNWRITTEN;
3373 		iomap->addr = (u64) map->m_pblk << blkbits;
3374 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3375 		iomap->type = IOMAP_MAPPED;
3376 		iomap->addr = (u64) map->m_pblk << blkbits;
3377 	} else {
3378 		iomap->type = IOMAP_HOLE;
3379 		iomap->addr = IOMAP_NULL_ADDR;
3380 	}
3381 }
3382 
3383 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3384 			    unsigned int flags)
3385 {
3386 	handle_t *handle;
3387 	u8 blkbits = inode->i_blkbits;
3388 	int ret, dio_credits, m_flags = 0, retries = 0;
3389 
3390 	/*
3391 	 * Trim the mapping request to the maximum value that we can map at
3392 	 * once for direct I/O.
3393 	 */
3394 	if (map->m_len > DIO_MAX_BLOCKS)
3395 		map->m_len = DIO_MAX_BLOCKS;
3396 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3397 
3398 retry:
3399 	/*
3400 	 * Either we allocate blocks and then don't get an unwritten extent, so
3401 	 * in that case we have reserved enough credits. Or, the blocks are
3402 	 * already allocated and unwritten. In that case, the extent conversion
3403 	 * fits into the credits as well.
3404 	 */
3405 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3406 	if (IS_ERR(handle))
3407 		return PTR_ERR(handle);
3408 
3409 	/*
3410 	 * DAX and direct I/O are the only two operations that are currently
3411 	 * supported with IOMAP_WRITE.
3412 	 */
3413 	WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3414 	if (IS_DAX(inode))
3415 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3416 	/*
3417 	 * We use i_size instead of i_disksize here because delalloc writeback
3418 	 * can complete at any point during the I/O and subsequently push the
3419 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3420 	 * happening and thus expose allocated blocks to direct I/O reads.
3421 	 */
3422 	else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode))
3423 		m_flags = EXT4_GET_BLOCKS_CREATE;
3424 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3425 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3426 
3427 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3428 
3429 	/*
3430 	 * We cannot fill holes in indirect tree based inodes as that could
3431 	 * expose stale data in the case of a crash. Use the magic error code
3432 	 * to fallback to buffered I/O.
3433 	 */
3434 	if (!m_flags && !ret)
3435 		ret = -ENOTBLK;
3436 
3437 	ext4_journal_stop(handle);
3438 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3439 		goto retry;
3440 
3441 	return ret;
3442 }
3443 
3444 
3445 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3446 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3447 {
3448 	int ret;
3449 	struct ext4_map_blocks map;
3450 	u8 blkbits = inode->i_blkbits;
3451 
3452 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3453 		return -EINVAL;
3454 
3455 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3456 		return -ERANGE;
3457 
3458 	/*
3459 	 * Calculate the first and last logical blocks respectively.
3460 	 */
3461 	map.m_lblk = offset >> blkbits;
3462 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3463 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3464 
3465 	if (flags & IOMAP_WRITE) {
3466 		/*
3467 		 * We check here if the blocks are already allocated, then we
3468 		 * don't need to start a journal txn and we can directly return
3469 		 * the mapping information. This could boost performance
3470 		 * especially in multi-threaded overwrite requests.
3471 		 */
3472 		if (offset + length <= i_size_read(inode)) {
3473 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3474 			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3475 				goto out;
3476 		}
3477 		ret = ext4_iomap_alloc(inode, &map, flags);
3478 	} else {
3479 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3480 	}
3481 
3482 	if (ret < 0)
3483 		return ret;
3484 out:
3485 	ext4_set_iomap(inode, iomap, &map, offset, length);
3486 
3487 	return 0;
3488 }
3489 
3490 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3491 		loff_t length, unsigned flags, struct iomap *iomap,
3492 		struct iomap *srcmap)
3493 {
3494 	int ret;
3495 
3496 	/*
3497 	 * Even for writes we don't need to allocate blocks, so just pretend
3498 	 * we are reading to save overhead of starting a transaction.
3499 	 */
3500 	flags &= ~IOMAP_WRITE;
3501 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3502 	WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3503 	return ret;
3504 }
3505 
3506 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3507 			  ssize_t written, unsigned flags, struct iomap *iomap)
3508 {
3509 	/*
3510 	 * Check to see whether an error occurred while writing out the data to
3511 	 * the allocated blocks. If so, return the magic error code so that we
3512 	 * fallback to buffered I/O and attempt to complete the remainder of
3513 	 * the I/O. Any blocks that may have been allocated in preparation for
3514 	 * the direct I/O will be reused during buffered I/O.
3515 	 */
3516 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3517 		return -ENOTBLK;
3518 
3519 	return 0;
3520 }
3521 
3522 const struct iomap_ops ext4_iomap_ops = {
3523 	.iomap_begin		= ext4_iomap_begin,
3524 	.iomap_end		= ext4_iomap_end,
3525 };
3526 
3527 const struct iomap_ops ext4_iomap_overwrite_ops = {
3528 	.iomap_begin		= ext4_iomap_overwrite_begin,
3529 	.iomap_end		= ext4_iomap_end,
3530 };
3531 
3532 static bool ext4_iomap_is_delalloc(struct inode *inode,
3533 				   struct ext4_map_blocks *map)
3534 {
3535 	struct extent_status es;
3536 	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3537 
3538 	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3539 				  map->m_lblk, end, &es);
3540 
3541 	if (!es.es_len || es.es_lblk > end)
3542 		return false;
3543 
3544 	if (es.es_lblk > map->m_lblk) {
3545 		map->m_len = es.es_lblk - map->m_lblk;
3546 		return false;
3547 	}
3548 
3549 	offset = map->m_lblk - es.es_lblk;
3550 	map->m_len = es.es_len - offset;
3551 
3552 	return true;
3553 }
3554 
3555 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3556 				   loff_t length, unsigned int flags,
3557 				   struct iomap *iomap, struct iomap *srcmap)
3558 {
3559 	int ret;
3560 	bool delalloc = false;
3561 	struct ext4_map_blocks map;
3562 	u8 blkbits = inode->i_blkbits;
3563 
3564 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3565 		return -EINVAL;
3566 
3567 	if (ext4_has_inline_data(inode)) {
3568 		ret = ext4_inline_data_iomap(inode, iomap);
3569 		if (ret != -EAGAIN) {
3570 			if (ret == 0 && offset >= iomap->length)
3571 				ret = -ENOENT;
3572 			return ret;
3573 		}
3574 	}
3575 
3576 	/*
3577 	 * Calculate the first and last logical block respectively.
3578 	 */
3579 	map.m_lblk = offset >> blkbits;
3580 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3581 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3582 
3583 	/*
3584 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3585 	 * So handle it here itself instead of querying ext4_map_blocks().
3586 	 * Since ext4_map_blocks() will warn about it and will return
3587 	 * -EIO error.
3588 	 */
3589 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3590 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3591 
3592 		if (offset >= sbi->s_bitmap_maxbytes) {
3593 			map.m_flags = 0;
3594 			goto set_iomap;
3595 		}
3596 	}
3597 
3598 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3599 	if (ret < 0)
3600 		return ret;
3601 	if (ret == 0)
3602 		delalloc = ext4_iomap_is_delalloc(inode, &map);
3603 
3604 set_iomap:
3605 	ext4_set_iomap(inode, iomap, &map, offset, length);
3606 	if (delalloc && iomap->type == IOMAP_HOLE)
3607 		iomap->type = IOMAP_DELALLOC;
3608 
3609 	return 0;
3610 }
3611 
3612 const struct iomap_ops ext4_iomap_report_ops = {
3613 	.iomap_begin = ext4_iomap_begin_report,
3614 };
3615 
3616 /*
3617  * Pages can be marked dirty completely asynchronously from ext4's journalling
3618  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3619  * much here because ->set_page_dirty is called under VFS locks.  The page is
3620  * not necessarily locked.
3621  *
3622  * We cannot just dirty the page and leave attached buffers clean, because the
3623  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3624  * or jbddirty because all the journalling code will explode.
3625  *
3626  * So what we do is to mark the page "pending dirty" and next time writepage
3627  * is called, propagate that into the buffers appropriately.
3628  */
3629 static int ext4_journalled_set_page_dirty(struct page *page)
3630 {
3631 	SetPageChecked(page);
3632 	return __set_page_dirty_nobuffers(page);
3633 }
3634 
3635 static int ext4_set_page_dirty(struct page *page)
3636 {
3637 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3638 	WARN_ON_ONCE(!page_has_buffers(page));
3639 	return __set_page_dirty_buffers(page);
3640 }
3641 
3642 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3643 				    struct file *file, sector_t *span)
3644 {
3645 	return iomap_swapfile_activate(sis, file, span,
3646 				       &ext4_iomap_report_ops);
3647 }
3648 
3649 static const struct address_space_operations ext4_aops = {
3650 	.readpage		= ext4_readpage,
3651 	.readahead		= ext4_readahead,
3652 	.writepage		= ext4_writepage,
3653 	.writepages		= ext4_writepages,
3654 	.write_begin		= ext4_write_begin,
3655 	.write_end		= ext4_write_end,
3656 	.set_page_dirty		= ext4_set_page_dirty,
3657 	.bmap			= ext4_bmap,
3658 	.invalidatepage		= ext4_invalidatepage,
3659 	.releasepage		= ext4_releasepage,
3660 	.direct_IO		= noop_direct_IO,
3661 	.migratepage		= buffer_migrate_page,
3662 	.is_partially_uptodate  = block_is_partially_uptodate,
3663 	.error_remove_page	= generic_error_remove_page,
3664 	.swap_activate		= ext4_iomap_swap_activate,
3665 };
3666 
3667 static const struct address_space_operations ext4_journalled_aops = {
3668 	.readpage		= ext4_readpage,
3669 	.readahead		= ext4_readahead,
3670 	.writepage		= ext4_writepage,
3671 	.writepages		= ext4_writepages,
3672 	.write_begin		= ext4_write_begin,
3673 	.write_end		= ext4_journalled_write_end,
3674 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3675 	.bmap			= ext4_bmap,
3676 	.invalidatepage		= ext4_journalled_invalidatepage,
3677 	.releasepage		= ext4_releasepage,
3678 	.direct_IO		= noop_direct_IO,
3679 	.is_partially_uptodate  = block_is_partially_uptodate,
3680 	.error_remove_page	= generic_error_remove_page,
3681 	.swap_activate		= ext4_iomap_swap_activate,
3682 };
3683 
3684 static const struct address_space_operations ext4_da_aops = {
3685 	.readpage		= ext4_readpage,
3686 	.readahead		= ext4_readahead,
3687 	.writepage		= ext4_writepage,
3688 	.writepages		= ext4_writepages,
3689 	.write_begin		= ext4_da_write_begin,
3690 	.write_end		= ext4_da_write_end,
3691 	.set_page_dirty		= ext4_set_page_dirty,
3692 	.bmap			= ext4_bmap,
3693 	.invalidatepage		= ext4_invalidatepage,
3694 	.releasepage		= ext4_releasepage,
3695 	.direct_IO		= noop_direct_IO,
3696 	.migratepage		= buffer_migrate_page,
3697 	.is_partially_uptodate  = block_is_partially_uptodate,
3698 	.error_remove_page	= generic_error_remove_page,
3699 	.swap_activate		= ext4_iomap_swap_activate,
3700 };
3701 
3702 static const struct address_space_operations ext4_dax_aops = {
3703 	.writepages		= ext4_dax_writepages,
3704 	.direct_IO		= noop_direct_IO,
3705 	.set_page_dirty		= noop_set_page_dirty,
3706 	.bmap			= ext4_bmap,
3707 	.invalidatepage		= noop_invalidatepage,
3708 	.swap_activate		= ext4_iomap_swap_activate,
3709 };
3710 
3711 void ext4_set_aops(struct inode *inode)
3712 {
3713 	switch (ext4_inode_journal_mode(inode)) {
3714 	case EXT4_INODE_ORDERED_DATA_MODE:
3715 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3716 		break;
3717 	case EXT4_INODE_JOURNAL_DATA_MODE:
3718 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3719 		return;
3720 	default:
3721 		BUG();
3722 	}
3723 	if (IS_DAX(inode))
3724 		inode->i_mapping->a_ops = &ext4_dax_aops;
3725 	else if (test_opt(inode->i_sb, DELALLOC))
3726 		inode->i_mapping->a_ops = &ext4_da_aops;
3727 	else
3728 		inode->i_mapping->a_ops = &ext4_aops;
3729 }
3730 
3731 static int __ext4_block_zero_page_range(handle_t *handle,
3732 		struct address_space *mapping, loff_t from, loff_t length)
3733 {
3734 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3735 	unsigned offset = from & (PAGE_SIZE-1);
3736 	unsigned blocksize, pos;
3737 	ext4_lblk_t iblock;
3738 	struct inode *inode = mapping->host;
3739 	struct buffer_head *bh;
3740 	struct page *page;
3741 	int err = 0;
3742 
3743 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3744 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3745 	if (!page)
3746 		return -ENOMEM;
3747 
3748 	blocksize = inode->i_sb->s_blocksize;
3749 
3750 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3751 
3752 	if (!page_has_buffers(page))
3753 		create_empty_buffers(page, blocksize, 0);
3754 
3755 	/* Find the buffer that contains "offset" */
3756 	bh = page_buffers(page);
3757 	pos = blocksize;
3758 	while (offset >= pos) {
3759 		bh = bh->b_this_page;
3760 		iblock++;
3761 		pos += blocksize;
3762 	}
3763 	if (buffer_freed(bh)) {
3764 		BUFFER_TRACE(bh, "freed: skip");
3765 		goto unlock;
3766 	}
3767 	if (!buffer_mapped(bh)) {
3768 		BUFFER_TRACE(bh, "unmapped");
3769 		ext4_get_block(inode, iblock, bh, 0);
3770 		/* unmapped? It's a hole - nothing to do */
3771 		if (!buffer_mapped(bh)) {
3772 			BUFFER_TRACE(bh, "still unmapped");
3773 			goto unlock;
3774 		}
3775 	}
3776 
3777 	/* Ok, it's mapped. Make sure it's up-to-date */
3778 	if (PageUptodate(page))
3779 		set_buffer_uptodate(bh);
3780 
3781 	if (!buffer_uptodate(bh)) {
3782 		err = ext4_read_bh_lock(bh, 0, true);
3783 		if (err)
3784 			goto unlock;
3785 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3786 			/* We expect the key to be set. */
3787 			BUG_ON(!fscrypt_has_encryption_key(inode));
3788 			err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3789 							       bh_offset(bh));
3790 			if (err) {
3791 				clear_buffer_uptodate(bh);
3792 				goto unlock;
3793 			}
3794 		}
3795 	}
3796 	if (ext4_should_journal_data(inode)) {
3797 		BUFFER_TRACE(bh, "get write access");
3798 		err = ext4_journal_get_write_access(handle, bh);
3799 		if (err)
3800 			goto unlock;
3801 	}
3802 	zero_user(page, offset, length);
3803 	BUFFER_TRACE(bh, "zeroed end of block");
3804 
3805 	if (ext4_should_journal_data(inode)) {
3806 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3807 	} else {
3808 		err = 0;
3809 		mark_buffer_dirty(bh);
3810 		if (ext4_should_order_data(inode))
3811 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3812 					length);
3813 	}
3814 
3815 unlock:
3816 	unlock_page(page);
3817 	put_page(page);
3818 	return err;
3819 }
3820 
3821 /*
3822  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3823  * starting from file offset 'from'.  The range to be zero'd must
3824  * be contained with in one block.  If the specified range exceeds
3825  * the end of the block it will be shortened to end of the block
3826  * that cooresponds to 'from'
3827  */
3828 static int ext4_block_zero_page_range(handle_t *handle,
3829 		struct address_space *mapping, loff_t from, loff_t length)
3830 {
3831 	struct inode *inode = mapping->host;
3832 	unsigned offset = from & (PAGE_SIZE-1);
3833 	unsigned blocksize = inode->i_sb->s_blocksize;
3834 	unsigned max = blocksize - (offset & (blocksize - 1));
3835 
3836 	/*
3837 	 * correct length if it does not fall between
3838 	 * 'from' and the end of the block
3839 	 */
3840 	if (length > max || length < 0)
3841 		length = max;
3842 
3843 	if (IS_DAX(inode)) {
3844 		return iomap_zero_range(inode, from, length, NULL,
3845 					&ext4_iomap_ops);
3846 	}
3847 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3848 }
3849 
3850 /*
3851  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3852  * up to the end of the block which corresponds to `from'.
3853  * This required during truncate. We need to physically zero the tail end
3854  * of that block so it doesn't yield old data if the file is later grown.
3855  */
3856 static int ext4_block_truncate_page(handle_t *handle,
3857 		struct address_space *mapping, loff_t from)
3858 {
3859 	unsigned offset = from & (PAGE_SIZE-1);
3860 	unsigned length;
3861 	unsigned blocksize;
3862 	struct inode *inode = mapping->host;
3863 
3864 	/* If we are processing an encrypted inode during orphan list handling */
3865 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3866 		return 0;
3867 
3868 	blocksize = inode->i_sb->s_blocksize;
3869 	length = blocksize - (offset & (blocksize - 1));
3870 
3871 	return ext4_block_zero_page_range(handle, mapping, from, length);
3872 }
3873 
3874 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3875 			     loff_t lstart, loff_t length)
3876 {
3877 	struct super_block *sb = inode->i_sb;
3878 	struct address_space *mapping = inode->i_mapping;
3879 	unsigned partial_start, partial_end;
3880 	ext4_fsblk_t start, end;
3881 	loff_t byte_end = (lstart + length - 1);
3882 	int err = 0;
3883 
3884 	partial_start = lstart & (sb->s_blocksize - 1);
3885 	partial_end = byte_end & (sb->s_blocksize - 1);
3886 
3887 	start = lstart >> sb->s_blocksize_bits;
3888 	end = byte_end >> sb->s_blocksize_bits;
3889 
3890 	/* Handle partial zero within the single block */
3891 	if (start == end &&
3892 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3893 		err = ext4_block_zero_page_range(handle, mapping,
3894 						 lstart, length);
3895 		return err;
3896 	}
3897 	/* Handle partial zero out on the start of the range */
3898 	if (partial_start) {
3899 		err = ext4_block_zero_page_range(handle, mapping,
3900 						 lstart, sb->s_blocksize);
3901 		if (err)
3902 			return err;
3903 	}
3904 	/* Handle partial zero out on the end of the range */
3905 	if (partial_end != sb->s_blocksize - 1)
3906 		err = ext4_block_zero_page_range(handle, mapping,
3907 						 byte_end - partial_end,
3908 						 partial_end + 1);
3909 	return err;
3910 }
3911 
3912 int ext4_can_truncate(struct inode *inode)
3913 {
3914 	if (S_ISREG(inode->i_mode))
3915 		return 1;
3916 	if (S_ISDIR(inode->i_mode))
3917 		return 1;
3918 	if (S_ISLNK(inode->i_mode))
3919 		return !ext4_inode_is_fast_symlink(inode);
3920 	return 0;
3921 }
3922 
3923 /*
3924  * We have to make sure i_disksize gets properly updated before we truncate
3925  * page cache due to hole punching or zero range. Otherwise i_disksize update
3926  * can get lost as it may have been postponed to submission of writeback but
3927  * that will never happen after we truncate page cache.
3928  */
3929 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3930 				      loff_t len)
3931 {
3932 	handle_t *handle;
3933 	int ret;
3934 
3935 	loff_t size = i_size_read(inode);
3936 
3937 	WARN_ON(!inode_is_locked(inode));
3938 	if (offset > size || offset + len < size)
3939 		return 0;
3940 
3941 	if (EXT4_I(inode)->i_disksize >= size)
3942 		return 0;
3943 
3944 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3945 	if (IS_ERR(handle))
3946 		return PTR_ERR(handle);
3947 	ext4_update_i_disksize(inode, size);
3948 	ret = ext4_mark_inode_dirty(handle, inode);
3949 	ext4_journal_stop(handle);
3950 
3951 	return ret;
3952 }
3953 
3954 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3955 {
3956 	up_write(&ei->i_mmap_sem);
3957 	schedule();
3958 	down_write(&ei->i_mmap_sem);
3959 }
3960 
3961 int ext4_break_layouts(struct inode *inode)
3962 {
3963 	struct ext4_inode_info *ei = EXT4_I(inode);
3964 	struct page *page;
3965 	int error;
3966 
3967 	if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3968 		return -EINVAL;
3969 
3970 	do {
3971 		page = dax_layout_busy_page(inode->i_mapping);
3972 		if (!page)
3973 			return 0;
3974 
3975 		error = ___wait_var_event(&page->_refcount,
3976 				atomic_read(&page->_refcount) == 1,
3977 				TASK_INTERRUPTIBLE, 0, 0,
3978 				ext4_wait_dax_page(ei));
3979 	} while (error == 0);
3980 
3981 	return error;
3982 }
3983 
3984 /*
3985  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3986  * associated with the given offset and length
3987  *
3988  * @inode:  File inode
3989  * @offset: The offset where the hole will begin
3990  * @len:    The length of the hole
3991  *
3992  * Returns: 0 on success or negative on failure
3993  */
3994 
3995 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3996 {
3997 	struct super_block *sb = inode->i_sb;
3998 	ext4_lblk_t first_block, stop_block;
3999 	struct address_space *mapping = inode->i_mapping;
4000 	loff_t first_block_offset, last_block_offset;
4001 	handle_t *handle;
4002 	unsigned int credits;
4003 	int ret = 0, ret2 = 0;
4004 
4005 	trace_ext4_punch_hole(inode, offset, length, 0);
4006 
4007 	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4008 	if (ext4_has_inline_data(inode)) {
4009 		down_write(&EXT4_I(inode)->i_mmap_sem);
4010 		ret = ext4_convert_inline_data(inode);
4011 		up_write(&EXT4_I(inode)->i_mmap_sem);
4012 		if (ret)
4013 			return ret;
4014 	}
4015 
4016 	/*
4017 	 * Write out all dirty pages to avoid race conditions
4018 	 * Then release them.
4019 	 */
4020 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4021 		ret = filemap_write_and_wait_range(mapping, offset,
4022 						   offset + length - 1);
4023 		if (ret)
4024 			return ret;
4025 	}
4026 
4027 	inode_lock(inode);
4028 
4029 	/* No need to punch hole beyond i_size */
4030 	if (offset >= inode->i_size)
4031 		goto out_mutex;
4032 
4033 	/*
4034 	 * If the hole extends beyond i_size, set the hole
4035 	 * to end after the page that contains i_size
4036 	 */
4037 	if (offset + length > inode->i_size) {
4038 		length = inode->i_size +
4039 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4040 		   offset;
4041 	}
4042 
4043 	if (offset & (sb->s_blocksize - 1) ||
4044 	    (offset + length) & (sb->s_blocksize - 1)) {
4045 		/*
4046 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4047 		 * partial block
4048 		 */
4049 		ret = ext4_inode_attach_jinode(inode);
4050 		if (ret < 0)
4051 			goto out_mutex;
4052 
4053 	}
4054 
4055 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4056 	inode_dio_wait(inode);
4057 
4058 	/*
4059 	 * Prevent page faults from reinstantiating pages we have released from
4060 	 * page cache.
4061 	 */
4062 	down_write(&EXT4_I(inode)->i_mmap_sem);
4063 
4064 	ret = ext4_break_layouts(inode);
4065 	if (ret)
4066 		goto out_dio;
4067 
4068 	first_block_offset = round_up(offset, sb->s_blocksize);
4069 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4070 
4071 	/* Now release the pages and zero block aligned part of pages*/
4072 	if (last_block_offset > first_block_offset) {
4073 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4074 		if (ret)
4075 			goto out_dio;
4076 		truncate_pagecache_range(inode, first_block_offset,
4077 					 last_block_offset);
4078 	}
4079 
4080 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4081 		credits = ext4_writepage_trans_blocks(inode);
4082 	else
4083 		credits = ext4_blocks_for_truncate(inode);
4084 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4085 	if (IS_ERR(handle)) {
4086 		ret = PTR_ERR(handle);
4087 		ext4_std_error(sb, ret);
4088 		goto out_dio;
4089 	}
4090 
4091 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4092 				       length);
4093 	if (ret)
4094 		goto out_stop;
4095 
4096 	first_block = (offset + sb->s_blocksize - 1) >>
4097 		EXT4_BLOCK_SIZE_BITS(sb);
4098 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4099 
4100 	/* If there are blocks to remove, do it */
4101 	if (stop_block > first_block) {
4102 
4103 		down_write(&EXT4_I(inode)->i_data_sem);
4104 		ext4_discard_preallocations(inode, 0);
4105 
4106 		ret = ext4_es_remove_extent(inode, first_block,
4107 					    stop_block - first_block);
4108 		if (ret) {
4109 			up_write(&EXT4_I(inode)->i_data_sem);
4110 			goto out_stop;
4111 		}
4112 
4113 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4114 			ret = ext4_ext_remove_space(inode, first_block,
4115 						    stop_block - 1);
4116 		else
4117 			ret = ext4_ind_remove_space(handle, inode, first_block,
4118 						    stop_block);
4119 
4120 		up_write(&EXT4_I(inode)->i_data_sem);
4121 	}
4122 	ext4_fc_track_range(handle, inode, first_block, stop_block);
4123 	if (IS_SYNC(inode))
4124 		ext4_handle_sync(handle);
4125 
4126 	inode->i_mtime = inode->i_ctime = current_time(inode);
4127 	ret2 = ext4_mark_inode_dirty(handle, inode);
4128 	if (unlikely(ret2))
4129 		ret = ret2;
4130 	if (ret >= 0)
4131 		ext4_update_inode_fsync_trans(handle, inode, 1);
4132 out_stop:
4133 	ext4_journal_stop(handle);
4134 out_dio:
4135 	up_write(&EXT4_I(inode)->i_mmap_sem);
4136 out_mutex:
4137 	inode_unlock(inode);
4138 	return ret;
4139 }
4140 
4141 int ext4_inode_attach_jinode(struct inode *inode)
4142 {
4143 	struct ext4_inode_info *ei = EXT4_I(inode);
4144 	struct jbd2_inode *jinode;
4145 
4146 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4147 		return 0;
4148 
4149 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4150 	spin_lock(&inode->i_lock);
4151 	if (!ei->jinode) {
4152 		if (!jinode) {
4153 			spin_unlock(&inode->i_lock);
4154 			return -ENOMEM;
4155 		}
4156 		ei->jinode = jinode;
4157 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4158 		jinode = NULL;
4159 	}
4160 	spin_unlock(&inode->i_lock);
4161 	if (unlikely(jinode != NULL))
4162 		jbd2_free_inode(jinode);
4163 	return 0;
4164 }
4165 
4166 /*
4167  * ext4_truncate()
4168  *
4169  * We block out ext4_get_block() block instantiations across the entire
4170  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4171  * simultaneously on behalf of the same inode.
4172  *
4173  * As we work through the truncate and commit bits of it to the journal there
4174  * is one core, guiding principle: the file's tree must always be consistent on
4175  * disk.  We must be able to restart the truncate after a crash.
4176  *
4177  * The file's tree may be transiently inconsistent in memory (although it
4178  * probably isn't), but whenever we close off and commit a journal transaction,
4179  * the contents of (the filesystem + the journal) must be consistent and
4180  * restartable.  It's pretty simple, really: bottom up, right to left (although
4181  * left-to-right works OK too).
4182  *
4183  * Note that at recovery time, journal replay occurs *before* the restart of
4184  * truncate against the orphan inode list.
4185  *
4186  * The committed inode has the new, desired i_size (which is the same as
4187  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4188  * that this inode's truncate did not complete and it will again call
4189  * ext4_truncate() to have another go.  So there will be instantiated blocks
4190  * to the right of the truncation point in a crashed ext4 filesystem.  But
4191  * that's fine - as long as they are linked from the inode, the post-crash
4192  * ext4_truncate() run will find them and release them.
4193  */
4194 int ext4_truncate(struct inode *inode)
4195 {
4196 	struct ext4_inode_info *ei = EXT4_I(inode);
4197 	unsigned int credits;
4198 	int err = 0, err2;
4199 	handle_t *handle;
4200 	struct address_space *mapping = inode->i_mapping;
4201 
4202 	/*
4203 	 * There is a possibility that we're either freeing the inode
4204 	 * or it's a completely new inode. In those cases we might not
4205 	 * have i_mutex locked because it's not necessary.
4206 	 */
4207 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4208 		WARN_ON(!inode_is_locked(inode));
4209 	trace_ext4_truncate_enter(inode);
4210 
4211 	if (!ext4_can_truncate(inode))
4212 		goto out_trace;
4213 
4214 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4215 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4216 
4217 	if (ext4_has_inline_data(inode)) {
4218 		int has_inline = 1;
4219 
4220 		err = ext4_inline_data_truncate(inode, &has_inline);
4221 		if (err || has_inline)
4222 			goto out_trace;
4223 	}
4224 
4225 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4226 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4227 		if (ext4_inode_attach_jinode(inode) < 0)
4228 			goto out_trace;
4229 	}
4230 
4231 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4232 		credits = ext4_writepage_trans_blocks(inode);
4233 	else
4234 		credits = ext4_blocks_for_truncate(inode);
4235 
4236 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4237 	if (IS_ERR(handle)) {
4238 		err = PTR_ERR(handle);
4239 		goto out_trace;
4240 	}
4241 
4242 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4243 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4244 
4245 	/*
4246 	 * We add the inode to the orphan list, so that if this
4247 	 * truncate spans multiple transactions, and we crash, we will
4248 	 * resume the truncate when the filesystem recovers.  It also
4249 	 * marks the inode dirty, to catch the new size.
4250 	 *
4251 	 * Implication: the file must always be in a sane, consistent
4252 	 * truncatable state while each transaction commits.
4253 	 */
4254 	err = ext4_orphan_add(handle, inode);
4255 	if (err)
4256 		goto out_stop;
4257 
4258 	down_write(&EXT4_I(inode)->i_data_sem);
4259 
4260 	ext4_discard_preallocations(inode, 0);
4261 
4262 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4263 		err = ext4_ext_truncate(handle, inode);
4264 	else
4265 		ext4_ind_truncate(handle, inode);
4266 
4267 	up_write(&ei->i_data_sem);
4268 	if (err)
4269 		goto out_stop;
4270 
4271 	if (IS_SYNC(inode))
4272 		ext4_handle_sync(handle);
4273 
4274 out_stop:
4275 	/*
4276 	 * If this was a simple ftruncate() and the file will remain alive,
4277 	 * then we need to clear up the orphan record which we created above.
4278 	 * However, if this was a real unlink then we were called by
4279 	 * ext4_evict_inode(), and we allow that function to clean up the
4280 	 * orphan info for us.
4281 	 */
4282 	if (inode->i_nlink)
4283 		ext4_orphan_del(handle, inode);
4284 
4285 	inode->i_mtime = inode->i_ctime = current_time(inode);
4286 	err2 = ext4_mark_inode_dirty(handle, inode);
4287 	if (unlikely(err2 && !err))
4288 		err = err2;
4289 	ext4_journal_stop(handle);
4290 
4291 out_trace:
4292 	trace_ext4_truncate_exit(inode);
4293 	return err;
4294 }
4295 
4296 /*
4297  * ext4_get_inode_loc returns with an extra refcount against the inode's
4298  * underlying buffer_head on success. If 'in_mem' is true, we have all
4299  * data in memory that is needed to recreate the on-disk version of this
4300  * inode.
4301  */
4302 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4303 				struct ext4_iloc *iloc, int in_mem,
4304 				ext4_fsblk_t *ret_block)
4305 {
4306 	struct ext4_group_desc	*gdp;
4307 	struct buffer_head	*bh;
4308 	ext4_fsblk_t		block;
4309 	struct blk_plug		plug;
4310 	int			inodes_per_block, inode_offset;
4311 
4312 	iloc->bh = NULL;
4313 	if (ino < EXT4_ROOT_INO ||
4314 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4315 		return -EFSCORRUPTED;
4316 
4317 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4318 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4319 	if (!gdp)
4320 		return -EIO;
4321 
4322 	/*
4323 	 * Figure out the offset within the block group inode table
4324 	 */
4325 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4326 	inode_offset = ((ino - 1) %
4327 			EXT4_INODES_PER_GROUP(sb));
4328 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4329 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4330 
4331 	bh = sb_getblk(sb, block);
4332 	if (unlikely(!bh))
4333 		return -ENOMEM;
4334 	if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO))
4335 		goto simulate_eio;
4336 	if (!buffer_uptodate(bh)) {
4337 		lock_buffer(bh);
4338 
4339 		if (ext4_buffer_uptodate(bh)) {
4340 			/* someone brought it uptodate while we waited */
4341 			unlock_buffer(bh);
4342 			goto has_buffer;
4343 		}
4344 
4345 		/*
4346 		 * If we have all information of the inode in memory and this
4347 		 * is the only valid inode in the block, we need not read the
4348 		 * block.
4349 		 */
4350 		if (in_mem) {
4351 			struct buffer_head *bitmap_bh;
4352 			int i, start;
4353 
4354 			start = inode_offset & ~(inodes_per_block - 1);
4355 
4356 			/* Is the inode bitmap in cache? */
4357 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4358 			if (unlikely(!bitmap_bh))
4359 				goto make_io;
4360 
4361 			/*
4362 			 * If the inode bitmap isn't in cache then the
4363 			 * optimisation may end up performing two reads instead
4364 			 * of one, so skip it.
4365 			 */
4366 			if (!buffer_uptodate(bitmap_bh)) {
4367 				brelse(bitmap_bh);
4368 				goto make_io;
4369 			}
4370 			for (i = start; i < start + inodes_per_block; i++) {
4371 				if (i == inode_offset)
4372 					continue;
4373 				if (ext4_test_bit(i, bitmap_bh->b_data))
4374 					break;
4375 			}
4376 			brelse(bitmap_bh);
4377 			if (i == start + inodes_per_block) {
4378 				/* all other inodes are free, so skip I/O */
4379 				memset(bh->b_data, 0, bh->b_size);
4380 				set_buffer_uptodate(bh);
4381 				unlock_buffer(bh);
4382 				goto has_buffer;
4383 			}
4384 		}
4385 
4386 make_io:
4387 		/*
4388 		 * If we need to do any I/O, try to pre-readahead extra
4389 		 * blocks from the inode table.
4390 		 */
4391 		blk_start_plug(&plug);
4392 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4393 			ext4_fsblk_t b, end, table;
4394 			unsigned num;
4395 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4396 
4397 			table = ext4_inode_table(sb, gdp);
4398 			/* s_inode_readahead_blks is always a power of 2 */
4399 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4400 			if (table > b)
4401 				b = table;
4402 			end = b + ra_blks;
4403 			num = EXT4_INODES_PER_GROUP(sb);
4404 			if (ext4_has_group_desc_csum(sb))
4405 				num -= ext4_itable_unused_count(sb, gdp);
4406 			table += num / inodes_per_block;
4407 			if (end > table)
4408 				end = table;
4409 			while (b <= end)
4410 				ext4_sb_breadahead_unmovable(sb, b++);
4411 		}
4412 
4413 		/*
4414 		 * There are other valid inodes in the buffer, this inode
4415 		 * has in-inode xattrs, or we don't have this inode in memory.
4416 		 * Read the block from disk.
4417 		 */
4418 		trace_ext4_load_inode(sb, ino);
4419 		ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4420 		blk_finish_plug(&plug);
4421 		wait_on_buffer(bh);
4422 		if (!buffer_uptodate(bh)) {
4423 		simulate_eio:
4424 			if (ret_block)
4425 				*ret_block = block;
4426 			brelse(bh);
4427 			return -EIO;
4428 		}
4429 	}
4430 has_buffer:
4431 	iloc->bh = bh;
4432 	return 0;
4433 }
4434 
4435 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4436 					struct ext4_iloc *iloc)
4437 {
4438 	ext4_fsblk_t err_blk;
4439 	int ret;
4440 
4441 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 0,
4442 					&err_blk);
4443 
4444 	if (ret == -EIO)
4445 		ext4_error_inode_block(inode, err_blk, EIO,
4446 					"unable to read itable block");
4447 
4448 	return ret;
4449 }
4450 
4451 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4452 {
4453 	ext4_fsblk_t err_blk;
4454 	int ret;
4455 
4456 	/* We have all inode data except xattrs in memory here. */
4457 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc,
4458 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR), &err_blk);
4459 
4460 	if (ret == -EIO)
4461 		ext4_error_inode_block(inode, err_blk, EIO,
4462 					"unable to read itable block");
4463 
4464 	return ret;
4465 }
4466 
4467 
4468 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4469 			  struct ext4_iloc *iloc)
4470 {
4471 	return __ext4_get_inode_loc(sb, ino, iloc, 0, NULL);
4472 }
4473 
4474 static bool ext4_should_enable_dax(struct inode *inode)
4475 {
4476 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4477 
4478 	if (test_opt2(inode->i_sb, DAX_NEVER))
4479 		return false;
4480 	if (!S_ISREG(inode->i_mode))
4481 		return false;
4482 	if (ext4_should_journal_data(inode))
4483 		return false;
4484 	if (ext4_has_inline_data(inode))
4485 		return false;
4486 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4487 		return false;
4488 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4489 		return false;
4490 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4491 		return false;
4492 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4493 		return true;
4494 
4495 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4496 }
4497 
4498 void ext4_set_inode_flags(struct inode *inode, bool init)
4499 {
4500 	unsigned int flags = EXT4_I(inode)->i_flags;
4501 	unsigned int new_fl = 0;
4502 
4503 	WARN_ON_ONCE(IS_DAX(inode) && init);
4504 
4505 	if (flags & EXT4_SYNC_FL)
4506 		new_fl |= S_SYNC;
4507 	if (flags & EXT4_APPEND_FL)
4508 		new_fl |= S_APPEND;
4509 	if (flags & EXT4_IMMUTABLE_FL)
4510 		new_fl |= S_IMMUTABLE;
4511 	if (flags & EXT4_NOATIME_FL)
4512 		new_fl |= S_NOATIME;
4513 	if (flags & EXT4_DIRSYNC_FL)
4514 		new_fl |= S_DIRSYNC;
4515 
4516 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4517 	 * here if already set. */
4518 	new_fl |= (inode->i_flags & S_DAX);
4519 	if (init && ext4_should_enable_dax(inode))
4520 		new_fl |= S_DAX;
4521 
4522 	if (flags & EXT4_ENCRYPT_FL)
4523 		new_fl |= S_ENCRYPTED;
4524 	if (flags & EXT4_CASEFOLD_FL)
4525 		new_fl |= S_CASEFOLD;
4526 	if (flags & EXT4_VERITY_FL)
4527 		new_fl |= S_VERITY;
4528 	inode_set_flags(inode, new_fl,
4529 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4530 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4531 }
4532 
4533 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4534 				  struct ext4_inode_info *ei)
4535 {
4536 	blkcnt_t i_blocks ;
4537 	struct inode *inode = &(ei->vfs_inode);
4538 	struct super_block *sb = inode->i_sb;
4539 
4540 	if (ext4_has_feature_huge_file(sb)) {
4541 		/* we are using combined 48 bit field */
4542 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4543 					le32_to_cpu(raw_inode->i_blocks_lo);
4544 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4545 			/* i_blocks represent file system block size */
4546 			return i_blocks  << (inode->i_blkbits - 9);
4547 		} else {
4548 			return i_blocks;
4549 		}
4550 	} else {
4551 		return le32_to_cpu(raw_inode->i_blocks_lo);
4552 	}
4553 }
4554 
4555 static inline int ext4_iget_extra_inode(struct inode *inode,
4556 					 struct ext4_inode *raw_inode,
4557 					 struct ext4_inode_info *ei)
4558 {
4559 	__le32 *magic = (void *)raw_inode +
4560 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4561 
4562 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4563 	    EXT4_INODE_SIZE(inode->i_sb) &&
4564 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4565 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4566 		return ext4_find_inline_data_nolock(inode);
4567 	} else
4568 		EXT4_I(inode)->i_inline_off = 0;
4569 	return 0;
4570 }
4571 
4572 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4573 {
4574 	if (!ext4_has_feature_project(inode->i_sb))
4575 		return -EOPNOTSUPP;
4576 	*projid = EXT4_I(inode)->i_projid;
4577 	return 0;
4578 }
4579 
4580 /*
4581  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4582  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4583  * set.
4584  */
4585 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4586 {
4587 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4588 		inode_set_iversion_raw(inode, val);
4589 	else
4590 		inode_set_iversion_queried(inode, val);
4591 }
4592 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4593 {
4594 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4595 		return inode_peek_iversion_raw(inode);
4596 	else
4597 		return inode_peek_iversion(inode);
4598 }
4599 
4600 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4601 			  ext4_iget_flags flags, const char *function,
4602 			  unsigned int line)
4603 {
4604 	struct ext4_iloc iloc;
4605 	struct ext4_inode *raw_inode;
4606 	struct ext4_inode_info *ei;
4607 	struct inode *inode;
4608 	journal_t *journal = EXT4_SB(sb)->s_journal;
4609 	long ret;
4610 	loff_t size;
4611 	int block;
4612 	uid_t i_uid;
4613 	gid_t i_gid;
4614 	projid_t i_projid;
4615 
4616 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4617 	     (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4618 	    (ino < EXT4_ROOT_INO) ||
4619 	    (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4620 		if (flags & EXT4_IGET_HANDLE)
4621 			return ERR_PTR(-ESTALE);
4622 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4623 			     "inode #%lu: comm %s: iget: illegal inode #",
4624 			     ino, current->comm);
4625 		return ERR_PTR(-EFSCORRUPTED);
4626 	}
4627 
4628 	inode = iget_locked(sb, ino);
4629 	if (!inode)
4630 		return ERR_PTR(-ENOMEM);
4631 	if (!(inode->i_state & I_NEW))
4632 		return inode;
4633 
4634 	ei = EXT4_I(inode);
4635 	iloc.bh = NULL;
4636 
4637 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4638 	if (ret < 0)
4639 		goto bad_inode;
4640 	raw_inode = ext4_raw_inode(&iloc);
4641 
4642 	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4643 		ext4_error_inode(inode, function, line, 0,
4644 				 "iget: root inode unallocated");
4645 		ret = -EFSCORRUPTED;
4646 		goto bad_inode;
4647 	}
4648 
4649 	if ((flags & EXT4_IGET_HANDLE) &&
4650 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4651 		ret = -ESTALE;
4652 		goto bad_inode;
4653 	}
4654 
4655 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4656 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4657 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4658 			EXT4_INODE_SIZE(inode->i_sb) ||
4659 		    (ei->i_extra_isize & 3)) {
4660 			ext4_error_inode(inode, function, line, 0,
4661 					 "iget: bad extra_isize %u "
4662 					 "(inode size %u)",
4663 					 ei->i_extra_isize,
4664 					 EXT4_INODE_SIZE(inode->i_sb));
4665 			ret = -EFSCORRUPTED;
4666 			goto bad_inode;
4667 		}
4668 	} else
4669 		ei->i_extra_isize = 0;
4670 
4671 	/* Precompute checksum seed for inode metadata */
4672 	if (ext4_has_metadata_csum(sb)) {
4673 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4674 		__u32 csum;
4675 		__le32 inum = cpu_to_le32(inode->i_ino);
4676 		__le32 gen = raw_inode->i_generation;
4677 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4678 				   sizeof(inum));
4679 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4680 					      sizeof(gen));
4681 	}
4682 
4683 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4684 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4685 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4686 		ext4_error_inode_err(inode, function, line, 0,
4687 				EFSBADCRC, "iget: checksum invalid");
4688 		ret = -EFSBADCRC;
4689 		goto bad_inode;
4690 	}
4691 
4692 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4693 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4694 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4695 	if (ext4_has_feature_project(sb) &&
4696 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4697 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4698 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4699 	else
4700 		i_projid = EXT4_DEF_PROJID;
4701 
4702 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4703 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4704 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4705 	}
4706 	i_uid_write(inode, i_uid);
4707 	i_gid_write(inode, i_gid);
4708 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4709 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4710 
4711 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4712 	ei->i_inline_off = 0;
4713 	ei->i_dir_start_lookup = 0;
4714 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4715 	/* We now have enough fields to check if the inode was active or not.
4716 	 * This is needed because nfsd might try to access dead inodes
4717 	 * the test is that same one that e2fsck uses
4718 	 * NeilBrown 1999oct15
4719 	 */
4720 	if (inode->i_nlink == 0) {
4721 		if ((inode->i_mode == 0 ||
4722 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4723 		    ino != EXT4_BOOT_LOADER_INO) {
4724 			/* this inode is deleted */
4725 			ret = -ESTALE;
4726 			goto bad_inode;
4727 		}
4728 		/* The only unlinked inodes we let through here have
4729 		 * valid i_mode and are being read by the orphan
4730 		 * recovery code: that's fine, we're about to complete
4731 		 * the process of deleting those.
4732 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4733 		 * not initialized on a new filesystem. */
4734 	}
4735 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4736 	ext4_set_inode_flags(inode, true);
4737 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4738 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4739 	if (ext4_has_feature_64bit(sb))
4740 		ei->i_file_acl |=
4741 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4742 	inode->i_size = ext4_isize(sb, raw_inode);
4743 	if ((size = i_size_read(inode)) < 0) {
4744 		ext4_error_inode(inode, function, line, 0,
4745 				 "iget: bad i_size value: %lld", size);
4746 		ret = -EFSCORRUPTED;
4747 		goto bad_inode;
4748 	}
4749 	/*
4750 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4751 	 * we'd normally treat htree data as empty space. But with metadata
4752 	 * checksumming that corrupts checksums so forbid that.
4753 	 */
4754 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4755 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4756 		ext4_error_inode(inode, function, line, 0,
4757 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4758 		ret = -EFSCORRUPTED;
4759 		goto bad_inode;
4760 	}
4761 	ei->i_disksize = inode->i_size;
4762 #ifdef CONFIG_QUOTA
4763 	ei->i_reserved_quota = 0;
4764 #endif
4765 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4766 	ei->i_block_group = iloc.block_group;
4767 	ei->i_last_alloc_group = ~0;
4768 	/*
4769 	 * NOTE! The in-memory inode i_data array is in little-endian order
4770 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4771 	 */
4772 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4773 		ei->i_data[block] = raw_inode->i_block[block];
4774 	INIT_LIST_HEAD(&ei->i_orphan);
4775 	ext4_fc_init_inode(&ei->vfs_inode);
4776 
4777 	/*
4778 	 * Set transaction id's of transactions that have to be committed
4779 	 * to finish f[data]sync. We set them to currently running transaction
4780 	 * as we cannot be sure that the inode or some of its metadata isn't
4781 	 * part of the transaction - the inode could have been reclaimed and
4782 	 * now it is reread from disk.
4783 	 */
4784 	if (journal) {
4785 		transaction_t *transaction;
4786 		tid_t tid;
4787 
4788 		read_lock(&journal->j_state_lock);
4789 		if (journal->j_running_transaction)
4790 			transaction = journal->j_running_transaction;
4791 		else
4792 			transaction = journal->j_committing_transaction;
4793 		if (transaction)
4794 			tid = transaction->t_tid;
4795 		else
4796 			tid = journal->j_commit_sequence;
4797 		read_unlock(&journal->j_state_lock);
4798 		ei->i_sync_tid = tid;
4799 		ei->i_datasync_tid = tid;
4800 	}
4801 
4802 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4803 		if (ei->i_extra_isize == 0) {
4804 			/* The extra space is currently unused. Use it. */
4805 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4806 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4807 					    EXT4_GOOD_OLD_INODE_SIZE;
4808 		} else {
4809 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4810 			if (ret)
4811 				goto bad_inode;
4812 		}
4813 	}
4814 
4815 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4816 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4817 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4818 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4819 
4820 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4821 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4822 
4823 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4824 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4825 				ivers |=
4826 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4827 		}
4828 		ext4_inode_set_iversion_queried(inode, ivers);
4829 	}
4830 
4831 	ret = 0;
4832 	if (ei->i_file_acl &&
4833 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4834 		ext4_error_inode(inode, function, line, 0,
4835 				 "iget: bad extended attribute block %llu",
4836 				 ei->i_file_acl);
4837 		ret = -EFSCORRUPTED;
4838 		goto bad_inode;
4839 	} else if (!ext4_has_inline_data(inode)) {
4840 		/* validate the block references in the inode */
4841 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4842 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4843 			(S_ISLNK(inode->i_mode) &&
4844 			!ext4_inode_is_fast_symlink(inode)))) {
4845 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4846 				ret = ext4_ext_check_inode(inode);
4847 			else
4848 				ret = ext4_ind_check_inode(inode);
4849 		}
4850 	}
4851 	if (ret)
4852 		goto bad_inode;
4853 
4854 	if (S_ISREG(inode->i_mode)) {
4855 		inode->i_op = &ext4_file_inode_operations;
4856 		inode->i_fop = &ext4_file_operations;
4857 		ext4_set_aops(inode);
4858 	} else if (S_ISDIR(inode->i_mode)) {
4859 		inode->i_op = &ext4_dir_inode_operations;
4860 		inode->i_fop = &ext4_dir_operations;
4861 	} else if (S_ISLNK(inode->i_mode)) {
4862 		/* VFS does not allow setting these so must be corruption */
4863 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4864 			ext4_error_inode(inode, function, line, 0,
4865 					 "iget: immutable or append flags "
4866 					 "not allowed on symlinks");
4867 			ret = -EFSCORRUPTED;
4868 			goto bad_inode;
4869 		}
4870 		if (IS_ENCRYPTED(inode)) {
4871 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4872 			ext4_set_aops(inode);
4873 		} else if (ext4_inode_is_fast_symlink(inode)) {
4874 			inode->i_link = (char *)ei->i_data;
4875 			inode->i_op = &ext4_fast_symlink_inode_operations;
4876 			nd_terminate_link(ei->i_data, inode->i_size,
4877 				sizeof(ei->i_data) - 1);
4878 		} else {
4879 			inode->i_op = &ext4_symlink_inode_operations;
4880 			ext4_set_aops(inode);
4881 		}
4882 		inode_nohighmem(inode);
4883 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4884 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4885 		inode->i_op = &ext4_special_inode_operations;
4886 		if (raw_inode->i_block[0])
4887 			init_special_inode(inode, inode->i_mode,
4888 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4889 		else
4890 			init_special_inode(inode, inode->i_mode,
4891 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4892 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4893 		make_bad_inode(inode);
4894 	} else {
4895 		ret = -EFSCORRUPTED;
4896 		ext4_error_inode(inode, function, line, 0,
4897 				 "iget: bogus i_mode (%o)", inode->i_mode);
4898 		goto bad_inode;
4899 	}
4900 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4901 		ext4_error_inode(inode, function, line, 0,
4902 				 "casefold flag without casefold feature");
4903 	brelse(iloc.bh);
4904 
4905 	unlock_new_inode(inode);
4906 	return inode;
4907 
4908 bad_inode:
4909 	brelse(iloc.bh);
4910 	iget_failed(inode);
4911 	return ERR_PTR(ret);
4912 }
4913 
4914 static int ext4_inode_blocks_set(handle_t *handle,
4915 				struct ext4_inode *raw_inode,
4916 				struct ext4_inode_info *ei)
4917 {
4918 	struct inode *inode = &(ei->vfs_inode);
4919 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4920 	struct super_block *sb = inode->i_sb;
4921 
4922 	if (i_blocks <= ~0U) {
4923 		/*
4924 		 * i_blocks can be represented in a 32 bit variable
4925 		 * as multiple of 512 bytes
4926 		 */
4927 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4928 		raw_inode->i_blocks_high = 0;
4929 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4930 		return 0;
4931 	}
4932 	if (!ext4_has_feature_huge_file(sb))
4933 		return -EFBIG;
4934 
4935 	if (i_blocks <= 0xffffffffffffULL) {
4936 		/*
4937 		 * i_blocks can be represented in a 48 bit variable
4938 		 * as multiple of 512 bytes
4939 		 */
4940 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4941 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4942 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4943 	} else {
4944 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4945 		/* i_block is stored in file system block size */
4946 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4947 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4948 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4949 	}
4950 	return 0;
4951 }
4952 
4953 static void __ext4_update_other_inode_time(struct super_block *sb,
4954 					   unsigned long orig_ino,
4955 					   unsigned long ino,
4956 					   struct ext4_inode *raw_inode)
4957 {
4958 	struct inode *inode;
4959 
4960 	inode = find_inode_by_ino_rcu(sb, ino);
4961 	if (!inode)
4962 		return;
4963 
4964 	if ((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4965 			       I_DIRTY_INODE)) ||
4966 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4967 		return;
4968 
4969 	spin_lock(&inode->i_lock);
4970 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4971 				I_DIRTY_INODE)) == 0) &&
4972 	    (inode->i_state & I_DIRTY_TIME)) {
4973 		struct ext4_inode_info	*ei = EXT4_I(inode);
4974 
4975 		inode->i_state &= ~I_DIRTY_TIME;
4976 		spin_unlock(&inode->i_lock);
4977 
4978 		spin_lock(&ei->i_raw_lock);
4979 		EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4980 		EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4981 		EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4982 		ext4_inode_csum_set(inode, raw_inode, ei);
4983 		spin_unlock(&ei->i_raw_lock);
4984 		trace_ext4_other_inode_update_time(inode, orig_ino);
4985 		return;
4986 	}
4987 	spin_unlock(&inode->i_lock);
4988 }
4989 
4990 /*
4991  * Opportunistically update the other time fields for other inodes in
4992  * the same inode table block.
4993  */
4994 static void ext4_update_other_inodes_time(struct super_block *sb,
4995 					  unsigned long orig_ino, char *buf)
4996 {
4997 	unsigned long ino;
4998 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4999 	int inode_size = EXT4_INODE_SIZE(sb);
5000 
5001 	/*
5002 	 * Calculate the first inode in the inode table block.  Inode
5003 	 * numbers are one-based.  That is, the first inode in a block
5004 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5005 	 */
5006 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5007 	rcu_read_lock();
5008 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5009 		if (ino == orig_ino)
5010 			continue;
5011 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5012 					       (struct ext4_inode *)buf);
5013 	}
5014 	rcu_read_unlock();
5015 }
5016 
5017 /*
5018  * Post the struct inode info into an on-disk inode location in the
5019  * buffer-cache.  This gobbles the caller's reference to the
5020  * buffer_head in the inode location struct.
5021  *
5022  * The caller must have write access to iloc->bh.
5023  */
5024 static int ext4_do_update_inode(handle_t *handle,
5025 				struct inode *inode,
5026 				struct ext4_iloc *iloc)
5027 {
5028 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5029 	struct ext4_inode_info *ei = EXT4_I(inode);
5030 	struct buffer_head *bh = iloc->bh;
5031 	struct super_block *sb = inode->i_sb;
5032 	int err = 0, rc, block;
5033 	int need_datasync = 0, set_large_file = 0;
5034 	uid_t i_uid;
5035 	gid_t i_gid;
5036 	projid_t i_projid;
5037 
5038 	spin_lock(&ei->i_raw_lock);
5039 
5040 	/* For fields not tracked in the in-memory inode,
5041 	 * initialise them to zero for new inodes. */
5042 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5043 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5044 
5045 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
5046 	if (err) {
5047 		spin_unlock(&ei->i_raw_lock);
5048 		goto out_brelse;
5049 	}
5050 
5051 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5052 	i_uid = i_uid_read(inode);
5053 	i_gid = i_gid_read(inode);
5054 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5055 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5056 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5057 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5058 /*
5059  * Fix up interoperability with old kernels. Otherwise, old inodes get
5060  * re-used with the upper 16 bits of the uid/gid intact
5061  */
5062 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5063 			raw_inode->i_uid_high = 0;
5064 			raw_inode->i_gid_high = 0;
5065 		} else {
5066 			raw_inode->i_uid_high =
5067 				cpu_to_le16(high_16_bits(i_uid));
5068 			raw_inode->i_gid_high =
5069 				cpu_to_le16(high_16_bits(i_gid));
5070 		}
5071 	} else {
5072 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5073 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5074 		raw_inode->i_uid_high = 0;
5075 		raw_inode->i_gid_high = 0;
5076 	}
5077 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5078 
5079 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5080 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5081 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5082 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5083 
5084 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5085 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5086 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5087 		raw_inode->i_file_acl_high =
5088 			cpu_to_le16(ei->i_file_acl >> 32);
5089 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5090 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5091 		ext4_isize_set(raw_inode, ei->i_disksize);
5092 		need_datasync = 1;
5093 	}
5094 	if (ei->i_disksize > 0x7fffffffULL) {
5095 		if (!ext4_has_feature_large_file(sb) ||
5096 				EXT4_SB(sb)->s_es->s_rev_level ==
5097 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5098 			set_large_file = 1;
5099 	}
5100 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5101 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5102 		if (old_valid_dev(inode->i_rdev)) {
5103 			raw_inode->i_block[0] =
5104 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5105 			raw_inode->i_block[1] = 0;
5106 		} else {
5107 			raw_inode->i_block[0] = 0;
5108 			raw_inode->i_block[1] =
5109 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5110 			raw_inode->i_block[2] = 0;
5111 		}
5112 	} else if (!ext4_has_inline_data(inode)) {
5113 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5114 			raw_inode->i_block[block] = ei->i_data[block];
5115 	}
5116 
5117 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5118 		u64 ivers = ext4_inode_peek_iversion(inode);
5119 
5120 		raw_inode->i_disk_version = cpu_to_le32(ivers);
5121 		if (ei->i_extra_isize) {
5122 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5123 				raw_inode->i_version_hi =
5124 					cpu_to_le32(ivers >> 32);
5125 			raw_inode->i_extra_isize =
5126 				cpu_to_le16(ei->i_extra_isize);
5127 		}
5128 	}
5129 
5130 	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5131 	       i_projid != EXT4_DEF_PROJID);
5132 
5133 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5134 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5135 		raw_inode->i_projid = cpu_to_le32(i_projid);
5136 
5137 	ext4_inode_csum_set(inode, raw_inode, ei);
5138 	spin_unlock(&ei->i_raw_lock);
5139 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5140 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5141 					      bh->b_data);
5142 
5143 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5144 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5145 	if (!err)
5146 		err = rc;
5147 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5148 	if (set_large_file) {
5149 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5150 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5151 		if (err)
5152 			goto out_brelse;
5153 		ext4_set_feature_large_file(sb);
5154 		ext4_handle_sync(handle);
5155 		err = ext4_handle_dirty_super(handle, sb);
5156 	}
5157 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5158 out_brelse:
5159 	brelse(bh);
5160 	ext4_std_error(inode->i_sb, err);
5161 	return err;
5162 }
5163 
5164 /*
5165  * ext4_write_inode()
5166  *
5167  * We are called from a few places:
5168  *
5169  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5170  *   Here, there will be no transaction running. We wait for any running
5171  *   transaction to commit.
5172  *
5173  * - Within flush work (sys_sync(), kupdate and such).
5174  *   We wait on commit, if told to.
5175  *
5176  * - Within iput_final() -> write_inode_now()
5177  *   We wait on commit, if told to.
5178  *
5179  * In all cases it is actually safe for us to return without doing anything,
5180  * because the inode has been copied into a raw inode buffer in
5181  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5182  * writeback.
5183  *
5184  * Note that we are absolutely dependent upon all inode dirtiers doing the
5185  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5186  * which we are interested.
5187  *
5188  * It would be a bug for them to not do this.  The code:
5189  *
5190  *	mark_inode_dirty(inode)
5191  *	stuff();
5192  *	inode->i_size = expr;
5193  *
5194  * is in error because write_inode() could occur while `stuff()' is running,
5195  * and the new i_size will be lost.  Plus the inode will no longer be on the
5196  * superblock's dirty inode list.
5197  */
5198 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5199 {
5200 	int err;
5201 
5202 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5203 	    sb_rdonly(inode->i_sb))
5204 		return 0;
5205 
5206 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5207 		return -EIO;
5208 
5209 	if (EXT4_SB(inode->i_sb)->s_journal) {
5210 		if (ext4_journal_current_handle()) {
5211 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5212 			dump_stack();
5213 			return -EIO;
5214 		}
5215 
5216 		/*
5217 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5218 		 * ext4_sync_fs() will force the commit after everything is
5219 		 * written.
5220 		 */
5221 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5222 			return 0;
5223 
5224 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5225 						EXT4_I(inode)->i_sync_tid);
5226 	} else {
5227 		struct ext4_iloc iloc;
5228 
5229 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5230 		if (err)
5231 			return err;
5232 		/*
5233 		 * sync(2) will flush the whole buffer cache. No need to do
5234 		 * it here separately for each inode.
5235 		 */
5236 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5237 			sync_dirty_buffer(iloc.bh);
5238 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5239 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5240 					       "IO error syncing inode");
5241 			err = -EIO;
5242 		}
5243 		brelse(iloc.bh);
5244 	}
5245 	return err;
5246 }
5247 
5248 /*
5249  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5250  * buffers that are attached to a page stradding i_size and are undergoing
5251  * commit. In that case we have to wait for commit to finish and try again.
5252  */
5253 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5254 {
5255 	struct page *page;
5256 	unsigned offset;
5257 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5258 	tid_t commit_tid = 0;
5259 	int ret;
5260 
5261 	offset = inode->i_size & (PAGE_SIZE - 1);
5262 	/*
5263 	 * If the page is fully truncated, we don't need to wait for any commit
5264 	 * (and we even should not as __ext4_journalled_invalidatepage() may
5265 	 * strip all buffers from the page but keep the page dirty which can then
5266 	 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5267 	 * buffers). Also we don't need to wait for any commit if all buffers in
5268 	 * the page remain valid. This is most beneficial for the common case of
5269 	 * blocksize == PAGESIZE.
5270 	 */
5271 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5272 		return;
5273 	while (1) {
5274 		page = find_lock_page(inode->i_mapping,
5275 				      inode->i_size >> PAGE_SHIFT);
5276 		if (!page)
5277 			return;
5278 		ret = __ext4_journalled_invalidatepage(page, offset,
5279 						PAGE_SIZE - offset);
5280 		unlock_page(page);
5281 		put_page(page);
5282 		if (ret != -EBUSY)
5283 			return;
5284 		commit_tid = 0;
5285 		read_lock(&journal->j_state_lock);
5286 		if (journal->j_committing_transaction)
5287 			commit_tid = journal->j_committing_transaction->t_tid;
5288 		read_unlock(&journal->j_state_lock);
5289 		if (commit_tid)
5290 			jbd2_log_wait_commit(journal, commit_tid);
5291 	}
5292 }
5293 
5294 /*
5295  * ext4_setattr()
5296  *
5297  * Called from notify_change.
5298  *
5299  * We want to trap VFS attempts to truncate the file as soon as
5300  * possible.  In particular, we want to make sure that when the VFS
5301  * shrinks i_size, we put the inode on the orphan list and modify
5302  * i_disksize immediately, so that during the subsequent flushing of
5303  * dirty pages and freeing of disk blocks, we can guarantee that any
5304  * commit will leave the blocks being flushed in an unused state on
5305  * disk.  (On recovery, the inode will get truncated and the blocks will
5306  * be freed, so we have a strong guarantee that no future commit will
5307  * leave these blocks visible to the user.)
5308  *
5309  * Another thing we have to assure is that if we are in ordered mode
5310  * and inode is still attached to the committing transaction, we must
5311  * we start writeout of all the dirty pages which are being truncated.
5312  * This way we are sure that all the data written in the previous
5313  * transaction are already on disk (truncate waits for pages under
5314  * writeback).
5315  *
5316  * Called with inode->i_mutex down.
5317  */
5318 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5319 {
5320 	struct inode *inode = d_inode(dentry);
5321 	int error, rc = 0;
5322 	int orphan = 0;
5323 	const unsigned int ia_valid = attr->ia_valid;
5324 
5325 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5326 		return -EIO;
5327 
5328 	if (unlikely(IS_IMMUTABLE(inode)))
5329 		return -EPERM;
5330 
5331 	if (unlikely(IS_APPEND(inode) &&
5332 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5333 				  ATTR_GID | ATTR_TIMES_SET))))
5334 		return -EPERM;
5335 
5336 	error = setattr_prepare(dentry, attr);
5337 	if (error)
5338 		return error;
5339 
5340 	error = fscrypt_prepare_setattr(dentry, attr);
5341 	if (error)
5342 		return error;
5343 
5344 	error = fsverity_prepare_setattr(dentry, attr);
5345 	if (error)
5346 		return error;
5347 
5348 	if (is_quota_modification(inode, attr)) {
5349 		error = dquot_initialize(inode);
5350 		if (error)
5351 			return error;
5352 	}
5353 	ext4_fc_start_update(inode);
5354 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5355 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5356 		handle_t *handle;
5357 
5358 		/* (user+group)*(old+new) structure, inode write (sb,
5359 		 * inode block, ? - but truncate inode update has it) */
5360 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5361 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5362 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5363 		if (IS_ERR(handle)) {
5364 			error = PTR_ERR(handle);
5365 			goto err_out;
5366 		}
5367 
5368 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5369 		 * counts xattr inode references.
5370 		 */
5371 		down_read(&EXT4_I(inode)->xattr_sem);
5372 		error = dquot_transfer(inode, attr);
5373 		up_read(&EXT4_I(inode)->xattr_sem);
5374 
5375 		if (error) {
5376 			ext4_journal_stop(handle);
5377 			ext4_fc_stop_update(inode);
5378 			return error;
5379 		}
5380 		/* Update corresponding info in inode so that everything is in
5381 		 * one transaction */
5382 		if (attr->ia_valid & ATTR_UID)
5383 			inode->i_uid = attr->ia_uid;
5384 		if (attr->ia_valid & ATTR_GID)
5385 			inode->i_gid = attr->ia_gid;
5386 		error = ext4_mark_inode_dirty(handle, inode);
5387 		ext4_journal_stop(handle);
5388 		if (unlikely(error))
5389 			return error;
5390 	}
5391 
5392 	if (attr->ia_valid & ATTR_SIZE) {
5393 		handle_t *handle;
5394 		loff_t oldsize = inode->i_size;
5395 		int shrink = (attr->ia_size < inode->i_size);
5396 
5397 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5398 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5399 
5400 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5401 				ext4_fc_stop_update(inode);
5402 				return -EFBIG;
5403 			}
5404 		}
5405 		if (!S_ISREG(inode->i_mode)) {
5406 			ext4_fc_stop_update(inode);
5407 			return -EINVAL;
5408 		}
5409 
5410 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5411 			inode_inc_iversion(inode);
5412 
5413 		if (shrink) {
5414 			if (ext4_should_order_data(inode)) {
5415 				error = ext4_begin_ordered_truncate(inode,
5416 							    attr->ia_size);
5417 				if (error)
5418 					goto err_out;
5419 			}
5420 			/*
5421 			 * Blocks are going to be removed from the inode. Wait
5422 			 * for dio in flight.
5423 			 */
5424 			inode_dio_wait(inode);
5425 		}
5426 
5427 		down_write(&EXT4_I(inode)->i_mmap_sem);
5428 
5429 		rc = ext4_break_layouts(inode);
5430 		if (rc) {
5431 			up_write(&EXT4_I(inode)->i_mmap_sem);
5432 			goto err_out;
5433 		}
5434 
5435 		if (attr->ia_size != inode->i_size) {
5436 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5437 			if (IS_ERR(handle)) {
5438 				error = PTR_ERR(handle);
5439 				goto out_mmap_sem;
5440 			}
5441 			if (ext4_handle_valid(handle) && shrink) {
5442 				error = ext4_orphan_add(handle, inode);
5443 				orphan = 1;
5444 			}
5445 			/*
5446 			 * Update c/mtime on truncate up, ext4_truncate() will
5447 			 * update c/mtime in shrink case below
5448 			 */
5449 			if (!shrink) {
5450 				inode->i_mtime = current_time(inode);
5451 				inode->i_ctime = inode->i_mtime;
5452 			}
5453 
5454 			if (shrink)
5455 				ext4_fc_track_range(handle, inode,
5456 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5457 					inode->i_sb->s_blocksize_bits,
5458 					(oldsize > 0 ? oldsize - 1 : 0) >>
5459 					inode->i_sb->s_blocksize_bits);
5460 			else
5461 				ext4_fc_track_range(
5462 					handle, inode,
5463 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5464 					inode->i_sb->s_blocksize_bits,
5465 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5466 					inode->i_sb->s_blocksize_bits);
5467 
5468 			down_write(&EXT4_I(inode)->i_data_sem);
5469 			EXT4_I(inode)->i_disksize = attr->ia_size;
5470 			rc = ext4_mark_inode_dirty(handle, inode);
5471 			if (!error)
5472 				error = rc;
5473 			/*
5474 			 * We have to update i_size under i_data_sem together
5475 			 * with i_disksize to avoid races with writeback code
5476 			 * running ext4_wb_update_i_disksize().
5477 			 */
5478 			if (!error)
5479 				i_size_write(inode, attr->ia_size);
5480 			up_write(&EXT4_I(inode)->i_data_sem);
5481 			ext4_journal_stop(handle);
5482 			if (error)
5483 				goto out_mmap_sem;
5484 			if (!shrink) {
5485 				pagecache_isize_extended(inode, oldsize,
5486 							 inode->i_size);
5487 			} else if (ext4_should_journal_data(inode)) {
5488 				ext4_wait_for_tail_page_commit(inode);
5489 			}
5490 		}
5491 
5492 		/*
5493 		 * Truncate pagecache after we've waited for commit
5494 		 * in data=journal mode to make pages freeable.
5495 		 */
5496 		truncate_pagecache(inode, inode->i_size);
5497 		/*
5498 		 * Call ext4_truncate() even if i_size didn't change to
5499 		 * truncate possible preallocated blocks.
5500 		 */
5501 		if (attr->ia_size <= oldsize) {
5502 			rc = ext4_truncate(inode);
5503 			if (rc)
5504 				error = rc;
5505 		}
5506 out_mmap_sem:
5507 		up_write(&EXT4_I(inode)->i_mmap_sem);
5508 	}
5509 
5510 	if (!error) {
5511 		setattr_copy(inode, attr);
5512 		mark_inode_dirty(inode);
5513 	}
5514 
5515 	/*
5516 	 * If the call to ext4_truncate failed to get a transaction handle at
5517 	 * all, we need to clean up the in-core orphan list manually.
5518 	 */
5519 	if (orphan && inode->i_nlink)
5520 		ext4_orphan_del(NULL, inode);
5521 
5522 	if (!error && (ia_valid & ATTR_MODE))
5523 		rc = posix_acl_chmod(inode, inode->i_mode);
5524 
5525 err_out:
5526 	if  (error)
5527 		ext4_std_error(inode->i_sb, error);
5528 	if (!error)
5529 		error = rc;
5530 	ext4_fc_stop_update(inode);
5531 	return error;
5532 }
5533 
5534 int ext4_getattr(const struct path *path, struct kstat *stat,
5535 		 u32 request_mask, unsigned int query_flags)
5536 {
5537 	struct inode *inode = d_inode(path->dentry);
5538 	struct ext4_inode *raw_inode;
5539 	struct ext4_inode_info *ei = EXT4_I(inode);
5540 	unsigned int flags;
5541 
5542 	if ((request_mask & STATX_BTIME) &&
5543 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5544 		stat->result_mask |= STATX_BTIME;
5545 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5546 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5547 	}
5548 
5549 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5550 	if (flags & EXT4_APPEND_FL)
5551 		stat->attributes |= STATX_ATTR_APPEND;
5552 	if (flags & EXT4_COMPR_FL)
5553 		stat->attributes |= STATX_ATTR_COMPRESSED;
5554 	if (flags & EXT4_ENCRYPT_FL)
5555 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5556 	if (flags & EXT4_IMMUTABLE_FL)
5557 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5558 	if (flags & EXT4_NODUMP_FL)
5559 		stat->attributes |= STATX_ATTR_NODUMP;
5560 	if (flags & EXT4_VERITY_FL)
5561 		stat->attributes |= STATX_ATTR_VERITY;
5562 
5563 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5564 				  STATX_ATTR_COMPRESSED |
5565 				  STATX_ATTR_ENCRYPTED |
5566 				  STATX_ATTR_IMMUTABLE |
5567 				  STATX_ATTR_NODUMP |
5568 				  STATX_ATTR_VERITY);
5569 
5570 	generic_fillattr(inode, stat);
5571 	return 0;
5572 }
5573 
5574 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5575 		      u32 request_mask, unsigned int query_flags)
5576 {
5577 	struct inode *inode = d_inode(path->dentry);
5578 	u64 delalloc_blocks;
5579 
5580 	ext4_getattr(path, stat, request_mask, query_flags);
5581 
5582 	/*
5583 	 * If there is inline data in the inode, the inode will normally not
5584 	 * have data blocks allocated (it may have an external xattr block).
5585 	 * Report at least one sector for such files, so tools like tar, rsync,
5586 	 * others don't incorrectly think the file is completely sparse.
5587 	 */
5588 	if (unlikely(ext4_has_inline_data(inode)))
5589 		stat->blocks += (stat->size + 511) >> 9;
5590 
5591 	/*
5592 	 * We can't update i_blocks if the block allocation is delayed
5593 	 * otherwise in the case of system crash before the real block
5594 	 * allocation is done, we will have i_blocks inconsistent with
5595 	 * on-disk file blocks.
5596 	 * We always keep i_blocks updated together with real
5597 	 * allocation. But to not confuse with user, stat
5598 	 * will return the blocks that include the delayed allocation
5599 	 * blocks for this file.
5600 	 */
5601 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5602 				   EXT4_I(inode)->i_reserved_data_blocks);
5603 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5604 	return 0;
5605 }
5606 
5607 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5608 				   int pextents)
5609 {
5610 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5611 		return ext4_ind_trans_blocks(inode, lblocks);
5612 	return ext4_ext_index_trans_blocks(inode, pextents);
5613 }
5614 
5615 /*
5616  * Account for index blocks, block groups bitmaps and block group
5617  * descriptor blocks if modify datablocks and index blocks
5618  * worse case, the indexs blocks spread over different block groups
5619  *
5620  * If datablocks are discontiguous, they are possible to spread over
5621  * different block groups too. If they are contiguous, with flexbg,
5622  * they could still across block group boundary.
5623  *
5624  * Also account for superblock, inode, quota and xattr blocks
5625  */
5626 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5627 				  int pextents)
5628 {
5629 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5630 	int gdpblocks;
5631 	int idxblocks;
5632 	int ret = 0;
5633 
5634 	/*
5635 	 * How many index blocks need to touch to map @lblocks logical blocks
5636 	 * to @pextents physical extents?
5637 	 */
5638 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5639 
5640 	ret = idxblocks;
5641 
5642 	/*
5643 	 * Now let's see how many group bitmaps and group descriptors need
5644 	 * to account
5645 	 */
5646 	groups = idxblocks + pextents;
5647 	gdpblocks = groups;
5648 	if (groups > ngroups)
5649 		groups = ngroups;
5650 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5651 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5652 
5653 	/* bitmaps and block group descriptor blocks */
5654 	ret += groups + gdpblocks;
5655 
5656 	/* Blocks for super block, inode, quota and xattr blocks */
5657 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5658 
5659 	return ret;
5660 }
5661 
5662 /*
5663  * Calculate the total number of credits to reserve to fit
5664  * the modification of a single pages into a single transaction,
5665  * which may include multiple chunks of block allocations.
5666  *
5667  * This could be called via ext4_write_begin()
5668  *
5669  * We need to consider the worse case, when
5670  * one new block per extent.
5671  */
5672 int ext4_writepage_trans_blocks(struct inode *inode)
5673 {
5674 	int bpp = ext4_journal_blocks_per_page(inode);
5675 	int ret;
5676 
5677 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5678 
5679 	/* Account for data blocks for journalled mode */
5680 	if (ext4_should_journal_data(inode))
5681 		ret += bpp;
5682 	return ret;
5683 }
5684 
5685 /*
5686  * Calculate the journal credits for a chunk of data modification.
5687  *
5688  * This is called from DIO, fallocate or whoever calling
5689  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5690  *
5691  * journal buffers for data blocks are not included here, as DIO
5692  * and fallocate do no need to journal data buffers.
5693  */
5694 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5695 {
5696 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5697 }
5698 
5699 /*
5700  * The caller must have previously called ext4_reserve_inode_write().
5701  * Give this, we know that the caller already has write access to iloc->bh.
5702  */
5703 int ext4_mark_iloc_dirty(handle_t *handle,
5704 			 struct inode *inode, struct ext4_iloc *iloc)
5705 {
5706 	int err = 0;
5707 
5708 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5709 		put_bh(iloc->bh);
5710 		return -EIO;
5711 	}
5712 	ext4_fc_track_inode(handle, inode);
5713 
5714 	if (IS_I_VERSION(inode))
5715 		inode_inc_iversion(inode);
5716 
5717 	/* the do_update_inode consumes one bh->b_count */
5718 	get_bh(iloc->bh);
5719 
5720 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5721 	err = ext4_do_update_inode(handle, inode, iloc);
5722 	put_bh(iloc->bh);
5723 	return err;
5724 }
5725 
5726 /*
5727  * On success, We end up with an outstanding reference count against
5728  * iloc->bh.  This _must_ be cleaned up later.
5729  */
5730 
5731 int
5732 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5733 			 struct ext4_iloc *iloc)
5734 {
5735 	int err;
5736 
5737 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5738 		return -EIO;
5739 
5740 	err = ext4_get_inode_loc(inode, iloc);
5741 	if (!err) {
5742 		BUFFER_TRACE(iloc->bh, "get_write_access");
5743 		err = ext4_journal_get_write_access(handle, iloc->bh);
5744 		if (err) {
5745 			brelse(iloc->bh);
5746 			iloc->bh = NULL;
5747 		}
5748 	}
5749 	ext4_std_error(inode->i_sb, err);
5750 	return err;
5751 }
5752 
5753 static int __ext4_expand_extra_isize(struct inode *inode,
5754 				     unsigned int new_extra_isize,
5755 				     struct ext4_iloc *iloc,
5756 				     handle_t *handle, int *no_expand)
5757 {
5758 	struct ext4_inode *raw_inode;
5759 	struct ext4_xattr_ibody_header *header;
5760 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5761 	struct ext4_inode_info *ei = EXT4_I(inode);
5762 	int error;
5763 
5764 	/* this was checked at iget time, but double check for good measure */
5765 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5766 	    (ei->i_extra_isize & 3)) {
5767 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5768 				 ei->i_extra_isize,
5769 				 EXT4_INODE_SIZE(inode->i_sb));
5770 		return -EFSCORRUPTED;
5771 	}
5772 	if ((new_extra_isize < ei->i_extra_isize) ||
5773 	    (new_extra_isize < 4) ||
5774 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5775 		return -EINVAL;	/* Should never happen */
5776 
5777 	raw_inode = ext4_raw_inode(iloc);
5778 
5779 	header = IHDR(inode, raw_inode);
5780 
5781 	/* No extended attributes present */
5782 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5783 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5784 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5785 		       EXT4_I(inode)->i_extra_isize, 0,
5786 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5787 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5788 		return 0;
5789 	}
5790 
5791 	/* try to expand with EAs present */
5792 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5793 					   raw_inode, handle);
5794 	if (error) {
5795 		/*
5796 		 * Inode size expansion failed; don't try again
5797 		 */
5798 		*no_expand = 1;
5799 	}
5800 
5801 	return error;
5802 }
5803 
5804 /*
5805  * Expand an inode by new_extra_isize bytes.
5806  * Returns 0 on success or negative error number on failure.
5807  */
5808 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5809 					  unsigned int new_extra_isize,
5810 					  struct ext4_iloc iloc,
5811 					  handle_t *handle)
5812 {
5813 	int no_expand;
5814 	int error;
5815 
5816 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5817 		return -EOVERFLOW;
5818 
5819 	/*
5820 	 * In nojournal mode, we can immediately attempt to expand
5821 	 * the inode.  When journaled, we first need to obtain extra
5822 	 * buffer credits since we may write into the EA block
5823 	 * with this same handle. If journal_extend fails, then it will
5824 	 * only result in a minor loss of functionality for that inode.
5825 	 * If this is felt to be critical, then e2fsck should be run to
5826 	 * force a large enough s_min_extra_isize.
5827 	 */
5828 	if (ext4_journal_extend(handle,
5829 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5830 		return -ENOSPC;
5831 
5832 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5833 		return -EBUSY;
5834 
5835 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5836 					  handle, &no_expand);
5837 	ext4_write_unlock_xattr(inode, &no_expand);
5838 
5839 	return error;
5840 }
5841 
5842 int ext4_expand_extra_isize(struct inode *inode,
5843 			    unsigned int new_extra_isize,
5844 			    struct ext4_iloc *iloc)
5845 {
5846 	handle_t *handle;
5847 	int no_expand;
5848 	int error, rc;
5849 
5850 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5851 		brelse(iloc->bh);
5852 		return -EOVERFLOW;
5853 	}
5854 
5855 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5856 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5857 	if (IS_ERR(handle)) {
5858 		error = PTR_ERR(handle);
5859 		brelse(iloc->bh);
5860 		return error;
5861 	}
5862 
5863 	ext4_write_lock_xattr(inode, &no_expand);
5864 
5865 	BUFFER_TRACE(iloc->bh, "get_write_access");
5866 	error = ext4_journal_get_write_access(handle, iloc->bh);
5867 	if (error) {
5868 		brelse(iloc->bh);
5869 		goto out_unlock;
5870 	}
5871 
5872 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5873 					  handle, &no_expand);
5874 
5875 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5876 	if (!error)
5877 		error = rc;
5878 
5879 out_unlock:
5880 	ext4_write_unlock_xattr(inode, &no_expand);
5881 	ext4_journal_stop(handle);
5882 	return error;
5883 }
5884 
5885 /*
5886  * What we do here is to mark the in-core inode as clean with respect to inode
5887  * dirtiness (it may still be data-dirty).
5888  * This means that the in-core inode may be reaped by prune_icache
5889  * without having to perform any I/O.  This is a very good thing,
5890  * because *any* task may call prune_icache - even ones which
5891  * have a transaction open against a different journal.
5892  *
5893  * Is this cheating?  Not really.  Sure, we haven't written the
5894  * inode out, but prune_icache isn't a user-visible syncing function.
5895  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5896  * we start and wait on commits.
5897  */
5898 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5899 				const char *func, unsigned int line)
5900 {
5901 	struct ext4_iloc iloc;
5902 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5903 	int err;
5904 
5905 	might_sleep();
5906 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5907 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5908 	if (err)
5909 		goto out;
5910 
5911 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5912 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5913 					       iloc, handle);
5914 
5915 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5916 out:
5917 	if (unlikely(err))
5918 		ext4_error_inode_err(inode, func, line, 0, err,
5919 					"mark_inode_dirty error");
5920 	return err;
5921 }
5922 
5923 /*
5924  * ext4_dirty_inode() is called from __mark_inode_dirty()
5925  *
5926  * We're really interested in the case where a file is being extended.
5927  * i_size has been changed by generic_commit_write() and we thus need
5928  * to include the updated inode in the current transaction.
5929  *
5930  * Also, dquot_alloc_block() will always dirty the inode when blocks
5931  * are allocated to the file.
5932  *
5933  * If the inode is marked synchronous, we don't honour that here - doing
5934  * so would cause a commit on atime updates, which we don't bother doing.
5935  * We handle synchronous inodes at the highest possible level.
5936  *
5937  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5938  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5939  * to copy into the on-disk inode structure are the timestamp files.
5940  */
5941 void ext4_dirty_inode(struct inode *inode, int flags)
5942 {
5943 	handle_t *handle;
5944 
5945 	if (flags == I_DIRTY_TIME)
5946 		return;
5947 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5948 	if (IS_ERR(handle))
5949 		goto out;
5950 
5951 	ext4_mark_inode_dirty(handle, inode);
5952 
5953 	ext4_journal_stop(handle);
5954 out:
5955 	return;
5956 }
5957 
5958 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5959 {
5960 	journal_t *journal;
5961 	handle_t *handle;
5962 	int err;
5963 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5964 
5965 	/*
5966 	 * We have to be very careful here: changing a data block's
5967 	 * journaling status dynamically is dangerous.  If we write a
5968 	 * data block to the journal, change the status and then delete
5969 	 * that block, we risk forgetting to revoke the old log record
5970 	 * from the journal and so a subsequent replay can corrupt data.
5971 	 * So, first we make sure that the journal is empty and that
5972 	 * nobody is changing anything.
5973 	 */
5974 
5975 	journal = EXT4_JOURNAL(inode);
5976 	if (!journal)
5977 		return 0;
5978 	if (is_journal_aborted(journal))
5979 		return -EROFS;
5980 
5981 	/* Wait for all existing dio workers */
5982 	inode_dio_wait(inode);
5983 
5984 	/*
5985 	 * Before flushing the journal and switching inode's aops, we have
5986 	 * to flush all dirty data the inode has. There can be outstanding
5987 	 * delayed allocations, there can be unwritten extents created by
5988 	 * fallocate or buffered writes in dioread_nolock mode covered by
5989 	 * dirty data which can be converted only after flushing the dirty
5990 	 * data (and journalled aops don't know how to handle these cases).
5991 	 */
5992 	if (val) {
5993 		down_write(&EXT4_I(inode)->i_mmap_sem);
5994 		err = filemap_write_and_wait(inode->i_mapping);
5995 		if (err < 0) {
5996 			up_write(&EXT4_I(inode)->i_mmap_sem);
5997 			return err;
5998 		}
5999 	}
6000 
6001 	percpu_down_write(&sbi->s_writepages_rwsem);
6002 	jbd2_journal_lock_updates(journal);
6003 
6004 	/*
6005 	 * OK, there are no updates running now, and all cached data is
6006 	 * synced to disk.  We are now in a completely consistent state
6007 	 * which doesn't have anything in the journal, and we know that
6008 	 * no filesystem updates are running, so it is safe to modify
6009 	 * the inode's in-core data-journaling state flag now.
6010 	 */
6011 
6012 	if (val)
6013 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6014 	else {
6015 		err = jbd2_journal_flush(journal);
6016 		if (err < 0) {
6017 			jbd2_journal_unlock_updates(journal);
6018 			percpu_up_write(&sbi->s_writepages_rwsem);
6019 			return err;
6020 		}
6021 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6022 	}
6023 	ext4_set_aops(inode);
6024 
6025 	jbd2_journal_unlock_updates(journal);
6026 	percpu_up_write(&sbi->s_writepages_rwsem);
6027 
6028 	if (val)
6029 		up_write(&EXT4_I(inode)->i_mmap_sem);
6030 
6031 	/* Finally we can mark the inode as dirty. */
6032 
6033 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6034 	if (IS_ERR(handle))
6035 		return PTR_ERR(handle);
6036 
6037 	ext4_fc_mark_ineligible(inode->i_sb,
6038 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE);
6039 	err = ext4_mark_inode_dirty(handle, inode);
6040 	ext4_handle_sync(handle);
6041 	ext4_journal_stop(handle);
6042 	ext4_std_error(inode->i_sb, err);
6043 
6044 	return err;
6045 }
6046 
6047 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6048 {
6049 	return !buffer_mapped(bh);
6050 }
6051 
6052 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6053 {
6054 	struct vm_area_struct *vma = vmf->vma;
6055 	struct page *page = vmf->page;
6056 	loff_t size;
6057 	unsigned long len;
6058 	int err;
6059 	vm_fault_t ret;
6060 	struct file *file = vma->vm_file;
6061 	struct inode *inode = file_inode(file);
6062 	struct address_space *mapping = inode->i_mapping;
6063 	handle_t *handle;
6064 	get_block_t *get_block;
6065 	int retries = 0;
6066 
6067 	if (unlikely(IS_IMMUTABLE(inode)))
6068 		return VM_FAULT_SIGBUS;
6069 
6070 	sb_start_pagefault(inode->i_sb);
6071 	file_update_time(vma->vm_file);
6072 
6073 	down_read(&EXT4_I(inode)->i_mmap_sem);
6074 
6075 	err = ext4_convert_inline_data(inode);
6076 	if (err)
6077 		goto out_ret;
6078 
6079 	/*
6080 	 * On data journalling we skip straight to the transaction handle:
6081 	 * there's no delalloc; page truncated will be checked later; the
6082 	 * early return w/ all buffers mapped (calculates size/len) can't
6083 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6084 	 */
6085 	if (ext4_should_journal_data(inode))
6086 		goto retry_alloc;
6087 
6088 	/* Delalloc case is easy... */
6089 	if (test_opt(inode->i_sb, DELALLOC) &&
6090 	    !ext4_nonda_switch(inode->i_sb)) {
6091 		do {
6092 			err = block_page_mkwrite(vma, vmf,
6093 						   ext4_da_get_block_prep);
6094 		} while (err == -ENOSPC &&
6095 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6096 		goto out_ret;
6097 	}
6098 
6099 	lock_page(page);
6100 	size = i_size_read(inode);
6101 	/* Page got truncated from under us? */
6102 	if (page->mapping != mapping || page_offset(page) > size) {
6103 		unlock_page(page);
6104 		ret = VM_FAULT_NOPAGE;
6105 		goto out;
6106 	}
6107 
6108 	if (page->index == size >> PAGE_SHIFT)
6109 		len = size & ~PAGE_MASK;
6110 	else
6111 		len = PAGE_SIZE;
6112 	/*
6113 	 * Return if we have all the buffers mapped. This avoids the need to do
6114 	 * journal_start/journal_stop which can block and take a long time
6115 	 *
6116 	 * This cannot be done for data journalling, as we have to add the
6117 	 * inode to the transaction's list to writeprotect pages on commit.
6118 	 */
6119 	if (page_has_buffers(page)) {
6120 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6121 					    0, len, NULL,
6122 					    ext4_bh_unmapped)) {
6123 			/* Wait so that we don't change page under IO */
6124 			wait_for_stable_page(page);
6125 			ret = VM_FAULT_LOCKED;
6126 			goto out;
6127 		}
6128 	}
6129 	unlock_page(page);
6130 	/* OK, we need to fill the hole... */
6131 	if (ext4_should_dioread_nolock(inode))
6132 		get_block = ext4_get_block_unwritten;
6133 	else
6134 		get_block = ext4_get_block;
6135 retry_alloc:
6136 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6137 				    ext4_writepage_trans_blocks(inode));
6138 	if (IS_ERR(handle)) {
6139 		ret = VM_FAULT_SIGBUS;
6140 		goto out;
6141 	}
6142 	/*
6143 	 * Data journalling can't use block_page_mkwrite() because it
6144 	 * will set_buffer_dirty() before do_journal_get_write_access()
6145 	 * thus might hit warning messages for dirty metadata buffers.
6146 	 */
6147 	if (!ext4_should_journal_data(inode)) {
6148 		err = block_page_mkwrite(vma, vmf, get_block);
6149 	} else {
6150 		lock_page(page);
6151 		size = i_size_read(inode);
6152 		/* Page got truncated from under us? */
6153 		if (page->mapping != mapping || page_offset(page) > size) {
6154 			ret = VM_FAULT_NOPAGE;
6155 			goto out_error;
6156 		}
6157 
6158 		if (page->index == size >> PAGE_SHIFT)
6159 			len = size & ~PAGE_MASK;
6160 		else
6161 			len = PAGE_SIZE;
6162 
6163 		err = __block_write_begin(page, 0, len, ext4_get_block);
6164 		if (!err) {
6165 			ret = VM_FAULT_SIGBUS;
6166 			if (ext4_walk_page_buffers(handle, page_buffers(page),
6167 					0, len, NULL, do_journal_get_write_access))
6168 				goto out_error;
6169 			if (ext4_walk_page_buffers(handle, page_buffers(page),
6170 					0, len, NULL, write_end_fn))
6171 				goto out_error;
6172 			if (ext4_jbd2_inode_add_write(handle, inode,
6173 						      page_offset(page), len))
6174 				goto out_error;
6175 			ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6176 		} else {
6177 			unlock_page(page);
6178 		}
6179 	}
6180 	ext4_journal_stop(handle);
6181 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6182 		goto retry_alloc;
6183 out_ret:
6184 	ret = block_page_mkwrite_return(err);
6185 out:
6186 	up_read(&EXT4_I(inode)->i_mmap_sem);
6187 	sb_end_pagefault(inode->i_sb);
6188 	return ret;
6189 out_error:
6190 	unlock_page(page);
6191 	ext4_journal_stop(handle);
6192 	goto out;
6193 }
6194 
6195 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6196 {
6197 	struct inode *inode = file_inode(vmf->vma->vm_file);
6198 	vm_fault_t ret;
6199 
6200 	down_read(&EXT4_I(inode)->i_mmap_sem);
6201 	ret = filemap_fault(vmf);
6202 	up_read(&EXT4_I(inode)->i_mmap_sem);
6203 
6204 	return ret;
6205 }
6206