xref: /linux/fs/ext4/inode.c (revision 110d3047a3ec033de00322b1a8068b1215efa97a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44 
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49 
50 #include <trace/events/ext4.h>
51 
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 			      struct ext4_inode_info *ei)
54 {
55 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 	__u32 csum;
57 	__u16 dummy_csum = 0;
58 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 	unsigned int csum_size = sizeof(dummy_csum);
60 
61 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 	offset += csum_size;
64 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
66 
67 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 		offset = offsetof(struct ext4_inode, i_checksum_hi);
69 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 				   EXT4_GOOD_OLD_INODE_SIZE,
71 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
72 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74 					   csum_size);
75 			offset += csum_size;
76 		}
77 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
79 	}
80 
81 	return csum;
82 }
83 
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 				  struct ext4_inode_info *ei)
86 {
87 	__u32 provided, calculated;
88 
89 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 	    cpu_to_le32(EXT4_OS_LINUX) ||
91 	    !ext4_has_metadata_csum(inode->i_sb))
92 		return 1;
93 
94 	provided = le16_to_cpu(raw->i_checksum_lo);
95 	calculated = ext4_inode_csum(inode, raw, ei);
96 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 	else
100 		calculated &= 0xFFFF;
101 
102 	return provided == calculated;
103 }
104 
105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 			 struct ext4_inode_info *ei)
107 {
108 	__u32 csum;
109 
110 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 	    cpu_to_le32(EXT4_OS_LINUX) ||
112 	    !ext4_has_metadata_csum(inode->i_sb))
113 		return;
114 
115 	csum = ext4_inode_csum(inode, raw, ei);
116 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121 
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 					      loff_t new_size)
124 {
125 	trace_ext4_begin_ordered_truncate(inode, new_size);
126 	/*
127 	 * If jinode is zero, then we never opened the file for
128 	 * writing, so there's no need to call
129 	 * jbd2_journal_begin_ordered_truncate() since there's no
130 	 * outstanding writes we need to flush.
131 	 */
132 	if (!EXT4_I(inode)->jinode)
133 		return 0;
134 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 						   EXT4_I(inode)->jinode,
136 						   new_size);
137 }
138 
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140 				  int pextents);
141 
142 /*
143  * Test whether an inode is a fast symlink.
144  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
145  */
146 int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
149 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
150 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
151 
152 		if (ext4_has_inline_data(inode))
153 			return 0;
154 
155 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
156 	}
157 	return S_ISLNK(inode->i_mode) && inode->i_size &&
158 	       (inode->i_size < EXT4_N_BLOCKS * 4);
159 }
160 
161 /*
162  * Called at the last iput() if i_nlink is zero.
163  */
164 void ext4_evict_inode(struct inode *inode)
165 {
166 	handle_t *handle;
167 	int err;
168 	/*
169 	 * Credits for final inode cleanup and freeing:
170 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
171 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
172 	 */
173 	int extra_credits = 6;
174 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
175 	bool freeze_protected = false;
176 
177 	trace_ext4_evict_inode(inode);
178 
179 	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
180 		ext4_evict_ea_inode(inode);
181 	if (inode->i_nlink) {
182 		truncate_inode_pages_final(&inode->i_data);
183 
184 		goto no_delete;
185 	}
186 
187 	if (is_bad_inode(inode))
188 		goto no_delete;
189 	dquot_initialize(inode);
190 
191 	if (ext4_should_order_data(inode))
192 		ext4_begin_ordered_truncate(inode, 0);
193 	truncate_inode_pages_final(&inode->i_data);
194 
195 	/*
196 	 * For inodes with journalled data, transaction commit could have
197 	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
198 	 * extents converting worker could merge extents and also have dirtied
199 	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
200 	 * we still need to remove the inode from the writeback lists.
201 	 */
202 	if (!list_empty_careful(&inode->i_io_list))
203 		inode_io_list_del(inode);
204 
205 	/*
206 	 * Protect us against freezing - iput() caller didn't have to have any
207 	 * protection against it. When we are in a running transaction though,
208 	 * we are already protected against freezing and we cannot grab further
209 	 * protection due to lock ordering constraints.
210 	 */
211 	if (!ext4_journal_current_handle()) {
212 		sb_start_intwrite(inode->i_sb);
213 		freeze_protected = true;
214 	}
215 
216 	if (!IS_NOQUOTA(inode))
217 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
218 
219 	/*
220 	 * Block bitmap, group descriptor, and inode are accounted in both
221 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
222 	 */
223 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
224 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
225 	if (IS_ERR(handle)) {
226 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
227 		/*
228 		 * If we're going to skip the normal cleanup, we still need to
229 		 * make sure that the in-core orphan linked list is properly
230 		 * cleaned up.
231 		 */
232 		ext4_orphan_del(NULL, inode);
233 		if (freeze_protected)
234 			sb_end_intwrite(inode->i_sb);
235 		goto no_delete;
236 	}
237 
238 	if (IS_SYNC(inode))
239 		ext4_handle_sync(handle);
240 
241 	/*
242 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
243 	 * special handling of symlinks here because i_size is used to
244 	 * determine whether ext4_inode_info->i_data contains symlink data or
245 	 * block mappings. Setting i_size to 0 will remove its fast symlink
246 	 * status. Erase i_data so that it becomes a valid empty block map.
247 	 */
248 	if (ext4_inode_is_fast_symlink(inode))
249 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
250 	inode->i_size = 0;
251 	err = ext4_mark_inode_dirty(handle, inode);
252 	if (err) {
253 		ext4_warning(inode->i_sb,
254 			     "couldn't mark inode dirty (err %d)", err);
255 		goto stop_handle;
256 	}
257 	if (inode->i_blocks) {
258 		err = ext4_truncate(inode);
259 		if (err) {
260 			ext4_error_err(inode->i_sb, -err,
261 				       "couldn't truncate inode %lu (err %d)",
262 				       inode->i_ino, err);
263 			goto stop_handle;
264 		}
265 	}
266 
267 	/* Remove xattr references. */
268 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
269 				      extra_credits);
270 	if (err) {
271 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
272 stop_handle:
273 		ext4_journal_stop(handle);
274 		ext4_orphan_del(NULL, inode);
275 		if (freeze_protected)
276 			sb_end_intwrite(inode->i_sb);
277 		ext4_xattr_inode_array_free(ea_inode_array);
278 		goto no_delete;
279 	}
280 
281 	/*
282 	 * Kill off the orphan record which ext4_truncate created.
283 	 * AKPM: I think this can be inside the above `if'.
284 	 * Note that ext4_orphan_del() has to be able to cope with the
285 	 * deletion of a non-existent orphan - this is because we don't
286 	 * know if ext4_truncate() actually created an orphan record.
287 	 * (Well, we could do this if we need to, but heck - it works)
288 	 */
289 	ext4_orphan_del(handle, inode);
290 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
291 
292 	/*
293 	 * One subtle ordering requirement: if anything has gone wrong
294 	 * (transaction abort, IO errors, whatever), then we can still
295 	 * do these next steps (the fs will already have been marked as
296 	 * having errors), but we can't free the inode if the mark_dirty
297 	 * fails.
298 	 */
299 	if (ext4_mark_inode_dirty(handle, inode))
300 		/* If that failed, just do the required in-core inode clear. */
301 		ext4_clear_inode(inode);
302 	else
303 		ext4_free_inode(handle, inode);
304 	ext4_journal_stop(handle);
305 	if (freeze_protected)
306 		sb_end_intwrite(inode->i_sb);
307 	ext4_xattr_inode_array_free(ea_inode_array);
308 	return;
309 no_delete:
310 	/*
311 	 * Check out some where else accidentally dirty the evicting inode,
312 	 * which may probably cause inode use-after-free issues later.
313 	 */
314 	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
315 
316 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
317 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
318 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
319 }
320 
321 #ifdef CONFIG_QUOTA
322 qsize_t *ext4_get_reserved_space(struct inode *inode)
323 {
324 	return &EXT4_I(inode)->i_reserved_quota;
325 }
326 #endif
327 
328 /*
329  * Called with i_data_sem down, which is important since we can call
330  * ext4_discard_preallocations() from here.
331  */
332 void ext4_da_update_reserve_space(struct inode *inode,
333 					int used, int quota_claim)
334 {
335 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
336 	struct ext4_inode_info *ei = EXT4_I(inode);
337 
338 	spin_lock(&ei->i_block_reservation_lock);
339 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
340 	if (unlikely(used > ei->i_reserved_data_blocks)) {
341 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
342 			 "with only %d reserved data blocks",
343 			 __func__, inode->i_ino, used,
344 			 ei->i_reserved_data_blocks);
345 		WARN_ON(1);
346 		used = ei->i_reserved_data_blocks;
347 	}
348 
349 	/* Update per-inode reservations */
350 	ei->i_reserved_data_blocks -= used;
351 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
352 
353 	spin_unlock(&ei->i_block_reservation_lock);
354 
355 	/* Update quota subsystem for data blocks */
356 	if (quota_claim)
357 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
358 	else {
359 		/*
360 		 * We did fallocate with an offset that is already delayed
361 		 * allocated. So on delayed allocated writeback we should
362 		 * not re-claim the quota for fallocated blocks.
363 		 */
364 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
365 	}
366 
367 	/*
368 	 * If we have done all the pending block allocations and if
369 	 * there aren't any writers on the inode, we can discard the
370 	 * inode's preallocations.
371 	 */
372 	if ((ei->i_reserved_data_blocks == 0) &&
373 	    !inode_is_open_for_write(inode))
374 		ext4_discard_preallocations(inode, 0);
375 }
376 
377 static int __check_block_validity(struct inode *inode, const char *func,
378 				unsigned int line,
379 				struct ext4_map_blocks *map)
380 {
381 	if (ext4_has_feature_journal(inode->i_sb) &&
382 	    (inode->i_ino ==
383 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
384 		return 0;
385 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
386 		ext4_error_inode(inode, func, line, map->m_pblk,
387 				 "lblock %lu mapped to illegal pblock %llu "
388 				 "(length %d)", (unsigned long) map->m_lblk,
389 				 map->m_pblk, map->m_len);
390 		return -EFSCORRUPTED;
391 	}
392 	return 0;
393 }
394 
395 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
396 		       ext4_lblk_t len)
397 {
398 	int ret;
399 
400 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
401 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
402 
403 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
404 	if (ret > 0)
405 		ret = 0;
406 
407 	return ret;
408 }
409 
410 #define check_block_validity(inode, map)	\
411 	__check_block_validity((inode), __func__, __LINE__, (map))
412 
413 #ifdef ES_AGGRESSIVE_TEST
414 static void ext4_map_blocks_es_recheck(handle_t *handle,
415 				       struct inode *inode,
416 				       struct ext4_map_blocks *es_map,
417 				       struct ext4_map_blocks *map,
418 				       int flags)
419 {
420 	int retval;
421 
422 	map->m_flags = 0;
423 	/*
424 	 * There is a race window that the result is not the same.
425 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
426 	 * is that we lookup a block mapping in extent status tree with
427 	 * out taking i_data_sem.  So at the time the unwritten extent
428 	 * could be converted.
429 	 */
430 	down_read(&EXT4_I(inode)->i_data_sem);
431 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
432 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
433 	} else {
434 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
435 	}
436 	up_read((&EXT4_I(inode)->i_data_sem));
437 
438 	/*
439 	 * We don't check m_len because extent will be collpased in status
440 	 * tree.  So the m_len might not equal.
441 	 */
442 	if (es_map->m_lblk != map->m_lblk ||
443 	    es_map->m_flags != map->m_flags ||
444 	    es_map->m_pblk != map->m_pblk) {
445 		printk("ES cache assertion failed for inode: %lu "
446 		       "es_cached ex [%d/%d/%llu/%x] != "
447 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
448 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
449 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
450 		       map->m_len, map->m_pblk, map->m_flags,
451 		       retval, flags);
452 	}
453 }
454 #endif /* ES_AGGRESSIVE_TEST */
455 
456 /*
457  * The ext4_map_blocks() function tries to look up the requested blocks,
458  * and returns if the blocks are already mapped.
459  *
460  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
461  * and store the allocated blocks in the result buffer head and mark it
462  * mapped.
463  *
464  * If file type is extents based, it will call ext4_ext_map_blocks(),
465  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
466  * based files
467  *
468  * On success, it returns the number of blocks being mapped or allocated.  if
469  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
470  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
471  *
472  * It returns 0 if plain look up failed (blocks have not been allocated), in
473  * that case, @map is returned as unmapped but we still do fill map->m_len to
474  * indicate the length of a hole starting at map->m_lblk.
475  *
476  * It returns the error in case of allocation failure.
477  */
478 int ext4_map_blocks(handle_t *handle, struct inode *inode,
479 		    struct ext4_map_blocks *map, int flags)
480 {
481 	struct extent_status es;
482 	int retval;
483 	int ret = 0;
484 #ifdef ES_AGGRESSIVE_TEST
485 	struct ext4_map_blocks orig_map;
486 
487 	memcpy(&orig_map, map, sizeof(*map));
488 #endif
489 
490 	map->m_flags = 0;
491 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
492 		  flags, map->m_len, (unsigned long) map->m_lblk);
493 
494 	/*
495 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
496 	 */
497 	if (unlikely(map->m_len > INT_MAX))
498 		map->m_len = INT_MAX;
499 
500 	/* We can handle the block number less than EXT_MAX_BLOCKS */
501 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
502 		return -EFSCORRUPTED;
503 
504 	/* Lookup extent status tree firstly */
505 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
506 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
507 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
508 			map->m_pblk = ext4_es_pblock(&es) +
509 					map->m_lblk - es.es_lblk;
510 			map->m_flags |= ext4_es_is_written(&es) ?
511 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
512 			retval = es.es_len - (map->m_lblk - es.es_lblk);
513 			if (retval > map->m_len)
514 				retval = map->m_len;
515 			map->m_len = retval;
516 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
517 			map->m_pblk = 0;
518 			retval = es.es_len - (map->m_lblk - es.es_lblk);
519 			if (retval > map->m_len)
520 				retval = map->m_len;
521 			map->m_len = retval;
522 			retval = 0;
523 		} else {
524 			BUG();
525 		}
526 
527 		if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
528 			return retval;
529 #ifdef ES_AGGRESSIVE_TEST
530 		ext4_map_blocks_es_recheck(handle, inode, map,
531 					   &orig_map, flags);
532 #endif
533 		goto found;
534 	}
535 	/*
536 	 * In the query cache no-wait mode, nothing we can do more if we
537 	 * cannot find extent in the cache.
538 	 */
539 	if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
540 		return 0;
541 
542 	/*
543 	 * Try to see if we can get the block without requesting a new
544 	 * file system block.
545 	 */
546 	down_read(&EXT4_I(inode)->i_data_sem);
547 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
549 	} else {
550 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
551 	}
552 	if (retval > 0) {
553 		unsigned int status;
554 
555 		if (unlikely(retval != map->m_len)) {
556 			ext4_warning(inode->i_sb,
557 				     "ES len assertion failed for inode "
558 				     "%lu: retval %d != map->m_len %d",
559 				     inode->i_ino, retval, map->m_len);
560 			WARN_ON(1);
561 		}
562 
563 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
564 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
565 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
566 		    !(status & EXTENT_STATUS_WRITTEN) &&
567 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
568 				       map->m_lblk + map->m_len - 1))
569 			status |= EXTENT_STATUS_DELAYED;
570 		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
571 				      map->m_pblk, status);
572 	}
573 	up_read((&EXT4_I(inode)->i_data_sem));
574 
575 found:
576 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
577 		ret = check_block_validity(inode, map);
578 		if (ret != 0)
579 			return ret;
580 	}
581 
582 	/* If it is only a block(s) look up */
583 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
584 		return retval;
585 
586 	/*
587 	 * Returns if the blocks have already allocated
588 	 *
589 	 * Note that if blocks have been preallocated
590 	 * ext4_ext_get_block() returns the create = 0
591 	 * with buffer head unmapped.
592 	 */
593 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
594 		/*
595 		 * If we need to convert extent to unwritten
596 		 * we continue and do the actual work in
597 		 * ext4_ext_map_blocks()
598 		 */
599 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
600 			return retval;
601 
602 	/*
603 	 * Here we clear m_flags because after allocating an new extent,
604 	 * it will be set again.
605 	 */
606 	map->m_flags &= ~EXT4_MAP_FLAGS;
607 
608 	/*
609 	 * New blocks allocate and/or writing to unwritten extent
610 	 * will possibly result in updating i_data, so we take
611 	 * the write lock of i_data_sem, and call get_block()
612 	 * with create == 1 flag.
613 	 */
614 	down_write(&EXT4_I(inode)->i_data_sem);
615 
616 	/*
617 	 * We need to check for EXT4 here because migrate
618 	 * could have changed the inode type in between
619 	 */
620 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
621 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
622 	} else {
623 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
624 
625 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
626 			/*
627 			 * We allocated new blocks which will result in
628 			 * i_data's format changing.  Force the migrate
629 			 * to fail by clearing migrate flags
630 			 */
631 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
632 		}
633 	}
634 
635 	if (retval > 0) {
636 		unsigned int status;
637 
638 		if (unlikely(retval != map->m_len)) {
639 			ext4_warning(inode->i_sb,
640 				     "ES len assertion failed for inode "
641 				     "%lu: retval %d != map->m_len %d",
642 				     inode->i_ino, retval, map->m_len);
643 			WARN_ON(1);
644 		}
645 
646 		/*
647 		 * We have to zeroout blocks before inserting them into extent
648 		 * status tree. Otherwise someone could look them up there and
649 		 * use them before they are really zeroed. We also have to
650 		 * unmap metadata before zeroing as otherwise writeback can
651 		 * overwrite zeros with stale data from block device.
652 		 */
653 		if (flags & EXT4_GET_BLOCKS_ZERO &&
654 		    map->m_flags & EXT4_MAP_MAPPED &&
655 		    map->m_flags & EXT4_MAP_NEW) {
656 			ret = ext4_issue_zeroout(inode, map->m_lblk,
657 						 map->m_pblk, map->m_len);
658 			if (ret) {
659 				retval = ret;
660 				goto out_sem;
661 			}
662 		}
663 
664 		/*
665 		 * If the extent has been zeroed out, we don't need to update
666 		 * extent status tree.
667 		 */
668 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
669 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
670 			if (ext4_es_is_written(&es))
671 				goto out_sem;
672 		}
673 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
674 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
675 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
676 		    !(status & EXTENT_STATUS_WRITTEN) &&
677 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
678 				       map->m_lblk + map->m_len - 1))
679 			status |= EXTENT_STATUS_DELAYED;
680 		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
681 				      map->m_pblk, status);
682 	}
683 
684 out_sem:
685 	up_write((&EXT4_I(inode)->i_data_sem));
686 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
687 		ret = check_block_validity(inode, map);
688 		if (ret != 0)
689 			return ret;
690 
691 		/*
692 		 * Inodes with freshly allocated blocks where contents will be
693 		 * visible after transaction commit must be on transaction's
694 		 * ordered data list.
695 		 */
696 		if (map->m_flags & EXT4_MAP_NEW &&
697 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
698 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
699 		    !ext4_is_quota_file(inode) &&
700 		    ext4_should_order_data(inode)) {
701 			loff_t start_byte =
702 				(loff_t)map->m_lblk << inode->i_blkbits;
703 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
704 
705 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
706 				ret = ext4_jbd2_inode_add_wait(handle, inode,
707 						start_byte, length);
708 			else
709 				ret = ext4_jbd2_inode_add_write(handle, inode,
710 						start_byte, length);
711 			if (ret)
712 				return ret;
713 		}
714 	}
715 	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
716 				map->m_flags & EXT4_MAP_MAPPED))
717 		ext4_fc_track_range(handle, inode, map->m_lblk,
718 					map->m_lblk + map->m_len - 1);
719 	if (retval < 0)
720 		ext_debug(inode, "failed with err %d\n", retval);
721 	return retval;
722 }
723 
724 /*
725  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
726  * we have to be careful as someone else may be manipulating b_state as well.
727  */
728 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
729 {
730 	unsigned long old_state;
731 	unsigned long new_state;
732 
733 	flags &= EXT4_MAP_FLAGS;
734 
735 	/* Dummy buffer_head? Set non-atomically. */
736 	if (!bh->b_page) {
737 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
738 		return;
739 	}
740 	/*
741 	 * Someone else may be modifying b_state. Be careful! This is ugly but
742 	 * once we get rid of using bh as a container for mapping information
743 	 * to pass to / from get_block functions, this can go away.
744 	 */
745 	old_state = READ_ONCE(bh->b_state);
746 	do {
747 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
748 	} while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
749 }
750 
751 static int _ext4_get_block(struct inode *inode, sector_t iblock,
752 			   struct buffer_head *bh, int flags)
753 {
754 	struct ext4_map_blocks map;
755 	int ret = 0;
756 
757 	if (ext4_has_inline_data(inode))
758 		return -ERANGE;
759 
760 	map.m_lblk = iblock;
761 	map.m_len = bh->b_size >> inode->i_blkbits;
762 
763 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
764 			      flags);
765 	if (ret > 0) {
766 		map_bh(bh, inode->i_sb, map.m_pblk);
767 		ext4_update_bh_state(bh, map.m_flags);
768 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
769 		ret = 0;
770 	} else if (ret == 0) {
771 		/* hole case, need to fill in bh->b_size */
772 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
773 	}
774 	return ret;
775 }
776 
777 int ext4_get_block(struct inode *inode, sector_t iblock,
778 		   struct buffer_head *bh, int create)
779 {
780 	return _ext4_get_block(inode, iblock, bh,
781 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
782 }
783 
784 /*
785  * Get block function used when preparing for buffered write if we require
786  * creating an unwritten extent if blocks haven't been allocated.  The extent
787  * will be converted to written after the IO is complete.
788  */
789 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
790 			     struct buffer_head *bh_result, int create)
791 {
792 	int ret = 0;
793 
794 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
795 		   inode->i_ino, create);
796 	ret = _ext4_get_block(inode, iblock, bh_result,
797 			       EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
798 
799 	/*
800 	 * If the buffer is marked unwritten, mark it as new to make sure it is
801 	 * zeroed out correctly in case of partial writes. Otherwise, there is
802 	 * a chance of stale data getting exposed.
803 	 */
804 	if (ret == 0 && buffer_unwritten(bh_result))
805 		set_buffer_new(bh_result);
806 
807 	return ret;
808 }
809 
810 /* Maximum number of blocks we map for direct IO at once. */
811 #define DIO_MAX_BLOCKS 4096
812 
813 /*
814  * `handle' can be NULL if create is zero
815  */
816 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
817 				ext4_lblk_t block, int map_flags)
818 {
819 	struct ext4_map_blocks map;
820 	struct buffer_head *bh;
821 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
822 	bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
823 	int err;
824 
825 	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
826 		    || handle != NULL || create == 0);
827 	ASSERT(create == 0 || !nowait);
828 
829 	map.m_lblk = block;
830 	map.m_len = 1;
831 	err = ext4_map_blocks(handle, inode, &map, map_flags);
832 
833 	if (err == 0)
834 		return create ? ERR_PTR(-ENOSPC) : NULL;
835 	if (err < 0)
836 		return ERR_PTR(err);
837 
838 	if (nowait)
839 		return sb_find_get_block(inode->i_sb, map.m_pblk);
840 
841 	bh = sb_getblk(inode->i_sb, map.m_pblk);
842 	if (unlikely(!bh))
843 		return ERR_PTR(-ENOMEM);
844 	if (map.m_flags & EXT4_MAP_NEW) {
845 		ASSERT(create != 0);
846 		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
847 			    || (handle != NULL));
848 
849 		/*
850 		 * Now that we do not always journal data, we should
851 		 * keep in mind whether this should always journal the
852 		 * new buffer as metadata.  For now, regular file
853 		 * writes use ext4_get_block instead, so it's not a
854 		 * problem.
855 		 */
856 		lock_buffer(bh);
857 		BUFFER_TRACE(bh, "call get_create_access");
858 		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
859 						     EXT4_JTR_NONE);
860 		if (unlikely(err)) {
861 			unlock_buffer(bh);
862 			goto errout;
863 		}
864 		if (!buffer_uptodate(bh)) {
865 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
866 			set_buffer_uptodate(bh);
867 		}
868 		unlock_buffer(bh);
869 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
870 		err = ext4_handle_dirty_metadata(handle, inode, bh);
871 		if (unlikely(err))
872 			goto errout;
873 	} else
874 		BUFFER_TRACE(bh, "not a new buffer");
875 	return bh;
876 errout:
877 	brelse(bh);
878 	return ERR_PTR(err);
879 }
880 
881 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
882 			       ext4_lblk_t block, int map_flags)
883 {
884 	struct buffer_head *bh;
885 	int ret;
886 
887 	bh = ext4_getblk(handle, inode, block, map_flags);
888 	if (IS_ERR(bh))
889 		return bh;
890 	if (!bh || ext4_buffer_uptodate(bh))
891 		return bh;
892 
893 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
894 	if (ret) {
895 		put_bh(bh);
896 		return ERR_PTR(ret);
897 	}
898 	return bh;
899 }
900 
901 /* Read a contiguous batch of blocks. */
902 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
903 		     bool wait, struct buffer_head **bhs)
904 {
905 	int i, err;
906 
907 	for (i = 0; i < bh_count; i++) {
908 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
909 		if (IS_ERR(bhs[i])) {
910 			err = PTR_ERR(bhs[i]);
911 			bh_count = i;
912 			goto out_brelse;
913 		}
914 	}
915 
916 	for (i = 0; i < bh_count; i++)
917 		/* Note that NULL bhs[i] is valid because of holes. */
918 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
919 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
920 
921 	if (!wait)
922 		return 0;
923 
924 	for (i = 0; i < bh_count; i++)
925 		if (bhs[i])
926 			wait_on_buffer(bhs[i]);
927 
928 	for (i = 0; i < bh_count; i++) {
929 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
930 			err = -EIO;
931 			goto out_brelse;
932 		}
933 	}
934 	return 0;
935 
936 out_brelse:
937 	for (i = 0; i < bh_count; i++) {
938 		brelse(bhs[i]);
939 		bhs[i] = NULL;
940 	}
941 	return err;
942 }
943 
944 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
945 			   struct buffer_head *head,
946 			   unsigned from,
947 			   unsigned to,
948 			   int *partial,
949 			   int (*fn)(handle_t *handle, struct inode *inode,
950 				     struct buffer_head *bh))
951 {
952 	struct buffer_head *bh;
953 	unsigned block_start, block_end;
954 	unsigned blocksize = head->b_size;
955 	int err, ret = 0;
956 	struct buffer_head *next;
957 
958 	for (bh = head, block_start = 0;
959 	     ret == 0 && (bh != head || !block_start);
960 	     block_start = block_end, bh = next) {
961 		next = bh->b_this_page;
962 		block_end = block_start + blocksize;
963 		if (block_end <= from || block_start >= to) {
964 			if (partial && !buffer_uptodate(bh))
965 				*partial = 1;
966 			continue;
967 		}
968 		err = (*fn)(handle, inode, bh);
969 		if (!ret)
970 			ret = err;
971 	}
972 	return ret;
973 }
974 
975 /*
976  * Helper for handling dirtying of journalled data. We also mark the folio as
977  * dirty so that writeback code knows about this page (and inode) contains
978  * dirty data. ext4_writepages() then commits appropriate transaction to
979  * make data stable.
980  */
981 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
982 {
983 	folio_mark_dirty(bh->b_folio);
984 	return ext4_handle_dirty_metadata(handle, NULL, bh);
985 }
986 
987 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
988 				struct buffer_head *bh)
989 {
990 	int dirty = buffer_dirty(bh);
991 	int ret;
992 
993 	if (!buffer_mapped(bh) || buffer_freed(bh))
994 		return 0;
995 	/*
996 	 * __block_write_begin() could have dirtied some buffers. Clean
997 	 * the dirty bit as jbd2_journal_get_write_access() could complain
998 	 * otherwise about fs integrity issues. Setting of the dirty bit
999 	 * by __block_write_begin() isn't a real problem here as we clear
1000 	 * the bit before releasing a page lock and thus writeback cannot
1001 	 * ever write the buffer.
1002 	 */
1003 	if (dirty)
1004 		clear_buffer_dirty(bh);
1005 	BUFFER_TRACE(bh, "get write access");
1006 	ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1007 					    EXT4_JTR_NONE);
1008 	if (!ret && dirty)
1009 		ret = ext4_dirty_journalled_data(handle, bh);
1010 	return ret;
1011 }
1012 
1013 #ifdef CONFIG_FS_ENCRYPTION
1014 static int ext4_block_write_begin(struct folio *folio, loff_t pos, unsigned len,
1015 				  get_block_t *get_block)
1016 {
1017 	unsigned from = pos & (PAGE_SIZE - 1);
1018 	unsigned to = from + len;
1019 	struct inode *inode = folio->mapping->host;
1020 	unsigned block_start, block_end;
1021 	sector_t block;
1022 	int err = 0;
1023 	unsigned blocksize = inode->i_sb->s_blocksize;
1024 	unsigned bbits;
1025 	struct buffer_head *bh, *head, *wait[2];
1026 	int nr_wait = 0;
1027 	int i;
1028 
1029 	BUG_ON(!folio_test_locked(folio));
1030 	BUG_ON(from > PAGE_SIZE);
1031 	BUG_ON(to > PAGE_SIZE);
1032 	BUG_ON(from > to);
1033 
1034 	head = folio_buffers(folio);
1035 	if (!head)
1036 		head = create_empty_buffers(folio, blocksize, 0);
1037 	bbits = ilog2(blocksize);
1038 	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1039 
1040 	for (bh = head, block_start = 0; bh != head || !block_start;
1041 	    block++, block_start = block_end, bh = bh->b_this_page) {
1042 		block_end = block_start + blocksize;
1043 		if (block_end <= from || block_start >= to) {
1044 			if (folio_test_uptodate(folio)) {
1045 				set_buffer_uptodate(bh);
1046 			}
1047 			continue;
1048 		}
1049 		if (buffer_new(bh))
1050 			clear_buffer_new(bh);
1051 		if (!buffer_mapped(bh)) {
1052 			WARN_ON(bh->b_size != blocksize);
1053 			err = get_block(inode, block, bh, 1);
1054 			if (err)
1055 				break;
1056 			if (buffer_new(bh)) {
1057 				if (folio_test_uptodate(folio)) {
1058 					clear_buffer_new(bh);
1059 					set_buffer_uptodate(bh);
1060 					mark_buffer_dirty(bh);
1061 					continue;
1062 				}
1063 				if (block_end > to || block_start < from)
1064 					folio_zero_segments(folio, to,
1065 							    block_end,
1066 							    block_start, from);
1067 				continue;
1068 			}
1069 		}
1070 		if (folio_test_uptodate(folio)) {
1071 			set_buffer_uptodate(bh);
1072 			continue;
1073 		}
1074 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1075 		    !buffer_unwritten(bh) &&
1076 		    (block_start < from || block_end > to)) {
1077 			ext4_read_bh_lock(bh, 0, false);
1078 			wait[nr_wait++] = bh;
1079 		}
1080 	}
1081 	/*
1082 	 * If we issued read requests, let them complete.
1083 	 */
1084 	for (i = 0; i < nr_wait; i++) {
1085 		wait_on_buffer(wait[i]);
1086 		if (!buffer_uptodate(wait[i]))
1087 			err = -EIO;
1088 	}
1089 	if (unlikely(err)) {
1090 		folio_zero_new_buffers(folio, from, to);
1091 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1092 		for (i = 0; i < nr_wait; i++) {
1093 			int err2;
1094 
1095 			err2 = fscrypt_decrypt_pagecache_blocks(folio,
1096 						blocksize, bh_offset(wait[i]));
1097 			if (err2) {
1098 				clear_buffer_uptodate(wait[i]);
1099 				err = err2;
1100 			}
1101 		}
1102 	}
1103 
1104 	return err;
1105 }
1106 #endif
1107 
1108 /*
1109  * To preserve ordering, it is essential that the hole instantiation and
1110  * the data write be encapsulated in a single transaction.  We cannot
1111  * close off a transaction and start a new one between the ext4_get_block()
1112  * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1113  * ext4_write_begin() is the right place.
1114  */
1115 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1116 			    loff_t pos, unsigned len,
1117 			    struct page **pagep, void **fsdata)
1118 {
1119 	struct inode *inode = mapping->host;
1120 	int ret, needed_blocks;
1121 	handle_t *handle;
1122 	int retries = 0;
1123 	struct folio *folio;
1124 	pgoff_t index;
1125 	unsigned from, to;
1126 
1127 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
1128 		return -EIO;
1129 
1130 	trace_ext4_write_begin(inode, pos, len);
1131 	/*
1132 	 * Reserve one block more for addition to orphan list in case
1133 	 * we allocate blocks but write fails for some reason
1134 	 */
1135 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1136 	index = pos >> PAGE_SHIFT;
1137 	from = pos & (PAGE_SIZE - 1);
1138 	to = from + len;
1139 
1140 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1141 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1142 						    pagep);
1143 		if (ret < 0)
1144 			return ret;
1145 		if (ret == 1)
1146 			return 0;
1147 	}
1148 
1149 	/*
1150 	 * __filemap_get_folio() can take a long time if the
1151 	 * system is thrashing due to memory pressure, or if the folio
1152 	 * is being written back.  So grab it first before we start
1153 	 * the transaction handle.  This also allows us to allocate
1154 	 * the folio (if needed) without using GFP_NOFS.
1155 	 */
1156 retry_grab:
1157 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1158 					mapping_gfp_mask(mapping));
1159 	if (IS_ERR(folio))
1160 		return PTR_ERR(folio);
1161 	/*
1162 	 * The same as page allocation, we prealloc buffer heads before
1163 	 * starting the handle.
1164 	 */
1165 	if (!folio_buffers(folio))
1166 		create_empty_buffers(folio, inode->i_sb->s_blocksize, 0);
1167 
1168 	folio_unlock(folio);
1169 
1170 retry_journal:
1171 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1172 	if (IS_ERR(handle)) {
1173 		folio_put(folio);
1174 		return PTR_ERR(handle);
1175 	}
1176 
1177 	folio_lock(folio);
1178 	if (folio->mapping != mapping) {
1179 		/* The folio got truncated from under us */
1180 		folio_unlock(folio);
1181 		folio_put(folio);
1182 		ext4_journal_stop(handle);
1183 		goto retry_grab;
1184 	}
1185 	/* In case writeback began while the folio was unlocked */
1186 	folio_wait_stable(folio);
1187 
1188 #ifdef CONFIG_FS_ENCRYPTION
1189 	if (ext4_should_dioread_nolock(inode))
1190 		ret = ext4_block_write_begin(folio, pos, len,
1191 					     ext4_get_block_unwritten);
1192 	else
1193 		ret = ext4_block_write_begin(folio, pos, len, ext4_get_block);
1194 #else
1195 	if (ext4_should_dioread_nolock(inode))
1196 		ret = __block_write_begin(&folio->page, pos, len,
1197 					  ext4_get_block_unwritten);
1198 	else
1199 		ret = __block_write_begin(&folio->page, pos, len, ext4_get_block);
1200 #endif
1201 	if (!ret && ext4_should_journal_data(inode)) {
1202 		ret = ext4_walk_page_buffers(handle, inode,
1203 					     folio_buffers(folio), from, to,
1204 					     NULL, do_journal_get_write_access);
1205 	}
1206 
1207 	if (ret) {
1208 		bool extended = (pos + len > inode->i_size) &&
1209 				!ext4_verity_in_progress(inode);
1210 
1211 		folio_unlock(folio);
1212 		/*
1213 		 * __block_write_begin may have instantiated a few blocks
1214 		 * outside i_size.  Trim these off again. Don't need
1215 		 * i_size_read because we hold i_rwsem.
1216 		 *
1217 		 * Add inode to orphan list in case we crash before
1218 		 * truncate finishes
1219 		 */
1220 		if (extended && ext4_can_truncate(inode))
1221 			ext4_orphan_add(handle, inode);
1222 
1223 		ext4_journal_stop(handle);
1224 		if (extended) {
1225 			ext4_truncate_failed_write(inode);
1226 			/*
1227 			 * If truncate failed early the inode might
1228 			 * still be on the orphan list; we need to
1229 			 * make sure the inode is removed from the
1230 			 * orphan list in that case.
1231 			 */
1232 			if (inode->i_nlink)
1233 				ext4_orphan_del(NULL, inode);
1234 		}
1235 
1236 		if (ret == -ENOSPC &&
1237 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1238 			goto retry_journal;
1239 		folio_put(folio);
1240 		return ret;
1241 	}
1242 	*pagep = &folio->page;
1243 	return ret;
1244 }
1245 
1246 /* For write_end() in data=journal mode */
1247 static int write_end_fn(handle_t *handle, struct inode *inode,
1248 			struct buffer_head *bh)
1249 {
1250 	int ret;
1251 	if (!buffer_mapped(bh) || buffer_freed(bh))
1252 		return 0;
1253 	set_buffer_uptodate(bh);
1254 	ret = ext4_dirty_journalled_data(handle, bh);
1255 	clear_buffer_meta(bh);
1256 	clear_buffer_prio(bh);
1257 	return ret;
1258 }
1259 
1260 /*
1261  * We need to pick up the new inode size which generic_commit_write gave us
1262  * `file' can be NULL - eg, when called from page_symlink().
1263  *
1264  * ext4 never places buffers on inode->i_mapping->i_private_list.  metadata
1265  * buffers are managed internally.
1266  */
1267 static int ext4_write_end(struct file *file,
1268 			  struct address_space *mapping,
1269 			  loff_t pos, unsigned len, unsigned copied,
1270 			  struct page *page, void *fsdata)
1271 {
1272 	struct folio *folio = page_folio(page);
1273 	handle_t *handle = ext4_journal_current_handle();
1274 	struct inode *inode = mapping->host;
1275 	loff_t old_size = inode->i_size;
1276 	int ret = 0, ret2;
1277 	int i_size_changed = 0;
1278 	bool verity = ext4_verity_in_progress(inode);
1279 
1280 	trace_ext4_write_end(inode, pos, len, copied);
1281 
1282 	if (ext4_has_inline_data(inode) &&
1283 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1284 		return ext4_write_inline_data_end(inode, pos, len, copied,
1285 						  folio);
1286 
1287 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1288 	/*
1289 	 * it's important to update i_size while still holding folio lock:
1290 	 * page writeout could otherwise come in and zero beyond i_size.
1291 	 *
1292 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1293 	 * blocks are being written past EOF, so skip the i_size update.
1294 	 */
1295 	if (!verity)
1296 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1297 	folio_unlock(folio);
1298 	folio_put(folio);
1299 
1300 	if (old_size < pos && !verity)
1301 		pagecache_isize_extended(inode, old_size, pos);
1302 	/*
1303 	 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1304 	 * makes the holding time of folio lock longer. Second, it forces lock
1305 	 * ordering of folio lock and transaction start for journaling
1306 	 * filesystems.
1307 	 */
1308 	if (i_size_changed)
1309 		ret = ext4_mark_inode_dirty(handle, inode);
1310 
1311 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1312 		/* if we have allocated more blocks and copied
1313 		 * less. We will have blocks allocated outside
1314 		 * inode->i_size. So truncate them
1315 		 */
1316 		ext4_orphan_add(handle, inode);
1317 
1318 	ret2 = ext4_journal_stop(handle);
1319 	if (!ret)
1320 		ret = ret2;
1321 
1322 	if (pos + len > inode->i_size && !verity) {
1323 		ext4_truncate_failed_write(inode);
1324 		/*
1325 		 * If truncate failed early the inode might still be
1326 		 * on the orphan list; we need to make sure the inode
1327 		 * is removed from the orphan list in that case.
1328 		 */
1329 		if (inode->i_nlink)
1330 			ext4_orphan_del(NULL, inode);
1331 	}
1332 
1333 	return ret ? ret : copied;
1334 }
1335 
1336 /*
1337  * This is a private version of folio_zero_new_buffers() which doesn't
1338  * set the buffer to be dirty, since in data=journalled mode we need
1339  * to call ext4_dirty_journalled_data() instead.
1340  */
1341 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1342 					    struct inode *inode,
1343 					    struct folio *folio,
1344 					    unsigned from, unsigned to)
1345 {
1346 	unsigned int block_start = 0, block_end;
1347 	struct buffer_head *head, *bh;
1348 
1349 	bh = head = folio_buffers(folio);
1350 	do {
1351 		block_end = block_start + bh->b_size;
1352 		if (buffer_new(bh)) {
1353 			if (block_end > from && block_start < to) {
1354 				if (!folio_test_uptodate(folio)) {
1355 					unsigned start, size;
1356 
1357 					start = max(from, block_start);
1358 					size = min(to, block_end) - start;
1359 
1360 					folio_zero_range(folio, start, size);
1361 					write_end_fn(handle, inode, bh);
1362 				}
1363 				clear_buffer_new(bh);
1364 			}
1365 		}
1366 		block_start = block_end;
1367 		bh = bh->b_this_page;
1368 	} while (bh != head);
1369 }
1370 
1371 static int ext4_journalled_write_end(struct file *file,
1372 				     struct address_space *mapping,
1373 				     loff_t pos, unsigned len, unsigned copied,
1374 				     struct page *page, void *fsdata)
1375 {
1376 	struct folio *folio = page_folio(page);
1377 	handle_t *handle = ext4_journal_current_handle();
1378 	struct inode *inode = mapping->host;
1379 	loff_t old_size = inode->i_size;
1380 	int ret = 0, ret2;
1381 	int partial = 0;
1382 	unsigned from, to;
1383 	int size_changed = 0;
1384 	bool verity = ext4_verity_in_progress(inode);
1385 
1386 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1387 	from = pos & (PAGE_SIZE - 1);
1388 	to = from + len;
1389 
1390 	BUG_ON(!ext4_handle_valid(handle));
1391 
1392 	if (ext4_has_inline_data(inode))
1393 		return ext4_write_inline_data_end(inode, pos, len, copied,
1394 						  folio);
1395 
1396 	if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1397 		copied = 0;
1398 		ext4_journalled_zero_new_buffers(handle, inode, folio,
1399 						 from, to);
1400 	} else {
1401 		if (unlikely(copied < len))
1402 			ext4_journalled_zero_new_buffers(handle, inode, folio,
1403 							 from + copied, to);
1404 		ret = ext4_walk_page_buffers(handle, inode,
1405 					     folio_buffers(folio),
1406 					     from, from + copied, &partial,
1407 					     write_end_fn);
1408 		if (!partial)
1409 			folio_mark_uptodate(folio);
1410 	}
1411 	if (!verity)
1412 		size_changed = ext4_update_inode_size(inode, pos + copied);
1413 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1414 	folio_unlock(folio);
1415 	folio_put(folio);
1416 
1417 	if (old_size < pos && !verity)
1418 		pagecache_isize_extended(inode, old_size, pos);
1419 
1420 	if (size_changed) {
1421 		ret2 = ext4_mark_inode_dirty(handle, inode);
1422 		if (!ret)
1423 			ret = ret2;
1424 	}
1425 
1426 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1427 		/* if we have allocated more blocks and copied
1428 		 * less. We will have blocks allocated outside
1429 		 * inode->i_size. So truncate them
1430 		 */
1431 		ext4_orphan_add(handle, inode);
1432 
1433 	ret2 = ext4_journal_stop(handle);
1434 	if (!ret)
1435 		ret = ret2;
1436 	if (pos + len > inode->i_size && !verity) {
1437 		ext4_truncate_failed_write(inode);
1438 		/*
1439 		 * If truncate failed early the inode might still be
1440 		 * on the orphan list; we need to make sure the inode
1441 		 * is removed from the orphan list in that case.
1442 		 */
1443 		if (inode->i_nlink)
1444 			ext4_orphan_del(NULL, inode);
1445 	}
1446 
1447 	return ret ? ret : copied;
1448 }
1449 
1450 /*
1451  * Reserve space for a single cluster
1452  */
1453 static int ext4_da_reserve_space(struct inode *inode)
1454 {
1455 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1456 	struct ext4_inode_info *ei = EXT4_I(inode);
1457 	int ret;
1458 
1459 	/*
1460 	 * We will charge metadata quota at writeout time; this saves
1461 	 * us from metadata over-estimation, though we may go over by
1462 	 * a small amount in the end.  Here we just reserve for data.
1463 	 */
1464 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1465 	if (ret)
1466 		return ret;
1467 
1468 	spin_lock(&ei->i_block_reservation_lock);
1469 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1470 		spin_unlock(&ei->i_block_reservation_lock);
1471 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1472 		return -ENOSPC;
1473 	}
1474 	ei->i_reserved_data_blocks++;
1475 	trace_ext4_da_reserve_space(inode);
1476 	spin_unlock(&ei->i_block_reservation_lock);
1477 
1478 	return 0;       /* success */
1479 }
1480 
1481 void ext4_da_release_space(struct inode *inode, int to_free)
1482 {
1483 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1484 	struct ext4_inode_info *ei = EXT4_I(inode);
1485 
1486 	if (!to_free)
1487 		return;		/* Nothing to release, exit */
1488 
1489 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1490 
1491 	trace_ext4_da_release_space(inode, to_free);
1492 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1493 		/*
1494 		 * if there aren't enough reserved blocks, then the
1495 		 * counter is messed up somewhere.  Since this
1496 		 * function is called from invalidate page, it's
1497 		 * harmless to return without any action.
1498 		 */
1499 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1500 			 "ino %lu, to_free %d with only %d reserved "
1501 			 "data blocks", inode->i_ino, to_free,
1502 			 ei->i_reserved_data_blocks);
1503 		WARN_ON(1);
1504 		to_free = ei->i_reserved_data_blocks;
1505 	}
1506 	ei->i_reserved_data_blocks -= to_free;
1507 
1508 	/* update fs dirty data blocks counter */
1509 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1510 
1511 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1512 
1513 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1514 }
1515 
1516 /*
1517  * Delayed allocation stuff
1518  */
1519 
1520 struct mpage_da_data {
1521 	/* These are input fields for ext4_do_writepages() */
1522 	struct inode *inode;
1523 	struct writeback_control *wbc;
1524 	unsigned int can_map:1;	/* Can writepages call map blocks? */
1525 
1526 	/* These are internal state of ext4_do_writepages() */
1527 	pgoff_t first_page;	/* The first page to write */
1528 	pgoff_t next_page;	/* Current page to examine */
1529 	pgoff_t last_page;	/* Last page to examine */
1530 	/*
1531 	 * Extent to map - this can be after first_page because that can be
1532 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1533 	 * is delalloc or unwritten.
1534 	 */
1535 	struct ext4_map_blocks map;
1536 	struct ext4_io_submit io_submit;	/* IO submission data */
1537 	unsigned int do_map:1;
1538 	unsigned int scanned_until_end:1;
1539 	unsigned int journalled_more_data:1;
1540 };
1541 
1542 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1543 				       bool invalidate)
1544 {
1545 	unsigned nr, i;
1546 	pgoff_t index, end;
1547 	struct folio_batch fbatch;
1548 	struct inode *inode = mpd->inode;
1549 	struct address_space *mapping = inode->i_mapping;
1550 
1551 	/* This is necessary when next_page == 0. */
1552 	if (mpd->first_page >= mpd->next_page)
1553 		return;
1554 
1555 	mpd->scanned_until_end = 0;
1556 	index = mpd->first_page;
1557 	end   = mpd->next_page - 1;
1558 	if (invalidate) {
1559 		ext4_lblk_t start, last;
1560 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1561 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1562 
1563 		/*
1564 		 * avoid racing with extent status tree scans made by
1565 		 * ext4_insert_delayed_block()
1566 		 */
1567 		down_write(&EXT4_I(inode)->i_data_sem);
1568 		ext4_es_remove_extent(inode, start, last - start + 1);
1569 		up_write(&EXT4_I(inode)->i_data_sem);
1570 	}
1571 
1572 	folio_batch_init(&fbatch);
1573 	while (index <= end) {
1574 		nr = filemap_get_folios(mapping, &index, end, &fbatch);
1575 		if (nr == 0)
1576 			break;
1577 		for (i = 0; i < nr; i++) {
1578 			struct folio *folio = fbatch.folios[i];
1579 
1580 			if (folio->index < mpd->first_page)
1581 				continue;
1582 			if (folio_next_index(folio) - 1 > end)
1583 				continue;
1584 			BUG_ON(!folio_test_locked(folio));
1585 			BUG_ON(folio_test_writeback(folio));
1586 			if (invalidate) {
1587 				if (folio_mapped(folio))
1588 					folio_clear_dirty_for_io(folio);
1589 				block_invalidate_folio(folio, 0,
1590 						folio_size(folio));
1591 				folio_clear_uptodate(folio);
1592 			}
1593 			folio_unlock(folio);
1594 		}
1595 		folio_batch_release(&fbatch);
1596 	}
1597 }
1598 
1599 static void ext4_print_free_blocks(struct inode *inode)
1600 {
1601 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1602 	struct super_block *sb = inode->i_sb;
1603 	struct ext4_inode_info *ei = EXT4_I(inode);
1604 
1605 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1606 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1607 			ext4_count_free_clusters(sb)));
1608 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1609 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1610 	       (long long) EXT4_C2B(EXT4_SB(sb),
1611 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1612 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1613 	       (long long) EXT4_C2B(EXT4_SB(sb),
1614 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1615 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1616 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1617 		 ei->i_reserved_data_blocks);
1618 	return;
1619 }
1620 
1621 /*
1622  * ext4_insert_delayed_block - adds a delayed block to the extents status
1623  *                             tree, incrementing the reserved cluster/block
1624  *                             count or making a pending reservation
1625  *                             where needed
1626  *
1627  * @inode - file containing the newly added block
1628  * @lblk - logical block to be added
1629  *
1630  * Returns 0 on success, negative error code on failure.
1631  */
1632 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1633 {
1634 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1635 	int ret;
1636 	bool allocated = false;
1637 
1638 	/*
1639 	 * If the cluster containing lblk is shared with a delayed,
1640 	 * written, or unwritten extent in a bigalloc file system, it's
1641 	 * already been accounted for and does not need to be reserved.
1642 	 * A pending reservation must be made for the cluster if it's
1643 	 * shared with a written or unwritten extent and doesn't already
1644 	 * have one.  Written and unwritten extents can be purged from the
1645 	 * extents status tree if the system is under memory pressure, so
1646 	 * it's necessary to examine the extent tree if a search of the
1647 	 * extents status tree doesn't get a match.
1648 	 */
1649 	if (sbi->s_cluster_ratio == 1) {
1650 		ret = ext4_da_reserve_space(inode);
1651 		if (ret != 0)   /* ENOSPC */
1652 			return ret;
1653 	} else {   /* bigalloc */
1654 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1655 			if (!ext4_es_scan_clu(inode,
1656 					      &ext4_es_is_mapped, lblk)) {
1657 				ret = ext4_clu_mapped(inode,
1658 						      EXT4_B2C(sbi, lblk));
1659 				if (ret < 0)
1660 					return ret;
1661 				if (ret == 0) {
1662 					ret = ext4_da_reserve_space(inode);
1663 					if (ret != 0)   /* ENOSPC */
1664 						return ret;
1665 				} else {
1666 					allocated = true;
1667 				}
1668 			} else {
1669 				allocated = true;
1670 			}
1671 		}
1672 	}
1673 
1674 	ext4_es_insert_delayed_block(inode, lblk, allocated);
1675 	return 0;
1676 }
1677 
1678 /*
1679  * This function is grabs code from the very beginning of
1680  * ext4_map_blocks, but assumes that the caller is from delayed write
1681  * time. This function looks up the requested blocks and sets the
1682  * buffer delay bit under the protection of i_data_sem.
1683  */
1684 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1685 			      struct ext4_map_blocks *map,
1686 			      struct buffer_head *bh)
1687 {
1688 	struct extent_status es;
1689 	int retval;
1690 	sector_t invalid_block = ~((sector_t) 0xffff);
1691 #ifdef ES_AGGRESSIVE_TEST
1692 	struct ext4_map_blocks orig_map;
1693 
1694 	memcpy(&orig_map, map, sizeof(*map));
1695 #endif
1696 
1697 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1698 		invalid_block = ~0;
1699 
1700 	map->m_flags = 0;
1701 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1702 		  (unsigned long) map->m_lblk);
1703 
1704 	/* Lookup extent status tree firstly */
1705 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1706 		if (ext4_es_is_hole(&es)) {
1707 			retval = 0;
1708 			down_read(&EXT4_I(inode)->i_data_sem);
1709 			goto add_delayed;
1710 		}
1711 
1712 		/*
1713 		 * Delayed extent could be allocated by fallocate.
1714 		 * So we need to check it.
1715 		 */
1716 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1717 			map_bh(bh, inode->i_sb, invalid_block);
1718 			set_buffer_new(bh);
1719 			set_buffer_delay(bh);
1720 			return 0;
1721 		}
1722 
1723 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1724 		retval = es.es_len - (iblock - es.es_lblk);
1725 		if (retval > map->m_len)
1726 			retval = map->m_len;
1727 		map->m_len = retval;
1728 		if (ext4_es_is_written(&es))
1729 			map->m_flags |= EXT4_MAP_MAPPED;
1730 		else if (ext4_es_is_unwritten(&es))
1731 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1732 		else
1733 			BUG();
1734 
1735 #ifdef ES_AGGRESSIVE_TEST
1736 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1737 #endif
1738 		return retval;
1739 	}
1740 
1741 	/*
1742 	 * Try to see if we can get the block without requesting a new
1743 	 * file system block.
1744 	 */
1745 	down_read(&EXT4_I(inode)->i_data_sem);
1746 	if (ext4_has_inline_data(inode))
1747 		retval = 0;
1748 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1749 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1750 	else
1751 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1752 
1753 add_delayed:
1754 	if (retval == 0) {
1755 		int ret;
1756 
1757 		/*
1758 		 * XXX: __block_prepare_write() unmaps passed block,
1759 		 * is it OK?
1760 		 */
1761 
1762 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1763 		if (ret != 0) {
1764 			retval = ret;
1765 			goto out_unlock;
1766 		}
1767 
1768 		map_bh(bh, inode->i_sb, invalid_block);
1769 		set_buffer_new(bh);
1770 		set_buffer_delay(bh);
1771 	} else if (retval > 0) {
1772 		unsigned int status;
1773 
1774 		if (unlikely(retval != map->m_len)) {
1775 			ext4_warning(inode->i_sb,
1776 				     "ES len assertion failed for inode "
1777 				     "%lu: retval %d != map->m_len %d",
1778 				     inode->i_ino, retval, map->m_len);
1779 			WARN_ON(1);
1780 		}
1781 
1782 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1783 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1784 		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1785 				      map->m_pblk, status);
1786 	}
1787 
1788 out_unlock:
1789 	up_read((&EXT4_I(inode)->i_data_sem));
1790 
1791 	return retval;
1792 }
1793 
1794 /*
1795  * This is a special get_block_t callback which is used by
1796  * ext4_da_write_begin().  It will either return mapped block or
1797  * reserve space for a single block.
1798  *
1799  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1800  * We also have b_blocknr = -1 and b_bdev initialized properly
1801  *
1802  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1803  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1804  * initialized properly.
1805  */
1806 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1807 			   struct buffer_head *bh, int create)
1808 {
1809 	struct ext4_map_blocks map;
1810 	int ret = 0;
1811 
1812 	BUG_ON(create == 0);
1813 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1814 
1815 	map.m_lblk = iblock;
1816 	map.m_len = 1;
1817 
1818 	/*
1819 	 * first, we need to know whether the block is allocated already
1820 	 * preallocated blocks are unmapped but should treated
1821 	 * the same as allocated blocks.
1822 	 */
1823 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1824 	if (ret <= 0)
1825 		return ret;
1826 
1827 	map_bh(bh, inode->i_sb, map.m_pblk);
1828 	ext4_update_bh_state(bh, map.m_flags);
1829 
1830 	if (buffer_unwritten(bh)) {
1831 		/* A delayed write to unwritten bh should be marked
1832 		 * new and mapped.  Mapped ensures that we don't do
1833 		 * get_block multiple times when we write to the same
1834 		 * offset and new ensures that we do proper zero out
1835 		 * for partial write.
1836 		 */
1837 		set_buffer_new(bh);
1838 		set_buffer_mapped(bh);
1839 	}
1840 	return 0;
1841 }
1842 
1843 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
1844 {
1845 	mpd->first_page += folio_nr_pages(folio);
1846 	folio_unlock(folio);
1847 }
1848 
1849 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1850 {
1851 	size_t len;
1852 	loff_t size;
1853 	int err;
1854 
1855 	BUG_ON(folio->index != mpd->first_page);
1856 	folio_clear_dirty_for_io(folio);
1857 	/*
1858 	 * We have to be very careful here!  Nothing protects writeback path
1859 	 * against i_size changes and the page can be writeably mapped into
1860 	 * page tables. So an application can be growing i_size and writing
1861 	 * data through mmap while writeback runs. folio_clear_dirty_for_io()
1862 	 * write-protects our page in page tables and the page cannot get
1863 	 * written to again until we release folio lock. So only after
1864 	 * folio_clear_dirty_for_io() we are safe to sample i_size for
1865 	 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1866 	 * on the barrier provided by folio_test_clear_dirty() in
1867 	 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1868 	 * after page tables are updated.
1869 	 */
1870 	size = i_size_read(mpd->inode);
1871 	len = folio_size(folio);
1872 	if (folio_pos(folio) + len > size &&
1873 	    !ext4_verity_in_progress(mpd->inode))
1874 		len = size & ~PAGE_MASK;
1875 	err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
1876 	if (!err)
1877 		mpd->wbc->nr_to_write--;
1878 
1879 	return err;
1880 }
1881 
1882 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1883 
1884 /*
1885  * mballoc gives us at most this number of blocks...
1886  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1887  * The rest of mballoc seems to handle chunks up to full group size.
1888  */
1889 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1890 
1891 /*
1892  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1893  *
1894  * @mpd - extent of blocks
1895  * @lblk - logical number of the block in the file
1896  * @bh - buffer head we want to add to the extent
1897  *
1898  * The function is used to collect contig. blocks in the same state. If the
1899  * buffer doesn't require mapping for writeback and we haven't started the
1900  * extent of buffers to map yet, the function returns 'true' immediately - the
1901  * caller can write the buffer right away. Otherwise the function returns true
1902  * if the block has been added to the extent, false if the block couldn't be
1903  * added.
1904  */
1905 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1906 				   struct buffer_head *bh)
1907 {
1908 	struct ext4_map_blocks *map = &mpd->map;
1909 
1910 	/* Buffer that doesn't need mapping for writeback? */
1911 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1912 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1913 		/* So far no extent to map => we write the buffer right away */
1914 		if (map->m_len == 0)
1915 			return true;
1916 		return false;
1917 	}
1918 
1919 	/* First block in the extent? */
1920 	if (map->m_len == 0) {
1921 		/* We cannot map unless handle is started... */
1922 		if (!mpd->do_map)
1923 			return false;
1924 		map->m_lblk = lblk;
1925 		map->m_len = 1;
1926 		map->m_flags = bh->b_state & BH_FLAGS;
1927 		return true;
1928 	}
1929 
1930 	/* Don't go larger than mballoc is willing to allocate */
1931 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1932 		return false;
1933 
1934 	/* Can we merge the block to our big extent? */
1935 	if (lblk == map->m_lblk + map->m_len &&
1936 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1937 		map->m_len++;
1938 		return true;
1939 	}
1940 	return false;
1941 }
1942 
1943 /*
1944  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1945  *
1946  * @mpd - extent of blocks for mapping
1947  * @head - the first buffer in the page
1948  * @bh - buffer we should start processing from
1949  * @lblk - logical number of the block in the file corresponding to @bh
1950  *
1951  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1952  * the page for IO if all buffers in this page were mapped and there's no
1953  * accumulated extent of buffers to map or add buffers in the page to the
1954  * extent of buffers to map. The function returns 1 if the caller can continue
1955  * by processing the next page, 0 if it should stop adding buffers to the
1956  * extent to map because we cannot extend it anymore. It can also return value
1957  * < 0 in case of error during IO submission.
1958  */
1959 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1960 				   struct buffer_head *head,
1961 				   struct buffer_head *bh,
1962 				   ext4_lblk_t lblk)
1963 {
1964 	struct inode *inode = mpd->inode;
1965 	int err;
1966 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
1967 							>> inode->i_blkbits;
1968 
1969 	if (ext4_verity_in_progress(inode))
1970 		blocks = EXT_MAX_BLOCKS;
1971 
1972 	do {
1973 		BUG_ON(buffer_locked(bh));
1974 
1975 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1976 			/* Found extent to map? */
1977 			if (mpd->map.m_len)
1978 				return 0;
1979 			/* Buffer needs mapping and handle is not started? */
1980 			if (!mpd->do_map)
1981 				return 0;
1982 			/* Everything mapped so far and we hit EOF */
1983 			break;
1984 		}
1985 	} while (lblk++, (bh = bh->b_this_page) != head);
1986 	/* So far everything mapped? Submit the page for IO. */
1987 	if (mpd->map.m_len == 0) {
1988 		err = mpage_submit_folio(mpd, head->b_folio);
1989 		if (err < 0)
1990 			return err;
1991 		mpage_folio_done(mpd, head->b_folio);
1992 	}
1993 	if (lblk >= blocks) {
1994 		mpd->scanned_until_end = 1;
1995 		return 0;
1996 	}
1997 	return 1;
1998 }
1999 
2000 /*
2001  * mpage_process_folio - update folio buffers corresponding to changed extent
2002  *			 and may submit fully mapped page for IO
2003  * @mpd: description of extent to map, on return next extent to map
2004  * @folio: Contains these buffers.
2005  * @m_lblk: logical block mapping.
2006  * @m_pblk: corresponding physical mapping.
2007  * @map_bh: determines on return whether this page requires any further
2008  *		  mapping or not.
2009  *
2010  * Scan given folio buffers corresponding to changed extent and update buffer
2011  * state according to new extent state.
2012  * We map delalloc buffers to their physical location, clear unwritten bits.
2013  * If the given folio is not fully mapped, we update @mpd to the next extent in
2014  * the given folio that needs mapping & return @map_bh as true.
2015  */
2016 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2017 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2018 			      bool *map_bh)
2019 {
2020 	struct buffer_head *head, *bh;
2021 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2022 	ext4_lblk_t lblk = *m_lblk;
2023 	ext4_fsblk_t pblock = *m_pblk;
2024 	int err = 0;
2025 	int blkbits = mpd->inode->i_blkbits;
2026 	ssize_t io_end_size = 0;
2027 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2028 
2029 	bh = head = folio_buffers(folio);
2030 	do {
2031 		if (lblk < mpd->map.m_lblk)
2032 			continue;
2033 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2034 			/*
2035 			 * Buffer after end of mapped extent.
2036 			 * Find next buffer in the folio to map.
2037 			 */
2038 			mpd->map.m_len = 0;
2039 			mpd->map.m_flags = 0;
2040 			io_end_vec->size += io_end_size;
2041 
2042 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2043 			if (err > 0)
2044 				err = 0;
2045 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2046 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2047 				if (IS_ERR(io_end_vec)) {
2048 					err = PTR_ERR(io_end_vec);
2049 					goto out;
2050 				}
2051 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2052 			}
2053 			*map_bh = true;
2054 			goto out;
2055 		}
2056 		if (buffer_delay(bh)) {
2057 			clear_buffer_delay(bh);
2058 			bh->b_blocknr = pblock++;
2059 		}
2060 		clear_buffer_unwritten(bh);
2061 		io_end_size += (1 << blkbits);
2062 	} while (lblk++, (bh = bh->b_this_page) != head);
2063 
2064 	io_end_vec->size += io_end_size;
2065 	*map_bh = false;
2066 out:
2067 	*m_lblk = lblk;
2068 	*m_pblk = pblock;
2069 	return err;
2070 }
2071 
2072 /*
2073  * mpage_map_buffers - update buffers corresponding to changed extent and
2074  *		       submit fully mapped pages for IO
2075  *
2076  * @mpd - description of extent to map, on return next extent to map
2077  *
2078  * Scan buffers corresponding to changed extent (we expect corresponding pages
2079  * to be already locked) and update buffer state according to new extent state.
2080  * We map delalloc buffers to their physical location, clear unwritten bits,
2081  * and mark buffers as uninit when we perform writes to unwritten extents
2082  * and do extent conversion after IO is finished. If the last page is not fully
2083  * mapped, we update @map to the next extent in the last page that needs
2084  * mapping. Otherwise we submit the page for IO.
2085  */
2086 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2087 {
2088 	struct folio_batch fbatch;
2089 	unsigned nr, i;
2090 	struct inode *inode = mpd->inode;
2091 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2092 	pgoff_t start, end;
2093 	ext4_lblk_t lblk;
2094 	ext4_fsblk_t pblock;
2095 	int err;
2096 	bool map_bh = false;
2097 
2098 	start = mpd->map.m_lblk >> bpp_bits;
2099 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2100 	lblk = start << bpp_bits;
2101 	pblock = mpd->map.m_pblk;
2102 
2103 	folio_batch_init(&fbatch);
2104 	while (start <= end) {
2105 		nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2106 		if (nr == 0)
2107 			break;
2108 		for (i = 0; i < nr; i++) {
2109 			struct folio *folio = fbatch.folios[i];
2110 
2111 			err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2112 						 &map_bh);
2113 			/*
2114 			 * If map_bh is true, means page may require further bh
2115 			 * mapping, or maybe the page was submitted for IO.
2116 			 * So we return to call further extent mapping.
2117 			 */
2118 			if (err < 0 || map_bh)
2119 				goto out;
2120 			/* Page fully mapped - let IO run! */
2121 			err = mpage_submit_folio(mpd, folio);
2122 			if (err < 0)
2123 				goto out;
2124 			mpage_folio_done(mpd, folio);
2125 		}
2126 		folio_batch_release(&fbatch);
2127 	}
2128 	/* Extent fully mapped and matches with page boundary. We are done. */
2129 	mpd->map.m_len = 0;
2130 	mpd->map.m_flags = 0;
2131 	return 0;
2132 out:
2133 	folio_batch_release(&fbatch);
2134 	return err;
2135 }
2136 
2137 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2138 {
2139 	struct inode *inode = mpd->inode;
2140 	struct ext4_map_blocks *map = &mpd->map;
2141 	int get_blocks_flags;
2142 	int err, dioread_nolock;
2143 
2144 	trace_ext4_da_write_pages_extent(inode, map);
2145 	/*
2146 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2147 	 * to convert an unwritten extent to be initialized (in the case
2148 	 * where we have written into one or more preallocated blocks).  It is
2149 	 * possible that we're going to need more metadata blocks than
2150 	 * previously reserved. However we must not fail because we're in
2151 	 * writeback and there is nothing we can do about it so it might result
2152 	 * in data loss.  So use reserved blocks to allocate metadata if
2153 	 * possible.
2154 	 *
2155 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2156 	 * the blocks in question are delalloc blocks.  This indicates
2157 	 * that the blocks and quotas has already been checked when
2158 	 * the data was copied into the page cache.
2159 	 */
2160 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2161 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2162 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2163 	dioread_nolock = ext4_should_dioread_nolock(inode);
2164 	if (dioread_nolock)
2165 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2166 	if (map->m_flags & BIT(BH_Delay))
2167 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2168 
2169 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2170 	if (err < 0)
2171 		return err;
2172 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2173 		if (!mpd->io_submit.io_end->handle &&
2174 		    ext4_handle_valid(handle)) {
2175 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2176 			handle->h_rsv_handle = NULL;
2177 		}
2178 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2179 	}
2180 
2181 	BUG_ON(map->m_len == 0);
2182 	return 0;
2183 }
2184 
2185 /*
2186  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2187  *				 mpd->len and submit pages underlying it for IO
2188  *
2189  * @handle - handle for journal operations
2190  * @mpd - extent to map
2191  * @give_up_on_write - we set this to true iff there is a fatal error and there
2192  *                     is no hope of writing the data. The caller should discard
2193  *                     dirty pages to avoid infinite loops.
2194  *
2195  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2196  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2197  * them to initialized or split the described range from larger unwritten
2198  * extent. Note that we need not map all the described range since allocation
2199  * can return less blocks or the range is covered by more unwritten extents. We
2200  * cannot map more because we are limited by reserved transaction credits. On
2201  * the other hand we always make sure that the last touched page is fully
2202  * mapped so that it can be written out (and thus forward progress is
2203  * guaranteed). After mapping we submit all mapped pages for IO.
2204  */
2205 static int mpage_map_and_submit_extent(handle_t *handle,
2206 				       struct mpage_da_data *mpd,
2207 				       bool *give_up_on_write)
2208 {
2209 	struct inode *inode = mpd->inode;
2210 	struct ext4_map_blocks *map = &mpd->map;
2211 	int err;
2212 	loff_t disksize;
2213 	int progress = 0;
2214 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2215 	struct ext4_io_end_vec *io_end_vec;
2216 
2217 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2218 	if (IS_ERR(io_end_vec))
2219 		return PTR_ERR(io_end_vec);
2220 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2221 	do {
2222 		err = mpage_map_one_extent(handle, mpd);
2223 		if (err < 0) {
2224 			struct super_block *sb = inode->i_sb;
2225 
2226 			if (ext4_forced_shutdown(sb))
2227 				goto invalidate_dirty_pages;
2228 			/*
2229 			 * Let the uper layers retry transient errors.
2230 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2231 			 * is non-zero, a commit should free up blocks.
2232 			 */
2233 			if ((err == -ENOMEM) ||
2234 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2235 				if (progress)
2236 					goto update_disksize;
2237 				return err;
2238 			}
2239 			ext4_msg(sb, KERN_CRIT,
2240 				 "Delayed block allocation failed for "
2241 				 "inode %lu at logical offset %llu with"
2242 				 " max blocks %u with error %d",
2243 				 inode->i_ino,
2244 				 (unsigned long long)map->m_lblk,
2245 				 (unsigned)map->m_len, -err);
2246 			ext4_msg(sb, KERN_CRIT,
2247 				 "This should not happen!! Data will "
2248 				 "be lost\n");
2249 			if (err == -ENOSPC)
2250 				ext4_print_free_blocks(inode);
2251 		invalidate_dirty_pages:
2252 			*give_up_on_write = true;
2253 			return err;
2254 		}
2255 		progress = 1;
2256 		/*
2257 		 * Update buffer state, submit mapped pages, and get us new
2258 		 * extent to map
2259 		 */
2260 		err = mpage_map_and_submit_buffers(mpd);
2261 		if (err < 0)
2262 			goto update_disksize;
2263 	} while (map->m_len);
2264 
2265 update_disksize:
2266 	/*
2267 	 * Update on-disk size after IO is submitted.  Races with
2268 	 * truncate are avoided by checking i_size under i_data_sem.
2269 	 */
2270 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2271 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2272 		int err2;
2273 		loff_t i_size;
2274 
2275 		down_write(&EXT4_I(inode)->i_data_sem);
2276 		i_size = i_size_read(inode);
2277 		if (disksize > i_size)
2278 			disksize = i_size;
2279 		if (disksize > EXT4_I(inode)->i_disksize)
2280 			EXT4_I(inode)->i_disksize = disksize;
2281 		up_write(&EXT4_I(inode)->i_data_sem);
2282 		err2 = ext4_mark_inode_dirty(handle, inode);
2283 		if (err2) {
2284 			ext4_error_err(inode->i_sb, -err2,
2285 				       "Failed to mark inode %lu dirty",
2286 				       inode->i_ino);
2287 		}
2288 		if (!err)
2289 			err = err2;
2290 	}
2291 	return err;
2292 }
2293 
2294 /*
2295  * Calculate the total number of credits to reserve for one writepages
2296  * iteration. This is called from ext4_writepages(). We map an extent of
2297  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2298  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2299  * bpp - 1 blocks in bpp different extents.
2300  */
2301 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2302 {
2303 	int bpp = ext4_journal_blocks_per_page(inode);
2304 
2305 	return ext4_meta_trans_blocks(inode,
2306 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2307 }
2308 
2309 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2310 				     size_t len)
2311 {
2312 	struct buffer_head *page_bufs = folio_buffers(folio);
2313 	struct inode *inode = folio->mapping->host;
2314 	int ret, err;
2315 
2316 	ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2317 				     NULL, do_journal_get_write_access);
2318 	err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2319 				     NULL, write_end_fn);
2320 	if (ret == 0)
2321 		ret = err;
2322 	err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2323 	if (ret == 0)
2324 		ret = err;
2325 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2326 
2327 	return ret;
2328 }
2329 
2330 static int mpage_journal_page_buffers(handle_t *handle,
2331 				      struct mpage_da_data *mpd,
2332 				      struct folio *folio)
2333 {
2334 	struct inode *inode = mpd->inode;
2335 	loff_t size = i_size_read(inode);
2336 	size_t len = folio_size(folio);
2337 
2338 	folio_clear_checked(folio);
2339 	mpd->wbc->nr_to_write--;
2340 
2341 	if (folio_pos(folio) + len > size &&
2342 	    !ext4_verity_in_progress(inode))
2343 		len = size - folio_pos(folio);
2344 
2345 	return ext4_journal_folio_buffers(handle, folio, len);
2346 }
2347 
2348 /*
2349  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2350  * 				 needing mapping, submit mapped pages
2351  *
2352  * @mpd - where to look for pages
2353  *
2354  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2355  * IO immediately. If we cannot map blocks, we submit just already mapped
2356  * buffers in the page for IO and keep page dirty. When we can map blocks and
2357  * we find a page which isn't mapped we start accumulating extent of buffers
2358  * underlying these pages that needs mapping (formed by either delayed or
2359  * unwritten buffers). We also lock the pages containing these buffers. The
2360  * extent found is returned in @mpd structure (starting at mpd->lblk with
2361  * length mpd->len blocks).
2362  *
2363  * Note that this function can attach bios to one io_end structure which are
2364  * neither logically nor physically contiguous. Although it may seem as an
2365  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2366  * case as we need to track IO to all buffers underlying a page in one io_end.
2367  */
2368 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2369 {
2370 	struct address_space *mapping = mpd->inode->i_mapping;
2371 	struct folio_batch fbatch;
2372 	unsigned int nr_folios;
2373 	pgoff_t index = mpd->first_page;
2374 	pgoff_t end = mpd->last_page;
2375 	xa_mark_t tag;
2376 	int i, err = 0;
2377 	int blkbits = mpd->inode->i_blkbits;
2378 	ext4_lblk_t lblk;
2379 	struct buffer_head *head;
2380 	handle_t *handle = NULL;
2381 	int bpp = ext4_journal_blocks_per_page(mpd->inode);
2382 
2383 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2384 		tag = PAGECACHE_TAG_TOWRITE;
2385 	else
2386 		tag = PAGECACHE_TAG_DIRTY;
2387 
2388 	mpd->map.m_len = 0;
2389 	mpd->next_page = index;
2390 	if (ext4_should_journal_data(mpd->inode)) {
2391 		handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2392 					    bpp);
2393 		if (IS_ERR(handle))
2394 			return PTR_ERR(handle);
2395 	}
2396 	folio_batch_init(&fbatch);
2397 	while (index <= end) {
2398 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
2399 				tag, &fbatch);
2400 		if (nr_folios == 0)
2401 			break;
2402 
2403 		for (i = 0; i < nr_folios; i++) {
2404 			struct folio *folio = fbatch.folios[i];
2405 
2406 			/*
2407 			 * Accumulated enough dirty pages? This doesn't apply
2408 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2409 			 * keep going because someone may be concurrently
2410 			 * dirtying pages, and we might have synced a lot of
2411 			 * newly appeared dirty pages, but have not synced all
2412 			 * of the old dirty pages.
2413 			 */
2414 			if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2415 			    mpd->wbc->nr_to_write <=
2416 			    mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2417 				goto out;
2418 
2419 			/* If we can't merge this page, we are done. */
2420 			if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2421 				goto out;
2422 
2423 			if (handle) {
2424 				err = ext4_journal_ensure_credits(handle, bpp,
2425 								  0);
2426 				if (err < 0)
2427 					goto out;
2428 			}
2429 
2430 			folio_lock(folio);
2431 			/*
2432 			 * If the page is no longer dirty, or its mapping no
2433 			 * longer corresponds to inode we are writing (which
2434 			 * means it has been truncated or invalidated), or the
2435 			 * page is already under writeback and we are not doing
2436 			 * a data integrity writeback, skip the page
2437 			 */
2438 			if (!folio_test_dirty(folio) ||
2439 			    (folio_test_writeback(folio) &&
2440 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2441 			    unlikely(folio->mapping != mapping)) {
2442 				folio_unlock(folio);
2443 				continue;
2444 			}
2445 
2446 			folio_wait_writeback(folio);
2447 			BUG_ON(folio_test_writeback(folio));
2448 
2449 			/*
2450 			 * Should never happen but for buggy code in
2451 			 * other subsystems that call
2452 			 * set_page_dirty() without properly warning
2453 			 * the file system first.  See [1] for more
2454 			 * information.
2455 			 *
2456 			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2457 			 */
2458 			if (!folio_buffers(folio)) {
2459 				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2460 				folio_clear_dirty(folio);
2461 				folio_unlock(folio);
2462 				continue;
2463 			}
2464 
2465 			if (mpd->map.m_len == 0)
2466 				mpd->first_page = folio->index;
2467 			mpd->next_page = folio_next_index(folio);
2468 			/*
2469 			 * Writeout when we cannot modify metadata is simple.
2470 			 * Just submit the page. For data=journal mode we
2471 			 * first handle writeout of the page for checkpoint and
2472 			 * only after that handle delayed page dirtying. This
2473 			 * makes sure current data is checkpointed to the final
2474 			 * location before possibly journalling it again which
2475 			 * is desirable when the page is frequently dirtied
2476 			 * through a pin.
2477 			 */
2478 			if (!mpd->can_map) {
2479 				err = mpage_submit_folio(mpd, folio);
2480 				if (err < 0)
2481 					goto out;
2482 				/* Pending dirtying of journalled data? */
2483 				if (folio_test_checked(folio)) {
2484 					err = mpage_journal_page_buffers(handle,
2485 						mpd, folio);
2486 					if (err < 0)
2487 						goto out;
2488 					mpd->journalled_more_data = 1;
2489 				}
2490 				mpage_folio_done(mpd, folio);
2491 			} else {
2492 				/* Add all dirty buffers to mpd */
2493 				lblk = ((ext4_lblk_t)folio->index) <<
2494 					(PAGE_SHIFT - blkbits);
2495 				head = folio_buffers(folio);
2496 				err = mpage_process_page_bufs(mpd, head, head,
2497 						lblk);
2498 				if (err <= 0)
2499 					goto out;
2500 				err = 0;
2501 			}
2502 		}
2503 		folio_batch_release(&fbatch);
2504 		cond_resched();
2505 	}
2506 	mpd->scanned_until_end = 1;
2507 	if (handle)
2508 		ext4_journal_stop(handle);
2509 	return 0;
2510 out:
2511 	folio_batch_release(&fbatch);
2512 	if (handle)
2513 		ext4_journal_stop(handle);
2514 	return err;
2515 }
2516 
2517 static int ext4_do_writepages(struct mpage_da_data *mpd)
2518 {
2519 	struct writeback_control *wbc = mpd->wbc;
2520 	pgoff_t	writeback_index = 0;
2521 	long nr_to_write = wbc->nr_to_write;
2522 	int range_whole = 0;
2523 	int cycled = 1;
2524 	handle_t *handle = NULL;
2525 	struct inode *inode = mpd->inode;
2526 	struct address_space *mapping = inode->i_mapping;
2527 	int needed_blocks, rsv_blocks = 0, ret = 0;
2528 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2529 	struct blk_plug plug;
2530 	bool give_up_on_write = false;
2531 
2532 	trace_ext4_writepages(inode, wbc);
2533 
2534 	/*
2535 	 * No pages to write? This is mainly a kludge to avoid starting
2536 	 * a transaction for special inodes like journal inode on last iput()
2537 	 * because that could violate lock ordering on umount
2538 	 */
2539 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2540 		goto out_writepages;
2541 
2542 	/*
2543 	 * If the filesystem has aborted, it is read-only, so return
2544 	 * right away instead of dumping stack traces later on that
2545 	 * will obscure the real source of the problem.  We test
2546 	 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2547 	 * the latter could be true if the filesystem is mounted
2548 	 * read-only, and in that case, ext4_writepages should
2549 	 * *never* be called, so if that ever happens, we would want
2550 	 * the stack trace.
2551 	 */
2552 	if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) {
2553 		ret = -EROFS;
2554 		goto out_writepages;
2555 	}
2556 
2557 	/*
2558 	 * If we have inline data and arrive here, it means that
2559 	 * we will soon create the block for the 1st page, so
2560 	 * we'd better clear the inline data here.
2561 	 */
2562 	if (ext4_has_inline_data(inode)) {
2563 		/* Just inode will be modified... */
2564 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2565 		if (IS_ERR(handle)) {
2566 			ret = PTR_ERR(handle);
2567 			goto out_writepages;
2568 		}
2569 		BUG_ON(ext4_test_inode_state(inode,
2570 				EXT4_STATE_MAY_INLINE_DATA));
2571 		ext4_destroy_inline_data(handle, inode);
2572 		ext4_journal_stop(handle);
2573 	}
2574 
2575 	/*
2576 	 * data=journal mode does not do delalloc so we just need to writeout /
2577 	 * journal already mapped buffers. On the other hand we need to commit
2578 	 * transaction to make data stable. We expect all the data to be
2579 	 * already in the journal (the only exception are DMA pinned pages
2580 	 * dirtied behind our back) so we commit transaction here and run the
2581 	 * writeback loop to checkpoint them. The checkpointing is not actually
2582 	 * necessary to make data persistent *but* quite a few places (extent
2583 	 * shifting operations, fsverity, ...) depend on being able to drop
2584 	 * pagecache pages after calling filemap_write_and_wait() and for that
2585 	 * checkpointing needs to happen.
2586 	 */
2587 	if (ext4_should_journal_data(inode)) {
2588 		mpd->can_map = 0;
2589 		if (wbc->sync_mode == WB_SYNC_ALL)
2590 			ext4_fc_commit(sbi->s_journal,
2591 				       EXT4_I(inode)->i_datasync_tid);
2592 	}
2593 	mpd->journalled_more_data = 0;
2594 
2595 	if (ext4_should_dioread_nolock(inode)) {
2596 		/*
2597 		 * We may need to convert up to one extent per block in
2598 		 * the page and we may dirty the inode.
2599 		 */
2600 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2601 						PAGE_SIZE >> inode->i_blkbits);
2602 	}
2603 
2604 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2605 		range_whole = 1;
2606 
2607 	if (wbc->range_cyclic) {
2608 		writeback_index = mapping->writeback_index;
2609 		if (writeback_index)
2610 			cycled = 0;
2611 		mpd->first_page = writeback_index;
2612 		mpd->last_page = -1;
2613 	} else {
2614 		mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2615 		mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2616 	}
2617 
2618 	ext4_io_submit_init(&mpd->io_submit, wbc);
2619 retry:
2620 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2621 		tag_pages_for_writeback(mapping, mpd->first_page,
2622 					mpd->last_page);
2623 	blk_start_plug(&plug);
2624 
2625 	/*
2626 	 * First writeback pages that don't need mapping - we can avoid
2627 	 * starting a transaction unnecessarily and also avoid being blocked
2628 	 * in the block layer on device congestion while having transaction
2629 	 * started.
2630 	 */
2631 	mpd->do_map = 0;
2632 	mpd->scanned_until_end = 0;
2633 	mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2634 	if (!mpd->io_submit.io_end) {
2635 		ret = -ENOMEM;
2636 		goto unplug;
2637 	}
2638 	ret = mpage_prepare_extent_to_map(mpd);
2639 	/* Unlock pages we didn't use */
2640 	mpage_release_unused_pages(mpd, false);
2641 	/* Submit prepared bio */
2642 	ext4_io_submit(&mpd->io_submit);
2643 	ext4_put_io_end_defer(mpd->io_submit.io_end);
2644 	mpd->io_submit.io_end = NULL;
2645 	if (ret < 0)
2646 		goto unplug;
2647 
2648 	while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2649 		/* For each extent of pages we use new io_end */
2650 		mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2651 		if (!mpd->io_submit.io_end) {
2652 			ret = -ENOMEM;
2653 			break;
2654 		}
2655 
2656 		WARN_ON_ONCE(!mpd->can_map);
2657 		/*
2658 		 * We have two constraints: We find one extent to map and we
2659 		 * must always write out whole page (makes a difference when
2660 		 * blocksize < pagesize) so that we don't block on IO when we
2661 		 * try to write out the rest of the page. Journalled mode is
2662 		 * not supported by delalloc.
2663 		 */
2664 		BUG_ON(ext4_should_journal_data(inode));
2665 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2666 
2667 		/* start a new transaction */
2668 		handle = ext4_journal_start_with_reserve(inode,
2669 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2670 		if (IS_ERR(handle)) {
2671 			ret = PTR_ERR(handle);
2672 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2673 			       "%ld pages, ino %lu; err %d", __func__,
2674 				wbc->nr_to_write, inode->i_ino, ret);
2675 			/* Release allocated io_end */
2676 			ext4_put_io_end(mpd->io_submit.io_end);
2677 			mpd->io_submit.io_end = NULL;
2678 			break;
2679 		}
2680 		mpd->do_map = 1;
2681 
2682 		trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2683 		ret = mpage_prepare_extent_to_map(mpd);
2684 		if (!ret && mpd->map.m_len)
2685 			ret = mpage_map_and_submit_extent(handle, mpd,
2686 					&give_up_on_write);
2687 		/*
2688 		 * Caution: If the handle is synchronous,
2689 		 * ext4_journal_stop() can wait for transaction commit
2690 		 * to finish which may depend on writeback of pages to
2691 		 * complete or on page lock to be released.  In that
2692 		 * case, we have to wait until after we have
2693 		 * submitted all the IO, released page locks we hold,
2694 		 * and dropped io_end reference (for extent conversion
2695 		 * to be able to complete) before stopping the handle.
2696 		 */
2697 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2698 			ext4_journal_stop(handle);
2699 			handle = NULL;
2700 			mpd->do_map = 0;
2701 		}
2702 		/* Unlock pages we didn't use */
2703 		mpage_release_unused_pages(mpd, give_up_on_write);
2704 		/* Submit prepared bio */
2705 		ext4_io_submit(&mpd->io_submit);
2706 
2707 		/*
2708 		 * Drop our io_end reference we got from init. We have
2709 		 * to be careful and use deferred io_end finishing if
2710 		 * we are still holding the transaction as we can
2711 		 * release the last reference to io_end which may end
2712 		 * up doing unwritten extent conversion.
2713 		 */
2714 		if (handle) {
2715 			ext4_put_io_end_defer(mpd->io_submit.io_end);
2716 			ext4_journal_stop(handle);
2717 		} else
2718 			ext4_put_io_end(mpd->io_submit.io_end);
2719 		mpd->io_submit.io_end = NULL;
2720 
2721 		if (ret == -ENOSPC && sbi->s_journal) {
2722 			/*
2723 			 * Commit the transaction which would
2724 			 * free blocks released in the transaction
2725 			 * and try again
2726 			 */
2727 			jbd2_journal_force_commit_nested(sbi->s_journal);
2728 			ret = 0;
2729 			continue;
2730 		}
2731 		/* Fatal error - ENOMEM, EIO... */
2732 		if (ret)
2733 			break;
2734 	}
2735 unplug:
2736 	blk_finish_plug(&plug);
2737 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2738 		cycled = 1;
2739 		mpd->last_page = writeback_index - 1;
2740 		mpd->first_page = 0;
2741 		goto retry;
2742 	}
2743 
2744 	/* Update index */
2745 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2746 		/*
2747 		 * Set the writeback_index so that range_cyclic
2748 		 * mode will write it back later
2749 		 */
2750 		mapping->writeback_index = mpd->first_page;
2751 
2752 out_writepages:
2753 	trace_ext4_writepages_result(inode, wbc, ret,
2754 				     nr_to_write - wbc->nr_to_write);
2755 	return ret;
2756 }
2757 
2758 static int ext4_writepages(struct address_space *mapping,
2759 			   struct writeback_control *wbc)
2760 {
2761 	struct super_block *sb = mapping->host->i_sb;
2762 	struct mpage_da_data mpd = {
2763 		.inode = mapping->host,
2764 		.wbc = wbc,
2765 		.can_map = 1,
2766 	};
2767 	int ret;
2768 	int alloc_ctx;
2769 
2770 	if (unlikely(ext4_forced_shutdown(sb)))
2771 		return -EIO;
2772 
2773 	alloc_ctx = ext4_writepages_down_read(sb);
2774 	ret = ext4_do_writepages(&mpd);
2775 	/*
2776 	 * For data=journal writeback we could have come across pages marked
2777 	 * for delayed dirtying (PageChecked) which were just added to the
2778 	 * running transaction. Try once more to get them to stable storage.
2779 	 */
2780 	if (!ret && mpd.journalled_more_data)
2781 		ret = ext4_do_writepages(&mpd);
2782 	ext4_writepages_up_read(sb, alloc_ctx);
2783 
2784 	return ret;
2785 }
2786 
2787 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2788 {
2789 	struct writeback_control wbc = {
2790 		.sync_mode = WB_SYNC_ALL,
2791 		.nr_to_write = LONG_MAX,
2792 		.range_start = jinode->i_dirty_start,
2793 		.range_end = jinode->i_dirty_end,
2794 	};
2795 	struct mpage_da_data mpd = {
2796 		.inode = jinode->i_vfs_inode,
2797 		.wbc = &wbc,
2798 		.can_map = 0,
2799 	};
2800 	return ext4_do_writepages(&mpd);
2801 }
2802 
2803 static int ext4_dax_writepages(struct address_space *mapping,
2804 			       struct writeback_control *wbc)
2805 {
2806 	int ret;
2807 	long nr_to_write = wbc->nr_to_write;
2808 	struct inode *inode = mapping->host;
2809 	int alloc_ctx;
2810 
2811 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2812 		return -EIO;
2813 
2814 	alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2815 	trace_ext4_writepages(inode, wbc);
2816 
2817 	ret = dax_writeback_mapping_range(mapping,
2818 					  EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2819 	trace_ext4_writepages_result(inode, wbc, ret,
2820 				     nr_to_write - wbc->nr_to_write);
2821 	ext4_writepages_up_read(inode->i_sb, alloc_ctx);
2822 	return ret;
2823 }
2824 
2825 static int ext4_nonda_switch(struct super_block *sb)
2826 {
2827 	s64 free_clusters, dirty_clusters;
2828 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2829 
2830 	/*
2831 	 * switch to non delalloc mode if we are running low
2832 	 * on free block. The free block accounting via percpu
2833 	 * counters can get slightly wrong with percpu_counter_batch getting
2834 	 * accumulated on each CPU without updating global counters
2835 	 * Delalloc need an accurate free block accounting. So switch
2836 	 * to non delalloc when we are near to error range.
2837 	 */
2838 	free_clusters =
2839 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2840 	dirty_clusters =
2841 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2842 	/*
2843 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2844 	 */
2845 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2846 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2847 
2848 	if (2 * free_clusters < 3 * dirty_clusters ||
2849 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2850 		/*
2851 		 * free block count is less than 150% of dirty blocks
2852 		 * or free blocks is less than watermark
2853 		 */
2854 		return 1;
2855 	}
2856 	return 0;
2857 }
2858 
2859 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2860 			       loff_t pos, unsigned len,
2861 			       struct page **pagep, void **fsdata)
2862 {
2863 	int ret, retries = 0;
2864 	struct folio *folio;
2865 	pgoff_t index;
2866 	struct inode *inode = mapping->host;
2867 
2868 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2869 		return -EIO;
2870 
2871 	index = pos >> PAGE_SHIFT;
2872 
2873 	if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2874 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2875 		return ext4_write_begin(file, mapping, pos,
2876 					len, pagep, fsdata);
2877 	}
2878 	*fsdata = (void *)0;
2879 	trace_ext4_da_write_begin(inode, pos, len);
2880 
2881 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2882 		ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2883 						      pagep, fsdata);
2884 		if (ret < 0)
2885 			return ret;
2886 		if (ret == 1)
2887 			return 0;
2888 	}
2889 
2890 retry:
2891 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2892 			mapping_gfp_mask(mapping));
2893 	if (IS_ERR(folio))
2894 		return PTR_ERR(folio);
2895 
2896 	/* In case writeback began while the folio was unlocked */
2897 	folio_wait_stable(folio);
2898 
2899 #ifdef CONFIG_FS_ENCRYPTION
2900 	ret = ext4_block_write_begin(folio, pos, len, ext4_da_get_block_prep);
2901 #else
2902 	ret = __block_write_begin(&folio->page, pos, len, ext4_da_get_block_prep);
2903 #endif
2904 	if (ret < 0) {
2905 		folio_unlock(folio);
2906 		folio_put(folio);
2907 		/*
2908 		 * block_write_begin may have instantiated a few blocks
2909 		 * outside i_size.  Trim these off again. Don't need
2910 		 * i_size_read because we hold inode lock.
2911 		 */
2912 		if (pos + len > inode->i_size)
2913 			ext4_truncate_failed_write(inode);
2914 
2915 		if (ret == -ENOSPC &&
2916 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2917 			goto retry;
2918 		return ret;
2919 	}
2920 
2921 	*pagep = &folio->page;
2922 	return ret;
2923 }
2924 
2925 /*
2926  * Check if we should update i_disksize
2927  * when write to the end of file but not require block allocation
2928  */
2929 static int ext4_da_should_update_i_disksize(struct folio *folio,
2930 					    unsigned long offset)
2931 {
2932 	struct buffer_head *bh;
2933 	struct inode *inode = folio->mapping->host;
2934 	unsigned int idx;
2935 	int i;
2936 
2937 	bh = folio_buffers(folio);
2938 	idx = offset >> inode->i_blkbits;
2939 
2940 	for (i = 0; i < idx; i++)
2941 		bh = bh->b_this_page;
2942 
2943 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2944 		return 0;
2945 	return 1;
2946 }
2947 
2948 static int ext4_da_do_write_end(struct address_space *mapping,
2949 			loff_t pos, unsigned len, unsigned copied,
2950 			struct folio *folio)
2951 {
2952 	struct inode *inode = mapping->host;
2953 	loff_t old_size = inode->i_size;
2954 	bool disksize_changed = false;
2955 	loff_t new_i_size;
2956 
2957 	/*
2958 	 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
2959 	 * flag, which all that's needed to trigger page writeback.
2960 	 */
2961 	copied = block_write_end(NULL, mapping, pos, len, copied,
2962 			&folio->page, NULL);
2963 	new_i_size = pos + copied;
2964 
2965 	/*
2966 	 * It's important to update i_size while still holding folio lock,
2967 	 * because folio writeout could otherwise come in and zero beyond
2968 	 * i_size.
2969 	 *
2970 	 * Since we are holding inode lock, we are sure i_disksize <=
2971 	 * i_size. We also know that if i_disksize < i_size, there are
2972 	 * delalloc writes pending in the range up to i_size. If the end of
2973 	 * the current write is <= i_size, there's no need to touch
2974 	 * i_disksize since writeback will push i_disksize up to i_size
2975 	 * eventually. If the end of the current write is > i_size and
2976 	 * inside an allocated block which ext4_da_should_update_i_disksize()
2977 	 * checked, we need to update i_disksize here as certain
2978 	 * ext4_writepages() paths not allocating blocks and update i_disksize.
2979 	 */
2980 	if (new_i_size > inode->i_size) {
2981 		unsigned long end;
2982 
2983 		i_size_write(inode, new_i_size);
2984 		end = (new_i_size - 1) & (PAGE_SIZE - 1);
2985 		if (copied && ext4_da_should_update_i_disksize(folio, end)) {
2986 			ext4_update_i_disksize(inode, new_i_size);
2987 			disksize_changed = true;
2988 		}
2989 	}
2990 
2991 	folio_unlock(folio);
2992 	folio_put(folio);
2993 
2994 	if (old_size < pos)
2995 		pagecache_isize_extended(inode, old_size, pos);
2996 
2997 	if (disksize_changed) {
2998 		handle_t *handle;
2999 
3000 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3001 		if (IS_ERR(handle))
3002 			return PTR_ERR(handle);
3003 		ext4_mark_inode_dirty(handle, inode);
3004 		ext4_journal_stop(handle);
3005 	}
3006 
3007 	return copied;
3008 }
3009 
3010 static int ext4_da_write_end(struct file *file,
3011 			     struct address_space *mapping,
3012 			     loff_t pos, unsigned len, unsigned copied,
3013 			     struct page *page, void *fsdata)
3014 {
3015 	struct inode *inode = mapping->host;
3016 	int write_mode = (int)(unsigned long)fsdata;
3017 	struct folio *folio = page_folio(page);
3018 
3019 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3020 		return ext4_write_end(file, mapping, pos,
3021 				      len, copied, &folio->page, fsdata);
3022 
3023 	trace_ext4_da_write_end(inode, pos, len, copied);
3024 
3025 	if (write_mode != CONVERT_INLINE_DATA &&
3026 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3027 	    ext4_has_inline_data(inode))
3028 		return ext4_write_inline_data_end(inode, pos, len, copied,
3029 						  folio);
3030 
3031 	if (unlikely(copied < len) && !folio_test_uptodate(folio))
3032 		copied = 0;
3033 
3034 	return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3035 }
3036 
3037 /*
3038  * Force all delayed allocation blocks to be allocated for a given inode.
3039  */
3040 int ext4_alloc_da_blocks(struct inode *inode)
3041 {
3042 	trace_ext4_alloc_da_blocks(inode);
3043 
3044 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3045 		return 0;
3046 
3047 	/*
3048 	 * We do something simple for now.  The filemap_flush() will
3049 	 * also start triggering a write of the data blocks, which is
3050 	 * not strictly speaking necessary (and for users of
3051 	 * laptop_mode, not even desirable).  However, to do otherwise
3052 	 * would require replicating code paths in:
3053 	 *
3054 	 * ext4_writepages() ->
3055 	 *    write_cache_pages() ---> (via passed in callback function)
3056 	 *        __mpage_da_writepage() -->
3057 	 *           mpage_add_bh_to_extent()
3058 	 *           mpage_da_map_blocks()
3059 	 *
3060 	 * The problem is that write_cache_pages(), located in
3061 	 * mm/page-writeback.c, marks pages clean in preparation for
3062 	 * doing I/O, which is not desirable if we're not planning on
3063 	 * doing I/O at all.
3064 	 *
3065 	 * We could call write_cache_pages(), and then redirty all of
3066 	 * the pages by calling redirty_page_for_writepage() but that
3067 	 * would be ugly in the extreme.  So instead we would need to
3068 	 * replicate parts of the code in the above functions,
3069 	 * simplifying them because we wouldn't actually intend to
3070 	 * write out the pages, but rather only collect contiguous
3071 	 * logical block extents, call the multi-block allocator, and
3072 	 * then update the buffer heads with the block allocations.
3073 	 *
3074 	 * For now, though, we'll cheat by calling filemap_flush(),
3075 	 * which will map the blocks, and start the I/O, but not
3076 	 * actually wait for the I/O to complete.
3077 	 */
3078 	return filemap_flush(inode->i_mapping);
3079 }
3080 
3081 /*
3082  * bmap() is special.  It gets used by applications such as lilo and by
3083  * the swapper to find the on-disk block of a specific piece of data.
3084  *
3085  * Naturally, this is dangerous if the block concerned is still in the
3086  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3087  * filesystem and enables swap, then they may get a nasty shock when the
3088  * data getting swapped to that swapfile suddenly gets overwritten by
3089  * the original zero's written out previously to the journal and
3090  * awaiting writeback in the kernel's buffer cache.
3091  *
3092  * So, if we see any bmap calls here on a modified, data-journaled file,
3093  * take extra steps to flush any blocks which might be in the cache.
3094  */
3095 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3096 {
3097 	struct inode *inode = mapping->host;
3098 	sector_t ret = 0;
3099 
3100 	inode_lock_shared(inode);
3101 	/*
3102 	 * We can get here for an inline file via the FIBMAP ioctl
3103 	 */
3104 	if (ext4_has_inline_data(inode))
3105 		goto out;
3106 
3107 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3108 	    (test_opt(inode->i_sb, DELALLOC) ||
3109 	     ext4_should_journal_data(inode))) {
3110 		/*
3111 		 * With delalloc or journalled data we want to sync the file so
3112 		 * that we can make sure we allocate blocks for file and data
3113 		 * is in place for the user to see it
3114 		 */
3115 		filemap_write_and_wait(mapping);
3116 	}
3117 
3118 	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3119 
3120 out:
3121 	inode_unlock_shared(inode);
3122 	return ret;
3123 }
3124 
3125 static int ext4_read_folio(struct file *file, struct folio *folio)
3126 {
3127 	int ret = -EAGAIN;
3128 	struct inode *inode = folio->mapping->host;
3129 
3130 	trace_ext4_read_folio(inode, folio);
3131 
3132 	if (ext4_has_inline_data(inode))
3133 		ret = ext4_readpage_inline(inode, folio);
3134 
3135 	if (ret == -EAGAIN)
3136 		return ext4_mpage_readpages(inode, NULL, folio);
3137 
3138 	return ret;
3139 }
3140 
3141 static void ext4_readahead(struct readahead_control *rac)
3142 {
3143 	struct inode *inode = rac->mapping->host;
3144 
3145 	/* If the file has inline data, no need to do readahead. */
3146 	if (ext4_has_inline_data(inode))
3147 		return;
3148 
3149 	ext4_mpage_readpages(inode, rac, NULL);
3150 }
3151 
3152 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3153 				size_t length)
3154 {
3155 	trace_ext4_invalidate_folio(folio, offset, length);
3156 
3157 	/* No journalling happens on data buffers when this function is used */
3158 	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3159 
3160 	block_invalidate_folio(folio, offset, length);
3161 }
3162 
3163 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3164 					    size_t offset, size_t length)
3165 {
3166 	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3167 
3168 	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3169 
3170 	/*
3171 	 * If it's a full truncate we just forget about the pending dirtying
3172 	 */
3173 	if (offset == 0 && length == folio_size(folio))
3174 		folio_clear_checked(folio);
3175 
3176 	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3177 }
3178 
3179 /* Wrapper for aops... */
3180 static void ext4_journalled_invalidate_folio(struct folio *folio,
3181 					   size_t offset,
3182 					   size_t length)
3183 {
3184 	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3185 }
3186 
3187 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3188 {
3189 	struct inode *inode = folio->mapping->host;
3190 	journal_t *journal = EXT4_JOURNAL(inode);
3191 
3192 	trace_ext4_release_folio(inode, folio);
3193 
3194 	/* Page has dirty journalled data -> cannot release */
3195 	if (folio_test_checked(folio))
3196 		return false;
3197 	if (journal)
3198 		return jbd2_journal_try_to_free_buffers(journal, folio);
3199 	else
3200 		return try_to_free_buffers(folio);
3201 }
3202 
3203 static bool ext4_inode_datasync_dirty(struct inode *inode)
3204 {
3205 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3206 
3207 	if (journal) {
3208 		if (jbd2_transaction_committed(journal,
3209 			EXT4_I(inode)->i_datasync_tid))
3210 			return false;
3211 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3212 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3213 		return true;
3214 	}
3215 
3216 	/* Any metadata buffers to write? */
3217 	if (!list_empty(&inode->i_mapping->i_private_list))
3218 		return true;
3219 	return inode->i_state & I_DIRTY_DATASYNC;
3220 }
3221 
3222 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3223 			   struct ext4_map_blocks *map, loff_t offset,
3224 			   loff_t length, unsigned int flags)
3225 {
3226 	u8 blkbits = inode->i_blkbits;
3227 
3228 	/*
3229 	 * Writes that span EOF might trigger an I/O size update on completion,
3230 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3231 	 * there is no other metadata changes being made or are pending.
3232 	 */
3233 	iomap->flags = 0;
3234 	if (ext4_inode_datasync_dirty(inode) ||
3235 	    offset + length > i_size_read(inode))
3236 		iomap->flags |= IOMAP_F_DIRTY;
3237 
3238 	if (map->m_flags & EXT4_MAP_NEW)
3239 		iomap->flags |= IOMAP_F_NEW;
3240 
3241 	if (flags & IOMAP_DAX)
3242 		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3243 	else
3244 		iomap->bdev = inode->i_sb->s_bdev;
3245 	iomap->offset = (u64) map->m_lblk << blkbits;
3246 	iomap->length = (u64) map->m_len << blkbits;
3247 
3248 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3249 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3250 		iomap->flags |= IOMAP_F_MERGED;
3251 
3252 	/*
3253 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3254 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3255 	 * set. In order for any allocated unwritten extents to be converted
3256 	 * into written extents correctly within the ->end_io() handler, we
3257 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3258 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3259 	 * been set first.
3260 	 */
3261 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3262 		iomap->type = IOMAP_UNWRITTEN;
3263 		iomap->addr = (u64) map->m_pblk << blkbits;
3264 		if (flags & IOMAP_DAX)
3265 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3266 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3267 		iomap->type = IOMAP_MAPPED;
3268 		iomap->addr = (u64) map->m_pblk << blkbits;
3269 		if (flags & IOMAP_DAX)
3270 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3271 	} else {
3272 		iomap->type = IOMAP_HOLE;
3273 		iomap->addr = IOMAP_NULL_ADDR;
3274 	}
3275 }
3276 
3277 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3278 			    unsigned int flags)
3279 {
3280 	handle_t *handle;
3281 	u8 blkbits = inode->i_blkbits;
3282 	int ret, dio_credits, m_flags = 0, retries = 0;
3283 
3284 	/*
3285 	 * Trim the mapping request to the maximum value that we can map at
3286 	 * once for direct I/O.
3287 	 */
3288 	if (map->m_len > DIO_MAX_BLOCKS)
3289 		map->m_len = DIO_MAX_BLOCKS;
3290 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3291 
3292 retry:
3293 	/*
3294 	 * Either we allocate blocks and then don't get an unwritten extent, so
3295 	 * in that case we have reserved enough credits. Or, the blocks are
3296 	 * already allocated and unwritten. In that case, the extent conversion
3297 	 * fits into the credits as well.
3298 	 */
3299 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3300 	if (IS_ERR(handle))
3301 		return PTR_ERR(handle);
3302 
3303 	/*
3304 	 * DAX and direct I/O are the only two operations that are currently
3305 	 * supported with IOMAP_WRITE.
3306 	 */
3307 	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3308 	if (flags & IOMAP_DAX)
3309 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3310 	/*
3311 	 * We use i_size instead of i_disksize here because delalloc writeback
3312 	 * can complete at any point during the I/O and subsequently push the
3313 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3314 	 * happening and thus expose allocated blocks to direct I/O reads.
3315 	 */
3316 	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3317 		m_flags = EXT4_GET_BLOCKS_CREATE;
3318 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3319 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3320 
3321 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3322 
3323 	/*
3324 	 * We cannot fill holes in indirect tree based inodes as that could
3325 	 * expose stale data in the case of a crash. Use the magic error code
3326 	 * to fallback to buffered I/O.
3327 	 */
3328 	if (!m_flags && !ret)
3329 		ret = -ENOTBLK;
3330 
3331 	ext4_journal_stop(handle);
3332 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3333 		goto retry;
3334 
3335 	return ret;
3336 }
3337 
3338 
3339 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3340 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3341 {
3342 	int ret;
3343 	struct ext4_map_blocks map;
3344 	u8 blkbits = inode->i_blkbits;
3345 
3346 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3347 		return -EINVAL;
3348 
3349 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3350 		return -ERANGE;
3351 
3352 	/*
3353 	 * Calculate the first and last logical blocks respectively.
3354 	 */
3355 	map.m_lblk = offset >> blkbits;
3356 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3357 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3358 
3359 	if (flags & IOMAP_WRITE) {
3360 		/*
3361 		 * We check here if the blocks are already allocated, then we
3362 		 * don't need to start a journal txn and we can directly return
3363 		 * the mapping information. This could boost performance
3364 		 * especially in multi-threaded overwrite requests.
3365 		 */
3366 		if (offset + length <= i_size_read(inode)) {
3367 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3368 			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3369 				goto out;
3370 		}
3371 		ret = ext4_iomap_alloc(inode, &map, flags);
3372 	} else {
3373 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3374 	}
3375 
3376 	if (ret < 0)
3377 		return ret;
3378 out:
3379 	/*
3380 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3381 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3382 	 * limiting the length of the mapping returned.
3383 	 */
3384 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3385 
3386 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3387 
3388 	return 0;
3389 }
3390 
3391 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3392 		loff_t length, unsigned flags, struct iomap *iomap,
3393 		struct iomap *srcmap)
3394 {
3395 	int ret;
3396 
3397 	/*
3398 	 * Even for writes we don't need to allocate blocks, so just pretend
3399 	 * we are reading to save overhead of starting a transaction.
3400 	 */
3401 	flags &= ~IOMAP_WRITE;
3402 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3403 	WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3404 	return ret;
3405 }
3406 
3407 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3408 			  ssize_t written, unsigned flags, struct iomap *iomap)
3409 {
3410 	/*
3411 	 * Check to see whether an error occurred while writing out the data to
3412 	 * the allocated blocks. If so, return the magic error code so that we
3413 	 * fallback to buffered I/O and attempt to complete the remainder of
3414 	 * the I/O. Any blocks that may have been allocated in preparation for
3415 	 * the direct I/O will be reused during buffered I/O.
3416 	 */
3417 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3418 		return -ENOTBLK;
3419 
3420 	return 0;
3421 }
3422 
3423 const struct iomap_ops ext4_iomap_ops = {
3424 	.iomap_begin		= ext4_iomap_begin,
3425 	.iomap_end		= ext4_iomap_end,
3426 };
3427 
3428 const struct iomap_ops ext4_iomap_overwrite_ops = {
3429 	.iomap_begin		= ext4_iomap_overwrite_begin,
3430 	.iomap_end		= ext4_iomap_end,
3431 };
3432 
3433 static bool ext4_iomap_is_delalloc(struct inode *inode,
3434 				   struct ext4_map_blocks *map)
3435 {
3436 	struct extent_status es;
3437 	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3438 
3439 	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3440 				  map->m_lblk, end, &es);
3441 
3442 	if (!es.es_len || es.es_lblk > end)
3443 		return false;
3444 
3445 	if (es.es_lblk > map->m_lblk) {
3446 		map->m_len = es.es_lblk - map->m_lblk;
3447 		return false;
3448 	}
3449 
3450 	offset = map->m_lblk - es.es_lblk;
3451 	map->m_len = es.es_len - offset;
3452 
3453 	return true;
3454 }
3455 
3456 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3457 				   loff_t length, unsigned int flags,
3458 				   struct iomap *iomap, struct iomap *srcmap)
3459 {
3460 	int ret;
3461 	bool delalloc = false;
3462 	struct ext4_map_blocks map;
3463 	u8 blkbits = inode->i_blkbits;
3464 
3465 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3466 		return -EINVAL;
3467 
3468 	if (ext4_has_inline_data(inode)) {
3469 		ret = ext4_inline_data_iomap(inode, iomap);
3470 		if (ret != -EAGAIN) {
3471 			if (ret == 0 && offset >= iomap->length)
3472 				ret = -ENOENT;
3473 			return ret;
3474 		}
3475 	}
3476 
3477 	/*
3478 	 * Calculate the first and last logical block respectively.
3479 	 */
3480 	map.m_lblk = offset >> blkbits;
3481 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3482 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3483 
3484 	/*
3485 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3486 	 * So handle it here itself instead of querying ext4_map_blocks().
3487 	 * Since ext4_map_blocks() will warn about it and will return
3488 	 * -EIO error.
3489 	 */
3490 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3491 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3492 
3493 		if (offset >= sbi->s_bitmap_maxbytes) {
3494 			map.m_flags = 0;
3495 			goto set_iomap;
3496 		}
3497 	}
3498 
3499 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3500 	if (ret < 0)
3501 		return ret;
3502 	if (ret == 0)
3503 		delalloc = ext4_iomap_is_delalloc(inode, &map);
3504 
3505 set_iomap:
3506 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3507 	if (delalloc && iomap->type == IOMAP_HOLE)
3508 		iomap->type = IOMAP_DELALLOC;
3509 
3510 	return 0;
3511 }
3512 
3513 const struct iomap_ops ext4_iomap_report_ops = {
3514 	.iomap_begin = ext4_iomap_begin_report,
3515 };
3516 
3517 /*
3518  * For data=journal mode, folio should be marked dirty only when it was
3519  * writeably mapped. When that happens, it was already attached to the
3520  * transaction and marked as jbddirty (we take care of this in
3521  * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3522  * so we should have nothing to do here, except for the case when someone
3523  * had the page pinned and dirtied the page through this pin (e.g. by doing
3524  * direct IO to it). In that case we'd need to attach buffers here to the
3525  * transaction but we cannot due to lock ordering.  We cannot just dirty the
3526  * folio and leave attached buffers clean, because the buffers' dirty state is
3527  * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3528  * the journalling code will explode.  So what we do is to mark the folio
3529  * "pending dirty" and next time ext4_writepages() is called, attach buffers
3530  * to the transaction appropriately.
3531  */
3532 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3533 		struct folio *folio)
3534 {
3535 	WARN_ON_ONCE(!folio_buffers(folio));
3536 	if (folio_maybe_dma_pinned(folio))
3537 		folio_set_checked(folio);
3538 	return filemap_dirty_folio(mapping, folio);
3539 }
3540 
3541 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3542 {
3543 	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3544 	WARN_ON_ONCE(!folio_buffers(folio));
3545 	return block_dirty_folio(mapping, folio);
3546 }
3547 
3548 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3549 				    struct file *file, sector_t *span)
3550 {
3551 	return iomap_swapfile_activate(sis, file, span,
3552 				       &ext4_iomap_report_ops);
3553 }
3554 
3555 static const struct address_space_operations ext4_aops = {
3556 	.read_folio		= ext4_read_folio,
3557 	.readahead		= ext4_readahead,
3558 	.writepages		= ext4_writepages,
3559 	.write_begin		= ext4_write_begin,
3560 	.write_end		= ext4_write_end,
3561 	.dirty_folio		= ext4_dirty_folio,
3562 	.bmap			= ext4_bmap,
3563 	.invalidate_folio	= ext4_invalidate_folio,
3564 	.release_folio		= ext4_release_folio,
3565 	.direct_IO		= noop_direct_IO,
3566 	.migrate_folio		= buffer_migrate_folio,
3567 	.is_partially_uptodate  = block_is_partially_uptodate,
3568 	.error_remove_folio	= generic_error_remove_folio,
3569 	.swap_activate		= ext4_iomap_swap_activate,
3570 };
3571 
3572 static const struct address_space_operations ext4_journalled_aops = {
3573 	.read_folio		= ext4_read_folio,
3574 	.readahead		= ext4_readahead,
3575 	.writepages		= ext4_writepages,
3576 	.write_begin		= ext4_write_begin,
3577 	.write_end		= ext4_journalled_write_end,
3578 	.dirty_folio		= ext4_journalled_dirty_folio,
3579 	.bmap			= ext4_bmap,
3580 	.invalidate_folio	= ext4_journalled_invalidate_folio,
3581 	.release_folio		= ext4_release_folio,
3582 	.direct_IO		= noop_direct_IO,
3583 	.migrate_folio		= buffer_migrate_folio_norefs,
3584 	.is_partially_uptodate  = block_is_partially_uptodate,
3585 	.error_remove_folio	= generic_error_remove_folio,
3586 	.swap_activate		= ext4_iomap_swap_activate,
3587 };
3588 
3589 static const struct address_space_operations ext4_da_aops = {
3590 	.read_folio		= ext4_read_folio,
3591 	.readahead		= ext4_readahead,
3592 	.writepages		= ext4_writepages,
3593 	.write_begin		= ext4_da_write_begin,
3594 	.write_end		= ext4_da_write_end,
3595 	.dirty_folio		= ext4_dirty_folio,
3596 	.bmap			= ext4_bmap,
3597 	.invalidate_folio	= ext4_invalidate_folio,
3598 	.release_folio		= ext4_release_folio,
3599 	.direct_IO		= noop_direct_IO,
3600 	.migrate_folio		= buffer_migrate_folio,
3601 	.is_partially_uptodate  = block_is_partially_uptodate,
3602 	.error_remove_folio	= generic_error_remove_folio,
3603 	.swap_activate		= ext4_iomap_swap_activate,
3604 };
3605 
3606 static const struct address_space_operations ext4_dax_aops = {
3607 	.writepages		= ext4_dax_writepages,
3608 	.direct_IO		= noop_direct_IO,
3609 	.dirty_folio		= noop_dirty_folio,
3610 	.bmap			= ext4_bmap,
3611 	.swap_activate		= ext4_iomap_swap_activate,
3612 };
3613 
3614 void ext4_set_aops(struct inode *inode)
3615 {
3616 	switch (ext4_inode_journal_mode(inode)) {
3617 	case EXT4_INODE_ORDERED_DATA_MODE:
3618 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3619 		break;
3620 	case EXT4_INODE_JOURNAL_DATA_MODE:
3621 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3622 		return;
3623 	default:
3624 		BUG();
3625 	}
3626 	if (IS_DAX(inode))
3627 		inode->i_mapping->a_ops = &ext4_dax_aops;
3628 	else if (test_opt(inode->i_sb, DELALLOC))
3629 		inode->i_mapping->a_ops = &ext4_da_aops;
3630 	else
3631 		inode->i_mapping->a_ops = &ext4_aops;
3632 }
3633 
3634 /*
3635  * Here we can't skip an unwritten buffer even though it usually reads zero
3636  * because it might have data in pagecache (eg, if called from ext4_zero_range,
3637  * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a
3638  * racing writeback can come later and flush the stale pagecache to disk.
3639  */
3640 static int __ext4_block_zero_page_range(handle_t *handle,
3641 		struct address_space *mapping, loff_t from, loff_t length)
3642 {
3643 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3644 	unsigned offset = from & (PAGE_SIZE-1);
3645 	unsigned blocksize, pos;
3646 	ext4_lblk_t iblock;
3647 	struct inode *inode = mapping->host;
3648 	struct buffer_head *bh;
3649 	struct folio *folio;
3650 	int err = 0;
3651 
3652 	folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3653 				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3654 				    mapping_gfp_constraint(mapping, ~__GFP_FS));
3655 	if (IS_ERR(folio))
3656 		return PTR_ERR(folio);
3657 
3658 	blocksize = inode->i_sb->s_blocksize;
3659 
3660 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3661 
3662 	bh = folio_buffers(folio);
3663 	if (!bh)
3664 		bh = create_empty_buffers(folio, blocksize, 0);
3665 
3666 	/* Find the buffer that contains "offset" */
3667 	pos = blocksize;
3668 	while (offset >= pos) {
3669 		bh = bh->b_this_page;
3670 		iblock++;
3671 		pos += blocksize;
3672 	}
3673 	if (buffer_freed(bh)) {
3674 		BUFFER_TRACE(bh, "freed: skip");
3675 		goto unlock;
3676 	}
3677 	if (!buffer_mapped(bh)) {
3678 		BUFFER_TRACE(bh, "unmapped");
3679 		ext4_get_block(inode, iblock, bh, 0);
3680 		/* unmapped? It's a hole - nothing to do */
3681 		if (!buffer_mapped(bh)) {
3682 			BUFFER_TRACE(bh, "still unmapped");
3683 			goto unlock;
3684 		}
3685 	}
3686 
3687 	/* Ok, it's mapped. Make sure it's up-to-date */
3688 	if (folio_test_uptodate(folio))
3689 		set_buffer_uptodate(bh);
3690 
3691 	if (!buffer_uptodate(bh)) {
3692 		err = ext4_read_bh_lock(bh, 0, true);
3693 		if (err)
3694 			goto unlock;
3695 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3696 			/* We expect the key to be set. */
3697 			BUG_ON(!fscrypt_has_encryption_key(inode));
3698 			err = fscrypt_decrypt_pagecache_blocks(folio,
3699 							       blocksize,
3700 							       bh_offset(bh));
3701 			if (err) {
3702 				clear_buffer_uptodate(bh);
3703 				goto unlock;
3704 			}
3705 		}
3706 	}
3707 	if (ext4_should_journal_data(inode)) {
3708 		BUFFER_TRACE(bh, "get write access");
3709 		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3710 						    EXT4_JTR_NONE);
3711 		if (err)
3712 			goto unlock;
3713 	}
3714 	folio_zero_range(folio, offset, length);
3715 	BUFFER_TRACE(bh, "zeroed end of block");
3716 
3717 	if (ext4_should_journal_data(inode)) {
3718 		err = ext4_dirty_journalled_data(handle, bh);
3719 	} else {
3720 		err = 0;
3721 		mark_buffer_dirty(bh);
3722 		if (ext4_should_order_data(inode))
3723 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3724 					length);
3725 	}
3726 
3727 unlock:
3728 	folio_unlock(folio);
3729 	folio_put(folio);
3730 	return err;
3731 }
3732 
3733 /*
3734  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3735  * starting from file offset 'from'.  The range to be zero'd must
3736  * be contained with in one block.  If the specified range exceeds
3737  * the end of the block it will be shortened to end of the block
3738  * that corresponds to 'from'
3739  */
3740 static int ext4_block_zero_page_range(handle_t *handle,
3741 		struct address_space *mapping, loff_t from, loff_t length)
3742 {
3743 	struct inode *inode = mapping->host;
3744 	unsigned offset = from & (PAGE_SIZE-1);
3745 	unsigned blocksize = inode->i_sb->s_blocksize;
3746 	unsigned max = blocksize - (offset & (blocksize - 1));
3747 
3748 	/*
3749 	 * correct length if it does not fall between
3750 	 * 'from' and the end of the block
3751 	 */
3752 	if (length > max || length < 0)
3753 		length = max;
3754 
3755 	if (IS_DAX(inode)) {
3756 		return dax_zero_range(inode, from, length, NULL,
3757 				      &ext4_iomap_ops);
3758 	}
3759 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3760 }
3761 
3762 /*
3763  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3764  * up to the end of the block which corresponds to `from'.
3765  * This required during truncate. We need to physically zero the tail end
3766  * of that block so it doesn't yield old data if the file is later grown.
3767  */
3768 static int ext4_block_truncate_page(handle_t *handle,
3769 		struct address_space *mapping, loff_t from)
3770 {
3771 	unsigned offset = from & (PAGE_SIZE-1);
3772 	unsigned length;
3773 	unsigned blocksize;
3774 	struct inode *inode = mapping->host;
3775 
3776 	/* If we are processing an encrypted inode during orphan list handling */
3777 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3778 		return 0;
3779 
3780 	blocksize = inode->i_sb->s_blocksize;
3781 	length = blocksize - (offset & (blocksize - 1));
3782 
3783 	return ext4_block_zero_page_range(handle, mapping, from, length);
3784 }
3785 
3786 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3787 			     loff_t lstart, loff_t length)
3788 {
3789 	struct super_block *sb = inode->i_sb;
3790 	struct address_space *mapping = inode->i_mapping;
3791 	unsigned partial_start, partial_end;
3792 	ext4_fsblk_t start, end;
3793 	loff_t byte_end = (lstart + length - 1);
3794 	int err = 0;
3795 
3796 	partial_start = lstart & (sb->s_blocksize - 1);
3797 	partial_end = byte_end & (sb->s_blocksize - 1);
3798 
3799 	start = lstart >> sb->s_blocksize_bits;
3800 	end = byte_end >> sb->s_blocksize_bits;
3801 
3802 	/* Handle partial zero within the single block */
3803 	if (start == end &&
3804 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3805 		err = ext4_block_zero_page_range(handle, mapping,
3806 						 lstart, length);
3807 		return err;
3808 	}
3809 	/* Handle partial zero out on the start of the range */
3810 	if (partial_start) {
3811 		err = ext4_block_zero_page_range(handle, mapping,
3812 						 lstart, sb->s_blocksize);
3813 		if (err)
3814 			return err;
3815 	}
3816 	/* Handle partial zero out on the end of the range */
3817 	if (partial_end != sb->s_blocksize - 1)
3818 		err = ext4_block_zero_page_range(handle, mapping,
3819 						 byte_end - partial_end,
3820 						 partial_end + 1);
3821 	return err;
3822 }
3823 
3824 int ext4_can_truncate(struct inode *inode)
3825 {
3826 	if (S_ISREG(inode->i_mode))
3827 		return 1;
3828 	if (S_ISDIR(inode->i_mode))
3829 		return 1;
3830 	if (S_ISLNK(inode->i_mode))
3831 		return !ext4_inode_is_fast_symlink(inode);
3832 	return 0;
3833 }
3834 
3835 /*
3836  * We have to make sure i_disksize gets properly updated before we truncate
3837  * page cache due to hole punching or zero range. Otherwise i_disksize update
3838  * can get lost as it may have been postponed to submission of writeback but
3839  * that will never happen after we truncate page cache.
3840  */
3841 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3842 				      loff_t len)
3843 {
3844 	handle_t *handle;
3845 	int ret;
3846 
3847 	loff_t size = i_size_read(inode);
3848 
3849 	WARN_ON(!inode_is_locked(inode));
3850 	if (offset > size || offset + len < size)
3851 		return 0;
3852 
3853 	if (EXT4_I(inode)->i_disksize >= size)
3854 		return 0;
3855 
3856 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3857 	if (IS_ERR(handle))
3858 		return PTR_ERR(handle);
3859 	ext4_update_i_disksize(inode, size);
3860 	ret = ext4_mark_inode_dirty(handle, inode);
3861 	ext4_journal_stop(handle);
3862 
3863 	return ret;
3864 }
3865 
3866 static void ext4_wait_dax_page(struct inode *inode)
3867 {
3868 	filemap_invalidate_unlock(inode->i_mapping);
3869 	schedule();
3870 	filemap_invalidate_lock(inode->i_mapping);
3871 }
3872 
3873 int ext4_break_layouts(struct inode *inode)
3874 {
3875 	struct page *page;
3876 	int error;
3877 
3878 	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3879 		return -EINVAL;
3880 
3881 	do {
3882 		page = dax_layout_busy_page(inode->i_mapping);
3883 		if (!page)
3884 			return 0;
3885 
3886 		error = ___wait_var_event(&page->_refcount,
3887 				atomic_read(&page->_refcount) == 1,
3888 				TASK_INTERRUPTIBLE, 0, 0,
3889 				ext4_wait_dax_page(inode));
3890 	} while (error == 0);
3891 
3892 	return error;
3893 }
3894 
3895 /*
3896  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3897  * associated with the given offset and length
3898  *
3899  * @inode:  File inode
3900  * @offset: The offset where the hole will begin
3901  * @len:    The length of the hole
3902  *
3903  * Returns: 0 on success or negative on failure
3904  */
3905 
3906 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3907 {
3908 	struct inode *inode = file_inode(file);
3909 	struct super_block *sb = inode->i_sb;
3910 	ext4_lblk_t first_block, stop_block;
3911 	struct address_space *mapping = inode->i_mapping;
3912 	loff_t first_block_offset, last_block_offset, max_length;
3913 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3914 	handle_t *handle;
3915 	unsigned int credits;
3916 	int ret = 0, ret2 = 0;
3917 
3918 	trace_ext4_punch_hole(inode, offset, length, 0);
3919 
3920 	/*
3921 	 * Write out all dirty pages to avoid race conditions
3922 	 * Then release them.
3923 	 */
3924 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3925 		ret = filemap_write_and_wait_range(mapping, offset,
3926 						   offset + length - 1);
3927 		if (ret)
3928 			return ret;
3929 	}
3930 
3931 	inode_lock(inode);
3932 
3933 	/* No need to punch hole beyond i_size */
3934 	if (offset >= inode->i_size)
3935 		goto out_mutex;
3936 
3937 	/*
3938 	 * If the hole extends beyond i_size, set the hole
3939 	 * to end after the page that contains i_size
3940 	 */
3941 	if (offset + length > inode->i_size) {
3942 		length = inode->i_size +
3943 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3944 		   offset;
3945 	}
3946 
3947 	/*
3948 	 * For punch hole the length + offset needs to be within one block
3949 	 * before last range. Adjust the length if it goes beyond that limit.
3950 	 */
3951 	max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
3952 	if (offset + length > max_length)
3953 		length = max_length - offset;
3954 
3955 	if (offset & (sb->s_blocksize - 1) ||
3956 	    (offset + length) & (sb->s_blocksize - 1)) {
3957 		/*
3958 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3959 		 * partial block
3960 		 */
3961 		ret = ext4_inode_attach_jinode(inode);
3962 		if (ret < 0)
3963 			goto out_mutex;
3964 
3965 	}
3966 
3967 	/* Wait all existing dio workers, newcomers will block on i_rwsem */
3968 	inode_dio_wait(inode);
3969 
3970 	ret = file_modified(file);
3971 	if (ret)
3972 		goto out_mutex;
3973 
3974 	/*
3975 	 * Prevent page faults from reinstantiating pages we have released from
3976 	 * page cache.
3977 	 */
3978 	filemap_invalidate_lock(mapping);
3979 
3980 	ret = ext4_break_layouts(inode);
3981 	if (ret)
3982 		goto out_dio;
3983 
3984 	first_block_offset = round_up(offset, sb->s_blocksize);
3985 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3986 
3987 	/* Now release the pages and zero block aligned part of pages*/
3988 	if (last_block_offset > first_block_offset) {
3989 		ret = ext4_update_disksize_before_punch(inode, offset, length);
3990 		if (ret)
3991 			goto out_dio;
3992 		truncate_pagecache_range(inode, first_block_offset,
3993 					 last_block_offset);
3994 	}
3995 
3996 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3997 		credits = ext4_writepage_trans_blocks(inode);
3998 	else
3999 		credits = ext4_blocks_for_truncate(inode);
4000 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4001 	if (IS_ERR(handle)) {
4002 		ret = PTR_ERR(handle);
4003 		ext4_std_error(sb, ret);
4004 		goto out_dio;
4005 	}
4006 
4007 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4008 				       length);
4009 	if (ret)
4010 		goto out_stop;
4011 
4012 	first_block = (offset + sb->s_blocksize - 1) >>
4013 		EXT4_BLOCK_SIZE_BITS(sb);
4014 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4015 
4016 	/* If there are blocks to remove, do it */
4017 	if (stop_block > first_block) {
4018 
4019 		down_write(&EXT4_I(inode)->i_data_sem);
4020 		ext4_discard_preallocations(inode, 0);
4021 
4022 		ext4_es_remove_extent(inode, first_block,
4023 				      stop_block - first_block);
4024 
4025 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4026 			ret = ext4_ext_remove_space(inode, first_block,
4027 						    stop_block - 1);
4028 		else
4029 			ret = ext4_ind_remove_space(handle, inode, first_block,
4030 						    stop_block);
4031 
4032 		up_write(&EXT4_I(inode)->i_data_sem);
4033 	}
4034 	ext4_fc_track_range(handle, inode, first_block, stop_block);
4035 	if (IS_SYNC(inode))
4036 		ext4_handle_sync(handle);
4037 
4038 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4039 	ret2 = ext4_mark_inode_dirty(handle, inode);
4040 	if (unlikely(ret2))
4041 		ret = ret2;
4042 	if (ret >= 0)
4043 		ext4_update_inode_fsync_trans(handle, inode, 1);
4044 out_stop:
4045 	ext4_journal_stop(handle);
4046 out_dio:
4047 	filemap_invalidate_unlock(mapping);
4048 out_mutex:
4049 	inode_unlock(inode);
4050 	return ret;
4051 }
4052 
4053 int ext4_inode_attach_jinode(struct inode *inode)
4054 {
4055 	struct ext4_inode_info *ei = EXT4_I(inode);
4056 	struct jbd2_inode *jinode;
4057 
4058 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4059 		return 0;
4060 
4061 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4062 	spin_lock(&inode->i_lock);
4063 	if (!ei->jinode) {
4064 		if (!jinode) {
4065 			spin_unlock(&inode->i_lock);
4066 			return -ENOMEM;
4067 		}
4068 		ei->jinode = jinode;
4069 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4070 		jinode = NULL;
4071 	}
4072 	spin_unlock(&inode->i_lock);
4073 	if (unlikely(jinode != NULL))
4074 		jbd2_free_inode(jinode);
4075 	return 0;
4076 }
4077 
4078 /*
4079  * ext4_truncate()
4080  *
4081  * We block out ext4_get_block() block instantiations across the entire
4082  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4083  * simultaneously on behalf of the same inode.
4084  *
4085  * As we work through the truncate and commit bits of it to the journal there
4086  * is one core, guiding principle: the file's tree must always be consistent on
4087  * disk.  We must be able to restart the truncate after a crash.
4088  *
4089  * The file's tree may be transiently inconsistent in memory (although it
4090  * probably isn't), but whenever we close off and commit a journal transaction,
4091  * the contents of (the filesystem + the journal) must be consistent and
4092  * restartable.  It's pretty simple, really: bottom up, right to left (although
4093  * left-to-right works OK too).
4094  *
4095  * Note that at recovery time, journal replay occurs *before* the restart of
4096  * truncate against the orphan inode list.
4097  *
4098  * The committed inode has the new, desired i_size (which is the same as
4099  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4100  * that this inode's truncate did not complete and it will again call
4101  * ext4_truncate() to have another go.  So there will be instantiated blocks
4102  * to the right of the truncation point in a crashed ext4 filesystem.  But
4103  * that's fine - as long as they are linked from the inode, the post-crash
4104  * ext4_truncate() run will find them and release them.
4105  */
4106 int ext4_truncate(struct inode *inode)
4107 {
4108 	struct ext4_inode_info *ei = EXT4_I(inode);
4109 	unsigned int credits;
4110 	int err = 0, err2;
4111 	handle_t *handle;
4112 	struct address_space *mapping = inode->i_mapping;
4113 
4114 	/*
4115 	 * There is a possibility that we're either freeing the inode
4116 	 * or it's a completely new inode. In those cases we might not
4117 	 * have i_rwsem locked because it's not necessary.
4118 	 */
4119 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4120 		WARN_ON(!inode_is_locked(inode));
4121 	trace_ext4_truncate_enter(inode);
4122 
4123 	if (!ext4_can_truncate(inode))
4124 		goto out_trace;
4125 
4126 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4127 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4128 
4129 	if (ext4_has_inline_data(inode)) {
4130 		int has_inline = 1;
4131 
4132 		err = ext4_inline_data_truncate(inode, &has_inline);
4133 		if (err || has_inline)
4134 			goto out_trace;
4135 	}
4136 
4137 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4138 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4139 		err = ext4_inode_attach_jinode(inode);
4140 		if (err)
4141 			goto out_trace;
4142 	}
4143 
4144 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4145 		credits = ext4_writepage_trans_blocks(inode);
4146 	else
4147 		credits = ext4_blocks_for_truncate(inode);
4148 
4149 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4150 	if (IS_ERR(handle)) {
4151 		err = PTR_ERR(handle);
4152 		goto out_trace;
4153 	}
4154 
4155 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4156 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4157 
4158 	/*
4159 	 * We add the inode to the orphan list, so that if this
4160 	 * truncate spans multiple transactions, and we crash, we will
4161 	 * resume the truncate when the filesystem recovers.  It also
4162 	 * marks the inode dirty, to catch the new size.
4163 	 *
4164 	 * Implication: the file must always be in a sane, consistent
4165 	 * truncatable state while each transaction commits.
4166 	 */
4167 	err = ext4_orphan_add(handle, inode);
4168 	if (err)
4169 		goto out_stop;
4170 
4171 	down_write(&EXT4_I(inode)->i_data_sem);
4172 
4173 	ext4_discard_preallocations(inode, 0);
4174 
4175 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4176 		err = ext4_ext_truncate(handle, inode);
4177 	else
4178 		ext4_ind_truncate(handle, inode);
4179 
4180 	up_write(&ei->i_data_sem);
4181 	if (err)
4182 		goto out_stop;
4183 
4184 	if (IS_SYNC(inode))
4185 		ext4_handle_sync(handle);
4186 
4187 out_stop:
4188 	/*
4189 	 * If this was a simple ftruncate() and the file will remain alive,
4190 	 * then we need to clear up the orphan record which we created above.
4191 	 * However, if this was a real unlink then we were called by
4192 	 * ext4_evict_inode(), and we allow that function to clean up the
4193 	 * orphan info for us.
4194 	 */
4195 	if (inode->i_nlink)
4196 		ext4_orphan_del(handle, inode);
4197 
4198 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4199 	err2 = ext4_mark_inode_dirty(handle, inode);
4200 	if (unlikely(err2 && !err))
4201 		err = err2;
4202 	ext4_journal_stop(handle);
4203 
4204 out_trace:
4205 	trace_ext4_truncate_exit(inode);
4206 	return err;
4207 }
4208 
4209 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4210 {
4211 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4212 		return inode_peek_iversion_raw(inode);
4213 	else
4214 		return inode_peek_iversion(inode);
4215 }
4216 
4217 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4218 				 struct ext4_inode_info *ei)
4219 {
4220 	struct inode *inode = &(ei->vfs_inode);
4221 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4222 	struct super_block *sb = inode->i_sb;
4223 
4224 	if (i_blocks <= ~0U) {
4225 		/*
4226 		 * i_blocks can be represented in a 32 bit variable
4227 		 * as multiple of 512 bytes
4228 		 */
4229 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4230 		raw_inode->i_blocks_high = 0;
4231 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4232 		return 0;
4233 	}
4234 
4235 	/*
4236 	 * This should never happen since sb->s_maxbytes should not have
4237 	 * allowed this, sb->s_maxbytes was set according to the huge_file
4238 	 * feature in ext4_fill_super().
4239 	 */
4240 	if (!ext4_has_feature_huge_file(sb))
4241 		return -EFSCORRUPTED;
4242 
4243 	if (i_blocks <= 0xffffffffffffULL) {
4244 		/*
4245 		 * i_blocks can be represented in a 48 bit variable
4246 		 * as multiple of 512 bytes
4247 		 */
4248 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4249 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4250 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4251 	} else {
4252 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4253 		/* i_block is stored in file system block size */
4254 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4255 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4256 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4257 	}
4258 	return 0;
4259 }
4260 
4261 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4262 {
4263 	struct ext4_inode_info *ei = EXT4_I(inode);
4264 	uid_t i_uid;
4265 	gid_t i_gid;
4266 	projid_t i_projid;
4267 	int block;
4268 	int err;
4269 
4270 	err = ext4_inode_blocks_set(raw_inode, ei);
4271 
4272 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4273 	i_uid = i_uid_read(inode);
4274 	i_gid = i_gid_read(inode);
4275 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4276 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4277 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4278 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4279 		/*
4280 		 * Fix up interoperability with old kernels. Otherwise,
4281 		 * old inodes get re-used with the upper 16 bits of the
4282 		 * uid/gid intact.
4283 		 */
4284 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4285 			raw_inode->i_uid_high = 0;
4286 			raw_inode->i_gid_high = 0;
4287 		} else {
4288 			raw_inode->i_uid_high =
4289 				cpu_to_le16(high_16_bits(i_uid));
4290 			raw_inode->i_gid_high =
4291 				cpu_to_le16(high_16_bits(i_gid));
4292 		}
4293 	} else {
4294 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4295 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4296 		raw_inode->i_uid_high = 0;
4297 		raw_inode->i_gid_high = 0;
4298 	}
4299 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4300 
4301 	EXT4_INODE_SET_CTIME(inode, raw_inode);
4302 	EXT4_INODE_SET_MTIME(inode, raw_inode);
4303 	EXT4_INODE_SET_ATIME(inode, raw_inode);
4304 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4305 
4306 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4307 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4308 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4309 		raw_inode->i_file_acl_high =
4310 			cpu_to_le16(ei->i_file_acl >> 32);
4311 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4312 	ext4_isize_set(raw_inode, ei->i_disksize);
4313 
4314 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4315 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4316 		if (old_valid_dev(inode->i_rdev)) {
4317 			raw_inode->i_block[0] =
4318 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4319 			raw_inode->i_block[1] = 0;
4320 		} else {
4321 			raw_inode->i_block[0] = 0;
4322 			raw_inode->i_block[1] =
4323 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4324 			raw_inode->i_block[2] = 0;
4325 		}
4326 	} else if (!ext4_has_inline_data(inode)) {
4327 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4328 			raw_inode->i_block[block] = ei->i_data[block];
4329 	}
4330 
4331 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4332 		u64 ivers = ext4_inode_peek_iversion(inode);
4333 
4334 		raw_inode->i_disk_version = cpu_to_le32(ivers);
4335 		if (ei->i_extra_isize) {
4336 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4337 				raw_inode->i_version_hi =
4338 					cpu_to_le32(ivers >> 32);
4339 			raw_inode->i_extra_isize =
4340 				cpu_to_le16(ei->i_extra_isize);
4341 		}
4342 	}
4343 
4344 	if (i_projid != EXT4_DEF_PROJID &&
4345 	    !ext4_has_feature_project(inode->i_sb))
4346 		err = err ?: -EFSCORRUPTED;
4347 
4348 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4349 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4350 		raw_inode->i_projid = cpu_to_le32(i_projid);
4351 
4352 	ext4_inode_csum_set(inode, raw_inode, ei);
4353 	return err;
4354 }
4355 
4356 /*
4357  * ext4_get_inode_loc returns with an extra refcount against the inode's
4358  * underlying buffer_head on success. If we pass 'inode' and it does not
4359  * have in-inode xattr, we have all inode data in memory that is needed
4360  * to recreate the on-disk version of this inode.
4361  */
4362 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4363 				struct inode *inode, struct ext4_iloc *iloc,
4364 				ext4_fsblk_t *ret_block)
4365 {
4366 	struct ext4_group_desc	*gdp;
4367 	struct buffer_head	*bh;
4368 	ext4_fsblk_t		block;
4369 	struct blk_plug		plug;
4370 	int			inodes_per_block, inode_offset;
4371 
4372 	iloc->bh = NULL;
4373 	if (ino < EXT4_ROOT_INO ||
4374 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4375 		return -EFSCORRUPTED;
4376 
4377 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4378 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4379 	if (!gdp)
4380 		return -EIO;
4381 
4382 	/*
4383 	 * Figure out the offset within the block group inode table
4384 	 */
4385 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4386 	inode_offset = ((ino - 1) %
4387 			EXT4_INODES_PER_GROUP(sb));
4388 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4389 
4390 	block = ext4_inode_table(sb, gdp);
4391 	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4392 	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4393 		ext4_error(sb, "Invalid inode table block %llu in "
4394 			   "block_group %u", block, iloc->block_group);
4395 		return -EFSCORRUPTED;
4396 	}
4397 	block += (inode_offset / inodes_per_block);
4398 
4399 	bh = sb_getblk(sb, block);
4400 	if (unlikely(!bh))
4401 		return -ENOMEM;
4402 	if (ext4_buffer_uptodate(bh))
4403 		goto has_buffer;
4404 
4405 	lock_buffer(bh);
4406 	if (ext4_buffer_uptodate(bh)) {
4407 		/* Someone brought it uptodate while we waited */
4408 		unlock_buffer(bh);
4409 		goto has_buffer;
4410 	}
4411 
4412 	/*
4413 	 * If we have all information of the inode in memory and this
4414 	 * is the only valid inode in the block, we need not read the
4415 	 * block.
4416 	 */
4417 	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4418 		struct buffer_head *bitmap_bh;
4419 		int i, start;
4420 
4421 		start = inode_offset & ~(inodes_per_block - 1);
4422 
4423 		/* Is the inode bitmap in cache? */
4424 		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4425 		if (unlikely(!bitmap_bh))
4426 			goto make_io;
4427 
4428 		/*
4429 		 * If the inode bitmap isn't in cache then the
4430 		 * optimisation may end up performing two reads instead
4431 		 * of one, so skip it.
4432 		 */
4433 		if (!buffer_uptodate(bitmap_bh)) {
4434 			brelse(bitmap_bh);
4435 			goto make_io;
4436 		}
4437 		for (i = start; i < start + inodes_per_block; i++) {
4438 			if (i == inode_offset)
4439 				continue;
4440 			if (ext4_test_bit(i, bitmap_bh->b_data))
4441 				break;
4442 		}
4443 		brelse(bitmap_bh);
4444 		if (i == start + inodes_per_block) {
4445 			struct ext4_inode *raw_inode =
4446 				(struct ext4_inode *) (bh->b_data + iloc->offset);
4447 
4448 			/* all other inodes are free, so skip I/O */
4449 			memset(bh->b_data, 0, bh->b_size);
4450 			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4451 				ext4_fill_raw_inode(inode, raw_inode);
4452 			set_buffer_uptodate(bh);
4453 			unlock_buffer(bh);
4454 			goto has_buffer;
4455 		}
4456 	}
4457 
4458 make_io:
4459 	/*
4460 	 * If we need to do any I/O, try to pre-readahead extra
4461 	 * blocks from the inode table.
4462 	 */
4463 	blk_start_plug(&plug);
4464 	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4465 		ext4_fsblk_t b, end, table;
4466 		unsigned num;
4467 		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4468 
4469 		table = ext4_inode_table(sb, gdp);
4470 		/* s_inode_readahead_blks is always a power of 2 */
4471 		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4472 		if (table > b)
4473 			b = table;
4474 		end = b + ra_blks;
4475 		num = EXT4_INODES_PER_GROUP(sb);
4476 		if (ext4_has_group_desc_csum(sb))
4477 			num -= ext4_itable_unused_count(sb, gdp);
4478 		table += num / inodes_per_block;
4479 		if (end > table)
4480 			end = table;
4481 		while (b <= end)
4482 			ext4_sb_breadahead_unmovable(sb, b++);
4483 	}
4484 
4485 	/*
4486 	 * There are other valid inodes in the buffer, this inode
4487 	 * has in-inode xattrs, or we don't have this inode in memory.
4488 	 * Read the block from disk.
4489 	 */
4490 	trace_ext4_load_inode(sb, ino);
4491 	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4492 	blk_finish_plug(&plug);
4493 	wait_on_buffer(bh);
4494 	ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4495 	if (!buffer_uptodate(bh)) {
4496 		if (ret_block)
4497 			*ret_block = block;
4498 		brelse(bh);
4499 		return -EIO;
4500 	}
4501 has_buffer:
4502 	iloc->bh = bh;
4503 	return 0;
4504 }
4505 
4506 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4507 					struct ext4_iloc *iloc)
4508 {
4509 	ext4_fsblk_t err_blk = 0;
4510 	int ret;
4511 
4512 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4513 					&err_blk);
4514 
4515 	if (ret == -EIO)
4516 		ext4_error_inode_block(inode, err_blk, EIO,
4517 					"unable to read itable block");
4518 
4519 	return ret;
4520 }
4521 
4522 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4523 {
4524 	ext4_fsblk_t err_blk = 0;
4525 	int ret;
4526 
4527 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4528 					&err_blk);
4529 
4530 	if (ret == -EIO)
4531 		ext4_error_inode_block(inode, err_blk, EIO,
4532 					"unable to read itable block");
4533 
4534 	return ret;
4535 }
4536 
4537 
4538 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4539 			  struct ext4_iloc *iloc)
4540 {
4541 	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4542 }
4543 
4544 static bool ext4_should_enable_dax(struct inode *inode)
4545 {
4546 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4547 
4548 	if (test_opt2(inode->i_sb, DAX_NEVER))
4549 		return false;
4550 	if (!S_ISREG(inode->i_mode))
4551 		return false;
4552 	if (ext4_should_journal_data(inode))
4553 		return false;
4554 	if (ext4_has_inline_data(inode))
4555 		return false;
4556 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4557 		return false;
4558 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4559 		return false;
4560 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4561 		return false;
4562 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4563 		return true;
4564 
4565 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4566 }
4567 
4568 void ext4_set_inode_flags(struct inode *inode, bool init)
4569 {
4570 	unsigned int flags = EXT4_I(inode)->i_flags;
4571 	unsigned int new_fl = 0;
4572 
4573 	WARN_ON_ONCE(IS_DAX(inode) && init);
4574 
4575 	if (flags & EXT4_SYNC_FL)
4576 		new_fl |= S_SYNC;
4577 	if (flags & EXT4_APPEND_FL)
4578 		new_fl |= S_APPEND;
4579 	if (flags & EXT4_IMMUTABLE_FL)
4580 		new_fl |= S_IMMUTABLE;
4581 	if (flags & EXT4_NOATIME_FL)
4582 		new_fl |= S_NOATIME;
4583 	if (flags & EXT4_DIRSYNC_FL)
4584 		new_fl |= S_DIRSYNC;
4585 
4586 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4587 	 * here if already set. */
4588 	new_fl |= (inode->i_flags & S_DAX);
4589 	if (init && ext4_should_enable_dax(inode))
4590 		new_fl |= S_DAX;
4591 
4592 	if (flags & EXT4_ENCRYPT_FL)
4593 		new_fl |= S_ENCRYPTED;
4594 	if (flags & EXT4_CASEFOLD_FL)
4595 		new_fl |= S_CASEFOLD;
4596 	if (flags & EXT4_VERITY_FL)
4597 		new_fl |= S_VERITY;
4598 	inode_set_flags(inode, new_fl,
4599 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4600 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4601 }
4602 
4603 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4604 				  struct ext4_inode_info *ei)
4605 {
4606 	blkcnt_t i_blocks ;
4607 	struct inode *inode = &(ei->vfs_inode);
4608 	struct super_block *sb = inode->i_sb;
4609 
4610 	if (ext4_has_feature_huge_file(sb)) {
4611 		/* we are using combined 48 bit field */
4612 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4613 					le32_to_cpu(raw_inode->i_blocks_lo);
4614 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4615 			/* i_blocks represent file system block size */
4616 			return i_blocks  << (inode->i_blkbits - 9);
4617 		} else {
4618 			return i_blocks;
4619 		}
4620 	} else {
4621 		return le32_to_cpu(raw_inode->i_blocks_lo);
4622 	}
4623 }
4624 
4625 static inline int ext4_iget_extra_inode(struct inode *inode,
4626 					 struct ext4_inode *raw_inode,
4627 					 struct ext4_inode_info *ei)
4628 {
4629 	__le32 *magic = (void *)raw_inode +
4630 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4631 
4632 	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4633 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4634 		int err;
4635 
4636 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4637 		err = ext4_find_inline_data_nolock(inode);
4638 		if (!err && ext4_has_inline_data(inode))
4639 			ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4640 		return err;
4641 	} else
4642 		EXT4_I(inode)->i_inline_off = 0;
4643 	return 0;
4644 }
4645 
4646 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4647 {
4648 	if (!ext4_has_feature_project(inode->i_sb))
4649 		return -EOPNOTSUPP;
4650 	*projid = EXT4_I(inode)->i_projid;
4651 	return 0;
4652 }
4653 
4654 /*
4655  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4656  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4657  * set.
4658  */
4659 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4660 {
4661 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4662 		inode_set_iversion_raw(inode, val);
4663 	else
4664 		inode_set_iversion_queried(inode, val);
4665 }
4666 
4667 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4668 
4669 {
4670 	if (flags & EXT4_IGET_EA_INODE) {
4671 		if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4672 			return "missing EA_INODE flag";
4673 		if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4674 		    EXT4_I(inode)->i_file_acl)
4675 			return "ea_inode with extended attributes";
4676 	} else {
4677 		if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4678 			return "unexpected EA_INODE flag";
4679 	}
4680 	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4681 		return "unexpected bad inode w/o EXT4_IGET_BAD";
4682 	return NULL;
4683 }
4684 
4685 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4686 			  ext4_iget_flags flags, const char *function,
4687 			  unsigned int line)
4688 {
4689 	struct ext4_iloc iloc;
4690 	struct ext4_inode *raw_inode;
4691 	struct ext4_inode_info *ei;
4692 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4693 	struct inode *inode;
4694 	const char *err_str;
4695 	journal_t *journal = EXT4_SB(sb)->s_journal;
4696 	long ret;
4697 	loff_t size;
4698 	int block;
4699 	uid_t i_uid;
4700 	gid_t i_gid;
4701 	projid_t i_projid;
4702 
4703 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4704 	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4705 	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4706 	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4707 	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4708 	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4709 	    (ino < EXT4_ROOT_INO) ||
4710 	    (ino > le32_to_cpu(es->s_inodes_count))) {
4711 		if (flags & EXT4_IGET_HANDLE)
4712 			return ERR_PTR(-ESTALE);
4713 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4714 			     "inode #%lu: comm %s: iget: illegal inode #",
4715 			     ino, current->comm);
4716 		return ERR_PTR(-EFSCORRUPTED);
4717 	}
4718 
4719 	inode = iget_locked(sb, ino);
4720 	if (!inode)
4721 		return ERR_PTR(-ENOMEM);
4722 	if (!(inode->i_state & I_NEW)) {
4723 		if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4724 			ext4_error_inode(inode, function, line, 0, err_str);
4725 			iput(inode);
4726 			return ERR_PTR(-EFSCORRUPTED);
4727 		}
4728 		return inode;
4729 	}
4730 
4731 	ei = EXT4_I(inode);
4732 	iloc.bh = NULL;
4733 
4734 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4735 	if (ret < 0)
4736 		goto bad_inode;
4737 	raw_inode = ext4_raw_inode(&iloc);
4738 
4739 	if ((flags & EXT4_IGET_HANDLE) &&
4740 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4741 		ret = -ESTALE;
4742 		goto bad_inode;
4743 	}
4744 
4745 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4746 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4747 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4748 			EXT4_INODE_SIZE(inode->i_sb) ||
4749 		    (ei->i_extra_isize & 3)) {
4750 			ext4_error_inode(inode, function, line, 0,
4751 					 "iget: bad extra_isize %u "
4752 					 "(inode size %u)",
4753 					 ei->i_extra_isize,
4754 					 EXT4_INODE_SIZE(inode->i_sb));
4755 			ret = -EFSCORRUPTED;
4756 			goto bad_inode;
4757 		}
4758 	} else
4759 		ei->i_extra_isize = 0;
4760 
4761 	/* Precompute checksum seed for inode metadata */
4762 	if (ext4_has_metadata_csum(sb)) {
4763 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4764 		__u32 csum;
4765 		__le32 inum = cpu_to_le32(inode->i_ino);
4766 		__le32 gen = raw_inode->i_generation;
4767 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4768 				   sizeof(inum));
4769 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4770 					      sizeof(gen));
4771 	}
4772 
4773 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4774 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4775 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4776 		ext4_error_inode_err(inode, function, line, 0,
4777 				EFSBADCRC, "iget: checksum invalid");
4778 		ret = -EFSBADCRC;
4779 		goto bad_inode;
4780 	}
4781 
4782 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4783 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4784 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4785 	if (ext4_has_feature_project(sb) &&
4786 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4787 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4788 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4789 	else
4790 		i_projid = EXT4_DEF_PROJID;
4791 
4792 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4793 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4794 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4795 	}
4796 	i_uid_write(inode, i_uid);
4797 	i_gid_write(inode, i_gid);
4798 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4799 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4800 
4801 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4802 	ei->i_inline_off = 0;
4803 	ei->i_dir_start_lookup = 0;
4804 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4805 	/* We now have enough fields to check if the inode was active or not.
4806 	 * This is needed because nfsd might try to access dead inodes
4807 	 * the test is that same one that e2fsck uses
4808 	 * NeilBrown 1999oct15
4809 	 */
4810 	if (inode->i_nlink == 0) {
4811 		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4812 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4813 		    ino != EXT4_BOOT_LOADER_INO) {
4814 			/* this inode is deleted or unallocated */
4815 			if (flags & EXT4_IGET_SPECIAL) {
4816 				ext4_error_inode(inode, function, line, 0,
4817 						 "iget: special inode unallocated");
4818 				ret = -EFSCORRUPTED;
4819 			} else
4820 				ret = -ESTALE;
4821 			goto bad_inode;
4822 		}
4823 		/* The only unlinked inodes we let through here have
4824 		 * valid i_mode and are being read by the orphan
4825 		 * recovery code: that's fine, we're about to complete
4826 		 * the process of deleting those.
4827 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4828 		 * not initialized on a new filesystem. */
4829 	}
4830 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4831 	ext4_set_inode_flags(inode, true);
4832 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4833 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4834 	if (ext4_has_feature_64bit(sb))
4835 		ei->i_file_acl |=
4836 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4837 	inode->i_size = ext4_isize(sb, raw_inode);
4838 	if ((size = i_size_read(inode)) < 0) {
4839 		ext4_error_inode(inode, function, line, 0,
4840 				 "iget: bad i_size value: %lld", size);
4841 		ret = -EFSCORRUPTED;
4842 		goto bad_inode;
4843 	}
4844 	/*
4845 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4846 	 * we'd normally treat htree data as empty space. But with metadata
4847 	 * checksumming that corrupts checksums so forbid that.
4848 	 */
4849 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4850 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4851 		ext4_error_inode(inode, function, line, 0,
4852 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4853 		ret = -EFSCORRUPTED;
4854 		goto bad_inode;
4855 	}
4856 	ei->i_disksize = inode->i_size;
4857 #ifdef CONFIG_QUOTA
4858 	ei->i_reserved_quota = 0;
4859 #endif
4860 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4861 	ei->i_block_group = iloc.block_group;
4862 	ei->i_last_alloc_group = ~0;
4863 	/*
4864 	 * NOTE! The in-memory inode i_data array is in little-endian order
4865 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4866 	 */
4867 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4868 		ei->i_data[block] = raw_inode->i_block[block];
4869 	INIT_LIST_HEAD(&ei->i_orphan);
4870 	ext4_fc_init_inode(&ei->vfs_inode);
4871 
4872 	/*
4873 	 * Set transaction id's of transactions that have to be committed
4874 	 * to finish f[data]sync. We set them to currently running transaction
4875 	 * as we cannot be sure that the inode or some of its metadata isn't
4876 	 * part of the transaction - the inode could have been reclaimed and
4877 	 * now it is reread from disk.
4878 	 */
4879 	if (journal) {
4880 		transaction_t *transaction;
4881 		tid_t tid;
4882 
4883 		read_lock(&journal->j_state_lock);
4884 		if (journal->j_running_transaction)
4885 			transaction = journal->j_running_transaction;
4886 		else
4887 			transaction = journal->j_committing_transaction;
4888 		if (transaction)
4889 			tid = transaction->t_tid;
4890 		else
4891 			tid = journal->j_commit_sequence;
4892 		read_unlock(&journal->j_state_lock);
4893 		ei->i_sync_tid = tid;
4894 		ei->i_datasync_tid = tid;
4895 	}
4896 
4897 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4898 		if (ei->i_extra_isize == 0) {
4899 			/* The extra space is currently unused. Use it. */
4900 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4901 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4902 					    EXT4_GOOD_OLD_INODE_SIZE;
4903 		} else {
4904 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4905 			if (ret)
4906 				goto bad_inode;
4907 		}
4908 	}
4909 
4910 	EXT4_INODE_GET_CTIME(inode, raw_inode);
4911 	EXT4_INODE_GET_ATIME(inode, raw_inode);
4912 	EXT4_INODE_GET_MTIME(inode, raw_inode);
4913 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4914 
4915 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4916 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4917 
4918 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4919 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4920 				ivers |=
4921 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4922 		}
4923 		ext4_inode_set_iversion_queried(inode, ivers);
4924 	}
4925 
4926 	ret = 0;
4927 	if (ei->i_file_acl &&
4928 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4929 		ext4_error_inode(inode, function, line, 0,
4930 				 "iget: bad extended attribute block %llu",
4931 				 ei->i_file_acl);
4932 		ret = -EFSCORRUPTED;
4933 		goto bad_inode;
4934 	} else if (!ext4_has_inline_data(inode)) {
4935 		/* validate the block references in the inode */
4936 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4937 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4938 			(S_ISLNK(inode->i_mode) &&
4939 			!ext4_inode_is_fast_symlink(inode)))) {
4940 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4941 				ret = ext4_ext_check_inode(inode);
4942 			else
4943 				ret = ext4_ind_check_inode(inode);
4944 		}
4945 	}
4946 	if (ret)
4947 		goto bad_inode;
4948 
4949 	if (S_ISREG(inode->i_mode)) {
4950 		inode->i_op = &ext4_file_inode_operations;
4951 		inode->i_fop = &ext4_file_operations;
4952 		ext4_set_aops(inode);
4953 	} else if (S_ISDIR(inode->i_mode)) {
4954 		inode->i_op = &ext4_dir_inode_operations;
4955 		inode->i_fop = &ext4_dir_operations;
4956 	} else if (S_ISLNK(inode->i_mode)) {
4957 		/* VFS does not allow setting these so must be corruption */
4958 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4959 			ext4_error_inode(inode, function, line, 0,
4960 					 "iget: immutable or append flags "
4961 					 "not allowed on symlinks");
4962 			ret = -EFSCORRUPTED;
4963 			goto bad_inode;
4964 		}
4965 		if (IS_ENCRYPTED(inode)) {
4966 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4967 		} else if (ext4_inode_is_fast_symlink(inode)) {
4968 			inode->i_link = (char *)ei->i_data;
4969 			inode->i_op = &ext4_fast_symlink_inode_operations;
4970 			nd_terminate_link(ei->i_data, inode->i_size,
4971 				sizeof(ei->i_data) - 1);
4972 		} else {
4973 			inode->i_op = &ext4_symlink_inode_operations;
4974 		}
4975 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4976 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4977 		inode->i_op = &ext4_special_inode_operations;
4978 		if (raw_inode->i_block[0])
4979 			init_special_inode(inode, inode->i_mode,
4980 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4981 		else
4982 			init_special_inode(inode, inode->i_mode,
4983 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4984 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4985 		make_bad_inode(inode);
4986 	} else {
4987 		ret = -EFSCORRUPTED;
4988 		ext4_error_inode(inode, function, line, 0,
4989 				 "iget: bogus i_mode (%o)", inode->i_mode);
4990 		goto bad_inode;
4991 	}
4992 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
4993 		ext4_error_inode(inode, function, line, 0,
4994 				 "casefold flag without casefold feature");
4995 		ret = -EFSCORRUPTED;
4996 		goto bad_inode;
4997 	}
4998 	if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4999 		ext4_error_inode(inode, function, line, 0, err_str);
5000 		ret = -EFSCORRUPTED;
5001 		goto bad_inode;
5002 	}
5003 
5004 	brelse(iloc.bh);
5005 	unlock_new_inode(inode);
5006 	return inode;
5007 
5008 bad_inode:
5009 	brelse(iloc.bh);
5010 	iget_failed(inode);
5011 	return ERR_PTR(ret);
5012 }
5013 
5014 static void __ext4_update_other_inode_time(struct super_block *sb,
5015 					   unsigned long orig_ino,
5016 					   unsigned long ino,
5017 					   struct ext4_inode *raw_inode)
5018 {
5019 	struct inode *inode;
5020 
5021 	inode = find_inode_by_ino_rcu(sb, ino);
5022 	if (!inode)
5023 		return;
5024 
5025 	if (!inode_is_dirtytime_only(inode))
5026 		return;
5027 
5028 	spin_lock(&inode->i_lock);
5029 	if (inode_is_dirtytime_only(inode)) {
5030 		struct ext4_inode_info	*ei = EXT4_I(inode);
5031 
5032 		inode->i_state &= ~I_DIRTY_TIME;
5033 		spin_unlock(&inode->i_lock);
5034 
5035 		spin_lock(&ei->i_raw_lock);
5036 		EXT4_INODE_SET_CTIME(inode, raw_inode);
5037 		EXT4_INODE_SET_MTIME(inode, raw_inode);
5038 		EXT4_INODE_SET_ATIME(inode, raw_inode);
5039 		ext4_inode_csum_set(inode, raw_inode, ei);
5040 		spin_unlock(&ei->i_raw_lock);
5041 		trace_ext4_other_inode_update_time(inode, orig_ino);
5042 		return;
5043 	}
5044 	spin_unlock(&inode->i_lock);
5045 }
5046 
5047 /*
5048  * Opportunistically update the other time fields for other inodes in
5049  * the same inode table block.
5050  */
5051 static void ext4_update_other_inodes_time(struct super_block *sb,
5052 					  unsigned long orig_ino, char *buf)
5053 {
5054 	unsigned long ino;
5055 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5056 	int inode_size = EXT4_INODE_SIZE(sb);
5057 
5058 	/*
5059 	 * Calculate the first inode in the inode table block.  Inode
5060 	 * numbers are one-based.  That is, the first inode in a block
5061 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5062 	 */
5063 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5064 	rcu_read_lock();
5065 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5066 		if (ino == orig_ino)
5067 			continue;
5068 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5069 					       (struct ext4_inode *)buf);
5070 	}
5071 	rcu_read_unlock();
5072 }
5073 
5074 /*
5075  * Post the struct inode info into an on-disk inode location in the
5076  * buffer-cache.  This gobbles the caller's reference to the
5077  * buffer_head in the inode location struct.
5078  *
5079  * The caller must have write access to iloc->bh.
5080  */
5081 static int ext4_do_update_inode(handle_t *handle,
5082 				struct inode *inode,
5083 				struct ext4_iloc *iloc)
5084 {
5085 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5086 	struct ext4_inode_info *ei = EXT4_I(inode);
5087 	struct buffer_head *bh = iloc->bh;
5088 	struct super_block *sb = inode->i_sb;
5089 	int err;
5090 	int need_datasync = 0, set_large_file = 0;
5091 
5092 	spin_lock(&ei->i_raw_lock);
5093 
5094 	/*
5095 	 * For fields not tracked in the in-memory inode, initialise them
5096 	 * to zero for new inodes.
5097 	 */
5098 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5099 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5100 
5101 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5102 		need_datasync = 1;
5103 	if (ei->i_disksize > 0x7fffffffULL) {
5104 		if (!ext4_has_feature_large_file(sb) ||
5105 		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5106 			set_large_file = 1;
5107 	}
5108 
5109 	err = ext4_fill_raw_inode(inode, raw_inode);
5110 	spin_unlock(&ei->i_raw_lock);
5111 	if (err) {
5112 		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5113 		goto out_brelse;
5114 	}
5115 
5116 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5117 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5118 					      bh->b_data);
5119 
5120 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5121 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5122 	if (err)
5123 		goto out_error;
5124 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5125 	if (set_large_file) {
5126 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5127 		err = ext4_journal_get_write_access(handle, sb,
5128 						    EXT4_SB(sb)->s_sbh,
5129 						    EXT4_JTR_NONE);
5130 		if (err)
5131 			goto out_error;
5132 		lock_buffer(EXT4_SB(sb)->s_sbh);
5133 		ext4_set_feature_large_file(sb);
5134 		ext4_superblock_csum_set(sb);
5135 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5136 		ext4_handle_sync(handle);
5137 		err = ext4_handle_dirty_metadata(handle, NULL,
5138 						 EXT4_SB(sb)->s_sbh);
5139 	}
5140 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5141 out_error:
5142 	ext4_std_error(inode->i_sb, err);
5143 out_brelse:
5144 	brelse(bh);
5145 	return err;
5146 }
5147 
5148 /*
5149  * ext4_write_inode()
5150  *
5151  * We are called from a few places:
5152  *
5153  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5154  *   Here, there will be no transaction running. We wait for any running
5155  *   transaction to commit.
5156  *
5157  * - Within flush work (sys_sync(), kupdate and such).
5158  *   We wait on commit, if told to.
5159  *
5160  * - Within iput_final() -> write_inode_now()
5161  *   We wait on commit, if told to.
5162  *
5163  * In all cases it is actually safe for us to return without doing anything,
5164  * because the inode has been copied into a raw inode buffer in
5165  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5166  * writeback.
5167  *
5168  * Note that we are absolutely dependent upon all inode dirtiers doing the
5169  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5170  * which we are interested.
5171  *
5172  * It would be a bug for them to not do this.  The code:
5173  *
5174  *	mark_inode_dirty(inode)
5175  *	stuff();
5176  *	inode->i_size = expr;
5177  *
5178  * is in error because write_inode() could occur while `stuff()' is running,
5179  * and the new i_size will be lost.  Plus the inode will no longer be on the
5180  * superblock's dirty inode list.
5181  */
5182 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5183 {
5184 	int err;
5185 
5186 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5187 		return 0;
5188 
5189 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5190 		return -EIO;
5191 
5192 	if (EXT4_SB(inode->i_sb)->s_journal) {
5193 		if (ext4_journal_current_handle()) {
5194 			ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5195 			dump_stack();
5196 			return -EIO;
5197 		}
5198 
5199 		/*
5200 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5201 		 * ext4_sync_fs() will force the commit after everything is
5202 		 * written.
5203 		 */
5204 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5205 			return 0;
5206 
5207 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5208 						EXT4_I(inode)->i_sync_tid);
5209 	} else {
5210 		struct ext4_iloc iloc;
5211 
5212 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5213 		if (err)
5214 			return err;
5215 		/*
5216 		 * sync(2) will flush the whole buffer cache. No need to do
5217 		 * it here separately for each inode.
5218 		 */
5219 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5220 			sync_dirty_buffer(iloc.bh);
5221 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5222 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5223 					       "IO error syncing inode");
5224 			err = -EIO;
5225 		}
5226 		brelse(iloc.bh);
5227 	}
5228 	return err;
5229 }
5230 
5231 /*
5232  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5233  * buffers that are attached to a folio straddling i_size and are undergoing
5234  * commit. In that case we have to wait for commit to finish and try again.
5235  */
5236 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5237 {
5238 	unsigned offset;
5239 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5240 	tid_t commit_tid = 0;
5241 	int ret;
5242 
5243 	offset = inode->i_size & (PAGE_SIZE - 1);
5244 	/*
5245 	 * If the folio is fully truncated, we don't need to wait for any commit
5246 	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5247 	 * strip all buffers from the folio but keep the folio dirty which can then
5248 	 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5249 	 * buffers). Also we don't need to wait for any commit if all buffers in
5250 	 * the folio remain valid. This is most beneficial for the common case of
5251 	 * blocksize == PAGESIZE.
5252 	 */
5253 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5254 		return;
5255 	while (1) {
5256 		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5257 				      inode->i_size >> PAGE_SHIFT);
5258 		if (IS_ERR(folio))
5259 			return;
5260 		ret = __ext4_journalled_invalidate_folio(folio, offset,
5261 						folio_size(folio) - offset);
5262 		folio_unlock(folio);
5263 		folio_put(folio);
5264 		if (ret != -EBUSY)
5265 			return;
5266 		commit_tid = 0;
5267 		read_lock(&journal->j_state_lock);
5268 		if (journal->j_committing_transaction)
5269 			commit_tid = journal->j_committing_transaction->t_tid;
5270 		read_unlock(&journal->j_state_lock);
5271 		if (commit_tid)
5272 			jbd2_log_wait_commit(journal, commit_tid);
5273 	}
5274 }
5275 
5276 /*
5277  * ext4_setattr()
5278  *
5279  * Called from notify_change.
5280  *
5281  * We want to trap VFS attempts to truncate the file as soon as
5282  * possible.  In particular, we want to make sure that when the VFS
5283  * shrinks i_size, we put the inode on the orphan list and modify
5284  * i_disksize immediately, so that during the subsequent flushing of
5285  * dirty pages and freeing of disk blocks, we can guarantee that any
5286  * commit will leave the blocks being flushed in an unused state on
5287  * disk.  (On recovery, the inode will get truncated and the blocks will
5288  * be freed, so we have a strong guarantee that no future commit will
5289  * leave these blocks visible to the user.)
5290  *
5291  * Another thing we have to assure is that if we are in ordered mode
5292  * and inode is still attached to the committing transaction, we must
5293  * we start writeout of all the dirty pages which are being truncated.
5294  * This way we are sure that all the data written in the previous
5295  * transaction are already on disk (truncate waits for pages under
5296  * writeback).
5297  *
5298  * Called with inode->i_rwsem down.
5299  */
5300 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5301 		 struct iattr *attr)
5302 {
5303 	struct inode *inode = d_inode(dentry);
5304 	int error, rc = 0;
5305 	int orphan = 0;
5306 	const unsigned int ia_valid = attr->ia_valid;
5307 	bool inc_ivers = true;
5308 
5309 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5310 		return -EIO;
5311 
5312 	if (unlikely(IS_IMMUTABLE(inode)))
5313 		return -EPERM;
5314 
5315 	if (unlikely(IS_APPEND(inode) &&
5316 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5317 				  ATTR_GID | ATTR_TIMES_SET))))
5318 		return -EPERM;
5319 
5320 	error = setattr_prepare(idmap, dentry, attr);
5321 	if (error)
5322 		return error;
5323 
5324 	error = fscrypt_prepare_setattr(dentry, attr);
5325 	if (error)
5326 		return error;
5327 
5328 	error = fsverity_prepare_setattr(dentry, attr);
5329 	if (error)
5330 		return error;
5331 
5332 	if (is_quota_modification(idmap, inode, attr)) {
5333 		error = dquot_initialize(inode);
5334 		if (error)
5335 			return error;
5336 	}
5337 
5338 	if (i_uid_needs_update(idmap, attr, inode) ||
5339 	    i_gid_needs_update(idmap, attr, inode)) {
5340 		handle_t *handle;
5341 
5342 		/* (user+group)*(old+new) structure, inode write (sb,
5343 		 * inode block, ? - but truncate inode update has it) */
5344 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5345 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5346 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5347 		if (IS_ERR(handle)) {
5348 			error = PTR_ERR(handle);
5349 			goto err_out;
5350 		}
5351 
5352 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5353 		 * counts xattr inode references.
5354 		 */
5355 		down_read(&EXT4_I(inode)->xattr_sem);
5356 		error = dquot_transfer(idmap, inode, attr);
5357 		up_read(&EXT4_I(inode)->xattr_sem);
5358 
5359 		if (error) {
5360 			ext4_journal_stop(handle);
5361 			return error;
5362 		}
5363 		/* Update corresponding info in inode so that everything is in
5364 		 * one transaction */
5365 		i_uid_update(idmap, attr, inode);
5366 		i_gid_update(idmap, attr, inode);
5367 		error = ext4_mark_inode_dirty(handle, inode);
5368 		ext4_journal_stop(handle);
5369 		if (unlikely(error)) {
5370 			return error;
5371 		}
5372 	}
5373 
5374 	if (attr->ia_valid & ATTR_SIZE) {
5375 		handle_t *handle;
5376 		loff_t oldsize = inode->i_size;
5377 		loff_t old_disksize;
5378 		int shrink = (attr->ia_size < inode->i_size);
5379 
5380 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5381 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5382 
5383 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5384 				return -EFBIG;
5385 			}
5386 		}
5387 		if (!S_ISREG(inode->i_mode)) {
5388 			return -EINVAL;
5389 		}
5390 
5391 		if (attr->ia_size == inode->i_size)
5392 			inc_ivers = false;
5393 
5394 		if (shrink) {
5395 			if (ext4_should_order_data(inode)) {
5396 				error = ext4_begin_ordered_truncate(inode,
5397 							    attr->ia_size);
5398 				if (error)
5399 					goto err_out;
5400 			}
5401 			/*
5402 			 * Blocks are going to be removed from the inode. Wait
5403 			 * for dio in flight.
5404 			 */
5405 			inode_dio_wait(inode);
5406 		}
5407 
5408 		filemap_invalidate_lock(inode->i_mapping);
5409 
5410 		rc = ext4_break_layouts(inode);
5411 		if (rc) {
5412 			filemap_invalidate_unlock(inode->i_mapping);
5413 			goto err_out;
5414 		}
5415 
5416 		if (attr->ia_size != inode->i_size) {
5417 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5418 			if (IS_ERR(handle)) {
5419 				error = PTR_ERR(handle);
5420 				goto out_mmap_sem;
5421 			}
5422 			if (ext4_handle_valid(handle) && shrink) {
5423 				error = ext4_orphan_add(handle, inode);
5424 				orphan = 1;
5425 			}
5426 			/*
5427 			 * Update c/mtime on truncate up, ext4_truncate() will
5428 			 * update c/mtime in shrink case below
5429 			 */
5430 			if (!shrink)
5431 				inode_set_mtime_to_ts(inode,
5432 						      inode_set_ctime_current(inode));
5433 
5434 			if (shrink)
5435 				ext4_fc_track_range(handle, inode,
5436 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5437 					inode->i_sb->s_blocksize_bits,
5438 					EXT_MAX_BLOCKS - 1);
5439 			else
5440 				ext4_fc_track_range(
5441 					handle, inode,
5442 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5443 					inode->i_sb->s_blocksize_bits,
5444 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5445 					inode->i_sb->s_blocksize_bits);
5446 
5447 			down_write(&EXT4_I(inode)->i_data_sem);
5448 			old_disksize = EXT4_I(inode)->i_disksize;
5449 			EXT4_I(inode)->i_disksize = attr->ia_size;
5450 			rc = ext4_mark_inode_dirty(handle, inode);
5451 			if (!error)
5452 				error = rc;
5453 			/*
5454 			 * We have to update i_size under i_data_sem together
5455 			 * with i_disksize to avoid races with writeback code
5456 			 * running ext4_wb_update_i_disksize().
5457 			 */
5458 			if (!error)
5459 				i_size_write(inode, attr->ia_size);
5460 			else
5461 				EXT4_I(inode)->i_disksize = old_disksize;
5462 			up_write(&EXT4_I(inode)->i_data_sem);
5463 			ext4_journal_stop(handle);
5464 			if (error)
5465 				goto out_mmap_sem;
5466 			if (!shrink) {
5467 				pagecache_isize_extended(inode, oldsize,
5468 							 inode->i_size);
5469 			} else if (ext4_should_journal_data(inode)) {
5470 				ext4_wait_for_tail_page_commit(inode);
5471 			}
5472 		}
5473 
5474 		/*
5475 		 * Truncate pagecache after we've waited for commit
5476 		 * in data=journal mode to make pages freeable.
5477 		 */
5478 		truncate_pagecache(inode, inode->i_size);
5479 		/*
5480 		 * Call ext4_truncate() even if i_size didn't change to
5481 		 * truncate possible preallocated blocks.
5482 		 */
5483 		if (attr->ia_size <= oldsize) {
5484 			rc = ext4_truncate(inode);
5485 			if (rc)
5486 				error = rc;
5487 		}
5488 out_mmap_sem:
5489 		filemap_invalidate_unlock(inode->i_mapping);
5490 	}
5491 
5492 	if (!error) {
5493 		if (inc_ivers)
5494 			inode_inc_iversion(inode);
5495 		setattr_copy(idmap, inode, attr);
5496 		mark_inode_dirty(inode);
5497 	}
5498 
5499 	/*
5500 	 * If the call to ext4_truncate failed to get a transaction handle at
5501 	 * all, we need to clean up the in-core orphan list manually.
5502 	 */
5503 	if (orphan && inode->i_nlink)
5504 		ext4_orphan_del(NULL, inode);
5505 
5506 	if (!error && (ia_valid & ATTR_MODE))
5507 		rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5508 
5509 err_out:
5510 	if  (error)
5511 		ext4_std_error(inode->i_sb, error);
5512 	if (!error)
5513 		error = rc;
5514 	return error;
5515 }
5516 
5517 u32 ext4_dio_alignment(struct inode *inode)
5518 {
5519 	if (fsverity_active(inode))
5520 		return 0;
5521 	if (ext4_should_journal_data(inode))
5522 		return 0;
5523 	if (ext4_has_inline_data(inode))
5524 		return 0;
5525 	if (IS_ENCRYPTED(inode)) {
5526 		if (!fscrypt_dio_supported(inode))
5527 			return 0;
5528 		return i_blocksize(inode);
5529 	}
5530 	return 1; /* use the iomap defaults */
5531 }
5532 
5533 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5534 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5535 {
5536 	struct inode *inode = d_inode(path->dentry);
5537 	struct ext4_inode *raw_inode;
5538 	struct ext4_inode_info *ei = EXT4_I(inode);
5539 	unsigned int flags;
5540 
5541 	if ((request_mask & STATX_BTIME) &&
5542 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5543 		stat->result_mask |= STATX_BTIME;
5544 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5545 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5546 	}
5547 
5548 	/*
5549 	 * Return the DIO alignment restrictions if requested.  We only return
5550 	 * this information when requested, since on encrypted files it might
5551 	 * take a fair bit of work to get if the file wasn't opened recently.
5552 	 */
5553 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5554 		u32 dio_align = ext4_dio_alignment(inode);
5555 
5556 		stat->result_mask |= STATX_DIOALIGN;
5557 		if (dio_align == 1) {
5558 			struct block_device *bdev = inode->i_sb->s_bdev;
5559 
5560 			/* iomap defaults */
5561 			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5562 			stat->dio_offset_align = bdev_logical_block_size(bdev);
5563 		} else {
5564 			stat->dio_mem_align = dio_align;
5565 			stat->dio_offset_align = dio_align;
5566 		}
5567 	}
5568 
5569 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5570 	if (flags & EXT4_APPEND_FL)
5571 		stat->attributes |= STATX_ATTR_APPEND;
5572 	if (flags & EXT4_COMPR_FL)
5573 		stat->attributes |= STATX_ATTR_COMPRESSED;
5574 	if (flags & EXT4_ENCRYPT_FL)
5575 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5576 	if (flags & EXT4_IMMUTABLE_FL)
5577 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5578 	if (flags & EXT4_NODUMP_FL)
5579 		stat->attributes |= STATX_ATTR_NODUMP;
5580 	if (flags & EXT4_VERITY_FL)
5581 		stat->attributes |= STATX_ATTR_VERITY;
5582 
5583 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5584 				  STATX_ATTR_COMPRESSED |
5585 				  STATX_ATTR_ENCRYPTED |
5586 				  STATX_ATTR_IMMUTABLE |
5587 				  STATX_ATTR_NODUMP |
5588 				  STATX_ATTR_VERITY);
5589 
5590 	generic_fillattr(idmap, request_mask, inode, stat);
5591 	return 0;
5592 }
5593 
5594 int ext4_file_getattr(struct mnt_idmap *idmap,
5595 		      const struct path *path, struct kstat *stat,
5596 		      u32 request_mask, unsigned int query_flags)
5597 {
5598 	struct inode *inode = d_inode(path->dentry);
5599 	u64 delalloc_blocks;
5600 
5601 	ext4_getattr(idmap, path, stat, request_mask, query_flags);
5602 
5603 	/*
5604 	 * If there is inline data in the inode, the inode will normally not
5605 	 * have data blocks allocated (it may have an external xattr block).
5606 	 * Report at least one sector for such files, so tools like tar, rsync,
5607 	 * others don't incorrectly think the file is completely sparse.
5608 	 */
5609 	if (unlikely(ext4_has_inline_data(inode)))
5610 		stat->blocks += (stat->size + 511) >> 9;
5611 
5612 	/*
5613 	 * We can't update i_blocks if the block allocation is delayed
5614 	 * otherwise in the case of system crash before the real block
5615 	 * allocation is done, we will have i_blocks inconsistent with
5616 	 * on-disk file blocks.
5617 	 * We always keep i_blocks updated together with real
5618 	 * allocation. But to not confuse with user, stat
5619 	 * will return the blocks that include the delayed allocation
5620 	 * blocks for this file.
5621 	 */
5622 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5623 				   EXT4_I(inode)->i_reserved_data_blocks);
5624 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5625 	return 0;
5626 }
5627 
5628 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5629 				   int pextents)
5630 {
5631 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5632 		return ext4_ind_trans_blocks(inode, lblocks);
5633 	return ext4_ext_index_trans_blocks(inode, pextents);
5634 }
5635 
5636 /*
5637  * Account for index blocks, block groups bitmaps and block group
5638  * descriptor blocks if modify datablocks and index blocks
5639  * worse case, the indexs blocks spread over different block groups
5640  *
5641  * If datablocks are discontiguous, they are possible to spread over
5642  * different block groups too. If they are contiguous, with flexbg,
5643  * they could still across block group boundary.
5644  *
5645  * Also account for superblock, inode, quota and xattr blocks
5646  */
5647 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5648 				  int pextents)
5649 {
5650 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5651 	int gdpblocks;
5652 	int idxblocks;
5653 	int ret;
5654 
5655 	/*
5656 	 * How many index blocks need to touch to map @lblocks logical blocks
5657 	 * to @pextents physical extents?
5658 	 */
5659 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5660 
5661 	ret = idxblocks;
5662 
5663 	/*
5664 	 * Now let's see how many group bitmaps and group descriptors need
5665 	 * to account
5666 	 */
5667 	groups = idxblocks + pextents;
5668 	gdpblocks = groups;
5669 	if (groups > ngroups)
5670 		groups = ngroups;
5671 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5672 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5673 
5674 	/* bitmaps and block group descriptor blocks */
5675 	ret += groups + gdpblocks;
5676 
5677 	/* Blocks for super block, inode, quota and xattr blocks */
5678 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5679 
5680 	return ret;
5681 }
5682 
5683 /*
5684  * Calculate the total number of credits to reserve to fit
5685  * the modification of a single pages into a single transaction,
5686  * which may include multiple chunks of block allocations.
5687  *
5688  * This could be called via ext4_write_begin()
5689  *
5690  * We need to consider the worse case, when
5691  * one new block per extent.
5692  */
5693 int ext4_writepage_trans_blocks(struct inode *inode)
5694 {
5695 	int bpp = ext4_journal_blocks_per_page(inode);
5696 	int ret;
5697 
5698 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5699 
5700 	/* Account for data blocks for journalled mode */
5701 	if (ext4_should_journal_data(inode))
5702 		ret += bpp;
5703 	return ret;
5704 }
5705 
5706 /*
5707  * Calculate the journal credits for a chunk of data modification.
5708  *
5709  * This is called from DIO, fallocate or whoever calling
5710  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5711  *
5712  * journal buffers for data blocks are not included here, as DIO
5713  * and fallocate do no need to journal data buffers.
5714  */
5715 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5716 {
5717 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5718 }
5719 
5720 /*
5721  * The caller must have previously called ext4_reserve_inode_write().
5722  * Give this, we know that the caller already has write access to iloc->bh.
5723  */
5724 int ext4_mark_iloc_dirty(handle_t *handle,
5725 			 struct inode *inode, struct ext4_iloc *iloc)
5726 {
5727 	int err = 0;
5728 
5729 	if (unlikely(ext4_forced_shutdown(inode->i_sb))) {
5730 		put_bh(iloc->bh);
5731 		return -EIO;
5732 	}
5733 	ext4_fc_track_inode(handle, inode);
5734 
5735 	/* the do_update_inode consumes one bh->b_count */
5736 	get_bh(iloc->bh);
5737 
5738 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5739 	err = ext4_do_update_inode(handle, inode, iloc);
5740 	put_bh(iloc->bh);
5741 	return err;
5742 }
5743 
5744 /*
5745  * On success, We end up with an outstanding reference count against
5746  * iloc->bh.  This _must_ be cleaned up later.
5747  */
5748 
5749 int
5750 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5751 			 struct ext4_iloc *iloc)
5752 {
5753 	int err;
5754 
5755 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5756 		return -EIO;
5757 
5758 	err = ext4_get_inode_loc(inode, iloc);
5759 	if (!err) {
5760 		BUFFER_TRACE(iloc->bh, "get_write_access");
5761 		err = ext4_journal_get_write_access(handle, inode->i_sb,
5762 						    iloc->bh, EXT4_JTR_NONE);
5763 		if (err) {
5764 			brelse(iloc->bh);
5765 			iloc->bh = NULL;
5766 		}
5767 	}
5768 	ext4_std_error(inode->i_sb, err);
5769 	return err;
5770 }
5771 
5772 static int __ext4_expand_extra_isize(struct inode *inode,
5773 				     unsigned int new_extra_isize,
5774 				     struct ext4_iloc *iloc,
5775 				     handle_t *handle, int *no_expand)
5776 {
5777 	struct ext4_inode *raw_inode;
5778 	struct ext4_xattr_ibody_header *header;
5779 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5780 	struct ext4_inode_info *ei = EXT4_I(inode);
5781 	int error;
5782 
5783 	/* this was checked at iget time, but double check for good measure */
5784 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5785 	    (ei->i_extra_isize & 3)) {
5786 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5787 				 ei->i_extra_isize,
5788 				 EXT4_INODE_SIZE(inode->i_sb));
5789 		return -EFSCORRUPTED;
5790 	}
5791 	if ((new_extra_isize < ei->i_extra_isize) ||
5792 	    (new_extra_isize < 4) ||
5793 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5794 		return -EINVAL;	/* Should never happen */
5795 
5796 	raw_inode = ext4_raw_inode(iloc);
5797 
5798 	header = IHDR(inode, raw_inode);
5799 
5800 	/* No extended attributes present */
5801 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5802 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5803 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5804 		       EXT4_I(inode)->i_extra_isize, 0,
5805 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5806 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5807 		return 0;
5808 	}
5809 
5810 	/*
5811 	 * We may need to allocate external xattr block so we need quotas
5812 	 * initialized. Here we can be called with various locks held so we
5813 	 * cannot affort to initialize quotas ourselves. So just bail.
5814 	 */
5815 	if (dquot_initialize_needed(inode))
5816 		return -EAGAIN;
5817 
5818 	/* try to expand with EAs present */
5819 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5820 					   raw_inode, handle);
5821 	if (error) {
5822 		/*
5823 		 * Inode size expansion failed; don't try again
5824 		 */
5825 		*no_expand = 1;
5826 	}
5827 
5828 	return error;
5829 }
5830 
5831 /*
5832  * Expand an inode by new_extra_isize bytes.
5833  * Returns 0 on success or negative error number on failure.
5834  */
5835 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5836 					  unsigned int new_extra_isize,
5837 					  struct ext4_iloc iloc,
5838 					  handle_t *handle)
5839 {
5840 	int no_expand;
5841 	int error;
5842 
5843 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5844 		return -EOVERFLOW;
5845 
5846 	/*
5847 	 * In nojournal mode, we can immediately attempt to expand
5848 	 * the inode.  When journaled, we first need to obtain extra
5849 	 * buffer credits since we may write into the EA block
5850 	 * with this same handle. If journal_extend fails, then it will
5851 	 * only result in a minor loss of functionality for that inode.
5852 	 * If this is felt to be critical, then e2fsck should be run to
5853 	 * force a large enough s_min_extra_isize.
5854 	 */
5855 	if (ext4_journal_extend(handle,
5856 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5857 		return -ENOSPC;
5858 
5859 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5860 		return -EBUSY;
5861 
5862 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5863 					  handle, &no_expand);
5864 	ext4_write_unlock_xattr(inode, &no_expand);
5865 
5866 	return error;
5867 }
5868 
5869 int ext4_expand_extra_isize(struct inode *inode,
5870 			    unsigned int new_extra_isize,
5871 			    struct ext4_iloc *iloc)
5872 {
5873 	handle_t *handle;
5874 	int no_expand;
5875 	int error, rc;
5876 
5877 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5878 		brelse(iloc->bh);
5879 		return -EOVERFLOW;
5880 	}
5881 
5882 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5883 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5884 	if (IS_ERR(handle)) {
5885 		error = PTR_ERR(handle);
5886 		brelse(iloc->bh);
5887 		return error;
5888 	}
5889 
5890 	ext4_write_lock_xattr(inode, &no_expand);
5891 
5892 	BUFFER_TRACE(iloc->bh, "get_write_access");
5893 	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5894 					      EXT4_JTR_NONE);
5895 	if (error) {
5896 		brelse(iloc->bh);
5897 		goto out_unlock;
5898 	}
5899 
5900 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5901 					  handle, &no_expand);
5902 
5903 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5904 	if (!error)
5905 		error = rc;
5906 
5907 out_unlock:
5908 	ext4_write_unlock_xattr(inode, &no_expand);
5909 	ext4_journal_stop(handle);
5910 	return error;
5911 }
5912 
5913 /*
5914  * What we do here is to mark the in-core inode as clean with respect to inode
5915  * dirtiness (it may still be data-dirty).
5916  * This means that the in-core inode may be reaped by prune_icache
5917  * without having to perform any I/O.  This is a very good thing,
5918  * because *any* task may call prune_icache - even ones which
5919  * have a transaction open against a different journal.
5920  *
5921  * Is this cheating?  Not really.  Sure, we haven't written the
5922  * inode out, but prune_icache isn't a user-visible syncing function.
5923  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5924  * we start and wait on commits.
5925  */
5926 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5927 				const char *func, unsigned int line)
5928 {
5929 	struct ext4_iloc iloc;
5930 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5931 	int err;
5932 
5933 	might_sleep();
5934 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5935 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5936 	if (err)
5937 		goto out;
5938 
5939 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5940 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5941 					       iloc, handle);
5942 
5943 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5944 out:
5945 	if (unlikely(err))
5946 		ext4_error_inode_err(inode, func, line, 0, err,
5947 					"mark_inode_dirty error");
5948 	return err;
5949 }
5950 
5951 /*
5952  * ext4_dirty_inode() is called from __mark_inode_dirty()
5953  *
5954  * We're really interested in the case where a file is being extended.
5955  * i_size has been changed by generic_commit_write() and we thus need
5956  * to include the updated inode in the current transaction.
5957  *
5958  * Also, dquot_alloc_block() will always dirty the inode when blocks
5959  * are allocated to the file.
5960  *
5961  * If the inode is marked synchronous, we don't honour that here - doing
5962  * so would cause a commit on atime updates, which we don't bother doing.
5963  * We handle synchronous inodes at the highest possible level.
5964  */
5965 void ext4_dirty_inode(struct inode *inode, int flags)
5966 {
5967 	handle_t *handle;
5968 
5969 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5970 	if (IS_ERR(handle))
5971 		return;
5972 	ext4_mark_inode_dirty(handle, inode);
5973 	ext4_journal_stop(handle);
5974 }
5975 
5976 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5977 {
5978 	journal_t *journal;
5979 	handle_t *handle;
5980 	int err;
5981 	int alloc_ctx;
5982 
5983 	/*
5984 	 * We have to be very careful here: changing a data block's
5985 	 * journaling status dynamically is dangerous.  If we write a
5986 	 * data block to the journal, change the status and then delete
5987 	 * that block, we risk forgetting to revoke the old log record
5988 	 * from the journal and so a subsequent replay can corrupt data.
5989 	 * So, first we make sure that the journal is empty and that
5990 	 * nobody is changing anything.
5991 	 */
5992 
5993 	journal = EXT4_JOURNAL(inode);
5994 	if (!journal)
5995 		return 0;
5996 	if (is_journal_aborted(journal))
5997 		return -EROFS;
5998 
5999 	/* Wait for all existing dio workers */
6000 	inode_dio_wait(inode);
6001 
6002 	/*
6003 	 * Before flushing the journal and switching inode's aops, we have
6004 	 * to flush all dirty data the inode has. There can be outstanding
6005 	 * delayed allocations, there can be unwritten extents created by
6006 	 * fallocate or buffered writes in dioread_nolock mode covered by
6007 	 * dirty data which can be converted only after flushing the dirty
6008 	 * data (and journalled aops don't know how to handle these cases).
6009 	 */
6010 	if (val) {
6011 		filemap_invalidate_lock(inode->i_mapping);
6012 		err = filemap_write_and_wait(inode->i_mapping);
6013 		if (err < 0) {
6014 			filemap_invalidate_unlock(inode->i_mapping);
6015 			return err;
6016 		}
6017 	}
6018 
6019 	alloc_ctx = ext4_writepages_down_write(inode->i_sb);
6020 	jbd2_journal_lock_updates(journal);
6021 
6022 	/*
6023 	 * OK, there are no updates running now, and all cached data is
6024 	 * synced to disk.  We are now in a completely consistent state
6025 	 * which doesn't have anything in the journal, and we know that
6026 	 * no filesystem updates are running, so it is safe to modify
6027 	 * the inode's in-core data-journaling state flag now.
6028 	 */
6029 
6030 	if (val)
6031 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6032 	else {
6033 		err = jbd2_journal_flush(journal, 0);
6034 		if (err < 0) {
6035 			jbd2_journal_unlock_updates(journal);
6036 			ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6037 			return err;
6038 		}
6039 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6040 	}
6041 	ext4_set_aops(inode);
6042 
6043 	jbd2_journal_unlock_updates(journal);
6044 	ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6045 
6046 	if (val)
6047 		filemap_invalidate_unlock(inode->i_mapping);
6048 
6049 	/* Finally we can mark the inode as dirty. */
6050 
6051 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6052 	if (IS_ERR(handle))
6053 		return PTR_ERR(handle);
6054 
6055 	ext4_fc_mark_ineligible(inode->i_sb,
6056 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6057 	err = ext4_mark_inode_dirty(handle, inode);
6058 	ext4_handle_sync(handle);
6059 	ext4_journal_stop(handle);
6060 	ext4_std_error(inode->i_sb, err);
6061 
6062 	return err;
6063 }
6064 
6065 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6066 			    struct buffer_head *bh)
6067 {
6068 	return !buffer_mapped(bh);
6069 }
6070 
6071 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6072 {
6073 	struct vm_area_struct *vma = vmf->vma;
6074 	struct folio *folio = page_folio(vmf->page);
6075 	loff_t size;
6076 	unsigned long len;
6077 	int err;
6078 	vm_fault_t ret;
6079 	struct file *file = vma->vm_file;
6080 	struct inode *inode = file_inode(file);
6081 	struct address_space *mapping = inode->i_mapping;
6082 	handle_t *handle;
6083 	get_block_t *get_block;
6084 	int retries = 0;
6085 
6086 	if (unlikely(IS_IMMUTABLE(inode)))
6087 		return VM_FAULT_SIGBUS;
6088 
6089 	sb_start_pagefault(inode->i_sb);
6090 	file_update_time(vma->vm_file);
6091 
6092 	filemap_invalidate_lock_shared(mapping);
6093 
6094 	err = ext4_convert_inline_data(inode);
6095 	if (err)
6096 		goto out_ret;
6097 
6098 	/*
6099 	 * On data journalling we skip straight to the transaction handle:
6100 	 * there's no delalloc; page truncated will be checked later; the
6101 	 * early return w/ all buffers mapped (calculates size/len) can't
6102 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6103 	 */
6104 	if (ext4_should_journal_data(inode))
6105 		goto retry_alloc;
6106 
6107 	/* Delalloc case is easy... */
6108 	if (test_opt(inode->i_sb, DELALLOC) &&
6109 	    !ext4_nonda_switch(inode->i_sb)) {
6110 		do {
6111 			err = block_page_mkwrite(vma, vmf,
6112 						   ext4_da_get_block_prep);
6113 		} while (err == -ENOSPC &&
6114 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6115 		goto out_ret;
6116 	}
6117 
6118 	folio_lock(folio);
6119 	size = i_size_read(inode);
6120 	/* Page got truncated from under us? */
6121 	if (folio->mapping != mapping || folio_pos(folio) > size) {
6122 		folio_unlock(folio);
6123 		ret = VM_FAULT_NOPAGE;
6124 		goto out;
6125 	}
6126 
6127 	len = folio_size(folio);
6128 	if (folio_pos(folio) + len > size)
6129 		len = size - folio_pos(folio);
6130 	/*
6131 	 * Return if we have all the buffers mapped. This avoids the need to do
6132 	 * journal_start/journal_stop which can block and take a long time
6133 	 *
6134 	 * This cannot be done for data journalling, as we have to add the
6135 	 * inode to the transaction's list to writeprotect pages on commit.
6136 	 */
6137 	if (folio_buffers(folio)) {
6138 		if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6139 					    0, len, NULL,
6140 					    ext4_bh_unmapped)) {
6141 			/* Wait so that we don't change page under IO */
6142 			folio_wait_stable(folio);
6143 			ret = VM_FAULT_LOCKED;
6144 			goto out;
6145 		}
6146 	}
6147 	folio_unlock(folio);
6148 	/* OK, we need to fill the hole... */
6149 	if (ext4_should_dioread_nolock(inode))
6150 		get_block = ext4_get_block_unwritten;
6151 	else
6152 		get_block = ext4_get_block;
6153 retry_alloc:
6154 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6155 				    ext4_writepage_trans_blocks(inode));
6156 	if (IS_ERR(handle)) {
6157 		ret = VM_FAULT_SIGBUS;
6158 		goto out;
6159 	}
6160 	/*
6161 	 * Data journalling can't use block_page_mkwrite() because it
6162 	 * will set_buffer_dirty() before do_journal_get_write_access()
6163 	 * thus might hit warning messages for dirty metadata buffers.
6164 	 */
6165 	if (!ext4_should_journal_data(inode)) {
6166 		err = block_page_mkwrite(vma, vmf, get_block);
6167 	} else {
6168 		folio_lock(folio);
6169 		size = i_size_read(inode);
6170 		/* Page got truncated from under us? */
6171 		if (folio->mapping != mapping || folio_pos(folio) > size) {
6172 			ret = VM_FAULT_NOPAGE;
6173 			goto out_error;
6174 		}
6175 
6176 		len = folio_size(folio);
6177 		if (folio_pos(folio) + len > size)
6178 			len = size - folio_pos(folio);
6179 
6180 		err = __block_write_begin(&folio->page, 0, len, ext4_get_block);
6181 		if (!err) {
6182 			ret = VM_FAULT_SIGBUS;
6183 			if (ext4_journal_folio_buffers(handle, folio, len))
6184 				goto out_error;
6185 		} else {
6186 			folio_unlock(folio);
6187 		}
6188 	}
6189 	ext4_journal_stop(handle);
6190 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6191 		goto retry_alloc;
6192 out_ret:
6193 	ret = vmf_fs_error(err);
6194 out:
6195 	filemap_invalidate_unlock_shared(mapping);
6196 	sb_end_pagefault(inode->i_sb);
6197 	return ret;
6198 out_error:
6199 	folio_unlock(folio);
6200 	ext4_journal_stop(handle);
6201 	goto out;
6202 }
6203