xref: /linux/fs/ext4/inode.c (revision 0b8061c340b643e01da431dd60c75a41bb1d31ec)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44 
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49 
50 #include <trace/events/ext4.h>
51 
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 			      struct ext4_inode_info *ei)
54 {
55 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 	__u32 csum;
57 	__u16 dummy_csum = 0;
58 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 	unsigned int csum_size = sizeof(dummy_csum);
60 
61 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 	offset += csum_size;
64 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
66 
67 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 		offset = offsetof(struct ext4_inode, i_checksum_hi);
69 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 				   EXT4_GOOD_OLD_INODE_SIZE,
71 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
72 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74 					   csum_size);
75 			offset += csum_size;
76 		}
77 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
79 	}
80 
81 	return csum;
82 }
83 
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 				  struct ext4_inode_info *ei)
86 {
87 	__u32 provided, calculated;
88 
89 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 	    cpu_to_le32(EXT4_OS_LINUX) ||
91 	    !ext4_has_metadata_csum(inode->i_sb))
92 		return 1;
93 
94 	provided = le16_to_cpu(raw->i_checksum_lo);
95 	calculated = ext4_inode_csum(inode, raw, ei);
96 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 	else
100 		calculated &= 0xFFFF;
101 
102 	return provided == calculated;
103 }
104 
105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 			 struct ext4_inode_info *ei)
107 {
108 	__u32 csum;
109 
110 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 	    cpu_to_le32(EXT4_OS_LINUX) ||
112 	    !ext4_has_metadata_csum(inode->i_sb))
113 		return;
114 
115 	csum = ext4_inode_csum(inode, raw, ei);
116 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121 
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 					      loff_t new_size)
124 {
125 	trace_ext4_begin_ordered_truncate(inode, new_size);
126 	/*
127 	 * If jinode is zero, then we never opened the file for
128 	 * writing, so there's no need to call
129 	 * jbd2_journal_begin_ordered_truncate() since there's no
130 	 * outstanding writes we need to flush.
131 	 */
132 	if (!EXT4_I(inode)->jinode)
133 		return 0;
134 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 						   EXT4_I(inode)->jinode,
136 						   new_size);
137 }
138 
139 static void ext4_invalidatepage(struct page *page, unsigned int offset,
140 				unsigned int length);
141 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
142 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
143 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
144 				  int pextents);
145 
146 /*
147  * Test whether an inode is a fast symlink.
148  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
149  */
150 int ext4_inode_is_fast_symlink(struct inode *inode)
151 {
152 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
153 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
154 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
155 
156 		if (ext4_has_inline_data(inode))
157 			return 0;
158 
159 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
160 	}
161 	return S_ISLNK(inode->i_mode) && inode->i_size &&
162 	       (inode->i_size < EXT4_N_BLOCKS * 4);
163 }
164 
165 /*
166  * Called at the last iput() if i_nlink is zero.
167  */
168 void ext4_evict_inode(struct inode *inode)
169 {
170 	handle_t *handle;
171 	int err;
172 	/*
173 	 * Credits for final inode cleanup and freeing:
174 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
175 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
176 	 */
177 	int extra_credits = 6;
178 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
179 	bool freeze_protected = false;
180 
181 	trace_ext4_evict_inode(inode);
182 
183 	if (inode->i_nlink) {
184 		/*
185 		 * When journalling data dirty buffers are tracked only in the
186 		 * journal. So although mm thinks everything is clean and
187 		 * ready for reaping the inode might still have some pages to
188 		 * write in the running transaction or waiting to be
189 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
190 		 * (via truncate_inode_pages()) to discard these buffers can
191 		 * cause data loss. Also even if we did not discard these
192 		 * buffers, we would have no way to find them after the inode
193 		 * is reaped and thus user could see stale data if he tries to
194 		 * read them before the transaction is checkpointed. So be
195 		 * careful and force everything to disk here... We use
196 		 * ei->i_datasync_tid to store the newest transaction
197 		 * containing inode's data.
198 		 *
199 		 * Note that directories do not have this problem because they
200 		 * don't use page cache.
201 		 */
202 		if (inode->i_ino != EXT4_JOURNAL_INO &&
203 		    ext4_should_journal_data(inode) &&
204 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
205 		    inode->i_data.nrpages) {
206 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
207 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
208 
209 			jbd2_complete_transaction(journal, commit_tid);
210 			filemap_write_and_wait(&inode->i_data);
211 		}
212 		truncate_inode_pages_final(&inode->i_data);
213 
214 		goto no_delete;
215 	}
216 
217 	if (is_bad_inode(inode))
218 		goto no_delete;
219 	dquot_initialize(inode);
220 
221 	if (ext4_should_order_data(inode))
222 		ext4_begin_ordered_truncate(inode, 0);
223 	truncate_inode_pages_final(&inode->i_data);
224 
225 	/*
226 	 * For inodes with journalled data, transaction commit could have
227 	 * dirtied the inode. Flush worker is ignoring it because of I_FREEING
228 	 * flag but we still need to remove the inode from the writeback lists.
229 	 */
230 	if (!list_empty_careful(&inode->i_io_list)) {
231 		WARN_ON_ONCE(!ext4_should_journal_data(inode));
232 		inode_io_list_del(inode);
233 	}
234 
235 	/*
236 	 * Protect us against freezing - iput() caller didn't have to have any
237 	 * protection against it. When we are in a running transaction though,
238 	 * we are already protected against freezing and we cannot grab further
239 	 * protection due to lock ordering constraints.
240 	 */
241 	if (!ext4_journal_current_handle()) {
242 		sb_start_intwrite(inode->i_sb);
243 		freeze_protected = true;
244 	}
245 
246 	if (!IS_NOQUOTA(inode))
247 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
248 
249 	/*
250 	 * Block bitmap, group descriptor, and inode are accounted in both
251 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
252 	 */
253 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
254 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
255 	if (IS_ERR(handle)) {
256 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
257 		/*
258 		 * If we're going to skip the normal cleanup, we still need to
259 		 * make sure that the in-core orphan linked list is properly
260 		 * cleaned up.
261 		 */
262 		ext4_orphan_del(NULL, inode);
263 		if (freeze_protected)
264 			sb_end_intwrite(inode->i_sb);
265 		goto no_delete;
266 	}
267 
268 	if (IS_SYNC(inode))
269 		ext4_handle_sync(handle);
270 
271 	/*
272 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
273 	 * special handling of symlinks here because i_size is used to
274 	 * determine whether ext4_inode_info->i_data contains symlink data or
275 	 * block mappings. Setting i_size to 0 will remove its fast symlink
276 	 * status. Erase i_data so that it becomes a valid empty block map.
277 	 */
278 	if (ext4_inode_is_fast_symlink(inode))
279 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
280 	inode->i_size = 0;
281 	err = ext4_mark_inode_dirty(handle, inode);
282 	if (err) {
283 		ext4_warning(inode->i_sb,
284 			     "couldn't mark inode dirty (err %d)", err);
285 		goto stop_handle;
286 	}
287 	if (inode->i_blocks) {
288 		err = ext4_truncate(inode);
289 		if (err) {
290 			ext4_error_err(inode->i_sb, -err,
291 				       "couldn't truncate inode %lu (err %d)",
292 				       inode->i_ino, err);
293 			goto stop_handle;
294 		}
295 	}
296 
297 	/* Remove xattr references. */
298 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
299 				      extra_credits);
300 	if (err) {
301 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
302 stop_handle:
303 		ext4_journal_stop(handle);
304 		ext4_orphan_del(NULL, inode);
305 		if (freeze_protected)
306 			sb_end_intwrite(inode->i_sb);
307 		ext4_xattr_inode_array_free(ea_inode_array);
308 		goto no_delete;
309 	}
310 
311 	/*
312 	 * Kill off the orphan record which ext4_truncate created.
313 	 * AKPM: I think this can be inside the above `if'.
314 	 * Note that ext4_orphan_del() has to be able to cope with the
315 	 * deletion of a non-existent orphan - this is because we don't
316 	 * know if ext4_truncate() actually created an orphan record.
317 	 * (Well, we could do this if we need to, but heck - it works)
318 	 */
319 	ext4_orphan_del(handle, inode);
320 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
321 
322 	/*
323 	 * One subtle ordering requirement: if anything has gone wrong
324 	 * (transaction abort, IO errors, whatever), then we can still
325 	 * do these next steps (the fs will already have been marked as
326 	 * having errors), but we can't free the inode if the mark_dirty
327 	 * fails.
328 	 */
329 	if (ext4_mark_inode_dirty(handle, inode))
330 		/* If that failed, just do the required in-core inode clear. */
331 		ext4_clear_inode(inode);
332 	else
333 		ext4_free_inode(handle, inode);
334 	ext4_journal_stop(handle);
335 	if (freeze_protected)
336 		sb_end_intwrite(inode->i_sb);
337 	ext4_xattr_inode_array_free(ea_inode_array);
338 	return;
339 no_delete:
340 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
341 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
342 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
343 }
344 
345 #ifdef CONFIG_QUOTA
346 qsize_t *ext4_get_reserved_space(struct inode *inode)
347 {
348 	return &EXT4_I(inode)->i_reserved_quota;
349 }
350 #endif
351 
352 /*
353  * Called with i_data_sem down, which is important since we can call
354  * ext4_discard_preallocations() from here.
355  */
356 void ext4_da_update_reserve_space(struct inode *inode,
357 					int used, int quota_claim)
358 {
359 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
360 	struct ext4_inode_info *ei = EXT4_I(inode);
361 
362 	spin_lock(&ei->i_block_reservation_lock);
363 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
364 	if (unlikely(used > ei->i_reserved_data_blocks)) {
365 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
366 			 "with only %d reserved data blocks",
367 			 __func__, inode->i_ino, used,
368 			 ei->i_reserved_data_blocks);
369 		WARN_ON(1);
370 		used = ei->i_reserved_data_blocks;
371 	}
372 
373 	/* Update per-inode reservations */
374 	ei->i_reserved_data_blocks -= used;
375 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
376 
377 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
378 
379 	/* Update quota subsystem for data blocks */
380 	if (quota_claim)
381 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
382 	else {
383 		/*
384 		 * We did fallocate with an offset that is already delayed
385 		 * allocated. So on delayed allocated writeback we should
386 		 * not re-claim the quota for fallocated blocks.
387 		 */
388 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
389 	}
390 
391 	/*
392 	 * If we have done all the pending block allocations and if
393 	 * there aren't any writers on the inode, we can discard the
394 	 * inode's preallocations.
395 	 */
396 	if ((ei->i_reserved_data_blocks == 0) &&
397 	    !inode_is_open_for_write(inode))
398 		ext4_discard_preallocations(inode, 0);
399 }
400 
401 static int __check_block_validity(struct inode *inode, const char *func,
402 				unsigned int line,
403 				struct ext4_map_blocks *map)
404 {
405 	if (ext4_has_feature_journal(inode->i_sb) &&
406 	    (inode->i_ino ==
407 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
408 		return 0;
409 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
410 		ext4_error_inode(inode, func, line, map->m_pblk,
411 				 "lblock %lu mapped to illegal pblock %llu "
412 				 "(length %d)", (unsigned long) map->m_lblk,
413 				 map->m_pblk, map->m_len);
414 		return -EFSCORRUPTED;
415 	}
416 	return 0;
417 }
418 
419 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
420 		       ext4_lblk_t len)
421 {
422 	int ret;
423 
424 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
425 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
426 
427 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
428 	if (ret > 0)
429 		ret = 0;
430 
431 	return ret;
432 }
433 
434 #define check_block_validity(inode, map)	\
435 	__check_block_validity((inode), __func__, __LINE__, (map))
436 
437 #ifdef ES_AGGRESSIVE_TEST
438 static void ext4_map_blocks_es_recheck(handle_t *handle,
439 				       struct inode *inode,
440 				       struct ext4_map_blocks *es_map,
441 				       struct ext4_map_blocks *map,
442 				       int flags)
443 {
444 	int retval;
445 
446 	map->m_flags = 0;
447 	/*
448 	 * There is a race window that the result is not the same.
449 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
450 	 * is that we lookup a block mapping in extent status tree with
451 	 * out taking i_data_sem.  So at the time the unwritten extent
452 	 * could be converted.
453 	 */
454 	down_read(&EXT4_I(inode)->i_data_sem);
455 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
456 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
457 	} else {
458 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
459 	}
460 	up_read((&EXT4_I(inode)->i_data_sem));
461 
462 	/*
463 	 * We don't check m_len because extent will be collpased in status
464 	 * tree.  So the m_len might not equal.
465 	 */
466 	if (es_map->m_lblk != map->m_lblk ||
467 	    es_map->m_flags != map->m_flags ||
468 	    es_map->m_pblk != map->m_pblk) {
469 		printk("ES cache assertion failed for inode: %lu "
470 		       "es_cached ex [%d/%d/%llu/%x] != "
471 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
473 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
474 		       map->m_len, map->m_pblk, map->m_flags,
475 		       retval, flags);
476 	}
477 }
478 #endif /* ES_AGGRESSIVE_TEST */
479 
480 /*
481  * The ext4_map_blocks() function tries to look up the requested blocks,
482  * and returns if the blocks are already mapped.
483  *
484  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485  * and store the allocated blocks in the result buffer head and mark it
486  * mapped.
487  *
488  * If file type is extents based, it will call ext4_ext_map_blocks(),
489  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
490  * based files
491  *
492  * On success, it returns the number of blocks being mapped or allocated.  if
493  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
494  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
495  *
496  * It returns 0 if plain look up failed (blocks have not been allocated), in
497  * that case, @map is returned as unmapped but we still do fill map->m_len to
498  * indicate the length of a hole starting at map->m_lblk.
499  *
500  * It returns the error in case of allocation failure.
501  */
502 int ext4_map_blocks(handle_t *handle, struct inode *inode,
503 		    struct ext4_map_blocks *map, int flags)
504 {
505 	struct extent_status es;
506 	int retval;
507 	int ret = 0;
508 #ifdef ES_AGGRESSIVE_TEST
509 	struct ext4_map_blocks orig_map;
510 
511 	memcpy(&orig_map, map, sizeof(*map));
512 #endif
513 
514 	map->m_flags = 0;
515 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
516 		  flags, map->m_len, (unsigned long) map->m_lblk);
517 
518 	/*
519 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
520 	 */
521 	if (unlikely(map->m_len > INT_MAX))
522 		map->m_len = INT_MAX;
523 
524 	/* We can handle the block number less than EXT_MAX_BLOCKS */
525 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
526 		return -EFSCORRUPTED;
527 
528 	/* Lookup extent status tree firstly */
529 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
530 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
531 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
532 			map->m_pblk = ext4_es_pblock(&es) +
533 					map->m_lblk - es.es_lblk;
534 			map->m_flags |= ext4_es_is_written(&es) ?
535 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
536 			retval = es.es_len - (map->m_lblk - es.es_lblk);
537 			if (retval > map->m_len)
538 				retval = map->m_len;
539 			map->m_len = retval;
540 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
541 			map->m_pblk = 0;
542 			retval = es.es_len - (map->m_lblk - es.es_lblk);
543 			if (retval > map->m_len)
544 				retval = map->m_len;
545 			map->m_len = retval;
546 			retval = 0;
547 		} else {
548 			BUG();
549 		}
550 #ifdef ES_AGGRESSIVE_TEST
551 		ext4_map_blocks_es_recheck(handle, inode, map,
552 					   &orig_map, flags);
553 #endif
554 		goto found;
555 	}
556 
557 	/*
558 	 * Try to see if we can get the block without requesting a new
559 	 * file system block.
560 	 */
561 	down_read(&EXT4_I(inode)->i_data_sem);
562 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
563 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
564 	} else {
565 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
566 	}
567 	if (retval > 0) {
568 		unsigned int status;
569 
570 		if (unlikely(retval != map->m_len)) {
571 			ext4_warning(inode->i_sb,
572 				     "ES len assertion failed for inode "
573 				     "%lu: retval %d != map->m_len %d",
574 				     inode->i_ino, retval, map->m_len);
575 			WARN_ON(1);
576 		}
577 
578 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
579 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
580 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
581 		    !(status & EXTENT_STATUS_WRITTEN) &&
582 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
583 				       map->m_lblk + map->m_len - 1))
584 			status |= EXTENT_STATUS_DELAYED;
585 		ret = ext4_es_insert_extent(inode, map->m_lblk,
586 					    map->m_len, map->m_pblk, status);
587 		if (ret < 0)
588 			retval = ret;
589 	}
590 	up_read((&EXT4_I(inode)->i_data_sem));
591 
592 found:
593 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
594 		ret = check_block_validity(inode, map);
595 		if (ret != 0)
596 			return ret;
597 	}
598 
599 	/* If it is only a block(s) look up */
600 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
601 		return retval;
602 
603 	/*
604 	 * Returns if the blocks have already allocated
605 	 *
606 	 * Note that if blocks have been preallocated
607 	 * ext4_ext_get_block() returns the create = 0
608 	 * with buffer head unmapped.
609 	 */
610 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
611 		/*
612 		 * If we need to convert extent to unwritten
613 		 * we continue and do the actual work in
614 		 * ext4_ext_map_blocks()
615 		 */
616 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
617 			return retval;
618 
619 	/*
620 	 * Here we clear m_flags because after allocating an new extent,
621 	 * it will be set again.
622 	 */
623 	map->m_flags &= ~EXT4_MAP_FLAGS;
624 
625 	/*
626 	 * New blocks allocate and/or writing to unwritten extent
627 	 * will possibly result in updating i_data, so we take
628 	 * the write lock of i_data_sem, and call get_block()
629 	 * with create == 1 flag.
630 	 */
631 	down_write(&EXT4_I(inode)->i_data_sem);
632 
633 	/*
634 	 * We need to check for EXT4 here because migrate
635 	 * could have changed the inode type in between
636 	 */
637 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
638 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
639 	} else {
640 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
641 
642 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
643 			/*
644 			 * We allocated new blocks which will result in
645 			 * i_data's format changing.  Force the migrate
646 			 * to fail by clearing migrate flags
647 			 */
648 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
649 		}
650 
651 		/*
652 		 * Update reserved blocks/metadata blocks after successful
653 		 * block allocation which had been deferred till now. We don't
654 		 * support fallocate for non extent files. So we can update
655 		 * reserve space here.
656 		 */
657 		if ((retval > 0) &&
658 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
659 			ext4_da_update_reserve_space(inode, retval, 1);
660 	}
661 
662 	if (retval > 0) {
663 		unsigned int status;
664 
665 		if (unlikely(retval != map->m_len)) {
666 			ext4_warning(inode->i_sb,
667 				     "ES len assertion failed for inode "
668 				     "%lu: retval %d != map->m_len %d",
669 				     inode->i_ino, retval, map->m_len);
670 			WARN_ON(1);
671 		}
672 
673 		/*
674 		 * We have to zeroout blocks before inserting them into extent
675 		 * status tree. Otherwise someone could look them up there and
676 		 * use them before they are really zeroed. We also have to
677 		 * unmap metadata before zeroing as otherwise writeback can
678 		 * overwrite zeros with stale data from block device.
679 		 */
680 		if (flags & EXT4_GET_BLOCKS_ZERO &&
681 		    map->m_flags & EXT4_MAP_MAPPED &&
682 		    map->m_flags & EXT4_MAP_NEW) {
683 			ret = ext4_issue_zeroout(inode, map->m_lblk,
684 						 map->m_pblk, map->m_len);
685 			if (ret) {
686 				retval = ret;
687 				goto out_sem;
688 			}
689 		}
690 
691 		/*
692 		 * If the extent has been zeroed out, we don't need to update
693 		 * extent status tree.
694 		 */
695 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
696 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
697 			if (ext4_es_is_written(&es))
698 				goto out_sem;
699 		}
700 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
701 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
702 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
703 		    !(status & EXTENT_STATUS_WRITTEN) &&
704 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
705 				       map->m_lblk + map->m_len - 1))
706 			status |= EXTENT_STATUS_DELAYED;
707 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
708 					    map->m_pblk, status);
709 		if (ret < 0) {
710 			retval = ret;
711 			goto out_sem;
712 		}
713 	}
714 
715 out_sem:
716 	up_write((&EXT4_I(inode)->i_data_sem));
717 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
718 		ret = check_block_validity(inode, map);
719 		if (ret != 0)
720 			return ret;
721 
722 		/*
723 		 * Inodes with freshly allocated blocks where contents will be
724 		 * visible after transaction commit must be on transaction's
725 		 * ordered data list.
726 		 */
727 		if (map->m_flags & EXT4_MAP_NEW &&
728 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
729 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
730 		    !ext4_is_quota_file(inode) &&
731 		    ext4_should_order_data(inode)) {
732 			loff_t start_byte =
733 				(loff_t)map->m_lblk << inode->i_blkbits;
734 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
735 
736 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
737 				ret = ext4_jbd2_inode_add_wait(handle, inode,
738 						start_byte, length);
739 			else
740 				ret = ext4_jbd2_inode_add_write(handle, inode,
741 						start_byte, length);
742 			if (ret)
743 				return ret;
744 		}
745 		ext4_fc_track_range(handle, inode, map->m_lblk,
746 			    map->m_lblk + map->m_len - 1);
747 	}
748 
749 	if (retval < 0)
750 		ext_debug(inode, "failed with err %d\n", retval);
751 	return retval;
752 }
753 
754 /*
755  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
756  * we have to be careful as someone else may be manipulating b_state as well.
757  */
758 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
759 {
760 	unsigned long old_state;
761 	unsigned long new_state;
762 
763 	flags &= EXT4_MAP_FLAGS;
764 
765 	/* Dummy buffer_head? Set non-atomically. */
766 	if (!bh->b_page) {
767 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
768 		return;
769 	}
770 	/*
771 	 * Someone else may be modifying b_state. Be careful! This is ugly but
772 	 * once we get rid of using bh as a container for mapping information
773 	 * to pass to / from get_block functions, this can go away.
774 	 */
775 	do {
776 		old_state = READ_ONCE(bh->b_state);
777 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
778 	} while (unlikely(
779 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
780 }
781 
782 static int _ext4_get_block(struct inode *inode, sector_t iblock,
783 			   struct buffer_head *bh, int flags)
784 {
785 	struct ext4_map_blocks map;
786 	int ret = 0;
787 
788 	if (ext4_has_inline_data(inode))
789 		return -ERANGE;
790 
791 	map.m_lblk = iblock;
792 	map.m_len = bh->b_size >> inode->i_blkbits;
793 
794 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
795 			      flags);
796 	if (ret > 0) {
797 		map_bh(bh, inode->i_sb, map.m_pblk);
798 		ext4_update_bh_state(bh, map.m_flags);
799 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
800 		ret = 0;
801 	} else if (ret == 0) {
802 		/* hole case, need to fill in bh->b_size */
803 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
804 	}
805 	return ret;
806 }
807 
808 int ext4_get_block(struct inode *inode, sector_t iblock,
809 		   struct buffer_head *bh, int create)
810 {
811 	return _ext4_get_block(inode, iblock, bh,
812 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
813 }
814 
815 /*
816  * Get block function used when preparing for buffered write if we require
817  * creating an unwritten extent if blocks haven't been allocated.  The extent
818  * will be converted to written after the IO is complete.
819  */
820 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
821 			     struct buffer_head *bh_result, int create)
822 {
823 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
824 		   inode->i_ino, create);
825 	return _ext4_get_block(inode, iblock, bh_result,
826 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
827 }
828 
829 /* Maximum number of blocks we map for direct IO at once. */
830 #define DIO_MAX_BLOCKS 4096
831 
832 /*
833  * `handle' can be NULL if create is zero
834  */
835 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
836 				ext4_lblk_t block, int map_flags)
837 {
838 	struct ext4_map_blocks map;
839 	struct buffer_head *bh;
840 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
841 	int err;
842 
843 	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
844 		    || handle != NULL || create == 0);
845 
846 	map.m_lblk = block;
847 	map.m_len = 1;
848 	err = ext4_map_blocks(handle, inode, &map, map_flags);
849 
850 	if (err == 0)
851 		return create ? ERR_PTR(-ENOSPC) : NULL;
852 	if (err < 0)
853 		return ERR_PTR(err);
854 
855 	bh = sb_getblk(inode->i_sb, map.m_pblk);
856 	if (unlikely(!bh))
857 		return ERR_PTR(-ENOMEM);
858 	if (map.m_flags & EXT4_MAP_NEW) {
859 		ASSERT(create != 0);
860 		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
861 			    || (handle != NULL));
862 
863 		/*
864 		 * Now that we do not always journal data, we should
865 		 * keep in mind whether this should always journal the
866 		 * new buffer as metadata.  For now, regular file
867 		 * writes use ext4_get_block instead, so it's not a
868 		 * problem.
869 		 */
870 		lock_buffer(bh);
871 		BUFFER_TRACE(bh, "call get_create_access");
872 		err = ext4_journal_get_create_access(handle, bh);
873 		if (unlikely(err)) {
874 			unlock_buffer(bh);
875 			goto errout;
876 		}
877 		if (!buffer_uptodate(bh)) {
878 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
879 			set_buffer_uptodate(bh);
880 		}
881 		unlock_buffer(bh);
882 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
883 		err = ext4_handle_dirty_metadata(handle, inode, bh);
884 		if (unlikely(err))
885 			goto errout;
886 	} else
887 		BUFFER_TRACE(bh, "not a new buffer");
888 	return bh;
889 errout:
890 	brelse(bh);
891 	return ERR_PTR(err);
892 }
893 
894 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
895 			       ext4_lblk_t block, int map_flags)
896 {
897 	struct buffer_head *bh;
898 	int ret;
899 
900 	bh = ext4_getblk(handle, inode, block, map_flags);
901 	if (IS_ERR(bh))
902 		return bh;
903 	if (!bh || ext4_buffer_uptodate(bh))
904 		return bh;
905 
906 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
907 	if (ret) {
908 		put_bh(bh);
909 		return ERR_PTR(ret);
910 	}
911 	return bh;
912 }
913 
914 /* Read a contiguous batch of blocks. */
915 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
916 		     bool wait, struct buffer_head **bhs)
917 {
918 	int i, err;
919 
920 	for (i = 0; i < bh_count; i++) {
921 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
922 		if (IS_ERR(bhs[i])) {
923 			err = PTR_ERR(bhs[i]);
924 			bh_count = i;
925 			goto out_brelse;
926 		}
927 	}
928 
929 	for (i = 0; i < bh_count; i++)
930 		/* Note that NULL bhs[i] is valid because of holes. */
931 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
932 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
933 
934 	if (!wait)
935 		return 0;
936 
937 	for (i = 0; i < bh_count; i++)
938 		if (bhs[i])
939 			wait_on_buffer(bhs[i]);
940 
941 	for (i = 0; i < bh_count; i++) {
942 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
943 			err = -EIO;
944 			goto out_brelse;
945 		}
946 	}
947 	return 0;
948 
949 out_brelse:
950 	for (i = 0; i < bh_count; i++) {
951 		brelse(bhs[i]);
952 		bhs[i] = NULL;
953 	}
954 	return err;
955 }
956 
957 int ext4_walk_page_buffers(handle_t *handle,
958 			   struct buffer_head *head,
959 			   unsigned from,
960 			   unsigned to,
961 			   int *partial,
962 			   int (*fn)(handle_t *handle,
963 				     struct buffer_head *bh))
964 {
965 	struct buffer_head *bh;
966 	unsigned block_start, block_end;
967 	unsigned blocksize = head->b_size;
968 	int err, ret = 0;
969 	struct buffer_head *next;
970 
971 	for (bh = head, block_start = 0;
972 	     ret == 0 && (bh != head || !block_start);
973 	     block_start = block_end, bh = next) {
974 		next = bh->b_this_page;
975 		block_end = block_start + blocksize;
976 		if (block_end <= from || block_start >= to) {
977 			if (partial && !buffer_uptodate(bh))
978 				*partial = 1;
979 			continue;
980 		}
981 		err = (*fn)(handle, bh);
982 		if (!ret)
983 			ret = err;
984 	}
985 	return ret;
986 }
987 
988 /*
989  * To preserve ordering, it is essential that the hole instantiation and
990  * the data write be encapsulated in a single transaction.  We cannot
991  * close off a transaction and start a new one between the ext4_get_block()
992  * and the commit_write().  So doing the jbd2_journal_start at the start of
993  * prepare_write() is the right place.
994  *
995  * Also, this function can nest inside ext4_writepage().  In that case, we
996  * *know* that ext4_writepage() has generated enough buffer credits to do the
997  * whole page.  So we won't block on the journal in that case, which is good,
998  * because the caller may be PF_MEMALLOC.
999  *
1000  * By accident, ext4 can be reentered when a transaction is open via
1001  * quota file writes.  If we were to commit the transaction while thus
1002  * reentered, there can be a deadlock - we would be holding a quota
1003  * lock, and the commit would never complete if another thread had a
1004  * transaction open and was blocking on the quota lock - a ranking
1005  * violation.
1006  *
1007  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1008  * will _not_ run commit under these circumstances because handle->h_ref
1009  * is elevated.  We'll still have enough credits for the tiny quotafile
1010  * write.
1011  */
1012 int do_journal_get_write_access(handle_t *handle,
1013 				struct buffer_head *bh)
1014 {
1015 	int dirty = buffer_dirty(bh);
1016 	int ret;
1017 
1018 	if (!buffer_mapped(bh) || buffer_freed(bh))
1019 		return 0;
1020 	/*
1021 	 * __block_write_begin() could have dirtied some buffers. Clean
1022 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1023 	 * otherwise about fs integrity issues. Setting of the dirty bit
1024 	 * by __block_write_begin() isn't a real problem here as we clear
1025 	 * the bit before releasing a page lock and thus writeback cannot
1026 	 * ever write the buffer.
1027 	 */
1028 	if (dirty)
1029 		clear_buffer_dirty(bh);
1030 	BUFFER_TRACE(bh, "get write access");
1031 	ret = ext4_journal_get_write_access(handle, bh);
1032 	if (!ret && dirty)
1033 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1034 	return ret;
1035 }
1036 
1037 #ifdef CONFIG_FS_ENCRYPTION
1038 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1039 				  get_block_t *get_block)
1040 {
1041 	unsigned from = pos & (PAGE_SIZE - 1);
1042 	unsigned to = from + len;
1043 	struct inode *inode = page->mapping->host;
1044 	unsigned block_start, block_end;
1045 	sector_t block;
1046 	int err = 0;
1047 	unsigned blocksize = inode->i_sb->s_blocksize;
1048 	unsigned bbits;
1049 	struct buffer_head *bh, *head, *wait[2];
1050 	int nr_wait = 0;
1051 	int i;
1052 
1053 	BUG_ON(!PageLocked(page));
1054 	BUG_ON(from > PAGE_SIZE);
1055 	BUG_ON(to > PAGE_SIZE);
1056 	BUG_ON(from > to);
1057 
1058 	if (!page_has_buffers(page))
1059 		create_empty_buffers(page, blocksize, 0);
1060 	head = page_buffers(page);
1061 	bbits = ilog2(blocksize);
1062 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1063 
1064 	for (bh = head, block_start = 0; bh != head || !block_start;
1065 	    block++, block_start = block_end, bh = bh->b_this_page) {
1066 		block_end = block_start + blocksize;
1067 		if (block_end <= from || block_start >= to) {
1068 			if (PageUptodate(page)) {
1069 				if (!buffer_uptodate(bh))
1070 					set_buffer_uptodate(bh);
1071 			}
1072 			continue;
1073 		}
1074 		if (buffer_new(bh))
1075 			clear_buffer_new(bh);
1076 		if (!buffer_mapped(bh)) {
1077 			WARN_ON(bh->b_size != blocksize);
1078 			err = get_block(inode, block, bh, 1);
1079 			if (err)
1080 				break;
1081 			if (buffer_new(bh)) {
1082 				if (PageUptodate(page)) {
1083 					clear_buffer_new(bh);
1084 					set_buffer_uptodate(bh);
1085 					mark_buffer_dirty(bh);
1086 					continue;
1087 				}
1088 				if (block_end > to || block_start < from)
1089 					zero_user_segments(page, to, block_end,
1090 							   block_start, from);
1091 				continue;
1092 			}
1093 		}
1094 		if (PageUptodate(page)) {
1095 			if (!buffer_uptodate(bh))
1096 				set_buffer_uptodate(bh);
1097 			continue;
1098 		}
1099 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1100 		    !buffer_unwritten(bh) &&
1101 		    (block_start < from || block_end > to)) {
1102 			ext4_read_bh_lock(bh, 0, false);
1103 			wait[nr_wait++] = bh;
1104 		}
1105 	}
1106 	/*
1107 	 * If we issued read requests, let them complete.
1108 	 */
1109 	for (i = 0; i < nr_wait; i++) {
1110 		wait_on_buffer(wait[i]);
1111 		if (!buffer_uptodate(wait[i]))
1112 			err = -EIO;
1113 	}
1114 	if (unlikely(err)) {
1115 		page_zero_new_buffers(page, from, to);
1116 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1117 		for (i = 0; i < nr_wait; i++) {
1118 			int err2;
1119 
1120 			err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1121 								bh_offset(wait[i]));
1122 			if (err2) {
1123 				clear_buffer_uptodate(wait[i]);
1124 				err = err2;
1125 			}
1126 		}
1127 	}
1128 
1129 	return err;
1130 }
1131 #endif
1132 
1133 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1134 			    loff_t pos, unsigned len, unsigned flags,
1135 			    struct page **pagep, void **fsdata)
1136 {
1137 	struct inode *inode = mapping->host;
1138 	int ret, needed_blocks;
1139 	handle_t *handle;
1140 	int retries = 0;
1141 	struct page *page;
1142 	pgoff_t index;
1143 	unsigned from, to;
1144 
1145 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1146 		return -EIO;
1147 
1148 	trace_ext4_write_begin(inode, pos, len, flags);
1149 	/*
1150 	 * Reserve one block more for addition to orphan list in case
1151 	 * we allocate blocks but write fails for some reason
1152 	 */
1153 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1154 	index = pos >> PAGE_SHIFT;
1155 	from = pos & (PAGE_SIZE - 1);
1156 	to = from + len;
1157 
1158 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1159 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1160 						    flags, pagep);
1161 		if (ret < 0)
1162 			return ret;
1163 		if (ret == 1)
1164 			return 0;
1165 	}
1166 
1167 	/*
1168 	 * grab_cache_page_write_begin() can take a long time if the
1169 	 * system is thrashing due to memory pressure, or if the page
1170 	 * is being written back.  So grab it first before we start
1171 	 * the transaction handle.  This also allows us to allocate
1172 	 * the page (if needed) without using GFP_NOFS.
1173 	 */
1174 retry_grab:
1175 	page = grab_cache_page_write_begin(mapping, index, flags);
1176 	if (!page)
1177 		return -ENOMEM;
1178 	unlock_page(page);
1179 
1180 retry_journal:
1181 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1182 	if (IS_ERR(handle)) {
1183 		put_page(page);
1184 		return PTR_ERR(handle);
1185 	}
1186 
1187 	lock_page(page);
1188 	if (page->mapping != mapping) {
1189 		/* The page got truncated from under us */
1190 		unlock_page(page);
1191 		put_page(page);
1192 		ext4_journal_stop(handle);
1193 		goto retry_grab;
1194 	}
1195 	/* In case writeback began while the page was unlocked */
1196 	wait_for_stable_page(page);
1197 
1198 #ifdef CONFIG_FS_ENCRYPTION
1199 	if (ext4_should_dioread_nolock(inode))
1200 		ret = ext4_block_write_begin(page, pos, len,
1201 					     ext4_get_block_unwritten);
1202 	else
1203 		ret = ext4_block_write_begin(page, pos, len,
1204 					     ext4_get_block);
1205 #else
1206 	if (ext4_should_dioread_nolock(inode))
1207 		ret = __block_write_begin(page, pos, len,
1208 					  ext4_get_block_unwritten);
1209 	else
1210 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1211 #endif
1212 	if (!ret && ext4_should_journal_data(inode)) {
1213 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1214 					     from, to, NULL,
1215 					     do_journal_get_write_access);
1216 	}
1217 
1218 	if (ret) {
1219 		bool extended = (pos + len > inode->i_size) &&
1220 				!ext4_verity_in_progress(inode);
1221 
1222 		unlock_page(page);
1223 		/*
1224 		 * __block_write_begin may have instantiated a few blocks
1225 		 * outside i_size.  Trim these off again. Don't need
1226 		 * i_size_read because we hold i_mutex.
1227 		 *
1228 		 * Add inode to orphan list in case we crash before
1229 		 * truncate finishes
1230 		 */
1231 		if (extended && ext4_can_truncate(inode))
1232 			ext4_orphan_add(handle, inode);
1233 
1234 		ext4_journal_stop(handle);
1235 		if (extended) {
1236 			ext4_truncate_failed_write(inode);
1237 			/*
1238 			 * If truncate failed early the inode might
1239 			 * still be on the orphan list; we need to
1240 			 * make sure the inode is removed from the
1241 			 * orphan list in that case.
1242 			 */
1243 			if (inode->i_nlink)
1244 				ext4_orphan_del(NULL, inode);
1245 		}
1246 
1247 		if (ret == -ENOSPC &&
1248 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1249 			goto retry_journal;
1250 		put_page(page);
1251 		return ret;
1252 	}
1253 	*pagep = page;
1254 	return ret;
1255 }
1256 
1257 /* For write_end() in data=journal mode */
1258 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1259 {
1260 	int ret;
1261 	if (!buffer_mapped(bh) || buffer_freed(bh))
1262 		return 0;
1263 	set_buffer_uptodate(bh);
1264 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1265 	clear_buffer_meta(bh);
1266 	clear_buffer_prio(bh);
1267 	return ret;
1268 }
1269 
1270 /*
1271  * We need to pick up the new inode size which generic_commit_write gave us
1272  * `file' can be NULL - eg, when called from page_symlink().
1273  *
1274  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1275  * buffers are managed internally.
1276  */
1277 static int ext4_write_end(struct file *file,
1278 			  struct address_space *mapping,
1279 			  loff_t pos, unsigned len, unsigned copied,
1280 			  struct page *page, void *fsdata)
1281 {
1282 	handle_t *handle = ext4_journal_current_handle();
1283 	struct inode *inode = mapping->host;
1284 	loff_t old_size = inode->i_size;
1285 	int ret = 0, ret2;
1286 	int i_size_changed = 0;
1287 	int inline_data = ext4_has_inline_data(inode);
1288 	bool verity = ext4_verity_in_progress(inode);
1289 
1290 	trace_ext4_write_end(inode, pos, len, copied);
1291 	if (inline_data) {
1292 		ret = ext4_write_inline_data_end(inode, pos, len,
1293 						 copied, page);
1294 		if (ret < 0) {
1295 			unlock_page(page);
1296 			put_page(page);
1297 			goto errout;
1298 		}
1299 		copied = ret;
1300 	} else
1301 		copied = block_write_end(file, mapping, pos,
1302 					 len, copied, page, fsdata);
1303 	/*
1304 	 * it's important to update i_size while still holding page lock:
1305 	 * page writeout could otherwise come in and zero beyond i_size.
1306 	 *
1307 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1308 	 * blocks are being written past EOF, so skip the i_size update.
1309 	 */
1310 	if (!verity)
1311 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1312 	unlock_page(page);
1313 	put_page(page);
1314 
1315 	if (old_size < pos && !verity)
1316 		pagecache_isize_extended(inode, old_size, pos);
1317 	/*
1318 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1319 	 * makes the holding time of page lock longer. Second, it forces lock
1320 	 * ordering of page lock and transaction start for journaling
1321 	 * filesystems.
1322 	 */
1323 	if (i_size_changed || inline_data)
1324 		ret = ext4_mark_inode_dirty(handle, inode);
1325 
1326 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1327 		/* if we have allocated more blocks and copied
1328 		 * less. We will have blocks allocated outside
1329 		 * inode->i_size. So truncate them
1330 		 */
1331 		ext4_orphan_add(handle, inode);
1332 errout:
1333 	ret2 = ext4_journal_stop(handle);
1334 	if (!ret)
1335 		ret = ret2;
1336 
1337 	if (pos + len > inode->i_size && !verity) {
1338 		ext4_truncate_failed_write(inode);
1339 		/*
1340 		 * If truncate failed early the inode might still be
1341 		 * on the orphan list; we need to make sure the inode
1342 		 * is removed from the orphan list in that case.
1343 		 */
1344 		if (inode->i_nlink)
1345 			ext4_orphan_del(NULL, inode);
1346 	}
1347 
1348 	return ret ? ret : copied;
1349 }
1350 
1351 /*
1352  * This is a private version of page_zero_new_buffers() which doesn't
1353  * set the buffer to be dirty, since in data=journalled mode we need
1354  * to call ext4_handle_dirty_metadata() instead.
1355  */
1356 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1357 					    struct page *page,
1358 					    unsigned from, unsigned to)
1359 {
1360 	unsigned int block_start = 0, block_end;
1361 	struct buffer_head *head, *bh;
1362 
1363 	bh = head = page_buffers(page);
1364 	do {
1365 		block_end = block_start + bh->b_size;
1366 		if (buffer_new(bh)) {
1367 			if (block_end > from && block_start < to) {
1368 				if (!PageUptodate(page)) {
1369 					unsigned start, size;
1370 
1371 					start = max(from, block_start);
1372 					size = min(to, block_end) - start;
1373 
1374 					zero_user(page, start, size);
1375 					write_end_fn(handle, bh);
1376 				}
1377 				clear_buffer_new(bh);
1378 			}
1379 		}
1380 		block_start = block_end;
1381 		bh = bh->b_this_page;
1382 	} while (bh != head);
1383 }
1384 
1385 static int ext4_journalled_write_end(struct file *file,
1386 				     struct address_space *mapping,
1387 				     loff_t pos, unsigned len, unsigned copied,
1388 				     struct page *page, void *fsdata)
1389 {
1390 	handle_t *handle = ext4_journal_current_handle();
1391 	struct inode *inode = mapping->host;
1392 	loff_t old_size = inode->i_size;
1393 	int ret = 0, ret2;
1394 	int partial = 0;
1395 	unsigned from, to;
1396 	int size_changed = 0;
1397 	int inline_data = ext4_has_inline_data(inode);
1398 	bool verity = ext4_verity_in_progress(inode);
1399 
1400 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1401 	from = pos & (PAGE_SIZE - 1);
1402 	to = from + len;
1403 
1404 	BUG_ON(!ext4_handle_valid(handle));
1405 
1406 	if (inline_data) {
1407 		ret = ext4_write_inline_data_end(inode, pos, len,
1408 						 copied, page);
1409 		if (ret < 0) {
1410 			unlock_page(page);
1411 			put_page(page);
1412 			goto errout;
1413 		}
1414 		copied = ret;
1415 	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1416 		copied = 0;
1417 		ext4_journalled_zero_new_buffers(handle, page, from, to);
1418 	} else {
1419 		if (unlikely(copied < len))
1420 			ext4_journalled_zero_new_buffers(handle, page,
1421 							 from + copied, to);
1422 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1423 					     from + copied, &partial,
1424 					     write_end_fn);
1425 		if (!partial)
1426 			SetPageUptodate(page);
1427 	}
1428 	if (!verity)
1429 		size_changed = ext4_update_inode_size(inode, pos + copied);
1430 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1431 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1432 	unlock_page(page);
1433 	put_page(page);
1434 
1435 	if (old_size < pos && !verity)
1436 		pagecache_isize_extended(inode, old_size, pos);
1437 
1438 	if (size_changed || inline_data) {
1439 		ret2 = ext4_mark_inode_dirty(handle, inode);
1440 		if (!ret)
1441 			ret = ret2;
1442 	}
1443 
1444 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1445 		/* if we have allocated more blocks and copied
1446 		 * less. We will have blocks allocated outside
1447 		 * inode->i_size. So truncate them
1448 		 */
1449 		ext4_orphan_add(handle, inode);
1450 
1451 errout:
1452 	ret2 = ext4_journal_stop(handle);
1453 	if (!ret)
1454 		ret = ret2;
1455 	if (pos + len > inode->i_size && !verity) {
1456 		ext4_truncate_failed_write(inode);
1457 		/*
1458 		 * If truncate failed early the inode might still be
1459 		 * on the orphan list; we need to make sure the inode
1460 		 * is removed from the orphan list in that case.
1461 		 */
1462 		if (inode->i_nlink)
1463 			ext4_orphan_del(NULL, inode);
1464 	}
1465 
1466 	return ret ? ret : copied;
1467 }
1468 
1469 /*
1470  * Reserve space for a single cluster
1471  */
1472 static int ext4_da_reserve_space(struct inode *inode)
1473 {
1474 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1475 	struct ext4_inode_info *ei = EXT4_I(inode);
1476 	int ret;
1477 
1478 	/*
1479 	 * We will charge metadata quota at writeout time; this saves
1480 	 * us from metadata over-estimation, though we may go over by
1481 	 * a small amount in the end.  Here we just reserve for data.
1482 	 */
1483 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1484 	if (ret)
1485 		return ret;
1486 
1487 	spin_lock(&ei->i_block_reservation_lock);
1488 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1489 		spin_unlock(&ei->i_block_reservation_lock);
1490 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1491 		return -ENOSPC;
1492 	}
1493 	ei->i_reserved_data_blocks++;
1494 	trace_ext4_da_reserve_space(inode);
1495 	spin_unlock(&ei->i_block_reservation_lock);
1496 
1497 	return 0;       /* success */
1498 }
1499 
1500 void ext4_da_release_space(struct inode *inode, int to_free)
1501 {
1502 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1503 	struct ext4_inode_info *ei = EXT4_I(inode);
1504 
1505 	if (!to_free)
1506 		return;		/* Nothing to release, exit */
1507 
1508 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1509 
1510 	trace_ext4_da_release_space(inode, to_free);
1511 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1512 		/*
1513 		 * if there aren't enough reserved blocks, then the
1514 		 * counter is messed up somewhere.  Since this
1515 		 * function is called from invalidate page, it's
1516 		 * harmless to return without any action.
1517 		 */
1518 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1519 			 "ino %lu, to_free %d with only %d reserved "
1520 			 "data blocks", inode->i_ino, to_free,
1521 			 ei->i_reserved_data_blocks);
1522 		WARN_ON(1);
1523 		to_free = ei->i_reserved_data_blocks;
1524 	}
1525 	ei->i_reserved_data_blocks -= to_free;
1526 
1527 	/* update fs dirty data blocks counter */
1528 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1529 
1530 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1531 
1532 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1533 }
1534 
1535 /*
1536  * Delayed allocation stuff
1537  */
1538 
1539 struct mpage_da_data {
1540 	struct inode *inode;
1541 	struct writeback_control *wbc;
1542 
1543 	pgoff_t first_page;	/* The first page to write */
1544 	pgoff_t next_page;	/* Current page to examine */
1545 	pgoff_t last_page;	/* Last page to examine */
1546 	/*
1547 	 * Extent to map - this can be after first_page because that can be
1548 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1549 	 * is delalloc or unwritten.
1550 	 */
1551 	struct ext4_map_blocks map;
1552 	struct ext4_io_submit io_submit;	/* IO submission data */
1553 	unsigned int do_map:1;
1554 	unsigned int scanned_until_end:1;
1555 };
1556 
1557 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1558 				       bool invalidate)
1559 {
1560 	int nr_pages, i;
1561 	pgoff_t index, end;
1562 	struct pagevec pvec;
1563 	struct inode *inode = mpd->inode;
1564 	struct address_space *mapping = inode->i_mapping;
1565 
1566 	/* This is necessary when next_page == 0. */
1567 	if (mpd->first_page >= mpd->next_page)
1568 		return;
1569 
1570 	mpd->scanned_until_end = 0;
1571 	index = mpd->first_page;
1572 	end   = mpd->next_page - 1;
1573 	if (invalidate) {
1574 		ext4_lblk_t start, last;
1575 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1576 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1577 		ext4_es_remove_extent(inode, start, last - start + 1);
1578 	}
1579 
1580 	pagevec_init(&pvec);
1581 	while (index <= end) {
1582 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1583 		if (nr_pages == 0)
1584 			break;
1585 		for (i = 0; i < nr_pages; i++) {
1586 			struct page *page = pvec.pages[i];
1587 
1588 			BUG_ON(!PageLocked(page));
1589 			BUG_ON(PageWriteback(page));
1590 			if (invalidate) {
1591 				if (page_mapped(page))
1592 					clear_page_dirty_for_io(page);
1593 				block_invalidatepage(page, 0, PAGE_SIZE);
1594 				ClearPageUptodate(page);
1595 			}
1596 			unlock_page(page);
1597 		}
1598 		pagevec_release(&pvec);
1599 	}
1600 }
1601 
1602 static void ext4_print_free_blocks(struct inode *inode)
1603 {
1604 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1605 	struct super_block *sb = inode->i_sb;
1606 	struct ext4_inode_info *ei = EXT4_I(inode);
1607 
1608 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1609 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1610 			ext4_count_free_clusters(sb)));
1611 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1612 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1613 	       (long long) EXT4_C2B(EXT4_SB(sb),
1614 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1615 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1616 	       (long long) EXT4_C2B(EXT4_SB(sb),
1617 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1618 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1619 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1620 		 ei->i_reserved_data_blocks);
1621 	return;
1622 }
1623 
1624 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1625 {
1626 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1627 }
1628 
1629 /*
1630  * ext4_insert_delayed_block - adds a delayed block to the extents status
1631  *                             tree, incrementing the reserved cluster/block
1632  *                             count or making a pending reservation
1633  *                             where needed
1634  *
1635  * @inode - file containing the newly added block
1636  * @lblk - logical block to be added
1637  *
1638  * Returns 0 on success, negative error code on failure.
1639  */
1640 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1641 {
1642 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1643 	int ret;
1644 	bool allocated = false;
1645 
1646 	/*
1647 	 * If the cluster containing lblk is shared with a delayed,
1648 	 * written, or unwritten extent in a bigalloc file system, it's
1649 	 * already been accounted for and does not need to be reserved.
1650 	 * A pending reservation must be made for the cluster if it's
1651 	 * shared with a written or unwritten extent and doesn't already
1652 	 * have one.  Written and unwritten extents can be purged from the
1653 	 * extents status tree if the system is under memory pressure, so
1654 	 * it's necessary to examine the extent tree if a search of the
1655 	 * extents status tree doesn't get a match.
1656 	 */
1657 	if (sbi->s_cluster_ratio == 1) {
1658 		ret = ext4_da_reserve_space(inode);
1659 		if (ret != 0)   /* ENOSPC */
1660 			goto errout;
1661 	} else {   /* bigalloc */
1662 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1663 			if (!ext4_es_scan_clu(inode,
1664 					      &ext4_es_is_mapped, lblk)) {
1665 				ret = ext4_clu_mapped(inode,
1666 						      EXT4_B2C(sbi, lblk));
1667 				if (ret < 0)
1668 					goto errout;
1669 				if (ret == 0) {
1670 					ret = ext4_da_reserve_space(inode);
1671 					if (ret != 0)   /* ENOSPC */
1672 						goto errout;
1673 				} else {
1674 					allocated = true;
1675 				}
1676 			} else {
1677 				allocated = true;
1678 			}
1679 		}
1680 	}
1681 
1682 	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1683 
1684 errout:
1685 	return ret;
1686 }
1687 
1688 /*
1689  * This function is grabs code from the very beginning of
1690  * ext4_map_blocks, but assumes that the caller is from delayed write
1691  * time. This function looks up the requested blocks and sets the
1692  * buffer delay bit under the protection of i_data_sem.
1693  */
1694 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1695 			      struct ext4_map_blocks *map,
1696 			      struct buffer_head *bh)
1697 {
1698 	struct extent_status es;
1699 	int retval;
1700 	sector_t invalid_block = ~((sector_t) 0xffff);
1701 #ifdef ES_AGGRESSIVE_TEST
1702 	struct ext4_map_blocks orig_map;
1703 
1704 	memcpy(&orig_map, map, sizeof(*map));
1705 #endif
1706 
1707 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1708 		invalid_block = ~0;
1709 
1710 	map->m_flags = 0;
1711 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1712 		  (unsigned long) map->m_lblk);
1713 
1714 	/* Lookup extent status tree firstly */
1715 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1716 		if (ext4_es_is_hole(&es)) {
1717 			retval = 0;
1718 			down_read(&EXT4_I(inode)->i_data_sem);
1719 			goto add_delayed;
1720 		}
1721 
1722 		/*
1723 		 * Delayed extent could be allocated by fallocate.
1724 		 * So we need to check it.
1725 		 */
1726 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1727 			map_bh(bh, inode->i_sb, invalid_block);
1728 			set_buffer_new(bh);
1729 			set_buffer_delay(bh);
1730 			return 0;
1731 		}
1732 
1733 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1734 		retval = es.es_len - (iblock - es.es_lblk);
1735 		if (retval > map->m_len)
1736 			retval = map->m_len;
1737 		map->m_len = retval;
1738 		if (ext4_es_is_written(&es))
1739 			map->m_flags |= EXT4_MAP_MAPPED;
1740 		else if (ext4_es_is_unwritten(&es))
1741 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1742 		else
1743 			BUG();
1744 
1745 #ifdef ES_AGGRESSIVE_TEST
1746 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1747 #endif
1748 		return retval;
1749 	}
1750 
1751 	/*
1752 	 * Try to see if we can get the block without requesting a new
1753 	 * file system block.
1754 	 */
1755 	down_read(&EXT4_I(inode)->i_data_sem);
1756 	if (ext4_has_inline_data(inode))
1757 		retval = 0;
1758 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1759 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1760 	else
1761 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1762 
1763 add_delayed:
1764 	if (retval == 0) {
1765 		int ret;
1766 
1767 		/*
1768 		 * XXX: __block_prepare_write() unmaps passed block,
1769 		 * is it OK?
1770 		 */
1771 
1772 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1773 		if (ret != 0) {
1774 			retval = ret;
1775 			goto out_unlock;
1776 		}
1777 
1778 		map_bh(bh, inode->i_sb, invalid_block);
1779 		set_buffer_new(bh);
1780 		set_buffer_delay(bh);
1781 	} else if (retval > 0) {
1782 		int ret;
1783 		unsigned int status;
1784 
1785 		if (unlikely(retval != map->m_len)) {
1786 			ext4_warning(inode->i_sb,
1787 				     "ES len assertion failed for inode "
1788 				     "%lu: retval %d != map->m_len %d",
1789 				     inode->i_ino, retval, map->m_len);
1790 			WARN_ON(1);
1791 		}
1792 
1793 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1794 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1795 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1796 					    map->m_pblk, status);
1797 		if (ret != 0)
1798 			retval = ret;
1799 	}
1800 
1801 out_unlock:
1802 	up_read((&EXT4_I(inode)->i_data_sem));
1803 
1804 	return retval;
1805 }
1806 
1807 /*
1808  * This is a special get_block_t callback which is used by
1809  * ext4_da_write_begin().  It will either return mapped block or
1810  * reserve space for a single block.
1811  *
1812  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1813  * We also have b_blocknr = -1 and b_bdev initialized properly
1814  *
1815  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1816  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1817  * initialized properly.
1818  */
1819 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1820 			   struct buffer_head *bh, int create)
1821 {
1822 	struct ext4_map_blocks map;
1823 	int ret = 0;
1824 
1825 	BUG_ON(create == 0);
1826 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1827 
1828 	map.m_lblk = iblock;
1829 	map.m_len = 1;
1830 
1831 	/*
1832 	 * first, we need to know whether the block is allocated already
1833 	 * preallocated blocks are unmapped but should treated
1834 	 * the same as allocated blocks.
1835 	 */
1836 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1837 	if (ret <= 0)
1838 		return ret;
1839 
1840 	map_bh(bh, inode->i_sb, map.m_pblk);
1841 	ext4_update_bh_state(bh, map.m_flags);
1842 
1843 	if (buffer_unwritten(bh)) {
1844 		/* A delayed write to unwritten bh should be marked
1845 		 * new and mapped.  Mapped ensures that we don't do
1846 		 * get_block multiple times when we write to the same
1847 		 * offset and new ensures that we do proper zero out
1848 		 * for partial write.
1849 		 */
1850 		set_buffer_new(bh);
1851 		set_buffer_mapped(bh);
1852 	}
1853 	return 0;
1854 }
1855 
1856 static int bget_one(handle_t *handle, struct buffer_head *bh)
1857 {
1858 	get_bh(bh);
1859 	return 0;
1860 }
1861 
1862 static int bput_one(handle_t *handle, struct buffer_head *bh)
1863 {
1864 	put_bh(bh);
1865 	return 0;
1866 }
1867 
1868 static int __ext4_journalled_writepage(struct page *page,
1869 				       unsigned int len)
1870 {
1871 	struct address_space *mapping = page->mapping;
1872 	struct inode *inode = mapping->host;
1873 	struct buffer_head *page_bufs = NULL;
1874 	handle_t *handle = NULL;
1875 	int ret = 0, err = 0;
1876 	int inline_data = ext4_has_inline_data(inode);
1877 	struct buffer_head *inode_bh = NULL;
1878 
1879 	ClearPageChecked(page);
1880 
1881 	if (inline_data) {
1882 		BUG_ON(page->index != 0);
1883 		BUG_ON(len > ext4_get_max_inline_size(inode));
1884 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1885 		if (inode_bh == NULL)
1886 			goto out;
1887 	} else {
1888 		page_bufs = page_buffers(page);
1889 		if (!page_bufs) {
1890 			BUG();
1891 			goto out;
1892 		}
1893 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1894 				       NULL, bget_one);
1895 	}
1896 	/*
1897 	 * We need to release the page lock before we start the
1898 	 * journal, so grab a reference so the page won't disappear
1899 	 * out from under us.
1900 	 */
1901 	get_page(page);
1902 	unlock_page(page);
1903 
1904 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1905 				    ext4_writepage_trans_blocks(inode));
1906 	if (IS_ERR(handle)) {
1907 		ret = PTR_ERR(handle);
1908 		put_page(page);
1909 		goto out_no_pagelock;
1910 	}
1911 	BUG_ON(!ext4_handle_valid(handle));
1912 
1913 	lock_page(page);
1914 	put_page(page);
1915 	if (page->mapping != mapping) {
1916 		/* The page got truncated from under us */
1917 		ext4_journal_stop(handle);
1918 		ret = 0;
1919 		goto out;
1920 	}
1921 
1922 	if (inline_data) {
1923 		ret = ext4_mark_inode_dirty(handle, inode);
1924 	} else {
1925 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1926 					     do_journal_get_write_access);
1927 
1928 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1929 					     write_end_fn);
1930 	}
1931 	if (ret == 0)
1932 		ret = err;
1933 	err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1934 	if (ret == 0)
1935 		ret = err;
1936 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1937 	err = ext4_journal_stop(handle);
1938 	if (!ret)
1939 		ret = err;
1940 
1941 	if (!ext4_has_inline_data(inode))
1942 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1943 				       NULL, bput_one);
1944 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1945 out:
1946 	unlock_page(page);
1947 out_no_pagelock:
1948 	brelse(inode_bh);
1949 	return ret;
1950 }
1951 
1952 /*
1953  * Note that we don't need to start a transaction unless we're journaling data
1954  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1955  * need to file the inode to the transaction's list in ordered mode because if
1956  * we are writing back data added by write(), the inode is already there and if
1957  * we are writing back data modified via mmap(), no one guarantees in which
1958  * transaction the data will hit the disk. In case we are journaling data, we
1959  * cannot start transaction directly because transaction start ranks above page
1960  * lock so we have to do some magic.
1961  *
1962  * This function can get called via...
1963  *   - ext4_writepages after taking page lock (have journal handle)
1964  *   - journal_submit_inode_data_buffers (no journal handle)
1965  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1966  *   - grab_page_cache when doing write_begin (have journal handle)
1967  *
1968  * We don't do any block allocation in this function. If we have page with
1969  * multiple blocks we need to write those buffer_heads that are mapped. This
1970  * is important for mmaped based write. So if we do with blocksize 1K
1971  * truncate(f, 1024);
1972  * a = mmap(f, 0, 4096);
1973  * a[0] = 'a';
1974  * truncate(f, 4096);
1975  * we have in the page first buffer_head mapped via page_mkwrite call back
1976  * but other buffer_heads would be unmapped but dirty (dirty done via the
1977  * do_wp_page). So writepage should write the first block. If we modify
1978  * the mmap area beyond 1024 we will again get a page_fault and the
1979  * page_mkwrite callback will do the block allocation and mark the
1980  * buffer_heads mapped.
1981  *
1982  * We redirty the page if we have any buffer_heads that is either delay or
1983  * unwritten in the page.
1984  *
1985  * We can get recursively called as show below.
1986  *
1987  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1988  *		ext4_writepage()
1989  *
1990  * But since we don't do any block allocation we should not deadlock.
1991  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1992  */
1993 static int ext4_writepage(struct page *page,
1994 			  struct writeback_control *wbc)
1995 {
1996 	int ret = 0;
1997 	loff_t size;
1998 	unsigned int len;
1999 	struct buffer_head *page_bufs = NULL;
2000 	struct inode *inode = page->mapping->host;
2001 	struct ext4_io_submit io_submit;
2002 	bool keep_towrite = false;
2003 
2004 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2005 		inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
2006 		unlock_page(page);
2007 		return -EIO;
2008 	}
2009 
2010 	trace_ext4_writepage(page);
2011 	size = i_size_read(inode);
2012 	if (page->index == size >> PAGE_SHIFT &&
2013 	    !ext4_verity_in_progress(inode))
2014 		len = size & ~PAGE_MASK;
2015 	else
2016 		len = PAGE_SIZE;
2017 
2018 	page_bufs = page_buffers(page);
2019 	/*
2020 	 * We cannot do block allocation or other extent handling in this
2021 	 * function. If there are buffers needing that, we have to redirty
2022 	 * the page. But we may reach here when we do a journal commit via
2023 	 * journal_submit_inode_data_buffers() and in that case we must write
2024 	 * allocated buffers to achieve data=ordered mode guarantees.
2025 	 *
2026 	 * Also, if there is only one buffer per page (the fs block
2027 	 * size == the page size), if one buffer needs block
2028 	 * allocation or needs to modify the extent tree to clear the
2029 	 * unwritten flag, we know that the page can't be written at
2030 	 * all, so we might as well refuse the write immediately.
2031 	 * Unfortunately if the block size != page size, we can't as
2032 	 * easily detect this case using ext4_walk_page_buffers(), but
2033 	 * for the extremely common case, this is an optimization that
2034 	 * skips a useless round trip through ext4_bio_write_page().
2035 	 */
2036 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2037 				   ext4_bh_delay_or_unwritten)) {
2038 		redirty_page_for_writepage(wbc, page);
2039 		if ((current->flags & PF_MEMALLOC) ||
2040 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2041 			/*
2042 			 * For memory cleaning there's no point in writing only
2043 			 * some buffers. So just bail out. Warn if we came here
2044 			 * from direct reclaim.
2045 			 */
2046 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2047 							== PF_MEMALLOC);
2048 			unlock_page(page);
2049 			return 0;
2050 		}
2051 		keep_towrite = true;
2052 	}
2053 
2054 	if (PageChecked(page) && ext4_should_journal_data(inode))
2055 		/*
2056 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2057 		 * doesn't seem much point in redirtying the page here.
2058 		 */
2059 		return __ext4_journalled_writepage(page, len);
2060 
2061 	ext4_io_submit_init(&io_submit, wbc);
2062 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2063 	if (!io_submit.io_end) {
2064 		redirty_page_for_writepage(wbc, page);
2065 		unlock_page(page);
2066 		return -ENOMEM;
2067 	}
2068 	ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2069 	ext4_io_submit(&io_submit);
2070 	/* Drop io_end reference we got from init */
2071 	ext4_put_io_end_defer(io_submit.io_end);
2072 	return ret;
2073 }
2074 
2075 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2076 {
2077 	int len;
2078 	loff_t size;
2079 	int err;
2080 
2081 	BUG_ON(page->index != mpd->first_page);
2082 	clear_page_dirty_for_io(page);
2083 	/*
2084 	 * We have to be very careful here!  Nothing protects writeback path
2085 	 * against i_size changes and the page can be writeably mapped into
2086 	 * page tables. So an application can be growing i_size and writing
2087 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2088 	 * write-protects our page in page tables and the page cannot get
2089 	 * written to again until we release page lock. So only after
2090 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2091 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2092 	 * on the barrier provided by TestClearPageDirty in
2093 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2094 	 * after page tables are updated.
2095 	 */
2096 	size = i_size_read(mpd->inode);
2097 	if (page->index == size >> PAGE_SHIFT &&
2098 	    !ext4_verity_in_progress(mpd->inode))
2099 		len = size & ~PAGE_MASK;
2100 	else
2101 		len = PAGE_SIZE;
2102 	err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2103 	if (!err)
2104 		mpd->wbc->nr_to_write--;
2105 	mpd->first_page++;
2106 
2107 	return err;
2108 }
2109 
2110 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2111 
2112 /*
2113  * mballoc gives us at most this number of blocks...
2114  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2115  * The rest of mballoc seems to handle chunks up to full group size.
2116  */
2117 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2118 
2119 /*
2120  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2121  *
2122  * @mpd - extent of blocks
2123  * @lblk - logical number of the block in the file
2124  * @bh - buffer head we want to add to the extent
2125  *
2126  * The function is used to collect contig. blocks in the same state. If the
2127  * buffer doesn't require mapping for writeback and we haven't started the
2128  * extent of buffers to map yet, the function returns 'true' immediately - the
2129  * caller can write the buffer right away. Otherwise the function returns true
2130  * if the block has been added to the extent, false if the block couldn't be
2131  * added.
2132  */
2133 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2134 				   struct buffer_head *bh)
2135 {
2136 	struct ext4_map_blocks *map = &mpd->map;
2137 
2138 	/* Buffer that doesn't need mapping for writeback? */
2139 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2140 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2141 		/* So far no extent to map => we write the buffer right away */
2142 		if (map->m_len == 0)
2143 			return true;
2144 		return false;
2145 	}
2146 
2147 	/* First block in the extent? */
2148 	if (map->m_len == 0) {
2149 		/* We cannot map unless handle is started... */
2150 		if (!mpd->do_map)
2151 			return false;
2152 		map->m_lblk = lblk;
2153 		map->m_len = 1;
2154 		map->m_flags = bh->b_state & BH_FLAGS;
2155 		return true;
2156 	}
2157 
2158 	/* Don't go larger than mballoc is willing to allocate */
2159 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2160 		return false;
2161 
2162 	/* Can we merge the block to our big extent? */
2163 	if (lblk == map->m_lblk + map->m_len &&
2164 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2165 		map->m_len++;
2166 		return true;
2167 	}
2168 	return false;
2169 }
2170 
2171 /*
2172  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2173  *
2174  * @mpd - extent of blocks for mapping
2175  * @head - the first buffer in the page
2176  * @bh - buffer we should start processing from
2177  * @lblk - logical number of the block in the file corresponding to @bh
2178  *
2179  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2180  * the page for IO if all buffers in this page were mapped and there's no
2181  * accumulated extent of buffers to map or add buffers in the page to the
2182  * extent of buffers to map. The function returns 1 if the caller can continue
2183  * by processing the next page, 0 if it should stop adding buffers to the
2184  * extent to map because we cannot extend it anymore. It can also return value
2185  * < 0 in case of error during IO submission.
2186  */
2187 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2188 				   struct buffer_head *head,
2189 				   struct buffer_head *bh,
2190 				   ext4_lblk_t lblk)
2191 {
2192 	struct inode *inode = mpd->inode;
2193 	int err;
2194 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2195 							>> inode->i_blkbits;
2196 
2197 	if (ext4_verity_in_progress(inode))
2198 		blocks = EXT_MAX_BLOCKS;
2199 
2200 	do {
2201 		BUG_ON(buffer_locked(bh));
2202 
2203 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2204 			/* Found extent to map? */
2205 			if (mpd->map.m_len)
2206 				return 0;
2207 			/* Buffer needs mapping and handle is not started? */
2208 			if (!mpd->do_map)
2209 				return 0;
2210 			/* Everything mapped so far and we hit EOF */
2211 			break;
2212 		}
2213 	} while (lblk++, (bh = bh->b_this_page) != head);
2214 	/* So far everything mapped? Submit the page for IO. */
2215 	if (mpd->map.m_len == 0) {
2216 		err = mpage_submit_page(mpd, head->b_page);
2217 		if (err < 0)
2218 			return err;
2219 	}
2220 	if (lblk >= blocks) {
2221 		mpd->scanned_until_end = 1;
2222 		return 0;
2223 	}
2224 	return 1;
2225 }
2226 
2227 /*
2228  * mpage_process_page - update page buffers corresponding to changed extent and
2229  *		       may submit fully mapped page for IO
2230  *
2231  * @mpd		- description of extent to map, on return next extent to map
2232  * @m_lblk	- logical block mapping.
2233  * @m_pblk	- corresponding physical mapping.
2234  * @map_bh	- determines on return whether this page requires any further
2235  *		  mapping or not.
2236  * Scan given page buffers corresponding to changed extent and update buffer
2237  * state according to new extent state.
2238  * We map delalloc buffers to their physical location, clear unwritten bits.
2239  * If the given page is not fully mapped, we update @map to the next extent in
2240  * the given page that needs mapping & return @map_bh as true.
2241  */
2242 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2243 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2244 			      bool *map_bh)
2245 {
2246 	struct buffer_head *head, *bh;
2247 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2248 	ext4_lblk_t lblk = *m_lblk;
2249 	ext4_fsblk_t pblock = *m_pblk;
2250 	int err = 0;
2251 	int blkbits = mpd->inode->i_blkbits;
2252 	ssize_t io_end_size = 0;
2253 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2254 
2255 	bh = head = page_buffers(page);
2256 	do {
2257 		if (lblk < mpd->map.m_lblk)
2258 			continue;
2259 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2260 			/*
2261 			 * Buffer after end of mapped extent.
2262 			 * Find next buffer in the page to map.
2263 			 */
2264 			mpd->map.m_len = 0;
2265 			mpd->map.m_flags = 0;
2266 			io_end_vec->size += io_end_size;
2267 			io_end_size = 0;
2268 
2269 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2270 			if (err > 0)
2271 				err = 0;
2272 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2273 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2274 				if (IS_ERR(io_end_vec)) {
2275 					err = PTR_ERR(io_end_vec);
2276 					goto out;
2277 				}
2278 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2279 			}
2280 			*map_bh = true;
2281 			goto out;
2282 		}
2283 		if (buffer_delay(bh)) {
2284 			clear_buffer_delay(bh);
2285 			bh->b_blocknr = pblock++;
2286 		}
2287 		clear_buffer_unwritten(bh);
2288 		io_end_size += (1 << blkbits);
2289 	} while (lblk++, (bh = bh->b_this_page) != head);
2290 
2291 	io_end_vec->size += io_end_size;
2292 	io_end_size = 0;
2293 	*map_bh = false;
2294 out:
2295 	*m_lblk = lblk;
2296 	*m_pblk = pblock;
2297 	return err;
2298 }
2299 
2300 /*
2301  * mpage_map_buffers - update buffers corresponding to changed extent and
2302  *		       submit fully mapped pages for IO
2303  *
2304  * @mpd - description of extent to map, on return next extent to map
2305  *
2306  * Scan buffers corresponding to changed extent (we expect corresponding pages
2307  * to be already locked) and update buffer state according to new extent state.
2308  * We map delalloc buffers to their physical location, clear unwritten bits,
2309  * and mark buffers as uninit when we perform writes to unwritten extents
2310  * and do extent conversion after IO is finished. If the last page is not fully
2311  * mapped, we update @map to the next extent in the last page that needs
2312  * mapping. Otherwise we submit the page for IO.
2313  */
2314 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2315 {
2316 	struct pagevec pvec;
2317 	int nr_pages, i;
2318 	struct inode *inode = mpd->inode;
2319 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2320 	pgoff_t start, end;
2321 	ext4_lblk_t lblk;
2322 	ext4_fsblk_t pblock;
2323 	int err;
2324 	bool map_bh = false;
2325 
2326 	start = mpd->map.m_lblk >> bpp_bits;
2327 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2328 	lblk = start << bpp_bits;
2329 	pblock = mpd->map.m_pblk;
2330 
2331 	pagevec_init(&pvec);
2332 	while (start <= end) {
2333 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2334 						&start, end);
2335 		if (nr_pages == 0)
2336 			break;
2337 		for (i = 0; i < nr_pages; i++) {
2338 			struct page *page = pvec.pages[i];
2339 
2340 			err = mpage_process_page(mpd, page, &lblk, &pblock,
2341 						 &map_bh);
2342 			/*
2343 			 * If map_bh is true, means page may require further bh
2344 			 * mapping, or maybe the page was submitted for IO.
2345 			 * So we return to call further extent mapping.
2346 			 */
2347 			if (err < 0 || map_bh)
2348 				goto out;
2349 			/* Page fully mapped - let IO run! */
2350 			err = mpage_submit_page(mpd, page);
2351 			if (err < 0)
2352 				goto out;
2353 		}
2354 		pagevec_release(&pvec);
2355 	}
2356 	/* Extent fully mapped and matches with page boundary. We are done. */
2357 	mpd->map.m_len = 0;
2358 	mpd->map.m_flags = 0;
2359 	return 0;
2360 out:
2361 	pagevec_release(&pvec);
2362 	return err;
2363 }
2364 
2365 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2366 {
2367 	struct inode *inode = mpd->inode;
2368 	struct ext4_map_blocks *map = &mpd->map;
2369 	int get_blocks_flags;
2370 	int err, dioread_nolock;
2371 
2372 	trace_ext4_da_write_pages_extent(inode, map);
2373 	/*
2374 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2375 	 * to convert an unwritten extent to be initialized (in the case
2376 	 * where we have written into one or more preallocated blocks).  It is
2377 	 * possible that we're going to need more metadata blocks than
2378 	 * previously reserved. However we must not fail because we're in
2379 	 * writeback and there is nothing we can do about it so it might result
2380 	 * in data loss.  So use reserved blocks to allocate metadata if
2381 	 * possible.
2382 	 *
2383 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2384 	 * the blocks in question are delalloc blocks.  This indicates
2385 	 * that the blocks and quotas has already been checked when
2386 	 * the data was copied into the page cache.
2387 	 */
2388 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2389 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2390 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2391 	dioread_nolock = ext4_should_dioread_nolock(inode);
2392 	if (dioread_nolock)
2393 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2394 	if (map->m_flags & BIT(BH_Delay))
2395 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2396 
2397 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2398 	if (err < 0)
2399 		return err;
2400 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2401 		if (!mpd->io_submit.io_end->handle &&
2402 		    ext4_handle_valid(handle)) {
2403 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2404 			handle->h_rsv_handle = NULL;
2405 		}
2406 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2407 	}
2408 
2409 	BUG_ON(map->m_len == 0);
2410 	return 0;
2411 }
2412 
2413 /*
2414  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2415  *				 mpd->len and submit pages underlying it for IO
2416  *
2417  * @handle - handle for journal operations
2418  * @mpd - extent to map
2419  * @give_up_on_write - we set this to true iff there is a fatal error and there
2420  *                     is no hope of writing the data. The caller should discard
2421  *                     dirty pages to avoid infinite loops.
2422  *
2423  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2424  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2425  * them to initialized or split the described range from larger unwritten
2426  * extent. Note that we need not map all the described range since allocation
2427  * can return less blocks or the range is covered by more unwritten extents. We
2428  * cannot map more because we are limited by reserved transaction credits. On
2429  * the other hand we always make sure that the last touched page is fully
2430  * mapped so that it can be written out (and thus forward progress is
2431  * guaranteed). After mapping we submit all mapped pages for IO.
2432  */
2433 static int mpage_map_and_submit_extent(handle_t *handle,
2434 				       struct mpage_da_data *mpd,
2435 				       bool *give_up_on_write)
2436 {
2437 	struct inode *inode = mpd->inode;
2438 	struct ext4_map_blocks *map = &mpd->map;
2439 	int err;
2440 	loff_t disksize;
2441 	int progress = 0;
2442 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2443 	struct ext4_io_end_vec *io_end_vec;
2444 
2445 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2446 	if (IS_ERR(io_end_vec))
2447 		return PTR_ERR(io_end_vec);
2448 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2449 	do {
2450 		err = mpage_map_one_extent(handle, mpd);
2451 		if (err < 0) {
2452 			struct super_block *sb = inode->i_sb;
2453 
2454 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2455 			    ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2456 				goto invalidate_dirty_pages;
2457 			/*
2458 			 * Let the uper layers retry transient errors.
2459 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2460 			 * is non-zero, a commit should free up blocks.
2461 			 */
2462 			if ((err == -ENOMEM) ||
2463 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2464 				if (progress)
2465 					goto update_disksize;
2466 				return err;
2467 			}
2468 			ext4_msg(sb, KERN_CRIT,
2469 				 "Delayed block allocation failed for "
2470 				 "inode %lu at logical offset %llu with"
2471 				 " max blocks %u with error %d",
2472 				 inode->i_ino,
2473 				 (unsigned long long)map->m_lblk,
2474 				 (unsigned)map->m_len, -err);
2475 			ext4_msg(sb, KERN_CRIT,
2476 				 "This should not happen!! Data will "
2477 				 "be lost\n");
2478 			if (err == -ENOSPC)
2479 				ext4_print_free_blocks(inode);
2480 		invalidate_dirty_pages:
2481 			*give_up_on_write = true;
2482 			return err;
2483 		}
2484 		progress = 1;
2485 		/*
2486 		 * Update buffer state, submit mapped pages, and get us new
2487 		 * extent to map
2488 		 */
2489 		err = mpage_map_and_submit_buffers(mpd);
2490 		if (err < 0)
2491 			goto update_disksize;
2492 	} while (map->m_len);
2493 
2494 update_disksize:
2495 	/*
2496 	 * Update on-disk size after IO is submitted.  Races with
2497 	 * truncate are avoided by checking i_size under i_data_sem.
2498 	 */
2499 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2500 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2501 		int err2;
2502 		loff_t i_size;
2503 
2504 		down_write(&EXT4_I(inode)->i_data_sem);
2505 		i_size = i_size_read(inode);
2506 		if (disksize > i_size)
2507 			disksize = i_size;
2508 		if (disksize > EXT4_I(inode)->i_disksize)
2509 			EXT4_I(inode)->i_disksize = disksize;
2510 		up_write(&EXT4_I(inode)->i_data_sem);
2511 		err2 = ext4_mark_inode_dirty(handle, inode);
2512 		if (err2) {
2513 			ext4_error_err(inode->i_sb, -err2,
2514 				       "Failed to mark inode %lu dirty",
2515 				       inode->i_ino);
2516 		}
2517 		if (!err)
2518 			err = err2;
2519 	}
2520 	return err;
2521 }
2522 
2523 /*
2524  * Calculate the total number of credits to reserve for one writepages
2525  * iteration. This is called from ext4_writepages(). We map an extent of
2526  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2527  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2528  * bpp - 1 blocks in bpp different extents.
2529  */
2530 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2531 {
2532 	int bpp = ext4_journal_blocks_per_page(inode);
2533 
2534 	return ext4_meta_trans_blocks(inode,
2535 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2536 }
2537 
2538 /*
2539  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2540  * 				 and underlying extent to map
2541  *
2542  * @mpd - where to look for pages
2543  *
2544  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2545  * IO immediately. When we find a page which isn't mapped we start accumulating
2546  * extent of buffers underlying these pages that needs mapping (formed by
2547  * either delayed or unwritten buffers). We also lock the pages containing
2548  * these buffers. The extent found is returned in @mpd structure (starting at
2549  * mpd->lblk with length mpd->len blocks).
2550  *
2551  * Note that this function can attach bios to one io_end structure which are
2552  * neither logically nor physically contiguous. Although it may seem as an
2553  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2554  * case as we need to track IO to all buffers underlying a page in one io_end.
2555  */
2556 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2557 {
2558 	struct address_space *mapping = mpd->inode->i_mapping;
2559 	struct pagevec pvec;
2560 	unsigned int nr_pages;
2561 	long left = mpd->wbc->nr_to_write;
2562 	pgoff_t index = mpd->first_page;
2563 	pgoff_t end = mpd->last_page;
2564 	xa_mark_t tag;
2565 	int i, err = 0;
2566 	int blkbits = mpd->inode->i_blkbits;
2567 	ext4_lblk_t lblk;
2568 	struct buffer_head *head;
2569 
2570 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2571 		tag = PAGECACHE_TAG_TOWRITE;
2572 	else
2573 		tag = PAGECACHE_TAG_DIRTY;
2574 
2575 	pagevec_init(&pvec);
2576 	mpd->map.m_len = 0;
2577 	mpd->next_page = index;
2578 	while (index <= end) {
2579 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2580 				tag);
2581 		if (nr_pages == 0)
2582 			break;
2583 
2584 		for (i = 0; i < nr_pages; i++) {
2585 			struct page *page = pvec.pages[i];
2586 
2587 			/*
2588 			 * Accumulated enough dirty pages? This doesn't apply
2589 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2590 			 * keep going because someone may be concurrently
2591 			 * dirtying pages, and we might have synced a lot of
2592 			 * newly appeared dirty pages, but have not synced all
2593 			 * of the old dirty pages.
2594 			 */
2595 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2596 				goto out;
2597 
2598 			/* If we can't merge this page, we are done. */
2599 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2600 				goto out;
2601 
2602 			lock_page(page);
2603 			/*
2604 			 * If the page is no longer dirty, or its mapping no
2605 			 * longer corresponds to inode we are writing (which
2606 			 * means it has been truncated or invalidated), or the
2607 			 * page is already under writeback and we are not doing
2608 			 * a data integrity writeback, skip the page
2609 			 */
2610 			if (!PageDirty(page) ||
2611 			    (PageWriteback(page) &&
2612 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2613 			    unlikely(page->mapping != mapping)) {
2614 				unlock_page(page);
2615 				continue;
2616 			}
2617 
2618 			wait_on_page_writeback(page);
2619 			BUG_ON(PageWriteback(page));
2620 
2621 			if (mpd->map.m_len == 0)
2622 				mpd->first_page = page->index;
2623 			mpd->next_page = page->index + 1;
2624 			/* Add all dirty buffers to mpd */
2625 			lblk = ((ext4_lblk_t)page->index) <<
2626 				(PAGE_SHIFT - blkbits);
2627 			head = page_buffers(page);
2628 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2629 			if (err <= 0)
2630 				goto out;
2631 			err = 0;
2632 			left--;
2633 		}
2634 		pagevec_release(&pvec);
2635 		cond_resched();
2636 	}
2637 	mpd->scanned_until_end = 1;
2638 	return 0;
2639 out:
2640 	pagevec_release(&pvec);
2641 	return err;
2642 }
2643 
2644 static int ext4_writepages(struct address_space *mapping,
2645 			   struct writeback_control *wbc)
2646 {
2647 	pgoff_t	writeback_index = 0;
2648 	long nr_to_write = wbc->nr_to_write;
2649 	int range_whole = 0;
2650 	int cycled = 1;
2651 	handle_t *handle = NULL;
2652 	struct mpage_da_data mpd;
2653 	struct inode *inode = mapping->host;
2654 	int needed_blocks, rsv_blocks = 0, ret = 0;
2655 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2656 	struct blk_plug plug;
2657 	bool give_up_on_write = false;
2658 
2659 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2660 		return -EIO;
2661 
2662 	percpu_down_read(&sbi->s_writepages_rwsem);
2663 	trace_ext4_writepages(inode, wbc);
2664 
2665 	/*
2666 	 * No pages to write? This is mainly a kludge to avoid starting
2667 	 * a transaction for special inodes like journal inode on last iput()
2668 	 * because that could violate lock ordering on umount
2669 	 */
2670 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2671 		goto out_writepages;
2672 
2673 	if (ext4_should_journal_data(inode)) {
2674 		ret = generic_writepages(mapping, wbc);
2675 		goto out_writepages;
2676 	}
2677 
2678 	/*
2679 	 * If the filesystem has aborted, it is read-only, so return
2680 	 * right away instead of dumping stack traces later on that
2681 	 * will obscure the real source of the problem.  We test
2682 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2683 	 * the latter could be true if the filesystem is mounted
2684 	 * read-only, and in that case, ext4_writepages should
2685 	 * *never* be called, so if that ever happens, we would want
2686 	 * the stack trace.
2687 	 */
2688 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2689 		     ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2690 		ret = -EROFS;
2691 		goto out_writepages;
2692 	}
2693 
2694 	/*
2695 	 * If we have inline data and arrive here, it means that
2696 	 * we will soon create the block for the 1st page, so
2697 	 * we'd better clear the inline data here.
2698 	 */
2699 	if (ext4_has_inline_data(inode)) {
2700 		/* Just inode will be modified... */
2701 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2702 		if (IS_ERR(handle)) {
2703 			ret = PTR_ERR(handle);
2704 			goto out_writepages;
2705 		}
2706 		BUG_ON(ext4_test_inode_state(inode,
2707 				EXT4_STATE_MAY_INLINE_DATA));
2708 		ext4_destroy_inline_data(handle, inode);
2709 		ext4_journal_stop(handle);
2710 	}
2711 
2712 	if (ext4_should_dioread_nolock(inode)) {
2713 		/*
2714 		 * We may need to convert up to one extent per block in
2715 		 * the page and we may dirty the inode.
2716 		 */
2717 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2718 						PAGE_SIZE >> inode->i_blkbits);
2719 	}
2720 
2721 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2722 		range_whole = 1;
2723 
2724 	if (wbc->range_cyclic) {
2725 		writeback_index = mapping->writeback_index;
2726 		if (writeback_index)
2727 			cycled = 0;
2728 		mpd.first_page = writeback_index;
2729 		mpd.last_page = -1;
2730 	} else {
2731 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2732 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2733 	}
2734 
2735 	mpd.inode = inode;
2736 	mpd.wbc = wbc;
2737 	ext4_io_submit_init(&mpd.io_submit, wbc);
2738 retry:
2739 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2740 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2741 	blk_start_plug(&plug);
2742 
2743 	/*
2744 	 * First writeback pages that don't need mapping - we can avoid
2745 	 * starting a transaction unnecessarily and also avoid being blocked
2746 	 * in the block layer on device congestion while having transaction
2747 	 * started.
2748 	 */
2749 	mpd.do_map = 0;
2750 	mpd.scanned_until_end = 0;
2751 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2752 	if (!mpd.io_submit.io_end) {
2753 		ret = -ENOMEM;
2754 		goto unplug;
2755 	}
2756 	ret = mpage_prepare_extent_to_map(&mpd);
2757 	/* Unlock pages we didn't use */
2758 	mpage_release_unused_pages(&mpd, false);
2759 	/* Submit prepared bio */
2760 	ext4_io_submit(&mpd.io_submit);
2761 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2762 	mpd.io_submit.io_end = NULL;
2763 	if (ret < 0)
2764 		goto unplug;
2765 
2766 	while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2767 		/* For each extent of pages we use new io_end */
2768 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2769 		if (!mpd.io_submit.io_end) {
2770 			ret = -ENOMEM;
2771 			break;
2772 		}
2773 
2774 		/*
2775 		 * We have two constraints: We find one extent to map and we
2776 		 * must always write out whole page (makes a difference when
2777 		 * blocksize < pagesize) so that we don't block on IO when we
2778 		 * try to write out the rest of the page. Journalled mode is
2779 		 * not supported by delalloc.
2780 		 */
2781 		BUG_ON(ext4_should_journal_data(inode));
2782 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2783 
2784 		/* start a new transaction */
2785 		handle = ext4_journal_start_with_reserve(inode,
2786 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2787 		if (IS_ERR(handle)) {
2788 			ret = PTR_ERR(handle);
2789 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2790 			       "%ld pages, ino %lu; err %d", __func__,
2791 				wbc->nr_to_write, inode->i_ino, ret);
2792 			/* Release allocated io_end */
2793 			ext4_put_io_end(mpd.io_submit.io_end);
2794 			mpd.io_submit.io_end = NULL;
2795 			break;
2796 		}
2797 		mpd.do_map = 1;
2798 
2799 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2800 		ret = mpage_prepare_extent_to_map(&mpd);
2801 		if (!ret && mpd.map.m_len)
2802 			ret = mpage_map_and_submit_extent(handle, &mpd,
2803 					&give_up_on_write);
2804 		/*
2805 		 * Caution: If the handle is synchronous,
2806 		 * ext4_journal_stop() can wait for transaction commit
2807 		 * to finish which may depend on writeback of pages to
2808 		 * complete or on page lock to be released.  In that
2809 		 * case, we have to wait until after we have
2810 		 * submitted all the IO, released page locks we hold,
2811 		 * and dropped io_end reference (for extent conversion
2812 		 * to be able to complete) before stopping the handle.
2813 		 */
2814 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2815 			ext4_journal_stop(handle);
2816 			handle = NULL;
2817 			mpd.do_map = 0;
2818 		}
2819 		/* Unlock pages we didn't use */
2820 		mpage_release_unused_pages(&mpd, give_up_on_write);
2821 		/* Submit prepared bio */
2822 		ext4_io_submit(&mpd.io_submit);
2823 
2824 		/*
2825 		 * Drop our io_end reference we got from init. We have
2826 		 * to be careful and use deferred io_end finishing if
2827 		 * we are still holding the transaction as we can
2828 		 * release the last reference to io_end which may end
2829 		 * up doing unwritten extent conversion.
2830 		 */
2831 		if (handle) {
2832 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2833 			ext4_journal_stop(handle);
2834 		} else
2835 			ext4_put_io_end(mpd.io_submit.io_end);
2836 		mpd.io_submit.io_end = NULL;
2837 
2838 		if (ret == -ENOSPC && sbi->s_journal) {
2839 			/*
2840 			 * Commit the transaction which would
2841 			 * free blocks released in the transaction
2842 			 * and try again
2843 			 */
2844 			jbd2_journal_force_commit_nested(sbi->s_journal);
2845 			ret = 0;
2846 			continue;
2847 		}
2848 		/* Fatal error - ENOMEM, EIO... */
2849 		if (ret)
2850 			break;
2851 	}
2852 unplug:
2853 	blk_finish_plug(&plug);
2854 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2855 		cycled = 1;
2856 		mpd.last_page = writeback_index - 1;
2857 		mpd.first_page = 0;
2858 		goto retry;
2859 	}
2860 
2861 	/* Update index */
2862 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2863 		/*
2864 		 * Set the writeback_index so that range_cyclic
2865 		 * mode will write it back later
2866 		 */
2867 		mapping->writeback_index = mpd.first_page;
2868 
2869 out_writepages:
2870 	trace_ext4_writepages_result(inode, wbc, ret,
2871 				     nr_to_write - wbc->nr_to_write);
2872 	percpu_up_read(&sbi->s_writepages_rwsem);
2873 	return ret;
2874 }
2875 
2876 static int ext4_dax_writepages(struct address_space *mapping,
2877 			       struct writeback_control *wbc)
2878 {
2879 	int ret;
2880 	long nr_to_write = wbc->nr_to_write;
2881 	struct inode *inode = mapping->host;
2882 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2883 
2884 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2885 		return -EIO;
2886 
2887 	percpu_down_read(&sbi->s_writepages_rwsem);
2888 	trace_ext4_writepages(inode, wbc);
2889 
2890 	ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2891 	trace_ext4_writepages_result(inode, wbc, ret,
2892 				     nr_to_write - wbc->nr_to_write);
2893 	percpu_up_read(&sbi->s_writepages_rwsem);
2894 	return ret;
2895 }
2896 
2897 static int ext4_nonda_switch(struct super_block *sb)
2898 {
2899 	s64 free_clusters, dirty_clusters;
2900 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2901 
2902 	/*
2903 	 * switch to non delalloc mode if we are running low
2904 	 * on free block. The free block accounting via percpu
2905 	 * counters can get slightly wrong with percpu_counter_batch getting
2906 	 * accumulated on each CPU without updating global counters
2907 	 * Delalloc need an accurate free block accounting. So switch
2908 	 * to non delalloc when we are near to error range.
2909 	 */
2910 	free_clusters =
2911 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2912 	dirty_clusters =
2913 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2914 	/*
2915 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2916 	 */
2917 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2918 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2919 
2920 	if (2 * free_clusters < 3 * dirty_clusters ||
2921 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2922 		/*
2923 		 * free block count is less than 150% of dirty blocks
2924 		 * or free blocks is less than watermark
2925 		 */
2926 		return 1;
2927 	}
2928 	return 0;
2929 }
2930 
2931 /* We always reserve for an inode update; the superblock could be there too */
2932 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2933 {
2934 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2935 		return 1;
2936 
2937 	if (pos + len <= 0x7fffffffULL)
2938 		return 1;
2939 
2940 	/* We might need to update the superblock to set LARGE_FILE */
2941 	return 2;
2942 }
2943 
2944 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2945 			       loff_t pos, unsigned len, unsigned flags,
2946 			       struct page **pagep, void **fsdata)
2947 {
2948 	int ret, retries = 0;
2949 	struct page *page;
2950 	pgoff_t index;
2951 	struct inode *inode = mapping->host;
2952 	handle_t *handle;
2953 
2954 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2955 		return -EIO;
2956 
2957 	index = pos >> PAGE_SHIFT;
2958 
2959 	if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2960 	    ext4_verity_in_progress(inode)) {
2961 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2962 		return ext4_write_begin(file, mapping, pos,
2963 					len, flags, pagep, fsdata);
2964 	}
2965 	*fsdata = (void *)0;
2966 	trace_ext4_da_write_begin(inode, pos, len, flags);
2967 
2968 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2969 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2970 						      pos, len, flags,
2971 						      pagep, fsdata);
2972 		if (ret < 0)
2973 			return ret;
2974 		if (ret == 1)
2975 			return 0;
2976 	}
2977 
2978 	/*
2979 	 * grab_cache_page_write_begin() can take a long time if the
2980 	 * system is thrashing due to memory pressure, or if the page
2981 	 * is being written back.  So grab it first before we start
2982 	 * the transaction handle.  This also allows us to allocate
2983 	 * the page (if needed) without using GFP_NOFS.
2984 	 */
2985 retry_grab:
2986 	page = grab_cache_page_write_begin(mapping, index, flags);
2987 	if (!page)
2988 		return -ENOMEM;
2989 	unlock_page(page);
2990 
2991 	/*
2992 	 * With delayed allocation, we don't log the i_disksize update
2993 	 * if there is delayed block allocation. But we still need
2994 	 * to journalling the i_disksize update if writes to the end
2995 	 * of file which has an already mapped buffer.
2996 	 */
2997 retry_journal:
2998 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2999 				ext4_da_write_credits(inode, pos, len));
3000 	if (IS_ERR(handle)) {
3001 		put_page(page);
3002 		return PTR_ERR(handle);
3003 	}
3004 
3005 	lock_page(page);
3006 	if (page->mapping != mapping) {
3007 		/* The page got truncated from under us */
3008 		unlock_page(page);
3009 		put_page(page);
3010 		ext4_journal_stop(handle);
3011 		goto retry_grab;
3012 	}
3013 	/* In case writeback began while the page was unlocked */
3014 	wait_for_stable_page(page);
3015 
3016 #ifdef CONFIG_FS_ENCRYPTION
3017 	ret = ext4_block_write_begin(page, pos, len,
3018 				     ext4_da_get_block_prep);
3019 #else
3020 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3021 #endif
3022 	if (ret < 0) {
3023 		unlock_page(page);
3024 		ext4_journal_stop(handle);
3025 		/*
3026 		 * block_write_begin may have instantiated a few blocks
3027 		 * outside i_size.  Trim these off again. Don't need
3028 		 * i_size_read because we hold i_mutex.
3029 		 */
3030 		if (pos + len > inode->i_size)
3031 			ext4_truncate_failed_write(inode);
3032 
3033 		if (ret == -ENOSPC &&
3034 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3035 			goto retry_journal;
3036 
3037 		put_page(page);
3038 		return ret;
3039 	}
3040 
3041 	*pagep = page;
3042 	return ret;
3043 }
3044 
3045 /*
3046  * Check if we should update i_disksize
3047  * when write to the end of file but not require block allocation
3048  */
3049 static int ext4_da_should_update_i_disksize(struct page *page,
3050 					    unsigned long offset)
3051 {
3052 	struct buffer_head *bh;
3053 	struct inode *inode = page->mapping->host;
3054 	unsigned int idx;
3055 	int i;
3056 
3057 	bh = page_buffers(page);
3058 	idx = offset >> inode->i_blkbits;
3059 
3060 	for (i = 0; i < idx; i++)
3061 		bh = bh->b_this_page;
3062 
3063 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3064 		return 0;
3065 	return 1;
3066 }
3067 
3068 static int ext4_da_write_end(struct file *file,
3069 			     struct address_space *mapping,
3070 			     loff_t pos, unsigned len, unsigned copied,
3071 			     struct page *page, void *fsdata)
3072 {
3073 	struct inode *inode = mapping->host;
3074 	int ret = 0, ret2;
3075 	handle_t *handle = ext4_journal_current_handle();
3076 	loff_t new_i_size;
3077 	unsigned long start, end;
3078 	int write_mode = (int)(unsigned long)fsdata;
3079 
3080 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3081 		return ext4_write_end(file, mapping, pos,
3082 				      len, copied, page, fsdata);
3083 
3084 	trace_ext4_da_write_end(inode, pos, len, copied);
3085 	start = pos & (PAGE_SIZE - 1);
3086 	end = start + copied - 1;
3087 
3088 	/*
3089 	 * generic_write_end() will run mark_inode_dirty() if i_size
3090 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3091 	 * into that.
3092 	 */
3093 	new_i_size = pos + copied;
3094 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3095 		if (ext4_has_inline_data(inode) ||
3096 		    ext4_da_should_update_i_disksize(page, end)) {
3097 			ext4_update_i_disksize(inode, new_i_size);
3098 			/* We need to mark inode dirty even if
3099 			 * new_i_size is less that inode->i_size
3100 			 * bu greater than i_disksize.(hint delalloc)
3101 			 */
3102 			ret = ext4_mark_inode_dirty(handle, inode);
3103 		}
3104 	}
3105 
3106 	if (write_mode != CONVERT_INLINE_DATA &&
3107 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3108 	    ext4_has_inline_data(inode))
3109 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3110 						     page);
3111 	else
3112 		ret2 = generic_write_end(file, mapping, pos, len, copied,
3113 							page, fsdata);
3114 
3115 	copied = ret2;
3116 	if (ret2 < 0)
3117 		ret = ret2;
3118 	ret2 = ext4_journal_stop(handle);
3119 	if (unlikely(ret2 && !ret))
3120 		ret = ret2;
3121 
3122 	return ret ? ret : copied;
3123 }
3124 
3125 /*
3126  * Force all delayed allocation blocks to be allocated for a given inode.
3127  */
3128 int ext4_alloc_da_blocks(struct inode *inode)
3129 {
3130 	trace_ext4_alloc_da_blocks(inode);
3131 
3132 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3133 		return 0;
3134 
3135 	/*
3136 	 * We do something simple for now.  The filemap_flush() will
3137 	 * also start triggering a write of the data blocks, which is
3138 	 * not strictly speaking necessary (and for users of
3139 	 * laptop_mode, not even desirable).  However, to do otherwise
3140 	 * would require replicating code paths in:
3141 	 *
3142 	 * ext4_writepages() ->
3143 	 *    write_cache_pages() ---> (via passed in callback function)
3144 	 *        __mpage_da_writepage() -->
3145 	 *           mpage_add_bh_to_extent()
3146 	 *           mpage_da_map_blocks()
3147 	 *
3148 	 * The problem is that write_cache_pages(), located in
3149 	 * mm/page-writeback.c, marks pages clean in preparation for
3150 	 * doing I/O, which is not desirable if we're not planning on
3151 	 * doing I/O at all.
3152 	 *
3153 	 * We could call write_cache_pages(), and then redirty all of
3154 	 * the pages by calling redirty_page_for_writepage() but that
3155 	 * would be ugly in the extreme.  So instead we would need to
3156 	 * replicate parts of the code in the above functions,
3157 	 * simplifying them because we wouldn't actually intend to
3158 	 * write out the pages, but rather only collect contiguous
3159 	 * logical block extents, call the multi-block allocator, and
3160 	 * then update the buffer heads with the block allocations.
3161 	 *
3162 	 * For now, though, we'll cheat by calling filemap_flush(),
3163 	 * which will map the blocks, and start the I/O, but not
3164 	 * actually wait for the I/O to complete.
3165 	 */
3166 	return filemap_flush(inode->i_mapping);
3167 }
3168 
3169 /*
3170  * bmap() is special.  It gets used by applications such as lilo and by
3171  * the swapper to find the on-disk block of a specific piece of data.
3172  *
3173  * Naturally, this is dangerous if the block concerned is still in the
3174  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3175  * filesystem and enables swap, then they may get a nasty shock when the
3176  * data getting swapped to that swapfile suddenly gets overwritten by
3177  * the original zero's written out previously to the journal and
3178  * awaiting writeback in the kernel's buffer cache.
3179  *
3180  * So, if we see any bmap calls here on a modified, data-journaled file,
3181  * take extra steps to flush any blocks which might be in the cache.
3182  */
3183 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3184 {
3185 	struct inode *inode = mapping->host;
3186 	journal_t *journal;
3187 	int err;
3188 
3189 	/*
3190 	 * We can get here for an inline file via the FIBMAP ioctl
3191 	 */
3192 	if (ext4_has_inline_data(inode))
3193 		return 0;
3194 
3195 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3196 			test_opt(inode->i_sb, DELALLOC)) {
3197 		/*
3198 		 * With delalloc we want to sync the file
3199 		 * so that we can make sure we allocate
3200 		 * blocks for file
3201 		 */
3202 		filemap_write_and_wait(mapping);
3203 	}
3204 
3205 	if (EXT4_JOURNAL(inode) &&
3206 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3207 		/*
3208 		 * This is a REALLY heavyweight approach, but the use of
3209 		 * bmap on dirty files is expected to be extremely rare:
3210 		 * only if we run lilo or swapon on a freshly made file
3211 		 * do we expect this to happen.
3212 		 *
3213 		 * (bmap requires CAP_SYS_RAWIO so this does not
3214 		 * represent an unprivileged user DOS attack --- we'd be
3215 		 * in trouble if mortal users could trigger this path at
3216 		 * will.)
3217 		 *
3218 		 * NB. EXT4_STATE_JDATA is not set on files other than
3219 		 * regular files.  If somebody wants to bmap a directory
3220 		 * or symlink and gets confused because the buffer
3221 		 * hasn't yet been flushed to disk, they deserve
3222 		 * everything they get.
3223 		 */
3224 
3225 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3226 		journal = EXT4_JOURNAL(inode);
3227 		jbd2_journal_lock_updates(journal);
3228 		err = jbd2_journal_flush(journal);
3229 		jbd2_journal_unlock_updates(journal);
3230 
3231 		if (err)
3232 			return 0;
3233 	}
3234 
3235 	return iomap_bmap(mapping, block, &ext4_iomap_ops);
3236 }
3237 
3238 static int ext4_readpage(struct file *file, struct page *page)
3239 {
3240 	int ret = -EAGAIN;
3241 	struct inode *inode = page->mapping->host;
3242 
3243 	trace_ext4_readpage(page);
3244 
3245 	if (ext4_has_inline_data(inode))
3246 		ret = ext4_readpage_inline(inode, page);
3247 
3248 	if (ret == -EAGAIN)
3249 		return ext4_mpage_readpages(inode, NULL, page);
3250 
3251 	return ret;
3252 }
3253 
3254 static void ext4_readahead(struct readahead_control *rac)
3255 {
3256 	struct inode *inode = rac->mapping->host;
3257 
3258 	/* If the file has inline data, no need to do readahead. */
3259 	if (ext4_has_inline_data(inode))
3260 		return;
3261 
3262 	ext4_mpage_readpages(inode, rac, NULL);
3263 }
3264 
3265 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3266 				unsigned int length)
3267 {
3268 	trace_ext4_invalidatepage(page, offset, length);
3269 
3270 	/* No journalling happens on data buffers when this function is used */
3271 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3272 
3273 	block_invalidatepage(page, offset, length);
3274 }
3275 
3276 static int __ext4_journalled_invalidatepage(struct page *page,
3277 					    unsigned int offset,
3278 					    unsigned int length)
3279 {
3280 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3281 
3282 	trace_ext4_journalled_invalidatepage(page, offset, length);
3283 
3284 	/*
3285 	 * If it's a full truncate we just forget about the pending dirtying
3286 	 */
3287 	if (offset == 0 && length == PAGE_SIZE)
3288 		ClearPageChecked(page);
3289 
3290 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3291 }
3292 
3293 /* Wrapper for aops... */
3294 static void ext4_journalled_invalidatepage(struct page *page,
3295 					   unsigned int offset,
3296 					   unsigned int length)
3297 {
3298 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3299 }
3300 
3301 static int ext4_releasepage(struct page *page, gfp_t wait)
3302 {
3303 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3304 
3305 	trace_ext4_releasepage(page);
3306 
3307 	/* Page has dirty journalled data -> cannot release */
3308 	if (PageChecked(page))
3309 		return 0;
3310 	if (journal)
3311 		return jbd2_journal_try_to_free_buffers(journal, page);
3312 	else
3313 		return try_to_free_buffers(page);
3314 }
3315 
3316 static bool ext4_inode_datasync_dirty(struct inode *inode)
3317 {
3318 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3319 
3320 	if (journal) {
3321 		if (jbd2_transaction_committed(journal,
3322 			EXT4_I(inode)->i_datasync_tid))
3323 			return false;
3324 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3325 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3326 		return true;
3327 	}
3328 
3329 	/* Any metadata buffers to write? */
3330 	if (!list_empty(&inode->i_mapping->private_list))
3331 		return true;
3332 	return inode->i_state & I_DIRTY_DATASYNC;
3333 }
3334 
3335 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3336 			   struct ext4_map_blocks *map, loff_t offset,
3337 			   loff_t length)
3338 {
3339 	u8 blkbits = inode->i_blkbits;
3340 
3341 	/*
3342 	 * Writes that span EOF might trigger an I/O size update on completion,
3343 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3344 	 * there is no other metadata changes being made or are pending.
3345 	 */
3346 	iomap->flags = 0;
3347 	if (ext4_inode_datasync_dirty(inode) ||
3348 	    offset + length > i_size_read(inode))
3349 		iomap->flags |= IOMAP_F_DIRTY;
3350 
3351 	if (map->m_flags & EXT4_MAP_NEW)
3352 		iomap->flags |= IOMAP_F_NEW;
3353 
3354 	iomap->bdev = inode->i_sb->s_bdev;
3355 	iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3356 	iomap->offset = (u64) map->m_lblk << blkbits;
3357 	iomap->length = (u64) map->m_len << blkbits;
3358 
3359 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3360 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3361 		iomap->flags |= IOMAP_F_MERGED;
3362 
3363 	/*
3364 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3365 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3366 	 * set. In order for any allocated unwritten extents to be converted
3367 	 * into written extents correctly within the ->end_io() handler, we
3368 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3369 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3370 	 * been set first.
3371 	 */
3372 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3373 		iomap->type = IOMAP_UNWRITTEN;
3374 		iomap->addr = (u64) map->m_pblk << blkbits;
3375 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3376 		iomap->type = IOMAP_MAPPED;
3377 		iomap->addr = (u64) map->m_pblk << blkbits;
3378 	} else {
3379 		iomap->type = IOMAP_HOLE;
3380 		iomap->addr = IOMAP_NULL_ADDR;
3381 	}
3382 }
3383 
3384 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3385 			    unsigned int flags)
3386 {
3387 	handle_t *handle;
3388 	u8 blkbits = inode->i_blkbits;
3389 	int ret, dio_credits, m_flags = 0, retries = 0;
3390 
3391 	/*
3392 	 * Trim the mapping request to the maximum value that we can map at
3393 	 * once for direct I/O.
3394 	 */
3395 	if (map->m_len > DIO_MAX_BLOCKS)
3396 		map->m_len = DIO_MAX_BLOCKS;
3397 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3398 
3399 retry:
3400 	/*
3401 	 * Either we allocate blocks and then don't get an unwritten extent, so
3402 	 * in that case we have reserved enough credits. Or, the blocks are
3403 	 * already allocated and unwritten. In that case, the extent conversion
3404 	 * fits into the credits as well.
3405 	 */
3406 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3407 	if (IS_ERR(handle))
3408 		return PTR_ERR(handle);
3409 
3410 	/*
3411 	 * DAX and direct I/O are the only two operations that are currently
3412 	 * supported with IOMAP_WRITE.
3413 	 */
3414 	WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3415 	if (IS_DAX(inode))
3416 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3417 	/*
3418 	 * We use i_size instead of i_disksize here because delalloc writeback
3419 	 * can complete at any point during the I/O and subsequently push the
3420 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3421 	 * happening and thus expose allocated blocks to direct I/O reads.
3422 	 */
3423 	else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode))
3424 		m_flags = EXT4_GET_BLOCKS_CREATE;
3425 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3426 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3427 
3428 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3429 
3430 	/*
3431 	 * We cannot fill holes in indirect tree based inodes as that could
3432 	 * expose stale data in the case of a crash. Use the magic error code
3433 	 * to fallback to buffered I/O.
3434 	 */
3435 	if (!m_flags && !ret)
3436 		ret = -ENOTBLK;
3437 
3438 	ext4_journal_stop(handle);
3439 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3440 		goto retry;
3441 
3442 	return ret;
3443 }
3444 
3445 
3446 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3447 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3448 {
3449 	int ret;
3450 	struct ext4_map_blocks map;
3451 	u8 blkbits = inode->i_blkbits;
3452 
3453 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3454 		return -EINVAL;
3455 
3456 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3457 		return -ERANGE;
3458 
3459 	/*
3460 	 * Calculate the first and last logical blocks respectively.
3461 	 */
3462 	map.m_lblk = offset >> blkbits;
3463 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3464 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3465 
3466 	if (flags & IOMAP_WRITE) {
3467 		/*
3468 		 * We check here if the blocks are already allocated, then we
3469 		 * don't need to start a journal txn and we can directly return
3470 		 * the mapping information. This could boost performance
3471 		 * especially in multi-threaded overwrite requests.
3472 		 */
3473 		if (offset + length <= i_size_read(inode)) {
3474 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3475 			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3476 				goto out;
3477 		}
3478 		ret = ext4_iomap_alloc(inode, &map, flags);
3479 	} else {
3480 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3481 	}
3482 
3483 	if (ret < 0)
3484 		return ret;
3485 out:
3486 	ext4_set_iomap(inode, iomap, &map, offset, length);
3487 
3488 	return 0;
3489 }
3490 
3491 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3492 		loff_t length, unsigned flags, struct iomap *iomap,
3493 		struct iomap *srcmap)
3494 {
3495 	int ret;
3496 
3497 	/*
3498 	 * Even for writes we don't need to allocate blocks, so just pretend
3499 	 * we are reading to save overhead of starting a transaction.
3500 	 */
3501 	flags &= ~IOMAP_WRITE;
3502 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3503 	WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3504 	return ret;
3505 }
3506 
3507 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3508 			  ssize_t written, unsigned flags, struct iomap *iomap)
3509 {
3510 	/*
3511 	 * Check to see whether an error occurred while writing out the data to
3512 	 * the allocated blocks. If so, return the magic error code so that we
3513 	 * fallback to buffered I/O and attempt to complete the remainder of
3514 	 * the I/O. Any blocks that may have been allocated in preparation for
3515 	 * the direct I/O will be reused during buffered I/O.
3516 	 */
3517 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3518 		return -ENOTBLK;
3519 
3520 	return 0;
3521 }
3522 
3523 const struct iomap_ops ext4_iomap_ops = {
3524 	.iomap_begin		= ext4_iomap_begin,
3525 	.iomap_end		= ext4_iomap_end,
3526 };
3527 
3528 const struct iomap_ops ext4_iomap_overwrite_ops = {
3529 	.iomap_begin		= ext4_iomap_overwrite_begin,
3530 	.iomap_end		= ext4_iomap_end,
3531 };
3532 
3533 static bool ext4_iomap_is_delalloc(struct inode *inode,
3534 				   struct ext4_map_blocks *map)
3535 {
3536 	struct extent_status es;
3537 	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3538 
3539 	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3540 				  map->m_lblk, end, &es);
3541 
3542 	if (!es.es_len || es.es_lblk > end)
3543 		return false;
3544 
3545 	if (es.es_lblk > map->m_lblk) {
3546 		map->m_len = es.es_lblk - map->m_lblk;
3547 		return false;
3548 	}
3549 
3550 	offset = map->m_lblk - es.es_lblk;
3551 	map->m_len = es.es_len - offset;
3552 
3553 	return true;
3554 }
3555 
3556 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3557 				   loff_t length, unsigned int flags,
3558 				   struct iomap *iomap, struct iomap *srcmap)
3559 {
3560 	int ret;
3561 	bool delalloc = false;
3562 	struct ext4_map_blocks map;
3563 	u8 blkbits = inode->i_blkbits;
3564 
3565 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3566 		return -EINVAL;
3567 
3568 	if (ext4_has_inline_data(inode)) {
3569 		ret = ext4_inline_data_iomap(inode, iomap);
3570 		if (ret != -EAGAIN) {
3571 			if (ret == 0 && offset >= iomap->length)
3572 				ret = -ENOENT;
3573 			return ret;
3574 		}
3575 	}
3576 
3577 	/*
3578 	 * Calculate the first and last logical block respectively.
3579 	 */
3580 	map.m_lblk = offset >> blkbits;
3581 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3582 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3583 
3584 	/*
3585 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3586 	 * So handle it here itself instead of querying ext4_map_blocks().
3587 	 * Since ext4_map_blocks() will warn about it and will return
3588 	 * -EIO error.
3589 	 */
3590 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3591 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3592 
3593 		if (offset >= sbi->s_bitmap_maxbytes) {
3594 			map.m_flags = 0;
3595 			goto set_iomap;
3596 		}
3597 	}
3598 
3599 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3600 	if (ret < 0)
3601 		return ret;
3602 	if (ret == 0)
3603 		delalloc = ext4_iomap_is_delalloc(inode, &map);
3604 
3605 set_iomap:
3606 	ext4_set_iomap(inode, iomap, &map, offset, length);
3607 	if (delalloc && iomap->type == IOMAP_HOLE)
3608 		iomap->type = IOMAP_DELALLOC;
3609 
3610 	return 0;
3611 }
3612 
3613 const struct iomap_ops ext4_iomap_report_ops = {
3614 	.iomap_begin = ext4_iomap_begin_report,
3615 };
3616 
3617 /*
3618  * Pages can be marked dirty completely asynchronously from ext4's journalling
3619  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3620  * much here because ->set_page_dirty is called under VFS locks.  The page is
3621  * not necessarily locked.
3622  *
3623  * We cannot just dirty the page and leave attached buffers clean, because the
3624  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3625  * or jbddirty because all the journalling code will explode.
3626  *
3627  * So what we do is to mark the page "pending dirty" and next time writepage
3628  * is called, propagate that into the buffers appropriately.
3629  */
3630 static int ext4_journalled_set_page_dirty(struct page *page)
3631 {
3632 	SetPageChecked(page);
3633 	return __set_page_dirty_nobuffers(page);
3634 }
3635 
3636 static int ext4_set_page_dirty(struct page *page)
3637 {
3638 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3639 	WARN_ON_ONCE(!page_has_buffers(page));
3640 	return __set_page_dirty_buffers(page);
3641 }
3642 
3643 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3644 				    struct file *file, sector_t *span)
3645 {
3646 	return iomap_swapfile_activate(sis, file, span,
3647 				       &ext4_iomap_report_ops);
3648 }
3649 
3650 static const struct address_space_operations ext4_aops = {
3651 	.readpage		= ext4_readpage,
3652 	.readahead		= ext4_readahead,
3653 	.writepage		= ext4_writepage,
3654 	.writepages		= ext4_writepages,
3655 	.write_begin		= ext4_write_begin,
3656 	.write_end		= ext4_write_end,
3657 	.set_page_dirty		= ext4_set_page_dirty,
3658 	.bmap			= ext4_bmap,
3659 	.invalidatepage		= ext4_invalidatepage,
3660 	.releasepage		= ext4_releasepage,
3661 	.direct_IO		= noop_direct_IO,
3662 	.migratepage		= buffer_migrate_page,
3663 	.is_partially_uptodate  = block_is_partially_uptodate,
3664 	.error_remove_page	= generic_error_remove_page,
3665 	.swap_activate		= ext4_iomap_swap_activate,
3666 };
3667 
3668 static const struct address_space_operations ext4_journalled_aops = {
3669 	.readpage		= ext4_readpage,
3670 	.readahead		= ext4_readahead,
3671 	.writepage		= ext4_writepage,
3672 	.writepages		= ext4_writepages,
3673 	.write_begin		= ext4_write_begin,
3674 	.write_end		= ext4_journalled_write_end,
3675 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3676 	.bmap			= ext4_bmap,
3677 	.invalidatepage		= ext4_journalled_invalidatepage,
3678 	.releasepage		= ext4_releasepage,
3679 	.direct_IO		= noop_direct_IO,
3680 	.is_partially_uptodate  = block_is_partially_uptodate,
3681 	.error_remove_page	= generic_error_remove_page,
3682 	.swap_activate		= ext4_iomap_swap_activate,
3683 };
3684 
3685 static const struct address_space_operations ext4_da_aops = {
3686 	.readpage		= ext4_readpage,
3687 	.readahead		= ext4_readahead,
3688 	.writepage		= ext4_writepage,
3689 	.writepages		= ext4_writepages,
3690 	.write_begin		= ext4_da_write_begin,
3691 	.write_end		= ext4_da_write_end,
3692 	.set_page_dirty		= ext4_set_page_dirty,
3693 	.bmap			= ext4_bmap,
3694 	.invalidatepage		= ext4_invalidatepage,
3695 	.releasepage		= ext4_releasepage,
3696 	.direct_IO		= noop_direct_IO,
3697 	.migratepage		= buffer_migrate_page,
3698 	.is_partially_uptodate  = block_is_partially_uptodate,
3699 	.error_remove_page	= generic_error_remove_page,
3700 	.swap_activate		= ext4_iomap_swap_activate,
3701 };
3702 
3703 static const struct address_space_operations ext4_dax_aops = {
3704 	.writepages		= ext4_dax_writepages,
3705 	.direct_IO		= noop_direct_IO,
3706 	.set_page_dirty		= noop_set_page_dirty,
3707 	.bmap			= ext4_bmap,
3708 	.invalidatepage		= noop_invalidatepage,
3709 	.swap_activate		= ext4_iomap_swap_activate,
3710 };
3711 
3712 void ext4_set_aops(struct inode *inode)
3713 {
3714 	switch (ext4_inode_journal_mode(inode)) {
3715 	case EXT4_INODE_ORDERED_DATA_MODE:
3716 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3717 		break;
3718 	case EXT4_INODE_JOURNAL_DATA_MODE:
3719 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3720 		return;
3721 	default:
3722 		BUG();
3723 	}
3724 	if (IS_DAX(inode))
3725 		inode->i_mapping->a_ops = &ext4_dax_aops;
3726 	else if (test_opt(inode->i_sb, DELALLOC))
3727 		inode->i_mapping->a_ops = &ext4_da_aops;
3728 	else
3729 		inode->i_mapping->a_ops = &ext4_aops;
3730 }
3731 
3732 static int __ext4_block_zero_page_range(handle_t *handle,
3733 		struct address_space *mapping, loff_t from, loff_t length)
3734 {
3735 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3736 	unsigned offset = from & (PAGE_SIZE-1);
3737 	unsigned blocksize, pos;
3738 	ext4_lblk_t iblock;
3739 	struct inode *inode = mapping->host;
3740 	struct buffer_head *bh;
3741 	struct page *page;
3742 	int err = 0;
3743 
3744 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3745 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3746 	if (!page)
3747 		return -ENOMEM;
3748 
3749 	blocksize = inode->i_sb->s_blocksize;
3750 
3751 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3752 
3753 	if (!page_has_buffers(page))
3754 		create_empty_buffers(page, blocksize, 0);
3755 
3756 	/* Find the buffer that contains "offset" */
3757 	bh = page_buffers(page);
3758 	pos = blocksize;
3759 	while (offset >= pos) {
3760 		bh = bh->b_this_page;
3761 		iblock++;
3762 		pos += blocksize;
3763 	}
3764 	if (buffer_freed(bh)) {
3765 		BUFFER_TRACE(bh, "freed: skip");
3766 		goto unlock;
3767 	}
3768 	if (!buffer_mapped(bh)) {
3769 		BUFFER_TRACE(bh, "unmapped");
3770 		ext4_get_block(inode, iblock, bh, 0);
3771 		/* unmapped? It's a hole - nothing to do */
3772 		if (!buffer_mapped(bh)) {
3773 			BUFFER_TRACE(bh, "still unmapped");
3774 			goto unlock;
3775 		}
3776 	}
3777 
3778 	/* Ok, it's mapped. Make sure it's up-to-date */
3779 	if (PageUptodate(page))
3780 		set_buffer_uptodate(bh);
3781 
3782 	if (!buffer_uptodate(bh)) {
3783 		err = ext4_read_bh_lock(bh, 0, true);
3784 		if (err)
3785 			goto unlock;
3786 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3787 			/* We expect the key to be set. */
3788 			BUG_ON(!fscrypt_has_encryption_key(inode));
3789 			err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3790 							       bh_offset(bh));
3791 			if (err) {
3792 				clear_buffer_uptodate(bh);
3793 				goto unlock;
3794 			}
3795 		}
3796 	}
3797 	if (ext4_should_journal_data(inode)) {
3798 		BUFFER_TRACE(bh, "get write access");
3799 		err = ext4_journal_get_write_access(handle, bh);
3800 		if (err)
3801 			goto unlock;
3802 	}
3803 	zero_user(page, offset, length);
3804 	BUFFER_TRACE(bh, "zeroed end of block");
3805 
3806 	if (ext4_should_journal_data(inode)) {
3807 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3808 	} else {
3809 		err = 0;
3810 		mark_buffer_dirty(bh);
3811 		if (ext4_should_order_data(inode))
3812 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3813 					length);
3814 	}
3815 
3816 unlock:
3817 	unlock_page(page);
3818 	put_page(page);
3819 	return err;
3820 }
3821 
3822 /*
3823  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3824  * starting from file offset 'from'.  The range to be zero'd must
3825  * be contained with in one block.  If the specified range exceeds
3826  * the end of the block it will be shortened to end of the block
3827  * that cooresponds to 'from'
3828  */
3829 static int ext4_block_zero_page_range(handle_t *handle,
3830 		struct address_space *mapping, loff_t from, loff_t length)
3831 {
3832 	struct inode *inode = mapping->host;
3833 	unsigned offset = from & (PAGE_SIZE-1);
3834 	unsigned blocksize = inode->i_sb->s_blocksize;
3835 	unsigned max = blocksize - (offset & (blocksize - 1));
3836 
3837 	/*
3838 	 * correct length if it does not fall between
3839 	 * 'from' and the end of the block
3840 	 */
3841 	if (length > max || length < 0)
3842 		length = max;
3843 
3844 	if (IS_DAX(inode)) {
3845 		return iomap_zero_range(inode, from, length, NULL,
3846 					&ext4_iomap_ops);
3847 	}
3848 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3849 }
3850 
3851 /*
3852  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3853  * up to the end of the block which corresponds to `from'.
3854  * This required during truncate. We need to physically zero the tail end
3855  * of that block so it doesn't yield old data if the file is later grown.
3856  */
3857 static int ext4_block_truncate_page(handle_t *handle,
3858 		struct address_space *mapping, loff_t from)
3859 {
3860 	unsigned offset = from & (PAGE_SIZE-1);
3861 	unsigned length;
3862 	unsigned blocksize;
3863 	struct inode *inode = mapping->host;
3864 
3865 	/* If we are processing an encrypted inode during orphan list handling */
3866 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3867 		return 0;
3868 
3869 	blocksize = inode->i_sb->s_blocksize;
3870 	length = blocksize - (offset & (blocksize - 1));
3871 
3872 	return ext4_block_zero_page_range(handle, mapping, from, length);
3873 }
3874 
3875 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3876 			     loff_t lstart, loff_t length)
3877 {
3878 	struct super_block *sb = inode->i_sb;
3879 	struct address_space *mapping = inode->i_mapping;
3880 	unsigned partial_start, partial_end;
3881 	ext4_fsblk_t start, end;
3882 	loff_t byte_end = (lstart + length - 1);
3883 	int err = 0;
3884 
3885 	partial_start = lstart & (sb->s_blocksize - 1);
3886 	partial_end = byte_end & (sb->s_blocksize - 1);
3887 
3888 	start = lstart >> sb->s_blocksize_bits;
3889 	end = byte_end >> sb->s_blocksize_bits;
3890 
3891 	/* Handle partial zero within the single block */
3892 	if (start == end &&
3893 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3894 		err = ext4_block_zero_page_range(handle, mapping,
3895 						 lstart, length);
3896 		return err;
3897 	}
3898 	/* Handle partial zero out on the start of the range */
3899 	if (partial_start) {
3900 		err = ext4_block_zero_page_range(handle, mapping,
3901 						 lstart, sb->s_blocksize);
3902 		if (err)
3903 			return err;
3904 	}
3905 	/* Handle partial zero out on the end of the range */
3906 	if (partial_end != sb->s_blocksize - 1)
3907 		err = ext4_block_zero_page_range(handle, mapping,
3908 						 byte_end - partial_end,
3909 						 partial_end + 1);
3910 	return err;
3911 }
3912 
3913 int ext4_can_truncate(struct inode *inode)
3914 {
3915 	if (S_ISREG(inode->i_mode))
3916 		return 1;
3917 	if (S_ISDIR(inode->i_mode))
3918 		return 1;
3919 	if (S_ISLNK(inode->i_mode))
3920 		return !ext4_inode_is_fast_symlink(inode);
3921 	return 0;
3922 }
3923 
3924 /*
3925  * We have to make sure i_disksize gets properly updated before we truncate
3926  * page cache due to hole punching or zero range. Otherwise i_disksize update
3927  * can get lost as it may have been postponed to submission of writeback but
3928  * that will never happen after we truncate page cache.
3929  */
3930 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3931 				      loff_t len)
3932 {
3933 	handle_t *handle;
3934 	int ret;
3935 
3936 	loff_t size = i_size_read(inode);
3937 
3938 	WARN_ON(!inode_is_locked(inode));
3939 	if (offset > size || offset + len < size)
3940 		return 0;
3941 
3942 	if (EXT4_I(inode)->i_disksize >= size)
3943 		return 0;
3944 
3945 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3946 	if (IS_ERR(handle))
3947 		return PTR_ERR(handle);
3948 	ext4_update_i_disksize(inode, size);
3949 	ret = ext4_mark_inode_dirty(handle, inode);
3950 	ext4_journal_stop(handle);
3951 
3952 	return ret;
3953 }
3954 
3955 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3956 {
3957 	up_write(&ei->i_mmap_sem);
3958 	schedule();
3959 	down_write(&ei->i_mmap_sem);
3960 }
3961 
3962 int ext4_break_layouts(struct inode *inode)
3963 {
3964 	struct ext4_inode_info *ei = EXT4_I(inode);
3965 	struct page *page;
3966 	int error;
3967 
3968 	if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3969 		return -EINVAL;
3970 
3971 	do {
3972 		page = dax_layout_busy_page(inode->i_mapping);
3973 		if (!page)
3974 			return 0;
3975 
3976 		error = ___wait_var_event(&page->_refcount,
3977 				atomic_read(&page->_refcount) == 1,
3978 				TASK_INTERRUPTIBLE, 0, 0,
3979 				ext4_wait_dax_page(ei));
3980 	} while (error == 0);
3981 
3982 	return error;
3983 }
3984 
3985 /*
3986  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3987  * associated with the given offset and length
3988  *
3989  * @inode:  File inode
3990  * @offset: The offset where the hole will begin
3991  * @len:    The length of the hole
3992  *
3993  * Returns: 0 on success or negative on failure
3994  */
3995 
3996 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3997 {
3998 	struct super_block *sb = inode->i_sb;
3999 	ext4_lblk_t first_block, stop_block;
4000 	struct address_space *mapping = inode->i_mapping;
4001 	loff_t first_block_offset, last_block_offset;
4002 	handle_t *handle;
4003 	unsigned int credits;
4004 	int ret = 0, ret2 = 0;
4005 
4006 	trace_ext4_punch_hole(inode, offset, length, 0);
4007 
4008 	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4009 	if (ext4_has_inline_data(inode)) {
4010 		down_write(&EXT4_I(inode)->i_mmap_sem);
4011 		ret = ext4_convert_inline_data(inode);
4012 		up_write(&EXT4_I(inode)->i_mmap_sem);
4013 		if (ret)
4014 			return ret;
4015 	}
4016 
4017 	/*
4018 	 * Write out all dirty pages to avoid race conditions
4019 	 * Then release them.
4020 	 */
4021 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4022 		ret = filemap_write_and_wait_range(mapping, offset,
4023 						   offset + length - 1);
4024 		if (ret)
4025 			return ret;
4026 	}
4027 
4028 	inode_lock(inode);
4029 
4030 	/* No need to punch hole beyond i_size */
4031 	if (offset >= inode->i_size)
4032 		goto out_mutex;
4033 
4034 	/*
4035 	 * If the hole extends beyond i_size, set the hole
4036 	 * to end after the page that contains i_size
4037 	 */
4038 	if (offset + length > inode->i_size) {
4039 		length = inode->i_size +
4040 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4041 		   offset;
4042 	}
4043 
4044 	if (offset & (sb->s_blocksize - 1) ||
4045 	    (offset + length) & (sb->s_blocksize - 1)) {
4046 		/*
4047 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4048 		 * partial block
4049 		 */
4050 		ret = ext4_inode_attach_jinode(inode);
4051 		if (ret < 0)
4052 			goto out_mutex;
4053 
4054 	}
4055 
4056 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4057 	inode_dio_wait(inode);
4058 
4059 	/*
4060 	 * Prevent page faults from reinstantiating pages we have released from
4061 	 * page cache.
4062 	 */
4063 	down_write(&EXT4_I(inode)->i_mmap_sem);
4064 
4065 	ret = ext4_break_layouts(inode);
4066 	if (ret)
4067 		goto out_dio;
4068 
4069 	first_block_offset = round_up(offset, sb->s_blocksize);
4070 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4071 
4072 	/* Now release the pages and zero block aligned part of pages*/
4073 	if (last_block_offset > first_block_offset) {
4074 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4075 		if (ret)
4076 			goto out_dio;
4077 		truncate_pagecache_range(inode, first_block_offset,
4078 					 last_block_offset);
4079 	}
4080 
4081 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4082 		credits = ext4_writepage_trans_blocks(inode);
4083 	else
4084 		credits = ext4_blocks_for_truncate(inode);
4085 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4086 	if (IS_ERR(handle)) {
4087 		ret = PTR_ERR(handle);
4088 		ext4_std_error(sb, ret);
4089 		goto out_dio;
4090 	}
4091 
4092 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4093 				       length);
4094 	if (ret)
4095 		goto out_stop;
4096 
4097 	first_block = (offset + sb->s_blocksize - 1) >>
4098 		EXT4_BLOCK_SIZE_BITS(sb);
4099 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4100 
4101 	/* If there are blocks to remove, do it */
4102 	if (stop_block > first_block) {
4103 
4104 		down_write(&EXT4_I(inode)->i_data_sem);
4105 		ext4_discard_preallocations(inode, 0);
4106 
4107 		ret = ext4_es_remove_extent(inode, first_block,
4108 					    stop_block - first_block);
4109 		if (ret) {
4110 			up_write(&EXT4_I(inode)->i_data_sem);
4111 			goto out_stop;
4112 		}
4113 
4114 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4115 			ret = ext4_ext_remove_space(inode, first_block,
4116 						    stop_block - 1);
4117 		else
4118 			ret = ext4_ind_remove_space(handle, inode, first_block,
4119 						    stop_block);
4120 
4121 		up_write(&EXT4_I(inode)->i_data_sem);
4122 	}
4123 	ext4_fc_track_range(handle, inode, first_block, stop_block);
4124 	if (IS_SYNC(inode))
4125 		ext4_handle_sync(handle);
4126 
4127 	inode->i_mtime = inode->i_ctime = current_time(inode);
4128 	ret2 = ext4_mark_inode_dirty(handle, inode);
4129 	if (unlikely(ret2))
4130 		ret = ret2;
4131 	if (ret >= 0)
4132 		ext4_update_inode_fsync_trans(handle, inode, 1);
4133 out_stop:
4134 	ext4_journal_stop(handle);
4135 out_dio:
4136 	up_write(&EXT4_I(inode)->i_mmap_sem);
4137 out_mutex:
4138 	inode_unlock(inode);
4139 	return ret;
4140 }
4141 
4142 int ext4_inode_attach_jinode(struct inode *inode)
4143 {
4144 	struct ext4_inode_info *ei = EXT4_I(inode);
4145 	struct jbd2_inode *jinode;
4146 
4147 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4148 		return 0;
4149 
4150 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4151 	spin_lock(&inode->i_lock);
4152 	if (!ei->jinode) {
4153 		if (!jinode) {
4154 			spin_unlock(&inode->i_lock);
4155 			return -ENOMEM;
4156 		}
4157 		ei->jinode = jinode;
4158 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4159 		jinode = NULL;
4160 	}
4161 	spin_unlock(&inode->i_lock);
4162 	if (unlikely(jinode != NULL))
4163 		jbd2_free_inode(jinode);
4164 	return 0;
4165 }
4166 
4167 /*
4168  * ext4_truncate()
4169  *
4170  * We block out ext4_get_block() block instantiations across the entire
4171  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4172  * simultaneously on behalf of the same inode.
4173  *
4174  * As we work through the truncate and commit bits of it to the journal there
4175  * is one core, guiding principle: the file's tree must always be consistent on
4176  * disk.  We must be able to restart the truncate after a crash.
4177  *
4178  * The file's tree may be transiently inconsistent in memory (although it
4179  * probably isn't), but whenever we close off and commit a journal transaction,
4180  * the contents of (the filesystem + the journal) must be consistent and
4181  * restartable.  It's pretty simple, really: bottom up, right to left (although
4182  * left-to-right works OK too).
4183  *
4184  * Note that at recovery time, journal replay occurs *before* the restart of
4185  * truncate against the orphan inode list.
4186  *
4187  * The committed inode has the new, desired i_size (which is the same as
4188  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4189  * that this inode's truncate did not complete and it will again call
4190  * ext4_truncate() to have another go.  So there will be instantiated blocks
4191  * to the right of the truncation point in a crashed ext4 filesystem.  But
4192  * that's fine - as long as they are linked from the inode, the post-crash
4193  * ext4_truncate() run will find them and release them.
4194  */
4195 int ext4_truncate(struct inode *inode)
4196 {
4197 	struct ext4_inode_info *ei = EXT4_I(inode);
4198 	unsigned int credits;
4199 	int err = 0, err2;
4200 	handle_t *handle;
4201 	struct address_space *mapping = inode->i_mapping;
4202 
4203 	/*
4204 	 * There is a possibility that we're either freeing the inode
4205 	 * or it's a completely new inode. In those cases we might not
4206 	 * have i_mutex locked because it's not necessary.
4207 	 */
4208 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4209 		WARN_ON(!inode_is_locked(inode));
4210 	trace_ext4_truncate_enter(inode);
4211 
4212 	if (!ext4_can_truncate(inode))
4213 		goto out_trace;
4214 
4215 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4216 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4217 
4218 	if (ext4_has_inline_data(inode)) {
4219 		int has_inline = 1;
4220 
4221 		err = ext4_inline_data_truncate(inode, &has_inline);
4222 		if (err || has_inline)
4223 			goto out_trace;
4224 	}
4225 
4226 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4227 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4228 		if (ext4_inode_attach_jinode(inode) < 0)
4229 			goto out_trace;
4230 	}
4231 
4232 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4233 		credits = ext4_writepage_trans_blocks(inode);
4234 	else
4235 		credits = ext4_blocks_for_truncate(inode);
4236 
4237 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4238 	if (IS_ERR(handle)) {
4239 		err = PTR_ERR(handle);
4240 		goto out_trace;
4241 	}
4242 
4243 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4244 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4245 
4246 	/*
4247 	 * We add the inode to the orphan list, so that if this
4248 	 * truncate spans multiple transactions, and we crash, we will
4249 	 * resume the truncate when the filesystem recovers.  It also
4250 	 * marks the inode dirty, to catch the new size.
4251 	 *
4252 	 * Implication: the file must always be in a sane, consistent
4253 	 * truncatable state while each transaction commits.
4254 	 */
4255 	err = ext4_orphan_add(handle, inode);
4256 	if (err)
4257 		goto out_stop;
4258 
4259 	down_write(&EXT4_I(inode)->i_data_sem);
4260 
4261 	ext4_discard_preallocations(inode, 0);
4262 
4263 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4264 		err = ext4_ext_truncate(handle, inode);
4265 	else
4266 		ext4_ind_truncate(handle, inode);
4267 
4268 	up_write(&ei->i_data_sem);
4269 	if (err)
4270 		goto out_stop;
4271 
4272 	if (IS_SYNC(inode))
4273 		ext4_handle_sync(handle);
4274 
4275 out_stop:
4276 	/*
4277 	 * If this was a simple ftruncate() and the file will remain alive,
4278 	 * then we need to clear up the orphan record which we created above.
4279 	 * However, if this was a real unlink then we were called by
4280 	 * ext4_evict_inode(), and we allow that function to clean up the
4281 	 * orphan info for us.
4282 	 */
4283 	if (inode->i_nlink)
4284 		ext4_orphan_del(handle, inode);
4285 
4286 	inode->i_mtime = inode->i_ctime = current_time(inode);
4287 	err2 = ext4_mark_inode_dirty(handle, inode);
4288 	if (unlikely(err2 && !err))
4289 		err = err2;
4290 	ext4_journal_stop(handle);
4291 
4292 out_trace:
4293 	trace_ext4_truncate_exit(inode);
4294 	return err;
4295 }
4296 
4297 /*
4298  * ext4_get_inode_loc returns with an extra refcount against the inode's
4299  * underlying buffer_head on success. If 'in_mem' is true, we have all
4300  * data in memory that is needed to recreate the on-disk version of this
4301  * inode.
4302  */
4303 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4304 				struct ext4_iloc *iloc, int in_mem,
4305 				ext4_fsblk_t *ret_block)
4306 {
4307 	struct ext4_group_desc	*gdp;
4308 	struct buffer_head	*bh;
4309 	ext4_fsblk_t		block;
4310 	struct blk_plug		plug;
4311 	int			inodes_per_block, inode_offset;
4312 
4313 	iloc->bh = NULL;
4314 	if (ino < EXT4_ROOT_INO ||
4315 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4316 		return -EFSCORRUPTED;
4317 
4318 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4319 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4320 	if (!gdp)
4321 		return -EIO;
4322 
4323 	/*
4324 	 * Figure out the offset within the block group inode table
4325 	 */
4326 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4327 	inode_offset = ((ino - 1) %
4328 			EXT4_INODES_PER_GROUP(sb));
4329 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4330 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4331 
4332 	bh = sb_getblk(sb, block);
4333 	if (unlikely(!bh))
4334 		return -ENOMEM;
4335 	if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO))
4336 		goto simulate_eio;
4337 	if (!buffer_uptodate(bh)) {
4338 		lock_buffer(bh);
4339 
4340 		if (ext4_buffer_uptodate(bh)) {
4341 			/* someone brought it uptodate while we waited */
4342 			unlock_buffer(bh);
4343 			goto has_buffer;
4344 		}
4345 
4346 		/*
4347 		 * If we have all information of the inode in memory and this
4348 		 * is the only valid inode in the block, we need not read the
4349 		 * block.
4350 		 */
4351 		if (in_mem) {
4352 			struct buffer_head *bitmap_bh;
4353 			int i, start;
4354 
4355 			start = inode_offset & ~(inodes_per_block - 1);
4356 
4357 			/* Is the inode bitmap in cache? */
4358 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4359 			if (unlikely(!bitmap_bh))
4360 				goto make_io;
4361 
4362 			/*
4363 			 * If the inode bitmap isn't in cache then the
4364 			 * optimisation may end up performing two reads instead
4365 			 * of one, so skip it.
4366 			 */
4367 			if (!buffer_uptodate(bitmap_bh)) {
4368 				brelse(bitmap_bh);
4369 				goto make_io;
4370 			}
4371 			for (i = start; i < start + inodes_per_block; i++) {
4372 				if (i == inode_offset)
4373 					continue;
4374 				if (ext4_test_bit(i, bitmap_bh->b_data))
4375 					break;
4376 			}
4377 			brelse(bitmap_bh);
4378 			if (i == start + inodes_per_block) {
4379 				/* all other inodes are free, so skip I/O */
4380 				memset(bh->b_data, 0, bh->b_size);
4381 				set_buffer_uptodate(bh);
4382 				unlock_buffer(bh);
4383 				goto has_buffer;
4384 			}
4385 		}
4386 
4387 make_io:
4388 		/*
4389 		 * If we need to do any I/O, try to pre-readahead extra
4390 		 * blocks from the inode table.
4391 		 */
4392 		blk_start_plug(&plug);
4393 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4394 			ext4_fsblk_t b, end, table;
4395 			unsigned num;
4396 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4397 
4398 			table = ext4_inode_table(sb, gdp);
4399 			/* s_inode_readahead_blks is always a power of 2 */
4400 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4401 			if (table > b)
4402 				b = table;
4403 			end = b + ra_blks;
4404 			num = EXT4_INODES_PER_GROUP(sb);
4405 			if (ext4_has_group_desc_csum(sb))
4406 				num -= ext4_itable_unused_count(sb, gdp);
4407 			table += num / inodes_per_block;
4408 			if (end > table)
4409 				end = table;
4410 			while (b <= end)
4411 				ext4_sb_breadahead_unmovable(sb, b++);
4412 		}
4413 
4414 		/*
4415 		 * There are other valid inodes in the buffer, this inode
4416 		 * has in-inode xattrs, or we don't have this inode in memory.
4417 		 * Read the block from disk.
4418 		 */
4419 		trace_ext4_load_inode(sb, ino);
4420 		ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4421 		blk_finish_plug(&plug);
4422 		wait_on_buffer(bh);
4423 		if (!buffer_uptodate(bh)) {
4424 		simulate_eio:
4425 			if (ret_block)
4426 				*ret_block = block;
4427 			brelse(bh);
4428 			return -EIO;
4429 		}
4430 	}
4431 has_buffer:
4432 	iloc->bh = bh;
4433 	return 0;
4434 }
4435 
4436 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4437 					struct ext4_iloc *iloc)
4438 {
4439 	ext4_fsblk_t err_blk;
4440 	int ret;
4441 
4442 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 0,
4443 					&err_blk);
4444 
4445 	if (ret == -EIO)
4446 		ext4_error_inode_block(inode, err_blk, EIO,
4447 					"unable to read itable block");
4448 
4449 	return ret;
4450 }
4451 
4452 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4453 {
4454 	ext4_fsblk_t err_blk;
4455 	int ret;
4456 
4457 	/* We have all inode data except xattrs in memory here. */
4458 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc,
4459 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR), &err_blk);
4460 
4461 	if (ret == -EIO)
4462 		ext4_error_inode_block(inode, err_blk, EIO,
4463 					"unable to read itable block");
4464 
4465 	return ret;
4466 }
4467 
4468 
4469 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4470 			  struct ext4_iloc *iloc)
4471 {
4472 	return __ext4_get_inode_loc(sb, ino, iloc, 0, NULL);
4473 }
4474 
4475 static bool ext4_should_enable_dax(struct inode *inode)
4476 {
4477 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4478 
4479 	if (test_opt2(inode->i_sb, DAX_NEVER))
4480 		return false;
4481 	if (!S_ISREG(inode->i_mode))
4482 		return false;
4483 	if (ext4_should_journal_data(inode))
4484 		return false;
4485 	if (ext4_has_inline_data(inode))
4486 		return false;
4487 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4488 		return false;
4489 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4490 		return false;
4491 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4492 		return false;
4493 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4494 		return true;
4495 
4496 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4497 }
4498 
4499 void ext4_set_inode_flags(struct inode *inode, bool init)
4500 {
4501 	unsigned int flags = EXT4_I(inode)->i_flags;
4502 	unsigned int new_fl = 0;
4503 
4504 	WARN_ON_ONCE(IS_DAX(inode) && init);
4505 
4506 	if (flags & EXT4_SYNC_FL)
4507 		new_fl |= S_SYNC;
4508 	if (flags & EXT4_APPEND_FL)
4509 		new_fl |= S_APPEND;
4510 	if (flags & EXT4_IMMUTABLE_FL)
4511 		new_fl |= S_IMMUTABLE;
4512 	if (flags & EXT4_NOATIME_FL)
4513 		new_fl |= S_NOATIME;
4514 	if (flags & EXT4_DIRSYNC_FL)
4515 		new_fl |= S_DIRSYNC;
4516 
4517 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4518 	 * here if already set. */
4519 	new_fl |= (inode->i_flags & S_DAX);
4520 	if (init && ext4_should_enable_dax(inode))
4521 		new_fl |= S_DAX;
4522 
4523 	if (flags & EXT4_ENCRYPT_FL)
4524 		new_fl |= S_ENCRYPTED;
4525 	if (flags & EXT4_CASEFOLD_FL)
4526 		new_fl |= S_CASEFOLD;
4527 	if (flags & EXT4_VERITY_FL)
4528 		new_fl |= S_VERITY;
4529 	inode_set_flags(inode, new_fl,
4530 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4531 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4532 }
4533 
4534 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4535 				  struct ext4_inode_info *ei)
4536 {
4537 	blkcnt_t i_blocks ;
4538 	struct inode *inode = &(ei->vfs_inode);
4539 	struct super_block *sb = inode->i_sb;
4540 
4541 	if (ext4_has_feature_huge_file(sb)) {
4542 		/* we are using combined 48 bit field */
4543 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4544 					le32_to_cpu(raw_inode->i_blocks_lo);
4545 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4546 			/* i_blocks represent file system block size */
4547 			return i_blocks  << (inode->i_blkbits - 9);
4548 		} else {
4549 			return i_blocks;
4550 		}
4551 	} else {
4552 		return le32_to_cpu(raw_inode->i_blocks_lo);
4553 	}
4554 }
4555 
4556 static inline int ext4_iget_extra_inode(struct inode *inode,
4557 					 struct ext4_inode *raw_inode,
4558 					 struct ext4_inode_info *ei)
4559 {
4560 	__le32 *magic = (void *)raw_inode +
4561 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4562 
4563 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4564 	    EXT4_INODE_SIZE(inode->i_sb) &&
4565 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4566 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4567 		return ext4_find_inline_data_nolock(inode);
4568 	} else
4569 		EXT4_I(inode)->i_inline_off = 0;
4570 	return 0;
4571 }
4572 
4573 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4574 {
4575 	if (!ext4_has_feature_project(inode->i_sb))
4576 		return -EOPNOTSUPP;
4577 	*projid = EXT4_I(inode)->i_projid;
4578 	return 0;
4579 }
4580 
4581 /*
4582  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4583  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4584  * set.
4585  */
4586 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4587 {
4588 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4589 		inode_set_iversion_raw(inode, val);
4590 	else
4591 		inode_set_iversion_queried(inode, val);
4592 }
4593 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4594 {
4595 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4596 		return inode_peek_iversion_raw(inode);
4597 	else
4598 		return inode_peek_iversion(inode);
4599 }
4600 
4601 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4602 			  ext4_iget_flags flags, const char *function,
4603 			  unsigned int line)
4604 {
4605 	struct ext4_iloc iloc;
4606 	struct ext4_inode *raw_inode;
4607 	struct ext4_inode_info *ei;
4608 	struct inode *inode;
4609 	journal_t *journal = EXT4_SB(sb)->s_journal;
4610 	long ret;
4611 	loff_t size;
4612 	int block;
4613 	uid_t i_uid;
4614 	gid_t i_gid;
4615 	projid_t i_projid;
4616 
4617 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4618 	     (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4619 	    (ino < EXT4_ROOT_INO) ||
4620 	    (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4621 		if (flags & EXT4_IGET_HANDLE)
4622 			return ERR_PTR(-ESTALE);
4623 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4624 			     "inode #%lu: comm %s: iget: illegal inode #",
4625 			     ino, current->comm);
4626 		return ERR_PTR(-EFSCORRUPTED);
4627 	}
4628 
4629 	inode = iget_locked(sb, ino);
4630 	if (!inode)
4631 		return ERR_PTR(-ENOMEM);
4632 	if (!(inode->i_state & I_NEW))
4633 		return inode;
4634 
4635 	ei = EXT4_I(inode);
4636 	iloc.bh = NULL;
4637 
4638 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4639 	if (ret < 0)
4640 		goto bad_inode;
4641 	raw_inode = ext4_raw_inode(&iloc);
4642 
4643 	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4644 		ext4_error_inode(inode, function, line, 0,
4645 				 "iget: root inode unallocated");
4646 		ret = -EFSCORRUPTED;
4647 		goto bad_inode;
4648 	}
4649 
4650 	if ((flags & EXT4_IGET_HANDLE) &&
4651 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4652 		ret = -ESTALE;
4653 		goto bad_inode;
4654 	}
4655 
4656 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4657 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4658 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4659 			EXT4_INODE_SIZE(inode->i_sb) ||
4660 		    (ei->i_extra_isize & 3)) {
4661 			ext4_error_inode(inode, function, line, 0,
4662 					 "iget: bad extra_isize %u "
4663 					 "(inode size %u)",
4664 					 ei->i_extra_isize,
4665 					 EXT4_INODE_SIZE(inode->i_sb));
4666 			ret = -EFSCORRUPTED;
4667 			goto bad_inode;
4668 		}
4669 	} else
4670 		ei->i_extra_isize = 0;
4671 
4672 	/* Precompute checksum seed for inode metadata */
4673 	if (ext4_has_metadata_csum(sb)) {
4674 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4675 		__u32 csum;
4676 		__le32 inum = cpu_to_le32(inode->i_ino);
4677 		__le32 gen = raw_inode->i_generation;
4678 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4679 				   sizeof(inum));
4680 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4681 					      sizeof(gen));
4682 	}
4683 
4684 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4685 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4686 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4687 		ext4_error_inode_err(inode, function, line, 0,
4688 				EFSBADCRC, "iget: checksum invalid");
4689 		ret = -EFSBADCRC;
4690 		goto bad_inode;
4691 	}
4692 
4693 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4694 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4695 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4696 	if (ext4_has_feature_project(sb) &&
4697 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4698 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4699 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4700 	else
4701 		i_projid = EXT4_DEF_PROJID;
4702 
4703 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4704 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4705 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4706 	}
4707 	i_uid_write(inode, i_uid);
4708 	i_gid_write(inode, i_gid);
4709 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4710 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4711 
4712 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4713 	ei->i_inline_off = 0;
4714 	ei->i_dir_start_lookup = 0;
4715 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4716 	/* We now have enough fields to check if the inode was active or not.
4717 	 * This is needed because nfsd might try to access dead inodes
4718 	 * the test is that same one that e2fsck uses
4719 	 * NeilBrown 1999oct15
4720 	 */
4721 	if (inode->i_nlink == 0) {
4722 		if ((inode->i_mode == 0 ||
4723 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4724 		    ino != EXT4_BOOT_LOADER_INO) {
4725 			/* this inode is deleted */
4726 			ret = -ESTALE;
4727 			goto bad_inode;
4728 		}
4729 		/* The only unlinked inodes we let through here have
4730 		 * valid i_mode and are being read by the orphan
4731 		 * recovery code: that's fine, we're about to complete
4732 		 * the process of deleting those.
4733 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4734 		 * not initialized on a new filesystem. */
4735 	}
4736 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4737 	ext4_set_inode_flags(inode, true);
4738 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4739 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4740 	if (ext4_has_feature_64bit(sb))
4741 		ei->i_file_acl |=
4742 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4743 	inode->i_size = ext4_isize(sb, raw_inode);
4744 	if ((size = i_size_read(inode)) < 0) {
4745 		ext4_error_inode(inode, function, line, 0,
4746 				 "iget: bad i_size value: %lld", size);
4747 		ret = -EFSCORRUPTED;
4748 		goto bad_inode;
4749 	}
4750 	/*
4751 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4752 	 * we'd normally treat htree data as empty space. But with metadata
4753 	 * checksumming that corrupts checksums so forbid that.
4754 	 */
4755 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4756 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4757 		ext4_error_inode(inode, function, line, 0,
4758 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4759 		ret = -EFSCORRUPTED;
4760 		goto bad_inode;
4761 	}
4762 	ei->i_disksize = inode->i_size;
4763 #ifdef CONFIG_QUOTA
4764 	ei->i_reserved_quota = 0;
4765 #endif
4766 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4767 	ei->i_block_group = iloc.block_group;
4768 	ei->i_last_alloc_group = ~0;
4769 	/*
4770 	 * NOTE! The in-memory inode i_data array is in little-endian order
4771 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4772 	 */
4773 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4774 		ei->i_data[block] = raw_inode->i_block[block];
4775 	INIT_LIST_HEAD(&ei->i_orphan);
4776 	ext4_fc_init_inode(&ei->vfs_inode);
4777 
4778 	/*
4779 	 * Set transaction id's of transactions that have to be committed
4780 	 * to finish f[data]sync. We set them to currently running transaction
4781 	 * as we cannot be sure that the inode or some of its metadata isn't
4782 	 * part of the transaction - the inode could have been reclaimed and
4783 	 * now it is reread from disk.
4784 	 */
4785 	if (journal) {
4786 		transaction_t *transaction;
4787 		tid_t tid;
4788 
4789 		read_lock(&journal->j_state_lock);
4790 		if (journal->j_running_transaction)
4791 			transaction = journal->j_running_transaction;
4792 		else
4793 			transaction = journal->j_committing_transaction;
4794 		if (transaction)
4795 			tid = transaction->t_tid;
4796 		else
4797 			tid = journal->j_commit_sequence;
4798 		read_unlock(&journal->j_state_lock);
4799 		ei->i_sync_tid = tid;
4800 		ei->i_datasync_tid = tid;
4801 	}
4802 
4803 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4804 		if (ei->i_extra_isize == 0) {
4805 			/* The extra space is currently unused. Use it. */
4806 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4807 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4808 					    EXT4_GOOD_OLD_INODE_SIZE;
4809 		} else {
4810 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4811 			if (ret)
4812 				goto bad_inode;
4813 		}
4814 	}
4815 
4816 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4817 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4818 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4819 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4820 
4821 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4822 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4823 
4824 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4825 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4826 				ivers |=
4827 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4828 		}
4829 		ext4_inode_set_iversion_queried(inode, ivers);
4830 	}
4831 
4832 	ret = 0;
4833 	if (ei->i_file_acl &&
4834 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4835 		ext4_error_inode(inode, function, line, 0,
4836 				 "iget: bad extended attribute block %llu",
4837 				 ei->i_file_acl);
4838 		ret = -EFSCORRUPTED;
4839 		goto bad_inode;
4840 	} else if (!ext4_has_inline_data(inode)) {
4841 		/* validate the block references in the inode */
4842 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4843 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4844 			(S_ISLNK(inode->i_mode) &&
4845 			!ext4_inode_is_fast_symlink(inode)))) {
4846 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4847 				ret = ext4_ext_check_inode(inode);
4848 			else
4849 				ret = ext4_ind_check_inode(inode);
4850 		}
4851 	}
4852 	if (ret)
4853 		goto bad_inode;
4854 
4855 	if (S_ISREG(inode->i_mode)) {
4856 		inode->i_op = &ext4_file_inode_operations;
4857 		inode->i_fop = &ext4_file_operations;
4858 		ext4_set_aops(inode);
4859 	} else if (S_ISDIR(inode->i_mode)) {
4860 		inode->i_op = &ext4_dir_inode_operations;
4861 		inode->i_fop = &ext4_dir_operations;
4862 	} else if (S_ISLNK(inode->i_mode)) {
4863 		/* VFS does not allow setting these so must be corruption */
4864 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4865 			ext4_error_inode(inode, function, line, 0,
4866 					 "iget: immutable or append flags "
4867 					 "not allowed on symlinks");
4868 			ret = -EFSCORRUPTED;
4869 			goto bad_inode;
4870 		}
4871 		if (IS_ENCRYPTED(inode)) {
4872 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4873 			ext4_set_aops(inode);
4874 		} else if (ext4_inode_is_fast_symlink(inode)) {
4875 			inode->i_link = (char *)ei->i_data;
4876 			inode->i_op = &ext4_fast_symlink_inode_operations;
4877 			nd_terminate_link(ei->i_data, inode->i_size,
4878 				sizeof(ei->i_data) - 1);
4879 		} else {
4880 			inode->i_op = &ext4_symlink_inode_operations;
4881 			ext4_set_aops(inode);
4882 		}
4883 		inode_nohighmem(inode);
4884 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4885 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4886 		inode->i_op = &ext4_special_inode_operations;
4887 		if (raw_inode->i_block[0])
4888 			init_special_inode(inode, inode->i_mode,
4889 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4890 		else
4891 			init_special_inode(inode, inode->i_mode,
4892 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4893 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4894 		make_bad_inode(inode);
4895 	} else {
4896 		ret = -EFSCORRUPTED;
4897 		ext4_error_inode(inode, function, line, 0,
4898 				 "iget: bogus i_mode (%o)", inode->i_mode);
4899 		goto bad_inode;
4900 	}
4901 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4902 		ext4_error_inode(inode, function, line, 0,
4903 				 "casefold flag without casefold feature");
4904 	brelse(iloc.bh);
4905 
4906 	unlock_new_inode(inode);
4907 	return inode;
4908 
4909 bad_inode:
4910 	brelse(iloc.bh);
4911 	iget_failed(inode);
4912 	return ERR_PTR(ret);
4913 }
4914 
4915 static int ext4_inode_blocks_set(handle_t *handle,
4916 				struct ext4_inode *raw_inode,
4917 				struct ext4_inode_info *ei)
4918 {
4919 	struct inode *inode = &(ei->vfs_inode);
4920 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4921 	struct super_block *sb = inode->i_sb;
4922 
4923 	if (i_blocks <= ~0U) {
4924 		/*
4925 		 * i_blocks can be represented in a 32 bit variable
4926 		 * as multiple of 512 bytes
4927 		 */
4928 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4929 		raw_inode->i_blocks_high = 0;
4930 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4931 		return 0;
4932 	}
4933 	if (!ext4_has_feature_huge_file(sb))
4934 		return -EFBIG;
4935 
4936 	if (i_blocks <= 0xffffffffffffULL) {
4937 		/*
4938 		 * i_blocks can be represented in a 48 bit variable
4939 		 * as multiple of 512 bytes
4940 		 */
4941 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4942 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4943 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4944 	} else {
4945 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4946 		/* i_block is stored in file system block size */
4947 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4948 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4949 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4950 	}
4951 	return 0;
4952 }
4953 
4954 static void __ext4_update_other_inode_time(struct super_block *sb,
4955 					   unsigned long orig_ino,
4956 					   unsigned long ino,
4957 					   struct ext4_inode *raw_inode)
4958 {
4959 	struct inode *inode;
4960 
4961 	inode = find_inode_by_ino_rcu(sb, ino);
4962 	if (!inode)
4963 		return;
4964 
4965 	if (!inode_is_dirtytime_only(inode))
4966 		return;
4967 
4968 	spin_lock(&inode->i_lock);
4969 	if (inode_is_dirtytime_only(inode)) {
4970 		struct ext4_inode_info	*ei = EXT4_I(inode);
4971 
4972 		inode->i_state &= ~I_DIRTY_TIME;
4973 		spin_unlock(&inode->i_lock);
4974 
4975 		spin_lock(&ei->i_raw_lock);
4976 		EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4977 		EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4978 		EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4979 		ext4_inode_csum_set(inode, raw_inode, ei);
4980 		spin_unlock(&ei->i_raw_lock);
4981 		trace_ext4_other_inode_update_time(inode, orig_ino);
4982 		return;
4983 	}
4984 	spin_unlock(&inode->i_lock);
4985 }
4986 
4987 /*
4988  * Opportunistically update the other time fields for other inodes in
4989  * the same inode table block.
4990  */
4991 static void ext4_update_other_inodes_time(struct super_block *sb,
4992 					  unsigned long orig_ino, char *buf)
4993 {
4994 	unsigned long ino;
4995 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4996 	int inode_size = EXT4_INODE_SIZE(sb);
4997 
4998 	/*
4999 	 * Calculate the first inode in the inode table block.  Inode
5000 	 * numbers are one-based.  That is, the first inode in a block
5001 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5002 	 */
5003 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5004 	rcu_read_lock();
5005 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5006 		if (ino == orig_ino)
5007 			continue;
5008 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5009 					       (struct ext4_inode *)buf);
5010 	}
5011 	rcu_read_unlock();
5012 }
5013 
5014 /*
5015  * Post the struct inode info into an on-disk inode location in the
5016  * buffer-cache.  This gobbles the caller's reference to the
5017  * buffer_head in the inode location struct.
5018  *
5019  * The caller must have write access to iloc->bh.
5020  */
5021 static int ext4_do_update_inode(handle_t *handle,
5022 				struct inode *inode,
5023 				struct ext4_iloc *iloc)
5024 {
5025 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5026 	struct ext4_inode_info *ei = EXT4_I(inode);
5027 	struct buffer_head *bh = iloc->bh;
5028 	struct super_block *sb = inode->i_sb;
5029 	int err = 0, rc, block;
5030 	int need_datasync = 0, set_large_file = 0;
5031 	uid_t i_uid;
5032 	gid_t i_gid;
5033 	projid_t i_projid;
5034 
5035 	spin_lock(&ei->i_raw_lock);
5036 
5037 	/* For fields not tracked in the in-memory inode,
5038 	 * initialise them to zero for new inodes. */
5039 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5040 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5041 
5042 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
5043 	if (err) {
5044 		spin_unlock(&ei->i_raw_lock);
5045 		goto out_brelse;
5046 	}
5047 
5048 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5049 	i_uid = i_uid_read(inode);
5050 	i_gid = i_gid_read(inode);
5051 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5052 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5053 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5054 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5055 /*
5056  * Fix up interoperability with old kernels. Otherwise, old inodes get
5057  * re-used with the upper 16 bits of the uid/gid intact
5058  */
5059 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5060 			raw_inode->i_uid_high = 0;
5061 			raw_inode->i_gid_high = 0;
5062 		} else {
5063 			raw_inode->i_uid_high =
5064 				cpu_to_le16(high_16_bits(i_uid));
5065 			raw_inode->i_gid_high =
5066 				cpu_to_le16(high_16_bits(i_gid));
5067 		}
5068 	} else {
5069 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5070 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5071 		raw_inode->i_uid_high = 0;
5072 		raw_inode->i_gid_high = 0;
5073 	}
5074 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5075 
5076 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5077 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5078 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5079 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5080 
5081 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5082 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5083 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5084 		raw_inode->i_file_acl_high =
5085 			cpu_to_le16(ei->i_file_acl >> 32);
5086 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5087 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5088 		ext4_isize_set(raw_inode, ei->i_disksize);
5089 		need_datasync = 1;
5090 	}
5091 	if (ei->i_disksize > 0x7fffffffULL) {
5092 		if (!ext4_has_feature_large_file(sb) ||
5093 				EXT4_SB(sb)->s_es->s_rev_level ==
5094 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5095 			set_large_file = 1;
5096 	}
5097 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5098 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5099 		if (old_valid_dev(inode->i_rdev)) {
5100 			raw_inode->i_block[0] =
5101 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5102 			raw_inode->i_block[1] = 0;
5103 		} else {
5104 			raw_inode->i_block[0] = 0;
5105 			raw_inode->i_block[1] =
5106 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5107 			raw_inode->i_block[2] = 0;
5108 		}
5109 	} else if (!ext4_has_inline_data(inode)) {
5110 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5111 			raw_inode->i_block[block] = ei->i_data[block];
5112 	}
5113 
5114 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5115 		u64 ivers = ext4_inode_peek_iversion(inode);
5116 
5117 		raw_inode->i_disk_version = cpu_to_le32(ivers);
5118 		if (ei->i_extra_isize) {
5119 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5120 				raw_inode->i_version_hi =
5121 					cpu_to_le32(ivers >> 32);
5122 			raw_inode->i_extra_isize =
5123 				cpu_to_le16(ei->i_extra_isize);
5124 		}
5125 	}
5126 
5127 	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5128 	       i_projid != EXT4_DEF_PROJID);
5129 
5130 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5131 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5132 		raw_inode->i_projid = cpu_to_le32(i_projid);
5133 
5134 	ext4_inode_csum_set(inode, raw_inode, ei);
5135 	spin_unlock(&ei->i_raw_lock);
5136 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5137 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5138 					      bh->b_data);
5139 
5140 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5141 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5142 	if (!err)
5143 		err = rc;
5144 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5145 	if (set_large_file) {
5146 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5147 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5148 		if (err)
5149 			goto out_brelse;
5150 		lock_buffer(EXT4_SB(sb)->s_sbh);
5151 		ext4_set_feature_large_file(sb);
5152 		ext4_superblock_csum_set(sb);
5153 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5154 		ext4_handle_sync(handle);
5155 		err = ext4_handle_dirty_metadata(handle, NULL,
5156 						 EXT4_SB(sb)->s_sbh);
5157 	}
5158 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5159 out_brelse:
5160 	brelse(bh);
5161 	ext4_std_error(inode->i_sb, err);
5162 	return err;
5163 }
5164 
5165 /*
5166  * ext4_write_inode()
5167  *
5168  * We are called from a few places:
5169  *
5170  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5171  *   Here, there will be no transaction running. We wait for any running
5172  *   transaction to commit.
5173  *
5174  * - Within flush work (sys_sync(), kupdate and such).
5175  *   We wait on commit, if told to.
5176  *
5177  * - Within iput_final() -> write_inode_now()
5178  *   We wait on commit, if told to.
5179  *
5180  * In all cases it is actually safe for us to return without doing anything,
5181  * because the inode has been copied into a raw inode buffer in
5182  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5183  * writeback.
5184  *
5185  * Note that we are absolutely dependent upon all inode dirtiers doing the
5186  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5187  * which we are interested.
5188  *
5189  * It would be a bug for them to not do this.  The code:
5190  *
5191  *	mark_inode_dirty(inode)
5192  *	stuff();
5193  *	inode->i_size = expr;
5194  *
5195  * is in error because write_inode() could occur while `stuff()' is running,
5196  * and the new i_size will be lost.  Plus the inode will no longer be on the
5197  * superblock's dirty inode list.
5198  */
5199 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5200 {
5201 	int err;
5202 
5203 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5204 	    sb_rdonly(inode->i_sb))
5205 		return 0;
5206 
5207 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5208 		return -EIO;
5209 
5210 	if (EXT4_SB(inode->i_sb)->s_journal) {
5211 		if (ext4_journal_current_handle()) {
5212 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5213 			dump_stack();
5214 			return -EIO;
5215 		}
5216 
5217 		/*
5218 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5219 		 * ext4_sync_fs() will force the commit after everything is
5220 		 * written.
5221 		 */
5222 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5223 			return 0;
5224 
5225 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5226 						EXT4_I(inode)->i_sync_tid);
5227 	} else {
5228 		struct ext4_iloc iloc;
5229 
5230 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5231 		if (err)
5232 			return err;
5233 		/*
5234 		 * sync(2) will flush the whole buffer cache. No need to do
5235 		 * it here separately for each inode.
5236 		 */
5237 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5238 			sync_dirty_buffer(iloc.bh);
5239 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5240 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5241 					       "IO error syncing inode");
5242 			err = -EIO;
5243 		}
5244 		brelse(iloc.bh);
5245 	}
5246 	return err;
5247 }
5248 
5249 /*
5250  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5251  * buffers that are attached to a page stradding i_size and are undergoing
5252  * commit. In that case we have to wait for commit to finish and try again.
5253  */
5254 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5255 {
5256 	struct page *page;
5257 	unsigned offset;
5258 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5259 	tid_t commit_tid = 0;
5260 	int ret;
5261 
5262 	offset = inode->i_size & (PAGE_SIZE - 1);
5263 	/*
5264 	 * If the page is fully truncated, we don't need to wait for any commit
5265 	 * (and we even should not as __ext4_journalled_invalidatepage() may
5266 	 * strip all buffers from the page but keep the page dirty which can then
5267 	 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5268 	 * buffers). Also we don't need to wait for any commit if all buffers in
5269 	 * the page remain valid. This is most beneficial for the common case of
5270 	 * blocksize == PAGESIZE.
5271 	 */
5272 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5273 		return;
5274 	while (1) {
5275 		page = find_lock_page(inode->i_mapping,
5276 				      inode->i_size >> PAGE_SHIFT);
5277 		if (!page)
5278 			return;
5279 		ret = __ext4_journalled_invalidatepage(page, offset,
5280 						PAGE_SIZE - offset);
5281 		unlock_page(page);
5282 		put_page(page);
5283 		if (ret != -EBUSY)
5284 			return;
5285 		commit_tid = 0;
5286 		read_lock(&journal->j_state_lock);
5287 		if (journal->j_committing_transaction)
5288 			commit_tid = journal->j_committing_transaction->t_tid;
5289 		read_unlock(&journal->j_state_lock);
5290 		if (commit_tid)
5291 			jbd2_log_wait_commit(journal, commit_tid);
5292 	}
5293 }
5294 
5295 /*
5296  * ext4_setattr()
5297  *
5298  * Called from notify_change.
5299  *
5300  * We want to trap VFS attempts to truncate the file as soon as
5301  * possible.  In particular, we want to make sure that when the VFS
5302  * shrinks i_size, we put the inode on the orphan list and modify
5303  * i_disksize immediately, so that during the subsequent flushing of
5304  * dirty pages and freeing of disk blocks, we can guarantee that any
5305  * commit will leave the blocks being flushed in an unused state on
5306  * disk.  (On recovery, the inode will get truncated and the blocks will
5307  * be freed, so we have a strong guarantee that no future commit will
5308  * leave these blocks visible to the user.)
5309  *
5310  * Another thing we have to assure is that if we are in ordered mode
5311  * and inode is still attached to the committing transaction, we must
5312  * we start writeout of all the dirty pages which are being truncated.
5313  * This way we are sure that all the data written in the previous
5314  * transaction are already on disk (truncate waits for pages under
5315  * writeback).
5316  *
5317  * Called with inode->i_mutex down.
5318  */
5319 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5320 		 struct iattr *attr)
5321 {
5322 	struct inode *inode = d_inode(dentry);
5323 	int error, rc = 0;
5324 	int orphan = 0;
5325 	const unsigned int ia_valid = attr->ia_valid;
5326 
5327 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5328 		return -EIO;
5329 
5330 	if (unlikely(IS_IMMUTABLE(inode)))
5331 		return -EPERM;
5332 
5333 	if (unlikely(IS_APPEND(inode) &&
5334 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5335 				  ATTR_GID | ATTR_TIMES_SET))))
5336 		return -EPERM;
5337 
5338 	error = setattr_prepare(mnt_userns, dentry, attr);
5339 	if (error)
5340 		return error;
5341 
5342 	error = fscrypt_prepare_setattr(dentry, attr);
5343 	if (error)
5344 		return error;
5345 
5346 	error = fsverity_prepare_setattr(dentry, attr);
5347 	if (error)
5348 		return error;
5349 
5350 	if (is_quota_modification(inode, attr)) {
5351 		error = dquot_initialize(inode);
5352 		if (error)
5353 			return error;
5354 	}
5355 	ext4_fc_start_update(inode);
5356 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5357 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5358 		handle_t *handle;
5359 
5360 		/* (user+group)*(old+new) structure, inode write (sb,
5361 		 * inode block, ? - but truncate inode update has it) */
5362 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5363 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5364 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5365 		if (IS_ERR(handle)) {
5366 			error = PTR_ERR(handle);
5367 			goto err_out;
5368 		}
5369 
5370 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5371 		 * counts xattr inode references.
5372 		 */
5373 		down_read(&EXT4_I(inode)->xattr_sem);
5374 		error = dquot_transfer(inode, attr);
5375 		up_read(&EXT4_I(inode)->xattr_sem);
5376 
5377 		if (error) {
5378 			ext4_journal_stop(handle);
5379 			ext4_fc_stop_update(inode);
5380 			return error;
5381 		}
5382 		/* Update corresponding info in inode so that everything is in
5383 		 * one transaction */
5384 		if (attr->ia_valid & ATTR_UID)
5385 			inode->i_uid = attr->ia_uid;
5386 		if (attr->ia_valid & ATTR_GID)
5387 			inode->i_gid = attr->ia_gid;
5388 		error = ext4_mark_inode_dirty(handle, inode);
5389 		ext4_journal_stop(handle);
5390 		if (unlikely(error))
5391 			return error;
5392 	}
5393 
5394 	if (attr->ia_valid & ATTR_SIZE) {
5395 		handle_t *handle;
5396 		loff_t oldsize = inode->i_size;
5397 		int shrink = (attr->ia_size < inode->i_size);
5398 
5399 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5400 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5401 
5402 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5403 				ext4_fc_stop_update(inode);
5404 				return -EFBIG;
5405 			}
5406 		}
5407 		if (!S_ISREG(inode->i_mode)) {
5408 			ext4_fc_stop_update(inode);
5409 			return -EINVAL;
5410 		}
5411 
5412 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5413 			inode_inc_iversion(inode);
5414 
5415 		if (shrink) {
5416 			if (ext4_should_order_data(inode)) {
5417 				error = ext4_begin_ordered_truncate(inode,
5418 							    attr->ia_size);
5419 				if (error)
5420 					goto err_out;
5421 			}
5422 			/*
5423 			 * Blocks are going to be removed from the inode. Wait
5424 			 * for dio in flight.
5425 			 */
5426 			inode_dio_wait(inode);
5427 		}
5428 
5429 		down_write(&EXT4_I(inode)->i_mmap_sem);
5430 
5431 		rc = ext4_break_layouts(inode);
5432 		if (rc) {
5433 			up_write(&EXT4_I(inode)->i_mmap_sem);
5434 			goto err_out;
5435 		}
5436 
5437 		if (attr->ia_size != inode->i_size) {
5438 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5439 			if (IS_ERR(handle)) {
5440 				error = PTR_ERR(handle);
5441 				goto out_mmap_sem;
5442 			}
5443 			if (ext4_handle_valid(handle) && shrink) {
5444 				error = ext4_orphan_add(handle, inode);
5445 				orphan = 1;
5446 			}
5447 			/*
5448 			 * Update c/mtime on truncate up, ext4_truncate() will
5449 			 * update c/mtime in shrink case below
5450 			 */
5451 			if (!shrink) {
5452 				inode->i_mtime = current_time(inode);
5453 				inode->i_ctime = inode->i_mtime;
5454 			}
5455 
5456 			if (shrink)
5457 				ext4_fc_track_range(handle, inode,
5458 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5459 					inode->i_sb->s_blocksize_bits,
5460 					(oldsize > 0 ? oldsize - 1 : 0) >>
5461 					inode->i_sb->s_blocksize_bits);
5462 			else
5463 				ext4_fc_track_range(
5464 					handle, inode,
5465 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5466 					inode->i_sb->s_blocksize_bits,
5467 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5468 					inode->i_sb->s_blocksize_bits);
5469 
5470 			down_write(&EXT4_I(inode)->i_data_sem);
5471 			EXT4_I(inode)->i_disksize = attr->ia_size;
5472 			rc = ext4_mark_inode_dirty(handle, inode);
5473 			if (!error)
5474 				error = rc;
5475 			/*
5476 			 * We have to update i_size under i_data_sem together
5477 			 * with i_disksize to avoid races with writeback code
5478 			 * running ext4_wb_update_i_disksize().
5479 			 */
5480 			if (!error)
5481 				i_size_write(inode, attr->ia_size);
5482 			up_write(&EXT4_I(inode)->i_data_sem);
5483 			ext4_journal_stop(handle);
5484 			if (error)
5485 				goto out_mmap_sem;
5486 			if (!shrink) {
5487 				pagecache_isize_extended(inode, oldsize,
5488 							 inode->i_size);
5489 			} else if (ext4_should_journal_data(inode)) {
5490 				ext4_wait_for_tail_page_commit(inode);
5491 			}
5492 		}
5493 
5494 		/*
5495 		 * Truncate pagecache after we've waited for commit
5496 		 * in data=journal mode to make pages freeable.
5497 		 */
5498 		truncate_pagecache(inode, inode->i_size);
5499 		/*
5500 		 * Call ext4_truncate() even if i_size didn't change to
5501 		 * truncate possible preallocated blocks.
5502 		 */
5503 		if (attr->ia_size <= oldsize) {
5504 			rc = ext4_truncate(inode);
5505 			if (rc)
5506 				error = rc;
5507 		}
5508 out_mmap_sem:
5509 		up_write(&EXT4_I(inode)->i_mmap_sem);
5510 	}
5511 
5512 	if (!error) {
5513 		setattr_copy(mnt_userns, inode, attr);
5514 		mark_inode_dirty(inode);
5515 	}
5516 
5517 	/*
5518 	 * If the call to ext4_truncate failed to get a transaction handle at
5519 	 * all, we need to clean up the in-core orphan list manually.
5520 	 */
5521 	if (orphan && inode->i_nlink)
5522 		ext4_orphan_del(NULL, inode);
5523 
5524 	if (!error && (ia_valid & ATTR_MODE))
5525 		rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5526 
5527 err_out:
5528 	if  (error)
5529 		ext4_std_error(inode->i_sb, error);
5530 	if (!error)
5531 		error = rc;
5532 	ext4_fc_stop_update(inode);
5533 	return error;
5534 }
5535 
5536 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5537 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5538 {
5539 	struct inode *inode = d_inode(path->dentry);
5540 	struct ext4_inode *raw_inode;
5541 	struct ext4_inode_info *ei = EXT4_I(inode);
5542 	unsigned int flags;
5543 
5544 	if ((request_mask & STATX_BTIME) &&
5545 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5546 		stat->result_mask |= STATX_BTIME;
5547 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5548 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5549 	}
5550 
5551 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5552 	if (flags & EXT4_APPEND_FL)
5553 		stat->attributes |= STATX_ATTR_APPEND;
5554 	if (flags & EXT4_COMPR_FL)
5555 		stat->attributes |= STATX_ATTR_COMPRESSED;
5556 	if (flags & EXT4_ENCRYPT_FL)
5557 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5558 	if (flags & EXT4_IMMUTABLE_FL)
5559 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5560 	if (flags & EXT4_NODUMP_FL)
5561 		stat->attributes |= STATX_ATTR_NODUMP;
5562 	if (flags & EXT4_VERITY_FL)
5563 		stat->attributes |= STATX_ATTR_VERITY;
5564 
5565 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5566 				  STATX_ATTR_COMPRESSED |
5567 				  STATX_ATTR_ENCRYPTED |
5568 				  STATX_ATTR_IMMUTABLE |
5569 				  STATX_ATTR_NODUMP |
5570 				  STATX_ATTR_VERITY);
5571 
5572 	generic_fillattr(mnt_userns, inode, stat);
5573 	return 0;
5574 }
5575 
5576 int ext4_file_getattr(struct user_namespace *mnt_userns,
5577 		      const struct path *path, struct kstat *stat,
5578 		      u32 request_mask, unsigned int query_flags)
5579 {
5580 	struct inode *inode = d_inode(path->dentry);
5581 	u64 delalloc_blocks;
5582 
5583 	ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5584 
5585 	/*
5586 	 * If there is inline data in the inode, the inode will normally not
5587 	 * have data blocks allocated (it may have an external xattr block).
5588 	 * Report at least one sector for such files, so tools like tar, rsync,
5589 	 * others don't incorrectly think the file is completely sparse.
5590 	 */
5591 	if (unlikely(ext4_has_inline_data(inode)))
5592 		stat->blocks += (stat->size + 511) >> 9;
5593 
5594 	/*
5595 	 * We can't update i_blocks if the block allocation is delayed
5596 	 * otherwise in the case of system crash before the real block
5597 	 * allocation is done, we will have i_blocks inconsistent with
5598 	 * on-disk file blocks.
5599 	 * We always keep i_blocks updated together with real
5600 	 * allocation. But to not confuse with user, stat
5601 	 * will return the blocks that include the delayed allocation
5602 	 * blocks for this file.
5603 	 */
5604 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5605 				   EXT4_I(inode)->i_reserved_data_blocks);
5606 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5607 	return 0;
5608 }
5609 
5610 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5611 				   int pextents)
5612 {
5613 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5614 		return ext4_ind_trans_blocks(inode, lblocks);
5615 	return ext4_ext_index_trans_blocks(inode, pextents);
5616 }
5617 
5618 /*
5619  * Account for index blocks, block groups bitmaps and block group
5620  * descriptor blocks if modify datablocks and index blocks
5621  * worse case, the indexs blocks spread over different block groups
5622  *
5623  * If datablocks are discontiguous, they are possible to spread over
5624  * different block groups too. If they are contiguous, with flexbg,
5625  * they could still across block group boundary.
5626  *
5627  * Also account for superblock, inode, quota and xattr blocks
5628  */
5629 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5630 				  int pextents)
5631 {
5632 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5633 	int gdpblocks;
5634 	int idxblocks;
5635 	int ret = 0;
5636 
5637 	/*
5638 	 * How many index blocks need to touch to map @lblocks logical blocks
5639 	 * to @pextents physical extents?
5640 	 */
5641 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5642 
5643 	ret = idxblocks;
5644 
5645 	/*
5646 	 * Now let's see how many group bitmaps and group descriptors need
5647 	 * to account
5648 	 */
5649 	groups = idxblocks + pextents;
5650 	gdpblocks = groups;
5651 	if (groups > ngroups)
5652 		groups = ngroups;
5653 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5654 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5655 
5656 	/* bitmaps and block group descriptor blocks */
5657 	ret += groups + gdpblocks;
5658 
5659 	/* Blocks for super block, inode, quota and xattr blocks */
5660 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5661 
5662 	return ret;
5663 }
5664 
5665 /*
5666  * Calculate the total number of credits to reserve to fit
5667  * the modification of a single pages into a single transaction,
5668  * which may include multiple chunks of block allocations.
5669  *
5670  * This could be called via ext4_write_begin()
5671  *
5672  * We need to consider the worse case, when
5673  * one new block per extent.
5674  */
5675 int ext4_writepage_trans_blocks(struct inode *inode)
5676 {
5677 	int bpp = ext4_journal_blocks_per_page(inode);
5678 	int ret;
5679 
5680 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5681 
5682 	/* Account for data blocks for journalled mode */
5683 	if (ext4_should_journal_data(inode))
5684 		ret += bpp;
5685 	return ret;
5686 }
5687 
5688 /*
5689  * Calculate the journal credits for a chunk of data modification.
5690  *
5691  * This is called from DIO, fallocate or whoever calling
5692  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5693  *
5694  * journal buffers for data blocks are not included here, as DIO
5695  * and fallocate do no need to journal data buffers.
5696  */
5697 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5698 {
5699 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5700 }
5701 
5702 /*
5703  * The caller must have previously called ext4_reserve_inode_write().
5704  * Give this, we know that the caller already has write access to iloc->bh.
5705  */
5706 int ext4_mark_iloc_dirty(handle_t *handle,
5707 			 struct inode *inode, struct ext4_iloc *iloc)
5708 {
5709 	int err = 0;
5710 
5711 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5712 		put_bh(iloc->bh);
5713 		return -EIO;
5714 	}
5715 	ext4_fc_track_inode(handle, inode);
5716 
5717 	if (IS_I_VERSION(inode))
5718 		inode_inc_iversion(inode);
5719 
5720 	/* the do_update_inode consumes one bh->b_count */
5721 	get_bh(iloc->bh);
5722 
5723 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5724 	err = ext4_do_update_inode(handle, inode, iloc);
5725 	put_bh(iloc->bh);
5726 	return err;
5727 }
5728 
5729 /*
5730  * On success, We end up with an outstanding reference count against
5731  * iloc->bh.  This _must_ be cleaned up later.
5732  */
5733 
5734 int
5735 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5736 			 struct ext4_iloc *iloc)
5737 {
5738 	int err;
5739 
5740 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5741 		return -EIO;
5742 
5743 	err = ext4_get_inode_loc(inode, iloc);
5744 	if (!err) {
5745 		BUFFER_TRACE(iloc->bh, "get_write_access");
5746 		err = ext4_journal_get_write_access(handle, iloc->bh);
5747 		if (err) {
5748 			brelse(iloc->bh);
5749 			iloc->bh = NULL;
5750 		}
5751 	}
5752 	ext4_std_error(inode->i_sb, err);
5753 	return err;
5754 }
5755 
5756 static int __ext4_expand_extra_isize(struct inode *inode,
5757 				     unsigned int new_extra_isize,
5758 				     struct ext4_iloc *iloc,
5759 				     handle_t *handle, int *no_expand)
5760 {
5761 	struct ext4_inode *raw_inode;
5762 	struct ext4_xattr_ibody_header *header;
5763 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5764 	struct ext4_inode_info *ei = EXT4_I(inode);
5765 	int error;
5766 
5767 	/* this was checked at iget time, but double check for good measure */
5768 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5769 	    (ei->i_extra_isize & 3)) {
5770 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5771 				 ei->i_extra_isize,
5772 				 EXT4_INODE_SIZE(inode->i_sb));
5773 		return -EFSCORRUPTED;
5774 	}
5775 	if ((new_extra_isize < ei->i_extra_isize) ||
5776 	    (new_extra_isize < 4) ||
5777 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5778 		return -EINVAL;	/* Should never happen */
5779 
5780 	raw_inode = ext4_raw_inode(iloc);
5781 
5782 	header = IHDR(inode, raw_inode);
5783 
5784 	/* No extended attributes present */
5785 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5786 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5787 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5788 		       EXT4_I(inode)->i_extra_isize, 0,
5789 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5790 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5791 		return 0;
5792 	}
5793 
5794 	/* try to expand with EAs present */
5795 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5796 					   raw_inode, handle);
5797 	if (error) {
5798 		/*
5799 		 * Inode size expansion failed; don't try again
5800 		 */
5801 		*no_expand = 1;
5802 	}
5803 
5804 	return error;
5805 }
5806 
5807 /*
5808  * Expand an inode by new_extra_isize bytes.
5809  * Returns 0 on success or negative error number on failure.
5810  */
5811 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5812 					  unsigned int new_extra_isize,
5813 					  struct ext4_iloc iloc,
5814 					  handle_t *handle)
5815 {
5816 	int no_expand;
5817 	int error;
5818 
5819 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5820 		return -EOVERFLOW;
5821 
5822 	/*
5823 	 * In nojournal mode, we can immediately attempt to expand
5824 	 * the inode.  When journaled, we first need to obtain extra
5825 	 * buffer credits since we may write into the EA block
5826 	 * with this same handle. If journal_extend fails, then it will
5827 	 * only result in a minor loss of functionality for that inode.
5828 	 * If this is felt to be critical, then e2fsck should be run to
5829 	 * force a large enough s_min_extra_isize.
5830 	 */
5831 	if (ext4_journal_extend(handle,
5832 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5833 		return -ENOSPC;
5834 
5835 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5836 		return -EBUSY;
5837 
5838 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5839 					  handle, &no_expand);
5840 	ext4_write_unlock_xattr(inode, &no_expand);
5841 
5842 	return error;
5843 }
5844 
5845 int ext4_expand_extra_isize(struct inode *inode,
5846 			    unsigned int new_extra_isize,
5847 			    struct ext4_iloc *iloc)
5848 {
5849 	handle_t *handle;
5850 	int no_expand;
5851 	int error, rc;
5852 
5853 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5854 		brelse(iloc->bh);
5855 		return -EOVERFLOW;
5856 	}
5857 
5858 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5859 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5860 	if (IS_ERR(handle)) {
5861 		error = PTR_ERR(handle);
5862 		brelse(iloc->bh);
5863 		return error;
5864 	}
5865 
5866 	ext4_write_lock_xattr(inode, &no_expand);
5867 
5868 	BUFFER_TRACE(iloc->bh, "get_write_access");
5869 	error = ext4_journal_get_write_access(handle, iloc->bh);
5870 	if (error) {
5871 		brelse(iloc->bh);
5872 		goto out_unlock;
5873 	}
5874 
5875 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5876 					  handle, &no_expand);
5877 
5878 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5879 	if (!error)
5880 		error = rc;
5881 
5882 out_unlock:
5883 	ext4_write_unlock_xattr(inode, &no_expand);
5884 	ext4_journal_stop(handle);
5885 	return error;
5886 }
5887 
5888 /*
5889  * What we do here is to mark the in-core inode as clean with respect to inode
5890  * dirtiness (it may still be data-dirty).
5891  * This means that the in-core inode may be reaped by prune_icache
5892  * without having to perform any I/O.  This is a very good thing,
5893  * because *any* task may call prune_icache - even ones which
5894  * have a transaction open against a different journal.
5895  *
5896  * Is this cheating?  Not really.  Sure, we haven't written the
5897  * inode out, but prune_icache isn't a user-visible syncing function.
5898  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5899  * we start and wait on commits.
5900  */
5901 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5902 				const char *func, unsigned int line)
5903 {
5904 	struct ext4_iloc iloc;
5905 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5906 	int err;
5907 
5908 	might_sleep();
5909 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5910 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5911 	if (err)
5912 		goto out;
5913 
5914 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5915 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5916 					       iloc, handle);
5917 
5918 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5919 out:
5920 	if (unlikely(err))
5921 		ext4_error_inode_err(inode, func, line, 0, err,
5922 					"mark_inode_dirty error");
5923 	return err;
5924 }
5925 
5926 /*
5927  * ext4_dirty_inode() is called from __mark_inode_dirty()
5928  *
5929  * We're really interested in the case where a file is being extended.
5930  * i_size has been changed by generic_commit_write() and we thus need
5931  * to include the updated inode in the current transaction.
5932  *
5933  * Also, dquot_alloc_block() will always dirty the inode when blocks
5934  * are allocated to the file.
5935  *
5936  * If the inode is marked synchronous, we don't honour that here - doing
5937  * so would cause a commit on atime updates, which we don't bother doing.
5938  * We handle synchronous inodes at the highest possible level.
5939  */
5940 void ext4_dirty_inode(struct inode *inode, int flags)
5941 {
5942 	handle_t *handle;
5943 
5944 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5945 	if (IS_ERR(handle))
5946 		return;
5947 	ext4_mark_inode_dirty(handle, inode);
5948 	ext4_journal_stop(handle);
5949 }
5950 
5951 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5952 {
5953 	journal_t *journal;
5954 	handle_t *handle;
5955 	int err;
5956 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5957 
5958 	/*
5959 	 * We have to be very careful here: changing a data block's
5960 	 * journaling status dynamically is dangerous.  If we write a
5961 	 * data block to the journal, change the status and then delete
5962 	 * that block, we risk forgetting to revoke the old log record
5963 	 * from the journal and so a subsequent replay can corrupt data.
5964 	 * So, first we make sure that the journal is empty and that
5965 	 * nobody is changing anything.
5966 	 */
5967 
5968 	journal = EXT4_JOURNAL(inode);
5969 	if (!journal)
5970 		return 0;
5971 	if (is_journal_aborted(journal))
5972 		return -EROFS;
5973 
5974 	/* Wait for all existing dio workers */
5975 	inode_dio_wait(inode);
5976 
5977 	/*
5978 	 * Before flushing the journal and switching inode's aops, we have
5979 	 * to flush all dirty data the inode has. There can be outstanding
5980 	 * delayed allocations, there can be unwritten extents created by
5981 	 * fallocate or buffered writes in dioread_nolock mode covered by
5982 	 * dirty data which can be converted only after flushing the dirty
5983 	 * data (and journalled aops don't know how to handle these cases).
5984 	 */
5985 	if (val) {
5986 		down_write(&EXT4_I(inode)->i_mmap_sem);
5987 		err = filemap_write_and_wait(inode->i_mapping);
5988 		if (err < 0) {
5989 			up_write(&EXT4_I(inode)->i_mmap_sem);
5990 			return err;
5991 		}
5992 	}
5993 
5994 	percpu_down_write(&sbi->s_writepages_rwsem);
5995 	jbd2_journal_lock_updates(journal);
5996 
5997 	/*
5998 	 * OK, there are no updates running now, and all cached data is
5999 	 * synced to disk.  We are now in a completely consistent state
6000 	 * which doesn't have anything in the journal, and we know that
6001 	 * no filesystem updates are running, so it is safe to modify
6002 	 * the inode's in-core data-journaling state flag now.
6003 	 */
6004 
6005 	if (val)
6006 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6007 	else {
6008 		err = jbd2_journal_flush(journal);
6009 		if (err < 0) {
6010 			jbd2_journal_unlock_updates(journal);
6011 			percpu_up_write(&sbi->s_writepages_rwsem);
6012 			return err;
6013 		}
6014 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6015 	}
6016 	ext4_set_aops(inode);
6017 
6018 	jbd2_journal_unlock_updates(journal);
6019 	percpu_up_write(&sbi->s_writepages_rwsem);
6020 
6021 	if (val)
6022 		up_write(&EXT4_I(inode)->i_mmap_sem);
6023 
6024 	/* Finally we can mark the inode as dirty. */
6025 
6026 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6027 	if (IS_ERR(handle))
6028 		return PTR_ERR(handle);
6029 
6030 	ext4_fc_mark_ineligible(inode->i_sb,
6031 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE);
6032 	err = ext4_mark_inode_dirty(handle, inode);
6033 	ext4_handle_sync(handle);
6034 	ext4_journal_stop(handle);
6035 	ext4_std_error(inode->i_sb, err);
6036 
6037 	return err;
6038 }
6039 
6040 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6041 {
6042 	return !buffer_mapped(bh);
6043 }
6044 
6045 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6046 {
6047 	struct vm_area_struct *vma = vmf->vma;
6048 	struct page *page = vmf->page;
6049 	loff_t size;
6050 	unsigned long len;
6051 	int err;
6052 	vm_fault_t ret;
6053 	struct file *file = vma->vm_file;
6054 	struct inode *inode = file_inode(file);
6055 	struct address_space *mapping = inode->i_mapping;
6056 	handle_t *handle;
6057 	get_block_t *get_block;
6058 	int retries = 0;
6059 
6060 	if (unlikely(IS_IMMUTABLE(inode)))
6061 		return VM_FAULT_SIGBUS;
6062 
6063 	sb_start_pagefault(inode->i_sb);
6064 	file_update_time(vma->vm_file);
6065 
6066 	down_read(&EXT4_I(inode)->i_mmap_sem);
6067 
6068 	err = ext4_convert_inline_data(inode);
6069 	if (err)
6070 		goto out_ret;
6071 
6072 	/*
6073 	 * On data journalling we skip straight to the transaction handle:
6074 	 * there's no delalloc; page truncated will be checked later; the
6075 	 * early return w/ all buffers mapped (calculates size/len) can't
6076 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6077 	 */
6078 	if (ext4_should_journal_data(inode))
6079 		goto retry_alloc;
6080 
6081 	/* Delalloc case is easy... */
6082 	if (test_opt(inode->i_sb, DELALLOC) &&
6083 	    !ext4_nonda_switch(inode->i_sb)) {
6084 		do {
6085 			err = block_page_mkwrite(vma, vmf,
6086 						   ext4_da_get_block_prep);
6087 		} while (err == -ENOSPC &&
6088 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6089 		goto out_ret;
6090 	}
6091 
6092 	lock_page(page);
6093 	size = i_size_read(inode);
6094 	/* Page got truncated from under us? */
6095 	if (page->mapping != mapping || page_offset(page) > size) {
6096 		unlock_page(page);
6097 		ret = VM_FAULT_NOPAGE;
6098 		goto out;
6099 	}
6100 
6101 	if (page->index == size >> PAGE_SHIFT)
6102 		len = size & ~PAGE_MASK;
6103 	else
6104 		len = PAGE_SIZE;
6105 	/*
6106 	 * Return if we have all the buffers mapped. This avoids the need to do
6107 	 * journal_start/journal_stop which can block and take a long time
6108 	 *
6109 	 * This cannot be done for data journalling, as we have to add the
6110 	 * inode to the transaction's list to writeprotect pages on commit.
6111 	 */
6112 	if (page_has_buffers(page)) {
6113 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6114 					    0, len, NULL,
6115 					    ext4_bh_unmapped)) {
6116 			/* Wait so that we don't change page under IO */
6117 			wait_for_stable_page(page);
6118 			ret = VM_FAULT_LOCKED;
6119 			goto out;
6120 		}
6121 	}
6122 	unlock_page(page);
6123 	/* OK, we need to fill the hole... */
6124 	if (ext4_should_dioread_nolock(inode))
6125 		get_block = ext4_get_block_unwritten;
6126 	else
6127 		get_block = ext4_get_block;
6128 retry_alloc:
6129 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6130 				    ext4_writepage_trans_blocks(inode));
6131 	if (IS_ERR(handle)) {
6132 		ret = VM_FAULT_SIGBUS;
6133 		goto out;
6134 	}
6135 	/*
6136 	 * Data journalling can't use block_page_mkwrite() because it
6137 	 * will set_buffer_dirty() before do_journal_get_write_access()
6138 	 * thus might hit warning messages for dirty metadata buffers.
6139 	 */
6140 	if (!ext4_should_journal_data(inode)) {
6141 		err = block_page_mkwrite(vma, vmf, get_block);
6142 	} else {
6143 		lock_page(page);
6144 		size = i_size_read(inode);
6145 		/* Page got truncated from under us? */
6146 		if (page->mapping != mapping || page_offset(page) > size) {
6147 			ret = VM_FAULT_NOPAGE;
6148 			goto out_error;
6149 		}
6150 
6151 		if (page->index == size >> PAGE_SHIFT)
6152 			len = size & ~PAGE_MASK;
6153 		else
6154 			len = PAGE_SIZE;
6155 
6156 		err = __block_write_begin(page, 0, len, ext4_get_block);
6157 		if (!err) {
6158 			ret = VM_FAULT_SIGBUS;
6159 			if (ext4_walk_page_buffers(handle, page_buffers(page),
6160 					0, len, NULL, do_journal_get_write_access))
6161 				goto out_error;
6162 			if (ext4_walk_page_buffers(handle, page_buffers(page),
6163 					0, len, NULL, write_end_fn))
6164 				goto out_error;
6165 			if (ext4_jbd2_inode_add_write(handle, inode,
6166 						      page_offset(page), len))
6167 				goto out_error;
6168 			ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6169 		} else {
6170 			unlock_page(page);
6171 		}
6172 	}
6173 	ext4_journal_stop(handle);
6174 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6175 		goto retry_alloc;
6176 out_ret:
6177 	ret = block_page_mkwrite_return(err);
6178 out:
6179 	up_read(&EXT4_I(inode)->i_mmap_sem);
6180 	sb_end_pagefault(inode->i_sb);
6181 	return ret;
6182 out_error:
6183 	unlock_page(page);
6184 	ext4_journal_stop(handle);
6185 	goto out;
6186 }
6187 
6188 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6189 {
6190 	struct inode *inode = file_inode(vmf->vma->vm_file);
6191 	vm_fault_t ret;
6192 
6193 	down_read(&EXT4_I(inode)->i_mmap_sem);
6194 	ret = filemap_fault(vmf);
6195 	up_read(&EXT4_I(inode)->i_mmap_sem);
6196 
6197 	return ret;
6198 }
6199