1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/jbd2.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 41 #include "ext4_jbd2.h" 42 #include "xattr.h" 43 #include "acl.h" 44 #include "truncate.h" 45 46 #include <trace/events/ext4.h> 47 48 #define MPAGE_DA_EXTENT_TAIL 0x01 49 50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 51 struct ext4_inode_info *ei) 52 { 53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 54 __u16 csum_lo; 55 __u16 csum_hi = 0; 56 __u32 csum; 57 58 csum_lo = raw->i_checksum_lo; 59 raw->i_checksum_lo = 0; 60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 62 csum_hi = raw->i_checksum_hi; 63 raw->i_checksum_hi = 0; 64 } 65 66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 67 EXT4_INODE_SIZE(inode->i_sb)); 68 69 raw->i_checksum_lo = csum_lo; 70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 72 raw->i_checksum_hi = csum_hi; 73 74 return csum; 75 } 76 77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 78 struct ext4_inode_info *ei) 79 { 80 __u32 provided, calculated; 81 82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 83 cpu_to_le32(EXT4_OS_LINUX) || 84 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 85 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 86 return 1; 87 88 provided = le16_to_cpu(raw->i_checksum_lo); 89 calculated = ext4_inode_csum(inode, raw, ei); 90 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 91 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 92 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 93 else 94 calculated &= 0xFFFF; 95 96 return provided == calculated; 97 } 98 99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 100 struct ext4_inode_info *ei) 101 { 102 __u32 csum; 103 104 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 105 cpu_to_le32(EXT4_OS_LINUX) || 106 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 107 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 108 return; 109 110 csum = ext4_inode_csum(inode, raw, ei); 111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 114 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 115 } 116 117 static inline int ext4_begin_ordered_truncate(struct inode *inode, 118 loff_t new_size) 119 { 120 trace_ext4_begin_ordered_truncate(inode, new_size); 121 /* 122 * If jinode is zero, then we never opened the file for 123 * writing, so there's no need to call 124 * jbd2_journal_begin_ordered_truncate() since there's no 125 * outstanding writes we need to flush. 126 */ 127 if (!EXT4_I(inode)->jinode) 128 return 0; 129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 130 EXT4_I(inode)->jinode, 131 new_size); 132 } 133 134 static void ext4_invalidatepage(struct page *page, unsigned long offset); 135 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 136 struct buffer_head *bh_result, int create); 137 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 138 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 139 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 140 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 141 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle, 142 struct inode *inode, struct page *page, loff_t from, 143 loff_t length, int flags); 144 145 /* 146 * Test whether an inode is a fast symlink. 147 */ 148 static int ext4_inode_is_fast_symlink(struct inode *inode) 149 { 150 int ea_blocks = EXT4_I(inode)->i_file_acl ? 151 (inode->i_sb->s_blocksize >> 9) : 0; 152 153 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 154 } 155 156 /* 157 * Restart the transaction associated with *handle. This does a commit, 158 * so before we call here everything must be consistently dirtied against 159 * this transaction. 160 */ 161 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 162 int nblocks) 163 { 164 int ret; 165 166 /* 167 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 168 * moment, get_block can be called only for blocks inside i_size since 169 * page cache has been already dropped and writes are blocked by 170 * i_mutex. So we can safely drop the i_data_sem here. 171 */ 172 BUG_ON(EXT4_JOURNAL(inode) == NULL); 173 jbd_debug(2, "restarting handle %p\n", handle); 174 up_write(&EXT4_I(inode)->i_data_sem); 175 ret = ext4_journal_restart(handle, nblocks); 176 down_write(&EXT4_I(inode)->i_data_sem); 177 ext4_discard_preallocations(inode); 178 179 return ret; 180 } 181 182 /* 183 * Called at the last iput() if i_nlink is zero. 184 */ 185 void ext4_evict_inode(struct inode *inode) 186 { 187 handle_t *handle; 188 int err; 189 190 trace_ext4_evict_inode(inode); 191 192 ext4_ioend_wait(inode); 193 194 if (inode->i_nlink) { 195 /* 196 * When journalling data dirty buffers are tracked only in the 197 * journal. So although mm thinks everything is clean and 198 * ready for reaping the inode might still have some pages to 199 * write in the running transaction or waiting to be 200 * checkpointed. Thus calling jbd2_journal_invalidatepage() 201 * (via truncate_inode_pages()) to discard these buffers can 202 * cause data loss. Also even if we did not discard these 203 * buffers, we would have no way to find them after the inode 204 * is reaped and thus user could see stale data if he tries to 205 * read them before the transaction is checkpointed. So be 206 * careful and force everything to disk here... We use 207 * ei->i_datasync_tid to store the newest transaction 208 * containing inode's data. 209 * 210 * Note that directories do not have this problem because they 211 * don't use page cache. 212 */ 213 if (ext4_should_journal_data(inode) && 214 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) { 215 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 216 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 217 218 jbd2_log_start_commit(journal, commit_tid); 219 jbd2_log_wait_commit(journal, commit_tid); 220 filemap_write_and_wait(&inode->i_data); 221 } 222 truncate_inode_pages(&inode->i_data, 0); 223 goto no_delete; 224 } 225 226 if (!is_bad_inode(inode)) 227 dquot_initialize(inode); 228 229 if (ext4_should_order_data(inode)) 230 ext4_begin_ordered_truncate(inode, 0); 231 truncate_inode_pages(&inode->i_data, 0); 232 233 if (is_bad_inode(inode)) 234 goto no_delete; 235 236 /* 237 * Protect us against freezing - iput() caller didn't have to have any 238 * protection against it 239 */ 240 sb_start_intwrite(inode->i_sb); 241 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3); 242 if (IS_ERR(handle)) { 243 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 244 /* 245 * If we're going to skip the normal cleanup, we still need to 246 * make sure that the in-core orphan linked list is properly 247 * cleaned up. 248 */ 249 ext4_orphan_del(NULL, inode); 250 sb_end_intwrite(inode->i_sb); 251 goto no_delete; 252 } 253 254 if (IS_SYNC(inode)) 255 ext4_handle_sync(handle); 256 inode->i_size = 0; 257 err = ext4_mark_inode_dirty(handle, inode); 258 if (err) { 259 ext4_warning(inode->i_sb, 260 "couldn't mark inode dirty (err %d)", err); 261 goto stop_handle; 262 } 263 if (inode->i_blocks) 264 ext4_truncate(inode); 265 266 /* 267 * ext4_ext_truncate() doesn't reserve any slop when it 268 * restarts journal transactions; therefore there may not be 269 * enough credits left in the handle to remove the inode from 270 * the orphan list and set the dtime field. 271 */ 272 if (!ext4_handle_has_enough_credits(handle, 3)) { 273 err = ext4_journal_extend(handle, 3); 274 if (err > 0) 275 err = ext4_journal_restart(handle, 3); 276 if (err != 0) { 277 ext4_warning(inode->i_sb, 278 "couldn't extend journal (err %d)", err); 279 stop_handle: 280 ext4_journal_stop(handle); 281 ext4_orphan_del(NULL, inode); 282 sb_end_intwrite(inode->i_sb); 283 goto no_delete; 284 } 285 } 286 287 /* 288 * Kill off the orphan record which ext4_truncate created. 289 * AKPM: I think this can be inside the above `if'. 290 * Note that ext4_orphan_del() has to be able to cope with the 291 * deletion of a non-existent orphan - this is because we don't 292 * know if ext4_truncate() actually created an orphan record. 293 * (Well, we could do this if we need to, but heck - it works) 294 */ 295 ext4_orphan_del(handle, inode); 296 EXT4_I(inode)->i_dtime = get_seconds(); 297 298 /* 299 * One subtle ordering requirement: if anything has gone wrong 300 * (transaction abort, IO errors, whatever), then we can still 301 * do these next steps (the fs will already have been marked as 302 * having errors), but we can't free the inode if the mark_dirty 303 * fails. 304 */ 305 if (ext4_mark_inode_dirty(handle, inode)) 306 /* If that failed, just do the required in-core inode clear. */ 307 ext4_clear_inode(inode); 308 else 309 ext4_free_inode(handle, inode); 310 ext4_journal_stop(handle); 311 sb_end_intwrite(inode->i_sb); 312 return; 313 no_delete: 314 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 315 } 316 317 #ifdef CONFIG_QUOTA 318 qsize_t *ext4_get_reserved_space(struct inode *inode) 319 { 320 return &EXT4_I(inode)->i_reserved_quota; 321 } 322 #endif 323 324 /* 325 * Calculate the number of metadata blocks need to reserve 326 * to allocate a block located at @lblock 327 */ 328 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 329 { 330 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 331 return ext4_ext_calc_metadata_amount(inode, lblock); 332 333 return ext4_ind_calc_metadata_amount(inode, lblock); 334 } 335 336 /* 337 * Called with i_data_sem down, which is important since we can call 338 * ext4_discard_preallocations() from here. 339 */ 340 void ext4_da_update_reserve_space(struct inode *inode, 341 int used, int quota_claim) 342 { 343 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 344 struct ext4_inode_info *ei = EXT4_I(inode); 345 346 spin_lock(&ei->i_block_reservation_lock); 347 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 348 if (unlikely(used > ei->i_reserved_data_blocks)) { 349 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d " 350 "with only %d reserved data blocks", 351 __func__, inode->i_ino, used, 352 ei->i_reserved_data_blocks); 353 WARN_ON(1); 354 used = ei->i_reserved_data_blocks; 355 } 356 357 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) { 358 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d " 359 "with only %d reserved metadata blocks\n", __func__, 360 inode->i_ino, ei->i_allocated_meta_blocks, 361 ei->i_reserved_meta_blocks); 362 WARN_ON(1); 363 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks; 364 } 365 366 /* Update per-inode reservations */ 367 ei->i_reserved_data_blocks -= used; 368 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 369 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 370 used + ei->i_allocated_meta_blocks); 371 ei->i_allocated_meta_blocks = 0; 372 373 if (ei->i_reserved_data_blocks == 0) { 374 /* 375 * We can release all of the reserved metadata blocks 376 * only when we have written all of the delayed 377 * allocation blocks. 378 */ 379 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 380 ei->i_reserved_meta_blocks); 381 ei->i_reserved_meta_blocks = 0; 382 ei->i_da_metadata_calc_len = 0; 383 } 384 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 385 386 /* Update quota subsystem for data blocks */ 387 if (quota_claim) 388 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 389 else { 390 /* 391 * We did fallocate with an offset that is already delayed 392 * allocated. So on delayed allocated writeback we should 393 * not re-claim the quota for fallocated blocks. 394 */ 395 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 396 } 397 398 /* 399 * If we have done all the pending block allocations and if 400 * there aren't any writers on the inode, we can discard the 401 * inode's preallocations. 402 */ 403 if ((ei->i_reserved_data_blocks == 0) && 404 (atomic_read(&inode->i_writecount) == 0)) 405 ext4_discard_preallocations(inode); 406 } 407 408 static int __check_block_validity(struct inode *inode, const char *func, 409 unsigned int line, 410 struct ext4_map_blocks *map) 411 { 412 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 413 map->m_len)) { 414 ext4_error_inode(inode, func, line, map->m_pblk, 415 "lblock %lu mapped to illegal pblock " 416 "(length %d)", (unsigned long) map->m_lblk, 417 map->m_len); 418 return -EIO; 419 } 420 return 0; 421 } 422 423 #define check_block_validity(inode, map) \ 424 __check_block_validity((inode), __func__, __LINE__, (map)) 425 426 /* 427 * Return the number of contiguous dirty pages in a given inode 428 * starting at page frame idx. 429 */ 430 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx, 431 unsigned int max_pages) 432 { 433 struct address_space *mapping = inode->i_mapping; 434 pgoff_t index; 435 struct pagevec pvec; 436 pgoff_t num = 0; 437 int i, nr_pages, done = 0; 438 439 if (max_pages == 0) 440 return 0; 441 pagevec_init(&pvec, 0); 442 while (!done) { 443 index = idx; 444 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 445 PAGECACHE_TAG_DIRTY, 446 (pgoff_t)PAGEVEC_SIZE); 447 if (nr_pages == 0) 448 break; 449 for (i = 0; i < nr_pages; i++) { 450 struct page *page = pvec.pages[i]; 451 struct buffer_head *bh, *head; 452 453 lock_page(page); 454 if (unlikely(page->mapping != mapping) || 455 !PageDirty(page) || 456 PageWriteback(page) || 457 page->index != idx) { 458 done = 1; 459 unlock_page(page); 460 break; 461 } 462 if (page_has_buffers(page)) { 463 bh = head = page_buffers(page); 464 do { 465 if (!buffer_delay(bh) && 466 !buffer_unwritten(bh)) 467 done = 1; 468 bh = bh->b_this_page; 469 } while (!done && (bh != head)); 470 } 471 unlock_page(page); 472 if (done) 473 break; 474 idx++; 475 num++; 476 if (num >= max_pages) { 477 done = 1; 478 break; 479 } 480 } 481 pagevec_release(&pvec); 482 } 483 return num; 484 } 485 486 /* 487 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map. 488 */ 489 static void set_buffers_da_mapped(struct inode *inode, 490 struct ext4_map_blocks *map) 491 { 492 struct address_space *mapping = inode->i_mapping; 493 struct pagevec pvec; 494 int i, nr_pages; 495 pgoff_t index, end; 496 497 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 498 end = (map->m_lblk + map->m_len - 1) >> 499 (PAGE_CACHE_SHIFT - inode->i_blkbits); 500 501 pagevec_init(&pvec, 0); 502 while (index <= end) { 503 nr_pages = pagevec_lookup(&pvec, mapping, index, 504 min(end - index + 1, 505 (pgoff_t)PAGEVEC_SIZE)); 506 if (nr_pages == 0) 507 break; 508 for (i = 0; i < nr_pages; i++) { 509 struct page *page = pvec.pages[i]; 510 struct buffer_head *bh, *head; 511 512 if (unlikely(page->mapping != mapping) || 513 !PageDirty(page)) 514 break; 515 516 if (page_has_buffers(page)) { 517 bh = head = page_buffers(page); 518 do { 519 set_buffer_da_mapped(bh); 520 bh = bh->b_this_page; 521 } while (bh != head); 522 } 523 index++; 524 } 525 pagevec_release(&pvec); 526 } 527 } 528 529 /* 530 * The ext4_map_blocks() function tries to look up the requested blocks, 531 * and returns if the blocks are already mapped. 532 * 533 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 534 * and store the allocated blocks in the result buffer head and mark it 535 * mapped. 536 * 537 * If file type is extents based, it will call ext4_ext_map_blocks(), 538 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 539 * based files 540 * 541 * On success, it returns the number of blocks being mapped or allocate. 542 * if create==0 and the blocks are pre-allocated and uninitialized block, 543 * the result buffer head is unmapped. If the create ==1, it will make sure 544 * the buffer head is mapped. 545 * 546 * It returns 0 if plain look up failed (blocks have not been allocated), in 547 * that case, buffer head is unmapped 548 * 549 * It returns the error in case of allocation failure. 550 */ 551 int ext4_map_blocks(handle_t *handle, struct inode *inode, 552 struct ext4_map_blocks *map, int flags) 553 { 554 int retval; 555 556 map->m_flags = 0; 557 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 558 "logical block %lu\n", inode->i_ino, flags, map->m_len, 559 (unsigned long) map->m_lblk); 560 /* 561 * Try to see if we can get the block without requesting a new 562 * file system block. 563 */ 564 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 565 down_read((&EXT4_I(inode)->i_data_sem)); 566 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 567 retval = ext4_ext_map_blocks(handle, inode, map, flags & 568 EXT4_GET_BLOCKS_KEEP_SIZE); 569 } else { 570 retval = ext4_ind_map_blocks(handle, inode, map, flags & 571 EXT4_GET_BLOCKS_KEEP_SIZE); 572 } 573 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 574 up_read((&EXT4_I(inode)->i_data_sem)); 575 576 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 577 int ret = check_block_validity(inode, map); 578 if (ret != 0) 579 return ret; 580 } 581 582 /* If it is only a block(s) look up */ 583 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 584 return retval; 585 586 /* 587 * Returns if the blocks have already allocated 588 * 589 * Note that if blocks have been preallocated 590 * ext4_ext_get_block() returns the create = 0 591 * with buffer head unmapped. 592 */ 593 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 594 return retval; 595 596 /* 597 * When we call get_blocks without the create flag, the 598 * BH_Unwritten flag could have gotten set if the blocks 599 * requested were part of a uninitialized extent. We need to 600 * clear this flag now that we are committed to convert all or 601 * part of the uninitialized extent to be an initialized 602 * extent. This is because we need to avoid the combination 603 * of BH_Unwritten and BH_Mapped flags being simultaneously 604 * set on the buffer_head. 605 */ 606 map->m_flags &= ~EXT4_MAP_UNWRITTEN; 607 608 /* 609 * New blocks allocate and/or writing to uninitialized extent 610 * will possibly result in updating i_data, so we take 611 * the write lock of i_data_sem, and call get_blocks() 612 * with create == 1 flag. 613 */ 614 down_write((&EXT4_I(inode)->i_data_sem)); 615 616 /* 617 * if the caller is from delayed allocation writeout path 618 * we have already reserved fs blocks for allocation 619 * let the underlying get_block() function know to 620 * avoid double accounting 621 */ 622 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 623 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 624 /* 625 * We need to check for EXT4 here because migrate 626 * could have changed the inode type in between 627 */ 628 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 629 retval = ext4_ext_map_blocks(handle, inode, map, flags); 630 } else { 631 retval = ext4_ind_map_blocks(handle, inode, map, flags); 632 633 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 634 /* 635 * We allocated new blocks which will result in 636 * i_data's format changing. Force the migrate 637 * to fail by clearing migrate flags 638 */ 639 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 640 } 641 642 /* 643 * Update reserved blocks/metadata blocks after successful 644 * block allocation which had been deferred till now. We don't 645 * support fallocate for non extent files. So we can update 646 * reserve space here. 647 */ 648 if ((retval > 0) && 649 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 650 ext4_da_update_reserve_space(inode, retval, 1); 651 } 652 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 653 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 654 655 /* If we have successfully mapped the delayed allocated blocks, 656 * set the BH_Da_Mapped bit on them. Its important to do this 657 * under the protection of i_data_sem. 658 */ 659 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 660 set_buffers_da_mapped(inode, map); 661 } 662 663 up_write((&EXT4_I(inode)->i_data_sem)); 664 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 665 int ret = check_block_validity(inode, map); 666 if (ret != 0) 667 return ret; 668 } 669 return retval; 670 } 671 672 /* Maximum number of blocks we map for direct IO at once. */ 673 #define DIO_MAX_BLOCKS 4096 674 675 static int _ext4_get_block(struct inode *inode, sector_t iblock, 676 struct buffer_head *bh, int flags) 677 { 678 handle_t *handle = ext4_journal_current_handle(); 679 struct ext4_map_blocks map; 680 int ret = 0, started = 0; 681 int dio_credits; 682 683 map.m_lblk = iblock; 684 map.m_len = bh->b_size >> inode->i_blkbits; 685 686 if (flags && !handle) { 687 /* Direct IO write... */ 688 if (map.m_len > DIO_MAX_BLOCKS) 689 map.m_len = DIO_MAX_BLOCKS; 690 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 691 handle = ext4_journal_start(inode, dio_credits); 692 if (IS_ERR(handle)) { 693 ret = PTR_ERR(handle); 694 return ret; 695 } 696 started = 1; 697 } 698 699 ret = ext4_map_blocks(handle, inode, &map, flags); 700 if (ret > 0) { 701 map_bh(bh, inode->i_sb, map.m_pblk); 702 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 703 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 704 ret = 0; 705 } 706 if (started) 707 ext4_journal_stop(handle); 708 return ret; 709 } 710 711 int ext4_get_block(struct inode *inode, sector_t iblock, 712 struct buffer_head *bh, int create) 713 { 714 return _ext4_get_block(inode, iblock, bh, 715 create ? EXT4_GET_BLOCKS_CREATE : 0); 716 } 717 718 /* 719 * `handle' can be NULL if create is zero 720 */ 721 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 722 ext4_lblk_t block, int create, int *errp) 723 { 724 struct ext4_map_blocks map; 725 struct buffer_head *bh; 726 int fatal = 0, err; 727 728 J_ASSERT(handle != NULL || create == 0); 729 730 map.m_lblk = block; 731 map.m_len = 1; 732 err = ext4_map_blocks(handle, inode, &map, 733 create ? EXT4_GET_BLOCKS_CREATE : 0); 734 735 /* ensure we send some value back into *errp */ 736 *errp = 0; 737 738 if (err < 0) 739 *errp = err; 740 if (err <= 0) 741 return NULL; 742 743 bh = sb_getblk(inode->i_sb, map.m_pblk); 744 if (!bh) { 745 *errp = -EIO; 746 return NULL; 747 } 748 if (map.m_flags & EXT4_MAP_NEW) { 749 J_ASSERT(create != 0); 750 J_ASSERT(handle != NULL); 751 752 /* 753 * Now that we do not always journal data, we should 754 * keep in mind whether this should always journal the 755 * new buffer as metadata. For now, regular file 756 * writes use ext4_get_block instead, so it's not a 757 * problem. 758 */ 759 lock_buffer(bh); 760 BUFFER_TRACE(bh, "call get_create_access"); 761 fatal = ext4_journal_get_create_access(handle, bh); 762 if (!fatal && !buffer_uptodate(bh)) { 763 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 764 set_buffer_uptodate(bh); 765 } 766 unlock_buffer(bh); 767 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 768 err = ext4_handle_dirty_metadata(handle, inode, bh); 769 if (!fatal) 770 fatal = err; 771 } else { 772 BUFFER_TRACE(bh, "not a new buffer"); 773 } 774 if (fatal) { 775 *errp = fatal; 776 brelse(bh); 777 bh = NULL; 778 } 779 return bh; 780 } 781 782 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 783 ext4_lblk_t block, int create, int *err) 784 { 785 struct buffer_head *bh; 786 787 bh = ext4_getblk(handle, inode, block, create, err); 788 if (!bh) 789 return bh; 790 if (buffer_uptodate(bh)) 791 return bh; 792 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 793 wait_on_buffer(bh); 794 if (buffer_uptodate(bh)) 795 return bh; 796 put_bh(bh); 797 *err = -EIO; 798 return NULL; 799 } 800 801 static int walk_page_buffers(handle_t *handle, 802 struct buffer_head *head, 803 unsigned from, 804 unsigned to, 805 int *partial, 806 int (*fn)(handle_t *handle, 807 struct buffer_head *bh)) 808 { 809 struct buffer_head *bh; 810 unsigned block_start, block_end; 811 unsigned blocksize = head->b_size; 812 int err, ret = 0; 813 struct buffer_head *next; 814 815 for (bh = head, block_start = 0; 816 ret == 0 && (bh != head || !block_start); 817 block_start = block_end, bh = next) { 818 next = bh->b_this_page; 819 block_end = block_start + blocksize; 820 if (block_end <= from || block_start >= to) { 821 if (partial && !buffer_uptodate(bh)) 822 *partial = 1; 823 continue; 824 } 825 err = (*fn)(handle, bh); 826 if (!ret) 827 ret = err; 828 } 829 return ret; 830 } 831 832 /* 833 * To preserve ordering, it is essential that the hole instantiation and 834 * the data write be encapsulated in a single transaction. We cannot 835 * close off a transaction and start a new one between the ext4_get_block() 836 * and the commit_write(). So doing the jbd2_journal_start at the start of 837 * prepare_write() is the right place. 838 * 839 * Also, this function can nest inside ext4_writepage() -> 840 * block_write_full_page(). In that case, we *know* that ext4_writepage() 841 * has generated enough buffer credits to do the whole page. So we won't 842 * block on the journal in that case, which is good, because the caller may 843 * be PF_MEMALLOC. 844 * 845 * By accident, ext4 can be reentered when a transaction is open via 846 * quota file writes. If we were to commit the transaction while thus 847 * reentered, there can be a deadlock - we would be holding a quota 848 * lock, and the commit would never complete if another thread had a 849 * transaction open and was blocking on the quota lock - a ranking 850 * violation. 851 * 852 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 853 * will _not_ run commit under these circumstances because handle->h_ref 854 * is elevated. We'll still have enough credits for the tiny quotafile 855 * write. 856 */ 857 static int do_journal_get_write_access(handle_t *handle, 858 struct buffer_head *bh) 859 { 860 int dirty = buffer_dirty(bh); 861 int ret; 862 863 if (!buffer_mapped(bh) || buffer_freed(bh)) 864 return 0; 865 /* 866 * __block_write_begin() could have dirtied some buffers. Clean 867 * the dirty bit as jbd2_journal_get_write_access() could complain 868 * otherwise about fs integrity issues. Setting of the dirty bit 869 * by __block_write_begin() isn't a real problem here as we clear 870 * the bit before releasing a page lock and thus writeback cannot 871 * ever write the buffer. 872 */ 873 if (dirty) 874 clear_buffer_dirty(bh); 875 ret = ext4_journal_get_write_access(handle, bh); 876 if (!ret && dirty) 877 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 878 return ret; 879 } 880 881 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 882 struct buffer_head *bh_result, int create); 883 static int ext4_write_begin(struct file *file, struct address_space *mapping, 884 loff_t pos, unsigned len, unsigned flags, 885 struct page **pagep, void **fsdata) 886 { 887 struct inode *inode = mapping->host; 888 int ret, needed_blocks; 889 handle_t *handle; 890 int retries = 0; 891 struct page *page; 892 pgoff_t index; 893 unsigned from, to; 894 895 trace_ext4_write_begin(inode, pos, len, flags); 896 /* 897 * Reserve one block more for addition to orphan list in case 898 * we allocate blocks but write fails for some reason 899 */ 900 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 901 index = pos >> PAGE_CACHE_SHIFT; 902 from = pos & (PAGE_CACHE_SIZE - 1); 903 to = from + len; 904 905 retry: 906 handle = ext4_journal_start(inode, needed_blocks); 907 if (IS_ERR(handle)) { 908 ret = PTR_ERR(handle); 909 goto out; 910 } 911 912 /* We cannot recurse into the filesystem as the transaction is already 913 * started */ 914 flags |= AOP_FLAG_NOFS; 915 916 page = grab_cache_page_write_begin(mapping, index, flags); 917 if (!page) { 918 ext4_journal_stop(handle); 919 ret = -ENOMEM; 920 goto out; 921 } 922 *pagep = page; 923 924 if (ext4_should_dioread_nolock(inode)) 925 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 926 else 927 ret = __block_write_begin(page, pos, len, ext4_get_block); 928 929 if (!ret && ext4_should_journal_data(inode)) { 930 ret = walk_page_buffers(handle, page_buffers(page), 931 from, to, NULL, do_journal_get_write_access); 932 } 933 934 if (ret) { 935 unlock_page(page); 936 page_cache_release(page); 937 /* 938 * __block_write_begin may have instantiated a few blocks 939 * outside i_size. Trim these off again. Don't need 940 * i_size_read because we hold i_mutex. 941 * 942 * Add inode to orphan list in case we crash before 943 * truncate finishes 944 */ 945 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 946 ext4_orphan_add(handle, inode); 947 948 ext4_journal_stop(handle); 949 if (pos + len > inode->i_size) { 950 ext4_truncate_failed_write(inode); 951 /* 952 * If truncate failed early the inode might 953 * still be on the orphan list; we need to 954 * make sure the inode is removed from the 955 * orphan list in that case. 956 */ 957 if (inode->i_nlink) 958 ext4_orphan_del(NULL, inode); 959 } 960 } 961 962 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 963 goto retry; 964 out: 965 return ret; 966 } 967 968 /* For write_end() in data=journal mode */ 969 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 970 { 971 if (!buffer_mapped(bh) || buffer_freed(bh)) 972 return 0; 973 set_buffer_uptodate(bh); 974 return ext4_handle_dirty_metadata(handle, NULL, bh); 975 } 976 977 static int ext4_generic_write_end(struct file *file, 978 struct address_space *mapping, 979 loff_t pos, unsigned len, unsigned copied, 980 struct page *page, void *fsdata) 981 { 982 int i_size_changed = 0; 983 struct inode *inode = mapping->host; 984 handle_t *handle = ext4_journal_current_handle(); 985 986 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 987 988 /* 989 * No need to use i_size_read() here, the i_size 990 * cannot change under us because we hold i_mutex. 991 * 992 * But it's important to update i_size while still holding page lock: 993 * page writeout could otherwise come in and zero beyond i_size. 994 */ 995 if (pos + copied > inode->i_size) { 996 i_size_write(inode, pos + copied); 997 i_size_changed = 1; 998 } 999 1000 if (pos + copied > EXT4_I(inode)->i_disksize) { 1001 /* We need to mark inode dirty even if 1002 * new_i_size is less that inode->i_size 1003 * bu greater than i_disksize.(hint delalloc) 1004 */ 1005 ext4_update_i_disksize(inode, (pos + copied)); 1006 i_size_changed = 1; 1007 } 1008 unlock_page(page); 1009 page_cache_release(page); 1010 1011 /* 1012 * Don't mark the inode dirty under page lock. First, it unnecessarily 1013 * makes the holding time of page lock longer. Second, it forces lock 1014 * ordering of page lock and transaction start for journaling 1015 * filesystems. 1016 */ 1017 if (i_size_changed) 1018 ext4_mark_inode_dirty(handle, inode); 1019 1020 return copied; 1021 } 1022 1023 /* 1024 * We need to pick up the new inode size which generic_commit_write gave us 1025 * `file' can be NULL - eg, when called from page_symlink(). 1026 * 1027 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1028 * buffers are managed internally. 1029 */ 1030 static int ext4_ordered_write_end(struct file *file, 1031 struct address_space *mapping, 1032 loff_t pos, unsigned len, unsigned copied, 1033 struct page *page, void *fsdata) 1034 { 1035 handle_t *handle = ext4_journal_current_handle(); 1036 struct inode *inode = mapping->host; 1037 int ret = 0, ret2; 1038 1039 trace_ext4_ordered_write_end(inode, pos, len, copied); 1040 ret = ext4_jbd2_file_inode(handle, inode); 1041 1042 if (ret == 0) { 1043 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1044 page, fsdata); 1045 copied = ret2; 1046 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1047 /* if we have allocated more blocks and copied 1048 * less. We will have blocks allocated outside 1049 * inode->i_size. So truncate them 1050 */ 1051 ext4_orphan_add(handle, inode); 1052 if (ret2 < 0) 1053 ret = ret2; 1054 } else { 1055 unlock_page(page); 1056 page_cache_release(page); 1057 } 1058 1059 ret2 = ext4_journal_stop(handle); 1060 if (!ret) 1061 ret = ret2; 1062 1063 if (pos + len > inode->i_size) { 1064 ext4_truncate_failed_write(inode); 1065 /* 1066 * If truncate failed early the inode might still be 1067 * on the orphan list; we need to make sure the inode 1068 * is removed from the orphan list in that case. 1069 */ 1070 if (inode->i_nlink) 1071 ext4_orphan_del(NULL, inode); 1072 } 1073 1074 1075 return ret ? ret : copied; 1076 } 1077 1078 static int ext4_writeback_write_end(struct file *file, 1079 struct address_space *mapping, 1080 loff_t pos, unsigned len, unsigned copied, 1081 struct page *page, void *fsdata) 1082 { 1083 handle_t *handle = ext4_journal_current_handle(); 1084 struct inode *inode = mapping->host; 1085 int ret = 0, ret2; 1086 1087 trace_ext4_writeback_write_end(inode, pos, len, copied); 1088 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1089 page, fsdata); 1090 copied = ret2; 1091 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1092 /* if we have allocated more blocks and copied 1093 * less. We will have blocks allocated outside 1094 * inode->i_size. So truncate them 1095 */ 1096 ext4_orphan_add(handle, inode); 1097 1098 if (ret2 < 0) 1099 ret = ret2; 1100 1101 ret2 = ext4_journal_stop(handle); 1102 if (!ret) 1103 ret = ret2; 1104 1105 if (pos + len > inode->i_size) { 1106 ext4_truncate_failed_write(inode); 1107 /* 1108 * If truncate failed early the inode might still be 1109 * on the orphan list; we need to make sure the inode 1110 * is removed from the orphan list in that case. 1111 */ 1112 if (inode->i_nlink) 1113 ext4_orphan_del(NULL, inode); 1114 } 1115 1116 return ret ? ret : copied; 1117 } 1118 1119 static int ext4_journalled_write_end(struct file *file, 1120 struct address_space *mapping, 1121 loff_t pos, unsigned len, unsigned copied, 1122 struct page *page, void *fsdata) 1123 { 1124 handle_t *handle = ext4_journal_current_handle(); 1125 struct inode *inode = mapping->host; 1126 int ret = 0, ret2; 1127 int partial = 0; 1128 unsigned from, to; 1129 loff_t new_i_size; 1130 1131 trace_ext4_journalled_write_end(inode, pos, len, copied); 1132 from = pos & (PAGE_CACHE_SIZE - 1); 1133 to = from + len; 1134 1135 BUG_ON(!ext4_handle_valid(handle)); 1136 1137 if (copied < len) { 1138 if (!PageUptodate(page)) 1139 copied = 0; 1140 page_zero_new_buffers(page, from+copied, to); 1141 } 1142 1143 ret = walk_page_buffers(handle, page_buffers(page), from, 1144 to, &partial, write_end_fn); 1145 if (!partial) 1146 SetPageUptodate(page); 1147 new_i_size = pos + copied; 1148 if (new_i_size > inode->i_size) 1149 i_size_write(inode, pos+copied); 1150 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1151 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1152 if (new_i_size > EXT4_I(inode)->i_disksize) { 1153 ext4_update_i_disksize(inode, new_i_size); 1154 ret2 = ext4_mark_inode_dirty(handle, inode); 1155 if (!ret) 1156 ret = ret2; 1157 } 1158 1159 unlock_page(page); 1160 page_cache_release(page); 1161 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1162 /* if we have allocated more blocks and copied 1163 * less. We will have blocks allocated outside 1164 * inode->i_size. So truncate them 1165 */ 1166 ext4_orphan_add(handle, inode); 1167 1168 ret2 = ext4_journal_stop(handle); 1169 if (!ret) 1170 ret = ret2; 1171 if (pos + len > inode->i_size) { 1172 ext4_truncate_failed_write(inode); 1173 /* 1174 * If truncate failed early the inode might still be 1175 * on the orphan list; we need to make sure the inode 1176 * is removed from the orphan list in that case. 1177 */ 1178 if (inode->i_nlink) 1179 ext4_orphan_del(NULL, inode); 1180 } 1181 1182 return ret ? ret : copied; 1183 } 1184 1185 /* 1186 * Reserve a single cluster located at lblock 1187 */ 1188 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1189 { 1190 int retries = 0; 1191 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1192 struct ext4_inode_info *ei = EXT4_I(inode); 1193 unsigned int md_needed; 1194 int ret; 1195 ext4_lblk_t save_last_lblock; 1196 int save_len; 1197 1198 /* 1199 * We will charge metadata quota at writeout time; this saves 1200 * us from metadata over-estimation, though we may go over by 1201 * a small amount in the end. Here we just reserve for data. 1202 */ 1203 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1204 if (ret) 1205 return ret; 1206 1207 /* 1208 * recalculate the amount of metadata blocks to reserve 1209 * in order to allocate nrblocks 1210 * worse case is one extent per block 1211 */ 1212 repeat: 1213 spin_lock(&ei->i_block_reservation_lock); 1214 /* 1215 * ext4_calc_metadata_amount() has side effects, which we have 1216 * to be prepared undo if we fail to claim space. 1217 */ 1218 save_len = ei->i_da_metadata_calc_len; 1219 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1220 md_needed = EXT4_NUM_B2C(sbi, 1221 ext4_calc_metadata_amount(inode, lblock)); 1222 trace_ext4_da_reserve_space(inode, md_needed); 1223 1224 /* 1225 * We do still charge estimated metadata to the sb though; 1226 * we cannot afford to run out of free blocks. 1227 */ 1228 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) { 1229 ei->i_da_metadata_calc_len = save_len; 1230 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1231 spin_unlock(&ei->i_block_reservation_lock); 1232 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1233 yield(); 1234 goto repeat; 1235 } 1236 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1237 return -ENOSPC; 1238 } 1239 ei->i_reserved_data_blocks++; 1240 ei->i_reserved_meta_blocks += md_needed; 1241 spin_unlock(&ei->i_block_reservation_lock); 1242 1243 return 0; /* success */ 1244 } 1245 1246 static void ext4_da_release_space(struct inode *inode, int to_free) 1247 { 1248 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1249 struct ext4_inode_info *ei = EXT4_I(inode); 1250 1251 if (!to_free) 1252 return; /* Nothing to release, exit */ 1253 1254 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1255 1256 trace_ext4_da_release_space(inode, to_free); 1257 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1258 /* 1259 * if there aren't enough reserved blocks, then the 1260 * counter is messed up somewhere. Since this 1261 * function is called from invalidate page, it's 1262 * harmless to return without any action. 1263 */ 1264 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: " 1265 "ino %lu, to_free %d with only %d reserved " 1266 "data blocks", inode->i_ino, to_free, 1267 ei->i_reserved_data_blocks); 1268 WARN_ON(1); 1269 to_free = ei->i_reserved_data_blocks; 1270 } 1271 ei->i_reserved_data_blocks -= to_free; 1272 1273 if (ei->i_reserved_data_blocks == 0) { 1274 /* 1275 * We can release all of the reserved metadata blocks 1276 * only when we have written all of the delayed 1277 * allocation blocks. 1278 * Note that in case of bigalloc, i_reserved_meta_blocks, 1279 * i_reserved_data_blocks, etc. refer to number of clusters. 1280 */ 1281 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 1282 ei->i_reserved_meta_blocks); 1283 ei->i_reserved_meta_blocks = 0; 1284 ei->i_da_metadata_calc_len = 0; 1285 } 1286 1287 /* update fs dirty data blocks counter */ 1288 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1289 1290 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1291 1292 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1293 } 1294 1295 static void ext4_da_page_release_reservation(struct page *page, 1296 unsigned long offset) 1297 { 1298 int to_release = 0; 1299 struct buffer_head *head, *bh; 1300 unsigned int curr_off = 0; 1301 struct inode *inode = page->mapping->host; 1302 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1303 int num_clusters; 1304 1305 head = page_buffers(page); 1306 bh = head; 1307 do { 1308 unsigned int next_off = curr_off + bh->b_size; 1309 1310 if ((offset <= curr_off) && (buffer_delay(bh))) { 1311 to_release++; 1312 clear_buffer_delay(bh); 1313 clear_buffer_da_mapped(bh); 1314 } 1315 curr_off = next_off; 1316 } while ((bh = bh->b_this_page) != head); 1317 1318 /* If we have released all the blocks belonging to a cluster, then we 1319 * need to release the reserved space for that cluster. */ 1320 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1321 while (num_clusters > 0) { 1322 ext4_fsblk_t lblk; 1323 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1324 ((num_clusters - 1) << sbi->s_cluster_bits); 1325 if (sbi->s_cluster_ratio == 1 || 1326 !ext4_find_delalloc_cluster(inode, lblk, 1)) 1327 ext4_da_release_space(inode, 1); 1328 1329 num_clusters--; 1330 } 1331 } 1332 1333 /* 1334 * Delayed allocation stuff 1335 */ 1336 1337 /* 1338 * mpage_da_submit_io - walks through extent of pages and try to write 1339 * them with writepage() call back 1340 * 1341 * @mpd->inode: inode 1342 * @mpd->first_page: first page of the extent 1343 * @mpd->next_page: page after the last page of the extent 1344 * 1345 * By the time mpage_da_submit_io() is called we expect all blocks 1346 * to be allocated. this may be wrong if allocation failed. 1347 * 1348 * As pages are already locked by write_cache_pages(), we can't use it 1349 */ 1350 static int mpage_da_submit_io(struct mpage_da_data *mpd, 1351 struct ext4_map_blocks *map) 1352 { 1353 struct pagevec pvec; 1354 unsigned long index, end; 1355 int ret = 0, err, nr_pages, i; 1356 struct inode *inode = mpd->inode; 1357 struct address_space *mapping = inode->i_mapping; 1358 loff_t size = i_size_read(inode); 1359 unsigned int len, block_start; 1360 struct buffer_head *bh, *page_bufs = NULL; 1361 int journal_data = ext4_should_journal_data(inode); 1362 sector_t pblock = 0, cur_logical = 0; 1363 struct ext4_io_submit io_submit; 1364 1365 BUG_ON(mpd->next_page <= mpd->first_page); 1366 memset(&io_submit, 0, sizeof(io_submit)); 1367 /* 1368 * We need to start from the first_page to the next_page - 1 1369 * to make sure we also write the mapped dirty buffer_heads. 1370 * If we look at mpd->b_blocknr we would only be looking 1371 * at the currently mapped buffer_heads. 1372 */ 1373 index = mpd->first_page; 1374 end = mpd->next_page - 1; 1375 1376 pagevec_init(&pvec, 0); 1377 while (index <= end) { 1378 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1379 if (nr_pages == 0) 1380 break; 1381 for (i = 0; i < nr_pages; i++) { 1382 int commit_write = 0, skip_page = 0; 1383 struct page *page = pvec.pages[i]; 1384 1385 index = page->index; 1386 if (index > end) 1387 break; 1388 1389 if (index == size >> PAGE_CACHE_SHIFT) 1390 len = size & ~PAGE_CACHE_MASK; 1391 else 1392 len = PAGE_CACHE_SIZE; 1393 if (map) { 1394 cur_logical = index << (PAGE_CACHE_SHIFT - 1395 inode->i_blkbits); 1396 pblock = map->m_pblk + (cur_logical - 1397 map->m_lblk); 1398 } 1399 index++; 1400 1401 BUG_ON(!PageLocked(page)); 1402 BUG_ON(PageWriteback(page)); 1403 1404 /* 1405 * If the page does not have buffers (for 1406 * whatever reason), try to create them using 1407 * __block_write_begin. If this fails, 1408 * skip the page and move on. 1409 */ 1410 if (!page_has_buffers(page)) { 1411 if (__block_write_begin(page, 0, len, 1412 noalloc_get_block_write)) { 1413 skip_page: 1414 unlock_page(page); 1415 continue; 1416 } 1417 commit_write = 1; 1418 } 1419 1420 bh = page_bufs = page_buffers(page); 1421 block_start = 0; 1422 do { 1423 if (!bh) 1424 goto skip_page; 1425 if (map && (cur_logical >= map->m_lblk) && 1426 (cur_logical <= (map->m_lblk + 1427 (map->m_len - 1)))) { 1428 if (buffer_delay(bh)) { 1429 clear_buffer_delay(bh); 1430 bh->b_blocknr = pblock; 1431 } 1432 if (buffer_da_mapped(bh)) 1433 clear_buffer_da_mapped(bh); 1434 if (buffer_unwritten(bh) || 1435 buffer_mapped(bh)) 1436 BUG_ON(bh->b_blocknr != pblock); 1437 if (map->m_flags & EXT4_MAP_UNINIT) 1438 set_buffer_uninit(bh); 1439 clear_buffer_unwritten(bh); 1440 } 1441 1442 /* 1443 * skip page if block allocation undone and 1444 * block is dirty 1445 */ 1446 if (ext4_bh_delay_or_unwritten(NULL, bh)) 1447 skip_page = 1; 1448 bh = bh->b_this_page; 1449 block_start += bh->b_size; 1450 cur_logical++; 1451 pblock++; 1452 } while (bh != page_bufs); 1453 1454 if (skip_page) 1455 goto skip_page; 1456 1457 if (commit_write) 1458 /* mark the buffer_heads as dirty & uptodate */ 1459 block_commit_write(page, 0, len); 1460 1461 clear_page_dirty_for_io(page); 1462 /* 1463 * Delalloc doesn't support data journalling, 1464 * but eventually maybe we'll lift this 1465 * restriction. 1466 */ 1467 if (unlikely(journal_data && PageChecked(page))) 1468 err = __ext4_journalled_writepage(page, len); 1469 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT)) 1470 err = ext4_bio_write_page(&io_submit, page, 1471 len, mpd->wbc); 1472 else if (buffer_uninit(page_bufs)) { 1473 ext4_set_bh_endio(page_bufs, inode); 1474 err = block_write_full_page_endio(page, 1475 noalloc_get_block_write, 1476 mpd->wbc, ext4_end_io_buffer_write); 1477 } else 1478 err = block_write_full_page(page, 1479 noalloc_get_block_write, mpd->wbc); 1480 1481 if (!err) 1482 mpd->pages_written++; 1483 /* 1484 * In error case, we have to continue because 1485 * remaining pages are still locked 1486 */ 1487 if (ret == 0) 1488 ret = err; 1489 } 1490 pagevec_release(&pvec); 1491 } 1492 ext4_io_submit(&io_submit); 1493 return ret; 1494 } 1495 1496 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd) 1497 { 1498 int nr_pages, i; 1499 pgoff_t index, end; 1500 struct pagevec pvec; 1501 struct inode *inode = mpd->inode; 1502 struct address_space *mapping = inode->i_mapping; 1503 1504 index = mpd->first_page; 1505 end = mpd->next_page - 1; 1506 while (index <= end) { 1507 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1508 if (nr_pages == 0) 1509 break; 1510 for (i = 0; i < nr_pages; i++) { 1511 struct page *page = pvec.pages[i]; 1512 if (page->index > end) 1513 break; 1514 BUG_ON(!PageLocked(page)); 1515 BUG_ON(PageWriteback(page)); 1516 block_invalidatepage(page, 0); 1517 ClearPageUptodate(page); 1518 unlock_page(page); 1519 } 1520 index = pvec.pages[nr_pages - 1]->index + 1; 1521 pagevec_release(&pvec); 1522 } 1523 return; 1524 } 1525 1526 static void ext4_print_free_blocks(struct inode *inode) 1527 { 1528 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1529 struct super_block *sb = inode->i_sb; 1530 1531 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1532 EXT4_C2B(EXT4_SB(inode->i_sb), 1533 ext4_count_free_clusters(inode->i_sb))); 1534 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1535 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1536 (long long) EXT4_C2B(EXT4_SB(inode->i_sb), 1537 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1538 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1539 (long long) EXT4_C2B(EXT4_SB(inode->i_sb), 1540 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1541 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1542 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1543 EXT4_I(inode)->i_reserved_data_blocks); 1544 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u", 1545 EXT4_I(inode)->i_reserved_meta_blocks); 1546 return; 1547 } 1548 1549 /* 1550 * mpage_da_map_and_submit - go through given space, map them 1551 * if necessary, and then submit them for I/O 1552 * 1553 * @mpd - bh describing space 1554 * 1555 * The function skips space we know is already mapped to disk blocks. 1556 * 1557 */ 1558 static void mpage_da_map_and_submit(struct mpage_da_data *mpd) 1559 { 1560 int err, blks, get_blocks_flags; 1561 struct ext4_map_blocks map, *mapp = NULL; 1562 sector_t next = mpd->b_blocknr; 1563 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits; 1564 loff_t disksize = EXT4_I(mpd->inode)->i_disksize; 1565 handle_t *handle = NULL; 1566 1567 /* 1568 * If the blocks are mapped already, or we couldn't accumulate 1569 * any blocks, then proceed immediately to the submission stage. 1570 */ 1571 if ((mpd->b_size == 0) || 1572 ((mpd->b_state & (1 << BH_Mapped)) && 1573 !(mpd->b_state & (1 << BH_Delay)) && 1574 !(mpd->b_state & (1 << BH_Unwritten)))) 1575 goto submit_io; 1576 1577 handle = ext4_journal_current_handle(); 1578 BUG_ON(!handle); 1579 1580 /* 1581 * Call ext4_map_blocks() to allocate any delayed allocation 1582 * blocks, or to convert an uninitialized extent to be 1583 * initialized (in the case where we have written into 1584 * one or more preallocated blocks). 1585 * 1586 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to 1587 * indicate that we are on the delayed allocation path. This 1588 * affects functions in many different parts of the allocation 1589 * call path. This flag exists primarily because we don't 1590 * want to change *many* call functions, so ext4_map_blocks() 1591 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the 1592 * inode's allocation semaphore is taken. 1593 * 1594 * If the blocks in questions were delalloc blocks, set 1595 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting 1596 * variables are updated after the blocks have been allocated. 1597 */ 1598 map.m_lblk = next; 1599 map.m_len = max_blocks; 1600 get_blocks_flags = EXT4_GET_BLOCKS_CREATE; 1601 if (ext4_should_dioread_nolock(mpd->inode)) 1602 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 1603 if (mpd->b_state & (1 << BH_Delay)) 1604 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 1605 1606 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags); 1607 if (blks < 0) { 1608 struct super_block *sb = mpd->inode->i_sb; 1609 1610 err = blks; 1611 /* 1612 * If get block returns EAGAIN or ENOSPC and there 1613 * appears to be free blocks we will just let 1614 * mpage_da_submit_io() unlock all of the pages. 1615 */ 1616 if (err == -EAGAIN) 1617 goto submit_io; 1618 1619 if (err == -ENOSPC && ext4_count_free_clusters(sb)) { 1620 mpd->retval = err; 1621 goto submit_io; 1622 } 1623 1624 /* 1625 * get block failure will cause us to loop in 1626 * writepages, because a_ops->writepage won't be able 1627 * to make progress. The page will be redirtied by 1628 * writepage and writepages will again try to write 1629 * the same. 1630 */ 1631 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) { 1632 ext4_msg(sb, KERN_CRIT, 1633 "delayed block allocation failed for inode %lu " 1634 "at logical offset %llu with max blocks %zd " 1635 "with error %d", mpd->inode->i_ino, 1636 (unsigned long long) next, 1637 mpd->b_size >> mpd->inode->i_blkbits, err); 1638 ext4_msg(sb, KERN_CRIT, 1639 "This should not happen!! Data will be lost\n"); 1640 if (err == -ENOSPC) 1641 ext4_print_free_blocks(mpd->inode); 1642 } 1643 /* invalidate all the pages */ 1644 ext4_da_block_invalidatepages(mpd); 1645 1646 /* Mark this page range as having been completed */ 1647 mpd->io_done = 1; 1648 return; 1649 } 1650 BUG_ON(blks == 0); 1651 1652 mapp = ↦ 1653 if (map.m_flags & EXT4_MAP_NEW) { 1654 struct block_device *bdev = mpd->inode->i_sb->s_bdev; 1655 int i; 1656 1657 for (i = 0; i < map.m_len; i++) 1658 unmap_underlying_metadata(bdev, map.m_pblk + i); 1659 1660 if (ext4_should_order_data(mpd->inode)) { 1661 err = ext4_jbd2_file_inode(handle, mpd->inode); 1662 if (err) { 1663 /* Only if the journal is aborted */ 1664 mpd->retval = err; 1665 goto submit_io; 1666 } 1667 } 1668 } 1669 1670 /* 1671 * Update on-disk size along with block allocation. 1672 */ 1673 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits; 1674 if (disksize > i_size_read(mpd->inode)) 1675 disksize = i_size_read(mpd->inode); 1676 if (disksize > EXT4_I(mpd->inode)->i_disksize) { 1677 ext4_update_i_disksize(mpd->inode, disksize); 1678 err = ext4_mark_inode_dirty(handle, mpd->inode); 1679 if (err) 1680 ext4_error(mpd->inode->i_sb, 1681 "Failed to mark inode %lu dirty", 1682 mpd->inode->i_ino); 1683 } 1684 1685 submit_io: 1686 mpage_da_submit_io(mpd, mapp); 1687 mpd->io_done = 1; 1688 } 1689 1690 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 1691 (1 << BH_Delay) | (1 << BH_Unwritten)) 1692 1693 /* 1694 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 1695 * 1696 * @mpd->lbh - extent of blocks 1697 * @logical - logical number of the block in the file 1698 * @bh - bh of the block (used to access block's state) 1699 * 1700 * the function is used to collect contig. blocks in same state 1701 */ 1702 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 1703 sector_t logical, size_t b_size, 1704 unsigned long b_state) 1705 { 1706 sector_t next; 1707 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits; 1708 1709 /* 1710 * XXX Don't go larger than mballoc is willing to allocate 1711 * This is a stopgap solution. We eventually need to fold 1712 * mpage_da_submit_io() into this function and then call 1713 * ext4_map_blocks() multiple times in a loop 1714 */ 1715 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize) 1716 goto flush_it; 1717 1718 /* check if thereserved journal credits might overflow */ 1719 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) { 1720 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 1721 /* 1722 * With non-extent format we are limited by the journal 1723 * credit available. Total credit needed to insert 1724 * nrblocks contiguous blocks is dependent on the 1725 * nrblocks. So limit nrblocks. 1726 */ 1727 goto flush_it; 1728 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > 1729 EXT4_MAX_TRANS_DATA) { 1730 /* 1731 * Adding the new buffer_head would make it cross the 1732 * allowed limit for which we have journal credit 1733 * reserved. So limit the new bh->b_size 1734 */ 1735 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << 1736 mpd->inode->i_blkbits; 1737 /* we will do mpage_da_submit_io in the next loop */ 1738 } 1739 } 1740 /* 1741 * First block in the extent 1742 */ 1743 if (mpd->b_size == 0) { 1744 mpd->b_blocknr = logical; 1745 mpd->b_size = b_size; 1746 mpd->b_state = b_state & BH_FLAGS; 1747 return; 1748 } 1749 1750 next = mpd->b_blocknr + nrblocks; 1751 /* 1752 * Can we merge the block to our big extent? 1753 */ 1754 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) { 1755 mpd->b_size += b_size; 1756 return; 1757 } 1758 1759 flush_it: 1760 /* 1761 * We couldn't merge the block to our extent, so we 1762 * need to flush current extent and start new one 1763 */ 1764 mpage_da_map_and_submit(mpd); 1765 return; 1766 } 1767 1768 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1769 { 1770 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1771 } 1772 1773 /* 1774 * This function is grabs code from the very beginning of 1775 * ext4_map_blocks, but assumes that the caller is from delayed write 1776 * time. This function looks up the requested blocks and sets the 1777 * buffer delay bit under the protection of i_data_sem. 1778 */ 1779 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1780 struct ext4_map_blocks *map, 1781 struct buffer_head *bh) 1782 { 1783 int retval; 1784 sector_t invalid_block = ~((sector_t) 0xffff); 1785 1786 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1787 invalid_block = ~0; 1788 1789 map->m_flags = 0; 1790 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1791 "logical block %lu\n", inode->i_ino, map->m_len, 1792 (unsigned long) map->m_lblk); 1793 /* 1794 * Try to see if we can get the block without requesting a new 1795 * file system block. 1796 */ 1797 down_read((&EXT4_I(inode)->i_data_sem)); 1798 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1799 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1800 else 1801 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1802 1803 if (retval == 0) { 1804 /* 1805 * XXX: __block_prepare_write() unmaps passed block, 1806 * is it OK? 1807 */ 1808 /* If the block was allocated from previously allocated cluster, 1809 * then we dont need to reserve it again. */ 1810 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) { 1811 retval = ext4_da_reserve_space(inode, iblock); 1812 if (retval) 1813 /* not enough space to reserve */ 1814 goto out_unlock; 1815 } 1816 1817 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served 1818 * and it should not appear on the bh->b_state. 1819 */ 1820 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 1821 1822 map_bh(bh, inode->i_sb, invalid_block); 1823 set_buffer_new(bh); 1824 set_buffer_delay(bh); 1825 } 1826 1827 out_unlock: 1828 up_read((&EXT4_I(inode)->i_data_sem)); 1829 1830 return retval; 1831 } 1832 1833 /* 1834 * This is a special get_blocks_t callback which is used by 1835 * ext4_da_write_begin(). It will either return mapped block or 1836 * reserve space for a single block. 1837 * 1838 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1839 * We also have b_blocknr = -1 and b_bdev initialized properly 1840 * 1841 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1842 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1843 * initialized properly. 1844 */ 1845 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1846 struct buffer_head *bh, int create) 1847 { 1848 struct ext4_map_blocks map; 1849 int ret = 0; 1850 1851 BUG_ON(create == 0); 1852 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1853 1854 map.m_lblk = iblock; 1855 map.m_len = 1; 1856 1857 /* 1858 * first, we need to know whether the block is allocated already 1859 * preallocated blocks are unmapped but should treated 1860 * the same as allocated blocks. 1861 */ 1862 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1863 if (ret <= 0) 1864 return ret; 1865 1866 map_bh(bh, inode->i_sb, map.m_pblk); 1867 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1868 1869 if (buffer_unwritten(bh)) { 1870 /* A delayed write to unwritten bh should be marked 1871 * new and mapped. Mapped ensures that we don't do 1872 * get_block multiple times when we write to the same 1873 * offset and new ensures that we do proper zero out 1874 * for partial write. 1875 */ 1876 set_buffer_new(bh); 1877 set_buffer_mapped(bh); 1878 } 1879 return 0; 1880 } 1881 1882 /* 1883 * This function is used as a standard get_block_t calback function 1884 * when there is no desire to allocate any blocks. It is used as a 1885 * callback function for block_write_begin() and block_write_full_page(). 1886 * These functions should only try to map a single block at a time. 1887 * 1888 * Since this function doesn't do block allocations even if the caller 1889 * requests it by passing in create=1, it is critically important that 1890 * any caller checks to make sure that any buffer heads are returned 1891 * by this function are either all already mapped or marked for 1892 * delayed allocation before calling block_write_full_page(). Otherwise, 1893 * b_blocknr could be left unitialized, and the page write functions will 1894 * be taken by surprise. 1895 */ 1896 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 1897 struct buffer_head *bh_result, int create) 1898 { 1899 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 1900 return _ext4_get_block(inode, iblock, bh_result, 0); 1901 } 1902 1903 static int bget_one(handle_t *handle, struct buffer_head *bh) 1904 { 1905 get_bh(bh); 1906 return 0; 1907 } 1908 1909 static int bput_one(handle_t *handle, struct buffer_head *bh) 1910 { 1911 put_bh(bh); 1912 return 0; 1913 } 1914 1915 static int __ext4_journalled_writepage(struct page *page, 1916 unsigned int len) 1917 { 1918 struct address_space *mapping = page->mapping; 1919 struct inode *inode = mapping->host; 1920 struct buffer_head *page_bufs; 1921 handle_t *handle = NULL; 1922 int ret = 0; 1923 int err; 1924 1925 ClearPageChecked(page); 1926 page_bufs = page_buffers(page); 1927 BUG_ON(!page_bufs); 1928 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one); 1929 /* As soon as we unlock the page, it can go away, but we have 1930 * references to buffers so we are safe */ 1931 unlock_page(page); 1932 1933 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 1934 if (IS_ERR(handle)) { 1935 ret = PTR_ERR(handle); 1936 goto out; 1937 } 1938 1939 BUG_ON(!ext4_handle_valid(handle)); 1940 1941 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL, 1942 do_journal_get_write_access); 1943 1944 err = walk_page_buffers(handle, page_bufs, 0, len, NULL, 1945 write_end_fn); 1946 if (ret == 0) 1947 ret = err; 1948 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1949 err = ext4_journal_stop(handle); 1950 if (!ret) 1951 ret = err; 1952 1953 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one); 1954 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1955 out: 1956 return ret; 1957 } 1958 1959 /* 1960 * Note that we don't need to start a transaction unless we're journaling data 1961 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1962 * need to file the inode to the transaction's list in ordered mode because if 1963 * we are writing back data added by write(), the inode is already there and if 1964 * we are writing back data modified via mmap(), no one guarantees in which 1965 * transaction the data will hit the disk. In case we are journaling data, we 1966 * cannot start transaction directly because transaction start ranks above page 1967 * lock so we have to do some magic. 1968 * 1969 * This function can get called via... 1970 * - ext4_da_writepages after taking page lock (have journal handle) 1971 * - journal_submit_inode_data_buffers (no journal handle) 1972 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1973 * - grab_page_cache when doing write_begin (have journal handle) 1974 * 1975 * We don't do any block allocation in this function. If we have page with 1976 * multiple blocks we need to write those buffer_heads that are mapped. This 1977 * is important for mmaped based write. So if we do with blocksize 1K 1978 * truncate(f, 1024); 1979 * a = mmap(f, 0, 4096); 1980 * a[0] = 'a'; 1981 * truncate(f, 4096); 1982 * we have in the page first buffer_head mapped via page_mkwrite call back 1983 * but other buffer_heads would be unmapped but dirty (dirty done via the 1984 * do_wp_page). So writepage should write the first block. If we modify 1985 * the mmap area beyond 1024 we will again get a page_fault and the 1986 * page_mkwrite callback will do the block allocation and mark the 1987 * buffer_heads mapped. 1988 * 1989 * We redirty the page if we have any buffer_heads that is either delay or 1990 * unwritten in the page. 1991 * 1992 * We can get recursively called as show below. 1993 * 1994 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1995 * ext4_writepage() 1996 * 1997 * But since we don't do any block allocation we should not deadlock. 1998 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1999 */ 2000 static int ext4_writepage(struct page *page, 2001 struct writeback_control *wbc) 2002 { 2003 int ret = 0, commit_write = 0; 2004 loff_t size; 2005 unsigned int len; 2006 struct buffer_head *page_bufs = NULL; 2007 struct inode *inode = page->mapping->host; 2008 2009 trace_ext4_writepage(page); 2010 size = i_size_read(inode); 2011 if (page->index == size >> PAGE_CACHE_SHIFT) 2012 len = size & ~PAGE_CACHE_MASK; 2013 else 2014 len = PAGE_CACHE_SIZE; 2015 2016 /* 2017 * If the page does not have buffers (for whatever reason), 2018 * try to create them using __block_write_begin. If this 2019 * fails, redirty the page and move on. 2020 */ 2021 if (!page_has_buffers(page)) { 2022 if (__block_write_begin(page, 0, len, 2023 noalloc_get_block_write)) { 2024 redirty_page: 2025 redirty_page_for_writepage(wbc, page); 2026 unlock_page(page); 2027 return 0; 2028 } 2029 commit_write = 1; 2030 } 2031 page_bufs = page_buffers(page); 2032 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2033 ext4_bh_delay_or_unwritten)) { 2034 /* 2035 * We don't want to do block allocation, so redirty 2036 * the page and return. We may reach here when we do 2037 * a journal commit via journal_submit_inode_data_buffers. 2038 * We can also reach here via shrink_page_list but it 2039 * should never be for direct reclaim so warn if that 2040 * happens 2041 */ 2042 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 2043 PF_MEMALLOC); 2044 goto redirty_page; 2045 } 2046 if (commit_write) 2047 /* now mark the buffer_heads as dirty and uptodate */ 2048 block_commit_write(page, 0, len); 2049 2050 if (PageChecked(page) && ext4_should_journal_data(inode)) 2051 /* 2052 * It's mmapped pagecache. Add buffers and journal it. There 2053 * doesn't seem much point in redirtying the page here. 2054 */ 2055 return __ext4_journalled_writepage(page, len); 2056 2057 if (buffer_uninit(page_bufs)) { 2058 ext4_set_bh_endio(page_bufs, inode); 2059 ret = block_write_full_page_endio(page, noalloc_get_block_write, 2060 wbc, ext4_end_io_buffer_write); 2061 } else 2062 ret = block_write_full_page(page, noalloc_get_block_write, 2063 wbc); 2064 2065 return ret; 2066 } 2067 2068 /* 2069 * This is called via ext4_da_writepages() to 2070 * calculate the total number of credits to reserve to fit 2071 * a single extent allocation into a single transaction, 2072 * ext4_da_writpeages() will loop calling this before 2073 * the block allocation. 2074 */ 2075 2076 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2077 { 2078 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 2079 2080 /* 2081 * With non-extent format the journal credit needed to 2082 * insert nrblocks contiguous block is dependent on 2083 * number of contiguous block. So we will limit 2084 * number of contiguous block to a sane value 2085 */ 2086 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) && 2087 (max_blocks > EXT4_MAX_TRANS_DATA)) 2088 max_blocks = EXT4_MAX_TRANS_DATA; 2089 2090 return ext4_chunk_trans_blocks(inode, max_blocks); 2091 } 2092 2093 /* 2094 * write_cache_pages_da - walk the list of dirty pages of the given 2095 * address space and accumulate pages that need writing, and call 2096 * mpage_da_map_and_submit to map a single contiguous memory region 2097 * and then write them. 2098 */ 2099 static int write_cache_pages_da(struct address_space *mapping, 2100 struct writeback_control *wbc, 2101 struct mpage_da_data *mpd, 2102 pgoff_t *done_index) 2103 { 2104 struct buffer_head *bh, *head; 2105 struct inode *inode = mapping->host; 2106 struct pagevec pvec; 2107 unsigned int nr_pages; 2108 sector_t logical; 2109 pgoff_t index, end; 2110 long nr_to_write = wbc->nr_to_write; 2111 int i, tag, ret = 0; 2112 2113 memset(mpd, 0, sizeof(struct mpage_da_data)); 2114 mpd->wbc = wbc; 2115 mpd->inode = inode; 2116 pagevec_init(&pvec, 0); 2117 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2118 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2119 2120 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2121 tag = PAGECACHE_TAG_TOWRITE; 2122 else 2123 tag = PAGECACHE_TAG_DIRTY; 2124 2125 *done_index = index; 2126 while (index <= end) { 2127 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2128 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2129 if (nr_pages == 0) 2130 return 0; 2131 2132 for (i = 0; i < nr_pages; i++) { 2133 struct page *page = pvec.pages[i]; 2134 2135 /* 2136 * At this point, the page may be truncated or 2137 * invalidated (changing page->mapping to NULL), or 2138 * even swizzled back from swapper_space to tmpfs file 2139 * mapping. However, page->index will not change 2140 * because we have a reference on the page. 2141 */ 2142 if (page->index > end) 2143 goto out; 2144 2145 *done_index = page->index + 1; 2146 2147 /* 2148 * If we can't merge this page, and we have 2149 * accumulated an contiguous region, write it 2150 */ 2151 if ((mpd->next_page != page->index) && 2152 (mpd->next_page != mpd->first_page)) { 2153 mpage_da_map_and_submit(mpd); 2154 goto ret_extent_tail; 2155 } 2156 2157 lock_page(page); 2158 2159 /* 2160 * If the page is no longer dirty, or its 2161 * mapping no longer corresponds to inode we 2162 * are writing (which means it has been 2163 * truncated or invalidated), or the page is 2164 * already under writeback and we are not 2165 * doing a data integrity writeback, skip the page 2166 */ 2167 if (!PageDirty(page) || 2168 (PageWriteback(page) && 2169 (wbc->sync_mode == WB_SYNC_NONE)) || 2170 unlikely(page->mapping != mapping)) { 2171 unlock_page(page); 2172 continue; 2173 } 2174 2175 wait_on_page_writeback(page); 2176 BUG_ON(PageWriteback(page)); 2177 2178 if (mpd->next_page != page->index) 2179 mpd->first_page = page->index; 2180 mpd->next_page = page->index + 1; 2181 logical = (sector_t) page->index << 2182 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2183 2184 if (!page_has_buffers(page)) { 2185 mpage_add_bh_to_extent(mpd, logical, 2186 PAGE_CACHE_SIZE, 2187 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2188 if (mpd->io_done) 2189 goto ret_extent_tail; 2190 } else { 2191 /* 2192 * Page with regular buffer heads, 2193 * just add all dirty ones 2194 */ 2195 head = page_buffers(page); 2196 bh = head; 2197 do { 2198 BUG_ON(buffer_locked(bh)); 2199 /* 2200 * We need to try to allocate 2201 * unmapped blocks in the same page. 2202 * Otherwise we won't make progress 2203 * with the page in ext4_writepage 2204 */ 2205 if (ext4_bh_delay_or_unwritten(NULL, bh)) { 2206 mpage_add_bh_to_extent(mpd, logical, 2207 bh->b_size, 2208 bh->b_state); 2209 if (mpd->io_done) 2210 goto ret_extent_tail; 2211 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) { 2212 /* 2213 * mapped dirty buffer. We need 2214 * to update the b_state 2215 * because we look at b_state 2216 * in mpage_da_map_blocks. We 2217 * don't update b_size because 2218 * if we find an unmapped 2219 * buffer_head later we need to 2220 * use the b_state flag of that 2221 * buffer_head. 2222 */ 2223 if (mpd->b_size == 0) 2224 mpd->b_state = bh->b_state & BH_FLAGS; 2225 } 2226 logical++; 2227 } while ((bh = bh->b_this_page) != head); 2228 } 2229 2230 if (nr_to_write > 0) { 2231 nr_to_write--; 2232 if (nr_to_write == 0 && 2233 wbc->sync_mode == WB_SYNC_NONE) 2234 /* 2235 * We stop writing back only if we are 2236 * not doing integrity sync. In case of 2237 * integrity sync we have to keep going 2238 * because someone may be concurrently 2239 * dirtying pages, and we might have 2240 * synced a lot of newly appeared dirty 2241 * pages, but have not synced all of the 2242 * old dirty pages. 2243 */ 2244 goto out; 2245 } 2246 } 2247 pagevec_release(&pvec); 2248 cond_resched(); 2249 } 2250 return 0; 2251 ret_extent_tail: 2252 ret = MPAGE_DA_EXTENT_TAIL; 2253 out: 2254 pagevec_release(&pvec); 2255 cond_resched(); 2256 return ret; 2257 } 2258 2259 2260 static int ext4_da_writepages(struct address_space *mapping, 2261 struct writeback_control *wbc) 2262 { 2263 pgoff_t index; 2264 int range_whole = 0; 2265 handle_t *handle = NULL; 2266 struct mpage_da_data mpd; 2267 struct inode *inode = mapping->host; 2268 int pages_written = 0; 2269 unsigned int max_pages; 2270 int range_cyclic, cycled = 1, io_done = 0; 2271 int needed_blocks, ret = 0; 2272 long desired_nr_to_write, nr_to_writebump = 0; 2273 loff_t range_start = wbc->range_start; 2274 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2275 pgoff_t done_index = 0; 2276 pgoff_t end; 2277 struct blk_plug plug; 2278 2279 trace_ext4_da_writepages(inode, wbc); 2280 2281 /* 2282 * No pages to write? This is mainly a kludge to avoid starting 2283 * a transaction for special inodes like journal inode on last iput() 2284 * because that could violate lock ordering on umount 2285 */ 2286 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2287 return 0; 2288 2289 /* 2290 * If the filesystem has aborted, it is read-only, so return 2291 * right away instead of dumping stack traces later on that 2292 * will obscure the real source of the problem. We test 2293 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2294 * the latter could be true if the filesystem is mounted 2295 * read-only, and in that case, ext4_da_writepages should 2296 * *never* be called, so if that ever happens, we would want 2297 * the stack trace. 2298 */ 2299 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2300 return -EROFS; 2301 2302 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2303 range_whole = 1; 2304 2305 range_cyclic = wbc->range_cyclic; 2306 if (wbc->range_cyclic) { 2307 index = mapping->writeback_index; 2308 if (index) 2309 cycled = 0; 2310 wbc->range_start = index << PAGE_CACHE_SHIFT; 2311 wbc->range_end = LLONG_MAX; 2312 wbc->range_cyclic = 0; 2313 end = -1; 2314 } else { 2315 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2316 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2317 } 2318 2319 /* 2320 * This works around two forms of stupidity. The first is in 2321 * the writeback code, which caps the maximum number of pages 2322 * written to be 1024 pages. This is wrong on multiple 2323 * levels; different architectues have a different page size, 2324 * which changes the maximum amount of data which gets 2325 * written. Secondly, 4 megabytes is way too small. XFS 2326 * forces this value to be 16 megabytes by multiplying 2327 * nr_to_write parameter by four, and then relies on its 2328 * allocator to allocate larger extents to make them 2329 * contiguous. Unfortunately this brings us to the second 2330 * stupidity, which is that ext4's mballoc code only allocates 2331 * at most 2048 blocks. So we force contiguous writes up to 2332 * the number of dirty blocks in the inode, or 2333 * sbi->max_writeback_mb_bump whichever is smaller. 2334 */ 2335 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT); 2336 if (!range_cyclic && range_whole) { 2337 if (wbc->nr_to_write == LONG_MAX) 2338 desired_nr_to_write = wbc->nr_to_write; 2339 else 2340 desired_nr_to_write = wbc->nr_to_write * 8; 2341 } else 2342 desired_nr_to_write = ext4_num_dirty_pages(inode, index, 2343 max_pages); 2344 if (desired_nr_to_write > max_pages) 2345 desired_nr_to_write = max_pages; 2346 2347 if (wbc->nr_to_write < desired_nr_to_write) { 2348 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write; 2349 wbc->nr_to_write = desired_nr_to_write; 2350 } 2351 2352 retry: 2353 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2354 tag_pages_for_writeback(mapping, index, end); 2355 2356 blk_start_plug(&plug); 2357 while (!ret && wbc->nr_to_write > 0) { 2358 2359 /* 2360 * we insert one extent at a time. So we need 2361 * credit needed for single extent allocation. 2362 * journalled mode is currently not supported 2363 * by delalloc 2364 */ 2365 BUG_ON(ext4_should_journal_data(inode)); 2366 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2367 2368 /* start a new transaction*/ 2369 handle = ext4_journal_start(inode, needed_blocks); 2370 if (IS_ERR(handle)) { 2371 ret = PTR_ERR(handle); 2372 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2373 "%ld pages, ino %lu; err %d", __func__, 2374 wbc->nr_to_write, inode->i_ino, ret); 2375 blk_finish_plug(&plug); 2376 goto out_writepages; 2377 } 2378 2379 /* 2380 * Now call write_cache_pages_da() to find the next 2381 * contiguous region of logical blocks that need 2382 * blocks to be allocated by ext4 and submit them. 2383 */ 2384 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index); 2385 /* 2386 * If we have a contiguous extent of pages and we 2387 * haven't done the I/O yet, map the blocks and submit 2388 * them for I/O. 2389 */ 2390 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 2391 mpage_da_map_and_submit(&mpd); 2392 ret = MPAGE_DA_EXTENT_TAIL; 2393 } 2394 trace_ext4_da_write_pages(inode, &mpd); 2395 wbc->nr_to_write -= mpd.pages_written; 2396 2397 ext4_journal_stop(handle); 2398 2399 if ((mpd.retval == -ENOSPC) && sbi->s_journal) { 2400 /* commit the transaction which would 2401 * free blocks released in the transaction 2402 * and try again 2403 */ 2404 jbd2_journal_force_commit_nested(sbi->s_journal); 2405 ret = 0; 2406 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 2407 /* 2408 * Got one extent now try with rest of the pages. 2409 * If mpd.retval is set -EIO, journal is aborted. 2410 * So we don't need to write any more. 2411 */ 2412 pages_written += mpd.pages_written; 2413 ret = mpd.retval; 2414 io_done = 1; 2415 } else if (wbc->nr_to_write) 2416 /* 2417 * There is no more writeout needed 2418 * or we requested for a noblocking writeout 2419 * and we found the device congested 2420 */ 2421 break; 2422 } 2423 blk_finish_plug(&plug); 2424 if (!io_done && !cycled) { 2425 cycled = 1; 2426 index = 0; 2427 wbc->range_start = index << PAGE_CACHE_SHIFT; 2428 wbc->range_end = mapping->writeback_index - 1; 2429 goto retry; 2430 } 2431 2432 /* Update index */ 2433 wbc->range_cyclic = range_cyclic; 2434 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2435 /* 2436 * set the writeback_index so that range_cyclic 2437 * mode will write it back later 2438 */ 2439 mapping->writeback_index = done_index; 2440 2441 out_writepages: 2442 wbc->nr_to_write -= nr_to_writebump; 2443 wbc->range_start = range_start; 2444 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written); 2445 return ret; 2446 } 2447 2448 #define FALL_BACK_TO_NONDELALLOC 1 2449 static int ext4_nonda_switch(struct super_block *sb) 2450 { 2451 s64 free_blocks, dirty_blocks; 2452 struct ext4_sb_info *sbi = EXT4_SB(sb); 2453 2454 /* 2455 * switch to non delalloc mode if we are running low 2456 * on free block. The free block accounting via percpu 2457 * counters can get slightly wrong with percpu_counter_batch getting 2458 * accumulated on each CPU without updating global counters 2459 * Delalloc need an accurate free block accounting. So switch 2460 * to non delalloc when we are near to error range. 2461 */ 2462 free_blocks = EXT4_C2B(sbi, 2463 percpu_counter_read_positive(&sbi->s_freeclusters_counter)); 2464 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2465 /* 2466 * Start pushing delalloc when 1/2 of free blocks are dirty. 2467 */ 2468 if (dirty_blocks && (free_blocks < 2 * dirty_blocks) && 2469 !writeback_in_progress(sb->s_bdi) && 2470 down_read_trylock(&sb->s_umount)) { 2471 writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2472 up_read(&sb->s_umount); 2473 } 2474 2475 if (2 * free_blocks < 3 * dirty_blocks || 2476 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) { 2477 /* 2478 * free block count is less than 150% of dirty blocks 2479 * or free blocks is less than watermark 2480 */ 2481 return 1; 2482 } 2483 return 0; 2484 } 2485 2486 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2487 loff_t pos, unsigned len, unsigned flags, 2488 struct page **pagep, void **fsdata) 2489 { 2490 int ret, retries = 0; 2491 struct page *page; 2492 pgoff_t index; 2493 struct inode *inode = mapping->host; 2494 handle_t *handle; 2495 2496 index = pos >> PAGE_CACHE_SHIFT; 2497 2498 if (ext4_nonda_switch(inode->i_sb)) { 2499 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2500 return ext4_write_begin(file, mapping, pos, 2501 len, flags, pagep, fsdata); 2502 } 2503 *fsdata = (void *)0; 2504 trace_ext4_da_write_begin(inode, pos, len, flags); 2505 retry: 2506 /* 2507 * With delayed allocation, we don't log the i_disksize update 2508 * if there is delayed block allocation. But we still need 2509 * to journalling the i_disksize update if writes to the end 2510 * of file which has an already mapped buffer. 2511 */ 2512 handle = ext4_journal_start(inode, 1); 2513 if (IS_ERR(handle)) { 2514 ret = PTR_ERR(handle); 2515 goto out; 2516 } 2517 /* We cannot recurse into the filesystem as the transaction is already 2518 * started */ 2519 flags |= AOP_FLAG_NOFS; 2520 2521 page = grab_cache_page_write_begin(mapping, index, flags); 2522 if (!page) { 2523 ext4_journal_stop(handle); 2524 ret = -ENOMEM; 2525 goto out; 2526 } 2527 *pagep = page; 2528 2529 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2530 if (ret < 0) { 2531 unlock_page(page); 2532 ext4_journal_stop(handle); 2533 page_cache_release(page); 2534 /* 2535 * block_write_begin may have instantiated a few blocks 2536 * outside i_size. Trim these off again. Don't need 2537 * i_size_read because we hold i_mutex. 2538 */ 2539 if (pos + len > inode->i_size) 2540 ext4_truncate_failed_write(inode); 2541 } 2542 2543 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 2544 goto retry; 2545 out: 2546 return ret; 2547 } 2548 2549 /* 2550 * Check if we should update i_disksize 2551 * when write to the end of file but not require block allocation 2552 */ 2553 static int ext4_da_should_update_i_disksize(struct page *page, 2554 unsigned long offset) 2555 { 2556 struct buffer_head *bh; 2557 struct inode *inode = page->mapping->host; 2558 unsigned int idx; 2559 int i; 2560 2561 bh = page_buffers(page); 2562 idx = offset >> inode->i_blkbits; 2563 2564 for (i = 0; i < idx; i++) 2565 bh = bh->b_this_page; 2566 2567 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2568 return 0; 2569 return 1; 2570 } 2571 2572 static int ext4_da_write_end(struct file *file, 2573 struct address_space *mapping, 2574 loff_t pos, unsigned len, unsigned copied, 2575 struct page *page, void *fsdata) 2576 { 2577 struct inode *inode = mapping->host; 2578 int ret = 0, ret2; 2579 handle_t *handle = ext4_journal_current_handle(); 2580 loff_t new_i_size; 2581 unsigned long start, end; 2582 int write_mode = (int)(unsigned long)fsdata; 2583 2584 if (write_mode == FALL_BACK_TO_NONDELALLOC) { 2585 switch (ext4_inode_journal_mode(inode)) { 2586 case EXT4_INODE_ORDERED_DATA_MODE: 2587 return ext4_ordered_write_end(file, mapping, pos, 2588 len, copied, page, fsdata); 2589 case EXT4_INODE_WRITEBACK_DATA_MODE: 2590 return ext4_writeback_write_end(file, mapping, pos, 2591 len, copied, page, fsdata); 2592 default: 2593 BUG(); 2594 } 2595 } 2596 2597 trace_ext4_da_write_end(inode, pos, len, copied); 2598 start = pos & (PAGE_CACHE_SIZE - 1); 2599 end = start + copied - 1; 2600 2601 /* 2602 * generic_write_end() will run mark_inode_dirty() if i_size 2603 * changes. So let's piggyback the i_disksize mark_inode_dirty 2604 * into that. 2605 */ 2606 2607 new_i_size = pos + copied; 2608 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2609 if (ext4_da_should_update_i_disksize(page, end)) { 2610 down_write(&EXT4_I(inode)->i_data_sem); 2611 if (new_i_size > EXT4_I(inode)->i_disksize) { 2612 /* 2613 * Updating i_disksize when extending file 2614 * without needing block allocation 2615 */ 2616 if (ext4_should_order_data(inode)) 2617 ret = ext4_jbd2_file_inode(handle, 2618 inode); 2619 2620 EXT4_I(inode)->i_disksize = new_i_size; 2621 } 2622 up_write(&EXT4_I(inode)->i_data_sem); 2623 /* We need to mark inode dirty even if 2624 * new_i_size is less that inode->i_size 2625 * bu greater than i_disksize.(hint delalloc) 2626 */ 2627 ext4_mark_inode_dirty(handle, inode); 2628 } 2629 } 2630 ret2 = generic_write_end(file, mapping, pos, len, copied, 2631 page, fsdata); 2632 copied = ret2; 2633 if (ret2 < 0) 2634 ret = ret2; 2635 ret2 = ext4_journal_stop(handle); 2636 if (!ret) 2637 ret = ret2; 2638 2639 return ret ? ret : copied; 2640 } 2641 2642 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 2643 { 2644 /* 2645 * Drop reserved blocks 2646 */ 2647 BUG_ON(!PageLocked(page)); 2648 if (!page_has_buffers(page)) 2649 goto out; 2650 2651 ext4_da_page_release_reservation(page, offset); 2652 2653 out: 2654 ext4_invalidatepage(page, offset); 2655 2656 return; 2657 } 2658 2659 /* 2660 * Force all delayed allocation blocks to be allocated for a given inode. 2661 */ 2662 int ext4_alloc_da_blocks(struct inode *inode) 2663 { 2664 trace_ext4_alloc_da_blocks(inode); 2665 2666 if (!EXT4_I(inode)->i_reserved_data_blocks && 2667 !EXT4_I(inode)->i_reserved_meta_blocks) 2668 return 0; 2669 2670 /* 2671 * We do something simple for now. The filemap_flush() will 2672 * also start triggering a write of the data blocks, which is 2673 * not strictly speaking necessary (and for users of 2674 * laptop_mode, not even desirable). However, to do otherwise 2675 * would require replicating code paths in: 2676 * 2677 * ext4_da_writepages() -> 2678 * write_cache_pages() ---> (via passed in callback function) 2679 * __mpage_da_writepage() --> 2680 * mpage_add_bh_to_extent() 2681 * mpage_da_map_blocks() 2682 * 2683 * The problem is that write_cache_pages(), located in 2684 * mm/page-writeback.c, marks pages clean in preparation for 2685 * doing I/O, which is not desirable if we're not planning on 2686 * doing I/O at all. 2687 * 2688 * We could call write_cache_pages(), and then redirty all of 2689 * the pages by calling redirty_page_for_writepage() but that 2690 * would be ugly in the extreme. So instead we would need to 2691 * replicate parts of the code in the above functions, 2692 * simplifying them because we wouldn't actually intend to 2693 * write out the pages, but rather only collect contiguous 2694 * logical block extents, call the multi-block allocator, and 2695 * then update the buffer heads with the block allocations. 2696 * 2697 * For now, though, we'll cheat by calling filemap_flush(), 2698 * which will map the blocks, and start the I/O, but not 2699 * actually wait for the I/O to complete. 2700 */ 2701 return filemap_flush(inode->i_mapping); 2702 } 2703 2704 /* 2705 * bmap() is special. It gets used by applications such as lilo and by 2706 * the swapper to find the on-disk block of a specific piece of data. 2707 * 2708 * Naturally, this is dangerous if the block concerned is still in the 2709 * journal. If somebody makes a swapfile on an ext4 data-journaling 2710 * filesystem and enables swap, then they may get a nasty shock when the 2711 * data getting swapped to that swapfile suddenly gets overwritten by 2712 * the original zero's written out previously to the journal and 2713 * awaiting writeback in the kernel's buffer cache. 2714 * 2715 * So, if we see any bmap calls here on a modified, data-journaled file, 2716 * take extra steps to flush any blocks which might be in the cache. 2717 */ 2718 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2719 { 2720 struct inode *inode = mapping->host; 2721 journal_t *journal; 2722 int err; 2723 2724 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2725 test_opt(inode->i_sb, DELALLOC)) { 2726 /* 2727 * With delalloc we want to sync the file 2728 * so that we can make sure we allocate 2729 * blocks for file 2730 */ 2731 filemap_write_and_wait(mapping); 2732 } 2733 2734 if (EXT4_JOURNAL(inode) && 2735 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2736 /* 2737 * This is a REALLY heavyweight approach, but the use of 2738 * bmap on dirty files is expected to be extremely rare: 2739 * only if we run lilo or swapon on a freshly made file 2740 * do we expect this to happen. 2741 * 2742 * (bmap requires CAP_SYS_RAWIO so this does not 2743 * represent an unprivileged user DOS attack --- we'd be 2744 * in trouble if mortal users could trigger this path at 2745 * will.) 2746 * 2747 * NB. EXT4_STATE_JDATA is not set on files other than 2748 * regular files. If somebody wants to bmap a directory 2749 * or symlink and gets confused because the buffer 2750 * hasn't yet been flushed to disk, they deserve 2751 * everything they get. 2752 */ 2753 2754 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2755 journal = EXT4_JOURNAL(inode); 2756 jbd2_journal_lock_updates(journal); 2757 err = jbd2_journal_flush(journal); 2758 jbd2_journal_unlock_updates(journal); 2759 2760 if (err) 2761 return 0; 2762 } 2763 2764 return generic_block_bmap(mapping, block, ext4_get_block); 2765 } 2766 2767 static int ext4_readpage(struct file *file, struct page *page) 2768 { 2769 trace_ext4_readpage(page); 2770 return mpage_readpage(page, ext4_get_block); 2771 } 2772 2773 static int 2774 ext4_readpages(struct file *file, struct address_space *mapping, 2775 struct list_head *pages, unsigned nr_pages) 2776 { 2777 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2778 } 2779 2780 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset) 2781 { 2782 struct buffer_head *head, *bh; 2783 unsigned int curr_off = 0; 2784 2785 if (!page_has_buffers(page)) 2786 return; 2787 head = bh = page_buffers(page); 2788 do { 2789 if (offset <= curr_off && test_clear_buffer_uninit(bh) 2790 && bh->b_private) { 2791 ext4_free_io_end(bh->b_private); 2792 bh->b_private = NULL; 2793 bh->b_end_io = NULL; 2794 } 2795 curr_off = curr_off + bh->b_size; 2796 bh = bh->b_this_page; 2797 } while (bh != head); 2798 } 2799 2800 static void ext4_invalidatepage(struct page *page, unsigned long offset) 2801 { 2802 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2803 2804 trace_ext4_invalidatepage(page, offset); 2805 2806 /* 2807 * free any io_end structure allocated for buffers to be discarded 2808 */ 2809 if (ext4_should_dioread_nolock(page->mapping->host)) 2810 ext4_invalidatepage_free_endio(page, offset); 2811 /* 2812 * If it's a full truncate we just forget about the pending dirtying 2813 */ 2814 if (offset == 0) 2815 ClearPageChecked(page); 2816 2817 if (journal) 2818 jbd2_journal_invalidatepage(journal, page, offset); 2819 else 2820 block_invalidatepage(page, offset); 2821 } 2822 2823 static int ext4_releasepage(struct page *page, gfp_t wait) 2824 { 2825 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2826 2827 trace_ext4_releasepage(page); 2828 2829 WARN_ON(PageChecked(page)); 2830 if (!page_has_buffers(page)) 2831 return 0; 2832 if (journal) 2833 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2834 else 2835 return try_to_free_buffers(page); 2836 } 2837 2838 /* 2839 * ext4_get_block used when preparing for a DIO write or buffer write. 2840 * We allocate an uinitialized extent if blocks haven't been allocated. 2841 * The extent will be converted to initialized after the IO is complete. 2842 */ 2843 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 2844 struct buffer_head *bh_result, int create) 2845 { 2846 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 2847 inode->i_ino, create); 2848 return _ext4_get_block(inode, iblock, bh_result, 2849 EXT4_GET_BLOCKS_IO_CREATE_EXT); 2850 } 2851 2852 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 2853 struct buffer_head *bh_result, int flags) 2854 { 2855 handle_t *handle = ext4_journal_current_handle(); 2856 struct ext4_map_blocks map; 2857 int ret = 0; 2858 2859 ext4_debug("ext4_get_block_write_nolock: inode %lu, flag %d\n", 2860 inode->i_ino, flags); 2861 2862 flags = EXT4_GET_BLOCKS_NO_LOCK; 2863 2864 map.m_lblk = iblock; 2865 map.m_len = bh_result->b_size >> inode->i_blkbits; 2866 2867 ret = ext4_map_blocks(handle, inode, &map, flags); 2868 if (ret > 0) { 2869 map_bh(bh_result, inode->i_sb, map.m_pblk); 2870 bh_result->b_state = (bh_result->b_state & ~EXT4_MAP_FLAGS) | 2871 map.m_flags; 2872 bh_result->b_size = inode->i_sb->s_blocksize * map.m_len; 2873 ret = 0; 2874 } 2875 return ret; 2876 } 2877 2878 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 2879 ssize_t size, void *private, int ret, 2880 bool is_async) 2881 { 2882 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode; 2883 ext4_io_end_t *io_end = iocb->private; 2884 2885 /* if not async direct IO or dio with 0 bytes write, just return */ 2886 if (!io_end || !size) 2887 goto out; 2888 2889 ext_debug("ext4_end_io_dio(): io_end 0x%p " 2890 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 2891 iocb->private, io_end->inode->i_ino, iocb, offset, 2892 size); 2893 2894 iocb->private = NULL; 2895 2896 /* if not aio dio with unwritten extents, just free io and return */ 2897 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) { 2898 ext4_free_io_end(io_end); 2899 out: 2900 if (is_async) 2901 aio_complete(iocb, ret, 0); 2902 inode_dio_done(inode); 2903 return; 2904 } 2905 2906 io_end->offset = offset; 2907 io_end->size = size; 2908 if (is_async) { 2909 io_end->iocb = iocb; 2910 io_end->result = ret; 2911 } 2912 2913 ext4_add_complete_io(io_end); 2914 } 2915 2916 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate) 2917 { 2918 ext4_io_end_t *io_end = bh->b_private; 2919 struct inode *inode; 2920 2921 if (!test_clear_buffer_uninit(bh) || !io_end) 2922 goto out; 2923 2924 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) { 2925 ext4_msg(io_end->inode->i_sb, KERN_INFO, 2926 "sb umounted, discard end_io request for inode %lu", 2927 io_end->inode->i_ino); 2928 ext4_free_io_end(io_end); 2929 goto out; 2930 } 2931 2932 /* 2933 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now, 2934 * but being more careful is always safe for the future change. 2935 */ 2936 inode = io_end->inode; 2937 ext4_set_io_unwritten_flag(inode, io_end); 2938 ext4_add_complete_io(io_end); 2939 out: 2940 bh->b_private = NULL; 2941 bh->b_end_io = NULL; 2942 clear_buffer_uninit(bh); 2943 end_buffer_async_write(bh, uptodate); 2944 } 2945 2946 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode) 2947 { 2948 ext4_io_end_t *io_end; 2949 struct page *page = bh->b_page; 2950 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT; 2951 size_t size = bh->b_size; 2952 2953 retry: 2954 io_end = ext4_init_io_end(inode, GFP_ATOMIC); 2955 if (!io_end) { 2956 pr_warn_ratelimited("%s: allocation fail\n", __func__); 2957 schedule(); 2958 goto retry; 2959 } 2960 io_end->offset = offset; 2961 io_end->size = size; 2962 /* 2963 * We need to hold a reference to the page to make sure it 2964 * doesn't get evicted before ext4_end_io_work() has a chance 2965 * to convert the extent from written to unwritten. 2966 */ 2967 io_end->page = page; 2968 get_page(io_end->page); 2969 2970 bh->b_private = io_end; 2971 bh->b_end_io = ext4_end_io_buffer_write; 2972 return 0; 2973 } 2974 2975 /* 2976 * For ext4 extent files, ext4 will do direct-io write to holes, 2977 * preallocated extents, and those write extend the file, no need to 2978 * fall back to buffered IO. 2979 * 2980 * For holes, we fallocate those blocks, mark them as uninitialized 2981 * If those blocks were preallocated, we mark sure they are splited, but 2982 * still keep the range to write as uninitialized. 2983 * 2984 * The unwrritten extents will be converted to written when DIO is completed. 2985 * For async direct IO, since the IO may still pending when return, we 2986 * set up an end_io call back function, which will do the conversion 2987 * when async direct IO completed. 2988 * 2989 * If the O_DIRECT write will extend the file then add this inode to the 2990 * orphan list. So recovery will truncate it back to the original size 2991 * if the machine crashes during the write. 2992 * 2993 */ 2994 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 2995 const struct iovec *iov, loff_t offset, 2996 unsigned long nr_segs) 2997 { 2998 struct file *file = iocb->ki_filp; 2999 struct inode *inode = file->f_mapping->host; 3000 ssize_t ret; 3001 size_t count = iov_length(iov, nr_segs); 3002 3003 loff_t final_size = offset + count; 3004 if (rw == WRITE && final_size <= inode->i_size) { 3005 int overwrite = 0; 3006 3007 BUG_ON(iocb->private == NULL); 3008 3009 /* If we do a overwrite dio, i_mutex locking can be released */ 3010 overwrite = *((int *)iocb->private); 3011 3012 if (overwrite) { 3013 atomic_inc(&inode->i_dio_count); 3014 down_read(&EXT4_I(inode)->i_data_sem); 3015 mutex_unlock(&inode->i_mutex); 3016 } 3017 3018 /* 3019 * We could direct write to holes and fallocate. 3020 * 3021 * Allocated blocks to fill the hole are marked as uninitialized 3022 * to prevent parallel buffered read to expose the stale data 3023 * before DIO complete the data IO. 3024 * 3025 * As to previously fallocated extents, ext4 get_block 3026 * will just simply mark the buffer mapped but still 3027 * keep the extents uninitialized. 3028 * 3029 * for non AIO case, we will convert those unwritten extents 3030 * to written after return back from blockdev_direct_IO. 3031 * 3032 * for async DIO, the conversion needs to be defered when 3033 * the IO is completed. The ext4 end_io callback function 3034 * will be called to take care of the conversion work. 3035 * Here for async case, we allocate an io_end structure to 3036 * hook to the iocb. 3037 */ 3038 iocb->private = NULL; 3039 ext4_inode_aio_set(inode, NULL); 3040 if (!is_sync_kiocb(iocb)) { 3041 ext4_io_end_t *io_end = 3042 ext4_init_io_end(inode, GFP_NOFS); 3043 if (!io_end) { 3044 ret = -ENOMEM; 3045 goto retake_lock; 3046 } 3047 io_end->flag |= EXT4_IO_END_DIRECT; 3048 iocb->private = io_end; 3049 /* 3050 * we save the io structure for current async 3051 * direct IO, so that later ext4_map_blocks() 3052 * could flag the io structure whether there 3053 * is a unwritten extents needs to be converted 3054 * when IO is completed. 3055 */ 3056 ext4_inode_aio_set(inode, io_end); 3057 } 3058 3059 if (overwrite) 3060 ret = __blockdev_direct_IO(rw, iocb, inode, 3061 inode->i_sb->s_bdev, iov, 3062 offset, nr_segs, 3063 ext4_get_block_write_nolock, 3064 ext4_end_io_dio, 3065 NULL, 3066 0); 3067 else 3068 ret = __blockdev_direct_IO(rw, iocb, inode, 3069 inode->i_sb->s_bdev, iov, 3070 offset, nr_segs, 3071 ext4_get_block_write, 3072 ext4_end_io_dio, 3073 NULL, 3074 DIO_LOCKING); 3075 if (iocb->private) 3076 ext4_inode_aio_set(inode, NULL); 3077 /* 3078 * The io_end structure takes a reference to the inode, 3079 * that structure needs to be destroyed and the 3080 * reference to the inode need to be dropped, when IO is 3081 * complete, even with 0 byte write, or failed. 3082 * 3083 * In the successful AIO DIO case, the io_end structure will be 3084 * desctroyed and the reference to the inode will be dropped 3085 * after the end_io call back function is called. 3086 * 3087 * In the case there is 0 byte write, or error case, since 3088 * VFS direct IO won't invoke the end_io call back function, 3089 * we need to free the end_io structure here. 3090 */ 3091 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) { 3092 ext4_free_io_end(iocb->private); 3093 iocb->private = NULL; 3094 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3095 EXT4_STATE_DIO_UNWRITTEN)) { 3096 int err; 3097 /* 3098 * for non AIO case, since the IO is already 3099 * completed, we could do the conversion right here 3100 */ 3101 err = ext4_convert_unwritten_extents(inode, 3102 offset, ret); 3103 if (err < 0) 3104 ret = err; 3105 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3106 } 3107 3108 retake_lock: 3109 /* take i_mutex locking again if we do a ovewrite dio */ 3110 if (overwrite) { 3111 inode_dio_done(inode); 3112 up_read(&EXT4_I(inode)->i_data_sem); 3113 mutex_lock(&inode->i_mutex); 3114 } 3115 3116 return ret; 3117 } 3118 3119 /* for write the the end of file case, we fall back to old way */ 3120 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3121 } 3122 3123 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3124 const struct iovec *iov, loff_t offset, 3125 unsigned long nr_segs) 3126 { 3127 struct file *file = iocb->ki_filp; 3128 struct inode *inode = file->f_mapping->host; 3129 ssize_t ret; 3130 3131 /* 3132 * If we are doing data journalling we don't support O_DIRECT 3133 */ 3134 if (ext4_should_journal_data(inode)) 3135 return 0; 3136 3137 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw); 3138 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3139 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 3140 else 3141 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3142 trace_ext4_direct_IO_exit(inode, offset, 3143 iov_length(iov, nr_segs), rw, ret); 3144 return ret; 3145 } 3146 3147 /* 3148 * Pages can be marked dirty completely asynchronously from ext4's journalling 3149 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3150 * much here because ->set_page_dirty is called under VFS locks. The page is 3151 * not necessarily locked. 3152 * 3153 * We cannot just dirty the page and leave attached buffers clean, because the 3154 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3155 * or jbddirty because all the journalling code will explode. 3156 * 3157 * So what we do is to mark the page "pending dirty" and next time writepage 3158 * is called, propagate that into the buffers appropriately. 3159 */ 3160 static int ext4_journalled_set_page_dirty(struct page *page) 3161 { 3162 SetPageChecked(page); 3163 return __set_page_dirty_nobuffers(page); 3164 } 3165 3166 static const struct address_space_operations ext4_ordered_aops = { 3167 .readpage = ext4_readpage, 3168 .readpages = ext4_readpages, 3169 .writepage = ext4_writepage, 3170 .write_begin = ext4_write_begin, 3171 .write_end = ext4_ordered_write_end, 3172 .bmap = ext4_bmap, 3173 .invalidatepage = ext4_invalidatepage, 3174 .releasepage = ext4_releasepage, 3175 .direct_IO = ext4_direct_IO, 3176 .migratepage = buffer_migrate_page, 3177 .is_partially_uptodate = block_is_partially_uptodate, 3178 .error_remove_page = generic_error_remove_page, 3179 }; 3180 3181 static const struct address_space_operations ext4_writeback_aops = { 3182 .readpage = ext4_readpage, 3183 .readpages = ext4_readpages, 3184 .writepage = ext4_writepage, 3185 .write_begin = ext4_write_begin, 3186 .write_end = ext4_writeback_write_end, 3187 .bmap = ext4_bmap, 3188 .invalidatepage = ext4_invalidatepage, 3189 .releasepage = ext4_releasepage, 3190 .direct_IO = ext4_direct_IO, 3191 .migratepage = buffer_migrate_page, 3192 .is_partially_uptodate = block_is_partially_uptodate, 3193 .error_remove_page = generic_error_remove_page, 3194 }; 3195 3196 static const struct address_space_operations ext4_journalled_aops = { 3197 .readpage = ext4_readpage, 3198 .readpages = ext4_readpages, 3199 .writepage = ext4_writepage, 3200 .write_begin = ext4_write_begin, 3201 .write_end = ext4_journalled_write_end, 3202 .set_page_dirty = ext4_journalled_set_page_dirty, 3203 .bmap = ext4_bmap, 3204 .invalidatepage = ext4_invalidatepage, 3205 .releasepage = ext4_releasepage, 3206 .direct_IO = ext4_direct_IO, 3207 .is_partially_uptodate = block_is_partially_uptodate, 3208 .error_remove_page = generic_error_remove_page, 3209 }; 3210 3211 static const struct address_space_operations ext4_da_aops = { 3212 .readpage = ext4_readpage, 3213 .readpages = ext4_readpages, 3214 .writepage = ext4_writepage, 3215 .writepages = ext4_da_writepages, 3216 .write_begin = ext4_da_write_begin, 3217 .write_end = ext4_da_write_end, 3218 .bmap = ext4_bmap, 3219 .invalidatepage = ext4_da_invalidatepage, 3220 .releasepage = ext4_releasepage, 3221 .direct_IO = ext4_direct_IO, 3222 .migratepage = buffer_migrate_page, 3223 .is_partially_uptodate = block_is_partially_uptodate, 3224 .error_remove_page = generic_error_remove_page, 3225 }; 3226 3227 void ext4_set_aops(struct inode *inode) 3228 { 3229 switch (ext4_inode_journal_mode(inode)) { 3230 case EXT4_INODE_ORDERED_DATA_MODE: 3231 if (test_opt(inode->i_sb, DELALLOC)) 3232 inode->i_mapping->a_ops = &ext4_da_aops; 3233 else 3234 inode->i_mapping->a_ops = &ext4_ordered_aops; 3235 break; 3236 case EXT4_INODE_WRITEBACK_DATA_MODE: 3237 if (test_opt(inode->i_sb, DELALLOC)) 3238 inode->i_mapping->a_ops = &ext4_da_aops; 3239 else 3240 inode->i_mapping->a_ops = &ext4_writeback_aops; 3241 break; 3242 case EXT4_INODE_JOURNAL_DATA_MODE: 3243 inode->i_mapping->a_ops = &ext4_journalled_aops; 3244 break; 3245 default: 3246 BUG(); 3247 } 3248 } 3249 3250 3251 /* 3252 * ext4_discard_partial_page_buffers() 3253 * Wrapper function for ext4_discard_partial_page_buffers_no_lock. 3254 * This function finds and locks the page containing the offset 3255 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock. 3256 * Calling functions that already have the page locked should call 3257 * ext4_discard_partial_page_buffers_no_lock directly. 3258 */ 3259 int ext4_discard_partial_page_buffers(handle_t *handle, 3260 struct address_space *mapping, loff_t from, 3261 loff_t length, int flags) 3262 { 3263 struct inode *inode = mapping->host; 3264 struct page *page; 3265 int err = 0; 3266 3267 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3268 mapping_gfp_mask(mapping) & ~__GFP_FS); 3269 if (!page) 3270 return -ENOMEM; 3271 3272 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page, 3273 from, length, flags); 3274 3275 unlock_page(page); 3276 page_cache_release(page); 3277 return err; 3278 } 3279 3280 /* 3281 * ext4_discard_partial_page_buffers_no_lock() 3282 * Zeros a page range of length 'length' starting from offset 'from'. 3283 * Buffer heads that correspond to the block aligned regions of the 3284 * zeroed range will be unmapped. Unblock aligned regions 3285 * will have the corresponding buffer head mapped if needed so that 3286 * that region of the page can be updated with the partial zero out. 3287 * 3288 * This function assumes that the page has already been locked. The 3289 * The range to be discarded must be contained with in the given page. 3290 * If the specified range exceeds the end of the page it will be shortened 3291 * to the end of the page that corresponds to 'from'. This function is 3292 * appropriate for updating a page and it buffer heads to be unmapped and 3293 * zeroed for blocks that have been either released, or are going to be 3294 * released. 3295 * 3296 * handle: The journal handle 3297 * inode: The files inode 3298 * page: A locked page that contains the offset "from" 3299 * from: The starting byte offset (from the beginning of the file) 3300 * to begin discarding 3301 * len: The length of bytes to discard 3302 * flags: Optional flags that may be used: 3303 * 3304 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED 3305 * Only zero the regions of the page whose buffer heads 3306 * have already been unmapped. This flag is appropriate 3307 * for updating the contents of a page whose blocks may 3308 * have already been released, and we only want to zero 3309 * out the regions that correspond to those released blocks. 3310 * 3311 * Returns zero on success or negative on failure. 3312 */ 3313 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle, 3314 struct inode *inode, struct page *page, loff_t from, 3315 loff_t length, int flags) 3316 { 3317 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3318 unsigned int offset = from & (PAGE_CACHE_SIZE-1); 3319 unsigned int blocksize, max, pos; 3320 ext4_lblk_t iblock; 3321 struct buffer_head *bh; 3322 int err = 0; 3323 3324 blocksize = inode->i_sb->s_blocksize; 3325 max = PAGE_CACHE_SIZE - offset; 3326 3327 if (index != page->index) 3328 return -EINVAL; 3329 3330 /* 3331 * correct length if it does not fall between 3332 * 'from' and the end of the page 3333 */ 3334 if (length > max || length < 0) 3335 length = max; 3336 3337 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3338 3339 if (!page_has_buffers(page)) 3340 create_empty_buffers(page, blocksize, 0); 3341 3342 /* Find the buffer that contains "offset" */ 3343 bh = page_buffers(page); 3344 pos = blocksize; 3345 while (offset >= pos) { 3346 bh = bh->b_this_page; 3347 iblock++; 3348 pos += blocksize; 3349 } 3350 3351 pos = offset; 3352 while (pos < offset + length) { 3353 unsigned int end_of_block, range_to_discard; 3354 3355 err = 0; 3356 3357 /* The length of space left to zero and unmap */ 3358 range_to_discard = offset + length - pos; 3359 3360 /* The length of space until the end of the block */ 3361 end_of_block = blocksize - (pos & (blocksize-1)); 3362 3363 /* 3364 * Do not unmap or zero past end of block 3365 * for this buffer head 3366 */ 3367 if (range_to_discard > end_of_block) 3368 range_to_discard = end_of_block; 3369 3370 3371 /* 3372 * Skip this buffer head if we are only zeroing unampped 3373 * regions of the page 3374 */ 3375 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED && 3376 buffer_mapped(bh)) 3377 goto next; 3378 3379 /* If the range is block aligned, unmap */ 3380 if (range_to_discard == blocksize) { 3381 clear_buffer_dirty(bh); 3382 bh->b_bdev = NULL; 3383 clear_buffer_mapped(bh); 3384 clear_buffer_req(bh); 3385 clear_buffer_new(bh); 3386 clear_buffer_delay(bh); 3387 clear_buffer_unwritten(bh); 3388 clear_buffer_uptodate(bh); 3389 zero_user(page, pos, range_to_discard); 3390 BUFFER_TRACE(bh, "Buffer discarded"); 3391 goto next; 3392 } 3393 3394 /* 3395 * If this block is not completely contained in the range 3396 * to be discarded, then it is not going to be released. Because 3397 * we need to keep this block, we need to make sure this part 3398 * of the page is uptodate before we modify it by writeing 3399 * partial zeros on it. 3400 */ 3401 if (!buffer_mapped(bh)) { 3402 /* 3403 * Buffer head must be mapped before we can read 3404 * from the block 3405 */ 3406 BUFFER_TRACE(bh, "unmapped"); 3407 ext4_get_block(inode, iblock, bh, 0); 3408 /* unmapped? It's a hole - nothing to do */ 3409 if (!buffer_mapped(bh)) { 3410 BUFFER_TRACE(bh, "still unmapped"); 3411 goto next; 3412 } 3413 } 3414 3415 /* Ok, it's mapped. Make sure it's up-to-date */ 3416 if (PageUptodate(page)) 3417 set_buffer_uptodate(bh); 3418 3419 if (!buffer_uptodate(bh)) { 3420 err = -EIO; 3421 ll_rw_block(READ, 1, &bh); 3422 wait_on_buffer(bh); 3423 /* Uhhuh. Read error. Complain and punt.*/ 3424 if (!buffer_uptodate(bh)) 3425 goto next; 3426 } 3427 3428 if (ext4_should_journal_data(inode)) { 3429 BUFFER_TRACE(bh, "get write access"); 3430 err = ext4_journal_get_write_access(handle, bh); 3431 if (err) 3432 goto next; 3433 } 3434 3435 zero_user(page, pos, range_to_discard); 3436 3437 err = 0; 3438 if (ext4_should_journal_data(inode)) { 3439 err = ext4_handle_dirty_metadata(handle, inode, bh); 3440 } else 3441 mark_buffer_dirty(bh); 3442 3443 BUFFER_TRACE(bh, "Partial buffer zeroed"); 3444 next: 3445 bh = bh->b_this_page; 3446 iblock++; 3447 pos += range_to_discard; 3448 } 3449 3450 return err; 3451 } 3452 3453 int ext4_can_truncate(struct inode *inode) 3454 { 3455 if (S_ISREG(inode->i_mode)) 3456 return 1; 3457 if (S_ISDIR(inode->i_mode)) 3458 return 1; 3459 if (S_ISLNK(inode->i_mode)) 3460 return !ext4_inode_is_fast_symlink(inode); 3461 return 0; 3462 } 3463 3464 /* 3465 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3466 * associated with the given offset and length 3467 * 3468 * @inode: File inode 3469 * @offset: The offset where the hole will begin 3470 * @len: The length of the hole 3471 * 3472 * Returns: 0 on success or negative on failure 3473 */ 3474 3475 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3476 { 3477 struct inode *inode = file->f_path.dentry->d_inode; 3478 if (!S_ISREG(inode->i_mode)) 3479 return -EOPNOTSUPP; 3480 3481 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 3482 /* TODO: Add support for non extent hole punching */ 3483 return -EOPNOTSUPP; 3484 } 3485 3486 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) { 3487 /* TODO: Add support for bigalloc file systems */ 3488 return -EOPNOTSUPP; 3489 } 3490 3491 return ext4_ext_punch_hole(file, offset, length); 3492 } 3493 3494 /* 3495 * ext4_truncate() 3496 * 3497 * We block out ext4_get_block() block instantiations across the entire 3498 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3499 * simultaneously on behalf of the same inode. 3500 * 3501 * As we work through the truncate and commit bits of it to the journal there 3502 * is one core, guiding principle: the file's tree must always be consistent on 3503 * disk. We must be able to restart the truncate after a crash. 3504 * 3505 * The file's tree may be transiently inconsistent in memory (although it 3506 * probably isn't), but whenever we close off and commit a journal transaction, 3507 * the contents of (the filesystem + the journal) must be consistent and 3508 * restartable. It's pretty simple, really: bottom up, right to left (although 3509 * left-to-right works OK too). 3510 * 3511 * Note that at recovery time, journal replay occurs *before* the restart of 3512 * truncate against the orphan inode list. 3513 * 3514 * The committed inode has the new, desired i_size (which is the same as 3515 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3516 * that this inode's truncate did not complete and it will again call 3517 * ext4_truncate() to have another go. So there will be instantiated blocks 3518 * to the right of the truncation point in a crashed ext4 filesystem. But 3519 * that's fine - as long as they are linked from the inode, the post-crash 3520 * ext4_truncate() run will find them and release them. 3521 */ 3522 void ext4_truncate(struct inode *inode) 3523 { 3524 trace_ext4_truncate_enter(inode); 3525 3526 if (!ext4_can_truncate(inode)) 3527 return; 3528 3529 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3530 3531 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3532 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3533 3534 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3535 ext4_ext_truncate(inode); 3536 else 3537 ext4_ind_truncate(inode); 3538 3539 trace_ext4_truncate_exit(inode); 3540 } 3541 3542 /* 3543 * ext4_get_inode_loc returns with an extra refcount against the inode's 3544 * underlying buffer_head on success. If 'in_mem' is true, we have all 3545 * data in memory that is needed to recreate the on-disk version of this 3546 * inode. 3547 */ 3548 static int __ext4_get_inode_loc(struct inode *inode, 3549 struct ext4_iloc *iloc, int in_mem) 3550 { 3551 struct ext4_group_desc *gdp; 3552 struct buffer_head *bh; 3553 struct super_block *sb = inode->i_sb; 3554 ext4_fsblk_t block; 3555 int inodes_per_block, inode_offset; 3556 3557 iloc->bh = NULL; 3558 if (!ext4_valid_inum(sb, inode->i_ino)) 3559 return -EIO; 3560 3561 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3562 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3563 if (!gdp) 3564 return -EIO; 3565 3566 /* 3567 * Figure out the offset within the block group inode table 3568 */ 3569 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3570 inode_offset = ((inode->i_ino - 1) % 3571 EXT4_INODES_PER_GROUP(sb)); 3572 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3573 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3574 3575 bh = sb_getblk(sb, block); 3576 if (!bh) { 3577 EXT4_ERROR_INODE_BLOCK(inode, block, 3578 "unable to read itable block"); 3579 return -EIO; 3580 } 3581 if (!buffer_uptodate(bh)) { 3582 lock_buffer(bh); 3583 3584 /* 3585 * If the buffer has the write error flag, we have failed 3586 * to write out another inode in the same block. In this 3587 * case, we don't have to read the block because we may 3588 * read the old inode data successfully. 3589 */ 3590 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3591 set_buffer_uptodate(bh); 3592 3593 if (buffer_uptodate(bh)) { 3594 /* someone brought it uptodate while we waited */ 3595 unlock_buffer(bh); 3596 goto has_buffer; 3597 } 3598 3599 /* 3600 * If we have all information of the inode in memory and this 3601 * is the only valid inode in the block, we need not read the 3602 * block. 3603 */ 3604 if (in_mem) { 3605 struct buffer_head *bitmap_bh; 3606 int i, start; 3607 3608 start = inode_offset & ~(inodes_per_block - 1); 3609 3610 /* Is the inode bitmap in cache? */ 3611 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3612 if (!bitmap_bh) 3613 goto make_io; 3614 3615 /* 3616 * If the inode bitmap isn't in cache then the 3617 * optimisation may end up performing two reads instead 3618 * of one, so skip it. 3619 */ 3620 if (!buffer_uptodate(bitmap_bh)) { 3621 brelse(bitmap_bh); 3622 goto make_io; 3623 } 3624 for (i = start; i < start + inodes_per_block; i++) { 3625 if (i == inode_offset) 3626 continue; 3627 if (ext4_test_bit(i, bitmap_bh->b_data)) 3628 break; 3629 } 3630 brelse(bitmap_bh); 3631 if (i == start + inodes_per_block) { 3632 /* all other inodes are free, so skip I/O */ 3633 memset(bh->b_data, 0, bh->b_size); 3634 set_buffer_uptodate(bh); 3635 unlock_buffer(bh); 3636 goto has_buffer; 3637 } 3638 } 3639 3640 make_io: 3641 /* 3642 * If we need to do any I/O, try to pre-readahead extra 3643 * blocks from the inode table. 3644 */ 3645 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3646 ext4_fsblk_t b, end, table; 3647 unsigned num; 3648 3649 table = ext4_inode_table(sb, gdp); 3650 /* s_inode_readahead_blks is always a power of 2 */ 3651 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1); 3652 if (table > b) 3653 b = table; 3654 end = b + EXT4_SB(sb)->s_inode_readahead_blks; 3655 num = EXT4_INODES_PER_GROUP(sb); 3656 if (ext4_has_group_desc_csum(sb)) 3657 num -= ext4_itable_unused_count(sb, gdp); 3658 table += num / inodes_per_block; 3659 if (end > table) 3660 end = table; 3661 while (b <= end) 3662 sb_breadahead(sb, b++); 3663 } 3664 3665 /* 3666 * There are other valid inodes in the buffer, this inode 3667 * has in-inode xattrs, or we don't have this inode in memory. 3668 * Read the block from disk. 3669 */ 3670 trace_ext4_load_inode(inode); 3671 get_bh(bh); 3672 bh->b_end_io = end_buffer_read_sync; 3673 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3674 wait_on_buffer(bh); 3675 if (!buffer_uptodate(bh)) { 3676 EXT4_ERROR_INODE_BLOCK(inode, block, 3677 "unable to read itable block"); 3678 brelse(bh); 3679 return -EIO; 3680 } 3681 } 3682 has_buffer: 3683 iloc->bh = bh; 3684 return 0; 3685 } 3686 3687 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3688 { 3689 /* We have all inode data except xattrs in memory here. */ 3690 return __ext4_get_inode_loc(inode, iloc, 3691 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3692 } 3693 3694 void ext4_set_inode_flags(struct inode *inode) 3695 { 3696 unsigned int flags = EXT4_I(inode)->i_flags; 3697 3698 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3699 if (flags & EXT4_SYNC_FL) 3700 inode->i_flags |= S_SYNC; 3701 if (flags & EXT4_APPEND_FL) 3702 inode->i_flags |= S_APPEND; 3703 if (flags & EXT4_IMMUTABLE_FL) 3704 inode->i_flags |= S_IMMUTABLE; 3705 if (flags & EXT4_NOATIME_FL) 3706 inode->i_flags |= S_NOATIME; 3707 if (flags & EXT4_DIRSYNC_FL) 3708 inode->i_flags |= S_DIRSYNC; 3709 } 3710 3711 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3712 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3713 { 3714 unsigned int vfs_fl; 3715 unsigned long old_fl, new_fl; 3716 3717 do { 3718 vfs_fl = ei->vfs_inode.i_flags; 3719 old_fl = ei->i_flags; 3720 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3721 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3722 EXT4_DIRSYNC_FL); 3723 if (vfs_fl & S_SYNC) 3724 new_fl |= EXT4_SYNC_FL; 3725 if (vfs_fl & S_APPEND) 3726 new_fl |= EXT4_APPEND_FL; 3727 if (vfs_fl & S_IMMUTABLE) 3728 new_fl |= EXT4_IMMUTABLE_FL; 3729 if (vfs_fl & S_NOATIME) 3730 new_fl |= EXT4_NOATIME_FL; 3731 if (vfs_fl & S_DIRSYNC) 3732 new_fl |= EXT4_DIRSYNC_FL; 3733 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3734 } 3735 3736 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3737 struct ext4_inode_info *ei) 3738 { 3739 blkcnt_t i_blocks ; 3740 struct inode *inode = &(ei->vfs_inode); 3741 struct super_block *sb = inode->i_sb; 3742 3743 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3744 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3745 /* we are using combined 48 bit field */ 3746 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3747 le32_to_cpu(raw_inode->i_blocks_lo); 3748 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 3749 /* i_blocks represent file system block size */ 3750 return i_blocks << (inode->i_blkbits - 9); 3751 } else { 3752 return i_blocks; 3753 } 3754 } else { 3755 return le32_to_cpu(raw_inode->i_blocks_lo); 3756 } 3757 } 3758 3759 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 3760 { 3761 struct ext4_iloc iloc; 3762 struct ext4_inode *raw_inode; 3763 struct ext4_inode_info *ei; 3764 struct inode *inode; 3765 journal_t *journal = EXT4_SB(sb)->s_journal; 3766 long ret; 3767 int block; 3768 uid_t i_uid; 3769 gid_t i_gid; 3770 3771 inode = iget_locked(sb, ino); 3772 if (!inode) 3773 return ERR_PTR(-ENOMEM); 3774 if (!(inode->i_state & I_NEW)) 3775 return inode; 3776 3777 ei = EXT4_I(inode); 3778 iloc.bh = NULL; 3779 3780 ret = __ext4_get_inode_loc(inode, &iloc, 0); 3781 if (ret < 0) 3782 goto bad_inode; 3783 raw_inode = ext4_raw_inode(&iloc); 3784 3785 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3786 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 3787 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 3788 EXT4_INODE_SIZE(inode->i_sb)) { 3789 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 3790 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 3791 EXT4_INODE_SIZE(inode->i_sb)); 3792 ret = -EIO; 3793 goto bad_inode; 3794 } 3795 } else 3796 ei->i_extra_isize = 0; 3797 3798 /* Precompute checksum seed for inode metadata */ 3799 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3800 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3801 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3802 __u32 csum; 3803 __le32 inum = cpu_to_le32(inode->i_ino); 3804 __le32 gen = raw_inode->i_generation; 3805 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 3806 sizeof(inum)); 3807 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 3808 sizeof(gen)); 3809 } 3810 3811 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 3812 EXT4_ERROR_INODE(inode, "checksum invalid"); 3813 ret = -EIO; 3814 goto bad_inode; 3815 } 3816 3817 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 3818 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 3819 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 3820 if (!(test_opt(inode->i_sb, NO_UID32))) { 3821 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 3822 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 3823 } 3824 i_uid_write(inode, i_uid); 3825 i_gid_write(inode, i_gid); 3826 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 3827 3828 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 3829 ei->i_dir_start_lookup = 0; 3830 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 3831 /* We now have enough fields to check if the inode was active or not. 3832 * This is needed because nfsd might try to access dead inodes 3833 * the test is that same one that e2fsck uses 3834 * NeilBrown 1999oct15 3835 */ 3836 if (inode->i_nlink == 0) { 3837 if (inode->i_mode == 0 || 3838 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 3839 /* this inode is deleted */ 3840 ret = -ESTALE; 3841 goto bad_inode; 3842 } 3843 /* The only unlinked inodes we let through here have 3844 * valid i_mode and are being read by the orphan 3845 * recovery code: that's fine, we're about to complete 3846 * the process of deleting those. */ 3847 } 3848 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 3849 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 3850 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 3851 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 3852 ei->i_file_acl |= 3853 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 3854 inode->i_size = ext4_isize(raw_inode); 3855 ei->i_disksize = inode->i_size; 3856 #ifdef CONFIG_QUOTA 3857 ei->i_reserved_quota = 0; 3858 #endif 3859 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 3860 ei->i_block_group = iloc.block_group; 3861 ei->i_last_alloc_group = ~0; 3862 /* 3863 * NOTE! The in-memory inode i_data array is in little-endian order 3864 * even on big-endian machines: we do NOT byteswap the block numbers! 3865 */ 3866 for (block = 0; block < EXT4_N_BLOCKS; block++) 3867 ei->i_data[block] = raw_inode->i_block[block]; 3868 INIT_LIST_HEAD(&ei->i_orphan); 3869 3870 /* 3871 * Set transaction id's of transactions that have to be committed 3872 * to finish f[data]sync. We set them to currently running transaction 3873 * as we cannot be sure that the inode or some of its metadata isn't 3874 * part of the transaction - the inode could have been reclaimed and 3875 * now it is reread from disk. 3876 */ 3877 if (journal) { 3878 transaction_t *transaction; 3879 tid_t tid; 3880 3881 read_lock(&journal->j_state_lock); 3882 if (journal->j_running_transaction) 3883 transaction = journal->j_running_transaction; 3884 else 3885 transaction = journal->j_committing_transaction; 3886 if (transaction) 3887 tid = transaction->t_tid; 3888 else 3889 tid = journal->j_commit_sequence; 3890 read_unlock(&journal->j_state_lock); 3891 ei->i_sync_tid = tid; 3892 ei->i_datasync_tid = tid; 3893 } 3894 3895 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3896 if (ei->i_extra_isize == 0) { 3897 /* The extra space is currently unused. Use it. */ 3898 ei->i_extra_isize = sizeof(struct ext4_inode) - 3899 EXT4_GOOD_OLD_INODE_SIZE; 3900 } else { 3901 __le32 *magic = (void *)raw_inode + 3902 EXT4_GOOD_OLD_INODE_SIZE + 3903 ei->i_extra_isize; 3904 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 3905 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 3906 } 3907 } 3908 3909 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 3910 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 3911 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 3912 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 3913 3914 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 3915 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3916 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 3917 inode->i_version |= 3918 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 3919 } 3920 3921 ret = 0; 3922 if (ei->i_file_acl && 3923 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 3924 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 3925 ei->i_file_acl); 3926 ret = -EIO; 3927 goto bad_inode; 3928 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 3929 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 3930 (S_ISLNK(inode->i_mode) && 3931 !ext4_inode_is_fast_symlink(inode))) 3932 /* Validate extent which is part of inode */ 3933 ret = ext4_ext_check_inode(inode); 3934 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 3935 (S_ISLNK(inode->i_mode) && 3936 !ext4_inode_is_fast_symlink(inode))) { 3937 /* Validate block references which are part of inode */ 3938 ret = ext4_ind_check_inode(inode); 3939 } 3940 if (ret) 3941 goto bad_inode; 3942 3943 if (S_ISREG(inode->i_mode)) { 3944 inode->i_op = &ext4_file_inode_operations; 3945 inode->i_fop = &ext4_file_operations; 3946 ext4_set_aops(inode); 3947 } else if (S_ISDIR(inode->i_mode)) { 3948 inode->i_op = &ext4_dir_inode_operations; 3949 inode->i_fop = &ext4_dir_operations; 3950 } else if (S_ISLNK(inode->i_mode)) { 3951 if (ext4_inode_is_fast_symlink(inode)) { 3952 inode->i_op = &ext4_fast_symlink_inode_operations; 3953 nd_terminate_link(ei->i_data, inode->i_size, 3954 sizeof(ei->i_data) - 1); 3955 } else { 3956 inode->i_op = &ext4_symlink_inode_operations; 3957 ext4_set_aops(inode); 3958 } 3959 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 3960 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 3961 inode->i_op = &ext4_special_inode_operations; 3962 if (raw_inode->i_block[0]) 3963 init_special_inode(inode, inode->i_mode, 3964 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 3965 else 3966 init_special_inode(inode, inode->i_mode, 3967 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 3968 } else { 3969 ret = -EIO; 3970 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 3971 goto bad_inode; 3972 } 3973 brelse(iloc.bh); 3974 ext4_set_inode_flags(inode); 3975 unlock_new_inode(inode); 3976 return inode; 3977 3978 bad_inode: 3979 brelse(iloc.bh); 3980 iget_failed(inode); 3981 return ERR_PTR(ret); 3982 } 3983 3984 static int ext4_inode_blocks_set(handle_t *handle, 3985 struct ext4_inode *raw_inode, 3986 struct ext4_inode_info *ei) 3987 { 3988 struct inode *inode = &(ei->vfs_inode); 3989 u64 i_blocks = inode->i_blocks; 3990 struct super_block *sb = inode->i_sb; 3991 3992 if (i_blocks <= ~0U) { 3993 /* 3994 * i_blocks can be represented in a 32 bit variable 3995 * as multiple of 512 bytes 3996 */ 3997 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3998 raw_inode->i_blocks_high = 0; 3999 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4000 return 0; 4001 } 4002 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4003 return -EFBIG; 4004 4005 if (i_blocks <= 0xffffffffffffULL) { 4006 /* 4007 * i_blocks can be represented in a 48 bit variable 4008 * as multiple of 512 bytes 4009 */ 4010 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4011 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4012 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4013 } else { 4014 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4015 /* i_block is stored in file system block size */ 4016 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4017 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4018 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4019 } 4020 return 0; 4021 } 4022 4023 /* 4024 * Post the struct inode info into an on-disk inode location in the 4025 * buffer-cache. This gobbles the caller's reference to the 4026 * buffer_head in the inode location struct. 4027 * 4028 * The caller must have write access to iloc->bh. 4029 */ 4030 static int ext4_do_update_inode(handle_t *handle, 4031 struct inode *inode, 4032 struct ext4_iloc *iloc) 4033 { 4034 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4035 struct ext4_inode_info *ei = EXT4_I(inode); 4036 struct buffer_head *bh = iloc->bh; 4037 int err = 0, rc, block; 4038 int need_datasync = 0; 4039 uid_t i_uid; 4040 gid_t i_gid; 4041 4042 /* For fields not not tracking in the in-memory inode, 4043 * initialise them to zero for new inodes. */ 4044 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4045 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4046 4047 ext4_get_inode_flags(ei); 4048 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4049 i_uid = i_uid_read(inode); 4050 i_gid = i_gid_read(inode); 4051 if (!(test_opt(inode->i_sb, NO_UID32))) { 4052 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4053 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4054 /* 4055 * Fix up interoperability with old kernels. Otherwise, old inodes get 4056 * re-used with the upper 16 bits of the uid/gid intact 4057 */ 4058 if (!ei->i_dtime) { 4059 raw_inode->i_uid_high = 4060 cpu_to_le16(high_16_bits(i_uid)); 4061 raw_inode->i_gid_high = 4062 cpu_to_le16(high_16_bits(i_gid)); 4063 } else { 4064 raw_inode->i_uid_high = 0; 4065 raw_inode->i_gid_high = 0; 4066 } 4067 } else { 4068 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4069 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4070 raw_inode->i_uid_high = 0; 4071 raw_inode->i_gid_high = 0; 4072 } 4073 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4074 4075 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4076 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4077 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4078 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4079 4080 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 4081 goto out_brelse; 4082 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4083 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4084 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4085 cpu_to_le32(EXT4_OS_HURD)) 4086 raw_inode->i_file_acl_high = 4087 cpu_to_le16(ei->i_file_acl >> 32); 4088 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4089 if (ei->i_disksize != ext4_isize(raw_inode)) { 4090 ext4_isize_set(raw_inode, ei->i_disksize); 4091 need_datasync = 1; 4092 } 4093 if (ei->i_disksize > 0x7fffffffULL) { 4094 struct super_block *sb = inode->i_sb; 4095 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4096 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4097 EXT4_SB(sb)->s_es->s_rev_level == 4098 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 4099 /* If this is the first large file 4100 * created, add a flag to the superblock. 4101 */ 4102 err = ext4_journal_get_write_access(handle, 4103 EXT4_SB(sb)->s_sbh); 4104 if (err) 4105 goto out_brelse; 4106 ext4_update_dynamic_rev(sb); 4107 EXT4_SET_RO_COMPAT_FEATURE(sb, 4108 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4109 ext4_handle_sync(handle); 4110 err = ext4_handle_dirty_super(handle, sb); 4111 } 4112 } 4113 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4114 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4115 if (old_valid_dev(inode->i_rdev)) { 4116 raw_inode->i_block[0] = 4117 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4118 raw_inode->i_block[1] = 0; 4119 } else { 4120 raw_inode->i_block[0] = 0; 4121 raw_inode->i_block[1] = 4122 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4123 raw_inode->i_block[2] = 0; 4124 } 4125 } else 4126 for (block = 0; block < EXT4_N_BLOCKS; block++) 4127 raw_inode->i_block[block] = ei->i_data[block]; 4128 4129 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4130 if (ei->i_extra_isize) { 4131 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4132 raw_inode->i_version_hi = 4133 cpu_to_le32(inode->i_version >> 32); 4134 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 4135 } 4136 4137 ext4_inode_csum_set(inode, raw_inode, ei); 4138 4139 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4140 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4141 if (!err) 4142 err = rc; 4143 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4144 4145 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4146 out_brelse: 4147 brelse(bh); 4148 ext4_std_error(inode->i_sb, err); 4149 return err; 4150 } 4151 4152 /* 4153 * ext4_write_inode() 4154 * 4155 * We are called from a few places: 4156 * 4157 * - Within generic_file_write() for O_SYNC files. 4158 * Here, there will be no transaction running. We wait for any running 4159 * transaction to commit. 4160 * 4161 * - Within sys_sync(), kupdate and such. 4162 * We wait on commit, if tol to. 4163 * 4164 * - Within prune_icache() (PF_MEMALLOC == true) 4165 * Here we simply return. We can't afford to block kswapd on the 4166 * journal commit. 4167 * 4168 * In all cases it is actually safe for us to return without doing anything, 4169 * because the inode has been copied into a raw inode buffer in 4170 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 4171 * knfsd. 4172 * 4173 * Note that we are absolutely dependent upon all inode dirtiers doing the 4174 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4175 * which we are interested. 4176 * 4177 * It would be a bug for them to not do this. The code: 4178 * 4179 * mark_inode_dirty(inode) 4180 * stuff(); 4181 * inode->i_size = expr; 4182 * 4183 * is in error because a kswapd-driven write_inode() could occur while 4184 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4185 * will no longer be on the superblock's dirty inode list. 4186 */ 4187 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4188 { 4189 int err; 4190 4191 if (current->flags & PF_MEMALLOC) 4192 return 0; 4193 4194 if (EXT4_SB(inode->i_sb)->s_journal) { 4195 if (ext4_journal_current_handle()) { 4196 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4197 dump_stack(); 4198 return -EIO; 4199 } 4200 4201 if (wbc->sync_mode != WB_SYNC_ALL) 4202 return 0; 4203 4204 err = ext4_force_commit(inode->i_sb); 4205 } else { 4206 struct ext4_iloc iloc; 4207 4208 err = __ext4_get_inode_loc(inode, &iloc, 0); 4209 if (err) 4210 return err; 4211 if (wbc->sync_mode == WB_SYNC_ALL) 4212 sync_dirty_buffer(iloc.bh); 4213 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4214 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4215 "IO error syncing inode"); 4216 err = -EIO; 4217 } 4218 brelse(iloc.bh); 4219 } 4220 return err; 4221 } 4222 4223 /* 4224 * ext4_setattr() 4225 * 4226 * Called from notify_change. 4227 * 4228 * We want to trap VFS attempts to truncate the file as soon as 4229 * possible. In particular, we want to make sure that when the VFS 4230 * shrinks i_size, we put the inode on the orphan list and modify 4231 * i_disksize immediately, so that during the subsequent flushing of 4232 * dirty pages and freeing of disk blocks, we can guarantee that any 4233 * commit will leave the blocks being flushed in an unused state on 4234 * disk. (On recovery, the inode will get truncated and the blocks will 4235 * be freed, so we have a strong guarantee that no future commit will 4236 * leave these blocks visible to the user.) 4237 * 4238 * Another thing we have to assure is that if we are in ordered mode 4239 * and inode is still attached to the committing transaction, we must 4240 * we start writeout of all the dirty pages which are being truncated. 4241 * This way we are sure that all the data written in the previous 4242 * transaction are already on disk (truncate waits for pages under 4243 * writeback). 4244 * 4245 * Called with inode->i_mutex down. 4246 */ 4247 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4248 { 4249 struct inode *inode = dentry->d_inode; 4250 int error, rc = 0; 4251 int orphan = 0; 4252 const unsigned int ia_valid = attr->ia_valid; 4253 4254 error = inode_change_ok(inode, attr); 4255 if (error) 4256 return error; 4257 4258 if (is_quota_modification(inode, attr)) 4259 dquot_initialize(inode); 4260 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4261 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4262 handle_t *handle; 4263 4264 /* (user+group)*(old+new) structure, inode write (sb, 4265 * inode block, ? - but truncate inode update has it) */ 4266 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+ 4267 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3); 4268 if (IS_ERR(handle)) { 4269 error = PTR_ERR(handle); 4270 goto err_out; 4271 } 4272 error = dquot_transfer(inode, attr); 4273 if (error) { 4274 ext4_journal_stop(handle); 4275 return error; 4276 } 4277 /* Update corresponding info in inode so that everything is in 4278 * one transaction */ 4279 if (attr->ia_valid & ATTR_UID) 4280 inode->i_uid = attr->ia_uid; 4281 if (attr->ia_valid & ATTR_GID) 4282 inode->i_gid = attr->ia_gid; 4283 error = ext4_mark_inode_dirty(handle, inode); 4284 ext4_journal_stop(handle); 4285 } 4286 4287 if (attr->ia_valid & ATTR_SIZE) { 4288 4289 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4290 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4291 4292 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4293 return -EFBIG; 4294 } 4295 } 4296 4297 if (S_ISREG(inode->i_mode) && 4298 attr->ia_valid & ATTR_SIZE && 4299 (attr->ia_size < inode->i_size)) { 4300 handle_t *handle; 4301 4302 handle = ext4_journal_start(inode, 3); 4303 if (IS_ERR(handle)) { 4304 error = PTR_ERR(handle); 4305 goto err_out; 4306 } 4307 if (ext4_handle_valid(handle)) { 4308 error = ext4_orphan_add(handle, inode); 4309 orphan = 1; 4310 } 4311 EXT4_I(inode)->i_disksize = attr->ia_size; 4312 rc = ext4_mark_inode_dirty(handle, inode); 4313 if (!error) 4314 error = rc; 4315 ext4_journal_stop(handle); 4316 4317 if (ext4_should_order_data(inode)) { 4318 error = ext4_begin_ordered_truncate(inode, 4319 attr->ia_size); 4320 if (error) { 4321 /* Do as much error cleanup as possible */ 4322 handle = ext4_journal_start(inode, 3); 4323 if (IS_ERR(handle)) { 4324 ext4_orphan_del(NULL, inode); 4325 goto err_out; 4326 } 4327 ext4_orphan_del(handle, inode); 4328 orphan = 0; 4329 ext4_journal_stop(handle); 4330 goto err_out; 4331 } 4332 } 4333 } 4334 4335 if (attr->ia_valid & ATTR_SIZE) { 4336 if (attr->ia_size != i_size_read(inode)) { 4337 truncate_setsize(inode, attr->ia_size); 4338 /* Inode size will be reduced, wait for dio in flight. 4339 * Temporarily disable dioread_nolock to prevent 4340 * livelock. */ 4341 if (orphan) { 4342 ext4_inode_block_unlocked_dio(inode); 4343 inode_dio_wait(inode); 4344 ext4_inode_resume_unlocked_dio(inode); 4345 } 4346 } 4347 ext4_truncate(inode); 4348 } 4349 4350 if (!rc) { 4351 setattr_copy(inode, attr); 4352 mark_inode_dirty(inode); 4353 } 4354 4355 /* 4356 * If the call to ext4_truncate failed to get a transaction handle at 4357 * all, we need to clean up the in-core orphan list manually. 4358 */ 4359 if (orphan && inode->i_nlink) 4360 ext4_orphan_del(NULL, inode); 4361 4362 if (!rc && (ia_valid & ATTR_MODE)) 4363 rc = ext4_acl_chmod(inode); 4364 4365 err_out: 4366 ext4_std_error(inode->i_sb, error); 4367 if (!error) 4368 error = rc; 4369 return error; 4370 } 4371 4372 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4373 struct kstat *stat) 4374 { 4375 struct inode *inode; 4376 unsigned long delalloc_blocks; 4377 4378 inode = dentry->d_inode; 4379 generic_fillattr(inode, stat); 4380 4381 /* 4382 * We can't update i_blocks if the block allocation is delayed 4383 * otherwise in the case of system crash before the real block 4384 * allocation is done, we will have i_blocks inconsistent with 4385 * on-disk file blocks. 4386 * We always keep i_blocks updated together with real 4387 * allocation. But to not confuse with user, stat 4388 * will return the blocks that include the delayed allocation 4389 * blocks for this file. 4390 */ 4391 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 4392 EXT4_I(inode)->i_reserved_data_blocks); 4393 4394 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 4395 return 0; 4396 } 4397 4398 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4399 { 4400 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4401 return ext4_ind_trans_blocks(inode, nrblocks, chunk); 4402 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 4403 } 4404 4405 /* 4406 * Account for index blocks, block groups bitmaps and block group 4407 * descriptor blocks if modify datablocks and index blocks 4408 * worse case, the indexs blocks spread over different block groups 4409 * 4410 * If datablocks are discontiguous, they are possible to spread over 4411 * different block groups too. If they are contiguous, with flexbg, 4412 * they could still across block group boundary. 4413 * 4414 * Also account for superblock, inode, quota and xattr blocks 4415 */ 4416 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4417 { 4418 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4419 int gdpblocks; 4420 int idxblocks; 4421 int ret = 0; 4422 4423 /* 4424 * How many index blocks need to touch to modify nrblocks? 4425 * The "Chunk" flag indicating whether the nrblocks is 4426 * physically contiguous on disk 4427 * 4428 * For Direct IO and fallocate, they calls get_block to allocate 4429 * one single extent at a time, so they could set the "Chunk" flag 4430 */ 4431 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 4432 4433 ret = idxblocks; 4434 4435 /* 4436 * Now let's see how many group bitmaps and group descriptors need 4437 * to account 4438 */ 4439 groups = idxblocks; 4440 if (chunk) 4441 groups += 1; 4442 else 4443 groups += nrblocks; 4444 4445 gdpblocks = groups; 4446 if (groups > ngroups) 4447 groups = ngroups; 4448 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4449 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4450 4451 /* bitmaps and block group descriptor blocks */ 4452 ret += groups + gdpblocks; 4453 4454 /* Blocks for super block, inode, quota and xattr blocks */ 4455 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4456 4457 return ret; 4458 } 4459 4460 /* 4461 * Calculate the total number of credits to reserve to fit 4462 * the modification of a single pages into a single transaction, 4463 * which may include multiple chunks of block allocations. 4464 * 4465 * This could be called via ext4_write_begin() 4466 * 4467 * We need to consider the worse case, when 4468 * one new block per extent. 4469 */ 4470 int ext4_writepage_trans_blocks(struct inode *inode) 4471 { 4472 int bpp = ext4_journal_blocks_per_page(inode); 4473 int ret; 4474 4475 ret = ext4_meta_trans_blocks(inode, bpp, 0); 4476 4477 /* Account for data blocks for journalled mode */ 4478 if (ext4_should_journal_data(inode)) 4479 ret += bpp; 4480 return ret; 4481 } 4482 4483 /* 4484 * Calculate the journal credits for a chunk of data modification. 4485 * 4486 * This is called from DIO, fallocate or whoever calling 4487 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4488 * 4489 * journal buffers for data blocks are not included here, as DIO 4490 * and fallocate do no need to journal data buffers. 4491 */ 4492 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4493 { 4494 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4495 } 4496 4497 /* 4498 * The caller must have previously called ext4_reserve_inode_write(). 4499 * Give this, we know that the caller already has write access to iloc->bh. 4500 */ 4501 int ext4_mark_iloc_dirty(handle_t *handle, 4502 struct inode *inode, struct ext4_iloc *iloc) 4503 { 4504 int err = 0; 4505 4506 if (IS_I_VERSION(inode)) 4507 inode_inc_iversion(inode); 4508 4509 /* the do_update_inode consumes one bh->b_count */ 4510 get_bh(iloc->bh); 4511 4512 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4513 err = ext4_do_update_inode(handle, inode, iloc); 4514 put_bh(iloc->bh); 4515 return err; 4516 } 4517 4518 /* 4519 * On success, We end up with an outstanding reference count against 4520 * iloc->bh. This _must_ be cleaned up later. 4521 */ 4522 4523 int 4524 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4525 struct ext4_iloc *iloc) 4526 { 4527 int err; 4528 4529 err = ext4_get_inode_loc(inode, iloc); 4530 if (!err) { 4531 BUFFER_TRACE(iloc->bh, "get_write_access"); 4532 err = ext4_journal_get_write_access(handle, iloc->bh); 4533 if (err) { 4534 brelse(iloc->bh); 4535 iloc->bh = NULL; 4536 } 4537 } 4538 ext4_std_error(inode->i_sb, err); 4539 return err; 4540 } 4541 4542 /* 4543 * Expand an inode by new_extra_isize bytes. 4544 * Returns 0 on success or negative error number on failure. 4545 */ 4546 static int ext4_expand_extra_isize(struct inode *inode, 4547 unsigned int new_extra_isize, 4548 struct ext4_iloc iloc, 4549 handle_t *handle) 4550 { 4551 struct ext4_inode *raw_inode; 4552 struct ext4_xattr_ibody_header *header; 4553 4554 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4555 return 0; 4556 4557 raw_inode = ext4_raw_inode(&iloc); 4558 4559 header = IHDR(inode, raw_inode); 4560 4561 /* No extended attributes present */ 4562 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4563 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4564 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4565 new_extra_isize); 4566 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4567 return 0; 4568 } 4569 4570 /* try to expand with EAs present */ 4571 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4572 raw_inode, handle); 4573 } 4574 4575 /* 4576 * What we do here is to mark the in-core inode as clean with respect to inode 4577 * dirtiness (it may still be data-dirty). 4578 * This means that the in-core inode may be reaped by prune_icache 4579 * without having to perform any I/O. This is a very good thing, 4580 * because *any* task may call prune_icache - even ones which 4581 * have a transaction open against a different journal. 4582 * 4583 * Is this cheating? Not really. Sure, we haven't written the 4584 * inode out, but prune_icache isn't a user-visible syncing function. 4585 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4586 * we start and wait on commits. 4587 */ 4588 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4589 { 4590 struct ext4_iloc iloc; 4591 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4592 static unsigned int mnt_count; 4593 int err, ret; 4594 4595 might_sleep(); 4596 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 4597 err = ext4_reserve_inode_write(handle, inode, &iloc); 4598 if (ext4_handle_valid(handle) && 4599 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4600 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 4601 /* 4602 * We need extra buffer credits since we may write into EA block 4603 * with this same handle. If journal_extend fails, then it will 4604 * only result in a minor loss of functionality for that inode. 4605 * If this is felt to be critical, then e2fsck should be run to 4606 * force a large enough s_min_extra_isize. 4607 */ 4608 if ((jbd2_journal_extend(handle, 4609 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4610 ret = ext4_expand_extra_isize(inode, 4611 sbi->s_want_extra_isize, 4612 iloc, handle); 4613 if (ret) { 4614 ext4_set_inode_state(inode, 4615 EXT4_STATE_NO_EXPAND); 4616 if (mnt_count != 4617 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4618 ext4_warning(inode->i_sb, 4619 "Unable to expand inode %lu. Delete" 4620 " some EAs or run e2fsck.", 4621 inode->i_ino); 4622 mnt_count = 4623 le16_to_cpu(sbi->s_es->s_mnt_count); 4624 } 4625 } 4626 } 4627 } 4628 if (!err) 4629 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4630 return err; 4631 } 4632 4633 /* 4634 * ext4_dirty_inode() is called from __mark_inode_dirty() 4635 * 4636 * We're really interested in the case where a file is being extended. 4637 * i_size has been changed by generic_commit_write() and we thus need 4638 * to include the updated inode in the current transaction. 4639 * 4640 * Also, dquot_alloc_block() will always dirty the inode when blocks 4641 * are allocated to the file. 4642 * 4643 * If the inode is marked synchronous, we don't honour that here - doing 4644 * so would cause a commit on atime updates, which we don't bother doing. 4645 * We handle synchronous inodes at the highest possible level. 4646 */ 4647 void ext4_dirty_inode(struct inode *inode, int flags) 4648 { 4649 handle_t *handle; 4650 4651 handle = ext4_journal_start(inode, 2); 4652 if (IS_ERR(handle)) 4653 goto out; 4654 4655 ext4_mark_inode_dirty(handle, inode); 4656 4657 ext4_journal_stop(handle); 4658 out: 4659 return; 4660 } 4661 4662 #if 0 4663 /* 4664 * Bind an inode's backing buffer_head into this transaction, to prevent 4665 * it from being flushed to disk early. Unlike 4666 * ext4_reserve_inode_write, this leaves behind no bh reference and 4667 * returns no iloc structure, so the caller needs to repeat the iloc 4668 * lookup to mark the inode dirty later. 4669 */ 4670 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4671 { 4672 struct ext4_iloc iloc; 4673 4674 int err = 0; 4675 if (handle) { 4676 err = ext4_get_inode_loc(inode, &iloc); 4677 if (!err) { 4678 BUFFER_TRACE(iloc.bh, "get_write_access"); 4679 err = jbd2_journal_get_write_access(handle, iloc.bh); 4680 if (!err) 4681 err = ext4_handle_dirty_metadata(handle, 4682 NULL, 4683 iloc.bh); 4684 brelse(iloc.bh); 4685 } 4686 } 4687 ext4_std_error(inode->i_sb, err); 4688 return err; 4689 } 4690 #endif 4691 4692 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4693 { 4694 journal_t *journal; 4695 handle_t *handle; 4696 int err; 4697 4698 /* 4699 * We have to be very careful here: changing a data block's 4700 * journaling status dynamically is dangerous. If we write a 4701 * data block to the journal, change the status and then delete 4702 * that block, we risk forgetting to revoke the old log record 4703 * from the journal and so a subsequent replay can corrupt data. 4704 * So, first we make sure that the journal is empty and that 4705 * nobody is changing anything. 4706 */ 4707 4708 journal = EXT4_JOURNAL(inode); 4709 if (!journal) 4710 return 0; 4711 if (is_journal_aborted(journal)) 4712 return -EROFS; 4713 /* We have to allocate physical blocks for delalloc blocks 4714 * before flushing journal. otherwise delalloc blocks can not 4715 * be allocated any more. even more truncate on delalloc blocks 4716 * could trigger BUG by flushing delalloc blocks in journal. 4717 * There is no delalloc block in non-journal data mode. 4718 */ 4719 if (val && test_opt(inode->i_sb, DELALLOC)) { 4720 err = ext4_alloc_da_blocks(inode); 4721 if (err < 0) 4722 return err; 4723 } 4724 4725 /* Wait for all existing dio workers */ 4726 ext4_inode_block_unlocked_dio(inode); 4727 inode_dio_wait(inode); 4728 4729 jbd2_journal_lock_updates(journal); 4730 4731 /* 4732 * OK, there are no updates running now, and all cached data is 4733 * synced to disk. We are now in a completely consistent state 4734 * which doesn't have anything in the journal, and we know that 4735 * no filesystem updates are running, so it is safe to modify 4736 * the inode's in-core data-journaling state flag now. 4737 */ 4738 4739 if (val) 4740 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4741 else { 4742 jbd2_journal_flush(journal); 4743 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4744 } 4745 ext4_set_aops(inode); 4746 4747 jbd2_journal_unlock_updates(journal); 4748 ext4_inode_resume_unlocked_dio(inode); 4749 4750 /* Finally we can mark the inode as dirty. */ 4751 4752 handle = ext4_journal_start(inode, 1); 4753 if (IS_ERR(handle)) 4754 return PTR_ERR(handle); 4755 4756 err = ext4_mark_inode_dirty(handle, inode); 4757 ext4_handle_sync(handle); 4758 ext4_journal_stop(handle); 4759 ext4_std_error(inode->i_sb, err); 4760 4761 return err; 4762 } 4763 4764 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 4765 { 4766 return !buffer_mapped(bh); 4767 } 4768 4769 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 4770 { 4771 struct page *page = vmf->page; 4772 loff_t size; 4773 unsigned long len; 4774 int ret; 4775 struct file *file = vma->vm_file; 4776 struct inode *inode = file->f_path.dentry->d_inode; 4777 struct address_space *mapping = inode->i_mapping; 4778 handle_t *handle; 4779 get_block_t *get_block; 4780 int retries = 0; 4781 4782 sb_start_pagefault(inode->i_sb); 4783 file_update_time(vma->vm_file); 4784 /* Delalloc case is easy... */ 4785 if (test_opt(inode->i_sb, DELALLOC) && 4786 !ext4_should_journal_data(inode) && 4787 !ext4_nonda_switch(inode->i_sb)) { 4788 do { 4789 ret = __block_page_mkwrite(vma, vmf, 4790 ext4_da_get_block_prep); 4791 } while (ret == -ENOSPC && 4792 ext4_should_retry_alloc(inode->i_sb, &retries)); 4793 goto out_ret; 4794 } 4795 4796 lock_page(page); 4797 size = i_size_read(inode); 4798 /* Page got truncated from under us? */ 4799 if (page->mapping != mapping || page_offset(page) > size) { 4800 unlock_page(page); 4801 ret = VM_FAULT_NOPAGE; 4802 goto out; 4803 } 4804 4805 if (page->index == size >> PAGE_CACHE_SHIFT) 4806 len = size & ~PAGE_CACHE_MASK; 4807 else 4808 len = PAGE_CACHE_SIZE; 4809 /* 4810 * Return if we have all the buffers mapped. This avoids the need to do 4811 * journal_start/journal_stop which can block and take a long time 4812 */ 4813 if (page_has_buffers(page)) { 4814 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 4815 ext4_bh_unmapped)) { 4816 /* Wait so that we don't change page under IO */ 4817 wait_on_page_writeback(page); 4818 ret = VM_FAULT_LOCKED; 4819 goto out; 4820 } 4821 } 4822 unlock_page(page); 4823 /* OK, we need to fill the hole... */ 4824 if (ext4_should_dioread_nolock(inode)) 4825 get_block = ext4_get_block_write; 4826 else 4827 get_block = ext4_get_block; 4828 retry_alloc: 4829 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 4830 if (IS_ERR(handle)) { 4831 ret = VM_FAULT_SIGBUS; 4832 goto out; 4833 } 4834 ret = __block_page_mkwrite(vma, vmf, get_block); 4835 if (!ret && ext4_should_journal_data(inode)) { 4836 if (walk_page_buffers(handle, page_buffers(page), 0, 4837 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 4838 unlock_page(page); 4839 ret = VM_FAULT_SIGBUS; 4840 ext4_journal_stop(handle); 4841 goto out; 4842 } 4843 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 4844 } 4845 ext4_journal_stop(handle); 4846 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 4847 goto retry_alloc; 4848 out_ret: 4849 ret = block_page_mkwrite_return(ret); 4850 out: 4851 sb_end_pagefault(inode->i_sb); 4852 return ret; 4853 } 4854