xref: /linux/fs/ext4/inode.c (revision 08ec212c0f92cbf30e3ecc7349f18151714041d6)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45 
46 #include <trace/events/ext4.h>
47 
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49 
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 			      struct ext4_inode_info *ei)
52 {
53 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 	__u16 csum_lo;
55 	__u16 csum_hi = 0;
56 	__u32 csum;
57 
58 	csum_lo = raw->i_checksum_lo;
59 	raw->i_checksum_lo = 0;
60 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 		csum_hi = raw->i_checksum_hi;
63 		raw->i_checksum_hi = 0;
64 	}
65 
66 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 			   EXT4_INODE_SIZE(inode->i_sb));
68 
69 	raw->i_checksum_lo = csum_lo;
70 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 		raw->i_checksum_hi = csum_hi;
73 
74 	return csum;
75 }
76 
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 				  struct ext4_inode_info *ei)
79 {
80 	__u32 provided, calculated;
81 
82 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 	    cpu_to_le32(EXT4_OS_LINUX) ||
84 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86 		return 1;
87 
88 	provided = le16_to_cpu(raw->i_checksum_lo);
89 	calculated = ext4_inode_csum(inode, raw, ei);
90 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93 	else
94 		calculated &= 0xFFFF;
95 
96 	return provided == calculated;
97 }
98 
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100 				struct ext4_inode_info *ei)
101 {
102 	__u32 csum;
103 
104 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105 	    cpu_to_le32(EXT4_OS_LINUX) ||
106 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108 		return;
109 
110 	csum = ext4_inode_csum(inode, raw, ei);
111 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116 
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 					      loff_t new_size)
119 {
120 	trace_ext4_begin_ordered_truncate(inode, new_size);
121 	/*
122 	 * If jinode is zero, then we never opened the file for
123 	 * writing, so there's no need to call
124 	 * jbd2_journal_begin_ordered_truncate() since there's no
125 	 * outstanding writes we need to flush.
126 	 */
127 	if (!EXT4_I(inode)->jinode)
128 		return 0;
129 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 						   EXT4_I(inode)->jinode,
131 						   new_size);
132 }
133 
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
136 				   struct buffer_head *bh_result, int create);
137 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
138 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
141 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
142 		struct inode *inode, struct page *page, loff_t from,
143 		loff_t length, int flags);
144 
145 /*
146  * Test whether an inode is a fast symlink.
147  */
148 static int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 		(inode->i_sb->s_blocksize >> 9) : 0;
152 
153 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
154 }
155 
156 /*
157  * Restart the transaction associated with *handle.  This does a commit,
158  * so before we call here everything must be consistently dirtied against
159  * this transaction.
160  */
161 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162 				 int nblocks)
163 {
164 	int ret;
165 
166 	/*
167 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
168 	 * moment, get_block can be called only for blocks inside i_size since
169 	 * page cache has been already dropped and writes are blocked by
170 	 * i_mutex. So we can safely drop the i_data_sem here.
171 	 */
172 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
173 	jbd_debug(2, "restarting handle %p\n", handle);
174 	up_write(&EXT4_I(inode)->i_data_sem);
175 	ret = ext4_journal_restart(handle, nblocks);
176 	down_write(&EXT4_I(inode)->i_data_sem);
177 	ext4_discard_preallocations(inode);
178 
179 	return ret;
180 }
181 
182 /*
183  * Called at the last iput() if i_nlink is zero.
184  */
185 void ext4_evict_inode(struct inode *inode)
186 {
187 	handle_t *handle;
188 	int err;
189 
190 	trace_ext4_evict_inode(inode);
191 
192 	ext4_ioend_wait(inode);
193 
194 	if (inode->i_nlink) {
195 		/*
196 		 * When journalling data dirty buffers are tracked only in the
197 		 * journal. So although mm thinks everything is clean and
198 		 * ready for reaping the inode might still have some pages to
199 		 * write in the running transaction or waiting to be
200 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
201 		 * (via truncate_inode_pages()) to discard these buffers can
202 		 * cause data loss. Also even if we did not discard these
203 		 * buffers, we would have no way to find them after the inode
204 		 * is reaped and thus user could see stale data if he tries to
205 		 * read them before the transaction is checkpointed. So be
206 		 * careful and force everything to disk here... We use
207 		 * ei->i_datasync_tid to store the newest transaction
208 		 * containing inode's data.
209 		 *
210 		 * Note that directories do not have this problem because they
211 		 * don't use page cache.
212 		 */
213 		if (ext4_should_journal_data(inode) &&
214 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
215 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217 
218 			jbd2_log_start_commit(journal, commit_tid);
219 			jbd2_log_wait_commit(journal, commit_tid);
220 			filemap_write_and_wait(&inode->i_data);
221 		}
222 		truncate_inode_pages(&inode->i_data, 0);
223 		goto no_delete;
224 	}
225 
226 	if (!is_bad_inode(inode))
227 		dquot_initialize(inode);
228 
229 	if (ext4_should_order_data(inode))
230 		ext4_begin_ordered_truncate(inode, 0);
231 	truncate_inode_pages(&inode->i_data, 0);
232 
233 	if (is_bad_inode(inode))
234 		goto no_delete;
235 
236 	/*
237 	 * Protect us against freezing - iput() caller didn't have to have any
238 	 * protection against it
239 	 */
240 	sb_start_intwrite(inode->i_sb);
241 	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
242 	if (IS_ERR(handle)) {
243 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
244 		/*
245 		 * If we're going to skip the normal cleanup, we still need to
246 		 * make sure that the in-core orphan linked list is properly
247 		 * cleaned up.
248 		 */
249 		ext4_orphan_del(NULL, inode);
250 		sb_end_intwrite(inode->i_sb);
251 		goto no_delete;
252 	}
253 
254 	if (IS_SYNC(inode))
255 		ext4_handle_sync(handle);
256 	inode->i_size = 0;
257 	err = ext4_mark_inode_dirty(handle, inode);
258 	if (err) {
259 		ext4_warning(inode->i_sb,
260 			     "couldn't mark inode dirty (err %d)", err);
261 		goto stop_handle;
262 	}
263 	if (inode->i_blocks)
264 		ext4_truncate(inode);
265 
266 	/*
267 	 * ext4_ext_truncate() doesn't reserve any slop when it
268 	 * restarts journal transactions; therefore there may not be
269 	 * enough credits left in the handle to remove the inode from
270 	 * the orphan list and set the dtime field.
271 	 */
272 	if (!ext4_handle_has_enough_credits(handle, 3)) {
273 		err = ext4_journal_extend(handle, 3);
274 		if (err > 0)
275 			err = ext4_journal_restart(handle, 3);
276 		if (err != 0) {
277 			ext4_warning(inode->i_sb,
278 				     "couldn't extend journal (err %d)", err);
279 		stop_handle:
280 			ext4_journal_stop(handle);
281 			ext4_orphan_del(NULL, inode);
282 			sb_end_intwrite(inode->i_sb);
283 			goto no_delete;
284 		}
285 	}
286 
287 	/*
288 	 * Kill off the orphan record which ext4_truncate created.
289 	 * AKPM: I think this can be inside the above `if'.
290 	 * Note that ext4_orphan_del() has to be able to cope with the
291 	 * deletion of a non-existent orphan - this is because we don't
292 	 * know if ext4_truncate() actually created an orphan record.
293 	 * (Well, we could do this if we need to, but heck - it works)
294 	 */
295 	ext4_orphan_del(handle, inode);
296 	EXT4_I(inode)->i_dtime	= get_seconds();
297 
298 	/*
299 	 * One subtle ordering requirement: if anything has gone wrong
300 	 * (transaction abort, IO errors, whatever), then we can still
301 	 * do these next steps (the fs will already have been marked as
302 	 * having errors), but we can't free the inode if the mark_dirty
303 	 * fails.
304 	 */
305 	if (ext4_mark_inode_dirty(handle, inode))
306 		/* If that failed, just do the required in-core inode clear. */
307 		ext4_clear_inode(inode);
308 	else
309 		ext4_free_inode(handle, inode);
310 	ext4_journal_stop(handle);
311 	sb_end_intwrite(inode->i_sb);
312 	return;
313 no_delete:
314 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
315 }
316 
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320 	return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323 
324 /*
325  * Calculate the number of metadata blocks need to reserve
326  * to allocate a block located at @lblock
327  */
328 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329 {
330 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
331 		return ext4_ext_calc_metadata_amount(inode, lblock);
332 
333 	return ext4_ind_calc_metadata_amount(inode, lblock);
334 }
335 
336 /*
337  * Called with i_data_sem down, which is important since we can call
338  * ext4_discard_preallocations() from here.
339  */
340 void ext4_da_update_reserve_space(struct inode *inode,
341 					int used, int quota_claim)
342 {
343 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
344 	struct ext4_inode_info *ei = EXT4_I(inode);
345 
346 	spin_lock(&ei->i_block_reservation_lock);
347 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
348 	if (unlikely(used > ei->i_reserved_data_blocks)) {
349 		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
350 			 "with only %d reserved data blocks",
351 			 __func__, inode->i_ino, used,
352 			 ei->i_reserved_data_blocks);
353 		WARN_ON(1);
354 		used = ei->i_reserved_data_blocks;
355 	}
356 
357 	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
358 		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
359 			 "with only %d reserved metadata blocks\n", __func__,
360 			 inode->i_ino, ei->i_allocated_meta_blocks,
361 			 ei->i_reserved_meta_blocks);
362 		WARN_ON(1);
363 		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364 	}
365 
366 	/* Update per-inode reservations */
367 	ei->i_reserved_data_blocks -= used;
368 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
369 	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
370 			   used + ei->i_allocated_meta_blocks);
371 	ei->i_allocated_meta_blocks = 0;
372 
373 	if (ei->i_reserved_data_blocks == 0) {
374 		/*
375 		 * We can release all of the reserved metadata blocks
376 		 * only when we have written all of the delayed
377 		 * allocation blocks.
378 		 */
379 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
380 				   ei->i_reserved_meta_blocks);
381 		ei->i_reserved_meta_blocks = 0;
382 		ei->i_da_metadata_calc_len = 0;
383 	}
384 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385 
386 	/* Update quota subsystem for data blocks */
387 	if (quota_claim)
388 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
389 	else {
390 		/*
391 		 * We did fallocate with an offset that is already delayed
392 		 * allocated. So on delayed allocated writeback we should
393 		 * not re-claim the quota for fallocated blocks.
394 		 */
395 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396 	}
397 
398 	/*
399 	 * If we have done all the pending block allocations and if
400 	 * there aren't any writers on the inode, we can discard the
401 	 * inode's preallocations.
402 	 */
403 	if ((ei->i_reserved_data_blocks == 0) &&
404 	    (atomic_read(&inode->i_writecount) == 0))
405 		ext4_discard_preallocations(inode);
406 }
407 
408 static int __check_block_validity(struct inode *inode, const char *func,
409 				unsigned int line,
410 				struct ext4_map_blocks *map)
411 {
412 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413 				   map->m_len)) {
414 		ext4_error_inode(inode, func, line, map->m_pblk,
415 				 "lblock %lu mapped to illegal pblock "
416 				 "(length %d)", (unsigned long) map->m_lblk,
417 				 map->m_len);
418 		return -EIO;
419 	}
420 	return 0;
421 }
422 
423 #define check_block_validity(inode, map)	\
424 	__check_block_validity((inode), __func__, __LINE__, (map))
425 
426 /*
427  * Return the number of contiguous dirty pages in a given inode
428  * starting at page frame idx.
429  */
430 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
431 				    unsigned int max_pages)
432 {
433 	struct address_space *mapping = inode->i_mapping;
434 	pgoff_t	index;
435 	struct pagevec pvec;
436 	pgoff_t num = 0;
437 	int i, nr_pages, done = 0;
438 
439 	if (max_pages == 0)
440 		return 0;
441 	pagevec_init(&pvec, 0);
442 	while (!done) {
443 		index = idx;
444 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
445 					      PAGECACHE_TAG_DIRTY,
446 					      (pgoff_t)PAGEVEC_SIZE);
447 		if (nr_pages == 0)
448 			break;
449 		for (i = 0; i < nr_pages; i++) {
450 			struct page *page = pvec.pages[i];
451 			struct buffer_head *bh, *head;
452 
453 			lock_page(page);
454 			if (unlikely(page->mapping != mapping) ||
455 			    !PageDirty(page) ||
456 			    PageWriteback(page) ||
457 			    page->index != idx) {
458 				done = 1;
459 				unlock_page(page);
460 				break;
461 			}
462 			if (page_has_buffers(page)) {
463 				bh = head = page_buffers(page);
464 				do {
465 					if (!buffer_delay(bh) &&
466 					    !buffer_unwritten(bh))
467 						done = 1;
468 					bh = bh->b_this_page;
469 				} while (!done && (bh != head));
470 			}
471 			unlock_page(page);
472 			if (done)
473 				break;
474 			idx++;
475 			num++;
476 			if (num >= max_pages) {
477 				done = 1;
478 				break;
479 			}
480 		}
481 		pagevec_release(&pvec);
482 	}
483 	return num;
484 }
485 
486 /*
487  * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
488  */
489 static void set_buffers_da_mapped(struct inode *inode,
490 				   struct ext4_map_blocks *map)
491 {
492 	struct address_space *mapping = inode->i_mapping;
493 	struct pagevec pvec;
494 	int i, nr_pages;
495 	pgoff_t index, end;
496 
497 	index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
498 	end = (map->m_lblk + map->m_len - 1) >>
499 		(PAGE_CACHE_SHIFT - inode->i_blkbits);
500 
501 	pagevec_init(&pvec, 0);
502 	while (index <= end) {
503 		nr_pages = pagevec_lookup(&pvec, mapping, index,
504 					  min(end - index + 1,
505 					      (pgoff_t)PAGEVEC_SIZE));
506 		if (nr_pages == 0)
507 			break;
508 		for (i = 0; i < nr_pages; i++) {
509 			struct page *page = pvec.pages[i];
510 			struct buffer_head *bh, *head;
511 
512 			if (unlikely(page->mapping != mapping) ||
513 			    !PageDirty(page))
514 				break;
515 
516 			if (page_has_buffers(page)) {
517 				bh = head = page_buffers(page);
518 				do {
519 					set_buffer_da_mapped(bh);
520 					bh = bh->b_this_page;
521 				} while (bh != head);
522 			}
523 			index++;
524 		}
525 		pagevec_release(&pvec);
526 	}
527 }
528 
529 /*
530  * The ext4_map_blocks() function tries to look up the requested blocks,
531  * and returns if the blocks are already mapped.
532  *
533  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
534  * and store the allocated blocks in the result buffer head and mark it
535  * mapped.
536  *
537  * If file type is extents based, it will call ext4_ext_map_blocks(),
538  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
539  * based files
540  *
541  * On success, it returns the number of blocks being mapped or allocate.
542  * if create==0 and the blocks are pre-allocated and uninitialized block,
543  * the result buffer head is unmapped. If the create ==1, it will make sure
544  * the buffer head is mapped.
545  *
546  * It returns 0 if plain look up failed (blocks have not been allocated), in
547  * that case, buffer head is unmapped
548  *
549  * It returns the error in case of allocation failure.
550  */
551 int ext4_map_blocks(handle_t *handle, struct inode *inode,
552 		    struct ext4_map_blocks *map, int flags)
553 {
554 	int retval;
555 
556 	map->m_flags = 0;
557 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
558 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
559 		  (unsigned long) map->m_lblk);
560 	/*
561 	 * Try to see if we can get the block without requesting a new
562 	 * file system block.
563 	 */
564 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
565 		down_read((&EXT4_I(inode)->i_data_sem));
566 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
567 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
568 					     EXT4_GET_BLOCKS_KEEP_SIZE);
569 	} else {
570 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
571 					     EXT4_GET_BLOCKS_KEEP_SIZE);
572 	}
573 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
574 		up_read((&EXT4_I(inode)->i_data_sem));
575 
576 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
577 		int ret = check_block_validity(inode, map);
578 		if (ret != 0)
579 			return ret;
580 	}
581 
582 	/* If it is only a block(s) look up */
583 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
584 		return retval;
585 
586 	/*
587 	 * Returns if the blocks have already allocated
588 	 *
589 	 * Note that if blocks have been preallocated
590 	 * ext4_ext_get_block() returns the create = 0
591 	 * with buffer head unmapped.
592 	 */
593 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
594 		return retval;
595 
596 	/*
597 	 * When we call get_blocks without the create flag, the
598 	 * BH_Unwritten flag could have gotten set if the blocks
599 	 * requested were part of a uninitialized extent.  We need to
600 	 * clear this flag now that we are committed to convert all or
601 	 * part of the uninitialized extent to be an initialized
602 	 * extent.  This is because we need to avoid the combination
603 	 * of BH_Unwritten and BH_Mapped flags being simultaneously
604 	 * set on the buffer_head.
605 	 */
606 	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
607 
608 	/*
609 	 * New blocks allocate and/or writing to uninitialized extent
610 	 * will possibly result in updating i_data, so we take
611 	 * the write lock of i_data_sem, and call get_blocks()
612 	 * with create == 1 flag.
613 	 */
614 	down_write((&EXT4_I(inode)->i_data_sem));
615 
616 	/*
617 	 * if the caller is from delayed allocation writeout path
618 	 * we have already reserved fs blocks for allocation
619 	 * let the underlying get_block() function know to
620 	 * avoid double accounting
621 	 */
622 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
623 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
624 	/*
625 	 * We need to check for EXT4 here because migrate
626 	 * could have changed the inode type in between
627 	 */
628 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
629 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
630 	} else {
631 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
632 
633 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
634 			/*
635 			 * We allocated new blocks which will result in
636 			 * i_data's format changing.  Force the migrate
637 			 * to fail by clearing migrate flags
638 			 */
639 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
640 		}
641 
642 		/*
643 		 * Update reserved blocks/metadata blocks after successful
644 		 * block allocation which had been deferred till now. We don't
645 		 * support fallocate for non extent files. So we can update
646 		 * reserve space here.
647 		 */
648 		if ((retval > 0) &&
649 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
650 			ext4_da_update_reserve_space(inode, retval, 1);
651 	}
652 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
653 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
654 
655 		/* If we have successfully mapped the delayed allocated blocks,
656 		 * set the BH_Da_Mapped bit on them. Its important to do this
657 		 * under the protection of i_data_sem.
658 		 */
659 		if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
660 			set_buffers_da_mapped(inode, map);
661 	}
662 
663 	up_write((&EXT4_I(inode)->i_data_sem));
664 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
665 		int ret = check_block_validity(inode, map);
666 		if (ret != 0)
667 			return ret;
668 	}
669 	return retval;
670 }
671 
672 /* Maximum number of blocks we map for direct IO at once. */
673 #define DIO_MAX_BLOCKS 4096
674 
675 static int _ext4_get_block(struct inode *inode, sector_t iblock,
676 			   struct buffer_head *bh, int flags)
677 {
678 	handle_t *handle = ext4_journal_current_handle();
679 	struct ext4_map_blocks map;
680 	int ret = 0, started = 0;
681 	int dio_credits;
682 
683 	map.m_lblk = iblock;
684 	map.m_len = bh->b_size >> inode->i_blkbits;
685 
686 	if (flags && !handle) {
687 		/* Direct IO write... */
688 		if (map.m_len > DIO_MAX_BLOCKS)
689 			map.m_len = DIO_MAX_BLOCKS;
690 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
691 		handle = ext4_journal_start(inode, dio_credits);
692 		if (IS_ERR(handle)) {
693 			ret = PTR_ERR(handle);
694 			return ret;
695 		}
696 		started = 1;
697 	}
698 
699 	ret = ext4_map_blocks(handle, inode, &map, flags);
700 	if (ret > 0) {
701 		map_bh(bh, inode->i_sb, map.m_pblk);
702 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
703 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
704 		ret = 0;
705 	}
706 	if (started)
707 		ext4_journal_stop(handle);
708 	return ret;
709 }
710 
711 int ext4_get_block(struct inode *inode, sector_t iblock,
712 		   struct buffer_head *bh, int create)
713 {
714 	return _ext4_get_block(inode, iblock, bh,
715 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
716 }
717 
718 /*
719  * `handle' can be NULL if create is zero
720  */
721 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
722 				ext4_lblk_t block, int create, int *errp)
723 {
724 	struct ext4_map_blocks map;
725 	struct buffer_head *bh;
726 	int fatal = 0, err;
727 
728 	J_ASSERT(handle != NULL || create == 0);
729 
730 	map.m_lblk = block;
731 	map.m_len = 1;
732 	err = ext4_map_blocks(handle, inode, &map,
733 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
734 
735 	/* ensure we send some value back into *errp */
736 	*errp = 0;
737 
738 	if (err < 0)
739 		*errp = err;
740 	if (err <= 0)
741 		return NULL;
742 
743 	bh = sb_getblk(inode->i_sb, map.m_pblk);
744 	if (!bh) {
745 		*errp = -EIO;
746 		return NULL;
747 	}
748 	if (map.m_flags & EXT4_MAP_NEW) {
749 		J_ASSERT(create != 0);
750 		J_ASSERT(handle != NULL);
751 
752 		/*
753 		 * Now that we do not always journal data, we should
754 		 * keep in mind whether this should always journal the
755 		 * new buffer as metadata.  For now, regular file
756 		 * writes use ext4_get_block instead, so it's not a
757 		 * problem.
758 		 */
759 		lock_buffer(bh);
760 		BUFFER_TRACE(bh, "call get_create_access");
761 		fatal = ext4_journal_get_create_access(handle, bh);
762 		if (!fatal && !buffer_uptodate(bh)) {
763 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
764 			set_buffer_uptodate(bh);
765 		}
766 		unlock_buffer(bh);
767 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
768 		err = ext4_handle_dirty_metadata(handle, inode, bh);
769 		if (!fatal)
770 			fatal = err;
771 	} else {
772 		BUFFER_TRACE(bh, "not a new buffer");
773 	}
774 	if (fatal) {
775 		*errp = fatal;
776 		brelse(bh);
777 		bh = NULL;
778 	}
779 	return bh;
780 }
781 
782 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
783 			       ext4_lblk_t block, int create, int *err)
784 {
785 	struct buffer_head *bh;
786 
787 	bh = ext4_getblk(handle, inode, block, create, err);
788 	if (!bh)
789 		return bh;
790 	if (buffer_uptodate(bh))
791 		return bh;
792 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
793 	wait_on_buffer(bh);
794 	if (buffer_uptodate(bh))
795 		return bh;
796 	put_bh(bh);
797 	*err = -EIO;
798 	return NULL;
799 }
800 
801 static int walk_page_buffers(handle_t *handle,
802 			     struct buffer_head *head,
803 			     unsigned from,
804 			     unsigned to,
805 			     int *partial,
806 			     int (*fn)(handle_t *handle,
807 				       struct buffer_head *bh))
808 {
809 	struct buffer_head *bh;
810 	unsigned block_start, block_end;
811 	unsigned blocksize = head->b_size;
812 	int err, ret = 0;
813 	struct buffer_head *next;
814 
815 	for (bh = head, block_start = 0;
816 	     ret == 0 && (bh != head || !block_start);
817 	     block_start = block_end, bh = next) {
818 		next = bh->b_this_page;
819 		block_end = block_start + blocksize;
820 		if (block_end <= from || block_start >= to) {
821 			if (partial && !buffer_uptodate(bh))
822 				*partial = 1;
823 			continue;
824 		}
825 		err = (*fn)(handle, bh);
826 		if (!ret)
827 			ret = err;
828 	}
829 	return ret;
830 }
831 
832 /*
833  * To preserve ordering, it is essential that the hole instantiation and
834  * the data write be encapsulated in a single transaction.  We cannot
835  * close off a transaction and start a new one between the ext4_get_block()
836  * and the commit_write().  So doing the jbd2_journal_start at the start of
837  * prepare_write() is the right place.
838  *
839  * Also, this function can nest inside ext4_writepage() ->
840  * block_write_full_page(). In that case, we *know* that ext4_writepage()
841  * has generated enough buffer credits to do the whole page.  So we won't
842  * block on the journal in that case, which is good, because the caller may
843  * be PF_MEMALLOC.
844  *
845  * By accident, ext4 can be reentered when a transaction is open via
846  * quota file writes.  If we were to commit the transaction while thus
847  * reentered, there can be a deadlock - we would be holding a quota
848  * lock, and the commit would never complete if another thread had a
849  * transaction open and was blocking on the quota lock - a ranking
850  * violation.
851  *
852  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
853  * will _not_ run commit under these circumstances because handle->h_ref
854  * is elevated.  We'll still have enough credits for the tiny quotafile
855  * write.
856  */
857 static int do_journal_get_write_access(handle_t *handle,
858 				       struct buffer_head *bh)
859 {
860 	int dirty = buffer_dirty(bh);
861 	int ret;
862 
863 	if (!buffer_mapped(bh) || buffer_freed(bh))
864 		return 0;
865 	/*
866 	 * __block_write_begin() could have dirtied some buffers. Clean
867 	 * the dirty bit as jbd2_journal_get_write_access() could complain
868 	 * otherwise about fs integrity issues. Setting of the dirty bit
869 	 * by __block_write_begin() isn't a real problem here as we clear
870 	 * the bit before releasing a page lock and thus writeback cannot
871 	 * ever write the buffer.
872 	 */
873 	if (dirty)
874 		clear_buffer_dirty(bh);
875 	ret = ext4_journal_get_write_access(handle, bh);
876 	if (!ret && dirty)
877 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
878 	return ret;
879 }
880 
881 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
882 		   struct buffer_head *bh_result, int create);
883 static int ext4_write_begin(struct file *file, struct address_space *mapping,
884 			    loff_t pos, unsigned len, unsigned flags,
885 			    struct page **pagep, void **fsdata)
886 {
887 	struct inode *inode = mapping->host;
888 	int ret, needed_blocks;
889 	handle_t *handle;
890 	int retries = 0;
891 	struct page *page;
892 	pgoff_t index;
893 	unsigned from, to;
894 
895 	trace_ext4_write_begin(inode, pos, len, flags);
896 	/*
897 	 * Reserve one block more for addition to orphan list in case
898 	 * we allocate blocks but write fails for some reason
899 	 */
900 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
901 	index = pos >> PAGE_CACHE_SHIFT;
902 	from = pos & (PAGE_CACHE_SIZE - 1);
903 	to = from + len;
904 
905 retry:
906 	handle = ext4_journal_start(inode, needed_blocks);
907 	if (IS_ERR(handle)) {
908 		ret = PTR_ERR(handle);
909 		goto out;
910 	}
911 
912 	/* We cannot recurse into the filesystem as the transaction is already
913 	 * started */
914 	flags |= AOP_FLAG_NOFS;
915 
916 	page = grab_cache_page_write_begin(mapping, index, flags);
917 	if (!page) {
918 		ext4_journal_stop(handle);
919 		ret = -ENOMEM;
920 		goto out;
921 	}
922 	*pagep = page;
923 
924 	if (ext4_should_dioread_nolock(inode))
925 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
926 	else
927 		ret = __block_write_begin(page, pos, len, ext4_get_block);
928 
929 	if (!ret && ext4_should_journal_data(inode)) {
930 		ret = walk_page_buffers(handle, page_buffers(page),
931 				from, to, NULL, do_journal_get_write_access);
932 	}
933 
934 	if (ret) {
935 		unlock_page(page);
936 		page_cache_release(page);
937 		/*
938 		 * __block_write_begin may have instantiated a few blocks
939 		 * outside i_size.  Trim these off again. Don't need
940 		 * i_size_read because we hold i_mutex.
941 		 *
942 		 * Add inode to orphan list in case we crash before
943 		 * truncate finishes
944 		 */
945 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
946 			ext4_orphan_add(handle, inode);
947 
948 		ext4_journal_stop(handle);
949 		if (pos + len > inode->i_size) {
950 			ext4_truncate_failed_write(inode);
951 			/*
952 			 * If truncate failed early the inode might
953 			 * still be on the orphan list; we need to
954 			 * make sure the inode is removed from the
955 			 * orphan list in that case.
956 			 */
957 			if (inode->i_nlink)
958 				ext4_orphan_del(NULL, inode);
959 		}
960 	}
961 
962 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
963 		goto retry;
964 out:
965 	return ret;
966 }
967 
968 /* For write_end() in data=journal mode */
969 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
970 {
971 	if (!buffer_mapped(bh) || buffer_freed(bh))
972 		return 0;
973 	set_buffer_uptodate(bh);
974 	return ext4_handle_dirty_metadata(handle, NULL, bh);
975 }
976 
977 static int ext4_generic_write_end(struct file *file,
978 				  struct address_space *mapping,
979 				  loff_t pos, unsigned len, unsigned copied,
980 				  struct page *page, void *fsdata)
981 {
982 	int i_size_changed = 0;
983 	struct inode *inode = mapping->host;
984 	handle_t *handle = ext4_journal_current_handle();
985 
986 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
987 
988 	/*
989 	 * No need to use i_size_read() here, the i_size
990 	 * cannot change under us because we hold i_mutex.
991 	 *
992 	 * But it's important to update i_size while still holding page lock:
993 	 * page writeout could otherwise come in and zero beyond i_size.
994 	 */
995 	if (pos + copied > inode->i_size) {
996 		i_size_write(inode, pos + copied);
997 		i_size_changed = 1;
998 	}
999 
1000 	if (pos + copied >  EXT4_I(inode)->i_disksize) {
1001 		/* We need to mark inode dirty even if
1002 		 * new_i_size is less that inode->i_size
1003 		 * bu greater than i_disksize.(hint delalloc)
1004 		 */
1005 		ext4_update_i_disksize(inode, (pos + copied));
1006 		i_size_changed = 1;
1007 	}
1008 	unlock_page(page);
1009 	page_cache_release(page);
1010 
1011 	/*
1012 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1013 	 * makes the holding time of page lock longer. Second, it forces lock
1014 	 * ordering of page lock and transaction start for journaling
1015 	 * filesystems.
1016 	 */
1017 	if (i_size_changed)
1018 		ext4_mark_inode_dirty(handle, inode);
1019 
1020 	return copied;
1021 }
1022 
1023 /*
1024  * We need to pick up the new inode size which generic_commit_write gave us
1025  * `file' can be NULL - eg, when called from page_symlink().
1026  *
1027  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1028  * buffers are managed internally.
1029  */
1030 static int ext4_ordered_write_end(struct file *file,
1031 				  struct address_space *mapping,
1032 				  loff_t pos, unsigned len, unsigned copied,
1033 				  struct page *page, void *fsdata)
1034 {
1035 	handle_t *handle = ext4_journal_current_handle();
1036 	struct inode *inode = mapping->host;
1037 	int ret = 0, ret2;
1038 
1039 	trace_ext4_ordered_write_end(inode, pos, len, copied);
1040 	ret = ext4_jbd2_file_inode(handle, inode);
1041 
1042 	if (ret == 0) {
1043 		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1044 							page, fsdata);
1045 		copied = ret2;
1046 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1047 			/* if we have allocated more blocks and copied
1048 			 * less. We will have blocks allocated outside
1049 			 * inode->i_size. So truncate them
1050 			 */
1051 			ext4_orphan_add(handle, inode);
1052 		if (ret2 < 0)
1053 			ret = ret2;
1054 	} else {
1055 		unlock_page(page);
1056 		page_cache_release(page);
1057 	}
1058 
1059 	ret2 = ext4_journal_stop(handle);
1060 	if (!ret)
1061 		ret = ret2;
1062 
1063 	if (pos + len > inode->i_size) {
1064 		ext4_truncate_failed_write(inode);
1065 		/*
1066 		 * If truncate failed early the inode might still be
1067 		 * on the orphan list; we need to make sure the inode
1068 		 * is removed from the orphan list in that case.
1069 		 */
1070 		if (inode->i_nlink)
1071 			ext4_orphan_del(NULL, inode);
1072 	}
1073 
1074 
1075 	return ret ? ret : copied;
1076 }
1077 
1078 static int ext4_writeback_write_end(struct file *file,
1079 				    struct address_space *mapping,
1080 				    loff_t pos, unsigned len, unsigned copied,
1081 				    struct page *page, void *fsdata)
1082 {
1083 	handle_t *handle = ext4_journal_current_handle();
1084 	struct inode *inode = mapping->host;
1085 	int ret = 0, ret2;
1086 
1087 	trace_ext4_writeback_write_end(inode, pos, len, copied);
1088 	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1089 							page, fsdata);
1090 	copied = ret2;
1091 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1092 		/* if we have allocated more blocks and copied
1093 		 * less. We will have blocks allocated outside
1094 		 * inode->i_size. So truncate them
1095 		 */
1096 		ext4_orphan_add(handle, inode);
1097 
1098 	if (ret2 < 0)
1099 		ret = ret2;
1100 
1101 	ret2 = ext4_journal_stop(handle);
1102 	if (!ret)
1103 		ret = ret2;
1104 
1105 	if (pos + len > inode->i_size) {
1106 		ext4_truncate_failed_write(inode);
1107 		/*
1108 		 * If truncate failed early the inode might still be
1109 		 * on the orphan list; we need to make sure the inode
1110 		 * is removed from the orphan list in that case.
1111 		 */
1112 		if (inode->i_nlink)
1113 			ext4_orphan_del(NULL, inode);
1114 	}
1115 
1116 	return ret ? ret : copied;
1117 }
1118 
1119 static int ext4_journalled_write_end(struct file *file,
1120 				     struct address_space *mapping,
1121 				     loff_t pos, unsigned len, unsigned copied,
1122 				     struct page *page, void *fsdata)
1123 {
1124 	handle_t *handle = ext4_journal_current_handle();
1125 	struct inode *inode = mapping->host;
1126 	int ret = 0, ret2;
1127 	int partial = 0;
1128 	unsigned from, to;
1129 	loff_t new_i_size;
1130 
1131 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1132 	from = pos & (PAGE_CACHE_SIZE - 1);
1133 	to = from + len;
1134 
1135 	BUG_ON(!ext4_handle_valid(handle));
1136 
1137 	if (copied < len) {
1138 		if (!PageUptodate(page))
1139 			copied = 0;
1140 		page_zero_new_buffers(page, from+copied, to);
1141 	}
1142 
1143 	ret = walk_page_buffers(handle, page_buffers(page), from,
1144 				to, &partial, write_end_fn);
1145 	if (!partial)
1146 		SetPageUptodate(page);
1147 	new_i_size = pos + copied;
1148 	if (new_i_size > inode->i_size)
1149 		i_size_write(inode, pos+copied);
1150 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1151 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1152 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1153 		ext4_update_i_disksize(inode, new_i_size);
1154 		ret2 = ext4_mark_inode_dirty(handle, inode);
1155 		if (!ret)
1156 			ret = ret2;
1157 	}
1158 
1159 	unlock_page(page);
1160 	page_cache_release(page);
1161 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1162 		/* if we have allocated more blocks and copied
1163 		 * less. We will have blocks allocated outside
1164 		 * inode->i_size. So truncate them
1165 		 */
1166 		ext4_orphan_add(handle, inode);
1167 
1168 	ret2 = ext4_journal_stop(handle);
1169 	if (!ret)
1170 		ret = ret2;
1171 	if (pos + len > inode->i_size) {
1172 		ext4_truncate_failed_write(inode);
1173 		/*
1174 		 * If truncate failed early the inode might still be
1175 		 * on the orphan list; we need to make sure the inode
1176 		 * is removed from the orphan list in that case.
1177 		 */
1178 		if (inode->i_nlink)
1179 			ext4_orphan_del(NULL, inode);
1180 	}
1181 
1182 	return ret ? ret : copied;
1183 }
1184 
1185 /*
1186  * Reserve a single cluster located at lblock
1187  */
1188 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1189 {
1190 	int retries = 0;
1191 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1192 	struct ext4_inode_info *ei = EXT4_I(inode);
1193 	unsigned int md_needed;
1194 	int ret;
1195 	ext4_lblk_t save_last_lblock;
1196 	int save_len;
1197 
1198 	/*
1199 	 * We will charge metadata quota at writeout time; this saves
1200 	 * us from metadata over-estimation, though we may go over by
1201 	 * a small amount in the end.  Here we just reserve for data.
1202 	 */
1203 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1204 	if (ret)
1205 		return ret;
1206 
1207 	/*
1208 	 * recalculate the amount of metadata blocks to reserve
1209 	 * in order to allocate nrblocks
1210 	 * worse case is one extent per block
1211 	 */
1212 repeat:
1213 	spin_lock(&ei->i_block_reservation_lock);
1214 	/*
1215 	 * ext4_calc_metadata_amount() has side effects, which we have
1216 	 * to be prepared undo if we fail to claim space.
1217 	 */
1218 	save_len = ei->i_da_metadata_calc_len;
1219 	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1220 	md_needed = EXT4_NUM_B2C(sbi,
1221 				 ext4_calc_metadata_amount(inode, lblock));
1222 	trace_ext4_da_reserve_space(inode, md_needed);
1223 
1224 	/*
1225 	 * We do still charge estimated metadata to the sb though;
1226 	 * we cannot afford to run out of free blocks.
1227 	 */
1228 	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1229 		ei->i_da_metadata_calc_len = save_len;
1230 		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1231 		spin_unlock(&ei->i_block_reservation_lock);
1232 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1233 			yield();
1234 			goto repeat;
1235 		}
1236 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1237 		return -ENOSPC;
1238 	}
1239 	ei->i_reserved_data_blocks++;
1240 	ei->i_reserved_meta_blocks += md_needed;
1241 	spin_unlock(&ei->i_block_reservation_lock);
1242 
1243 	return 0;       /* success */
1244 }
1245 
1246 static void ext4_da_release_space(struct inode *inode, int to_free)
1247 {
1248 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1249 	struct ext4_inode_info *ei = EXT4_I(inode);
1250 
1251 	if (!to_free)
1252 		return;		/* Nothing to release, exit */
1253 
1254 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1255 
1256 	trace_ext4_da_release_space(inode, to_free);
1257 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1258 		/*
1259 		 * if there aren't enough reserved blocks, then the
1260 		 * counter is messed up somewhere.  Since this
1261 		 * function is called from invalidate page, it's
1262 		 * harmless to return without any action.
1263 		 */
1264 		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1265 			 "ino %lu, to_free %d with only %d reserved "
1266 			 "data blocks", inode->i_ino, to_free,
1267 			 ei->i_reserved_data_blocks);
1268 		WARN_ON(1);
1269 		to_free = ei->i_reserved_data_blocks;
1270 	}
1271 	ei->i_reserved_data_blocks -= to_free;
1272 
1273 	if (ei->i_reserved_data_blocks == 0) {
1274 		/*
1275 		 * We can release all of the reserved metadata blocks
1276 		 * only when we have written all of the delayed
1277 		 * allocation blocks.
1278 		 * Note that in case of bigalloc, i_reserved_meta_blocks,
1279 		 * i_reserved_data_blocks, etc. refer to number of clusters.
1280 		 */
1281 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1282 				   ei->i_reserved_meta_blocks);
1283 		ei->i_reserved_meta_blocks = 0;
1284 		ei->i_da_metadata_calc_len = 0;
1285 	}
1286 
1287 	/* update fs dirty data blocks counter */
1288 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1289 
1290 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1291 
1292 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1293 }
1294 
1295 static void ext4_da_page_release_reservation(struct page *page,
1296 					     unsigned long offset)
1297 {
1298 	int to_release = 0;
1299 	struct buffer_head *head, *bh;
1300 	unsigned int curr_off = 0;
1301 	struct inode *inode = page->mapping->host;
1302 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1303 	int num_clusters;
1304 
1305 	head = page_buffers(page);
1306 	bh = head;
1307 	do {
1308 		unsigned int next_off = curr_off + bh->b_size;
1309 
1310 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1311 			to_release++;
1312 			clear_buffer_delay(bh);
1313 			clear_buffer_da_mapped(bh);
1314 		}
1315 		curr_off = next_off;
1316 	} while ((bh = bh->b_this_page) != head);
1317 
1318 	/* If we have released all the blocks belonging to a cluster, then we
1319 	 * need to release the reserved space for that cluster. */
1320 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1321 	while (num_clusters > 0) {
1322 		ext4_fsblk_t lblk;
1323 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1324 			((num_clusters - 1) << sbi->s_cluster_bits);
1325 		if (sbi->s_cluster_ratio == 1 ||
1326 		    !ext4_find_delalloc_cluster(inode, lblk, 1))
1327 			ext4_da_release_space(inode, 1);
1328 
1329 		num_clusters--;
1330 	}
1331 }
1332 
1333 /*
1334  * Delayed allocation stuff
1335  */
1336 
1337 /*
1338  * mpage_da_submit_io - walks through extent of pages and try to write
1339  * them with writepage() call back
1340  *
1341  * @mpd->inode: inode
1342  * @mpd->first_page: first page of the extent
1343  * @mpd->next_page: page after the last page of the extent
1344  *
1345  * By the time mpage_da_submit_io() is called we expect all blocks
1346  * to be allocated. this may be wrong if allocation failed.
1347  *
1348  * As pages are already locked by write_cache_pages(), we can't use it
1349  */
1350 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1351 			      struct ext4_map_blocks *map)
1352 {
1353 	struct pagevec pvec;
1354 	unsigned long index, end;
1355 	int ret = 0, err, nr_pages, i;
1356 	struct inode *inode = mpd->inode;
1357 	struct address_space *mapping = inode->i_mapping;
1358 	loff_t size = i_size_read(inode);
1359 	unsigned int len, block_start;
1360 	struct buffer_head *bh, *page_bufs = NULL;
1361 	int journal_data = ext4_should_journal_data(inode);
1362 	sector_t pblock = 0, cur_logical = 0;
1363 	struct ext4_io_submit io_submit;
1364 
1365 	BUG_ON(mpd->next_page <= mpd->first_page);
1366 	memset(&io_submit, 0, sizeof(io_submit));
1367 	/*
1368 	 * We need to start from the first_page to the next_page - 1
1369 	 * to make sure we also write the mapped dirty buffer_heads.
1370 	 * If we look at mpd->b_blocknr we would only be looking
1371 	 * at the currently mapped buffer_heads.
1372 	 */
1373 	index = mpd->first_page;
1374 	end = mpd->next_page - 1;
1375 
1376 	pagevec_init(&pvec, 0);
1377 	while (index <= end) {
1378 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1379 		if (nr_pages == 0)
1380 			break;
1381 		for (i = 0; i < nr_pages; i++) {
1382 			int commit_write = 0, skip_page = 0;
1383 			struct page *page = pvec.pages[i];
1384 
1385 			index = page->index;
1386 			if (index > end)
1387 				break;
1388 
1389 			if (index == size >> PAGE_CACHE_SHIFT)
1390 				len = size & ~PAGE_CACHE_MASK;
1391 			else
1392 				len = PAGE_CACHE_SIZE;
1393 			if (map) {
1394 				cur_logical = index << (PAGE_CACHE_SHIFT -
1395 							inode->i_blkbits);
1396 				pblock = map->m_pblk + (cur_logical -
1397 							map->m_lblk);
1398 			}
1399 			index++;
1400 
1401 			BUG_ON(!PageLocked(page));
1402 			BUG_ON(PageWriteback(page));
1403 
1404 			/*
1405 			 * If the page does not have buffers (for
1406 			 * whatever reason), try to create them using
1407 			 * __block_write_begin.  If this fails,
1408 			 * skip the page and move on.
1409 			 */
1410 			if (!page_has_buffers(page)) {
1411 				if (__block_write_begin(page, 0, len,
1412 						noalloc_get_block_write)) {
1413 				skip_page:
1414 					unlock_page(page);
1415 					continue;
1416 				}
1417 				commit_write = 1;
1418 			}
1419 
1420 			bh = page_bufs = page_buffers(page);
1421 			block_start = 0;
1422 			do {
1423 				if (!bh)
1424 					goto skip_page;
1425 				if (map && (cur_logical >= map->m_lblk) &&
1426 				    (cur_logical <= (map->m_lblk +
1427 						     (map->m_len - 1)))) {
1428 					if (buffer_delay(bh)) {
1429 						clear_buffer_delay(bh);
1430 						bh->b_blocknr = pblock;
1431 					}
1432 					if (buffer_da_mapped(bh))
1433 						clear_buffer_da_mapped(bh);
1434 					if (buffer_unwritten(bh) ||
1435 					    buffer_mapped(bh))
1436 						BUG_ON(bh->b_blocknr != pblock);
1437 					if (map->m_flags & EXT4_MAP_UNINIT)
1438 						set_buffer_uninit(bh);
1439 					clear_buffer_unwritten(bh);
1440 				}
1441 
1442 				/*
1443 				 * skip page if block allocation undone and
1444 				 * block is dirty
1445 				 */
1446 				if (ext4_bh_delay_or_unwritten(NULL, bh))
1447 					skip_page = 1;
1448 				bh = bh->b_this_page;
1449 				block_start += bh->b_size;
1450 				cur_logical++;
1451 				pblock++;
1452 			} while (bh != page_bufs);
1453 
1454 			if (skip_page)
1455 				goto skip_page;
1456 
1457 			if (commit_write)
1458 				/* mark the buffer_heads as dirty & uptodate */
1459 				block_commit_write(page, 0, len);
1460 
1461 			clear_page_dirty_for_io(page);
1462 			/*
1463 			 * Delalloc doesn't support data journalling,
1464 			 * but eventually maybe we'll lift this
1465 			 * restriction.
1466 			 */
1467 			if (unlikely(journal_data && PageChecked(page)))
1468 				err = __ext4_journalled_writepage(page, len);
1469 			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1470 				err = ext4_bio_write_page(&io_submit, page,
1471 							  len, mpd->wbc);
1472 			else if (buffer_uninit(page_bufs)) {
1473 				ext4_set_bh_endio(page_bufs, inode);
1474 				err = block_write_full_page_endio(page,
1475 					noalloc_get_block_write,
1476 					mpd->wbc, ext4_end_io_buffer_write);
1477 			} else
1478 				err = block_write_full_page(page,
1479 					noalloc_get_block_write, mpd->wbc);
1480 
1481 			if (!err)
1482 				mpd->pages_written++;
1483 			/*
1484 			 * In error case, we have to continue because
1485 			 * remaining pages are still locked
1486 			 */
1487 			if (ret == 0)
1488 				ret = err;
1489 		}
1490 		pagevec_release(&pvec);
1491 	}
1492 	ext4_io_submit(&io_submit);
1493 	return ret;
1494 }
1495 
1496 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1497 {
1498 	int nr_pages, i;
1499 	pgoff_t index, end;
1500 	struct pagevec pvec;
1501 	struct inode *inode = mpd->inode;
1502 	struct address_space *mapping = inode->i_mapping;
1503 
1504 	index = mpd->first_page;
1505 	end   = mpd->next_page - 1;
1506 	while (index <= end) {
1507 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1508 		if (nr_pages == 0)
1509 			break;
1510 		for (i = 0; i < nr_pages; i++) {
1511 			struct page *page = pvec.pages[i];
1512 			if (page->index > end)
1513 				break;
1514 			BUG_ON(!PageLocked(page));
1515 			BUG_ON(PageWriteback(page));
1516 			block_invalidatepage(page, 0);
1517 			ClearPageUptodate(page);
1518 			unlock_page(page);
1519 		}
1520 		index = pvec.pages[nr_pages - 1]->index + 1;
1521 		pagevec_release(&pvec);
1522 	}
1523 	return;
1524 }
1525 
1526 static void ext4_print_free_blocks(struct inode *inode)
1527 {
1528 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1529 	struct super_block *sb = inode->i_sb;
1530 
1531 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1532 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1533 			ext4_count_free_clusters(inode->i_sb)));
1534 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1535 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1536 	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1537 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1538 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1539 	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1540 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1541 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1542 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1543 		 EXT4_I(inode)->i_reserved_data_blocks);
1544 	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1545 	       EXT4_I(inode)->i_reserved_meta_blocks);
1546 	return;
1547 }
1548 
1549 /*
1550  * mpage_da_map_and_submit - go through given space, map them
1551  *       if necessary, and then submit them for I/O
1552  *
1553  * @mpd - bh describing space
1554  *
1555  * The function skips space we know is already mapped to disk blocks.
1556  *
1557  */
1558 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1559 {
1560 	int err, blks, get_blocks_flags;
1561 	struct ext4_map_blocks map, *mapp = NULL;
1562 	sector_t next = mpd->b_blocknr;
1563 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1564 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1565 	handle_t *handle = NULL;
1566 
1567 	/*
1568 	 * If the blocks are mapped already, or we couldn't accumulate
1569 	 * any blocks, then proceed immediately to the submission stage.
1570 	 */
1571 	if ((mpd->b_size == 0) ||
1572 	    ((mpd->b_state  & (1 << BH_Mapped)) &&
1573 	     !(mpd->b_state & (1 << BH_Delay)) &&
1574 	     !(mpd->b_state & (1 << BH_Unwritten))))
1575 		goto submit_io;
1576 
1577 	handle = ext4_journal_current_handle();
1578 	BUG_ON(!handle);
1579 
1580 	/*
1581 	 * Call ext4_map_blocks() to allocate any delayed allocation
1582 	 * blocks, or to convert an uninitialized extent to be
1583 	 * initialized (in the case where we have written into
1584 	 * one or more preallocated blocks).
1585 	 *
1586 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1587 	 * indicate that we are on the delayed allocation path.  This
1588 	 * affects functions in many different parts of the allocation
1589 	 * call path.  This flag exists primarily because we don't
1590 	 * want to change *many* call functions, so ext4_map_blocks()
1591 	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1592 	 * inode's allocation semaphore is taken.
1593 	 *
1594 	 * If the blocks in questions were delalloc blocks, set
1595 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1596 	 * variables are updated after the blocks have been allocated.
1597 	 */
1598 	map.m_lblk = next;
1599 	map.m_len = max_blocks;
1600 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1601 	if (ext4_should_dioread_nolock(mpd->inode))
1602 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1603 	if (mpd->b_state & (1 << BH_Delay))
1604 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1605 
1606 	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1607 	if (blks < 0) {
1608 		struct super_block *sb = mpd->inode->i_sb;
1609 
1610 		err = blks;
1611 		/*
1612 		 * If get block returns EAGAIN or ENOSPC and there
1613 		 * appears to be free blocks we will just let
1614 		 * mpage_da_submit_io() unlock all of the pages.
1615 		 */
1616 		if (err == -EAGAIN)
1617 			goto submit_io;
1618 
1619 		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1620 			mpd->retval = err;
1621 			goto submit_io;
1622 		}
1623 
1624 		/*
1625 		 * get block failure will cause us to loop in
1626 		 * writepages, because a_ops->writepage won't be able
1627 		 * to make progress. The page will be redirtied by
1628 		 * writepage and writepages will again try to write
1629 		 * the same.
1630 		 */
1631 		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1632 			ext4_msg(sb, KERN_CRIT,
1633 				 "delayed block allocation failed for inode %lu "
1634 				 "at logical offset %llu with max blocks %zd "
1635 				 "with error %d", mpd->inode->i_ino,
1636 				 (unsigned long long) next,
1637 				 mpd->b_size >> mpd->inode->i_blkbits, err);
1638 			ext4_msg(sb, KERN_CRIT,
1639 				"This should not happen!! Data will be lost\n");
1640 			if (err == -ENOSPC)
1641 				ext4_print_free_blocks(mpd->inode);
1642 		}
1643 		/* invalidate all the pages */
1644 		ext4_da_block_invalidatepages(mpd);
1645 
1646 		/* Mark this page range as having been completed */
1647 		mpd->io_done = 1;
1648 		return;
1649 	}
1650 	BUG_ON(blks == 0);
1651 
1652 	mapp = &map;
1653 	if (map.m_flags & EXT4_MAP_NEW) {
1654 		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1655 		int i;
1656 
1657 		for (i = 0; i < map.m_len; i++)
1658 			unmap_underlying_metadata(bdev, map.m_pblk + i);
1659 
1660 		if (ext4_should_order_data(mpd->inode)) {
1661 			err = ext4_jbd2_file_inode(handle, mpd->inode);
1662 			if (err) {
1663 				/* Only if the journal is aborted */
1664 				mpd->retval = err;
1665 				goto submit_io;
1666 			}
1667 		}
1668 	}
1669 
1670 	/*
1671 	 * Update on-disk size along with block allocation.
1672 	 */
1673 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1674 	if (disksize > i_size_read(mpd->inode))
1675 		disksize = i_size_read(mpd->inode);
1676 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1677 		ext4_update_i_disksize(mpd->inode, disksize);
1678 		err = ext4_mark_inode_dirty(handle, mpd->inode);
1679 		if (err)
1680 			ext4_error(mpd->inode->i_sb,
1681 				   "Failed to mark inode %lu dirty",
1682 				   mpd->inode->i_ino);
1683 	}
1684 
1685 submit_io:
1686 	mpage_da_submit_io(mpd, mapp);
1687 	mpd->io_done = 1;
1688 }
1689 
1690 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1691 		(1 << BH_Delay) | (1 << BH_Unwritten))
1692 
1693 /*
1694  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1695  *
1696  * @mpd->lbh - extent of blocks
1697  * @logical - logical number of the block in the file
1698  * @bh - bh of the block (used to access block's state)
1699  *
1700  * the function is used to collect contig. blocks in same state
1701  */
1702 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1703 				   sector_t logical, size_t b_size,
1704 				   unsigned long b_state)
1705 {
1706 	sector_t next;
1707 	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1708 
1709 	/*
1710 	 * XXX Don't go larger than mballoc is willing to allocate
1711 	 * This is a stopgap solution.  We eventually need to fold
1712 	 * mpage_da_submit_io() into this function and then call
1713 	 * ext4_map_blocks() multiple times in a loop
1714 	 */
1715 	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1716 		goto flush_it;
1717 
1718 	/* check if thereserved journal credits might overflow */
1719 	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1720 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1721 			/*
1722 			 * With non-extent format we are limited by the journal
1723 			 * credit available.  Total credit needed to insert
1724 			 * nrblocks contiguous blocks is dependent on the
1725 			 * nrblocks.  So limit nrblocks.
1726 			 */
1727 			goto flush_it;
1728 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1729 				EXT4_MAX_TRANS_DATA) {
1730 			/*
1731 			 * Adding the new buffer_head would make it cross the
1732 			 * allowed limit for which we have journal credit
1733 			 * reserved. So limit the new bh->b_size
1734 			 */
1735 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1736 						mpd->inode->i_blkbits;
1737 			/* we will do mpage_da_submit_io in the next loop */
1738 		}
1739 	}
1740 	/*
1741 	 * First block in the extent
1742 	 */
1743 	if (mpd->b_size == 0) {
1744 		mpd->b_blocknr = logical;
1745 		mpd->b_size = b_size;
1746 		mpd->b_state = b_state & BH_FLAGS;
1747 		return;
1748 	}
1749 
1750 	next = mpd->b_blocknr + nrblocks;
1751 	/*
1752 	 * Can we merge the block to our big extent?
1753 	 */
1754 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1755 		mpd->b_size += b_size;
1756 		return;
1757 	}
1758 
1759 flush_it:
1760 	/*
1761 	 * We couldn't merge the block to our extent, so we
1762 	 * need to flush current  extent and start new one
1763 	 */
1764 	mpage_da_map_and_submit(mpd);
1765 	return;
1766 }
1767 
1768 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1769 {
1770 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1771 }
1772 
1773 /*
1774  * This function is grabs code from the very beginning of
1775  * ext4_map_blocks, but assumes that the caller is from delayed write
1776  * time. This function looks up the requested blocks and sets the
1777  * buffer delay bit under the protection of i_data_sem.
1778  */
1779 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1780 			      struct ext4_map_blocks *map,
1781 			      struct buffer_head *bh)
1782 {
1783 	int retval;
1784 	sector_t invalid_block = ~((sector_t) 0xffff);
1785 
1786 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1787 		invalid_block = ~0;
1788 
1789 	map->m_flags = 0;
1790 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1791 		  "logical block %lu\n", inode->i_ino, map->m_len,
1792 		  (unsigned long) map->m_lblk);
1793 	/*
1794 	 * Try to see if we can get the block without requesting a new
1795 	 * file system block.
1796 	 */
1797 	down_read((&EXT4_I(inode)->i_data_sem));
1798 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1799 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1800 	else
1801 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1802 
1803 	if (retval == 0) {
1804 		/*
1805 		 * XXX: __block_prepare_write() unmaps passed block,
1806 		 * is it OK?
1807 		 */
1808 		/* If the block was allocated from previously allocated cluster,
1809 		 * then we dont need to reserve it again. */
1810 		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1811 			retval = ext4_da_reserve_space(inode, iblock);
1812 			if (retval)
1813 				/* not enough space to reserve */
1814 				goto out_unlock;
1815 		}
1816 
1817 		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1818 		 * and it should not appear on the bh->b_state.
1819 		 */
1820 		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1821 
1822 		map_bh(bh, inode->i_sb, invalid_block);
1823 		set_buffer_new(bh);
1824 		set_buffer_delay(bh);
1825 	}
1826 
1827 out_unlock:
1828 	up_read((&EXT4_I(inode)->i_data_sem));
1829 
1830 	return retval;
1831 }
1832 
1833 /*
1834  * This is a special get_blocks_t callback which is used by
1835  * ext4_da_write_begin().  It will either return mapped block or
1836  * reserve space for a single block.
1837  *
1838  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1839  * We also have b_blocknr = -1 and b_bdev initialized properly
1840  *
1841  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1842  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1843  * initialized properly.
1844  */
1845 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1846 				  struct buffer_head *bh, int create)
1847 {
1848 	struct ext4_map_blocks map;
1849 	int ret = 0;
1850 
1851 	BUG_ON(create == 0);
1852 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1853 
1854 	map.m_lblk = iblock;
1855 	map.m_len = 1;
1856 
1857 	/*
1858 	 * first, we need to know whether the block is allocated already
1859 	 * preallocated blocks are unmapped but should treated
1860 	 * the same as allocated blocks.
1861 	 */
1862 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1863 	if (ret <= 0)
1864 		return ret;
1865 
1866 	map_bh(bh, inode->i_sb, map.m_pblk);
1867 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1868 
1869 	if (buffer_unwritten(bh)) {
1870 		/* A delayed write to unwritten bh should be marked
1871 		 * new and mapped.  Mapped ensures that we don't do
1872 		 * get_block multiple times when we write to the same
1873 		 * offset and new ensures that we do proper zero out
1874 		 * for partial write.
1875 		 */
1876 		set_buffer_new(bh);
1877 		set_buffer_mapped(bh);
1878 	}
1879 	return 0;
1880 }
1881 
1882 /*
1883  * This function is used as a standard get_block_t calback function
1884  * when there is no desire to allocate any blocks.  It is used as a
1885  * callback function for block_write_begin() and block_write_full_page().
1886  * These functions should only try to map a single block at a time.
1887  *
1888  * Since this function doesn't do block allocations even if the caller
1889  * requests it by passing in create=1, it is critically important that
1890  * any caller checks to make sure that any buffer heads are returned
1891  * by this function are either all already mapped or marked for
1892  * delayed allocation before calling  block_write_full_page().  Otherwise,
1893  * b_blocknr could be left unitialized, and the page write functions will
1894  * be taken by surprise.
1895  */
1896 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1897 				   struct buffer_head *bh_result, int create)
1898 {
1899 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1900 	return _ext4_get_block(inode, iblock, bh_result, 0);
1901 }
1902 
1903 static int bget_one(handle_t *handle, struct buffer_head *bh)
1904 {
1905 	get_bh(bh);
1906 	return 0;
1907 }
1908 
1909 static int bput_one(handle_t *handle, struct buffer_head *bh)
1910 {
1911 	put_bh(bh);
1912 	return 0;
1913 }
1914 
1915 static int __ext4_journalled_writepage(struct page *page,
1916 				       unsigned int len)
1917 {
1918 	struct address_space *mapping = page->mapping;
1919 	struct inode *inode = mapping->host;
1920 	struct buffer_head *page_bufs;
1921 	handle_t *handle = NULL;
1922 	int ret = 0;
1923 	int err;
1924 
1925 	ClearPageChecked(page);
1926 	page_bufs = page_buffers(page);
1927 	BUG_ON(!page_bufs);
1928 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1929 	/* As soon as we unlock the page, it can go away, but we have
1930 	 * references to buffers so we are safe */
1931 	unlock_page(page);
1932 
1933 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1934 	if (IS_ERR(handle)) {
1935 		ret = PTR_ERR(handle);
1936 		goto out;
1937 	}
1938 
1939 	BUG_ON(!ext4_handle_valid(handle));
1940 
1941 	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1942 				do_journal_get_write_access);
1943 
1944 	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1945 				write_end_fn);
1946 	if (ret == 0)
1947 		ret = err;
1948 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1949 	err = ext4_journal_stop(handle);
1950 	if (!ret)
1951 		ret = err;
1952 
1953 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1954 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1955 out:
1956 	return ret;
1957 }
1958 
1959 /*
1960  * Note that we don't need to start a transaction unless we're journaling data
1961  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1962  * need to file the inode to the transaction's list in ordered mode because if
1963  * we are writing back data added by write(), the inode is already there and if
1964  * we are writing back data modified via mmap(), no one guarantees in which
1965  * transaction the data will hit the disk. In case we are journaling data, we
1966  * cannot start transaction directly because transaction start ranks above page
1967  * lock so we have to do some magic.
1968  *
1969  * This function can get called via...
1970  *   - ext4_da_writepages after taking page lock (have journal handle)
1971  *   - journal_submit_inode_data_buffers (no journal handle)
1972  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1973  *   - grab_page_cache when doing write_begin (have journal handle)
1974  *
1975  * We don't do any block allocation in this function. If we have page with
1976  * multiple blocks we need to write those buffer_heads that are mapped. This
1977  * is important for mmaped based write. So if we do with blocksize 1K
1978  * truncate(f, 1024);
1979  * a = mmap(f, 0, 4096);
1980  * a[0] = 'a';
1981  * truncate(f, 4096);
1982  * we have in the page first buffer_head mapped via page_mkwrite call back
1983  * but other buffer_heads would be unmapped but dirty (dirty done via the
1984  * do_wp_page). So writepage should write the first block. If we modify
1985  * the mmap area beyond 1024 we will again get a page_fault and the
1986  * page_mkwrite callback will do the block allocation and mark the
1987  * buffer_heads mapped.
1988  *
1989  * We redirty the page if we have any buffer_heads that is either delay or
1990  * unwritten in the page.
1991  *
1992  * We can get recursively called as show below.
1993  *
1994  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1995  *		ext4_writepage()
1996  *
1997  * But since we don't do any block allocation we should not deadlock.
1998  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1999  */
2000 static int ext4_writepage(struct page *page,
2001 			  struct writeback_control *wbc)
2002 {
2003 	int ret = 0, commit_write = 0;
2004 	loff_t size;
2005 	unsigned int len;
2006 	struct buffer_head *page_bufs = NULL;
2007 	struct inode *inode = page->mapping->host;
2008 
2009 	trace_ext4_writepage(page);
2010 	size = i_size_read(inode);
2011 	if (page->index == size >> PAGE_CACHE_SHIFT)
2012 		len = size & ~PAGE_CACHE_MASK;
2013 	else
2014 		len = PAGE_CACHE_SIZE;
2015 
2016 	/*
2017 	 * If the page does not have buffers (for whatever reason),
2018 	 * try to create them using __block_write_begin.  If this
2019 	 * fails, redirty the page and move on.
2020 	 */
2021 	if (!page_has_buffers(page)) {
2022 		if (__block_write_begin(page, 0, len,
2023 					noalloc_get_block_write)) {
2024 		redirty_page:
2025 			redirty_page_for_writepage(wbc, page);
2026 			unlock_page(page);
2027 			return 0;
2028 		}
2029 		commit_write = 1;
2030 	}
2031 	page_bufs = page_buffers(page);
2032 	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2033 			      ext4_bh_delay_or_unwritten)) {
2034 		/*
2035 		 * We don't want to do block allocation, so redirty
2036 		 * the page and return.  We may reach here when we do
2037 		 * a journal commit via journal_submit_inode_data_buffers.
2038 		 * We can also reach here via shrink_page_list but it
2039 		 * should never be for direct reclaim so warn if that
2040 		 * happens
2041 		 */
2042 		WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2043 								PF_MEMALLOC);
2044 		goto redirty_page;
2045 	}
2046 	if (commit_write)
2047 		/* now mark the buffer_heads as dirty and uptodate */
2048 		block_commit_write(page, 0, len);
2049 
2050 	if (PageChecked(page) && ext4_should_journal_data(inode))
2051 		/*
2052 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2053 		 * doesn't seem much point in redirtying the page here.
2054 		 */
2055 		return __ext4_journalled_writepage(page, len);
2056 
2057 	if (buffer_uninit(page_bufs)) {
2058 		ext4_set_bh_endio(page_bufs, inode);
2059 		ret = block_write_full_page_endio(page, noalloc_get_block_write,
2060 					    wbc, ext4_end_io_buffer_write);
2061 	} else
2062 		ret = block_write_full_page(page, noalloc_get_block_write,
2063 					    wbc);
2064 
2065 	return ret;
2066 }
2067 
2068 /*
2069  * This is called via ext4_da_writepages() to
2070  * calculate the total number of credits to reserve to fit
2071  * a single extent allocation into a single transaction,
2072  * ext4_da_writpeages() will loop calling this before
2073  * the block allocation.
2074  */
2075 
2076 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2077 {
2078 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2079 
2080 	/*
2081 	 * With non-extent format the journal credit needed to
2082 	 * insert nrblocks contiguous block is dependent on
2083 	 * number of contiguous block. So we will limit
2084 	 * number of contiguous block to a sane value
2085 	 */
2086 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2087 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2088 		max_blocks = EXT4_MAX_TRANS_DATA;
2089 
2090 	return ext4_chunk_trans_blocks(inode, max_blocks);
2091 }
2092 
2093 /*
2094  * write_cache_pages_da - walk the list of dirty pages of the given
2095  * address space and accumulate pages that need writing, and call
2096  * mpage_da_map_and_submit to map a single contiguous memory region
2097  * and then write them.
2098  */
2099 static int write_cache_pages_da(struct address_space *mapping,
2100 				struct writeback_control *wbc,
2101 				struct mpage_da_data *mpd,
2102 				pgoff_t *done_index)
2103 {
2104 	struct buffer_head	*bh, *head;
2105 	struct inode		*inode = mapping->host;
2106 	struct pagevec		pvec;
2107 	unsigned int		nr_pages;
2108 	sector_t		logical;
2109 	pgoff_t			index, end;
2110 	long			nr_to_write = wbc->nr_to_write;
2111 	int			i, tag, ret = 0;
2112 
2113 	memset(mpd, 0, sizeof(struct mpage_da_data));
2114 	mpd->wbc = wbc;
2115 	mpd->inode = inode;
2116 	pagevec_init(&pvec, 0);
2117 	index = wbc->range_start >> PAGE_CACHE_SHIFT;
2118 	end = wbc->range_end >> PAGE_CACHE_SHIFT;
2119 
2120 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2121 		tag = PAGECACHE_TAG_TOWRITE;
2122 	else
2123 		tag = PAGECACHE_TAG_DIRTY;
2124 
2125 	*done_index = index;
2126 	while (index <= end) {
2127 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2128 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2129 		if (nr_pages == 0)
2130 			return 0;
2131 
2132 		for (i = 0; i < nr_pages; i++) {
2133 			struct page *page = pvec.pages[i];
2134 
2135 			/*
2136 			 * At this point, the page may be truncated or
2137 			 * invalidated (changing page->mapping to NULL), or
2138 			 * even swizzled back from swapper_space to tmpfs file
2139 			 * mapping. However, page->index will not change
2140 			 * because we have a reference on the page.
2141 			 */
2142 			if (page->index > end)
2143 				goto out;
2144 
2145 			*done_index = page->index + 1;
2146 
2147 			/*
2148 			 * If we can't merge this page, and we have
2149 			 * accumulated an contiguous region, write it
2150 			 */
2151 			if ((mpd->next_page != page->index) &&
2152 			    (mpd->next_page != mpd->first_page)) {
2153 				mpage_da_map_and_submit(mpd);
2154 				goto ret_extent_tail;
2155 			}
2156 
2157 			lock_page(page);
2158 
2159 			/*
2160 			 * If the page is no longer dirty, or its
2161 			 * mapping no longer corresponds to inode we
2162 			 * are writing (which means it has been
2163 			 * truncated or invalidated), or the page is
2164 			 * already under writeback and we are not
2165 			 * doing a data integrity writeback, skip the page
2166 			 */
2167 			if (!PageDirty(page) ||
2168 			    (PageWriteback(page) &&
2169 			     (wbc->sync_mode == WB_SYNC_NONE)) ||
2170 			    unlikely(page->mapping != mapping)) {
2171 				unlock_page(page);
2172 				continue;
2173 			}
2174 
2175 			wait_on_page_writeback(page);
2176 			BUG_ON(PageWriteback(page));
2177 
2178 			if (mpd->next_page != page->index)
2179 				mpd->first_page = page->index;
2180 			mpd->next_page = page->index + 1;
2181 			logical = (sector_t) page->index <<
2182 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2183 
2184 			if (!page_has_buffers(page)) {
2185 				mpage_add_bh_to_extent(mpd, logical,
2186 						       PAGE_CACHE_SIZE,
2187 						       (1 << BH_Dirty) | (1 << BH_Uptodate));
2188 				if (mpd->io_done)
2189 					goto ret_extent_tail;
2190 			} else {
2191 				/*
2192 				 * Page with regular buffer heads,
2193 				 * just add all dirty ones
2194 				 */
2195 				head = page_buffers(page);
2196 				bh = head;
2197 				do {
2198 					BUG_ON(buffer_locked(bh));
2199 					/*
2200 					 * We need to try to allocate
2201 					 * unmapped blocks in the same page.
2202 					 * Otherwise we won't make progress
2203 					 * with the page in ext4_writepage
2204 					 */
2205 					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2206 						mpage_add_bh_to_extent(mpd, logical,
2207 								       bh->b_size,
2208 								       bh->b_state);
2209 						if (mpd->io_done)
2210 							goto ret_extent_tail;
2211 					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2212 						/*
2213 						 * mapped dirty buffer. We need
2214 						 * to update the b_state
2215 						 * because we look at b_state
2216 						 * in mpage_da_map_blocks.  We
2217 						 * don't update b_size because
2218 						 * if we find an unmapped
2219 						 * buffer_head later we need to
2220 						 * use the b_state flag of that
2221 						 * buffer_head.
2222 						 */
2223 						if (mpd->b_size == 0)
2224 							mpd->b_state = bh->b_state & BH_FLAGS;
2225 					}
2226 					logical++;
2227 				} while ((bh = bh->b_this_page) != head);
2228 			}
2229 
2230 			if (nr_to_write > 0) {
2231 				nr_to_write--;
2232 				if (nr_to_write == 0 &&
2233 				    wbc->sync_mode == WB_SYNC_NONE)
2234 					/*
2235 					 * We stop writing back only if we are
2236 					 * not doing integrity sync. In case of
2237 					 * integrity sync we have to keep going
2238 					 * because someone may be concurrently
2239 					 * dirtying pages, and we might have
2240 					 * synced a lot of newly appeared dirty
2241 					 * pages, but have not synced all of the
2242 					 * old dirty pages.
2243 					 */
2244 					goto out;
2245 			}
2246 		}
2247 		pagevec_release(&pvec);
2248 		cond_resched();
2249 	}
2250 	return 0;
2251 ret_extent_tail:
2252 	ret = MPAGE_DA_EXTENT_TAIL;
2253 out:
2254 	pagevec_release(&pvec);
2255 	cond_resched();
2256 	return ret;
2257 }
2258 
2259 
2260 static int ext4_da_writepages(struct address_space *mapping,
2261 			      struct writeback_control *wbc)
2262 {
2263 	pgoff_t	index;
2264 	int range_whole = 0;
2265 	handle_t *handle = NULL;
2266 	struct mpage_da_data mpd;
2267 	struct inode *inode = mapping->host;
2268 	int pages_written = 0;
2269 	unsigned int max_pages;
2270 	int range_cyclic, cycled = 1, io_done = 0;
2271 	int needed_blocks, ret = 0;
2272 	long desired_nr_to_write, nr_to_writebump = 0;
2273 	loff_t range_start = wbc->range_start;
2274 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2275 	pgoff_t done_index = 0;
2276 	pgoff_t end;
2277 	struct blk_plug plug;
2278 
2279 	trace_ext4_da_writepages(inode, wbc);
2280 
2281 	/*
2282 	 * No pages to write? This is mainly a kludge to avoid starting
2283 	 * a transaction for special inodes like journal inode on last iput()
2284 	 * because that could violate lock ordering on umount
2285 	 */
2286 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2287 		return 0;
2288 
2289 	/*
2290 	 * If the filesystem has aborted, it is read-only, so return
2291 	 * right away instead of dumping stack traces later on that
2292 	 * will obscure the real source of the problem.  We test
2293 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2294 	 * the latter could be true if the filesystem is mounted
2295 	 * read-only, and in that case, ext4_da_writepages should
2296 	 * *never* be called, so if that ever happens, we would want
2297 	 * the stack trace.
2298 	 */
2299 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2300 		return -EROFS;
2301 
2302 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2303 		range_whole = 1;
2304 
2305 	range_cyclic = wbc->range_cyclic;
2306 	if (wbc->range_cyclic) {
2307 		index = mapping->writeback_index;
2308 		if (index)
2309 			cycled = 0;
2310 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2311 		wbc->range_end  = LLONG_MAX;
2312 		wbc->range_cyclic = 0;
2313 		end = -1;
2314 	} else {
2315 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2316 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2317 	}
2318 
2319 	/*
2320 	 * This works around two forms of stupidity.  The first is in
2321 	 * the writeback code, which caps the maximum number of pages
2322 	 * written to be 1024 pages.  This is wrong on multiple
2323 	 * levels; different architectues have a different page size,
2324 	 * which changes the maximum amount of data which gets
2325 	 * written.  Secondly, 4 megabytes is way too small.  XFS
2326 	 * forces this value to be 16 megabytes by multiplying
2327 	 * nr_to_write parameter by four, and then relies on its
2328 	 * allocator to allocate larger extents to make them
2329 	 * contiguous.  Unfortunately this brings us to the second
2330 	 * stupidity, which is that ext4's mballoc code only allocates
2331 	 * at most 2048 blocks.  So we force contiguous writes up to
2332 	 * the number of dirty blocks in the inode, or
2333 	 * sbi->max_writeback_mb_bump whichever is smaller.
2334 	 */
2335 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2336 	if (!range_cyclic && range_whole) {
2337 		if (wbc->nr_to_write == LONG_MAX)
2338 			desired_nr_to_write = wbc->nr_to_write;
2339 		else
2340 			desired_nr_to_write = wbc->nr_to_write * 8;
2341 	} else
2342 		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2343 							   max_pages);
2344 	if (desired_nr_to_write > max_pages)
2345 		desired_nr_to_write = max_pages;
2346 
2347 	if (wbc->nr_to_write < desired_nr_to_write) {
2348 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2349 		wbc->nr_to_write = desired_nr_to_write;
2350 	}
2351 
2352 retry:
2353 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2354 		tag_pages_for_writeback(mapping, index, end);
2355 
2356 	blk_start_plug(&plug);
2357 	while (!ret && wbc->nr_to_write > 0) {
2358 
2359 		/*
2360 		 * we  insert one extent at a time. So we need
2361 		 * credit needed for single extent allocation.
2362 		 * journalled mode is currently not supported
2363 		 * by delalloc
2364 		 */
2365 		BUG_ON(ext4_should_journal_data(inode));
2366 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2367 
2368 		/* start a new transaction*/
2369 		handle = ext4_journal_start(inode, needed_blocks);
2370 		if (IS_ERR(handle)) {
2371 			ret = PTR_ERR(handle);
2372 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2373 			       "%ld pages, ino %lu; err %d", __func__,
2374 				wbc->nr_to_write, inode->i_ino, ret);
2375 			blk_finish_plug(&plug);
2376 			goto out_writepages;
2377 		}
2378 
2379 		/*
2380 		 * Now call write_cache_pages_da() to find the next
2381 		 * contiguous region of logical blocks that need
2382 		 * blocks to be allocated by ext4 and submit them.
2383 		 */
2384 		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2385 		/*
2386 		 * If we have a contiguous extent of pages and we
2387 		 * haven't done the I/O yet, map the blocks and submit
2388 		 * them for I/O.
2389 		 */
2390 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2391 			mpage_da_map_and_submit(&mpd);
2392 			ret = MPAGE_DA_EXTENT_TAIL;
2393 		}
2394 		trace_ext4_da_write_pages(inode, &mpd);
2395 		wbc->nr_to_write -= mpd.pages_written;
2396 
2397 		ext4_journal_stop(handle);
2398 
2399 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2400 			/* commit the transaction which would
2401 			 * free blocks released in the transaction
2402 			 * and try again
2403 			 */
2404 			jbd2_journal_force_commit_nested(sbi->s_journal);
2405 			ret = 0;
2406 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2407 			/*
2408 			 * Got one extent now try with rest of the pages.
2409 			 * If mpd.retval is set -EIO, journal is aborted.
2410 			 * So we don't need to write any more.
2411 			 */
2412 			pages_written += mpd.pages_written;
2413 			ret = mpd.retval;
2414 			io_done = 1;
2415 		} else if (wbc->nr_to_write)
2416 			/*
2417 			 * There is no more writeout needed
2418 			 * or we requested for a noblocking writeout
2419 			 * and we found the device congested
2420 			 */
2421 			break;
2422 	}
2423 	blk_finish_plug(&plug);
2424 	if (!io_done && !cycled) {
2425 		cycled = 1;
2426 		index = 0;
2427 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2428 		wbc->range_end  = mapping->writeback_index - 1;
2429 		goto retry;
2430 	}
2431 
2432 	/* Update index */
2433 	wbc->range_cyclic = range_cyclic;
2434 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2435 		/*
2436 		 * set the writeback_index so that range_cyclic
2437 		 * mode will write it back later
2438 		 */
2439 		mapping->writeback_index = done_index;
2440 
2441 out_writepages:
2442 	wbc->nr_to_write -= nr_to_writebump;
2443 	wbc->range_start = range_start;
2444 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2445 	return ret;
2446 }
2447 
2448 #define FALL_BACK_TO_NONDELALLOC 1
2449 static int ext4_nonda_switch(struct super_block *sb)
2450 {
2451 	s64 free_blocks, dirty_blocks;
2452 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2453 
2454 	/*
2455 	 * switch to non delalloc mode if we are running low
2456 	 * on free block. The free block accounting via percpu
2457 	 * counters can get slightly wrong with percpu_counter_batch getting
2458 	 * accumulated on each CPU without updating global counters
2459 	 * Delalloc need an accurate free block accounting. So switch
2460 	 * to non delalloc when we are near to error range.
2461 	 */
2462 	free_blocks  = EXT4_C2B(sbi,
2463 		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2464 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2465 	/*
2466 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2467 	 */
2468 	if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
2469 	    !writeback_in_progress(sb->s_bdi) &&
2470 	    down_read_trylock(&sb->s_umount)) {
2471 		writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2472 		up_read(&sb->s_umount);
2473 	}
2474 
2475 	if (2 * free_blocks < 3 * dirty_blocks ||
2476 		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2477 		/*
2478 		 * free block count is less than 150% of dirty blocks
2479 		 * or free blocks is less than watermark
2480 		 */
2481 		return 1;
2482 	}
2483 	return 0;
2484 }
2485 
2486 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2487 			       loff_t pos, unsigned len, unsigned flags,
2488 			       struct page **pagep, void **fsdata)
2489 {
2490 	int ret, retries = 0;
2491 	struct page *page;
2492 	pgoff_t index;
2493 	struct inode *inode = mapping->host;
2494 	handle_t *handle;
2495 
2496 	index = pos >> PAGE_CACHE_SHIFT;
2497 
2498 	if (ext4_nonda_switch(inode->i_sb)) {
2499 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2500 		return ext4_write_begin(file, mapping, pos,
2501 					len, flags, pagep, fsdata);
2502 	}
2503 	*fsdata = (void *)0;
2504 	trace_ext4_da_write_begin(inode, pos, len, flags);
2505 retry:
2506 	/*
2507 	 * With delayed allocation, we don't log the i_disksize update
2508 	 * if there is delayed block allocation. But we still need
2509 	 * to journalling the i_disksize update if writes to the end
2510 	 * of file which has an already mapped buffer.
2511 	 */
2512 	handle = ext4_journal_start(inode, 1);
2513 	if (IS_ERR(handle)) {
2514 		ret = PTR_ERR(handle);
2515 		goto out;
2516 	}
2517 	/* We cannot recurse into the filesystem as the transaction is already
2518 	 * started */
2519 	flags |= AOP_FLAG_NOFS;
2520 
2521 	page = grab_cache_page_write_begin(mapping, index, flags);
2522 	if (!page) {
2523 		ext4_journal_stop(handle);
2524 		ret = -ENOMEM;
2525 		goto out;
2526 	}
2527 	*pagep = page;
2528 
2529 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2530 	if (ret < 0) {
2531 		unlock_page(page);
2532 		ext4_journal_stop(handle);
2533 		page_cache_release(page);
2534 		/*
2535 		 * block_write_begin may have instantiated a few blocks
2536 		 * outside i_size.  Trim these off again. Don't need
2537 		 * i_size_read because we hold i_mutex.
2538 		 */
2539 		if (pos + len > inode->i_size)
2540 			ext4_truncate_failed_write(inode);
2541 	}
2542 
2543 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2544 		goto retry;
2545 out:
2546 	return ret;
2547 }
2548 
2549 /*
2550  * Check if we should update i_disksize
2551  * when write to the end of file but not require block allocation
2552  */
2553 static int ext4_da_should_update_i_disksize(struct page *page,
2554 					    unsigned long offset)
2555 {
2556 	struct buffer_head *bh;
2557 	struct inode *inode = page->mapping->host;
2558 	unsigned int idx;
2559 	int i;
2560 
2561 	bh = page_buffers(page);
2562 	idx = offset >> inode->i_blkbits;
2563 
2564 	for (i = 0; i < idx; i++)
2565 		bh = bh->b_this_page;
2566 
2567 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2568 		return 0;
2569 	return 1;
2570 }
2571 
2572 static int ext4_da_write_end(struct file *file,
2573 			     struct address_space *mapping,
2574 			     loff_t pos, unsigned len, unsigned copied,
2575 			     struct page *page, void *fsdata)
2576 {
2577 	struct inode *inode = mapping->host;
2578 	int ret = 0, ret2;
2579 	handle_t *handle = ext4_journal_current_handle();
2580 	loff_t new_i_size;
2581 	unsigned long start, end;
2582 	int write_mode = (int)(unsigned long)fsdata;
2583 
2584 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2585 		switch (ext4_inode_journal_mode(inode)) {
2586 		case EXT4_INODE_ORDERED_DATA_MODE:
2587 			return ext4_ordered_write_end(file, mapping, pos,
2588 					len, copied, page, fsdata);
2589 		case EXT4_INODE_WRITEBACK_DATA_MODE:
2590 			return ext4_writeback_write_end(file, mapping, pos,
2591 					len, copied, page, fsdata);
2592 		default:
2593 			BUG();
2594 		}
2595 	}
2596 
2597 	trace_ext4_da_write_end(inode, pos, len, copied);
2598 	start = pos & (PAGE_CACHE_SIZE - 1);
2599 	end = start + copied - 1;
2600 
2601 	/*
2602 	 * generic_write_end() will run mark_inode_dirty() if i_size
2603 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2604 	 * into that.
2605 	 */
2606 
2607 	new_i_size = pos + copied;
2608 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2609 		if (ext4_da_should_update_i_disksize(page, end)) {
2610 			down_write(&EXT4_I(inode)->i_data_sem);
2611 			if (new_i_size > EXT4_I(inode)->i_disksize) {
2612 				/*
2613 				 * Updating i_disksize when extending file
2614 				 * without needing block allocation
2615 				 */
2616 				if (ext4_should_order_data(inode))
2617 					ret = ext4_jbd2_file_inode(handle,
2618 								   inode);
2619 
2620 				EXT4_I(inode)->i_disksize = new_i_size;
2621 			}
2622 			up_write(&EXT4_I(inode)->i_data_sem);
2623 			/* We need to mark inode dirty even if
2624 			 * new_i_size is less that inode->i_size
2625 			 * bu greater than i_disksize.(hint delalloc)
2626 			 */
2627 			ext4_mark_inode_dirty(handle, inode);
2628 		}
2629 	}
2630 	ret2 = generic_write_end(file, mapping, pos, len, copied,
2631 							page, fsdata);
2632 	copied = ret2;
2633 	if (ret2 < 0)
2634 		ret = ret2;
2635 	ret2 = ext4_journal_stop(handle);
2636 	if (!ret)
2637 		ret = ret2;
2638 
2639 	return ret ? ret : copied;
2640 }
2641 
2642 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2643 {
2644 	/*
2645 	 * Drop reserved blocks
2646 	 */
2647 	BUG_ON(!PageLocked(page));
2648 	if (!page_has_buffers(page))
2649 		goto out;
2650 
2651 	ext4_da_page_release_reservation(page, offset);
2652 
2653 out:
2654 	ext4_invalidatepage(page, offset);
2655 
2656 	return;
2657 }
2658 
2659 /*
2660  * Force all delayed allocation blocks to be allocated for a given inode.
2661  */
2662 int ext4_alloc_da_blocks(struct inode *inode)
2663 {
2664 	trace_ext4_alloc_da_blocks(inode);
2665 
2666 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2667 	    !EXT4_I(inode)->i_reserved_meta_blocks)
2668 		return 0;
2669 
2670 	/*
2671 	 * We do something simple for now.  The filemap_flush() will
2672 	 * also start triggering a write of the data blocks, which is
2673 	 * not strictly speaking necessary (and for users of
2674 	 * laptop_mode, not even desirable).  However, to do otherwise
2675 	 * would require replicating code paths in:
2676 	 *
2677 	 * ext4_da_writepages() ->
2678 	 *    write_cache_pages() ---> (via passed in callback function)
2679 	 *        __mpage_da_writepage() -->
2680 	 *           mpage_add_bh_to_extent()
2681 	 *           mpage_da_map_blocks()
2682 	 *
2683 	 * The problem is that write_cache_pages(), located in
2684 	 * mm/page-writeback.c, marks pages clean in preparation for
2685 	 * doing I/O, which is not desirable if we're not planning on
2686 	 * doing I/O at all.
2687 	 *
2688 	 * We could call write_cache_pages(), and then redirty all of
2689 	 * the pages by calling redirty_page_for_writepage() but that
2690 	 * would be ugly in the extreme.  So instead we would need to
2691 	 * replicate parts of the code in the above functions,
2692 	 * simplifying them because we wouldn't actually intend to
2693 	 * write out the pages, but rather only collect contiguous
2694 	 * logical block extents, call the multi-block allocator, and
2695 	 * then update the buffer heads with the block allocations.
2696 	 *
2697 	 * For now, though, we'll cheat by calling filemap_flush(),
2698 	 * which will map the blocks, and start the I/O, but not
2699 	 * actually wait for the I/O to complete.
2700 	 */
2701 	return filemap_flush(inode->i_mapping);
2702 }
2703 
2704 /*
2705  * bmap() is special.  It gets used by applications such as lilo and by
2706  * the swapper to find the on-disk block of a specific piece of data.
2707  *
2708  * Naturally, this is dangerous if the block concerned is still in the
2709  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2710  * filesystem and enables swap, then they may get a nasty shock when the
2711  * data getting swapped to that swapfile suddenly gets overwritten by
2712  * the original zero's written out previously to the journal and
2713  * awaiting writeback in the kernel's buffer cache.
2714  *
2715  * So, if we see any bmap calls here on a modified, data-journaled file,
2716  * take extra steps to flush any blocks which might be in the cache.
2717  */
2718 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2719 {
2720 	struct inode *inode = mapping->host;
2721 	journal_t *journal;
2722 	int err;
2723 
2724 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2725 			test_opt(inode->i_sb, DELALLOC)) {
2726 		/*
2727 		 * With delalloc we want to sync the file
2728 		 * so that we can make sure we allocate
2729 		 * blocks for file
2730 		 */
2731 		filemap_write_and_wait(mapping);
2732 	}
2733 
2734 	if (EXT4_JOURNAL(inode) &&
2735 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2736 		/*
2737 		 * This is a REALLY heavyweight approach, but the use of
2738 		 * bmap on dirty files is expected to be extremely rare:
2739 		 * only if we run lilo or swapon on a freshly made file
2740 		 * do we expect this to happen.
2741 		 *
2742 		 * (bmap requires CAP_SYS_RAWIO so this does not
2743 		 * represent an unprivileged user DOS attack --- we'd be
2744 		 * in trouble if mortal users could trigger this path at
2745 		 * will.)
2746 		 *
2747 		 * NB. EXT4_STATE_JDATA is not set on files other than
2748 		 * regular files.  If somebody wants to bmap a directory
2749 		 * or symlink and gets confused because the buffer
2750 		 * hasn't yet been flushed to disk, they deserve
2751 		 * everything they get.
2752 		 */
2753 
2754 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2755 		journal = EXT4_JOURNAL(inode);
2756 		jbd2_journal_lock_updates(journal);
2757 		err = jbd2_journal_flush(journal);
2758 		jbd2_journal_unlock_updates(journal);
2759 
2760 		if (err)
2761 			return 0;
2762 	}
2763 
2764 	return generic_block_bmap(mapping, block, ext4_get_block);
2765 }
2766 
2767 static int ext4_readpage(struct file *file, struct page *page)
2768 {
2769 	trace_ext4_readpage(page);
2770 	return mpage_readpage(page, ext4_get_block);
2771 }
2772 
2773 static int
2774 ext4_readpages(struct file *file, struct address_space *mapping,
2775 		struct list_head *pages, unsigned nr_pages)
2776 {
2777 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2778 }
2779 
2780 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2781 {
2782 	struct buffer_head *head, *bh;
2783 	unsigned int curr_off = 0;
2784 
2785 	if (!page_has_buffers(page))
2786 		return;
2787 	head = bh = page_buffers(page);
2788 	do {
2789 		if (offset <= curr_off && test_clear_buffer_uninit(bh)
2790 					&& bh->b_private) {
2791 			ext4_free_io_end(bh->b_private);
2792 			bh->b_private = NULL;
2793 			bh->b_end_io = NULL;
2794 		}
2795 		curr_off = curr_off + bh->b_size;
2796 		bh = bh->b_this_page;
2797 	} while (bh != head);
2798 }
2799 
2800 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2801 {
2802 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2803 
2804 	trace_ext4_invalidatepage(page, offset);
2805 
2806 	/*
2807 	 * free any io_end structure allocated for buffers to be discarded
2808 	 */
2809 	if (ext4_should_dioread_nolock(page->mapping->host))
2810 		ext4_invalidatepage_free_endio(page, offset);
2811 	/*
2812 	 * If it's a full truncate we just forget about the pending dirtying
2813 	 */
2814 	if (offset == 0)
2815 		ClearPageChecked(page);
2816 
2817 	if (journal)
2818 		jbd2_journal_invalidatepage(journal, page, offset);
2819 	else
2820 		block_invalidatepage(page, offset);
2821 }
2822 
2823 static int ext4_releasepage(struct page *page, gfp_t wait)
2824 {
2825 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2826 
2827 	trace_ext4_releasepage(page);
2828 
2829 	WARN_ON(PageChecked(page));
2830 	if (!page_has_buffers(page))
2831 		return 0;
2832 	if (journal)
2833 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2834 	else
2835 		return try_to_free_buffers(page);
2836 }
2837 
2838 /*
2839  * ext4_get_block used when preparing for a DIO write or buffer write.
2840  * We allocate an uinitialized extent if blocks haven't been allocated.
2841  * The extent will be converted to initialized after the IO is complete.
2842  */
2843 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2844 		   struct buffer_head *bh_result, int create)
2845 {
2846 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2847 		   inode->i_ino, create);
2848 	return _ext4_get_block(inode, iblock, bh_result,
2849 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2850 }
2851 
2852 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2853 		   struct buffer_head *bh_result, int flags)
2854 {
2855 	handle_t *handle = ext4_journal_current_handle();
2856 	struct ext4_map_blocks map;
2857 	int ret = 0;
2858 
2859 	ext4_debug("ext4_get_block_write_nolock: inode %lu, flag %d\n",
2860 		   inode->i_ino, flags);
2861 
2862 	flags = EXT4_GET_BLOCKS_NO_LOCK;
2863 
2864 	map.m_lblk = iblock;
2865 	map.m_len = bh_result->b_size >> inode->i_blkbits;
2866 
2867 	ret = ext4_map_blocks(handle, inode, &map, flags);
2868 	if (ret > 0) {
2869 		map_bh(bh_result, inode->i_sb, map.m_pblk);
2870 		bh_result->b_state = (bh_result->b_state & ~EXT4_MAP_FLAGS) |
2871 					map.m_flags;
2872 		bh_result->b_size = inode->i_sb->s_blocksize * map.m_len;
2873 		ret = 0;
2874 	}
2875 	return ret;
2876 }
2877 
2878 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2879 			    ssize_t size, void *private, int ret,
2880 			    bool is_async)
2881 {
2882 	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2883         ext4_io_end_t *io_end = iocb->private;
2884 
2885 	/* if not async direct IO or dio with 0 bytes write, just return */
2886 	if (!io_end || !size)
2887 		goto out;
2888 
2889 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2890 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2891  		  iocb->private, io_end->inode->i_ino, iocb, offset,
2892 		  size);
2893 
2894 	iocb->private = NULL;
2895 
2896 	/* if not aio dio with unwritten extents, just free io and return */
2897 	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2898 		ext4_free_io_end(io_end);
2899 out:
2900 		if (is_async)
2901 			aio_complete(iocb, ret, 0);
2902 		inode_dio_done(inode);
2903 		return;
2904 	}
2905 
2906 	io_end->offset = offset;
2907 	io_end->size = size;
2908 	if (is_async) {
2909 		io_end->iocb = iocb;
2910 		io_end->result = ret;
2911 	}
2912 
2913 	ext4_add_complete_io(io_end);
2914 }
2915 
2916 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2917 {
2918 	ext4_io_end_t *io_end = bh->b_private;
2919 	struct inode *inode;
2920 
2921 	if (!test_clear_buffer_uninit(bh) || !io_end)
2922 		goto out;
2923 
2924 	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2925 		ext4_msg(io_end->inode->i_sb, KERN_INFO,
2926 			 "sb umounted, discard end_io request for inode %lu",
2927 			 io_end->inode->i_ino);
2928 		ext4_free_io_end(io_end);
2929 		goto out;
2930 	}
2931 
2932 	/*
2933 	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2934 	 * but being more careful is always safe for the future change.
2935 	 */
2936 	inode = io_end->inode;
2937 	ext4_set_io_unwritten_flag(inode, io_end);
2938 	ext4_add_complete_io(io_end);
2939 out:
2940 	bh->b_private = NULL;
2941 	bh->b_end_io = NULL;
2942 	clear_buffer_uninit(bh);
2943 	end_buffer_async_write(bh, uptodate);
2944 }
2945 
2946 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2947 {
2948 	ext4_io_end_t *io_end;
2949 	struct page *page = bh->b_page;
2950 	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2951 	size_t size = bh->b_size;
2952 
2953 retry:
2954 	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2955 	if (!io_end) {
2956 		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2957 		schedule();
2958 		goto retry;
2959 	}
2960 	io_end->offset = offset;
2961 	io_end->size = size;
2962 	/*
2963 	 * We need to hold a reference to the page to make sure it
2964 	 * doesn't get evicted before ext4_end_io_work() has a chance
2965 	 * to convert the extent from written to unwritten.
2966 	 */
2967 	io_end->page = page;
2968 	get_page(io_end->page);
2969 
2970 	bh->b_private = io_end;
2971 	bh->b_end_io = ext4_end_io_buffer_write;
2972 	return 0;
2973 }
2974 
2975 /*
2976  * For ext4 extent files, ext4 will do direct-io write to holes,
2977  * preallocated extents, and those write extend the file, no need to
2978  * fall back to buffered IO.
2979  *
2980  * For holes, we fallocate those blocks, mark them as uninitialized
2981  * If those blocks were preallocated, we mark sure they are splited, but
2982  * still keep the range to write as uninitialized.
2983  *
2984  * The unwrritten extents will be converted to written when DIO is completed.
2985  * For async direct IO, since the IO may still pending when return, we
2986  * set up an end_io call back function, which will do the conversion
2987  * when async direct IO completed.
2988  *
2989  * If the O_DIRECT write will extend the file then add this inode to the
2990  * orphan list.  So recovery will truncate it back to the original size
2991  * if the machine crashes during the write.
2992  *
2993  */
2994 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2995 			      const struct iovec *iov, loff_t offset,
2996 			      unsigned long nr_segs)
2997 {
2998 	struct file *file = iocb->ki_filp;
2999 	struct inode *inode = file->f_mapping->host;
3000 	ssize_t ret;
3001 	size_t count = iov_length(iov, nr_segs);
3002 
3003 	loff_t final_size = offset + count;
3004 	if (rw == WRITE && final_size <= inode->i_size) {
3005 		int overwrite = 0;
3006 
3007 		BUG_ON(iocb->private == NULL);
3008 
3009 		/* If we do a overwrite dio, i_mutex locking can be released */
3010 		overwrite = *((int *)iocb->private);
3011 
3012 		if (overwrite) {
3013 			atomic_inc(&inode->i_dio_count);
3014 			down_read(&EXT4_I(inode)->i_data_sem);
3015 			mutex_unlock(&inode->i_mutex);
3016 		}
3017 
3018 		/*
3019  		 * We could direct write to holes and fallocate.
3020 		 *
3021  		 * Allocated blocks to fill the hole are marked as uninitialized
3022  		 * to prevent parallel buffered read to expose the stale data
3023  		 * before DIO complete the data IO.
3024 		 *
3025  		 * As to previously fallocated extents, ext4 get_block
3026  		 * will just simply mark the buffer mapped but still
3027  		 * keep the extents uninitialized.
3028  		 *
3029 		 * for non AIO case, we will convert those unwritten extents
3030 		 * to written after return back from blockdev_direct_IO.
3031 		 *
3032 		 * for async DIO, the conversion needs to be defered when
3033 		 * the IO is completed. The ext4 end_io callback function
3034 		 * will be called to take care of the conversion work.
3035 		 * Here for async case, we allocate an io_end structure to
3036 		 * hook to the iocb.
3037  		 */
3038 		iocb->private = NULL;
3039 		ext4_inode_aio_set(inode, NULL);
3040 		if (!is_sync_kiocb(iocb)) {
3041 			ext4_io_end_t *io_end =
3042 				ext4_init_io_end(inode, GFP_NOFS);
3043 			if (!io_end) {
3044 				ret = -ENOMEM;
3045 				goto retake_lock;
3046 			}
3047 			io_end->flag |= EXT4_IO_END_DIRECT;
3048 			iocb->private = io_end;
3049 			/*
3050 			 * we save the io structure for current async
3051 			 * direct IO, so that later ext4_map_blocks()
3052 			 * could flag the io structure whether there
3053 			 * is a unwritten extents needs to be converted
3054 			 * when IO is completed.
3055 			 */
3056 			ext4_inode_aio_set(inode, io_end);
3057 		}
3058 
3059 		if (overwrite)
3060 			ret = __blockdev_direct_IO(rw, iocb, inode,
3061 						 inode->i_sb->s_bdev, iov,
3062 						 offset, nr_segs,
3063 						 ext4_get_block_write_nolock,
3064 						 ext4_end_io_dio,
3065 						 NULL,
3066 						 0);
3067 		else
3068 			ret = __blockdev_direct_IO(rw, iocb, inode,
3069 						 inode->i_sb->s_bdev, iov,
3070 						 offset, nr_segs,
3071 						 ext4_get_block_write,
3072 						 ext4_end_io_dio,
3073 						 NULL,
3074 						 DIO_LOCKING);
3075 		if (iocb->private)
3076 			ext4_inode_aio_set(inode, NULL);
3077 		/*
3078 		 * The io_end structure takes a reference to the inode,
3079 		 * that structure needs to be destroyed and the
3080 		 * reference to the inode need to be dropped, when IO is
3081 		 * complete, even with 0 byte write, or failed.
3082 		 *
3083 		 * In the successful AIO DIO case, the io_end structure will be
3084 		 * desctroyed and the reference to the inode will be dropped
3085 		 * after the end_io call back function is called.
3086 		 *
3087 		 * In the case there is 0 byte write, or error case, since
3088 		 * VFS direct IO won't invoke the end_io call back function,
3089 		 * we need to free the end_io structure here.
3090 		 */
3091 		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3092 			ext4_free_io_end(iocb->private);
3093 			iocb->private = NULL;
3094 		} else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3095 						EXT4_STATE_DIO_UNWRITTEN)) {
3096 			int err;
3097 			/*
3098 			 * for non AIO case, since the IO is already
3099 			 * completed, we could do the conversion right here
3100 			 */
3101 			err = ext4_convert_unwritten_extents(inode,
3102 							     offset, ret);
3103 			if (err < 0)
3104 				ret = err;
3105 			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3106 		}
3107 
3108 	retake_lock:
3109 		/* take i_mutex locking again if we do a ovewrite dio */
3110 		if (overwrite) {
3111 			inode_dio_done(inode);
3112 			up_read(&EXT4_I(inode)->i_data_sem);
3113 			mutex_lock(&inode->i_mutex);
3114 		}
3115 
3116 		return ret;
3117 	}
3118 
3119 	/* for write the the end of file case, we fall back to old way */
3120 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3121 }
3122 
3123 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3124 			      const struct iovec *iov, loff_t offset,
3125 			      unsigned long nr_segs)
3126 {
3127 	struct file *file = iocb->ki_filp;
3128 	struct inode *inode = file->f_mapping->host;
3129 	ssize_t ret;
3130 
3131 	/*
3132 	 * If we are doing data journalling we don't support O_DIRECT
3133 	 */
3134 	if (ext4_should_journal_data(inode))
3135 		return 0;
3136 
3137 	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3138 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3139 		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3140 	else
3141 		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3142 	trace_ext4_direct_IO_exit(inode, offset,
3143 				iov_length(iov, nr_segs), rw, ret);
3144 	return ret;
3145 }
3146 
3147 /*
3148  * Pages can be marked dirty completely asynchronously from ext4's journalling
3149  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3150  * much here because ->set_page_dirty is called under VFS locks.  The page is
3151  * not necessarily locked.
3152  *
3153  * We cannot just dirty the page and leave attached buffers clean, because the
3154  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3155  * or jbddirty because all the journalling code will explode.
3156  *
3157  * So what we do is to mark the page "pending dirty" and next time writepage
3158  * is called, propagate that into the buffers appropriately.
3159  */
3160 static int ext4_journalled_set_page_dirty(struct page *page)
3161 {
3162 	SetPageChecked(page);
3163 	return __set_page_dirty_nobuffers(page);
3164 }
3165 
3166 static const struct address_space_operations ext4_ordered_aops = {
3167 	.readpage		= ext4_readpage,
3168 	.readpages		= ext4_readpages,
3169 	.writepage		= ext4_writepage,
3170 	.write_begin		= ext4_write_begin,
3171 	.write_end		= ext4_ordered_write_end,
3172 	.bmap			= ext4_bmap,
3173 	.invalidatepage		= ext4_invalidatepage,
3174 	.releasepage		= ext4_releasepage,
3175 	.direct_IO		= ext4_direct_IO,
3176 	.migratepage		= buffer_migrate_page,
3177 	.is_partially_uptodate  = block_is_partially_uptodate,
3178 	.error_remove_page	= generic_error_remove_page,
3179 };
3180 
3181 static const struct address_space_operations ext4_writeback_aops = {
3182 	.readpage		= ext4_readpage,
3183 	.readpages		= ext4_readpages,
3184 	.writepage		= ext4_writepage,
3185 	.write_begin		= ext4_write_begin,
3186 	.write_end		= ext4_writeback_write_end,
3187 	.bmap			= ext4_bmap,
3188 	.invalidatepage		= ext4_invalidatepage,
3189 	.releasepage		= ext4_releasepage,
3190 	.direct_IO		= ext4_direct_IO,
3191 	.migratepage		= buffer_migrate_page,
3192 	.is_partially_uptodate  = block_is_partially_uptodate,
3193 	.error_remove_page	= generic_error_remove_page,
3194 };
3195 
3196 static const struct address_space_operations ext4_journalled_aops = {
3197 	.readpage		= ext4_readpage,
3198 	.readpages		= ext4_readpages,
3199 	.writepage		= ext4_writepage,
3200 	.write_begin		= ext4_write_begin,
3201 	.write_end		= ext4_journalled_write_end,
3202 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3203 	.bmap			= ext4_bmap,
3204 	.invalidatepage		= ext4_invalidatepage,
3205 	.releasepage		= ext4_releasepage,
3206 	.direct_IO		= ext4_direct_IO,
3207 	.is_partially_uptodate  = block_is_partially_uptodate,
3208 	.error_remove_page	= generic_error_remove_page,
3209 };
3210 
3211 static const struct address_space_operations ext4_da_aops = {
3212 	.readpage		= ext4_readpage,
3213 	.readpages		= ext4_readpages,
3214 	.writepage		= ext4_writepage,
3215 	.writepages		= ext4_da_writepages,
3216 	.write_begin		= ext4_da_write_begin,
3217 	.write_end		= ext4_da_write_end,
3218 	.bmap			= ext4_bmap,
3219 	.invalidatepage		= ext4_da_invalidatepage,
3220 	.releasepage		= ext4_releasepage,
3221 	.direct_IO		= ext4_direct_IO,
3222 	.migratepage		= buffer_migrate_page,
3223 	.is_partially_uptodate  = block_is_partially_uptodate,
3224 	.error_remove_page	= generic_error_remove_page,
3225 };
3226 
3227 void ext4_set_aops(struct inode *inode)
3228 {
3229 	switch (ext4_inode_journal_mode(inode)) {
3230 	case EXT4_INODE_ORDERED_DATA_MODE:
3231 		if (test_opt(inode->i_sb, DELALLOC))
3232 			inode->i_mapping->a_ops = &ext4_da_aops;
3233 		else
3234 			inode->i_mapping->a_ops = &ext4_ordered_aops;
3235 		break;
3236 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3237 		if (test_opt(inode->i_sb, DELALLOC))
3238 			inode->i_mapping->a_ops = &ext4_da_aops;
3239 		else
3240 			inode->i_mapping->a_ops = &ext4_writeback_aops;
3241 		break;
3242 	case EXT4_INODE_JOURNAL_DATA_MODE:
3243 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3244 		break;
3245 	default:
3246 		BUG();
3247 	}
3248 }
3249 
3250 
3251 /*
3252  * ext4_discard_partial_page_buffers()
3253  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3254  * This function finds and locks the page containing the offset
3255  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3256  * Calling functions that already have the page locked should call
3257  * ext4_discard_partial_page_buffers_no_lock directly.
3258  */
3259 int ext4_discard_partial_page_buffers(handle_t *handle,
3260 		struct address_space *mapping, loff_t from,
3261 		loff_t length, int flags)
3262 {
3263 	struct inode *inode = mapping->host;
3264 	struct page *page;
3265 	int err = 0;
3266 
3267 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3268 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3269 	if (!page)
3270 		return -ENOMEM;
3271 
3272 	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3273 		from, length, flags);
3274 
3275 	unlock_page(page);
3276 	page_cache_release(page);
3277 	return err;
3278 }
3279 
3280 /*
3281  * ext4_discard_partial_page_buffers_no_lock()
3282  * Zeros a page range of length 'length' starting from offset 'from'.
3283  * Buffer heads that correspond to the block aligned regions of the
3284  * zeroed range will be unmapped.  Unblock aligned regions
3285  * will have the corresponding buffer head mapped if needed so that
3286  * that region of the page can be updated with the partial zero out.
3287  *
3288  * This function assumes that the page has already been  locked.  The
3289  * The range to be discarded must be contained with in the given page.
3290  * If the specified range exceeds the end of the page it will be shortened
3291  * to the end of the page that corresponds to 'from'.  This function is
3292  * appropriate for updating a page and it buffer heads to be unmapped and
3293  * zeroed for blocks that have been either released, or are going to be
3294  * released.
3295  *
3296  * handle: The journal handle
3297  * inode:  The files inode
3298  * page:   A locked page that contains the offset "from"
3299  * from:   The starting byte offset (from the beginning of the file)
3300  *         to begin discarding
3301  * len:    The length of bytes to discard
3302  * flags:  Optional flags that may be used:
3303  *
3304  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3305  *         Only zero the regions of the page whose buffer heads
3306  *         have already been unmapped.  This flag is appropriate
3307  *         for updating the contents of a page whose blocks may
3308  *         have already been released, and we only want to zero
3309  *         out the regions that correspond to those released blocks.
3310  *
3311  * Returns zero on success or negative on failure.
3312  */
3313 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3314 		struct inode *inode, struct page *page, loff_t from,
3315 		loff_t length, int flags)
3316 {
3317 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3318 	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3319 	unsigned int blocksize, max, pos;
3320 	ext4_lblk_t iblock;
3321 	struct buffer_head *bh;
3322 	int err = 0;
3323 
3324 	blocksize = inode->i_sb->s_blocksize;
3325 	max = PAGE_CACHE_SIZE - offset;
3326 
3327 	if (index != page->index)
3328 		return -EINVAL;
3329 
3330 	/*
3331 	 * correct length if it does not fall between
3332 	 * 'from' and the end of the page
3333 	 */
3334 	if (length > max || length < 0)
3335 		length = max;
3336 
3337 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3338 
3339 	if (!page_has_buffers(page))
3340 		create_empty_buffers(page, blocksize, 0);
3341 
3342 	/* Find the buffer that contains "offset" */
3343 	bh = page_buffers(page);
3344 	pos = blocksize;
3345 	while (offset >= pos) {
3346 		bh = bh->b_this_page;
3347 		iblock++;
3348 		pos += blocksize;
3349 	}
3350 
3351 	pos = offset;
3352 	while (pos < offset + length) {
3353 		unsigned int end_of_block, range_to_discard;
3354 
3355 		err = 0;
3356 
3357 		/* The length of space left to zero and unmap */
3358 		range_to_discard = offset + length - pos;
3359 
3360 		/* The length of space until the end of the block */
3361 		end_of_block = blocksize - (pos & (blocksize-1));
3362 
3363 		/*
3364 		 * Do not unmap or zero past end of block
3365 		 * for this buffer head
3366 		 */
3367 		if (range_to_discard > end_of_block)
3368 			range_to_discard = end_of_block;
3369 
3370 
3371 		/*
3372 		 * Skip this buffer head if we are only zeroing unampped
3373 		 * regions of the page
3374 		 */
3375 		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3376 			buffer_mapped(bh))
3377 				goto next;
3378 
3379 		/* If the range is block aligned, unmap */
3380 		if (range_to_discard == blocksize) {
3381 			clear_buffer_dirty(bh);
3382 			bh->b_bdev = NULL;
3383 			clear_buffer_mapped(bh);
3384 			clear_buffer_req(bh);
3385 			clear_buffer_new(bh);
3386 			clear_buffer_delay(bh);
3387 			clear_buffer_unwritten(bh);
3388 			clear_buffer_uptodate(bh);
3389 			zero_user(page, pos, range_to_discard);
3390 			BUFFER_TRACE(bh, "Buffer discarded");
3391 			goto next;
3392 		}
3393 
3394 		/*
3395 		 * If this block is not completely contained in the range
3396 		 * to be discarded, then it is not going to be released. Because
3397 		 * we need to keep this block, we need to make sure this part
3398 		 * of the page is uptodate before we modify it by writeing
3399 		 * partial zeros on it.
3400 		 */
3401 		if (!buffer_mapped(bh)) {
3402 			/*
3403 			 * Buffer head must be mapped before we can read
3404 			 * from the block
3405 			 */
3406 			BUFFER_TRACE(bh, "unmapped");
3407 			ext4_get_block(inode, iblock, bh, 0);
3408 			/* unmapped? It's a hole - nothing to do */
3409 			if (!buffer_mapped(bh)) {
3410 				BUFFER_TRACE(bh, "still unmapped");
3411 				goto next;
3412 			}
3413 		}
3414 
3415 		/* Ok, it's mapped. Make sure it's up-to-date */
3416 		if (PageUptodate(page))
3417 			set_buffer_uptodate(bh);
3418 
3419 		if (!buffer_uptodate(bh)) {
3420 			err = -EIO;
3421 			ll_rw_block(READ, 1, &bh);
3422 			wait_on_buffer(bh);
3423 			/* Uhhuh. Read error. Complain and punt.*/
3424 			if (!buffer_uptodate(bh))
3425 				goto next;
3426 		}
3427 
3428 		if (ext4_should_journal_data(inode)) {
3429 			BUFFER_TRACE(bh, "get write access");
3430 			err = ext4_journal_get_write_access(handle, bh);
3431 			if (err)
3432 				goto next;
3433 		}
3434 
3435 		zero_user(page, pos, range_to_discard);
3436 
3437 		err = 0;
3438 		if (ext4_should_journal_data(inode)) {
3439 			err = ext4_handle_dirty_metadata(handle, inode, bh);
3440 		} else
3441 			mark_buffer_dirty(bh);
3442 
3443 		BUFFER_TRACE(bh, "Partial buffer zeroed");
3444 next:
3445 		bh = bh->b_this_page;
3446 		iblock++;
3447 		pos += range_to_discard;
3448 	}
3449 
3450 	return err;
3451 }
3452 
3453 int ext4_can_truncate(struct inode *inode)
3454 {
3455 	if (S_ISREG(inode->i_mode))
3456 		return 1;
3457 	if (S_ISDIR(inode->i_mode))
3458 		return 1;
3459 	if (S_ISLNK(inode->i_mode))
3460 		return !ext4_inode_is_fast_symlink(inode);
3461 	return 0;
3462 }
3463 
3464 /*
3465  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3466  * associated with the given offset and length
3467  *
3468  * @inode:  File inode
3469  * @offset: The offset where the hole will begin
3470  * @len:    The length of the hole
3471  *
3472  * Returns: 0 on success or negative on failure
3473  */
3474 
3475 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3476 {
3477 	struct inode *inode = file->f_path.dentry->d_inode;
3478 	if (!S_ISREG(inode->i_mode))
3479 		return -EOPNOTSUPP;
3480 
3481 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3482 		/* TODO: Add support for non extent hole punching */
3483 		return -EOPNOTSUPP;
3484 	}
3485 
3486 	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3487 		/* TODO: Add support for bigalloc file systems */
3488 		return -EOPNOTSUPP;
3489 	}
3490 
3491 	return ext4_ext_punch_hole(file, offset, length);
3492 }
3493 
3494 /*
3495  * ext4_truncate()
3496  *
3497  * We block out ext4_get_block() block instantiations across the entire
3498  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3499  * simultaneously on behalf of the same inode.
3500  *
3501  * As we work through the truncate and commit bits of it to the journal there
3502  * is one core, guiding principle: the file's tree must always be consistent on
3503  * disk.  We must be able to restart the truncate after a crash.
3504  *
3505  * The file's tree may be transiently inconsistent in memory (although it
3506  * probably isn't), but whenever we close off and commit a journal transaction,
3507  * the contents of (the filesystem + the journal) must be consistent and
3508  * restartable.  It's pretty simple, really: bottom up, right to left (although
3509  * left-to-right works OK too).
3510  *
3511  * Note that at recovery time, journal replay occurs *before* the restart of
3512  * truncate against the orphan inode list.
3513  *
3514  * The committed inode has the new, desired i_size (which is the same as
3515  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3516  * that this inode's truncate did not complete and it will again call
3517  * ext4_truncate() to have another go.  So there will be instantiated blocks
3518  * to the right of the truncation point in a crashed ext4 filesystem.  But
3519  * that's fine - as long as they are linked from the inode, the post-crash
3520  * ext4_truncate() run will find them and release them.
3521  */
3522 void ext4_truncate(struct inode *inode)
3523 {
3524 	trace_ext4_truncate_enter(inode);
3525 
3526 	if (!ext4_can_truncate(inode))
3527 		return;
3528 
3529 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3530 
3531 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3532 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3533 
3534 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3535 		ext4_ext_truncate(inode);
3536 	else
3537 		ext4_ind_truncate(inode);
3538 
3539 	trace_ext4_truncate_exit(inode);
3540 }
3541 
3542 /*
3543  * ext4_get_inode_loc returns with an extra refcount against the inode's
3544  * underlying buffer_head on success. If 'in_mem' is true, we have all
3545  * data in memory that is needed to recreate the on-disk version of this
3546  * inode.
3547  */
3548 static int __ext4_get_inode_loc(struct inode *inode,
3549 				struct ext4_iloc *iloc, int in_mem)
3550 {
3551 	struct ext4_group_desc	*gdp;
3552 	struct buffer_head	*bh;
3553 	struct super_block	*sb = inode->i_sb;
3554 	ext4_fsblk_t		block;
3555 	int			inodes_per_block, inode_offset;
3556 
3557 	iloc->bh = NULL;
3558 	if (!ext4_valid_inum(sb, inode->i_ino))
3559 		return -EIO;
3560 
3561 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3562 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3563 	if (!gdp)
3564 		return -EIO;
3565 
3566 	/*
3567 	 * Figure out the offset within the block group inode table
3568 	 */
3569 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3570 	inode_offset = ((inode->i_ino - 1) %
3571 			EXT4_INODES_PER_GROUP(sb));
3572 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3573 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3574 
3575 	bh = sb_getblk(sb, block);
3576 	if (!bh) {
3577 		EXT4_ERROR_INODE_BLOCK(inode, block,
3578 				       "unable to read itable block");
3579 		return -EIO;
3580 	}
3581 	if (!buffer_uptodate(bh)) {
3582 		lock_buffer(bh);
3583 
3584 		/*
3585 		 * If the buffer has the write error flag, we have failed
3586 		 * to write out another inode in the same block.  In this
3587 		 * case, we don't have to read the block because we may
3588 		 * read the old inode data successfully.
3589 		 */
3590 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3591 			set_buffer_uptodate(bh);
3592 
3593 		if (buffer_uptodate(bh)) {
3594 			/* someone brought it uptodate while we waited */
3595 			unlock_buffer(bh);
3596 			goto has_buffer;
3597 		}
3598 
3599 		/*
3600 		 * If we have all information of the inode in memory and this
3601 		 * is the only valid inode in the block, we need not read the
3602 		 * block.
3603 		 */
3604 		if (in_mem) {
3605 			struct buffer_head *bitmap_bh;
3606 			int i, start;
3607 
3608 			start = inode_offset & ~(inodes_per_block - 1);
3609 
3610 			/* Is the inode bitmap in cache? */
3611 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3612 			if (!bitmap_bh)
3613 				goto make_io;
3614 
3615 			/*
3616 			 * If the inode bitmap isn't in cache then the
3617 			 * optimisation may end up performing two reads instead
3618 			 * of one, so skip it.
3619 			 */
3620 			if (!buffer_uptodate(bitmap_bh)) {
3621 				brelse(bitmap_bh);
3622 				goto make_io;
3623 			}
3624 			for (i = start; i < start + inodes_per_block; i++) {
3625 				if (i == inode_offset)
3626 					continue;
3627 				if (ext4_test_bit(i, bitmap_bh->b_data))
3628 					break;
3629 			}
3630 			brelse(bitmap_bh);
3631 			if (i == start + inodes_per_block) {
3632 				/* all other inodes are free, so skip I/O */
3633 				memset(bh->b_data, 0, bh->b_size);
3634 				set_buffer_uptodate(bh);
3635 				unlock_buffer(bh);
3636 				goto has_buffer;
3637 			}
3638 		}
3639 
3640 make_io:
3641 		/*
3642 		 * If we need to do any I/O, try to pre-readahead extra
3643 		 * blocks from the inode table.
3644 		 */
3645 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3646 			ext4_fsblk_t b, end, table;
3647 			unsigned num;
3648 
3649 			table = ext4_inode_table(sb, gdp);
3650 			/* s_inode_readahead_blks is always a power of 2 */
3651 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3652 			if (table > b)
3653 				b = table;
3654 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3655 			num = EXT4_INODES_PER_GROUP(sb);
3656 			if (ext4_has_group_desc_csum(sb))
3657 				num -= ext4_itable_unused_count(sb, gdp);
3658 			table += num / inodes_per_block;
3659 			if (end > table)
3660 				end = table;
3661 			while (b <= end)
3662 				sb_breadahead(sb, b++);
3663 		}
3664 
3665 		/*
3666 		 * There are other valid inodes in the buffer, this inode
3667 		 * has in-inode xattrs, or we don't have this inode in memory.
3668 		 * Read the block from disk.
3669 		 */
3670 		trace_ext4_load_inode(inode);
3671 		get_bh(bh);
3672 		bh->b_end_io = end_buffer_read_sync;
3673 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3674 		wait_on_buffer(bh);
3675 		if (!buffer_uptodate(bh)) {
3676 			EXT4_ERROR_INODE_BLOCK(inode, block,
3677 					       "unable to read itable block");
3678 			brelse(bh);
3679 			return -EIO;
3680 		}
3681 	}
3682 has_buffer:
3683 	iloc->bh = bh;
3684 	return 0;
3685 }
3686 
3687 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3688 {
3689 	/* We have all inode data except xattrs in memory here. */
3690 	return __ext4_get_inode_loc(inode, iloc,
3691 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3692 }
3693 
3694 void ext4_set_inode_flags(struct inode *inode)
3695 {
3696 	unsigned int flags = EXT4_I(inode)->i_flags;
3697 
3698 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3699 	if (flags & EXT4_SYNC_FL)
3700 		inode->i_flags |= S_SYNC;
3701 	if (flags & EXT4_APPEND_FL)
3702 		inode->i_flags |= S_APPEND;
3703 	if (flags & EXT4_IMMUTABLE_FL)
3704 		inode->i_flags |= S_IMMUTABLE;
3705 	if (flags & EXT4_NOATIME_FL)
3706 		inode->i_flags |= S_NOATIME;
3707 	if (flags & EXT4_DIRSYNC_FL)
3708 		inode->i_flags |= S_DIRSYNC;
3709 }
3710 
3711 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3712 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3713 {
3714 	unsigned int vfs_fl;
3715 	unsigned long old_fl, new_fl;
3716 
3717 	do {
3718 		vfs_fl = ei->vfs_inode.i_flags;
3719 		old_fl = ei->i_flags;
3720 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3721 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3722 				EXT4_DIRSYNC_FL);
3723 		if (vfs_fl & S_SYNC)
3724 			new_fl |= EXT4_SYNC_FL;
3725 		if (vfs_fl & S_APPEND)
3726 			new_fl |= EXT4_APPEND_FL;
3727 		if (vfs_fl & S_IMMUTABLE)
3728 			new_fl |= EXT4_IMMUTABLE_FL;
3729 		if (vfs_fl & S_NOATIME)
3730 			new_fl |= EXT4_NOATIME_FL;
3731 		if (vfs_fl & S_DIRSYNC)
3732 			new_fl |= EXT4_DIRSYNC_FL;
3733 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3734 }
3735 
3736 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3737 				  struct ext4_inode_info *ei)
3738 {
3739 	blkcnt_t i_blocks ;
3740 	struct inode *inode = &(ei->vfs_inode);
3741 	struct super_block *sb = inode->i_sb;
3742 
3743 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3744 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3745 		/* we are using combined 48 bit field */
3746 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3747 					le32_to_cpu(raw_inode->i_blocks_lo);
3748 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3749 			/* i_blocks represent file system block size */
3750 			return i_blocks  << (inode->i_blkbits - 9);
3751 		} else {
3752 			return i_blocks;
3753 		}
3754 	} else {
3755 		return le32_to_cpu(raw_inode->i_blocks_lo);
3756 	}
3757 }
3758 
3759 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3760 {
3761 	struct ext4_iloc iloc;
3762 	struct ext4_inode *raw_inode;
3763 	struct ext4_inode_info *ei;
3764 	struct inode *inode;
3765 	journal_t *journal = EXT4_SB(sb)->s_journal;
3766 	long ret;
3767 	int block;
3768 	uid_t i_uid;
3769 	gid_t i_gid;
3770 
3771 	inode = iget_locked(sb, ino);
3772 	if (!inode)
3773 		return ERR_PTR(-ENOMEM);
3774 	if (!(inode->i_state & I_NEW))
3775 		return inode;
3776 
3777 	ei = EXT4_I(inode);
3778 	iloc.bh = NULL;
3779 
3780 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3781 	if (ret < 0)
3782 		goto bad_inode;
3783 	raw_inode = ext4_raw_inode(&iloc);
3784 
3785 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3786 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3787 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3788 		    EXT4_INODE_SIZE(inode->i_sb)) {
3789 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3790 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3791 				EXT4_INODE_SIZE(inode->i_sb));
3792 			ret = -EIO;
3793 			goto bad_inode;
3794 		}
3795 	} else
3796 		ei->i_extra_isize = 0;
3797 
3798 	/* Precompute checksum seed for inode metadata */
3799 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3800 			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3801 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3802 		__u32 csum;
3803 		__le32 inum = cpu_to_le32(inode->i_ino);
3804 		__le32 gen = raw_inode->i_generation;
3805 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3806 				   sizeof(inum));
3807 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3808 					      sizeof(gen));
3809 	}
3810 
3811 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3812 		EXT4_ERROR_INODE(inode, "checksum invalid");
3813 		ret = -EIO;
3814 		goto bad_inode;
3815 	}
3816 
3817 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3818 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3819 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3820 	if (!(test_opt(inode->i_sb, NO_UID32))) {
3821 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3822 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3823 	}
3824 	i_uid_write(inode, i_uid);
3825 	i_gid_write(inode, i_gid);
3826 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3827 
3828 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3829 	ei->i_dir_start_lookup = 0;
3830 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3831 	/* We now have enough fields to check if the inode was active or not.
3832 	 * This is needed because nfsd might try to access dead inodes
3833 	 * the test is that same one that e2fsck uses
3834 	 * NeilBrown 1999oct15
3835 	 */
3836 	if (inode->i_nlink == 0) {
3837 		if (inode->i_mode == 0 ||
3838 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3839 			/* this inode is deleted */
3840 			ret = -ESTALE;
3841 			goto bad_inode;
3842 		}
3843 		/* The only unlinked inodes we let through here have
3844 		 * valid i_mode and are being read by the orphan
3845 		 * recovery code: that's fine, we're about to complete
3846 		 * the process of deleting those. */
3847 	}
3848 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3849 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3850 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3851 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3852 		ei->i_file_acl |=
3853 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3854 	inode->i_size = ext4_isize(raw_inode);
3855 	ei->i_disksize = inode->i_size;
3856 #ifdef CONFIG_QUOTA
3857 	ei->i_reserved_quota = 0;
3858 #endif
3859 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3860 	ei->i_block_group = iloc.block_group;
3861 	ei->i_last_alloc_group = ~0;
3862 	/*
3863 	 * NOTE! The in-memory inode i_data array is in little-endian order
3864 	 * even on big-endian machines: we do NOT byteswap the block numbers!
3865 	 */
3866 	for (block = 0; block < EXT4_N_BLOCKS; block++)
3867 		ei->i_data[block] = raw_inode->i_block[block];
3868 	INIT_LIST_HEAD(&ei->i_orphan);
3869 
3870 	/*
3871 	 * Set transaction id's of transactions that have to be committed
3872 	 * to finish f[data]sync. We set them to currently running transaction
3873 	 * as we cannot be sure that the inode or some of its metadata isn't
3874 	 * part of the transaction - the inode could have been reclaimed and
3875 	 * now it is reread from disk.
3876 	 */
3877 	if (journal) {
3878 		transaction_t *transaction;
3879 		tid_t tid;
3880 
3881 		read_lock(&journal->j_state_lock);
3882 		if (journal->j_running_transaction)
3883 			transaction = journal->j_running_transaction;
3884 		else
3885 			transaction = journal->j_committing_transaction;
3886 		if (transaction)
3887 			tid = transaction->t_tid;
3888 		else
3889 			tid = journal->j_commit_sequence;
3890 		read_unlock(&journal->j_state_lock);
3891 		ei->i_sync_tid = tid;
3892 		ei->i_datasync_tid = tid;
3893 	}
3894 
3895 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3896 		if (ei->i_extra_isize == 0) {
3897 			/* The extra space is currently unused. Use it. */
3898 			ei->i_extra_isize = sizeof(struct ext4_inode) -
3899 					    EXT4_GOOD_OLD_INODE_SIZE;
3900 		} else {
3901 			__le32 *magic = (void *)raw_inode +
3902 					EXT4_GOOD_OLD_INODE_SIZE +
3903 					ei->i_extra_isize;
3904 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3905 				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3906 		}
3907 	}
3908 
3909 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3910 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3911 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3912 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3913 
3914 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3915 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3916 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3917 			inode->i_version |=
3918 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3919 	}
3920 
3921 	ret = 0;
3922 	if (ei->i_file_acl &&
3923 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3924 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3925 				 ei->i_file_acl);
3926 		ret = -EIO;
3927 		goto bad_inode;
3928 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3929 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3930 		    (S_ISLNK(inode->i_mode) &&
3931 		     !ext4_inode_is_fast_symlink(inode)))
3932 			/* Validate extent which is part of inode */
3933 			ret = ext4_ext_check_inode(inode);
3934 	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3935 		   (S_ISLNK(inode->i_mode) &&
3936 		    !ext4_inode_is_fast_symlink(inode))) {
3937 		/* Validate block references which are part of inode */
3938 		ret = ext4_ind_check_inode(inode);
3939 	}
3940 	if (ret)
3941 		goto bad_inode;
3942 
3943 	if (S_ISREG(inode->i_mode)) {
3944 		inode->i_op = &ext4_file_inode_operations;
3945 		inode->i_fop = &ext4_file_operations;
3946 		ext4_set_aops(inode);
3947 	} else if (S_ISDIR(inode->i_mode)) {
3948 		inode->i_op = &ext4_dir_inode_operations;
3949 		inode->i_fop = &ext4_dir_operations;
3950 	} else if (S_ISLNK(inode->i_mode)) {
3951 		if (ext4_inode_is_fast_symlink(inode)) {
3952 			inode->i_op = &ext4_fast_symlink_inode_operations;
3953 			nd_terminate_link(ei->i_data, inode->i_size,
3954 				sizeof(ei->i_data) - 1);
3955 		} else {
3956 			inode->i_op = &ext4_symlink_inode_operations;
3957 			ext4_set_aops(inode);
3958 		}
3959 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3960 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3961 		inode->i_op = &ext4_special_inode_operations;
3962 		if (raw_inode->i_block[0])
3963 			init_special_inode(inode, inode->i_mode,
3964 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3965 		else
3966 			init_special_inode(inode, inode->i_mode,
3967 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3968 	} else {
3969 		ret = -EIO;
3970 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3971 		goto bad_inode;
3972 	}
3973 	brelse(iloc.bh);
3974 	ext4_set_inode_flags(inode);
3975 	unlock_new_inode(inode);
3976 	return inode;
3977 
3978 bad_inode:
3979 	brelse(iloc.bh);
3980 	iget_failed(inode);
3981 	return ERR_PTR(ret);
3982 }
3983 
3984 static int ext4_inode_blocks_set(handle_t *handle,
3985 				struct ext4_inode *raw_inode,
3986 				struct ext4_inode_info *ei)
3987 {
3988 	struct inode *inode = &(ei->vfs_inode);
3989 	u64 i_blocks = inode->i_blocks;
3990 	struct super_block *sb = inode->i_sb;
3991 
3992 	if (i_blocks <= ~0U) {
3993 		/*
3994 		 * i_blocks can be represented in a 32 bit variable
3995 		 * as multiple of 512 bytes
3996 		 */
3997 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3998 		raw_inode->i_blocks_high = 0;
3999 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4000 		return 0;
4001 	}
4002 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4003 		return -EFBIG;
4004 
4005 	if (i_blocks <= 0xffffffffffffULL) {
4006 		/*
4007 		 * i_blocks can be represented in a 48 bit variable
4008 		 * as multiple of 512 bytes
4009 		 */
4010 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4011 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4012 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4013 	} else {
4014 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4015 		/* i_block is stored in file system block size */
4016 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4017 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4018 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4019 	}
4020 	return 0;
4021 }
4022 
4023 /*
4024  * Post the struct inode info into an on-disk inode location in the
4025  * buffer-cache.  This gobbles the caller's reference to the
4026  * buffer_head in the inode location struct.
4027  *
4028  * The caller must have write access to iloc->bh.
4029  */
4030 static int ext4_do_update_inode(handle_t *handle,
4031 				struct inode *inode,
4032 				struct ext4_iloc *iloc)
4033 {
4034 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4035 	struct ext4_inode_info *ei = EXT4_I(inode);
4036 	struct buffer_head *bh = iloc->bh;
4037 	int err = 0, rc, block;
4038 	int need_datasync = 0;
4039 	uid_t i_uid;
4040 	gid_t i_gid;
4041 
4042 	/* For fields not not tracking in the in-memory inode,
4043 	 * initialise them to zero for new inodes. */
4044 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4045 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4046 
4047 	ext4_get_inode_flags(ei);
4048 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4049 	i_uid = i_uid_read(inode);
4050 	i_gid = i_gid_read(inode);
4051 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4052 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4053 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4054 /*
4055  * Fix up interoperability with old kernels. Otherwise, old inodes get
4056  * re-used with the upper 16 bits of the uid/gid intact
4057  */
4058 		if (!ei->i_dtime) {
4059 			raw_inode->i_uid_high =
4060 				cpu_to_le16(high_16_bits(i_uid));
4061 			raw_inode->i_gid_high =
4062 				cpu_to_le16(high_16_bits(i_gid));
4063 		} else {
4064 			raw_inode->i_uid_high = 0;
4065 			raw_inode->i_gid_high = 0;
4066 		}
4067 	} else {
4068 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4069 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4070 		raw_inode->i_uid_high = 0;
4071 		raw_inode->i_gid_high = 0;
4072 	}
4073 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4074 
4075 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4076 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4077 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4078 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4079 
4080 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4081 		goto out_brelse;
4082 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4083 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4084 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4085 	    cpu_to_le32(EXT4_OS_HURD))
4086 		raw_inode->i_file_acl_high =
4087 			cpu_to_le16(ei->i_file_acl >> 32);
4088 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4089 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4090 		ext4_isize_set(raw_inode, ei->i_disksize);
4091 		need_datasync = 1;
4092 	}
4093 	if (ei->i_disksize > 0x7fffffffULL) {
4094 		struct super_block *sb = inode->i_sb;
4095 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4096 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4097 				EXT4_SB(sb)->s_es->s_rev_level ==
4098 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4099 			/* If this is the first large file
4100 			 * created, add a flag to the superblock.
4101 			 */
4102 			err = ext4_journal_get_write_access(handle,
4103 					EXT4_SB(sb)->s_sbh);
4104 			if (err)
4105 				goto out_brelse;
4106 			ext4_update_dynamic_rev(sb);
4107 			EXT4_SET_RO_COMPAT_FEATURE(sb,
4108 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4109 			ext4_handle_sync(handle);
4110 			err = ext4_handle_dirty_super(handle, sb);
4111 		}
4112 	}
4113 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4114 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4115 		if (old_valid_dev(inode->i_rdev)) {
4116 			raw_inode->i_block[0] =
4117 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4118 			raw_inode->i_block[1] = 0;
4119 		} else {
4120 			raw_inode->i_block[0] = 0;
4121 			raw_inode->i_block[1] =
4122 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4123 			raw_inode->i_block[2] = 0;
4124 		}
4125 	} else
4126 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4127 			raw_inode->i_block[block] = ei->i_data[block];
4128 
4129 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4130 	if (ei->i_extra_isize) {
4131 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4132 			raw_inode->i_version_hi =
4133 			cpu_to_le32(inode->i_version >> 32);
4134 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4135 	}
4136 
4137 	ext4_inode_csum_set(inode, raw_inode, ei);
4138 
4139 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4140 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4141 	if (!err)
4142 		err = rc;
4143 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4144 
4145 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4146 out_brelse:
4147 	brelse(bh);
4148 	ext4_std_error(inode->i_sb, err);
4149 	return err;
4150 }
4151 
4152 /*
4153  * ext4_write_inode()
4154  *
4155  * We are called from a few places:
4156  *
4157  * - Within generic_file_write() for O_SYNC files.
4158  *   Here, there will be no transaction running. We wait for any running
4159  *   transaction to commit.
4160  *
4161  * - Within sys_sync(), kupdate and such.
4162  *   We wait on commit, if tol to.
4163  *
4164  * - Within prune_icache() (PF_MEMALLOC == true)
4165  *   Here we simply return.  We can't afford to block kswapd on the
4166  *   journal commit.
4167  *
4168  * In all cases it is actually safe for us to return without doing anything,
4169  * because the inode has been copied into a raw inode buffer in
4170  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4171  * knfsd.
4172  *
4173  * Note that we are absolutely dependent upon all inode dirtiers doing the
4174  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4175  * which we are interested.
4176  *
4177  * It would be a bug for them to not do this.  The code:
4178  *
4179  *	mark_inode_dirty(inode)
4180  *	stuff();
4181  *	inode->i_size = expr;
4182  *
4183  * is in error because a kswapd-driven write_inode() could occur while
4184  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4185  * will no longer be on the superblock's dirty inode list.
4186  */
4187 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4188 {
4189 	int err;
4190 
4191 	if (current->flags & PF_MEMALLOC)
4192 		return 0;
4193 
4194 	if (EXT4_SB(inode->i_sb)->s_journal) {
4195 		if (ext4_journal_current_handle()) {
4196 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4197 			dump_stack();
4198 			return -EIO;
4199 		}
4200 
4201 		if (wbc->sync_mode != WB_SYNC_ALL)
4202 			return 0;
4203 
4204 		err = ext4_force_commit(inode->i_sb);
4205 	} else {
4206 		struct ext4_iloc iloc;
4207 
4208 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4209 		if (err)
4210 			return err;
4211 		if (wbc->sync_mode == WB_SYNC_ALL)
4212 			sync_dirty_buffer(iloc.bh);
4213 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4214 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4215 					 "IO error syncing inode");
4216 			err = -EIO;
4217 		}
4218 		brelse(iloc.bh);
4219 	}
4220 	return err;
4221 }
4222 
4223 /*
4224  * ext4_setattr()
4225  *
4226  * Called from notify_change.
4227  *
4228  * We want to trap VFS attempts to truncate the file as soon as
4229  * possible.  In particular, we want to make sure that when the VFS
4230  * shrinks i_size, we put the inode on the orphan list and modify
4231  * i_disksize immediately, so that during the subsequent flushing of
4232  * dirty pages and freeing of disk blocks, we can guarantee that any
4233  * commit will leave the blocks being flushed in an unused state on
4234  * disk.  (On recovery, the inode will get truncated and the blocks will
4235  * be freed, so we have a strong guarantee that no future commit will
4236  * leave these blocks visible to the user.)
4237  *
4238  * Another thing we have to assure is that if we are in ordered mode
4239  * and inode is still attached to the committing transaction, we must
4240  * we start writeout of all the dirty pages which are being truncated.
4241  * This way we are sure that all the data written in the previous
4242  * transaction are already on disk (truncate waits for pages under
4243  * writeback).
4244  *
4245  * Called with inode->i_mutex down.
4246  */
4247 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4248 {
4249 	struct inode *inode = dentry->d_inode;
4250 	int error, rc = 0;
4251 	int orphan = 0;
4252 	const unsigned int ia_valid = attr->ia_valid;
4253 
4254 	error = inode_change_ok(inode, attr);
4255 	if (error)
4256 		return error;
4257 
4258 	if (is_quota_modification(inode, attr))
4259 		dquot_initialize(inode);
4260 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4261 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4262 		handle_t *handle;
4263 
4264 		/* (user+group)*(old+new) structure, inode write (sb,
4265 		 * inode block, ? - but truncate inode update has it) */
4266 		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4267 					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4268 		if (IS_ERR(handle)) {
4269 			error = PTR_ERR(handle);
4270 			goto err_out;
4271 		}
4272 		error = dquot_transfer(inode, attr);
4273 		if (error) {
4274 			ext4_journal_stop(handle);
4275 			return error;
4276 		}
4277 		/* Update corresponding info in inode so that everything is in
4278 		 * one transaction */
4279 		if (attr->ia_valid & ATTR_UID)
4280 			inode->i_uid = attr->ia_uid;
4281 		if (attr->ia_valid & ATTR_GID)
4282 			inode->i_gid = attr->ia_gid;
4283 		error = ext4_mark_inode_dirty(handle, inode);
4284 		ext4_journal_stop(handle);
4285 	}
4286 
4287 	if (attr->ia_valid & ATTR_SIZE) {
4288 
4289 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4290 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4291 
4292 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4293 				return -EFBIG;
4294 		}
4295 	}
4296 
4297 	if (S_ISREG(inode->i_mode) &&
4298 	    attr->ia_valid & ATTR_SIZE &&
4299 	    (attr->ia_size < inode->i_size)) {
4300 		handle_t *handle;
4301 
4302 		handle = ext4_journal_start(inode, 3);
4303 		if (IS_ERR(handle)) {
4304 			error = PTR_ERR(handle);
4305 			goto err_out;
4306 		}
4307 		if (ext4_handle_valid(handle)) {
4308 			error = ext4_orphan_add(handle, inode);
4309 			orphan = 1;
4310 		}
4311 		EXT4_I(inode)->i_disksize = attr->ia_size;
4312 		rc = ext4_mark_inode_dirty(handle, inode);
4313 		if (!error)
4314 			error = rc;
4315 		ext4_journal_stop(handle);
4316 
4317 		if (ext4_should_order_data(inode)) {
4318 			error = ext4_begin_ordered_truncate(inode,
4319 							    attr->ia_size);
4320 			if (error) {
4321 				/* Do as much error cleanup as possible */
4322 				handle = ext4_journal_start(inode, 3);
4323 				if (IS_ERR(handle)) {
4324 					ext4_orphan_del(NULL, inode);
4325 					goto err_out;
4326 				}
4327 				ext4_orphan_del(handle, inode);
4328 				orphan = 0;
4329 				ext4_journal_stop(handle);
4330 				goto err_out;
4331 			}
4332 		}
4333 	}
4334 
4335 	if (attr->ia_valid & ATTR_SIZE) {
4336 		if (attr->ia_size != i_size_read(inode)) {
4337 			truncate_setsize(inode, attr->ia_size);
4338 			/* Inode size will be reduced, wait for dio in flight.
4339 			 * Temporarily disable dioread_nolock to prevent
4340 			 * livelock. */
4341 			if (orphan) {
4342 				ext4_inode_block_unlocked_dio(inode);
4343 				inode_dio_wait(inode);
4344 				ext4_inode_resume_unlocked_dio(inode);
4345 			}
4346 		}
4347 		ext4_truncate(inode);
4348 	}
4349 
4350 	if (!rc) {
4351 		setattr_copy(inode, attr);
4352 		mark_inode_dirty(inode);
4353 	}
4354 
4355 	/*
4356 	 * If the call to ext4_truncate failed to get a transaction handle at
4357 	 * all, we need to clean up the in-core orphan list manually.
4358 	 */
4359 	if (orphan && inode->i_nlink)
4360 		ext4_orphan_del(NULL, inode);
4361 
4362 	if (!rc && (ia_valid & ATTR_MODE))
4363 		rc = ext4_acl_chmod(inode);
4364 
4365 err_out:
4366 	ext4_std_error(inode->i_sb, error);
4367 	if (!error)
4368 		error = rc;
4369 	return error;
4370 }
4371 
4372 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4373 		 struct kstat *stat)
4374 {
4375 	struct inode *inode;
4376 	unsigned long delalloc_blocks;
4377 
4378 	inode = dentry->d_inode;
4379 	generic_fillattr(inode, stat);
4380 
4381 	/*
4382 	 * We can't update i_blocks if the block allocation is delayed
4383 	 * otherwise in the case of system crash before the real block
4384 	 * allocation is done, we will have i_blocks inconsistent with
4385 	 * on-disk file blocks.
4386 	 * We always keep i_blocks updated together with real
4387 	 * allocation. But to not confuse with user, stat
4388 	 * will return the blocks that include the delayed allocation
4389 	 * blocks for this file.
4390 	 */
4391 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4392 				EXT4_I(inode)->i_reserved_data_blocks);
4393 
4394 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4395 	return 0;
4396 }
4397 
4398 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4399 {
4400 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4401 		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4402 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4403 }
4404 
4405 /*
4406  * Account for index blocks, block groups bitmaps and block group
4407  * descriptor blocks if modify datablocks and index blocks
4408  * worse case, the indexs blocks spread over different block groups
4409  *
4410  * If datablocks are discontiguous, they are possible to spread over
4411  * different block groups too. If they are contiguous, with flexbg,
4412  * they could still across block group boundary.
4413  *
4414  * Also account for superblock, inode, quota and xattr blocks
4415  */
4416 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4417 {
4418 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4419 	int gdpblocks;
4420 	int idxblocks;
4421 	int ret = 0;
4422 
4423 	/*
4424 	 * How many index blocks need to touch to modify nrblocks?
4425 	 * The "Chunk" flag indicating whether the nrblocks is
4426 	 * physically contiguous on disk
4427 	 *
4428 	 * For Direct IO and fallocate, they calls get_block to allocate
4429 	 * one single extent at a time, so they could set the "Chunk" flag
4430 	 */
4431 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4432 
4433 	ret = idxblocks;
4434 
4435 	/*
4436 	 * Now let's see how many group bitmaps and group descriptors need
4437 	 * to account
4438 	 */
4439 	groups = idxblocks;
4440 	if (chunk)
4441 		groups += 1;
4442 	else
4443 		groups += nrblocks;
4444 
4445 	gdpblocks = groups;
4446 	if (groups > ngroups)
4447 		groups = ngroups;
4448 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4449 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4450 
4451 	/* bitmaps and block group descriptor blocks */
4452 	ret += groups + gdpblocks;
4453 
4454 	/* Blocks for super block, inode, quota and xattr blocks */
4455 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4456 
4457 	return ret;
4458 }
4459 
4460 /*
4461  * Calculate the total number of credits to reserve to fit
4462  * the modification of a single pages into a single transaction,
4463  * which may include multiple chunks of block allocations.
4464  *
4465  * This could be called via ext4_write_begin()
4466  *
4467  * We need to consider the worse case, when
4468  * one new block per extent.
4469  */
4470 int ext4_writepage_trans_blocks(struct inode *inode)
4471 {
4472 	int bpp = ext4_journal_blocks_per_page(inode);
4473 	int ret;
4474 
4475 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4476 
4477 	/* Account for data blocks for journalled mode */
4478 	if (ext4_should_journal_data(inode))
4479 		ret += bpp;
4480 	return ret;
4481 }
4482 
4483 /*
4484  * Calculate the journal credits for a chunk of data modification.
4485  *
4486  * This is called from DIO, fallocate or whoever calling
4487  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4488  *
4489  * journal buffers for data blocks are not included here, as DIO
4490  * and fallocate do no need to journal data buffers.
4491  */
4492 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4493 {
4494 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4495 }
4496 
4497 /*
4498  * The caller must have previously called ext4_reserve_inode_write().
4499  * Give this, we know that the caller already has write access to iloc->bh.
4500  */
4501 int ext4_mark_iloc_dirty(handle_t *handle,
4502 			 struct inode *inode, struct ext4_iloc *iloc)
4503 {
4504 	int err = 0;
4505 
4506 	if (IS_I_VERSION(inode))
4507 		inode_inc_iversion(inode);
4508 
4509 	/* the do_update_inode consumes one bh->b_count */
4510 	get_bh(iloc->bh);
4511 
4512 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4513 	err = ext4_do_update_inode(handle, inode, iloc);
4514 	put_bh(iloc->bh);
4515 	return err;
4516 }
4517 
4518 /*
4519  * On success, We end up with an outstanding reference count against
4520  * iloc->bh.  This _must_ be cleaned up later.
4521  */
4522 
4523 int
4524 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4525 			 struct ext4_iloc *iloc)
4526 {
4527 	int err;
4528 
4529 	err = ext4_get_inode_loc(inode, iloc);
4530 	if (!err) {
4531 		BUFFER_TRACE(iloc->bh, "get_write_access");
4532 		err = ext4_journal_get_write_access(handle, iloc->bh);
4533 		if (err) {
4534 			brelse(iloc->bh);
4535 			iloc->bh = NULL;
4536 		}
4537 	}
4538 	ext4_std_error(inode->i_sb, err);
4539 	return err;
4540 }
4541 
4542 /*
4543  * Expand an inode by new_extra_isize bytes.
4544  * Returns 0 on success or negative error number on failure.
4545  */
4546 static int ext4_expand_extra_isize(struct inode *inode,
4547 				   unsigned int new_extra_isize,
4548 				   struct ext4_iloc iloc,
4549 				   handle_t *handle)
4550 {
4551 	struct ext4_inode *raw_inode;
4552 	struct ext4_xattr_ibody_header *header;
4553 
4554 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4555 		return 0;
4556 
4557 	raw_inode = ext4_raw_inode(&iloc);
4558 
4559 	header = IHDR(inode, raw_inode);
4560 
4561 	/* No extended attributes present */
4562 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4563 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4564 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4565 			new_extra_isize);
4566 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4567 		return 0;
4568 	}
4569 
4570 	/* try to expand with EAs present */
4571 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4572 					  raw_inode, handle);
4573 }
4574 
4575 /*
4576  * What we do here is to mark the in-core inode as clean with respect to inode
4577  * dirtiness (it may still be data-dirty).
4578  * This means that the in-core inode may be reaped by prune_icache
4579  * without having to perform any I/O.  This is a very good thing,
4580  * because *any* task may call prune_icache - even ones which
4581  * have a transaction open against a different journal.
4582  *
4583  * Is this cheating?  Not really.  Sure, we haven't written the
4584  * inode out, but prune_icache isn't a user-visible syncing function.
4585  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4586  * we start and wait on commits.
4587  */
4588 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4589 {
4590 	struct ext4_iloc iloc;
4591 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4592 	static unsigned int mnt_count;
4593 	int err, ret;
4594 
4595 	might_sleep();
4596 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4597 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4598 	if (ext4_handle_valid(handle) &&
4599 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4600 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4601 		/*
4602 		 * We need extra buffer credits since we may write into EA block
4603 		 * with this same handle. If journal_extend fails, then it will
4604 		 * only result in a minor loss of functionality for that inode.
4605 		 * If this is felt to be critical, then e2fsck should be run to
4606 		 * force a large enough s_min_extra_isize.
4607 		 */
4608 		if ((jbd2_journal_extend(handle,
4609 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4610 			ret = ext4_expand_extra_isize(inode,
4611 						      sbi->s_want_extra_isize,
4612 						      iloc, handle);
4613 			if (ret) {
4614 				ext4_set_inode_state(inode,
4615 						     EXT4_STATE_NO_EXPAND);
4616 				if (mnt_count !=
4617 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4618 					ext4_warning(inode->i_sb,
4619 					"Unable to expand inode %lu. Delete"
4620 					" some EAs or run e2fsck.",
4621 					inode->i_ino);
4622 					mnt_count =
4623 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4624 				}
4625 			}
4626 		}
4627 	}
4628 	if (!err)
4629 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4630 	return err;
4631 }
4632 
4633 /*
4634  * ext4_dirty_inode() is called from __mark_inode_dirty()
4635  *
4636  * We're really interested in the case where a file is being extended.
4637  * i_size has been changed by generic_commit_write() and we thus need
4638  * to include the updated inode in the current transaction.
4639  *
4640  * Also, dquot_alloc_block() will always dirty the inode when blocks
4641  * are allocated to the file.
4642  *
4643  * If the inode is marked synchronous, we don't honour that here - doing
4644  * so would cause a commit on atime updates, which we don't bother doing.
4645  * We handle synchronous inodes at the highest possible level.
4646  */
4647 void ext4_dirty_inode(struct inode *inode, int flags)
4648 {
4649 	handle_t *handle;
4650 
4651 	handle = ext4_journal_start(inode, 2);
4652 	if (IS_ERR(handle))
4653 		goto out;
4654 
4655 	ext4_mark_inode_dirty(handle, inode);
4656 
4657 	ext4_journal_stop(handle);
4658 out:
4659 	return;
4660 }
4661 
4662 #if 0
4663 /*
4664  * Bind an inode's backing buffer_head into this transaction, to prevent
4665  * it from being flushed to disk early.  Unlike
4666  * ext4_reserve_inode_write, this leaves behind no bh reference and
4667  * returns no iloc structure, so the caller needs to repeat the iloc
4668  * lookup to mark the inode dirty later.
4669  */
4670 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4671 {
4672 	struct ext4_iloc iloc;
4673 
4674 	int err = 0;
4675 	if (handle) {
4676 		err = ext4_get_inode_loc(inode, &iloc);
4677 		if (!err) {
4678 			BUFFER_TRACE(iloc.bh, "get_write_access");
4679 			err = jbd2_journal_get_write_access(handle, iloc.bh);
4680 			if (!err)
4681 				err = ext4_handle_dirty_metadata(handle,
4682 								 NULL,
4683 								 iloc.bh);
4684 			brelse(iloc.bh);
4685 		}
4686 	}
4687 	ext4_std_error(inode->i_sb, err);
4688 	return err;
4689 }
4690 #endif
4691 
4692 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4693 {
4694 	journal_t *journal;
4695 	handle_t *handle;
4696 	int err;
4697 
4698 	/*
4699 	 * We have to be very careful here: changing a data block's
4700 	 * journaling status dynamically is dangerous.  If we write a
4701 	 * data block to the journal, change the status and then delete
4702 	 * that block, we risk forgetting to revoke the old log record
4703 	 * from the journal and so a subsequent replay can corrupt data.
4704 	 * So, first we make sure that the journal is empty and that
4705 	 * nobody is changing anything.
4706 	 */
4707 
4708 	journal = EXT4_JOURNAL(inode);
4709 	if (!journal)
4710 		return 0;
4711 	if (is_journal_aborted(journal))
4712 		return -EROFS;
4713 	/* We have to allocate physical blocks for delalloc blocks
4714 	 * before flushing journal. otherwise delalloc blocks can not
4715 	 * be allocated any more. even more truncate on delalloc blocks
4716 	 * could trigger BUG by flushing delalloc blocks in journal.
4717 	 * There is no delalloc block in non-journal data mode.
4718 	 */
4719 	if (val && test_opt(inode->i_sb, DELALLOC)) {
4720 		err = ext4_alloc_da_blocks(inode);
4721 		if (err < 0)
4722 			return err;
4723 	}
4724 
4725 	/* Wait for all existing dio workers */
4726 	ext4_inode_block_unlocked_dio(inode);
4727 	inode_dio_wait(inode);
4728 
4729 	jbd2_journal_lock_updates(journal);
4730 
4731 	/*
4732 	 * OK, there are no updates running now, and all cached data is
4733 	 * synced to disk.  We are now in a completely consistent state
4734 	 * which doesn't have anything in the journal, and we know that
4735 	 * no filesystem updates are running, so it is safe to modify
4736 	 * the inode's in-core data-journaling state flag now.
4737 	 */
4738 
4739 	if (val)
4740 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4741 	else {
4742 		jbd2_journal_flush(journal);
4743 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4744 	}
4745 	ext4_set_aops(inode);
4746 
4747 	jbd2_journal_unlock_updates(journal);
4748 	ext4_inode_resume_unlocked_dio(inode);
4749 
4750 	/* Finally we can mark the inode as dirty. */
4751 
4752 	handle = ext4_journal_start(inode, 1);
4753 	if (IS_ERR(handle))
4754 		return PTR_ERR(handle);
4755 
4756 	err = ext4_mark_inode_dirty(handle, inode);
4757 	ext4_handle_sync(handle);
4758 	ext4_journal_stop(handle);
4759 	ext4_std_error(inode->i_sb, err);
4760 
4761 	return err;
4762 }
4763 
4764 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4765 {
4766 	return !buffer_mapped(bh);
4767 }
4768 
4769 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4770 {
4771 	struct page *page = vmf->page;
4772 	loff_t size;
4773 	unsigned long len;
4774 	int ret;
4775 	struct file *file = vma->vm_file;
4776 	struct inode *inode = file->f_path.dentry->d_inode;
4777 	struct address_space *mapping = inode->i_mapping;
4778 	handle_t *handle;
4779 	get_block_t *get_block;
4780 	int retries = 0;
4781 
4782 	sb_start_pagefault(inode->i_sb);
4783 	file_update_time(vma->vm_file);
4784 	/* Delalloc case is easy... */
4785 	if (test_opt(inode->i_sb, DELALLOC) &&
4786 	    !ext4_should_journal_data(inode) &&
4787 	    !ext4_nonda_switch(inode->i_sb)) {
4788 		do {
4789 			ret = __block_page_mkwrite(vma, vmf,
4790 						   ext4_da_get_block_prep);
4791 		} while (ret == -ENOSPC &&
4792 		       ext4_should_retry_alloc(inode->i_sb, &retries));
4793 		goto out_ret;
4794 	}
4795 
4796 	lock_page(page);
4797 	size = i_size_read(inode);
4798 	/* Page got truncated from under us? */
4799 	if (page->mapping != mapping || page_offset(page) > size) {
4800 		unlock_page(page);
4801 		ret = VM_FAULT_NOPAGE;
4802 		goto out;
4803 	}
4804 
4805 	if (page->index == size >> PAGE_CACHE_SHIFT)
4806 		len = size & ~PAGE_CACHE_MASK;
4807 	else
4808 		len = PAGE_CACHE_SIZE;
4809 	/*
4810 	 * Return if we have all the buffers mapped. This avoids the need to do
4811 	 * journal_start/journal_stop which can block and take a long time
4812 	 */
4813 	if (page_has_buffers(page)) {
4814 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4815 					ext4_bh_unmapped)) {
4816 			/* Wait so that we don't change page under IO */
4817 			wait_on_page_writeback(page);
4818 			ret = VM_FAULT_LOCKED;
4819 			goto out;
4820 		}
4821 	}
4822 	unlock_page(page);
4823 	/* OK, we need to fill the hole... */
4824 	if (ext4_should_dioread_nolock(inode))
4825 		get_block = ext4_get_block_write;
4826 	else
4827 		get_block = ext4_get_block;
4828 retry_alloc:
4829 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4830 	if (IS_ERR(handle)) {
4831 		ret = VM_FAULT_SIGBUS;
4832 		goto out;
4833 	}
4834 	ret = __block_page_mkwrite(vma, vmf, get_block);
4835 	if (!ret && ext4_should_journal_data(inode)) {
4836 		if (walk_page_buffers(handle, page_buffers(page), 0,
4837 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4838 			unlock_page(page);
4839 			ret = VM_FAULT_SIGBUS;
4840 			ext4_journal_stop(handle);
4841 			goto out;
4842 		}
4843 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4844 	}
4845 	ext4_journal_stop(handle);
4846 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4847 		goto retry_alloc;
4848 out_ret:
4849 	ret = block_page_mkwrite_return(ret);
4850 out:
4851 	sb_end_pagefault(inode->i_sb);
4852 	return ret;
4853 }
4854