xref: /linux/fs/ext4/inode.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45 
46 #include <trace/events/ext4.h>
47 
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49 
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 			      struct ext4_inode_info *ei)
52 {
53 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 	__u16 csum_lo;
55 	__u16 csum_hi = 0;
56 	__u32 csum;
57 
58 	csum_lo = le16_to_cpu(raw->i_checksum_lo);
59 	raw->i_checksum_lo = 0;
60 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 		csum_hi = le16_to_cpu(raw->i_checksum_hi);
63 		raw->i_checksum_hi = 0;
64 	}
65 
66 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 			   EXT4_INODE_SIZE(inode->i_sb));
68 
69 	raw->i_checksum_lo = cpu_to_le16(csum_lo);
70 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 		raw->i_checksum_hi = cpu_to_le16(csum_hi);
73 
74 	return csum;
75 }
76 
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 				  struct ext4_inode_info *ei)
79 {
80 	__u32 provided, calculated;
81 
82 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 	    cpu_to_le32(EXT4_OS_LINUX) ||
84 	    !ext4_has_metadata_csum(inode->i_sb))
85 		return 1;
86 
87 	provided = le16_to_cpu(raw->i_checksum_lo);
88 	calculated = ext4_inode_csum(inode, raw, ei);
89 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92 	else
93 		calculated &= 0xFFFF;
94 
95 	return provided == calculated;
96 }
97 
98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99 				struct ext4_inode_info *ei)
100 {
101 	__u32 csum;
102 
103 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104 	    cpu_to_le32(EXT4_OS_LINUX) ||
105 	    !ext4_has_metadata_csum(inode->i_sb))
106 		return;
107 
108 	csum = ext4_inode_csum(inode, raw, ei);
109 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
113 }
114 
115 static inline int ext4_begin_ordered_truncate(struct inode *inode,
116 					      loff_t new_size)
117 {
118 	trace_ext4_begin_ordered_truncate(inode, new_size);
119 	/*
120 	 * If jinode is zero, then we never opened the file for
121 	 * writing, so there's no need to call
122 	 * jbd2_journal_begin_ordered_truncate() since there's no
123 	 * outstanding writes we need to flush.
124 	 */
125 	if (!EXT4_I(inode)->jinode)
126 		return 0;
127 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128 						   EXT4_I(inode)->jinode,
129 						   new_size);
130 }
131 
132 static void ext4_invalidatepage(struct page *page, unsigned int offset,
133 				unsigned int length);
134 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137 				  int pextents);
138 
139 /*
140  * Test whether an inode is a fast symlink.
141  */
142 int ext4_inode_is_fast_symlink(struct inode *inode)
143 {
144         int ea_blocks = EXT4_I(inode)->i_file_acl ?
145 		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
146 
147 	if (ext4_has_inline_data(inode))
148 		return 0;
149 
150 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152 
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159 				 int nblocks)
160 {
161 	int ret;
162 
163 	/*
164 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165 	 * moment, get_block can be called only for blocks inside i_size since
166 	 * page cache has been already dropped and writes are blocked by
167 	 * i_mutex. So we can safely drop the i_data_sem here.
168 	 */
169 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 	jbd_debug(2, "restarting handle %p\n", handle);
171 	up_write(&EXT4_I(inode)->i_data_sem);
172 	ret = ext4_journal_restart(handle, nblocks);
173 	down_write(&EXT4_I(inode)->i_data_sem);
174 	ext4_discard_preallocations(inode);
175 
176 	return ret;
177 }
178 
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184 	handle_t *handle;
185 	int err;
186 
187 	trace_ext4_evict_inode(inode);
188 
189 	if (inode->i_nlink) {
190 		/*
191 		 * When journalling data dirty buffers are tracked only in the
192 		 * journal. So although mm thinks everything is clean and
193 		 * ready for reaping the inode might still have some pages to
194 		 * write in the running transaction or waiting to be
195 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 		 * (via truncate_inode_pages()) to discard these buffers can
197 		 * cause data loss. Also even if we did not discard these
198 		 * buffers, we would have no way to find them after the inode
199 		 * is reaped and thus user could see stale data if he tries to
200 		 * read them before the transaction is checkpointed. So be
201 		 * careful and force everything to disk here... We use
202 		 * ei->i_datasync_tid to store the newest transaction
203 		 * containing inode's data.
204 		 *
205 		 * Note that directories do not have this problem because they
206 		 * don't use page cache.
207 		 */
208 		if (ext4_should_journal_data(inode) &&
209 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 		    inode->i_ino != EXT4_JOURNAL_INO) {
211 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213 
214 			jbd2_complete_transaction(journal, commit_tid);
215 			filemap_write_and_wait(&inode->i_data);
216 		}
217 		truncate_inode_pages_final(&inode->i_data);
218 
219 		goto no_delete;
220 	}
221 
222 	if (is_bad_inode(inode))
223 		goto no_delete;
224 	dquot_initialize(inode);
225 
226 	if (ext4_should_order_data(inode))
227 		ext4_begin_ordered_truncate(inode, 0);
228 	truncate_inode_pages_final(&inode->i_data);
229 
230 	/*
231 	 * Protect us against freezing - iput() caller didn't have to have any
232 	 * protection against it
233 	 */
234 	sb_start_intwrite(inode->i_sb);
235 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
236 				    ext4_blocks_for_truncate(inode)+3);
237 	if (IS_ERR(handle)) {
238 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
239 		/*
240 		 * If we're going to skip the normal cleanup, we still need to
241 		 * make sure that the in-core orphan linked list is properly
242 		 * cleaned up.
243 		 */
244 		ext4_orphan_del(NULL, inode);
245 		sb_end_intwrite(inode->i_sb);
246 		goto no_delete;
247 	}
248 
249 	if (IS_SYNC(inode))
250 		ext4_handle_sync(handle);
251 	inode->i_size = 0;
252 	err = ext4_mark_inode_dirty(handle, inode);
253 	if (err) {
254 		ext4_warning(inode->i_sb,
255 			     "couldn't mark inode dirty (err %d)", err);
256 		goto stop_handle;
257 	}
258 	if (inode->i_blocks)
259 		ext4_truncate(inode);
260 
261 	/*
262 	 * ext4_ext_truncate() doesn't reserve any slop when it
263 	 * restarts journal transactions; therefore there may not be
264 	 * enough credits left in the handle to remove the inode from
265 	 * the orphan list and set the dtime field.
266 	 */
267 	if (!ext4_handle_has_enough_credits(handle, 3)) {
268 		err = ext4_journal_extend(handle, 3);
269 		if (err > 0)
270 			err = ext4_journal_restart(handle, 3);
271 		if (err != 0) {
272 			ext4_warning(inode->i_sb,
273 				     "couldn't extend journal (err %d)", err);
274 		stop_handle:
275 			ext4_journal_stop(handle);
276 			ext4_orphan_del(NULL, inode);
277 			sb_end_intwrite(inode->i_sb);
278 			goto no_delete;
279 		}
280 	}
281 
282 	/*
283 	 * Kill off the orphan record which ext4_truncate created.
284 	 * AKPM: I think this can be inside the above `if'.
285 	 * Note that ext4_orphan_del() has to be able to cope with the
286 	 * deletion of a non-existent orphan - this is because we don't
287 	 * know if ext4_truncate() actually created an orphan record.
288 	 * (Well, we could do this if we need to, but heck - it works)
289 	 */
290 	ext4_orphan_del(handle, inode);
291 	EXT4_I(inode)->i_dtime	= get_seconds();
292 
293 	/*
294 	 * One subtle ordering requirement: if anything has gone wrong
295 	 * (transaction abort, IO errors, whatever), then we can still
296 	 * do these next steps (the fs will already have been marked as
297 	 * having errors), but we can't free the inode if the mark_dirty
298 	 * fails.
299 	 */
300 	if (ext4_mark_inode_dirty(handle, inode))
301 		/* If that failed, just do the required in-core inode clear. */
302 		ext4_clear_inode(inode);
303 	else
304 		ext4_free_inode(handle, inode);
305 	ext4_journal_stop(handle);
306 	sb_end_intwrite(inode->i_sb);
307 	return;
308 no_delete:
309 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
310 }
311 
312 #ifdef CONFIG_QUOTA
313 qsize_t *ext4_get_reserved_space(struct inode *inode)
314 {
315 	return &EXT4_I(inode)->i_reserved_quota;
316 }
317 #endif
318 
319 /*
320  * Called with i_data_sem down, which is important since we can call
321  * ext4_discard_preallocations() from here.
322  */
323 void ext4_da_update_reserve_space(struct inode *inode,
324 					int used, int quota_claim)
325 {
326 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
327 	struct ext4_inode_info *ei = EXT4_I(inode);
328 
329 	spin_lock(&ei->i_block_reservation_lock);
330 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
331 	if (unlikely(used > ei->i_reserved_data_blocks)) {
332 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
333 			 "with only %d reserved data blocks",
334 			 __func__, inode->i_ino, used,
335 			 ei->i_reserved_data_blocks);
336 		WARN_ON(1);
337 		used = ei->i_reserved_data_blocks;
338 	}
339 
340 	/* Update per-inode reservations */
341 	ei->i_reserved_data_blocks -= used;
342 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
343 
344 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
345 
346 	/* Update quota subsystem for data blocks */
347 	if (quota_claim)
348 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
349 	else {
350 		/*
351 		 * We did fallocate with an offset that is already delayed
352 		 * allocated. So on delayed allocated writeback we should
353 		 * not re-claim the quota for fallocated blocks.
354 		 */
355 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
356 	}
357 
358 	/*
359 	 * If we have done all the pending block allocations and if
360 	 * there aren't any writers on the inode, we can discard the
361 	 * inode's preallocations.
362 	 */
363 	if ((ei->i_reserved_data_blocks == 0) &&
364 	    (atomic_read(&inode->i_writecount) == 0))
365 		ext4_discard_preallocations(inode);
366 }
367 
368 static int __check_block_validity(struct inode *inode, const char *func,
369 				unsigned int line,
370 				struct ext4_map_blocks *map)
371 {
372 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
373 				   map->m_len)) {
374 		ext4_error_inode(inode, func, line, map->m_pblk,
375 				 "lblock %lu mapped to illegal pblock "
376 				 "(length %d)", (unsigned long) map->m_lblk,
377 				 map->m_len);
378 		return -EFSCORRUPTED;
379 	}
380 	return 0;
381 }
382 
383 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
384 		       ext4_lblk_t len)
385 {
386 	int ret;
387 
388 	if (ext4_encrypted_inode(inode))
389 		return ext4_encrypted_zeroout(inode, lblk, pblk, len);
390 
391 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
392 	if (ret > 0)
393 		ret = 0;
394 
395 	return ret;
396 }
397 
398 #define check_block_validity(inode, map)	\
399 	__check_block_validity((inode), __func__, __LINE__, (map))
400 
401 #ifdef ES_AGGRESSIVE_TEST
402 static void ext4_map_blocks_es_recheck(handle_t *handle,
403 				       struct inode *inode,
404 				       struct ext4_map_blocks *es_map,
405 				       struct ext4_map_blocks *map,
406 				       int flags)
407 {
408 	int retval;
409 
410 	map->m_flags = 0;
411 	/*
412 	 * There is a race window that the result is not the same.
413 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
414 	 * is that we lookup a block mapping in extent status tree with
415 	 * out taking i_data_sem.  So at the time the unwritten extent
416 	 * could be converted.
417 	 */
418 	down_read(&EXT4_I(inode)->i_data_sem);
419 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
420 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
421 					     EXT4_GET_BLOCKS_KEEP_SIZE);
422 	} else {
423 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
424 					     EXT4_GET_BLOCKS_KEEP_SIZE);
425 	}
426 	up_read((&EXT4_I(inode)->i_data_sem));
427 
428 	/*
429 	 * We don't check m_len because extent will be collpased in status
430 	 * tree.  So the m_len might not equal.
431 	 */
432 	if (es_map->m_lblk != map->m_lblk ||
433 	    es_map->m_flags != map->m_flags ||
434 	    es_map->m_pblk != map->m_pblk) {
435 		printk("ES cache assertion failed for inode: %lu "
436 		       "es_cached ex [%d/%d/%llu/%x] != "
437 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
438 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
439 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
440 		       map->m_len, map->m_pblk, map->m_flags,
441 		       retval, flags);
442 	}
443 }
444 #endif /* ES_AGGRESSIVE_TEST */
445 
446 /*
447  * The ext4_map_blocks() function tries to look up the requested blocks,
448  * and returns if the blocks are already mapped.
449  *
450  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
451  * and store the allocated blocks in the result buffer head and mark it
452  * mapped.
453  *
454  * If file type is extents based, it will call ext4_ext_map_blocks(),
455  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
456  * based files
457  *
458  * On success, it returns the number of blocks being mapped or allocated.  if
459  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
460  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
461  *
462  * It returns 0 if plain look up failed (blocks have not been allocated), in
463  * that case, @map is returned as unmapped but we still do fill map->m_len to
464  * indicate the length of a hole starting at map->m_lblk.
465  *
466  * It returns the error in case of allocation failure.
467  */
468 int ext4_map_blocks(handle_t *handle, struct inode *inode,
469 		    struct ext4_map_blocks *map, int flags)
470 {
471 	struct extent_status es;
472 	int retval;
473 	int ret = 0;
474 #ifdef ES_AGGRESSIVE_TEST
475 	struct ext4_map_blocks orig_map;
476 
477 	memcpy(&orig_map, map, sizeof(*map));
478 #endif
479 
480 	map->m_flags = 0;
481 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
482 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
483 		  (unsigned long) map->m_lblk);
484 
485 	/*
486 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
487 	 */
488 	if (unlikely(map->m_len > INT_MAX))
489 		map->m_len = INT_MAX;
490 
491 	/* We can handle the block number less than EXT_MAX_BLOCKS */
492 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
493 		return -EFSCORRUPTED;
494 
495 	/* Lookup extent status tree firstly */
496 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
497 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
498 			map->m_pblk = ext4_es_pblock(&es) +
499 					map->m_lblk - es.es_lblk;
500 			map->m_flags |= ext4_es_is_written(&es) ?
501 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
502 			retval = es.es_len - (map->m_lblk - es.es_lblk);
503 			if (retval > map->m_len)
504 				retval = map->m_len;
505 			map->m_len = retval;
506 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
507 			map->m_pblk = 0;
508 			retval = es.es_len - (map->m_lblk - es.es_lblk);
509 			if (retval > map->m_len)
510 				retval = map->m_len;
511 			map->m_len = retval;
512 			retval = 0;
513 		} else {
514 			BUG_ON(1);
515 		}
516 #ifdef ES_AGGRESSIVE_TEST
517 		ext4_map_blocks_es_recheck(handle, inode, map,
518 					   &orig_map, flags);
519 #endif
520 		goto found;
521 	}
522 
523 	/*
524 	 * Try to see if we can get the block without requesting a new
525 	 * file system block.
526 	 */
527 	down_read(&EXT4_I(inode)->i_data_sem);
528 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
529 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
530 					     EXT4_GET_BLOCKS_KEEP_SIZE);
531 	} else {
532 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
533 					     EXT4_GET_BLOCKS_KEEP_SIZE);
534 	}
535 	if (retval > 0) {
536 		unsigned int status;
537 
538 		if (unlikely(retval != map->m_len)) {
539 			ext4_warning(inode->i_sb,
540 				     "ES len assertion failed for inode "
541 				     "%lu: retval %d != map->m_len %d",
542 				     inode->i_ino, retval, map->m_len);
543 			WARN_ON(1);
544 		}
545 
546 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
547 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
548 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
549 		    !(status & EXTENT_STATUS_WRITTEN) &&
550 		    ext4_find_delalloc_range(inode, map->m_lblk,
551 					     map->m_lblk + map->m_len - 1))
552 			status |= EXTENT_STATUS_DELAYED;
553 		ret = ext4_es_insert_extent(inode, map->m_lblk,
554 					    map->m_len, map->m_pblk, status);
555 		if (ret < 0)
556 			retval = ret;
557 	}
558 	up_read((&EXT4_I(inode)->i_data_sem));
559 
560 found:
561 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
562 		ret = check_block_validity(inode, map);
563 		if (ret != 0)
564 			return ret;
565 	}
566 
567 	/* If it is only a block(s) look up */
568 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
569 		return retval;
570 
571 	/*
572 	 * Returns if the blocks have already allocated
573 	 *
574 	 * Note that if blocks have been preallocated
575 	 * ext4_ext_get_block() returns the create = 0
576 	 * with buffer head unmapped.
577 	 */
578 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
579 		/*
580 		 * If we need to convert extent to unwritten
581 		 * we continue and do the actual work in
582 		 * ext4_ext_map_blocks()
583 		 */
584 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
585 			return retval;
586 
587 	/*
588 	 * Here we clear m_flags because after allocating an new extent,
589 	 * it will be set again.
590 	 */
591 	map->m_flags &= ~EXT4_MAP_FLAGS;
592 
593 	/*
594 	 * New blocks allocate and/or writing to unwritten extent
595 	 * will possibly result in updating i_data, so we take
596 	 * the write lock of i_data_sem, and call get_block()
597 	 * with create == 1 flag.
598 	 */
599 	down_write(&EXT4_I(inode)->i_data_sem);
600 
601 	/*
602 	 * We need to check for EXT4 here because migrate
603 	 * could have changed the inode type in between
604 	 */
605 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
606 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
607 	} else {
608 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
609 
610 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
611 			/*
612 			 * We allocated new blocks which will result in
613 			 * i_data's format changing.  Force the migrate
614 			 * to fail by clearing migrate flags
615 			 */
616 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
617 		}
618 
619 		/*
620 		 * Update reserved blocks/metadata blocks after successful
621 		 * block allocation which had been deferred till now. We don't
622 		 * support fallocate for non extent files. So we can update
623 		 * reserve space here.
624 		 */
625 		if ((retval > 0) &&
626 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
627 			ext4_da_update_reserve_space(inode, retval, 1);
628 	}
629 
630 	if (retval > 0) {
631 		unsigned int status;
632 
633 		if (unlikely(retval != map->m_len)) {
634 			ext4_warning(inode->i_sb,
635 				     "ES len assertion failed for inode "
636 				     "%lu: retval %d != map->m_len %d",
637 				     inode->i_ino, retval, map->m_len);
638 			WARN_ON(1);
639 		}
640 
641 		/*
642 		 * We have to zeroout blocks before inserting them into extent
643 		 * status tree. Otherwise someone could look them up there and
644 		 * use them before they are really zeroed.
645 		 */
646 		if (flags & EXT4_GET_BLOCKS_ZERO &&
647 		    map->m_flags & EXT4_MAP_MAPPED &&
648 		    map->m_flags & EXT4_MAP_NEW) {
649 			ret = ext4_issue_zeroout(inode, map->m_lblk,
650 						 map->m_pblk, map->m_len);
651 			if (ret) {
652 				retval = ret;
653 				goto out_sem;
654 			}
655 		}
656 
657 		/*
658 		 * If the extent has been zeroed out, we don't need to update
659 		 * extent status tree.
660 		 */
661 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
662 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
663 			if (ext4_es_is_written(&es))
664 				goto out_sem;
665 		}
666 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
667 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
668 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
669 		    !(status & EXTENT_STATUS_WRITTEN) &&
670 		    ext4_find_delalloc_range(inode, map->m_lblk,
671 					     map->m_lblk + map->m_len - 1))
672 			status |= EXTENT_STATUS_DELAYED;
673 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
674 					    map->m_pblk, status);
675 		if (ret < 0) {
676 			retval = ret;
677 			goto out_sem;
678 		}
679 	}
680 
681 out_sem:
682 	up_write((&EXT4_I(inode)->i_data_sem));
683 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
684 		ret = check_block_validity(inode, map);
685 		if (ret != 0)
686 			return ret;
687 
688 		/*
689 		 * Inodes with freshly allocated blocks where contents will be
690 		 * visible after transaction commit must be on transaction's
691 		 * ordered data list.
692 		 */
693 		if (map->m_flags & EXT4_MAP_NEW &&
694 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
695 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
696 		    !IS_NOQUOTA(inode) &&
697 		    ext4_should_order_data(inode)) {
698 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
699 				ret = ext4_jbd2_inode_add_wait(handle, inode);
700 			else
701 				ret = ext4_jbd2_inode_add_write(handle, inode);
702 			if (ret)
703 				return ret;
704 		}
705 	}
706 	return retval;
707 }
708 
709 /*
710  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
711  * we have to be careful as someone else may be manipulating b_state as well.
712  */
713 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
714 {
715 	unsigned long old_state;
716 	unsigned long new_state;
717 
718 	flags &= EXT4_MAP_FLAGS;
719 
720 	/* Dummy buffer_head? Set non-atomically. */
721 	if (!bh->b_page) {
722 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
723 		return;
724 	}
725 	/*
726 	 * Someone else may be modifying b_state. Be careful! This is ugly but
727 	 * once we get rid of using bh as a container for mapping information
728 	 * to pass to / from get_block functions, this can go away.
729 	 */
730 	do {
731 		old_state = READ_ONCE(bh->b_state);
732 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
733 	} while (unlikely(
734 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
735 }
736 
737 static int _ext4_get_block(struct inode *inode, sector_t iblock,
738 			   struct buffer_head *bh, int flags)
739 {
740 	struct ext4_map_blocks map;
741 	int ret = 0;
742 
743 	if (ext4_has_inline_data(inode))
744 		return -ERANGE;
745 
746 	map.m_lblk = iblock;
747 	map.m_len = bh->b_size >> inode->i_blkbits;
748 
749 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
750 			      flags);
751 	if (ret > 0) {
752 		map_bh(bh, inode->i_sb, map.m_pblk);
753 		ext4_update_bh_state(bh, map.m_flags);
754 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
755 		ret = 0;
756 	}
757 	return ret;
758 }
759 
760 int ext4_get_block(struct inode *inode, sector_t iblock,
761 		   struct buffer_head *bh, int create)
762 {
763 	return _ext4_get_block(inode, iblock, bh,
764 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
765 }
766 
767 /*
768  * Get block function used when preparing for buffered write if we require
769  * creating an unwritten extent if blocks haven't been allocated.  The extent
770  * will be converted to written after the IO is complete.
771  */
772 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
773 			     struct buffer_head *bh_result, int create)
774 {
775 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
776 		   inode->i_ino, create);
777 	return _ext4_get_block(inode, iblock, bh_result,
778 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
779 }
780 
781 /* Maximum number of blocks we map for direct IO at once. */
782 #define DIO_MAX_BLOCKS 4096
783 
784 /*
785  * Get blocks function for the cases that need to start a transaction -
786  * generally difference cases of direct IO and DAX IO. It also handles retries
787  * in case of ENOSPC.
788  */
789 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
790 				struct buffer_head *bh_result, int flags)
791 {
792 	int dio_credits;
793 	handle_t *handle;
794 	int retries = 0;
795 	int ret;
796 
797 	/* Trim mapping request to maximum we can map at once for DIO */
798 	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
799 		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
800 	dio_credits = ext4_chunk_trans_blocks(inode,
801 				      bh_result->b_size >> inode->i_blkbits);
802 retry:
803 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
804 	if (IS_ERR(handle))
805 		return PTR_ERR(handle);
806 
807 	ret = _ext4_get_block(inode, iblock, bh_result, flags);
808 	ext4_journal_stop(handle);
809 
810 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
811 		goto retry;
812 	return ret;
813 }
814 
815 /* Get block function for DIO reads and writes to inodes without extents */
816 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
817 		       struct buffer_head *bh, int create)
818 {
819 	/* We don't expect handle for direct IO */
820 	WARN_ON_ONCE(ext4_journal_current_handle());
821 
822 	if (!create)
823 		return _ext4_get_block(inode, iblock, bh, 0);
824 	return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
825 }
826 
827 /*
828  * Get block function for AIO DIO writes when we create unwritten extent if
829  * blocks are not allocated yet. The extent will be converted to written
830  * after IO is complete.
831  */
832 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
833 		sector_t iblock, struct buffer_head *bh_result,	int create)
834 {
835 	int ret;
836 
837 	/* We don't expect handle for direct IO */
838 	WARN_ON_ONCE(ext4_journal_current_handle());
839 
840 	ret = ext4_get_block_trans(inode, iblock, bh_result,
841 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
842 
843 	/*
844 	 * When doing DIO using unwritten extents, we need io_end to convert
845 	 * unwritten extents to written on IO completion. We allocate io_end
846 	 * once we spot unwritten extent and store it in b_private. Generic
847 	 * DIO code keeps b_private set and furthermore passes the value to
848 	 * our completion callback in 'private' argument.
849 	 */
850 	if (!ret && buffer_unwritten(bh_result)) {
851 		if (!bh_result->b_private) {
852 			ext4_io_end_t *io_end;
853 
854 			io_end = ext4_init_io_end(inode, GFP_KERNEL);
855 			if (!io_end)
856 				return -ENOMEM;
857 			bh_result->b_private = io_end;
858 			ext4_set_io_unwritten_flag(inode, io_end);
859 		}
860 		set_buffer_defer_completion(bh_result);
861 	}
862 
863 	return ret;
864 }
865 
866 /*
867  * Get block function for non-AIO DIO writes when we create unwritten extent if
868  * blocks are not allocated yet. The extent will be converted to written
869  * after IO is complete from ext4_ext_direct_IO() function.
870  */
871 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
872 		sector_t iblock, struct buffer_head *bh_result,	int create)
873 {
874 	int ret;
875 
876 	/* We don't expect handle for direct IO */
877 	WARN_ON_ONCE(ext4_journal_current_handle());
878 
879 	ret = ext4_get_block_trans(inode, iblock, bh_result,
880 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
881 
882 	/*
883 	 * Mark inode as having pending DIO writes to unwritten extents.
884 	 * ext4_ext_direct_IO() checks this flag and converts extents to
885 	 * written.
886 	 */
887 	if (!ret && buffer_unwritten(bh_result))
888 		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
889 
890 	return ret;
891 }
892 
893 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
894 		   struct buffer_head *bh_result, int create)
895 {
896 	int ret;
897 
898 	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
899 		   inode->i_ino, create);
900 	/* We don't expect handle for direct IO */
901 	WARN_ON_ONCE(ext4_journal_current_handle());
902 
903 	ret = _ext4_get_block(inode, iblock, bh_result, 0);
904 	/*
905 	 * Blocks should have been preallocated! ext4_file_write_iter() checks
906 	 * that.
907 	 */
908 	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
909 
910 	return ret;
911 }
912 
913 
914 /*
915  * `handle' can be NULL if create is zero
916  */
917 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
918 				ext4_lblk_t block, int map_flags)
919 {
920 	struct ext4_map_blocks map;
921 	struct buffer_head *bh;
922 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
923 	int err;
924 
925 	J_ASSERT(handle != NULL || create == 0);
926 
927 	map.m_lblk = block;
928 	map.m_len = 1;
929 	err = ext4_map_blocks(handle, inode, &map, map_flags);
930 
931 	if (err == 0)
932 		return create ? ERR_PTR(-ENOSPC) : NULL;
933 	if (err < 0)
934 		return ERR_PTR(err);
935 
936 	bh = sb_getblk(inode->i_sb, map.m_pblk);
937 	if (unlikely(!bh))
938 		return ERR_PTR(-ENOMEM);
939 	if (map.m_flags & EXT4_MAP_NEW) {
940 		J_ASSERT(create != 0);
941 		J_ASSERT(handle != NULL);
942 
943 		/*
944 		 * Now that we do not always journal data, we should
945 		 * keep in mind whether this should always journal the
946 		 * new buffer as metadata.  For now, regular file
947 		 * writes use ext4_get_block instead, so it's not a
948 		 * problem.
949 		 */
950 		lock_buffer(bh);
951 		BUFFER_TRACE(bh, "call get_create_access");
952 		err = ext4_journal_get_create_access(handle, bh);
953 		if (unlikely(err)) {
954 			unlock_buffer(bh);
955 			goto errout;
956 		}
957 		if (!buffer_uptodate(bh)) {
958 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
959 			set_buffer_uptodate(bh);
960 		}
961 		unlock_buffer(bh);
962 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
963 		err = ext4_handle_dirty_metadata(handle, inode, bh);
964 		if (unlikely(err))
965 			goto errout;
966 	} else
967 		BUFFER_TRACE(bh, "not a new buffer");
968 	return bh;
969 errout:
970 	brelse(bh);
971 	return ERR_PTR(err);
972 }
973 
974 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
975 			       ext4_lblk_t block, int map_flags)
976 {
977 	struct buffer_head *bh;
978 
979 	bh = ext4_getblk(handle, inode, block, map_flags);
980 	if (IS_ERR(bh))
981 		return bh;
982 	if (!bh || buffer_uptodate(bh))
983 		return bh;
984 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
985 	wait_on_buffer(bh);
986 	if (buffer_uptodate(bh))
987 		return bh;
988 	put_bh(bh);
989 	return ERR_PTR(-EIO);
990 }
991 
992 int ext4_walk_page_buffers(handle_t *handle,
993 			   struct buffer_head *head,
994 			   unsigned from,
995 			   unsigned to,
996 			   int *partial,
997 			   int (*fn)(handle_t *handle,
998 				     struct buffer_head *bh))
999 {
1000 	struct buffer_head *bh;
1001 	unsigned block_start, block_end;
1002 	unsigned blocksize = head->b_size;
1003 	int err, ret = 0;
1004 	struct buffer_head *next;
1005 
1006 	for (bh = head, block_start = 0;
1007 	     ret == 0 && (bh != head || !block_start);
1008 	     block_start = block_end, bh = next) {
1009 		next = bh->b_this_page;
1010 		block_end = block_start + blocksize;
1011 		if (block_end <= from || block_start >= to) {
1012 			if (partial && !buffer_uptodate(bh))
1013 				*partial = 1;
1014 			continue;
1015 		}
1016 		err = (*fn)(handle, bh);
1017 		if (!ret)
1018 			ret = err;
1019 	}
1020 	return ret;
1021 }
1022 
1023 /*
1024  * To preserve ordering, it is essential that the hole instantiation and
1025  * the data write be encapsulated in a single transaction.  We cannot
1026  * close off a transaction and start a new one between the ext4_get_block()
1027  * and the commit_write().  So doing the jbd2_journal_start at the start of
1028  * prepare_write() is the right place.
1029  *
1030  * Also, this function can nest inside ext4_writepage().  In that case, we
1031  * *know* that ext4_writepage() has generated enough buffer credits to do the
1032  * whole page.  So we won't block on the journal in that case, which is good,
1033  * because the caller may be PF_MEMALLOC.
1034  *
1035  * By accident, ext4 can be reentered when a transaction is open via
1036  * quota file writes.  If we were to commit the transaction while thus
1037  * reentered, there can be a deadlock - we would be holding a quota
1038  * lock, and the commit would never complete if another thread had a
1039  * transaction open and was blocking on the quota lock - a ranking
1040  * violation.
1041  *
1042  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1043  * will _not_ run commit under these circumstances because handle->h_ref
1044  * is elevated.  We'll still have enough credits for the tiny quotafile
1045  * write.
1046  */
1047 int do_journal_get_write_access(handle_t *handle,
1048 				struct buffer_head *bh)
1049 {
1050 	int dirty = buffer_dirty(bh);
1051 	int ret;
1052 
1053 	if (!buffer_mapped(bh) || buffer_freed(bh))
1054 		return 0;
1055 	/*
1056 	 * __block_write_begin() could have dirtied some buffers. Clean
1057 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1058 	 * otherwise about fs integrity issues. Setting of the dirty bit
1059 	 * by __block_write_begin() isn't a real problem here as we clear
1060 	 * the bit before releasing a page lock and thus writeback cannot
1061 	 * ever write the buffer.
1062 	 */
1063 	if (dirty)
1064 		clear_buffer_dirty(bh);
1065 	BUFFER_TRACE(bh, "get write access");
1066 	ret = ext4_journal_get_write_access(handle, bh);
1067 	if (!ret && dirty)
1068 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1069 	return ret;
1070 }
1071 
1072 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1073 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1074 				  get_block_t *get_block)
1075 {
1076 	unsigned from = pos & (PAGE_SIZE - 1);
1077 	unsigned to = from + len;
1078 	struct inode *inode = page->mapping->host;
1079 	unsigned block_start, block_end;
1080 	sector_t block;
1081 	int err = 0;
1082 	unsigned blocksize = inode->i_sb->s_blocksize;
1083 	unsigned bbits;
1084 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1085 	bool decrypt = false;
1086 
1087 	BUG_ON(!PageLocked(page));
1088 	BUG_ON(from > PAGE_SIZE);
1089 	BUG_ON(to > PAGE_SIZE);
1090 	BUG_ON(from > to);
1091 
1092 	if (!page_has_buffers(page))
1093 		create_empty_buffers(page, blocksize, 0);
1094 	head = page_buffers(page);
1095 	bbits = ilog2(blocksize);
1096 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1097 
1098 	for (bh = head, block_start = 0; bh != head || !block_start;
1099 	    block++, block_start = block_end, bh = bh->b_this_page) {
1100 		block_end = block_start + blocksize;
1101 		if (block_end <= from || block_start >= to) {
1102 			if (PageUptodate(page)) {
1103 				if (!buffer_uptodate(bh))
1104 					set_buffer_uptodate(bh);
1105 			}
1106 			continue;
1107 		}
1108 		if (buffer_new(bh))
1109 			clear_buffer_new(bh);
1110 		if (!buffer_mapped(bh)) {
1111 			WARN_ON(bh->b_size != blocksize);
1112 			err = get_block(inode, block, bh, 1);
1113 			if (err)
1114 				break;
1115 			if (buffer_new(bh)) {
1116 				unmap_underlying_metadata(bh->b_bdev,
1117 							  bh->b_blocknr);
1118 				if (PageUptodate(page)) {
1119 					clear_buffer_new(bh);
1120 					set_buffer_uptodate(bh);
1121 					mark_buffer_dirty(bh);
1122 					continue;
1123 				}
1124 				if (block_end > to || block_start < from)
1125 					zero_user_segments(page, to, block_end,
1126 							   block_start, from);
1127 				continue;
1128 			}
1129 		}
1130 		if (PageUptodate(page)) {
1131 			if (!buffer_uptodate(bh))
1132 				set_buffer_uptodate(bh);
1133 			continue;
1134 		}
1135 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1136 		    !buffer_unwritten(bh) &&
1137 		    (block_start < from || block_end > to)) {
1138 			ll_rw_block(READ, 1, &bh);
1139 			*wait_bh++ = bh;
1140 			decrypt = ext4_encrypted_inode(inode) &&
1141 				S_ISREG(inode->i_mode);
1142 		}
1143 	}
1144 	/*
1145 	 * If we issued read requests, let them complete.
1146 	 */
1147 	while (wait_bh > wait) {
1148 		wait_on_buffer(*--wait_bh);
1149 		if (!buffer_uptodate(*wait_bh))
1150 			err = -EIO;
1151 	}
1152 	if (unlikely(err))
1153 		page_zero_new_buffers(page, from, to);
1154 	else if (decrypt)
1155 		err = ext4_decrypt(page);
1156 	return err;
1157 }
1158 #endif
1159 
1160 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1161 			    loff_t pos, unsigned len, unsigned flags,
1162 			    struct page **pagep, void **fsdata)
1163 {
1164 	struct inode *inode = mapping->host;
1165 	int ret, needed_blocks;
1166 	handle_t *handle;
1167 	int retries = 0;
1168 	struct page *page;
1169 	pgoff_t index;
1170 	unsigned from, to;
1171 
1172 	trace_ext4_write_begin(inode, pos, len, flags);
1173 	/*
1174 	 * Reserve one block more for addition to orphan list in case
1175 	 * we allocate blocks but write fails for some reason
1176 	 */
1177 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1178 	index = pos >> PAGE_SHIFT;
1179 	from = pos & (PAGE_SIZE - 1);
1180 	to = from + len;
1181 
1182 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1183 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1184 						    flags, pagep);
1185 		if (ret < 0)
1186 			return ret;
1187 		if (ret == 1)
1188 			return 0;
1189 	}
1190 
1191 	/*
1192 	 * grab_cache_page_write_begin() can take a long time if the
1193 	 * system is thrashing due to memory pressure, or if the page
1194 	 * is being written back.  So grab it first before we start
1195 	 * the transaction handle.  This also allows us to allocate
1196 	 * the page (if needed) without using GFP_NOFS.
1197 	 */
1198 retry_grab:
1199 	page = grab_cache_page_write_begin(mapping, index, flags);
1200 	if (!page)
1201 		return -ENOMEM;
1202 	unlock_page(page);
1203 
1204 retry_journal:
1205 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1206 	if (IS_ERR(handle)) {
1207 		put_page(page);
1208 		return PTR_ERR(handle);
1209 	}
1210 
1211 	lock_page(page);
1212 	if (page->mapping != mapping) {
1213 		/* The page got truncated from under us */
1214 		unlock_page(page);
1215 		put_page(page);
1216 		ext4_journal_stop(handle);
1217 		goto retry_grab;
1218 	}
1219 	/* In case writeback began while the page was unlocked */
1220 	wait_for_stable_page(page);
1221 
1222 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1223 	if (ext4_should_dioread_nolock(inode))
1224 		ret = ext4_block_write_begin(page, pos, len,
1225 					     ext4_get_block_unwritten);
1226 	else
1227 		ret = ext4_block_write_begin(page, pos, len,
1228 					     ext4_get_block);
1229 #else
1230 	if (ext4_should_dioread_nolock(inode))
1231 		ret = __block_write_begin(page, pos, len,
1232 					  ext4_get_block_unwritten);
1233 	else
1234 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1235 #endif
1236 	if (!ret && ext4_should_journal_data(inode)) {
1237 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1238 					     from, to, NULL,
1239 					     do_journal_get_write_access);
1240 	}
1241 
1242 	if (ret) {
1243 		unlock_page(page);
1244 		/*
1245 		 * __block_write_begin may have instantiated a few blocks
1246 		 * outside i_size.  Trim these off again. Don't need
1247 		 * i_size_read because we hold i_mutex.
1248 		 *
1249 		 * Add inode to orphan list in case we crash before
1250 		 * truncate finishes
1251 		 */
1252 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1253 			ext4_orphan_add(handle, inode);
1254 
1255 		ext4_journal_stop(handle);
1256 		if (pos + len > inode->i_size) {
1257 			ext4_truncate_failed_write(inode);
1258 			/*
1259 			 * If truncate failed early the inode might
1260 			 * still be on the orphan list; we need to
1261 			 * make sure the inode is removed from the
1262 			 * orphan list in that case.
1263 			 */
1264 			if (inode->i_nlink)
1265 				ext4_orphan_del(NULL, inode);
1266 		}
1267 
1268 		if (ret == -ENOSPC &&
1269 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1270 			goto retry_journal;
1271 		put_page(page);
1272 		return ret;
1273 	}
1274 	*pagep = page;
1275 	return ret;
1276 }
1277 
1278 /* For write_end() in data=journal mode */
1279 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1280 {
1281 	int ret;
1282 	if (!buffer_mapped(bh) || buffer_freed(bh))
1283 		return 0;
1284 	set_buffer_uptodate(bh);
1285 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1286 	clear_buffer_meta(bh);
1287 	clear_buffer_prio(bh);
1288 	return ret;
1289 }
1290 
1291 /*
1292  * We need to pick up the new inode size which generic_commit_write gave us
1293  * `file' can be NULL - eg, when called from page_symlink().
1294  *
1295  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1296  * buffers are managed internally.
1297  */
1298 static int ext4_write_end(struct file *file,
1299 			  struct address_space *mapping,
1300 			  loff_t pos, unsigned len, unsigned copied,
1301 			  struct page *page, void *fsdata)
1302 {
1303 	handle_t *handle = ext4_journal_current_handle();
1304 	struct inode *inode = mapping->host;
1305 	loff_t old_size = inode->i_size;
1306 	int ret = 0, ret2;
1307 	int i_size_changed = 0;
1308 
1309 	trace_ext4_write_end(inode, pos, len, copied);
1310 	if (ext4_has_inline_data(inode)) {
1311 		ret = ext4_write_inline_data_end(inode, pos, len,
1312 						 copied, page);
1313 		if (ret < 0)
1314 			goto errout;
1315 		copied = ret;
1316 	} else
1317 		copied = block_write_end(file, mapping, pos,
1318 					 len, copied, page, fsdata);
1319 	/*
1320 	 * it's important to update i_size while still holding page lock:
1321 	 * page writeout could otherwise come in and zero beyond i_size.
1322 	 */
1323 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1324 	unlock_page(page);
1325 	put_page(page);
1326 
1327 	if (old_size < pos)
1328 		pagecache_isize_extended(inode, old_size, pos);
1329 	/*
1330 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1331 	 * makes the holding time of page lock longer. Second, it forces lock
1332 	 * ordering of page lock and transaction start for journaling
1333 	 * filesystems.
1334 	 */
1335 	if (i_size_changed)
1336 		ext4_mark_inode_dirty(handle, inode);
1337 
1338 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1339 		/* if we have allocated more blocks and copied
1340 		 * less. We will have blocks allocated outside
1341 		 * inode->i_size. So truncate them
1342 		 */
1343 		ext4_orphan_add(handle, inode);
1344 errout:
1345 	ret2 = ext4_journal_stop(handle);
1346 	if (!ret)
1347 		ret = ret2;
1348 
1349 	if (pos + len > inode->i_size) {
1350 		ext4_truncate_failed_write(inode);
1351 		/*
1352 		 * If truncate failed early the inode might still be
1353 		 * on the orphan list; we need to make sure the inode
1354 		 * is removed from the orphan list in that case.
1355 		 */
1356 		if (inode->i_nlink)
1357 			ext4_orphan_del(NULL, inode);
1358 	}
1359 
1360 	return ret ? ret : copied;
1361 }
1362 
1363 /*
1364  * This is a private version of page_zero_new_buffers() which doesn't
1365  * set the buffer to be dirty, since in data=journalled mode we need
1366  * to call ext4_handle_dirty_metadata() instead.
1367  */
1368 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1369 {
1370 	unsigned int block_start = 0, block_end;
1371 	struct buffer_head *head, *bh;
1372 
1373 	bh = head = page_buffers(page);
1374 	do {
1375 		block_end = block_start + bh->b_size;
1376 		if (buffer_new(bh)) {
1377 			if (block_end > from && block_start < to) {
1378 				if (!PageUptodate(page)) {
1379 					unsigned start, size;
1380 
1381 					start = max(from, block_start);
1382 					size = min(to, block_end) - start;
1383 
1384 					zero_user(page, start, size);
1385 					set_buffer_uptodate(bh);
1386 				}
1387 				clear_buffer_new(bh);
1388 			}
1389 		}
1390 		block_start = block_end;
1391 		bh = bh->b_this_page;
1392 	} while (bh != head);
1393 }
1394 
1395 static int ext4_journalled_write_end(struct file *file,
1396 				     struct address_space *mapping,
1397 				     loff_t pos, unsigned len, unsigned copied,
1398 				     struct page *page, void *fsdata)
1399 {
1400 	handle_t *handle = ext4_journal_current_handle();
1401 	struct inode *inode = mapping->host;
1402 	loff_t old_size = inode->i_size;
1403 	int ret = 0, ret2;
1404 	int partial = 0;
1405 	unsigned from, to;
1406 	int size_changed = 0;
1407 
1408 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1409 	from = pos & (PAGE_SIZE - 1);
1410 	to = from + len;
1411 
1412 	BUG_ON(!ext4_handle_valid(handle));
1413 
1414 	if (ext4_has_inline_data(inode))
1415 		copied = ext4_write_inline_data_end(inode, pos, len,
1416 						    copied, page);
1417 	else {
1418 		if (copied < len) {
1419 			if (!PageUptodate(page))
1420 				copied = 0;
1421 			zero_new_buffers(page, from+copied, to);
1422 		}
1423 
1424 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1425 					     to, &partial, write_end_fn);
1426 		if (!partial)
1427 			SetPageUptodate(page);
1428 	}
1429 	size_changed = ext4_update_inode_size(inode, pos + copied);
1430 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1431 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1432 	unlock_page(page);
1433 	put_page(page);
1434 
1435 	if (old_size < pos)
1436 		pagecache_isize_extended(inode, old_size, pos);
1437 
1438 	if (size_changed) {
1439 		ret2 = ext4_mark_inode_dirty(handle, inode);
1440 		if (!ret)
1441 			ret = ret2;
1442 	}
1443 
1444 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1445 		/* if we have allocated more blocks and copied
1446 		 * less. We will have blocks allocated outside
1447 		 * inode->i_size. So truncate them
1448 		 */
1449 		ext4_orphan_add(handle, inode);
1450 
1451 	ret2 = ext4_journal_stop(handle);
1452 	if (!ret)
1453 		ret = ret2;
1454 	if (pos + len > inode->i_size) {
1455 		ext4_truncate_failed_write(inode);
1456 		/*
1457 		 * If truncate failed early the inode might still be
1458 		 * on the orphan list; we need to make sure the inode
1459 		 * is removed from the orphan list in that case.
1460 		 */
1461 		if (inode->i_nlink)
1462 			ext4_orphan_del(NULL, inode);
1463 	}
1464 
1465 	return ret ? ret : copied;
1466 }
1467 
1468 /*
1469  * Reserve space for a single cluster
1470  */
1471 static int ext4_da_reserve_space(struct inode *inode)
1472 {
1473 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1474 	struct ext4_inode_info *ei = EXT4_I(inode);
1475 	int ret;
1476 
1477 	/*
1478 	 * We will charge metadata quota at writeout time; this saves
1479 	 * us from metadata over-estimation, though we may go over by
1480 	 * a small amount in the end.  Here we just reserve for data.
1481 	 */
1482 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1483 	if (ret)
1484 		return ret;
1485 
1486 	spin_lock(&ei->i_block_reservation_lock);
1487 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1488 		spin_unlock(&ei->i_block_reservation_lock);
1489 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1490 		return -ENOSPC;
1491 	}
1492 	ei->i_reserved_data_blocks++;
1493 	trace_ext4_da_reserve_space(inode);
1494 	spin_unlock(&ei->i_block_reservation_lock);
1495 
1496 	return 0;       /* success */
1497 }
1498 
1499 static void ext4_da_release_space(struct inode *inode, int to_free)
1500 {
1501 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1502 	struct ext4_inode_info *ei = EXT4_I(inode);
1503 
1504 	if (!to_free)
1505 		return;		/* Nothing to release, exit */
1506 
1507 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1508 
1509 	trace_ext4_da_release_space(inode, to_free);
1510 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1511 		/*
1512 		 * if there aren't enough reserved blocks, then the
1513 		 * counter is messed up somewhere.  Since this
1514 		 * function is called from invalidate page, it's
1515 		 * harmless to return without any action.
1516 		 */
1517 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1518 			 "ino %lu, to_free %d with only %d reserved "
1519 			 "data blocks", inode->i_ino, to_free,
1520 			 ei->i_reserved_data_blocks);
1521 		WARN_ON(1);
1522 		to_free = ei->i_reserved_data_blocks;
1523 	}
1524 	ei->i_reserved_data_blocks -= to_free;
1525 
1526 	/* update fs dirty data blocks counter */
1527 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1528 
1529 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1530 
1531 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1532 }
1533 
1534 static void ext4_da_page_release_reservation(struct page *page,
1535 					     unsigned int offset,
1536 					     unsigned int length)
1537 {
1538 	int to_release = 0, contiguous_blks = 0;
1539 	struct buffer_head *head, *bh;
1540 	unsigned int curr_off = 0;
1541 	struct inode *inode = page->mapping->host;
1542 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1543 	unsigned int stop = offset + length;
1544 	int num_clusters;
1545 	ext4_fsblk_t lblk;
1546 
1547 	BUG_ON(stop > PAGE_SIZE || stop < length);
1548 
1549 	head = page_buffers(page);
1550 	bh = head;
1551 	do {
1552 		unsigned int next_off = curr_off + bh->b_size;
1553 
1554 		if (next_off > stop)
1555 			break;
1556 
1557 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1558 			to_release++;
1559 			contiguous_blks++;
1560 			clear_buffer_delay(bh);
1561 		} else if (contiguous_blks) {
1562 			lblk = page->index <<
1563 			       (PAGE_SHIFT - inode->i_blkbits);
1564 			lblk += (curr_off >> inode->i_blkbits) -
1565 				contiguous_blks;
1566 			ext4_es_remove_extent(inode, lblk, contiguous_blks);
1567 			contiguous_blks = 0;
1568 		}
1569 		curr_off = next_off;
1570 	} while ((bh = bh->b_this_page) != head);
1571 
1572 	if (contiguous_blks) {
1573 		lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1574 		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1575 		ext4_es_remove_extent(inode, lblk, contiguous_blks);
1576 	}
1577 
1578 	/* If we have released all the blocks belonging to a cluster, then we
1579 	 * need to release the reserved space for that cluster. */
1580 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1581 	while (num_clusters > 0) {
1582 		lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1583 			((num_clusters - 1) << sbi->s_cluster_bits);
1584 		if (sbi->s_cluster_ratio == 1 ||
1585 		    !ext4_find_delalloc_cluster(inode, lblk))
1586 			ext4_da_release_space(inode, 1);
1587 
1588 		num_clusters--;
1589 	}
1590 }
1591 
1592 /*
1593  * Delayed allocation stuff
1594  */
1595 
1596 struct mpage_da_data {
1597 	struct inode *inode;
1598 	struct writeback_control *wbc;
1599 
1600 	pgoff_t first_page;	/* The first page to write */
1601 	pgoff_t next_page;	/* Current page to examine */
1602 	pgoff_t last_page;	/* Last page to examine */
1603 	/*
1604 	 * Extent to map - this can be after first_page because that can be
1605 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1606 	 * is delalloc or unwritten.
1607 	 */
1608 	struct ext4_map_blocks map;
1609 	struct ext4_io_submit io_submit;	/* IO submission data */
1610 };
1611 
1612 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1613 				       bool invalidate)
1614 {
1615 	int nr_pages, i;
1616 	pgoff_t index, end;
1617 	struct pagevec pvec;
1618 	struct inode *inode = mpd->inode;
1619 	struct address_space *mapping = inode->i_mapping;
1620 
1621 	/* This is necessary when next_page == 0. */
1622 	if (mpd->first_page >= mpd->next_page)
1623 		return;
1624 
1625 	index = mpd->first_page;
1626 	end   = mpd->next_page - 1;
1627 	if (invalidate) {
1628 		ext4_lblk_t start, last;
1629 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1630 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1631 		ext4_es_remove_extent(inode, start, last - start + 1);
1632 	}
1633 
1634 	pagevec_init(&pvec, 0);
1635 	while (index <= end) {
1636 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1637 		if (nr_pages == 0)
1638 			break;
1639 		for (i = 0; i < nr_pages; i++) {
1640 			struct page *page = pvec.pages[i];
1641 			if (page->index > end)
1642 				break;
1643 			BUG_ON(!PageLocked(page));
1644 			BUG_ON(PageWriteback(page));
1645 			if (invalidate) {
1646 				block_invalidatepage(page, 0, PAGE_SIZE);
1647 				ClearPageUptodate(page);
1648 			}
1649 			unlock_page(page);
1650 		}
1651 		index = pvec.pages[nr_pages - 1]->index + 1;
1652 		pagevec_release(&pvec);
1653 	}
1654 }
1655 
1656 static void ext4_print_free_blocks(struct inode *inode)
1657 {
1658 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1659 	struct super_block *sb = inode->i_sb;
1660 	struct ext4_inode_info *ei = EXT4_I(inode);
1661 
1662 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1663 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1664 			ext4_count_free_clusters(sb)));
1665 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1666 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1667 	       (long long) EXT4_C2B(EXT4_SB(sb),
1668 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1669 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1670 	       (long long) EXT4_C2B(EXT4_SB(sb),
1671 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1672 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1673 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1674 		 ei->i_reserved_data_blocks);
1675 	return;
1676 }
1677 
1678 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1679 {
1680 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1681 }
1682 
1683 /*
1684  * This function is grabs code from the very beginning of
1685  * ext4_map_blocks, but assumes that the caller is from delayed write
1686  * time. This function looks up the requested blocks and sets the
1687  * buffer delay bit under the protection of i_data_sem.
1688  */
1689 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1690 			      struct ext4_map_blocks *map,
1691 			      struct buffer_head *bh)
1692 {
1693 	struct extent_status es;
1694 	int retval;
1695 	sector_t invalid_block = ~((sector_t) 0xffff);
1696 #ifdef ES_AGGRESSIVE_TEST
1697 	struct ext4_map_blocks orig_map;
1698 
1699 	memcpy(&orig_map, map, sizeof(*map));
1700 #endif
1701 
1702 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1703 		invalid_block = ~0;
1704 
1705 	map->m_flags = 0;
1706 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1707 		  "logical block %lu\n", inode->i_ino, map->m_len,
1708 		  (unsigned long) map->m_lblk);
1709 
1710 	/* Lookup extent status tree firstly */
1711 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1712 		if (ext4_es_is_hole(&es)) {
1713 			retval = 0;
1714 			down_read(&EXT4_I(inode)->i_data_sem);
1715 			goto add_delayed;
1716 		}
1717 
1718 		/*
1719 		 * Delayed extent could be allocated by fallocate.
1720 		 * So we need to check it.
1721 		 */
1722 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1723 			map_bh(bh, inode->i_sb, invalid_block);
1724 			set_buffer_new(bh);
1725 			set_buffer_delay(bh);
1726 			return 0;
1727 		}
1728 
1729 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1730 		retval = es.es_len - (iblock - es.es_lblk);
1731 		if (retval > map->m_len)
1732 			retval = map->m_len;
1733 		map->m_len = retval;
1734 		if (ext4_es_is_written(&es))
1735 			map->m_flags |= EXT4_MAP_MAPPED;
1736 		else if (ext4_es_is_unwritten(&es))
1737 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1738 		else
1739 			BUG_ON(1);
1740 
1741 #ifdef ES_AGGRESSIVE_TEST
1742 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1743 #endif
1744 		return retval;
1745 	}
1746 
1747 	/*
1748 	 * Try to see if we can get the block without requesting a new
1749 	 * file system block.
1750 	 */
1751 	down_read(&EXT4_I(inode)->i_data_sem);
1752 	if (ext4_has_inline_data(inode))
1753 		retval = 0;
1754 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1755 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1756 	else
1757 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1758 
1759 add_delayed:
1760 	if (retval == 0) {
1761 		int ret;
1762 		/*
1763 		 * XXX: __block_prepare_write() unmaps passed block,
1764 		 * is it OK?
1765 		 */
1766 		/*
1767 		 * If the block was allocated from previously allocated cluster,
1768 		 * then we don't need to reserve it again. However we still need
1769 		 * to reserve metadata for every block we're going to write.
1770 		 */
1771 		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1772 		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1773 			ret = ext4_da_reserve_space(inode);
1774 			if (ret) {
1775 				/* not enough space to reserve */
1776 				retval = ret;
1777 				goto out_unlock;
1778 			}
1779 		}
1780 
1781 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1782 					    ~0, EXTENT_STATUS_DELAYED);
1783 		if (ret) {
1784 			retval = ret;
1785 			goto out_unlock;
1786 		}
1787 
1788 		map_bh(bh, inode->i_sb, invalid_block);
1789 		set_buffer_new(bh);
1790 		set_buffer_delay(bh);
1791 	} else if (retval > 0) {
1792 		int ret;
1793 		unsigned int status;
1794 
1795 		if (unlikely(retval != map->m_len)) {
1796 			ext4_warning(inode->i_sb,
1797 				     "ES len assertion failed for inode "
1798 				     "%lu: retval %d != map->m_len %d",
1799 				     inode->i_ino, retval, map->m_len);
1800 			WARN_ON(1);
1801 		}
1802 
1803 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1804 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1805 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1806 					    map->m_pblk, status);
1807 		if (ret != 0)
1808 			retval = ret;
1809 	}
1810 
1811 out_unlock:
1812 	up_read((&EXT4_I(inode)->i_data_sem));
1813 
1814 	return retval;
1815 }
1816 
1817 /*
1818  * This is a special get_block_t callback which is used by
1819  * ext4_da_write_begin().  It will either return mapped block or
1820  * reserve space for a single block.
1821  *
1822  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1823  * We also have b_blocknr = -1 and b_bdev initialized properly
1824  *
1825  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1826  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1827  * initialized properly.
1828  */
1829 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1830 			   struct buffer_head *bh, int create)
1831 {
1832 	struct ext4_map_blocks map;
1833 	int ret = 0;
1834 
1835 	BUG_ON(create == 0);
1836 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1837 
1838 	map.m_lblk = iblock;
1839 	map.m_len = 1;
1840 
1841 	/*
1842 	 * first, we need to know whether the block is allocated already
1843 	 * preallocated blocks are unmapped but should treated
1844 	 * the same as allocated blocks.
1845 	 */
1846 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1847 	if (ret <= 0)
1848 		return ret;
1849 
1850 	map_bh(bh, inode->i_sb, map.m_pblk);
1851 	ext4_update_bh_state(bh, map.m_flags);
1852 
1853 	if (buffer_unwritten(bh)) {
1854 		/* A delayed write to unwritten bh should be marked
1855 		 * new and mapped.  Mapped ensures that we don't do
1856 		 * get_block multiple times when we write to the same
1857 		 * offset and new ensures that we do proper zero out
1858 		 * for partial write.
1859 		 */
1860 		set_buffer_new(bh);
1861 		set_buffer_mapped(bh);
1862 	}
1863 	return 0;
1864 }
1865 
1866 static int bget_one(handle_t *handle, struct buffer_head *bh)
1867 {
1868 	get_bh(bh);
1869 	return 0;
1870 }
1871 
1872 static int bput_one(handle_t *handle, struct buffer_head *bh)
1873 {
1874 	put_bh(bh);
1875 	return 0;
1876 }
1877 
1878 static int __ext4_journalled_writepage(struct page *page,
1879 				       unsigned int len)
1880 {
1881 	struct address_space *mapping = page->mapping;
1882 	struct inode *inode = mapping->host;
1883 	struct buffer_head *page_bufs = NULL;
1884 	handle_t *handle = NULL;
1885 	int ret = 0, err = 0;
1886 	int inline_data = ext4_has_inline_data(inode);
1887 	struct buffer_head *inode_bh = NULL;
1888 
1889 	ClearPageChecked(page);
1890 
1891 	if (inline_data) {
1892 		BUG_ON(page->index != 0);
1893 		BUG_ON(len > ext4_get_max_inline_size(inode));
1894 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1895 		if (inode_bh == NULL)
1896 			goto out;
1897 	} else {
1898 		page_bufs = page_buffers(page);
1899 		if (!page_bufs) {
1900 			BUG();
1901 			goto out;
1902 		}
1903 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1904 				       NULL, bget_one);
1905 	}
1906 	/*
1907 	 * We need to release the page lock before we start the
1908 	 * journal, so grab a reference so the page won't disappear
1909 	 * out from under us.
1910 	 */
1911 	get_page(page);
1912 	unlock_page(page);
1913 
1914 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1915 				    ext4_writepage_trans_blocks(inode));
1916 	if (IS_ERR(handle)) {
1917 		ret = PTR_ERR(handle);
1918 		put_page(page);
1919 		goto out_no_pagelock;
1920 	}
1921 	BUG_ON(!ext4_handle_valid(handle));
1922 
1923 	lock_page(page);
1924 	put_page(page);
1925 	if (page->mapping != mapping) {
1926 		/* The page got truncated from under us */
1927 		ext4_journal_stop(handle);
1928 		ret = 0;
1929 		goto out;
1930 	}
1931 
1932 	if (inline_data) {
1933 		BUFFER_TRACE(inode_bh, "get write access");
1934 		ret = ext4_journal_get_write_access(handle, inode_bh);
1935 
1936 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1937 
1938 	} else {
1939 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1940 					     do_journal_get_write_access);
1941 
1942 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1943 					     write_end_fn);
1944 	}
1945 	if (ret == 0)
1946 		ret = err;
1947 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1948 	err = ext4_journal_stop(handle);
1949 	if (!ret)
1950 		ret = err;
1951 
1952 	if (!ext4_has_inline_data(inode))
1953 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1954 				       NULL, bput_one);
1955 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1956 out:
1957 	unlock_page(page);
1958 out_no_pagelock:
1959 	brelse(inode_bh);
1960 	return ret;
1961 }
1962 
1963 /*
1964  * Note that we don't need to start a transaction unless we're journaling data
1965  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1966  * need to file the inode to the transaction's list in ordered mode because if
1967  * we are writing back data added by write(), the inode is already there and if
1968  * we are writing back data modified via mmap(), no one guarantees in which
1969  * transaction the data will hit the disk. In case we are journaling data, we
1970  * cannot start transaction directly because transaction start ranks above page
1971  * lock so we have to do some magic.
1972  *
1973  * This function can get called via...
1974  *   - ext4_writepages after taking page lock (have journal handle)
1975  *   - journal_submit_inode_data_buffers (no journal handle)
1976  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1977  *   - grab_page_cache when doing write_begin (have journal handle)
1978  *
1979  * We don't do any block allocation in this function. If we have page with
1980  * multiple blocks we need to write those buffer_heads that are mapped. This
1981  * is important for mmaped based write. So if we do with blocksize 1K
1982  * truncate(f, 1024);
1983  * a = mmap(f, 0, 4096);
1984  * a[0] = 'a';
1985  * truncate(f, 4096);
1986  * we have in the page first buffer_head mapped via page_mkwrite call back
1987  * but other buffer_heads would be unmapped but dirty (dirty done via the
1988  * do_wp_page). So writepage should write the first block. If we modify
1989  * the mmap area beyond 1024 we will again get a page_fault and the
1990  * page_mkwrite callback will do the block allocation and mark the
1991  * buffer_heads mapped.
1992  *
1993  * We redirty the page if we have any buffer_heads that is either delay or
1994  * unwritten in the page.
1995  *
1996  * We can get recursively called as show below.
1997  *
1998  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1999  *		ext4_writepage()
2000  *
2001  * But since we don't do any block allocation we should not deadlock.
2002  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2003  */
2004 static int ext4_writepage(struct page *page,
2005 			  struct writeback_control *wbc)
2006 {
2007 	int ret = 0;
2008 	loff_t size;
2009 	unsigned int len;
2010 	struct buffer_head *page_bufs = NULL;
2011 	struct inode *inode = page->mapping->host;
2012 	struct ext4_io_submit io_submit;
2013 	bool keep_towrite = false;
2014 
2015 	trace_ext4_writepage(page);
2016 	size = i_size_read(inode);
2017 	if (page->index == size >> PAGE_SHIFT)
2018 		len = size & ~PAGE_MASK;
2019 	else
2020 		len = PAGE_SIZE;
2021 
2022 	page_bufs = page_buffers(page);
2023 	/*
2024 	 * We cannot do block allocation or other extent handling in this
2025 	 * function. If there are buffers needing that, we have to redirty
2026 	 * the page. But we may reach here when we do a journal commit via
2027 	 * journal_submit_inode_data_buffers() and in that case we must write
2028 	 * allocated buffers to achieve data=ordered mode guarantees.
2029 	 *
2030 	 * Also, if there is only one buffer per page (the fs block
2031 	 * size == the page size), if one buffer needs block
2032 	 * allocation or needs to modify the extent tree to clear the
2033 	 * unwritten flag, we know that the page can't be written at
2034 	 * all, so we might as well refuse the write immediately.
2035 	 * Unfortunately if the block size != page size, we can't as
2036 	 * easily detect this case using ext4_walk_page_buffers(), but
2037 	 * for the extremely common case, this is an optimization that
2038 	 * skips a useless round trip through ext4_bio_write_page().
2039 	 */
2040 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2041 				   ext4_bh_delay_or_unwritten)) {
2042 		redirty_page_for_writepage(wbc, page);
2043 		if ((current->flags & PF_MEMALLOC) ||
2044 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2045 			/*
2046 			 * For memory cleaning there's no point in writing only
2047 			 * some buffers. So just bail out. Warn if we came here
2048 			 * from direct reclaim.
2049 			 */
2050 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2051 							== PF_MEMALLOC);
2052 			unlock_page(page);
2053 			return 0;
2054 		}
2055 		keep_towrite = true;
2056 	}
2057 
2058 	if (PageChecked(page) && ext4_should_journal_data(inode))
2059 		/*
2060 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2061 		 * doesn't seem much point in redirtying the page here.
2062 		 */
2063 		return __ext4_journalled_writepage(page, len);
2064 
2065 	ext4_io_submit_init(&io_submit, wbc);
2066 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2067 	if (!io_submit.io_end) {
2068 		redirty_page_for_writepage(wbc, page);
2069 		unlock_page(page);
2070 		return -ENOMEM;
2071 	}
2072 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2073 	ext4_io_submit(&io_submit);
2074 	/* Drop io_end reference we got from init */
2075 	ext4_put_io_end_defer(io_submit.io_end);
2076 	return ret;
2077 }
2078 
2079 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2080 {
2081 	int len;
2082 	loff_t size = i_size_read(mpd->inode);
2083 	int err;
2084 
2085 	BUG_ON(page->index != mpd->first_page);
2086 	if (page->index == size >> PAGE_SHIFT)
2087 		len = size & ~PAGE_MASK;
2088 	else
2089 		len = PAGE_SIZE;
2090 	clear_page_dirty_for_io(page);
2091 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2092 	if (!err)
2093 		mpd->wbc->nr_to_write--;
2094 	mpd->first_page++;
2095 
2096 	return err;
2097 }
2098 
2099 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2100 
2101 /*
2102  * mballoc gives us at most this number of blocks...
2103  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2104  * The rest of mballoc seems to handle chunks up to full group size.
2105  */
2106 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2107 
2108 /*
2109  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2110  *
2111  * @mpd - extent of blocks
2112  * @lblk - logical number of the block in the file
2113  * @bh - buffer head we want to add to the extent
2114  *
2115  * The function is used to collect contig. blocks in the same state. If the
2116  * buffer doesn't require mapping for writeback and we haven't started the
2117  * extent of buffers to map yet, the function returns 'true' immediately - the
2118  * caller can write the buffer right away. Otherwise the function returns true
2119  * if the block has been added to the extent, false if the block couldn't be
2120  * added.
2121  */
2122 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2123 				   struct buffer_head *bh)
2124 {
2125 	struct ext4_map_blocks *map = &mpd->map;
2126 
2127 	/* Buffer that doesn't need mapping for writeback? */
2128 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2129 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2130 		/* So far no extent to map => we write the buffer right away */
2131 		if (map->m_len == 0)
2132 			return true;
2133 		return false;
2134 	}
2135 
2136 	/* First block in the extent? */
2137 	if (map->m_len == 0) {
2138 		map->m_lblk = lblk;
2139 		map->m_len = 1;
2140 		map->m_flags = bh->b_state & BH_FLAGS;
2141 		return true;
2142 	}
2143 
2144 	/* Don't go larger than mballoc is willing to allocate */
2145 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2146 		return false;
2147 
2148 	/* Can we merge the block to our big extent? */
2149 	if (lblk == map->m_lblk + map->m_len &&
2150 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2151 		map->m_len++;
2152 		return true;
2153 	}
2154 	return false;
2155 }
2156 
2157 /*
2158  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2159  *
2160  * @mpd - extent of blocks for mapping
2161  * @head - the first buffer in the page
2162  * @bh - buffer we should start processing from
2163  * @lblk - logical number of the block in the file corresponding to @bh
2164  *
2165  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2166  * the page for IO if all buffers in this page were mapped and there's no
2167  * accumulated extent of buffers to map or add buffers in the page to the
2168  * extent of buffers to map. The function returns 1 if the caller can continue
2169  * by processing the next page, 0 if it should stop adding buffers to the
2170  * extent to map because we cannot extend it anymore. It can also return value
2171  * < 0 in case of error during IO submission.
2172  */
2173 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2174 				   struct buffer_head *head,
2175 				   struct buffer_head *bh,
2176 				   ext4_lblk_t lblk)
2177 {
2178 	struct inode *inode = mpd->inode;
2179 	int err;
2180 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2181 							>> inode->i_blkbits;
2182 
2183 	do {
2184 		BUG_ON(buffer_locked(bh));
2185 
2186 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2187 			/* Found extent to map? */
2188 			if (mpd->map.m_len)
2189 				return 0;
2190 			/* Everything mapped so far and we hit EOF */
2191 			break;
2192 		}
2193 	} while (lblk++, (bh = bh->b_this_page) != head);
2194 	/* So far everything mapped? Submit the page for IO. */
2195 	if (mpd->map.m_len == 0) {
2196 		err = mpage_submit_page(mpd, head->b_page);
2197 		if (err < 0)
2198 			return err;
2199 	}
2200 	return lblk < blocks;
2201 }
2202 
2203 /*
2204  * mpage_map_buffers - update buffers corresponding to changed extent and
2205  *		       submit fully mapped pages for IO
2206  *
2207  * @mpd - description of extent to map, on return next extent to map
2208  *
2209  * Scan buffers corresponding to changed extent (we expect corresponding pages
2210  * to be already locked) and update buffer state according to new extent state.
2211  * We map delalloc buffers to their physical location, clear unwritten bits,
2212  * and mark buffers as uninit when we perform writes to unwritten extents
2213  * and do extent conversion after IO is finished. If the last page is not fully
2214  * mapped, we update @map to the next extent in the last page that needs
2215  * mapping. Otherwise we submit the page for IO.
2216  */
2217 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2218 {
2219 	struct pagevec pvec;
2220 	int nr_pages, i;
2221 	struct inode *inode = mpd->inode;
2222 	struct buffer_head *head, *bh;
2223 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2224 	pgoff_t start, end;
2225 	ext4_lblk_t lblk;
2226 	sector_t pblock;
2227 	int err;
2228 
2229 	start = mpd->map.m_lblk >> bpp_bits;
2230 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2231 	lblk = start << bpp_bits;
2232 	pblock = mpd->map.m_pblk;
2233 
2234 	pagevec_init(&pvec, 0);
2235 	while (start <= end) {
2236 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2237 					  PAGEVEC_SIZE);
2238 		if (nr_pages == 0)
2239 			break;
2240 		for (i = 0; i < nr_pages; i++) {
2241 			struct page *page = pvec.pages[i];
2242 
2243 			if (page->index > end)
2244 				break;
2245 			/* Up to 'end' pages must be contiguous */
2246 			BUG_ON(page->index != start);
2247 			bh = head = page_buffers(page);
2248 			do {
2249 				if (lblk < mpd->map.m_lblk)
2250 					continue;
2251 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2252 					/*
2253 					 * Buffer after end of mapped extent.
2254 					 * Find next buffer in the page to map.
2255 					 */
2256 					mpd->map.m_len = 0;
2257 					mpd->map.m_flags = 0;
2258 					/*
2259 					 * FIXME: If dioread_nolock supports
2260 					 * blocksize < pagesize, we need to make
2261 					 * sure we add size mapped so far to
2262 					 * io_end->size as the following call
2263 					 * can submit the page for IO.
2264 					 */
2265 					err = mpage_process_page_bufs(mpd, head,
2266 								      bh, lblk);
2267 					pagevec_release(&pvec);
2268 					if (err > 0)
2269 						err = 0;
2270 					return err;
2271 				}
2272 				if (buffer_delay(bh)) {
2273 					clear_buffer_delay(bh);
2274 					bh->b_blocknr = pblock++;
2275 				}
2276 				clear_buffer_unwritten(bh);
2277 			} while (lblk++, (bh = bh->b_this_page) != head);
2278 
2279 			/*
2280 			 * FIXME: This is going to break if dioread_nolock
2281 			 * supports blocksize < pagesize as we will try to
2282 			 * convert potentially unmapped parts of inode.
2283 			 */
2284 			mpd->io_submit.io_end->size += PAGE_SIZE;
2285 			/* Page fully mapped - let IO run! */
2286 			err = mpage_submit_page(mpd, page);
2287 			if (err < 0) {
2288 				pagevec_release(&pvec);
2289 				return err;
2290 			}
2291 			start++;
2292 		}
2293 		pagevec_release(&pvec);
2294 	}
2295 	/* Extent fully mapped and matches with page boundary. We are done. */
2296 	mpd->map.m_len = 0;
2297 	mpd->map.m_flags = 0;
2298 	return 0;
2299 }
2300 
2301 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2302 {
2303 	struct inode *inode = mpd->inode;
2304 	struct ext4_map_blocks *map = &mpd->map;
2305 	int get_blocks_flags;
2306 	int err, dioread_nolock;
2307 
2308 	trace_ext4_da_write_pages_extent(inode, map);
2309 	/*
2310 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2311 	 * to convert an unwritten extent to be initialized (in the case
2312 	 * where we have written into one or more preallocated blocks).  It is
2313 	 * possible that we're going to need more metadata blocks than
2314 	 * previously reserved. However we must not fail because we're in
2315 	 * writeback and there is nothing we can do about it so it might result
2316 	 * in data loss.  So use reserved blocks to allocate metadata if
2317 	 * possible.
2318 	 *
2319 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2320 	 * the blocks in question are delalloc blocks.  This indicates
2321 	 * that the blocks and quotas has already been checked when
2322 	 * the data was copied into the page cache.
2323 	 */
2324 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2325 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2326 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2327 	dioread_nolock = ext4_should_dioread_nolock(inode);
2328 	if (dioread_nolock)
2329 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2330 	if (map->m_flags & (1 << BH_Delay))
2331 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2332 
2333 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2334 	if (err < 0)
2335 		return err;
2336 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2337 		if (!mpd->io_submit.io_end->handle &&
2338 		    ext4_handle_valid(handle)) {
2339 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2340 			handle->h_rsv_handle = NULL;
2341 		}
2342 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2343 	}
2344 
2345 	BUG_ON(map->m_len == 0);
2346 	if (map->m_flags & EXT4_MAP_NEW) {
2347 		struct block_device *bdev = inode->i_sb->s_bdev;
2348 		int i;
2349 
2350 		for (i = 0; i < map->m_len; i++)
2351 			unmap_underlying_metadata(bdev, map->m_pblk + i);
2352 	}
2353 	return 0;
2354 }
2355 
2356 /*
2357  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2358  *				 mpd->len and submit pages underlying it for IO
2359  *
2360  * @handle - handle for journal operations
2361  * @mpd - extent to map
2362  * @give_up_on_write - we set this to true iff there is a fatal error and there
2363  *                     is no hope of writing the data. The caller should discard
2364  *                     dirty pages to avoid infinite loops.
2365  *
2366  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2367  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2368  * them to initialized or split the described range from larger unwritten
2369  * extent. Note that we need not map all the described range since allocation
2370  * can return less blocks or the range is covered by more unwritten extents. We
2371  * cannot map more because we are limited by reserved transaction credits. On
2372  * the other hand we always make sure that the last touched page is fully
2373  * mapped so that it can be written out (and thus forward progress is
2374  * guaranteed). After mapping we submit all mapped pages for IO.
2375  */
2376 static int mpage_map_and_submit_extent(handle_t *handle,
2377 				       struct mpage_da_data *mpd,
2378 				       bool *give_up_on_write)
2379 {
2380 	struct inode *inode = mpd->inode;
2381 	struct ext4_map_blocks *map = &mpd->map;
2382 	int err;
2383 	loff_t disksize;
2384 	int progress = 0;
2385 
2386 	mpd->io_submit.io_end->offset =
2387 				((loff_t)map->m_lblk) << inode->i_blkbits;
2388 	do {
2389 		err = mpage_map_one_extent(handle, mpd);
2390 		if (err < 0) {
2391 			struct super_block *sb = inode->i_sb;
2392 
2393 			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2394 				goto invalidate_dirty_pages;
2395 			/*
2396 			 * Let the uper layers retry transient errors.
2397 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2398 			 * is non-zero, a commit should free up blocks.
2399 			 */
2400 			if ((err == -ENOMEM) ||
2401 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2402 				if (progress)
2403 					goto update_disksize;
2404 				return err;
2405 			}
2406 			ext4_msg(sb, KERN_CRIT,
2407 				 "Delayed block allocation failed for "
2408 				 "inode %lu at logical offset %llu with"
2409 				 " max blocks %u with error %d",
2410 				 inode->i_ino,
2411 				 (unsigned long long)map->m_lblk,
2412 				 (unsigned)map->m_len, -err);
2413 			ext4_msg(sb, KERN_CRIT,
2414 				 "This should not happen!! Data will "
2415 				 "be lost\n");
2416 			if (err == -ENOSPC)
2417 				ext4_print_free_blocks(inode);
2418 		invalidate_dirty_pages:
2419 			*give_up_on_write = true;
2420 			return err;
2421 		}
2422 		progress = 1;
2423 		/*
2424 		 * Update buffer state, submit mapped pages, and get us new
2425 		 * extent to map
2426 		 */
2427 		err = mpage_map_and_submit_buffers(mpd);
2428 		if (err < 0)
2429 			goto update_disksize;
2430 	} while (map->m_len);
2431 
2432 update_disksize:
2433 	/*
2434 	 * Update on-disk size after IO is submitted.  Races with
2435 	 * truncate are avoided by checking i_size under i_data_sem.
2436 	 */
2437 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2438 	if (disksize > EXT4_I(inode)->i_disksize) {
2439 		int err2;
2440 		loff_t i_size;
2441 
2442 		down_write(&EXT4_I(inode)->i_data_sem);
2443 		i_size = i_size_read(inode);
2444 		if (disksize > i_size)
2445 			disksize = i_size;
2446 		if (disksize > EXT4_I(inode)->i_disksize)
2447 			EXT4_I(inode)->i_disksize = disksize;
2448 		err2 = ext4_mark_inode_dirty(handle, inode);
2449 		up_write(&EXT4_I(inode)->i_data_sem);
2450 		if (err2)
2451 			ext4_error(inode->i_sb,
2452 				   "Failed to mark inode %lu dirty",
2453 				   inode->i_ino);
2454 		if (!err)
2455 			err = err2;
2456 	}
2457 	return err;
2458 }
2459 
2460 /*
2461  * Calculate the total number of credits to reserve for one writepages
2462  * iteration. This is called from ext4_writepages(). We map an extent of
2463  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2464  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2465  * bpp - 1 blocks in bpp different extents.
2466  */
2467 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2468 {
2469 	int bpp = ext4_journal_blocks_per_page(inode);
2470 
2471 	return ext4_meta_trans_blocks(inode,
2472 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2473 }
2474 
2475 /*
2476  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2477  * 				 and underlying extent to map
2478  *
2479  * @mpd - where to look for pages
2480  *
2481  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2482  * IO immediately. When we find a page which isn't mapped we start accumulating
2483  * extent of buffers underlying these pages that needs mapping (formed by
2484  * either delayed or unwritten buffers). We also lock the pages containing
2485  * these buffers. The extent found is returned in @mpd structure (starting at
2486  * mpd->lblk with length mpd->len blocks).
2487  *
2488  * Note that this function can attach bios to one io_end structure which are
2489  * neither logically nor physically contiguous. Although it may seem as an
2490  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2491  * case as we need to track IO to all buffers underlying a page in one io_end.
2492  */
2493 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2494 {
2495 	struct address_space *mapping = mpd->inode->i_mapping;
2496 	struct pagevec pvec;
2497 	unsigned int nr_pages;
2498 	long left = mpd->wbc->nr_to_write;
2499 	pgoff_t index = mpd->first_page;
2500 	pgoff_t end = mpd->last_page;
2501 	int tag;
2502 	int i, err = 0;
2503 	int blkbits = mpd->inode->i_blkbits;
2504 	ext4_lblk_t lblk;
2505 	struct buffer_head *head;
2506 
2507 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2508 		tag = PAGECACHE_TAG_TOWRITE;
2509 	else
2510 		tag = PAGECACHE_TAG_DIRTY;
2511 
2512 	pagevec_init(&pvec, 0);
2513 	mpd->map.m_len = 0;
2514 	mpd->next_page = index;
2515 	while (index <= end) {
2516 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2517 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2518 		if (nr_pages == 0)
2519 			goto out;
2520 
2521 		for (i = 0; i < nr_pages; i++) {
2522 			struct page *page = pvec.pages[i];
2523 
2524 			/*
2525 			 * At this point, the page may be truncated or
2526 			 * invalidated (changing page->mapping to NULL), or
2527 			 * even swizzled back from swapper_space to tmpfs file
2528 			 * mapping. However, page->index will not change
2529 			 * because we have a reference on the page.
2530 			 */
2531 			if (page->index > end)
2532 				goto out;
2533 
2534 			/*
2535 			 * Accumulated enough dirty pages? This doesn't apply
2536 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2537 			 * keep going because someone may be concurrently
2538 			 * dirtying pages, and we might have synced a lot of
2539 			 * newly appeared dirty pages, but have not synced all
2540 			 * of the old dirty pages.
2541 			 */
2542 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2543 				goto out;
2544 
2545 			/* If we can't merge this page, we are done. */
2546 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2547 				goto out;
2548 
2549 			lock_page(page);
2550 			/*
2551 			 * If the page is no longer dirty, or its mapping no
2552 			 * longer corresponds to inode we are writing (which
2553 			 * means it has been truncated or invalidated), or the
2554 			 * page is already under writeback and we are not doing
2555 			 * a data integrity writeback, skip the page
2556 			 */
2557 			if (!PageDirty(page) ||
2558 			    (PageWriteback(page) &&
2559 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2560 			    unlikely(page->mapping != mapping)) {
2561 				unlock_page(page);
2562 				continue;
2563 			}
2564 
2565 			wait_on_page_writeback(page);
2566 			BUG_ON(PageWriteback(page));
2567 
2568 			if (mpd->map.m_len == 0)
2569 				mpd->first_page = page->index;
2570 			mpd->next_page = page->index + 1;
2571 			/* Add all dirty buffers to mpd */
2572 			lblk = ((ext4_lblk_t)page->index) <<
2573 				(PAGE_SHIFT - blkbits);
2574 			head = page_buffers(page);
2575 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2576 			if (err <= 0)
2577 				goto out;
2578 			err = 0;
2579 			left--;
2580 		}
2581 		pagevec_release(&pvec);
2582 		cond_resched();
2583 	}
2584 	return 0;
2585 out:
2586 	pagevec_release(&pvec);
2587 	return err;
2588 }
2589 
2590 static int __writepage(struct page *page, struct writeback_control *wbc,
2591 		       void *data)
2592 {
2593 	struct address_space *mapping = data;
2594 	int ret = ext4_writepage(page, wbc);
2595 	mapping_set_error(mapping, ret);
2596 	return ret;
2597 }
2598 
2599 static int ext4_writepages(struct address_space *mapping,
2600 			   struct writeback_control *wbc)
2601 {
2602 	pgoff_t	writeback_index = 0;
2603 	long nr_to_write = wbc->nr_to_write;
2604 	int range_whole = 0;
2605 	int cycled = 1;
2606 	handle_t *handle = NULL;
2607 	struct mpage_da_data mpd;
2608 	struct inode *inode = mapping->host;
2609 	int needed_blocks, rsv_blocks = 0, ret = 0;
2610 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2611 	bool done;
2612 	struct blk_plug plug;
2613 	bool give_up_on_write = false;
2614 
2615 	percpu_down_read(&sbi->s_journal_flag_rwsem);
2616 	trace_ext4_writepages(inode, wbc);
2617 
2618 	if (dax_mapping(mapping)) {
2619 		ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2620 						  wbc);
2621 		goto out_writepages;
2622 	}
2623 
2624 	/*
2625 	 * No pages to write? This is mainly a kludge to avoid starting
2626 	 * a transaction for special inodes like journal inode on last iput()
2627 	 * because that could violate lock ordering on umount
2628 	 */
2629 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2630 		goto out_writepages;
2631 
2632 	if (ext4_should_journal_data(inode)) {
2633 		struct blk_plug plug;
2634 
2635 		blk_start_plug(&plug);
2636 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2637 		blk_finish_plug(&plug);
2638 		goto out_writepages;
2639 	}
2640 
2641 	/*
2642 	 * If the filesystem has aborted, it is read-only, so return
2643 	 * right away instead of dumping stack traces later on that
2644 	 * will obscure the real source of the problem.  We test
2645 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2646 	 * the latter could be true if the filesystem is mounted
2647 	 * read-only, and in that case, ext4_writepages should
2648 	 * *never* be called, so if that ever happens, we would want
2649 	 * the stack trace.
2650 	 */
2651 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2652 		ret = -EROFS;
2653 		goto out_writepages;
2654 	}
2655 
2656 	if (ext4_should_dioread_nolock(inode)) {
2657 		/*
2658 		 * We may need to convert up to one extent per block in
2659 		 * the page and we may dirty the inode.
2660 		 */
2661 		rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2662 	}
2663 
2664 	/*
2665 	 * If we have inline data and arrive here, it means that
2666 	 * we will soon create the block for the 1st page, so
2667 	 * we'd better clear the inline data here.
2668 	 */
2669 	if (ext4_has_inline_data(inode)) {
2670 		/* Just inode will be modified... */
2671 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2672 		if (IS_ERR(handle)) {
2673 			ret = PTR_ERR(handle);
2674 			goto out_writepages;
2675 		}
2676 		BUG_ON(ext4_test_inode_state(inode,
2677 				EXT4_STATE_MAY_INLINE_DATA));
2678 		ext4_destroy_inline_data(handle, inode);
2679 		ext4_journal_stop(handle);
2680 	}
2681 
2682 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2683 		range_whole = 1;
2684 
2685 	if (wbc->range_cyclic) {
2686 		writeback_index = mapping->writeback_index;
2687 		if (writeback_index)
2688 			cycled = 0;
2689 		mpd.first_page = writeback_index;
2690 		mpd.last_page = -1;
2691 	} else {
2692 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2693 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2694 	}
2695 
2696 	mpd.inode = inode;
2697 	mpd.wbc = wbc;
2698 	ext4_io_submit_init(&mpd.io_submit, wbc);
2699 retry:
2700 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2701 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2702 	done = false;
2703 	blk_start_plug(&plug);
2704 	while (!done && mpd.first_page <= mpd.last_page) {
2705 		/* For each extent of pages we use new io_end */
2706 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2707 		if (!mpd.io_submit.io_end) {
2708 			ret = -ENOMEM;
2709 			break;
2710 		}
2711 
2712 		/*
2713 		 * We have two constraints: We find one extent to map and we
2714 		 * must always write out whole page (makes a difference when
2715 		 * blocksize < pagesize) so that we don't block on IO when we
2716 		 * try to write out the rest of the page. Journalled mode is
2717 		 * not supported by delalloc.
2718 		 */
2719 		BUG_ON(ext4_should_journal_data(inode));
2720 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2721 
2722 		/* start a new transaction */
2723 		handle = ext4_journal_start_with_reserve(inode,
2724 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2725 		if (IS_ERR(handle)) {
2726 			ret = PTR_ERR(handle);
2727 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2728 			       "%ld pages, ino %lu; err %d", __func__,
2729 				wbc->nr_to_write, inode->i_ino, ret);
2730 			/* Release allocated io_end */
2731 			ext4_put_io_end(mpd.io_submit.io_end);
2732 			break;
2733 		}
2734 
2735 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2736 		ret = mpage_prepare_extent_to_map(&mpd);
2737 		if (!ret) {
2738 			if (mpd.map.m_len)
2739 				ret = mpage_map_and_submit_extent(handle, &mpd,
2740 					&give_up_on_write);
2741 			else {
2742 				/*
2743 				 * We scanned the whole range (or exhausted
2744 				 * nr_to_write), submitted what was mapped and
2745 				 * didn't find anything needing mapping. We are
2746 				 * done.
2747 				 */
2748 				done = true;
2749 			}
2750 		}
2751 		ext4_journal_stop(handle);
2752 		/* Submit prepared bio */
2753 		ext4_io_submit(&mpd.io_submit);
2754 		/* Unlock pages we didn't use */
2755 		mpage_release_unused_pages(&mpd, give_up_on_write);
2756 		/* Drop our io_end reference we got from init */
2757 		ext4_put_io_end(mpd.io_submit.io_end);
2758 
2759 		if (ret == -ENOSPC && sbi->s_journal) {
2760 			/*
2761 			 * Commit the transaction which would
2762 			 * free blocks released in the transaction
2763 			 * and try again
2764 			 */
2765 			jbd2_journal_force_commit_nested(sbi->s_journal);
2766 			ret = 0;
2767 			continue;
2768 		}
2769 		/* Fatal error - ENOMEM, EIO... */
2770 		if (ret)
2771 			break;
2772 	}
2773 	blk_finish_plug(&plug);
2774 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2775 		cycled = 1;
2776 		mpd.last_page = writeback_index - 1;
2777 		mpd.first_page = 0;
2778 		goto retry;
2779 	}
2780 
2781 	/* Update index */
2782 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2783 		/*
2784 		 * Set the writeback_index so that range_cyclic
2785 		 * mode will write it back later
2786 		 */
2787 		mapping->writeback_index = mpd.first_page;
2788 
2789 out_writepages:
2790 	trace_ext4_writepages_result(inode, wbc, ret,
2791 				     nr_to_write - wbc->nr_to_write);
2792 	percpu_up_read(&sbi->s_journal_flag_rwsem);
2793 	return ret;
2794 }
2795 
2796 static int ext4_nonda_switch(struct super_block *sb)
2797 {
2798 	s64 free_clusters, dirty_clusters;
2799 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2800 
2801 	/*
2802 	 * switch to non delalloc mode if we are running low
2803 	 * on free block. The free block accounting via percpu
2804 	 * counters can get slightly wrong with percpu_counter_batch getting
2805 	 * accumulated on each CPU without updating global counters
2806 	 * Delalloc need an accurate free block accounting. So switch
2807 	 * to non delalloc when we are near to error range.
2808 	 */
2809 	free_clusters =
2810 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2811 	dirty_clusters =
2812 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2813 	/*
2814 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2815 	 */
2816 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2817 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2818 
2819 	if (2 * free_clusters < 3 * dirty_clusters ||
2820 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2821 		/*
2822 		 * free block count is less than 150% of dirty blocks
2823 		 * or free blocks is less than watermark
2824 		 */
2825 		return 1;
2826 	}
2827 	return 0;
2828 }
2829 
2830 /* We always reserve for an inode update; the superblock could be there too */
2831 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2832 {
2833 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2834 		return 1;
2835 
2836 	if (pos + len <= 0x7fffffffULL)
2837 		return 1;
2838 
2839 	/* We might need to update the superblock to set LARGE_FILE */
2840 	return 2;
2841 }
2842 
2843 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2844 			       loff_t pos, unsigned len, unsigned flags,
2845 			       struct page **pagep, void **fsdata)
2846 {
2847 	int ret, retries = 0;
2848 	struct page *page;
2849 	pgoff_t index;
2850 	struct inode *inode = mapping->host;
2851 	handle_t *handle;
2852 
2853 	index = pos >> PAGE_SHIFT;
2854 
2855 	if (ext4_nonda_switch(inode->i_sb)) {
2856 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2857 		return ext4_write_begin(file, mapping, pos,
2858 					len, flags, pagep, fsdata);
2859 	}
2860 	*fsdata = (void *)0;
2861 	trace_ext4_da_write_begin(inode, pos, len, flags);
2862 
2863 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2864 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2865 						      pos, len, flags,
2866 						      pagep, fsdata);
2867 		if (ret < 0)
2868 			return ret;
2869 		if (ret == 1)
2870 			return 0;
2871 	}
2872 
2873 	/*
2874 	 * grab_cache_page_write_begin() can take a long time if the
2875 	 * system is thrashing due to memory pressure, or if the page
2876 	 * is being written back.  So grab it first before we start
2877 	 * the transaction handle.  This also allows us to allocate
2878 	 * the page (if needed) without using GFP_NOFS.
2879 	 */
2880 retry_grab:
2881 	page = grab_cache_page_write_begin(mapping, index, flags);
2882 	if (!page)
2883 		return -ENOMEM;
2884 	unlock_page(page);
2885 
2886 	/*
2887 	 * With delayed allocation, we don't log the i_disksize update
2888 	 * if there is delayed block allocation. But we still need
2889 	 * to journalling the i_disksize update if writes to the end
2890 	 * of file which has an already mapped buffer.
2891 	 */
2892 retry_journal:
2893 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2894 				ext4_da_write_credits(inode, pos, len));
2895 	if (IS_ERR(handle)) {
2896 		put_page(page);
2897 		return PTR_ERR(handle);
2898 	}
2899 
2900 	lock_page(page);
2901 	if (page->mapping != mapping) {
2902 		/* The page got truncated from under us */
2903 		unlock_page(page);
2904 		put_page(page);
2905 		ext4_journal_stop(handle);
2906 		goto retry_grab;
2907 	}
2908 	/* In case writeback began while the page was unlocked */
2909 	wait_for_stable_page(page);
2910 
2911 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2912 	ret = ext4_block_write_begin(page, pos, len,
2913 				     ext4_da_get_block_prep);
2914 #else
2915 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2916 #endif
2917 	if (ret < 0) {
2918 		unlock_page(page);
2919 		ext4_journal_stop(handle);
2920 		/*
2921 		 * block_write_begin may have instantiated a few blocks
2922 		 * outside i_size.  Trim these off again. Don't need
2923 		 * i_size_read because we hold i_mutex.
2924 		 */
2925 		if (pos + len > inode->i_size)
2926 			ext4_truncate_failed_write(inode);
2927 
2928 		if (ret == -ENOSPC &&
2929 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2930 			goto retry_journal;
2931 
2932 		put_page(page);
2933 		return ret;
2934 	}
2935 
2936 	*pagep = page;
2937 	return ret;
2938 }
2939 
2940 /*
2941  * Check if we should update i_disksize
2942  * when write to the end of file but not require block allocation
2943  */
2944 static int ext4_da_should_update_i_disksize(struct page *page,
2945 					    unsigned long offset)
2946 {
2947 	struct buffer_head *bh;
2948 	struct inode *inode = page->mapping->host;
2949 	unsigned int idx;
2950 	int i;
2951 
2952 	bh = page_buffers(page);
2953 	idx = offset >> inode->i_blkbits;
2954 
2955 	for (i = 0; i < idx; i++)
2956 		bh = bh->b_this_page;
2957 
2958 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2959 		return 0;
2960 	return 1;
2961 }
2962 
2963 static int ext4_da_write_end(struct file *file,
2964 			     struct address_space *mapping,
2965 			     loff_t pos, unsigned len, unsigned copied,
2966 			     struct page *page, void *fsdata)
2967 {
2968 	struct inode *inode = mapping->host;
2969 	int ret = 0, ret2;
2970 	handle_t *handle = ext4_journal_current_handle();
2971 	loff_t new_i_size;
2972 	unsigned long start, end;
2973 	int write_mode = (int)(unsigned long)fsdata;
2974 
2975 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2976 		return ext4_write_end(file, mapping, pos,
2977 				      len, copied, page, fsdata);
2978 
2979 	trace_ext4_da_write_end(inode, pos, len, copied);
2980 	start = pos & (PAGE_SIZE - 1);
2981 	end = start + copied - 1;
2982 
2983 	/*
2984 	 * generic_write_end() will run mark_inode_dirty() if i_size
2985 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2986 	 * into that.
2987 	 */
2988 	new_i_size = pos + copied;
2989 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2990 		if (ext4_has_inline_data(inode) ||
2991 		    ext4_da_should_update_i_disksize(page, end)) {
2992 			ext4_update_i_disksize(inode, new_i_size);
2993 			/* We need to mark inode dirty even if
2994 			 * new_i_size is less that inode->i_size
2995 			 * bu greater than i_disksize.(hint delalloc)
2996 			 */
2997 			ext4_mark_inode_dirty(handle, inode);
2998 		}
2999 	}
3000 
3001 	if (write_mode != CONVERT_INLINE_DATA &&
3002 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3003 	    ext4_has_inline_data(inode))
3004 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3005 						     page);
3006 	else
3007 		ret2 = generic_write_end(file, mapping, pos, len, copied,
3008 							page, fsdata);
3009 
3010 	copied = ret2;
3011 	if (ret2 < 0)
3012 		ret = ret2;
3013 	ret2 = ext4_journal_stop(handle);
3014 	if (!ret)
3015 		ret = ret2;
3016 
3017 	return ret ? ret : copied;
3018 }
3019 
3020 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3021 				   unsigned int length)
3022 {
3023 	/*
3024 	 * Drop reserved blocks
3025 	 */
3026 	BUG_ON(!PageLocked(page));
3027 	if (!page_has_buffers(page))
3028 		goto out;
3029 
3030 	ext4_da_page_release_reservation(page, offset, length);
3031 
3032 out:
3033 	ext4_invalidatepage(page, offset, length);
3034 
3035 	return;
3036 }
3037 
3038 /*
3039  * Force all delayed allocation blocks to be allocated for a given inode.
3040  */
3041 int ext4_alloc_da_blocks(struct inode *inode)
3042 {
3043 	trace_ext4_alloc_da_blocks(inode);
3044 
3045 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3046 		return 0;
3047 
3048 	/*
3049 	 * We do something simple for now.  The filemap_flush() will
3050 	 * also start triggering a write of the data blocks, which is
3051 	 * not strictly speaking necessary (and for users of
3052 	 * laptop_mode, not even desirable).  However, to do otherwise
3053 	 * would require replicating code paths in:
3054 	 *
3055 	 * ext4_writepages() ->
3056 	 *    write_cache_pages() ---> (via passed in callback function)
3057 	 *        __mpage_da_writepage() -->
3058 	 *           mpage_add_bh_to_extent()
3059 	 *           mpage_da_map_blocks()
3060 	 *
3061 	 * The problem is that write_cache_pages(), located in
3062 	 * mm/page-writeback.c, marks pages clean in preparation for
3063 	 * doing I/O, which is not desirable if we're not planning on
3064 	 * doing I/O at all.
3065 	 *
3066 	 * We could call write_cache_pages(), and then redirty all of
3067 	 * the pages by calling redirty_page_for_writepage() but that
3068 	 * would be ugly in the extreme.  So instead we would need to
3069 	 * replicate parts of the code in the above functions,
3070 	 * simplifying them because we wouldn't actually intend to
3071 	 * write out the pages, but rather only collect contiguous
3072 	 * logical block extents, call the multi-block allocator, and
3073 	 * then update the buffer heads with the block allocations.
3074 	 *
3075 	 * For now, though, we'll cheat by calling filemap_flush(),
3076 	 * which will map the blocks, and start the I/O, but not
3077 	 * actually wait for the I/O to complete.
3078 	 */
3079 	return filemap_flush(inode->i_mapping);
3080 }
3081 
3082 /*
3083  * bmap() is special.  It gets used by applications such as lilo and by
3084  * the swapper to find the on-disk block of a specific piece of data.
3085  *
3086  * Naturally, this is dangerous if the block concerned is still in the
3087  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3088  * filesystem and enables swap, then they may get a nasty shock when the
3089  * data getting swapped to that swapfile suddenly gets overwritten by
3090  * the original zero's written out previously to the journal and
3091  * awaiting writeback in the kernel's buffer cache.
3092  *
3093  * So, if we see any bmap calls here on a modified, data-journaled file,
3094  * take extra steps to flush any blocks which might be in the cache.
3095  */
3096 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3097 {
3098 	struct inode *inode = mapping->host;
3099 	journal_t *journal;
3100 	int err;
3101 
3102 	/*
3103 	 * We can get here for an inline file via the FIBMAP ioctl
3104 	 */
3105 	if (ext4_has_inline_data(inode))
3106 		return 0;
3107 
3108 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3109 			test_opt(inode->i_sb, DELALLOC)) {
3110 		/*
3111 		 * With delalloc we want to sync the file
3112 		 * so that we can make sure we allocate
3113 		 * blocks for file
3114 		 */
3115 		filemap_write_and_wait(mapping);
3116 	}
3117 
3118 	if (EXT4_JOURNAL(inode) &&
3119 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3120 		/*
3121 		 * This is a REALLY heavyweight approach, but the use of
3122 		 * bmap on dirty files is expected to be extremely rare:
3123 		 * only if we run lilo or swapon on a freshly made file
3124 		 * do we expect this to happen.
3125 		 *
3126 		 * (bmap requires CAP_SYS_RAWIO so this does not
3127 		 * represent an unprivileged user DOS attack --- we'd be
3128 		 * in trouble if mortal users could trigger this path at
3129 		 * will.)
3130 		 *
3131 		 * NB. EXT4_STATE_JDATA is not set on files other than
3132 		 * regular files.  If somebody wants to bmap a directory
3133 		 * or symlink and gets confused because the buffer
3134 		 * hasn't yet been flushed to disk, they deserve
3135 		 * everything they get.
3136 		 */
3137 
3138 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3139 		journal = EXT4_JOURNAL(inode);
3140 		jbd2_journal_lock_updates(journal);
3141 		err = jbd2_journal_flush(journal);
3142 		jbd2_journal_unlock_updates(journal);
3143 
3144 		if (err)
3145 			return 0;
3146 	}
3147 
3148 	return generic_block_bmap(mapping, block, ext4_get_block);
3149 }
3150 
3151 static int ext4_readpage(struct file *file, struct page *page)
3152 {
3153 	int ret = -EAGAIN;
3154 	struct inode *inode = page->mapping->host;
3155 
3156 	trace_ext4_readpage(page);
3157 
3158 	if (ext4_has_inline_data(inode))
3159 		ret = ext4_readpage_inline(inode, page);
3160 
3161 	if (ret == -EAGAIN)
3162 		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3163 
3164 	return ret;
3165 }
3166 
3167 static int
3168 ext4_readpages(struct file *file, struct address_space *mapping,
3169 		struct list_head *pages, unsigned nr_pages)
3170 {
3171 	struct inode *inode = mapping->host;
3172 
3173 	/* If the file has inline data, no need to do readpages. */
3174 	if (ext4_has_inline_data(inode))
3175 		return 0;
3176 
3177 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3178 }
3179 
3180 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3181 				unsigned int length)
3182 {
3183 	trace_ext4_invalidatepage(page, offset, length);
3184 
3185 	/* No journalling happens on data buffers when this function is used */
3186 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3187 
3188 	block_invalidatepage(page, offset, length);
3189 }
3190 
3191 static int __ext4_journalled_invalidatepage(struct page *page,
3192 					    unsigned int offset,
3193 					    unsigned int length)
3194 {
3195 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3196 
3197 	trace_ext4_journalled_invalidatepage(page, offset, length);
3198 
3199 	/*
3200 	 * If it's a full truncate we just forget about the pending dirtying
3201 	 */
3202 	if (offset == 0 && length == PAGE_SIZE)
3203 		ClearPageChecked(page);
3204 
3205 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3206 }
3207 
3208 /* Wrapper for aops... */
3209 static void ext4_journalled_invalidatepage(struct page *page,
3210 					   unsigned int offset,
3211 					   unsigned int length)
3212 {
3213 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3214 }
3215 
3216 static int ext4_releasepage(struct page *page, gfp_t wait)
3217 {
3218 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3219 
3220 	trace_ext4_releasepage(page);
3221 
3222 	/* Page has dirty journalled data -> cannot release */
3223 	if (PageChecked(page))
3224 		return 0;
3225 	if (journal)
3226 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3227 	else
3228 		return try_to_free_buffers(page);
3229 }
3230 
3231 #ifdef CONFIG_FS_DAX
3232 /*
3233  * Get block function for DAX IO and mmap faults. It takes care of converting
3234  * unwritten extents to written ones and initializes new / converted blocks
3235  * to zeros.
3236  */
3237 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3238 		       struct buffer_head *bh_result, int create)
3239 {
3240 	int ret;
3241 
3242 	ext4_debug("inode %lu, create flag %d\n", inode->i_ino, create);
3243 	if (!create)
3244 		return _ext4_get_block(inode, iblock, bh_result, 0);
3245 
3246 	ret = ext4_get_block_trans(inode, iblock, bh_result,
3247 				   EXT4_GET_BLOCKS_PRE_IO |
3248 				   EXT4_GET_BLOCKS_CREATE_ZERO);
3249 	if (ret < 0)
3250 		return ret;
3251 
3252 	if (buffer_unwritten(bh_result)) {
3253 		/*
3254 		 * We are protected by i_mmap_sem or i_mutex so we know block
3255 		 * cannot go away from under us even though we dropped
3256 		 * i_data_sem. Convert extent to written and write zeros there.
3257 		 */
3258 		ret = ext4_get_block_trans(inode, iblock, bh_result,
3259 					   EXT4_GET_BLOCKS_CONVERT |
3260 					   EXT4_GET_BLOCKS_CREATE_ZERO);
3261 		if (ret < 0)
3262 			return ret;
3263 	}
3264 	/*
3265 	 * At least for now we have to clear BH_New so that DAX code
3266 	 * doesn't attempt to zero blocks again in a racy way.
3267 	 */
3268 	clear_buffer_new(bh_result);
3269 	return 0;
3270 }
3271 #else
3272 /* Just define empty function, it will never get called. */
3273 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3274 		       struct buffer_head *bh_result, int create)
3275 {
3276 	BUG();
3277 	return 0;
3278 }
3279 #endif
3280 
3281 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3282 			    ssize_t size, void *private)
3283 {
3284         ext4_io_end_t *io_end = private;
3285 
3286 	/* if not async direct IO just return */
3287 	if (!io_end)
3288 		return 0;
3289 
3290 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3291 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3292 		  io_end, io_end->inode->i_ino, iocb, offset, size);
3293 
3294 	/*
3295 	 * Error during AIO DIO. We cannot convert unwritten extents as the
3296 	 * data was not written. Just clear the unwritten flag and drop io_end.
3297 	 */
3298 	if (size <= 0) {
3299 		ext4_clear_io_unwritten_flag(io_end);
3300 		size = 0;
3301 	}
3302 	io_end->offset = offset;
3303 	io_end->size = size;
3304 	ext4_put_io_end(io_end);
3305 
3306 	return 0;
3307 }
3308 
3309 /*
3310  * Handling of direct IO writes.
3311  *
3312  * For ext4 extent files, ext4 will do direct-io write even to holes,
3313  * preallocated extents, and those write extend the file, no need to
3314  * fall back to buffered IO.
3315  *
3316  * For holes, we fallocate those blocks, mark them as unwritten
3317  * If those blocks were preallocated, we mark sure they are split, but
3318  * still keep the range to write as unwritten.
3319  *
3320  * The unwritten extents will be converted to written when DIO is completed.
3321  * For async direct IO, since the IO may still pending when return, we
3322  * set up an end_io call back function, which will do the conversion
3323  * when async direct IO completed.
3324  *
3325  * If the O_DIRECT write will extend the file then add this inode to the
3326  * orphan list.  So recovery will truncate it back to the original size
3327  * if the machine crashes during the write.
3328  *
3329  */
3330 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3331 {
3332 	struct file *file = iocb->ki_filp;
3333 	struct inode *inode = file->f_mapping->host;
3334 	struct ext4_inode_info *ei = EXT4_I(inode);
3335 	ssize_t ret;
3336 	loff_t offset = iocb->ki_pos;
3337 	size_t count = iov_iter_count(iter);
3338 	int overwrite = 0;
3339 	get_block_t *get_block_func = NULL;
3340 	int dio_flags = 0;
3341 	loff_t final_size = offset + count;
3342 	int orphan = 0;
3343 	handle_t *handle;
3344 
3345 	if (final_size > inode->i_size) {
3346 		/* Credits for sb + inode write */
3347 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3348 		if (IS_ERR(handle)) {
3349 			ret = PTR_ERR(handle);
3350 			goto out;
3351 		}
3352 		ret = ext4_orphan_add(handle, inode);
3353 		if (ret) {
3354 			ext4_journal_stop(handle);
3355 			goto out;
3356 		}
3357 		orphan = 1;
3358 		ei->i_disksize = inode->i_size;
3359 		ext4_journal_stop(handle);
3360 	}
3361 
3362 	BUG_ON(iocb->private == NULL);
3363 
3364 	/*
3365 	 * Make all waiters for direct IO properly wait also for extent
3366 	 * conversion. This also disallows race between truncate() and
3367 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3368 	 */
3369 	inode_dio_begin(inode);
3370 
3371 	/* If we do a overwrite dio, i_mutex locking can be released */
3372 	overwrite = *((int *)iocb->private);
3373 
3374 	if (overwrite)
3375 		inode_unlock(inode);
3376 
3377 	/*
3378 	 * For extent mapped files we could direct write to holes and fallocate.
3379 	 *
3380 	 * Allocated blocks to fill the hole are marked as unwritten to prevent
3381 	 * parallel buffered read to expose the stale data before DIO complete
3382 	 * the data IO.
3383 	 *
3384 	 * As to previously fallocated extents, ext4 get_block will just simply
3385 	 * mark the buffer mapped but still keep the extents unwritten.
3386 	 *
3387 	 * For non AIO case, we will convert those unwritten extents to written
3388 	 * after return back from blockdev_direct_IO. That way we save us from
3389 	 * allocating io_end structure and also the overhead of offloading
3390 	 * the extent convertion to a workqueue.
3391 	 *
3392 	 * For async DIO, the conversion needs to be deferred when the
3393 	 * IO is completed. The ext4 end_io callback function will be
3394 	 * called to take care of the conversion work.  Here for async
3395 	 * case, we allocate an io_end structure to hook to the iocb.
3396 	 */
3397 	iocb->private = NULL;
3398 	if (overwrite)
3399 		get_block_func = ext4_dio_get_block_overwrite;
3400 	else if (IS_DAX(inode)) {
3401 		/*
3402 		 * We can avoid zeroing for aligned DAX writes beyond EOF. Other
3403 		 * writes need zeroing either because they can race with page
3404 		 * faults or because they use partial blocks.
3405 		 */
3406 		if (round_down(offset, 1<<inode->i_blkbits) >= inode->i_size &&
3407 		    ext4_aligned_io(inode, offset, count))
3408 			get_block_func = ext4_dio_get_block;
3409 		else
3410 			get_block_func = ext4_dax_get_block;
3411 		dio_flags = DIO_LOCKING;
3412 	} else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3413 		   round_down(offset, 1 << inode->i_blkbits) >= inode->i_size) {
3414 		get_block_func = ext4_dio_get_block;
3415 		dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3416 	} else if (is_sync_kiocb(iocb)) {
3417 		get_block_func = ext4_dio_get_block_unwritten_sync;
3418 		dio_flags = DIO_LOCKING;
3419 	} else {
3420 		get_block_func = ext4_dio_get_block_unwritten_async;
3421 		dio_flags = DIO_LOCKING;
3422 	}
3423 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3424 	BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3425 #endif
3426 	if (IS_DAX(inode)) {
3427 		ret = dax_do_io(iocb, inode, iter, get_block_func,
3428 				ext4_end_io_dio, dio_flags);
3429 	} else
3430 		ret = __blockdev_direct_IO(iocb, inode,
3431 					   inode->i_sb->s_bdev, iter,
3432 					   get_block_func,
3433 					   ext4_end_io_dio, NULL, dio_flags);
3434 
3435 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3436 						EXT4_STATE_DIO_UNWRITTEN)) {
3437 		int err;
3438 		/*
3439 		 * for non AIO case, since the IO is already
3440 		 * completed, we could do the conversion right here
3441 		 */
3442 		err = ext4_convert_unwritten_extents(NULL, inode,
3443 						     offset, ret);
3444 		if (err < 0)
3445 			ret = err;
3446 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3447 	}
3448 
3449 	inode_dio_end(inode);
3450 	/* take i_mutex locking again if we do a ovewrite dio */
3451 	if (overwrite)
3452 		inode_lock(inode);
3453 
3454 	if (ret < 0 && final_size > inode->i_size)
3455 		ext4_truncate_failed_write(inode);
3456 
3457 	/* Handle extending of i_size after direct IO write */
3458 	if (orphan) {
3459 		int err;
3460 
3461 		/* Credits for sb + inode write */
3462 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3463 		if (IS_ERR(handle)) {
3464 			/* This is really bad luck. We've written the data
3465 			 * but cannot extend i_size. Bail out and pretend
3466 			 * the write failed... */
3467 			ret = PTR_ERR(handle);
3468 			if (inode->i_nlink)
3469 				ext4_orphan_del(NULL, inode);
3470 
3471 			goto out;
3472 		}
3473 		if (inode->i_nlink)
3474 			ext4_orphan_del(handle, inode);
3475 		if (ret > 0) {
3476 			loff_t end = offset + ret;
3477 			if (end > inode->i_size) {
3478 				ei->i_disksize = end;
3479 				i_size_write(inode, end);
3480 				/*
3481 				 * We're going to return a positive `ret'
3482 				 * here due to non-zero-length I/O, so there's
3483 				 * no way of reporting error returns from
3484 				 * ext4_mark_inode_dirty() to userspace.  So
3485 				 * ignore it.
3486 				 */
3487 				ext4_mark_inode_dirty(handle, inode);
3488 			}
3489 		}
3490 		err = ext4_journal_stop(handle);
3491 		if (ret == 0)
3492 			ret = err;
3493 	}
3494 out:
3495 	return ret;
3496 }
3497 
3498 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3499 {
3500 	int unlocked = 0;
3501 	struct inode *inode = iocb->ki_filp->f_mapping->host;
3502 	ssize_t ret;
3503 
3504 	if (ext4_should_dioread_nolock(inode)) {
3505 		/*
3506 		 * Nolock dioread optimization may be dynamically disabled
3507 		 * via ext4_inode_block_unlocked_dio(). Check inode's state
3508 		 * while holding extra i_dio_count ref.
3509 		 */
3510 		inode_dio_begin(inode);
3511 		smp_mb();
3512 		if (unlikely(ext4_test_inode_state(inode,
3513 						    EXT4_STATE_DIOREAD_LOCK)))
3514 			inode_dio_end(inode);
3515 		else
3516 			unlocked = 1;
3517 	}
3518 	if (IS_DAX(inode)) {
3519 		ret = dax_do_io(iocb, inode, iter, ext4_dio_get_block,
3520 				NULL, unlocked ? 0 : DIO_LOCKING);
3521 	} else {
3522 		ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3523 					   iter, ext4_dio_get_block,
3524 					   NULL, NULL,
3525 					   unlocked ? 0 : DIO_LOCKING);
3526 	}
3527 	if (unlocked)
3528 		inode_dio_end(inode);
3529 	return ret;
3530 }
3531 
3532 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3533 {
3534 	struct file *file = iocb->ki_filp;
3535 	struct inode *inode = file->f_mapping->host;
3536 	size_t count = iov_iter_count(iter);
3537 	loff_t offset = iocb->ki_pos;
3538 	ssize_t ret;
3539 
3540 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3541 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3542 		return 0;
3543 #endif
3544 
3545 	/*
3546 	 * If we are doing data journalling we don't support O_DIRECT
3547 	 */
3548 	if (ext4_should_journal_data(inode))
3549 		return 0;
3550 
3551 	/* Let buffer I/O handle the inline data case. */
3552 	if (ext4_has_inline_data(inode))
3553 		return 0;
3554 
3555 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3556 	if (iov_iter_rw(iter) == READ)
3557 		ret = ext4_direct_IO_read(iocb, iter);
3558 	else
3559 		ret = ext4_direct_IO_write(iocb, iter);
3560 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3561 	return ret;
3562 }
3563 
3564 /*
3565  * Pages can be marked dirty completely asynchronously from ext4's journalling
3566  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3567  * much here because ->set_page_dirty is called under VFS locks.  The page is
3568  * not necessarily locked.
3569  *
3570  * We cannot just dirty the page and leave attached buffers clean, because the
3571  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3572  * or jbddirty because all the journalling code will explode.
3573  *
3574  * So what we do is to mark the page "pending dirty" and next time writepage
3575  * is called, propagate that into the buffers appropriately.
3576  */
3577 static int ext4_journalled_set_page_dirty(struct page *page)
3578 {
3579 	SetPageChecked(page);
3580 	return __set_page_dirty_nobuffers(page);
3581 }
3582 
3583 static const struct address_space_operations ext4_aops = {
3584 	.readpage		= ext4_readpage,
3585 	.readpages		= ext4_readpages,
3586 	.writepage		= ext4_writepage,
3587 	.writepages		= ext4_writepages,
3588 	.write_begin		= ext4_write_begin,
3589 	.write_end		= ext4_write_end,
3590 	.bmap			= ext4_bmap,
3591 	.invalidatepage		= ext4_invalidatepage,
3592 	.releasepage		= ext4_releasepage,
3593 	.direct_IO		= ext4_direct_IO,
3594 	.migratepage		= buffer_migrate_page,
3595 	.is_partially_uptodate  = block_is_partially_uptodate,
3596 	.error_remove_page	= generic_error_remove_page,
3597 };
3598 
3599 static const struct address_space_operations ext4_journalled_aops = {
3600 	.readpage		= ext4_readpage,
3601 	.readpages		= ext4_readpages,
3602 	.writepage		= ext4_writepage,
3603 	.writepages		= ext4_writepages,
3604 	.write_begin		= ext4_write_begin,
3605 	.write_end		= ext4_journalled_write_end,
3606 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3607 	.bmap			= ext4_bmap,
3608 	.invalidatepage		= ext4_journalled_invalidatepage,
3609 	.releasepage		= ext4_releasepage,
3610 	.direct_IO		= ext4_direct_IO,
3611 	.is_partially_uptodate  = block_is_partially_uptodate,
3612 	.error_remove_page	= generic_error_remove_page,
3613 };
3614 
3615 static const struct address_space_operations ext4_da_aops = {
3616 	.readpage		= ext4_readpage,
3617 	.readpages		= ext4_readpages,
3618 	.writepage		= ext4_writepage,
3619 	.writepages		= ext4_writepages,
3620 	.write_begin		= ext4_da_write_begin,
3621 	.write_end		= ext4_da_write_end,
3622 	.bmap			= ext4_bmap,
3623 	.invalidatepage		= ext4_da_invalidatepage,
3624 	.releasepage		= ext4_releasepage,
3625 	.direct_IO		= ext4_direct_IO,
3626 	.migratepage		= buffer_migrate_page,
3627 	.is_partially_uptodate  = block_is_partially_uptodate,
3628 	.error_remove_page	= generic_error_remove_page,
3629 };
3630 
3631 void ext4_set_aops(struct inode *inode)
3632 {
3633 	switch (ext4_inode_journal_mode(inode)) {
3634 	case EXT4_INODE_ORDERED_DATA_MODE:
3635 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3636 		break;
3637 	case EXT4_INODE_JOURNAL_DATA_MODE:
3638 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3639 		return;
3640 	default:
3641 		BUG();
3642 	}
3643 	if (test_opt(inode->i_sb, DELALLOC))
3644 		inode->i_mapping->a_ops = &ext4_da_aops;
3645 	else
3646 		inode->i_mapping->a_ops = &ext4_aops;
3647 }
3648 
3649 static int __ext4_block_zero_page_range(handle_t *handle,
3650 		struct address_space *mapping, loff_t from, loff_t length)
3651 {
3652 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3653 	unsigned offset = from & (PAGE_SIZE-1);
3654 	unsigned blocksize, pos;
3655 	ext4_lblk_t iblock;
3656 	struct inode *inode = mapping->host;
3657 	struct buffer_head *bh;
3658 	struct page *page;
3659 	int err = 0;
3660 
3661 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3662 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3663 	if (!page)
3664 		return -ENOMEM;
3665 
3666 	blocksize = inode->i_sb->s_blocksize;
3667 
3668 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3669 
3670 	if (!page_has_buffers(page))
3671 		create_empty_buffers(page, blocksize, 0);
3672 
3673 	/* Find the buffer that contains "offset" */
3674 	bh = page_buffers(page);
3675 	pos = blocksize;
3676 	while (offset >= pos) {
3677 		bh = bh->b_this_page;
3678 		iblock++;
3679 		pos += blocksize;
3680 	}
3681 	if (buffer_freed(bh)) {
3682 		BUFFER_TRACE(bh, "freed: skip");
3683 		goto unlock;
3684 	}
3685 	if (!buffer_mapped(bh)) {
3686 		BUFFER_TRACE(bh, "unmapped");
3687 		ext4_get_block(inode, iblock, bh, 0);
3688 		/* unmapped? It's a hole - nothing to do */
3689 		if (!buffer_mapped(bh)) {
3690 			BUFFER_TRACE(bh, "still unmapped");
3691 			goto unlock;
3692 		}
3693 	}
3694 
3695 	/* Ok, it's mapped. Make sure it's up-to-date */
3696 	if (PageUptodate(page))
3697 		set_buffer_uptodate(bh);
3698 
3699 	if (!buffer_uptodate(bh)) {
3700 		err = -EIO;
3701 		ll_rw_block(READ, 1, &bh);
3702 		wait_on_buffer(bh);
3703 		/* Uhhuh. Read error. Complain and punt. */
3704 		if (!buffer_uptodate(bh))
3705 			goto unlock;
3706 		if (S_ISREG(inode->i_mode) &&
3707 		    ext4_encrypted_inode(inode)) {
3708 			/* We expect the key to be set. */
3709 			BUG_ON(!ext4_has_encryption_key(inode));
3710 			BUG_ON(blocksize != PAGE_SIZE);
3711 			WARN_ON_ONCE(ext4_decrypt(page));
3712 		}
3713 	}
3714 	if (ext4_should_journal_data(inode)) {
3715 		BUFFER_TRACE(bh, "get write access");
3716 		err = ext4_journal_get_write_access(handle, bh);
3717 		if (err)
3718 			goto unlock;
3719 	}
3720 	zero_user(page, offset, length);
3721 	BUFFER_TRACE(bh, "zeroed end of block");
3722 
3723 	if (ext4_should_journal_data(inode)) {
3724 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3725 	} else {
3726 		err = 0;
3727 		mark_buffer_dirty(bh);
3728 		if (ext4_should_order_data(inode))
3729 			err = ext4_jbd2_inode_add_write(handle, inode);
3730 	}
3731 
3732 unlock:
3733 	unlock_page(page);
3734 	put_page(page);
3735 	return err;
3736 }
3737 
3738 /*
3739  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3740  * starting from file offset 'from'.  The range to be zero'd must
3741  * be contained with in one block.  If the specified range exceeds
3742  * the end of the block it will be shortened to end of the block
3743  * that cooresponds to 'from'
3744  */
3745 static int ext4_block_zero_page_range(handle_t *handle,
3746 		struct address_space *mapping, loff_t from, loff_t length)
3747 {
3748 	struct inode *inode = mapping->host;
3749 	unsigned offset = from & (PAGE_SIZE-1);
3750 	unsigned blocksize = inode->i_sb->s_blocksize;
3751 	unsigned max = blocksize - (offset & (blocksize - 1));
3752 
3753 	/*
3754 	 * correct length if it does not fall between
3755 	 * 'from' and the end of the block
3756 	 */
3757 	if (length > max || length < 0)
3758 		length = max;
3759 
3760 	if (IS_DAX(inode))
3761 		return dax_zero_page_range(inode, from, length, ext4_get_block);
3762 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3763 }
3764 
3765 /*
3766  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3767  * up to the end of the block which corresponds to `from'.
3768  * This required during truncate. We need to physically zero the tail end
3769  * of that block so it doesn't yield old data if the file is later grown.
3770  */
3771 static int ext4_block_truncate_page(handle_t *handle,
3772 		struct address_space *mapping, loff_t from)
3773 {
3774 	unsigned offset = from & (PAGE_SIZE-1);
3775 	unsigned length;
3776 	unsigned blocksize;
3777 	struct inode *inode = mapping->host;
3778 
3779 	blocksize = inode->i_sb->s_blocksize;
3780 	length = blocksize - (offset & (blocksize - 1));
3781 
3782 	return ext4_block_zero_page_range(handle, mapping, from, length);
3783 }
3784 
3785 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3786 			     loff_t lstart, loff_t length)
3787 {
3788 	struct super_block *sb = inode->i_sb;
3789 	struct address_space *mapping = inode->i_mapping;
3790 	unsigned partial_start, partial_end;
3791 	ext4_fsblk_t start, end;
3792 	loff_t byte_end = (lstart + length - 1);
3793 	int err = 0;
3794 
3795 	partial_start = lstart & (sb->s_blocksize - 1);
3796 	partial_end = byte_end & (sb->s_blocksize - 1);
3797 
3798 	start = lstart >> sb->s_blocksize_bits;
3799 	end = byte_end >> sb->s_blocksize_bits;
3800 
3801 	/* Handle partial zero within the single block */
3802 	if (start == end &&
3803 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3804 		err = ext4_block_zero_page_range(handle, mapping,
3805 						 lstart, length);
3806 		return err;
3807 	}
3808 	/* Handle partial zero out on the start of the range */
3809 	if (partial_start) {
3810 		err = ext4_block_zero_page_range(handle, mapping,
3811 						 lstart, sb->s_blocksize);
3812 		if (err)
3813 			return err;
3814 	}
3815 	/* Handle partial zero out on the end of the range */
3816 	if (partial_end != sb->s_blocksize - 1)
3817 		err = ext4_block_zero_page_range(handle, mapping,
3818 						 byte_end - partial_end,
3819 						 partial_end + 1);
3820 	return err;
3821 }
3822 
3823 int ext4_can_truncate(struct inode *inode)
3824 {
3825 	if (S_ISREG(inode->i_mode))
3826 		return 1;
3827 	if (S_ISDIR(inode->i_mode))
3828 		return 1;
3829 	if (S_ISLNK(inode->i_mode))
3830 		return !ext4_inode_is_fast_symlink(inode);
3831 	return 0;
3832 }
3833 
3834 /*
3835  * We have to make sure i_disksize gets properly updated before we truncate
3836  * page cache due to hole punching or zero range. Otherwise i_disksize update
3837  * can get lost as it may have been postponed to submission of writeback but
3838  * that will never happen after we truncate page cache.
3839  */
3840 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3841 				      loff_t len)
3842 {
3843 	handle_t *handle;
3844 	loff_t size = i_size_read(inode);
3845 
3846 	WARN_ON(!inode_is_locked(inode));
3847 	if (offset > size || offset + len < size)
3848 		return 0;
3849 
3850 	if (EXT4_I(inode)->i_disksize >= size)
3851 		return 0;
3852 
3853 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3854 	if (IS_ERR(handle))
3855 		return PTR_ERR(handle);
3856 	ext4_update_i_disksize(inode, size);
3857 	ext4_mark_inode_dirty(handle, inode);
3858 	ext4_journal_stop(handle);
3859 
3860 	return 0;
3861 }
3862 
3863 /*
3864  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3865  * associated with the given offset and length
3866  *
3867  * @inode:  File inode
3868  * @offset: The offset where the hole will begin
3869  * @len:    The length of the hole
3870  *
3871  * Returns: 0 on success or negative on failure
3872  */
3873 
3874 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3875 {
3876 	struct super_block *sb = inode->i_sb;
3877 	ext4_lblk_t first_block, stop_block;
3878 	struct address_space *mapping = inode->i_mapping;
3879 	loff_t first_block_offset, last_block_offset;
3880 	handle_t *handle;
3881 	unsigned int credits;
3882 	int ret = 0;
3883 
3884 	if (!S_ISREG(inode->i_mode))
3885 		return -EOPNOTSUPP;
3886 
3887 	trace_ext4_punch_hole(inode, offset, length, 0);
3888 
3889 	/*
3890 	 * Write out all dirty pages to avoid race conditions
3891 	 * Then release them.
3892 	 */
3893 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3894 		ret = filemap_write_and_wait_range(mapping, offset,
3895 						   offset + length - 1);
3896 		if (ret)
3897 			return ret;
3898 	}
3899 
3900 	inode_lock(inode);
3901 
3902 	/* No need to punch hole beyond i_size */
3903 	if (offset >= inode->i_size)
3904 		goto out_mutex;
3905 
3906 	/*
3907 	 * If the hole extends beyond i_size, set the hole
3908 	 * to end after the page that contains i_size
3909 	 */
3910 	if (offset + length > inode->i_size) {
3911 		length = inode->i_size +
3912 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3913 		   offset;
3914 	}
3915 
3916 	if (offset & (sb->s_blocksize - 1) ||
3917 	    (offset + length) & (sb->s_blocksize - 1)) {
3918 		/*
3919 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3920 		 * partial block
3921 		 */
3922 		ret = ext4_inode_attach_jinode(inode);
3923 		if (ret < 0)
3924 			goto out_mutex;
3925 
3926 	}
3927 
3928 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3929 	ext4_inode_block_unlocked_dio(inode);
3930 	inode_dio_wait(inode);
3931 
3932 	/*
3933 	 * Prevent page faults from reinstantiating pages we have released from
3934 	 * page cache.
3935 	 */
3936 	down_write(&EXT4_I(inode)->i_mmap_sem);
3937 	first_block_offset = round_up(offset, sb->s_blocksize);
3938 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3939 
3940 	/* Now release the pages and zero block aligned part of pages*/
3941 	if (last_block_offset > first_block_offset) {
3942 		ret = ext4_update_disksize_before_punch(inode, offset, length);
3943 		if (ret)
3944 			goto out_dio;
3945 		truncate_pagecache_range(inode, first_block_offset,
3946 					 last_block_offset);
3947 	}
3948 
3949 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3950 		credits = ext4_writepage_trans_blocks(inode);
3951 	else
3952 		credits = ext4_blocks_for_truncate(inode);
3953 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3954 	if (IS_ERR(handle)) {
3955 		ret = PTR_ERR(handle);
3956 		ext4_std_error(sb, ret);
3957 		goto out_dio;
3958 	}
3959 
3960 	ret = ext4_zero_partial_blocks(handle, inode, offset,
3961 				       length);
3962 	if (ret)
3963 		goto out_stop;
3964 
3965 	first_block = (offset + sb->s_blocksize - 1) >>
3966 		EXT4_BLOCK_SIZE_BITS(sb);
3967 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3968 
3969 	/* If there are no blocks to remove, return now */
3970 	if (first_block >= stop_block)
3971 		goto out_stop;
3972 
3973 	down_write(&EXT4_I(inode)->i_data_sem);
3974 	ext4_discard_preallocations(inode);
3975 
3976 	ret = ext4_es_remove_extent(inode, first_block,
3977 				    stop_block - first_block);
3978 	if (ret) {
3979 		up_write(&EXT4_I(inode)->i_data_sem);
3980 		goto out_stop;
3981 	}
3982 
3983 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3984 		ret = ext4_ext_remove_space(inode, first_block,
3985 					    stop_block - 1);
3986 	else
3987 		ret = ext4_ind_remove_space(handle, inode, first_block,
3988 					    stop_block);
3989 
3990 	up_write(&EXT4_I(inode)->i_data_sem);
3991 	if (IS_SYNC(inode))
3992 		ext4_handle_sync(handle);
3993 
3994 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3995 	ext4_mark_inode_dirty(handle, inode);
3996 out_stop:
3997 	ext4_journal_stop(handle);
3998 out_dio:
3999 	up_write(&EXT4_I(inode)->i_mmap_sem);
4000 	ext4_inode_resume_unlocked_dio(inode);
4001 out_mutex:
4002 	inode_unlock(inode);
4003 	return ret;
4004 }
4005 
4006 int ext4_inode_attach_jinode(struct inode *inode)
4007 {
4008 	struct ext4_inode_info *ei = EXT4_I(inode);
4009 	struct jbd2_inode *jinode;
4010 
4011 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4012 		return 0;
4013 
4014 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4015 	spin_lock(&inode->i_lock);
4016 	if (!ei->jinode) {
4017 		if (!jinode) {
4018 			spin_unlock(&inode->i_lock);
4019 			return -ENOMEM;
4020 		}
4021 		ei->jinode = jinode;
4022 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4023 		jinode = NULL;
4024 	}
4025 	spin_unlock(&inode->i_lock);
4026 	if (unlikely(jinode != NULL))
4027 		jbd2_free_inode(jinode);
4028 	return 0;
4029 }
4030 
4031 /*
4032  * ext4_truncate()
4033  *
4034  * We block out ext4_get_block() block instantiations across the entire
4035  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4036  * simultaneously on behalf of the same inode.
4037  *
4038  * As we work through the truncate and commit bits of it to the journal there
4039  * is one core, guiding principle: the file's tree must always be consistent on
4040  * disk.  We must be able to restart the truncate after a crash.
4041  *
4042  * The file's tree may be transiently inconsistent in memory (although it
4043  * probably isn't), but whenever we close off and commit a journal transaction,
4044  * the contents of (the filesystem + the journal) must be consistent and
4045  * restartable.  It's pretty simple, really: bottom up, right to left (although
4046  * left-to-right works OK too).
4047  *
4048  * Note that at recovery time, journal replay occurs *before* the restart of
4049  * truncate against the orphan inode list.
4050  *
4051  * The committed inode has the new, desired i_size (which is the same as
4052  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4053  * that this inode's truncate did not complete and it will again call
4054  * ext4_truncate() to have another go.  So there will be instantiated blocks
4055  * to the right of the truncation point in a crashed ext4 filesystem.  But
4056  * that's fine - as long as they are linked from the inode, the post-crash
4057  * ext4_truncate() run will find them and release them.
4058  */
4059 void ext4_truncate(struct inode *inode)
4060 {
4061 	struct ext4_inode_info *ei = EXT4_I(inode);
4062 	unsigned int credits;
4063 	handle_t *handle;
4064 	struct address_space *mapping = inode->i_mapping;
4065 
4066 	/*
4067 	 * There is a possibility that we're either freeing the inode
4068 	 * or it's a completely new inode. In those cases we might not
4069 	 * have i_mutex locked because it's not necessary.
4070 	 */
4071 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4072 		WARN_ON(!inode_is_locked(inode));
4073 	trace_ext4_truncate_enter(inode);
4074 
4075 	if (!ext4_can_truncate(inode))
4076 		return;
4077 
4078 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4079 
4080 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4081 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4082 
4083 	if (ext4_has_inline_data(inode)) {
4084 		int has_inline = 1;
4085 
4086 		ext4_inline_data_truncate(inode, &has_inline);
4087 		if (has_inline)
4088 			return;
4089 	}
4090 
4091 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4092 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4093 		if (ext4_inode_attach_jinode(inode) < 0)
4094 			return;
4095 	}
4096 
4097 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4098 		credits = ext4_writepage_trans_blocks(inode);
4099 	else
4100 		credits = ext4_blocks_for_truncate(inode);
4101 
4102 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4103 	if (IS_ERR(handle)) {
4104 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
4105 		return;
4106 	}
4107 
4108 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4109 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4110 
4111 	/*
4112 	 * We add the inode to the orphan list, so that if this
4113 	 * truncate spans multiple transactions, and we crash, we will
4114 	 * resume the truncate when the filesystem recovers.  It also
4115 	 * marks the inode dirty, to catch the new size.
4116 	 *
4117 	 * Implication: the file must always be in a sane, consistent
4118 	 * truncatable state while each transaction commits.
4119 	 */
4120 	if (ext4_orphan_add(handle, inode))
4121 		goto out_stop;
4122 
4123 	down_write(&EXT4_I(inode)->i_data_sem);
4124 
4125 	ext4_discard_preallocations(inode);
4126 
4127 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4128 		ext4_ext_truncate(handle, inode);
4129 	else
4130 		ext4_ind_truncate(handle, inode);
4131 
4132 	up_write(&ei->i_data_sem);
4133 
4134 	if (IS_SYNC(inode))
4135 		ext4_handle_sync(handle);
4136 
4137 out_stop:
4138 	/*
4139 	 * If this was a simple ftruncate() and the file will remain alive,
4140 	 * then we need to clear up the orphan record which we created above.
4141 	 * However, if this was a real unlink then we were called by
4142 	 * ext4_evict_inode(), and we allow that function to clean up the
4143 	 * orphan info for us.
4144 	 */
4145 	if (inode->i_nlink)
4146 		ext4_orphan_del(handle, inode);
4147 
4148 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4149 	ext4_mark_inode_dirty(handle, inode);
4150 	ext4_journal_stop(handle);
4151 
4152 	trace_ext4_truncate_exit(inode);
4153 }
4154 
4155 /*
4156  * ext4_get_inode_loc returns with an extra refcount against the inode's
4157  * underlying buffer_head on success. If 'in_mem' is true, we have all
4158  * data in memory that is needed to recreate the on-disk version of this
4159  * inode.
4160  */
4161 static int __ext4_get_inode_loc(struct inode *inode,
4162 				struct ext4_iloc *iloc, int in_mem)
4163 {
4164 	struct ext4_group_desc	*gdp;
4165 	struct buffer_head	*bh;
4166 	struct super_block	*sb = inode->i_sb;
4167 	ext4_fsblk_t		block;
4168 	int			inodes_per_block, inode_offset;
4169 
4170 	iloc->bh = NULL;
4171 	if (!ext4_valid_inum(sb, inode->i_ino))
4172 		return -EFSCORRUPTED;
4173 
4174 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4175 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4176 	if (!gdp)
4177 		return -EIO;
4178 
4179 	/*
4180 	 * Figure out the offset within the block group inode table
4181 	 */
4182 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4183 	inode_offset = ((inode->i_ino - 1) %
4184 			EXT4_INODES_PER_GROUP(sb));
4185 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4186 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4187 
4188 	bh = sb_getblk(sb, block);
4189 	if (unlikely(!bh))
4190 		return -ENOMEM;
4191 	if (!buffer_uptodate(bh)) {
4192 		lock_buffer(bh);
4193 
4194 		/*
4195 		 * If the buffer has the write error flag, we have failed
4196 		 * to write out another inode in the same block.  In this
4197 		 * case, we don't have to read the block because we may
4198 		 * read the old inode data successfully.
4199 		 */
4200 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4201 			set_buffer_uptodate(bh);
4202 
4203 		if (buffer_uptodate(bh)) {
4204 			/* someone brought it uptodate while we waited */
4205 			unlock_buffer(bh);
4206 			goto has_buffer;
4207 		}
4208 
4209 		/*
4210 		 * If we have all information of the inode in memory and this
4211 		 * is the only valid inode in the block, we need not read the
4212 		 * block.
4213 		 */
4214 		if (in_mem) {
4215 			struct buffer_head *bitmap_bh;
4216 			int i, start;
4217 
4218 			start = inode_offset & ~(inodes_per_block - 1);
4219 
4220 			/* Is the inode bitmap in cache? */
4221 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4222 			if (unlikely(!bitmap_bh))
4223 				goto make_io;
4224 
4225 			/*
4226 			 * If the inode bitmap isn't in cache then the
4227 			 * optimisation may end up performing two reads instead
4228 			 * of one, so skip it.
4229 			 */
4230 			if (!buffer_uptodate(bitmap_bh)) {
4231 				brelse(bitmap_bh);
4232 				goto make_io;
4233 			}
4234 			for (i = start; i < start + inodes_per_block; i++) {
4235 				if (i == inode_offset)
4236 					continue;
4237 				if (ext4_test_bit(i, bitmap_bh->b_data))
4238 					break;
4239 			}
4240 			brelse(bitmap_bh);
4241 			if (i == start + inodes_per_block) {
4242 				/* all other inodes are free, so skip I/O */
4243 				memset(bh->b_data, 0, bh->b_size);
4244 				set_buffer_uptodate(bh);
4245 				unlock_buffer(bh);
4246 				goto has_buffer;
4247 			}
4248 		}
4249 
4250 make_io:
4251 		/*
4252 		 * If we need to do any I/O, try to pre-readahead extra
4253 		 * blocks from the inode table.
4254 		 */
4255 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4256 			ext4_fsblk_t b, end, table;
4257 			unsigned num;
4258 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4259 
4260 			table = ext4_inode_table(sb, gdp);
4261 			/* s_inode_readahead_blks is always a power of 2 */
4262 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4263 			if (table > b)
4264 				b = table;
4265 			end = b + ra_blks;
4266 			num = EXT4_INODES_PER_GROUP(sb);
4267 			if (ext4_has_group_desc_csum(sb))
4268 				num -= ext4_itable_unused_count(sb, gdp);
4269 			table += num / inodes_per_block;
4270 			if (end > table)
4271 				end = table;
4272 			while (b <= end)
4273 				sb_breadahead(sb, b++);
4274 		}
4275 
4276 		/*
4277 		 * There are other valid inodes in the buffer, this inode
4278 		 * has in-inode xattrs, or we don't have this inode in memory.
4279 		 * Read the block from disk.
4280 		 */
4281 		trace_ext4_load_inode(inode);
4282 		get_bh(bh);
4283 		bh->b_end_io = end_buffer_read_sync;
4284 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
4285 		wait_on_buffer(bh);
4286 		if (!buffer_uptodate(bh)) {
4287 			EXT4_ERROR_INODE_BLOCK(inode, block,
4288 					       "unable to read itable block");
4289 			brelse(bh);
4290 			return -EIO;
4291 		}
4292 	}
4293 has_buffer:
4294 	iloc->bh = bh;
4295 	return 0;
4296 }
4297 
4298 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4299 {
4300 	/* We have all inode data except xattrs in memory here. */
4301 	return __ext4_get_inode_loc(inode, iloc,
4302 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4303 }
4304 
4305 void ext4_set_inode_flags(struct inode *inode)
4306 {
4307 	unsigned int flags = EXT4_I(inode)->i_flags;
4308 	unsigned int new_fl = 0;
4309 
4310 	if (flags & EXT4_SYNC_FL)
4311 		new_fl |= S_SYNC;
4312 	if (flags & EXT4_APPEND_FL)
4313 		new_fl |= S_APPEND;
4314 	if (flags & EXT4_IMMUTABLE_FL)
4315 		new_fl |= S_IMMUTABLE;
4316 	if (flags & EXT4_NOATIME_FL)
4317 		new_fl |= S_NOATIME;
4318 	if (flags & EXT4_DIRSYNC_FL)
4319 		new_fl |= S_DIRSYNC;
4320 	if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
4321 		new_fl |= S_DAX;
4322 	inode_set_flags(inode, new_fl,
4323 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4324 }
4325 
4326 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4327 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4328 {
4329 	unsigned int vfs_fl;
4330 	unsigned long old_fl, new_fl;
4331 
4332 	do {
4333 		vfs_fl = ei->vfs_inode.i_flags;
4334 		old_fl = ei->i_flags;
4335 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4336 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4337 				EXT4_DIRSYNC_FL);
4338 		if (vfs_fl & S_SYNC)
4339 			new_fl |= EXT4_SYNC_FL;
4340 		if (vfs_fl & S_APPEND)
4341 			new_fl |= EXT4_APPEND_FL;
4342 		if (vfs_fl & S_IMMUTABLE)
4343 			new_fl |= EXT4_IMMUTABLE_FL;
4344 		if (vfs_fl & S_NOATIME)
4345 			new_fl |= EXT4_NOATIME_FL;
4346 		if (vfs_fl & S_DIRSYNC)
4347 			new_fl |= EXT4_DIRSYNC_FL;
4348 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4349 }
4350 
4351 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4352 				  struct ext4_inode_info *ei)
4353 {
4354 	blkcnt_t i_blocks ;
4355 	struct inode *inode = &(ei->vfs_inode);
4356 	struct super_block *sb = inode->i_sb;
4357 
4358 	if (ext4_has_feature_huge_file(sb)) {
4359 		/* we are using combined 48 bit field */
4360 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4361 					le32_to_cpu(raw_inode->i_blocks_lo);
4362 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4363 			/* i_blocks represent file system block size */
4364 			return i_blocks  << (inode->i_blkbits - 9);
4365 		} else {
4366 			return i_blocks;
4367 		}
4368 	} else {
4369 		return le32_to_cpu(raw_inode->i_blocks_lo);
4370 	}
4371 }
4372 
4373 static inline void ext4_iget_extra_inode(struct inode *inode,
4374 					 struct ext4_inode *raw_inode,
4375 					 struct ext4_inode_info *ei)
4376 {
4377 	__le32 *magic = (void *)raw_inode +
4378 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4379 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4380 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4381 		ext4_find_inline_data_nolock(inode);
4382 	} else
4383 		EXT4_I(inode)->i_inline_off = 0;
4384 }
4385 
4386 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4387 {
4388 	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_RO_COMPAT_PROJECT))
4389 		return -EOPNOTSUPP;
4390 	*projid = EXT4_I(inode)->i_projid;
4391 	return 0;
4392 }
4393 
4394 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4395 {
4396 	struct ext4_iloc iloc;
4397 	struct ext4_inode *raw_inode;
4398 	struct ext4_inode_info *ei;
4399 	struct inode *inode;
4400 	journal_t *journal = EXT4_SB(sb)->s_journal;
4401 	long ret;
4402 	int block;
4403 	uid_t i_uid;
4404 	gid_t i_gid;
4405 	projid_t i_projid;
4406 
4407 	inode = iget_locked(sb, ino);
4408 	if (!inode)
4409 		return ERR_PTR(-ENOMEM);
4410 	if (!(inode->i_state & I_NEW))
4411 		return inode;
4412 
4413 	ei = EXT4_I(inode);
4414 	iloc.bh = NULL;
4415 
4416 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4417 	if (ret < 0)
4418 		goto bad_inode;
4419 	raw_inode = ext4_raw_inode(&iloc);
4420 
4421 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4422 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4423 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4424 		    EXT4_INODE_SIZE(inode->i_sb)) {
4425 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4426 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4427 				EXT4_INODE_SIZE(inode->i_sb));
4428 			ret = -EFSCORRUPTED;
4429 			goto bad_inode;
4430 		}
4431 	} else
4432 		ei->i_extra_isize = 0;
4433 
4434 	/* Precompute checksum seed for inode metadata */
4435 	if (ext4_has_metadata_csum(sb)) {
4436 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4437 		__u32 csum;
4438 		__le32 inum = cpu_to_le32(inode->i_ino);
4439 		__le32 gen = raw_inode->i_generation;
4440 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4441 				   sizeof(inum));
4442 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4443 					      sizeof(gen));
4444 	}
4445 
4446 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4447 		EXT4_ERROR_INODE(inode, "checksum invalid");
4448 		ret = -EFSBADCRC;
4449 		goto bad_inode;
4450 	}
4451 
4452 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4453 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4454 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4455 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4456 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4457 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4458 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4459 	else
4460 		i_projid = EXT4_DEF_PROJID;
4461 
4462 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4463 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4464 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4465 	}
4466 	i_uid_write(inode, i_uid);
4467 	i_gid_write(inode, i_gid);
4468 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4469 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4470 
4471 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4472 	ei->i_inline_off = 0;
4473 	ei->i_dir_start_lookup = 0;
4474 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4475 	/* We now have enough fields to check if the inode was active or not.
4476 	 * This is needed because nfsd might try to access dead inodes
4477 	 * the test is that same one that e2fsck uses
4478 	 * NeilBrown 1999oct15
4479 	 */
4480 	if (inode->i_nlink == 0) {
4481 		if ((inode->i_mode == 0 ||
4482 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4483 		    ino != EXT4_BOOT_LOADER_INO) {
4484 			/* this inode is deleted */
4485 			ret = -ESTALE;
4486 			goto bad_inode;
4487 		}
4488 		/* The only unlinked inodes we let through here have
4489 		 * valid i_mode and are being read by the orphan
4490 		 * recovery code: that's fine, we're about to complete
4491 		 * the process of deleting those.
4492 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4493 		 * not initialized on a new filesystem. */
4494 	}
4495 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4496 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4497 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4498 	if (ext4_has_feature_64bit(sb))
4499 		ei->i_file_acl |=
4500 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4501 	inode->i_size = ext4_isize(raw_inode);
4502 	ei->i_disksize = inode->i_size;
4503 #ifdef CONFIG_QUOTA
4504 	ei->i_reserved_quota = 0;
4505 #endif
4506 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4507 	ei->i_block_group = iloc.block_group;
4508 	ei->i_last_alloc_group = ~0;
4509 	/*
4510 	 * NOTE! The in-memory inode i_data array is in little-endian order
4511 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4512 	 */
4513 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4514 		ei->i_data[block] = raw_inode->i_block[block];
4515 	INIT_LIST_HEAD(&ei->i_orphan);
4516 
4517 	/*
4518 	 * Set transaction id's of transactions that have to be committed
4519 	 * to finish f[data]sync. We set them to currently running transaction
4520 	 * as we cannot be sure that the inode or some of its metadata isn't
4521 	 * part of the transaction - the inode could have been reclaimed and
4522 	 * now it is reread from disk.
4523 	 */
4524 	if (journal) {
4525 		transaction_t *transaction;
4526 		tid_t tid;
4527 
4528 		read_lock(&journal->j_state_lock);
4529 		if (journal->j_running_transaction)
4530 			transaction = journal->j_running_transaction;
4531 		else
4532 			transaction = journal->j_committing_transaction;
4533 		if (transaction)
4534 			tid = transaction->t_tid;
4535 		else
4536 			tid = journal->j_commit_sequence;
4537 		read_unlock(&journal->j_state_lock);
4538 		ei->i_sync_tid = tid;
4539 		ei->i_datasync_tid = tid;
4540 	}
4541 
4542 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4543 		if (ei->i_extra_isize == 0) {
4544 			/* The extra space is currently unused. Use it. */
4545 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4546 					    EXT4_GOOD_OLD_INODE_SIZE;
4547 		} else {
4548 			ext4_iget_extra_inode(inode, raw_inode, ei);
4549 		}
4550 	}
4551 
4552 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4553 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4554 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4555 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4556 
4557 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4558 		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4559 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4560 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4561 				inode->i_version |=
4562 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4563 		}
4564 	}
4565 
4566 	ret = 0;
4567 	if (ei->i_file_acl &&
4568 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4569 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4570 				 ei->i_file_acl);
4571 		ret = -EFSCORRUPTED;
4572 		goto bad_inode;
4573 	} else if (!ext4_has_inline_data(inode)) {
4574 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4575 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4576 			    (S_ISLNK(inode->i_mode) &&
4577 			     !ext4_inode_is_fast_symlink(inode))))
4578 				/* Validate extent which is part of inode */
4579 				ret = ext4_ext_check_inode(inode);
4580 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4581 			   (S_ISLNK(inode->i_mode) &&
4582 			    !ext4_inode_is_fast_symlink(inode))) {
4583 			/* Validate block references which are part of inode */
4584 			ret = ext4_ind_check_inode(inode);
4585 		}
4586 	}
4587 	if (ret)
4588 		goto bad_inode;
4589 
4590 	if (S_ISREG(inode->i_mode)) {
4591 		inode->i_op = &ext4_file_inode_operations;
4592 		inode->i_fop = &ext4_file_operations;
4593 		ext4_set_aops(inode);
4594 	} else if (S_ISDIR(inode->i_mode)) {
4595 		inode->i_op = &ext4_dir_inode_operations;
4596 		inode->i_fop = &ext4_dir_operations;
4597 	} else if (S_ISLNK(inode->i_mode)) {
4598 		if (ext4_encrypted_inode(inode)) {
4599 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4600 			ext4_set_aops(inode);
4601 		} else if (ext4_inode_is_fast_symlink(inode)) {
4602 			inode->i_link = (char *)ei->i_data;
4603 			inode->i_op = &ext4_fast_symlink_inode_operations;
4604 			nd_terminate_link(ei->i_data, inode->i_size,
4605 				sizeof(ei->i_data) - 1);
4606 		} else {
4607 			inode->i_op = &ext4_symlink_inode_operations;
4608 			ext4_set_aops(inode);
4609 		}
4610 		inode_nohighmem(inode);
4611 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4612 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4613 		inode->i_op = &ext4_special_inode_operations;
4614 		if (raw_inode->i_block[0])
4615 			init_special_inode(inode, inode->i_mode,
4616 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4617 		else
4618 			init_special_inode(inode, inode->i_mode,
4619 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4620 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4621 		make_bad_inode(inode);
4622 	} else {
4623 		ret = -EFSCORRUPTED;
4624 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4625 		goto bad_inode;
4626 	}
4627 	brelse(iloc.bh);
4628 	ext4_set_inode_flags(inode);
4629 	unlock_new_inode(inode);
4630 	return inode;
4631 
4632 bad_inode:
4633 	brelse(iloc.bh);
4634 	iget_failed(inode);
4635 	return ERR_PTR(ret);
4636 }
4637 
4638 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4639 {
4640 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4641 		return ERR_PTR(-EFSCORRUPTED);
4642 	return ext4_iget(sb, ino);
4643 }
4644 
4645 static int ext4_inode_blocks_set(handle_t *handle,
4646 				struct ext4_inode *raw_inode,
4647 				struct ext4_inode_info *ei)
4648 {
4649 	struct inode *inode = &(ei->vfs_inode);
4650 	u64 i_blocks = inode->i_blocks;
4651 	struct super_block *sb = inode->i_sb;
4652 
4653 	if (i_blocks <= ~0U) {
4654 		/*
4655 		 * i_blocks can be represented in a 32 bit variable
4656 		 * as multiple of 512 bytes
4657 		 */
4658 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4659 		raw_inode->i_blocks_high = 0;
4660 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4661 		return 0;
4662 	}
4663 	if (!ext4_has_feature_huge_file(sb))
4664 		return -EFBIG;
4665 
4666 	if (i_blocks <= 0xffffffffffffULL) {
4667 		/*
4668 		 * i_blocks can be represented in a 48 bit variable
4669 		 * as multiple of 512 bytes
4670 		 */
4671 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4672 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4673 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4674 	} else {
4675 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4676 		/* i_block is stored in file system block size */
4677 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4678 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4679 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4680 	}
4681 	return 0;
4682 }
4683 
4684 struct other_inode {
4685 	unsigned long		orig_ino;
4686 	struct ext4_inode	*raw_inode;
4687 };
4688 
4689 static int other_inode_match(struct inode * inode, unsigned long ino,
4690 			     void *data)
4691 {
4692 	struct other_inode *oi = (struct other_inode *) data;
4693 
4694 	if ((inode->i_ino != ino) ||
4695 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4696 			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4697 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4698 		return 0;
4699 	spin_lock(&inode->i_lock);
4700 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4701 				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4702 	    (inode->i_state & I_DIRTY_TIME)) {
4703 		struct ext4_inode_info	*ei = EXT4_I(inode);
4704 
4705 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4706 		spin_unlock(&inode->i_lock);
4707 
4708 		spin_lock(&ei->i_raw_lock);
4709 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4710 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4711 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4712 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4713 		spin_unlock(&ei->i_raw_lock);
4714 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4715 		return -1;
4716 	}
4717 	spin_unlock(&inode->i_lock);
4718 	return -1;
4719 }
4720 
4721 /*
4722  * Opportunistically update the other time fields for other inodes in
4723  * the same inode table block.
4724  */
4725 static void ext4_update_other_inodes_time(struct super_block *sb,
4726 					  unsigned long orig_ino, char *buf)
4727 {
4728 	struct other_inode oi;
4729 	unsigned long ino;
4730 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4731 	int inode_size = EXT4_INODE_SIZE(sb);
4732 
4733 	oi.orig_ino = orig_ino;
4734 	/*
4735 	 * Calculate the first inode in the inode table block.  Inode
4736 	 * numbers are one-based.  That is, the first inode in a block
4737 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4738 	 */
4739 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4740 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4741 		if (ino == orig_ino)
4742 			continue;
4743 		oi.raw_inode = (struct ext4_inode *) buf;
4744 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4745 	}
4746 }
4747 
4748 /*
4749  * Post the struct inode info into an on-disk inode location in the
4750  * buffer-cache.  This gobbles the caller's reference to the
4751  * buffer_head in the inode location struct.
4752  *
4753  * The caller must have write access to iloc->bh.
4754  */
4755 static int ext4_do_update_inode(handle_t *handle,
4756 				struct inode *inode,
4757 				struct ext4_iloc *iloc)
4758 {
4759 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4760 	struct ext4_inode_info *ei = EXT4_I(inode);
4761 	struct buffer_head *bh = iloc->bh;
4762 	struct super_block *sb = inode->i_sb;
4763 	int err = 0, rc, block;
4764 	int need_datasync = 0, set_large_file = 0;
4765 	uid_t i_uid;
4766 	gid_t i_gid;
4767 	projid_t i_projid;
4768 
4769 	spin_lock(&ei->i_raw_lock);
4770 
4771 	/* For fields not tracked in the in-memory inode,
4772 	 * initialise them to zero for new inodes. */
4773 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4774 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4775 
4776 	ext4_get_inode_flags(ei);
4777 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4778 	i_uid = i_uid_read(inode);
4779 	i_gid = i_gid_read(inode);
4780 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4781 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4782 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4783 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4784 /*
4785  * Fix up interoperability with old kernels. Otherwise, old inodes get
4786  * re-used with the upper 16 bits of the uid/gid intact
4787  */
4788 		if (!ei->i_dtime) {
4789 			raw_inode->i_uid_high =
4790 				cpu_to_le16(high_16_bits(i_uid));
4791 			raw_inode->i_gid_high =
4792 				cpu_to_le16(high_16_bits(i_gid));
4793 		} else {
4794 			raw_inode->i_uid_high = 0;
4795 			raw_inode->i_gid_high = 0;
4796 		}
4797 	} else {
4798 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4799 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4800 		raw_inode->i_uid_high = 0;
4801 		raw_inode->i_gid_high = 0;
4802 	}
4803 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4804 
4805 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4806 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4807 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4808 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4809 
4810 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
4811 	if (err) {
4812 		spin_unlock(&ei->i_raw_lock);
4813 		goto out_brelse;
4814 	}
4815 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4816 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4817 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4818 		raw_inode->i_file_acl_high =
4819 			cpu_to_le16(ei->i_file_acl >> 32);
4820 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4821 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4822 		ext4_isize_set(raw_inode, ei->i_disksize);
4823 		need_datasync = 1;
4824 	}
4825 	if (ei->i_disksize > 0x7fffffffULL) {
4826 		if (!ext4_has_feature_large_file(sb) ||
4827 				EXT4_SB(sb)->s_es->s_rev_level ==
4828 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
4829 			set_large_file = 1;
4830 	}
4831 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4832 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4833 		if (old_valid_dev(inode->i_rdev)) {
4834 			raw_inode->i_block[0] =
4835 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4836 			raw_inode->i_block[1] = 0;
4837 		} else {
4838 			raw_inode->i_block[0] = 0;
4839 			raw_inode->i_block[1] =
4840 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4841 			raw_inode->i_block[2] = 0;
4842 		}
4843 	} else if (!ext4_has_inline_data(inode)) {
4844 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4845 			raw_inode->i_block[block] = ei->i_data[block];
4846 	}
4847 
4848 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4849 		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4850 		if (ei->i_extra_isize) {
4851 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4852 				raw_inode->i_version_hi =
4853 					cpu_to_le32(inode->i_version >> 32);
4854 			raw_inode->i_extra_isize =
4855 				cpu_to_le16(ei->i_extra_isize);
4856 		}
4857 	}
4858 
4859 	BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
4860 			EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4861 	       i_projid != EXT4_DEF_PROJID);
4862 
4863 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4864 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4865 		raw_inode->i_projid = cpu_to_le32(i_projid);
4866 
4867 	ext4_inode_csum_set(inode, raw_inode, ei);
4868 	spin_unlock(&ei->i_raw_lock);
4869 	if (inode->i_sb->s_flags & MS_LAZYTIME)
4870 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4871 					      bh->b_data);
4872 
4873 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4874 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4875 	if (!err)
4876 		err = rc;
4877 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4878 	if (set_large_file) {
4879 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4880 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4881 		if (err)
4882 			goto out_brelse;
4883 		ext4_update_dynamic_rev(sb);
4884 		ext4_set_feature_large_file(sb);
4885 		ext4_handle_sync(handle);
4886 		err = ext4_handle_dirty_super(handle, sb);
4887 	}
4888 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4889 out_brelse:
4890 	brelse(bh);
4891 	ext4_std_error(inode->i_sb, err);
4892 	return err;
4893 }
4894 
4895 /*
4896  * ext4_write_inode()
4897  *
4898  * We are called from a few places:
4899  *
4900  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4901  *   Here, there will be no transaction running. We wait for any running
4902  *   transaction to commit.
4903  *
4904  * - Within flush work (sys_sync(), kupdate and such).
4905  *   We wait on commit, if told to.
4906  *
4907  * - Within iput_final() -> write_inode_now()
4908  *   We wait on commit, if told to.
4909  *
4910  * In all cases it is actually safe for us to return without doing anything,
4911  * because the inode has been copied into a raw inode buffer in
4912  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4913  * writeback.
4914  *
4915  * Note that we are absolutely dependent upon all inode dirtiers doing the
4916  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4917  * which we are interested.
4918  *
4919  * It would be a bug for them to not do this.  The code:
4920  *
4921  *	mark_inode_dirty(inode)
4922  *	stuff();
4923  *	inode->i_size = expr;
4924  *
4925  * is in error because write_inode() could occur while `stuff()' is running,
4926  * and the new i_size will be lost.  Plus the inode will no longer be on the
4927  * superblock's dirty inode list.
4928  */
4929 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4930 {
4931 	int err;
4932 
4933 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4934 		return 0;
4935 
4936 	if (EXT4_SB(inode->i_sb)->s_journal) {
4937 		if (ext4_journal_current_handle()) {
4938 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4939 			dump_stack();
4940 			return -EIO;
4941 		}
4942 
4943 		/*
4944 		 * No need to force transaction in WB_SYNC_NONE mode. Also
4945 		 * ext4_sync_fs() will force the commit after everything is
4946 		 * written.
4947 		 */
4948 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4949 			return 0;
4950 
4951 		err = ext4_force_commit(inode->i_sb);
4952 	} else {
4953 		struct ext4_iloc iloc;
4954 
4955 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4956 		if (err)
4957 			return err;
4958 		/*
4959 		 * sync(2) will flush the whole buffer cache. No need to do
4960 		 * it here separately for each inode.
4961 		 */
4962 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4963 			sync_dirty_buffer(iloc.bh);
4964 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4965 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4966 					 "IO error syncing inode");
4967 			err = -EIO;
4968 		}
4969 		brelse(iloc.bh);
4970 	}
4971 	return err;
4972 }
4973 
4974 /*
4975  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4976  * buffers that are attached to a page stradding i_size and are undergoing
4977  * commit. In that case we have to wait for commit to finish and try again.
4978  */
4979 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4980 {
4981 	struct page *page;
4982 	unsigned offset;
4983 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4984 	tid_t commit_tid = 0;
4985 	int ret;
4986 
4987 	offset = inode->i_size & (PAGE_SIZE - 1);
4988 	/*
4989 	 * All buffers in the last page remain valid? Then there's nothing to
4990 	 * do. We do the check mainly to optimize the common PAGE_SIZE ==
4991 	 * blocksize case
4992 	 */
4993 	if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
4994 		return;
4995 	while (1) {
4996 		page = find_lock_page(inode->i_mapping,
4997 				      inode->i_size >> PAGE_SHIFT);
4998 		if (!page)
4999 			return;
5000 		ret = __ext4_journalled_invalidatepage(page, offset,
5001 						PAGE_SIZE - offset);
5002 		unlock_page(page);
5003 		put_page(page);
5004 		if (ret != -EBUSY)
5005 			return;
5006 		commit_tid = 0;
5007 		read_lock(&journal->j_state_lock);
5008 		if (journal->j_committing_transaction)
5009 			commit_tid = journal->j_committing_transaction->t_tid;
5010 		read_unlock(&journal->j_state_lock);
5011 		if (commit_tid)
5012 			jbd2_log_wait_commit(journal, commit_tid);
5013 	}
5014 }
5015 
5016 /*
5017  * ext4_setattr()
5018  *
5019  * Called from notify_change.
5020  *
5021  * We want to trap VFS attempts to truncate the file as soon as
5022  * possible.  In particular, we want to make sure that when the VFS
5023  * shrinks i_size, we put the inode on the orphan list and modify
5024  * i_disksize immediately, so that during the subsequent flushing of
5025  * dirty pages and freeing of disk blocks, we can guarantee that any
5026  * commit will leave the blocks being flushed in an unused state on
5027  * disk.  (On recovery, the inode will get truncated and the blocks will
5028  * be freed, so we have a strong guarantee that no future commit will
5029  * leave these blocks visible to the user.)
5030  *
5031  * Another thing we have to assure is that if we are in ordered mode
5032  * and inode is still attached to the committing transaction, we must
5033  * we start writeout of all the dirty pages which are being truncated.
5034  * This way we are sure that all the data written in the previous
5035  * transaction are already on disk (truncate waits for pages under
5036  * writeback).
5037  *
5038  * Called with inode->i_mutex down.
5039  */
5040 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5041 {
5042 	struct inode *inode = d_inode(dentry);
5043 	int error, rc = 0;
5044 	int orphan = 0;
5045 	const unsigned int ia_valid = attr->ia_valid;
5046 
5047 	error = inode_change_ok(inode, attr);
5048 	if (error)
5049 		return error;
5050 
5051 	if (is_quota_modification(inode, attr)) {
5052 		error = dquot_initialize(inode);
5053 		if (error)
5054 			return error;
5055 	}
5056 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5057 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5058 		handle_t *handle;
5059 
5060 		/* (user+group)*(old+new) structure, inode write (sb,
5061 		 * inode block, ? - but truncate inode update has it) */
5062 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5063 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5064 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5065 		if (IS_ERR(handle)) {
5066 			error = PTR_ERR(handle);
5067 			goto err_out;
5068 		}
5069 		error = dquot_transfer(inode, attr);
5070 		if (error) {
5071 			ext4_journal_stop(handle);
5072 			return error;
5073 		}
5074 		/* Update corresponding info in inode so that everything is in
5075 		 * one transaction */
5076 		if (attr->ia_valid & ATTR_UID)
5077 			inode->i_uid = attr->ia_uid;
5078 		if (attr->ia_valid & ATTR_GID)
5079 			inode->i_gid = attr->ia_gid;
5080 		error = ext4_mark_inode_dirty(handle, inode);
5081 		ext4_journal_stop(handle);
5082 	}
5083 
5084 	if (attr->ia_valid & ATTR_SIZE) {
5085 		handle_t *handle;
5086 		loff_t oldsize = inode->i_size;
5087 		int shrink = (attr->ia_size <= inode->i_size);
5088 
5089 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5090 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5091 
5092 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5093 				return -EFBIG;
5094 		}
5095 		if (!S_ISREG(inode->i_mode))
5096 			return -EINVAL;
5097 
5098 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5099 			inode_inc_iversion(inode);
5100 
5101 		if (ext4_should_order_data(inode) &&
5102 		    (attr->ia_size < inode->i_size)) {
5103 			error = ext4_begin_ordered_truncate(inode,
5104 							    attr->ia_size);
5105 			if (error)
5106 				goto err_out;
5107 		}
5108 		if (attr->ia_size != inode->i_size) {
5109 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5110 			if (IS_ERR(handle)) {
5111 				error = PTR_ERR(handle);
5112 				goto err_out;
5113 			}
5114 			if (ext4_handle_valid(handle) && shrink) {
5115 				error = ext4_orphan_add(handle, inode);
5116 				orphan = 1;
5117 			}
5118 			/*
5119 			 * Update c/mtime on truncate up, ext4_truncate() will
5120 			 * update c/mtime in shrink case below
5121 			 */
5122 			if (!shrink) {
5123 				inode->i_mtime = ext4_current_time(inode);
5124 				inode->i_ctime = inode->i_mtime;
5125 			}
5126 			down_write(&EXT4_I(inode)->i_data_sem);
5127 			EXT4_I(inode)->i_disksize = attr->ia_size;
5128 			rc = ext4_mark_inode_dirty(handle, inode);
5129 			if (!error)
5130 				error = rc;
5131 			/*
5132 			 * We have to update i_size under i_data_sem together
5133 			 * with i_disksize to avoid races with writeback code
5134 			 * running ext4_wb_update_i_disksize().
5135 			 */
5136 			if (!error)
5137 				i_size_write(inode, attr->ia_size);
5138 			up_write(&EXT4_I(inode)->i_data_sem);
5139 			ext4_journal_stop(handle);
5140 			if (error) {
5141 				if (orphan)
5142 					ext4_orphan_del(NULL, inode);
5143 				goto err_out;
5144 			}
5145 		}
5146 		if (!shrink)
5147 			pagecache_isize_extended(inode, oldsize, inode->i_size);
5148 
5149 		/*
5150 		 * Blocks are going to be removed from the inode. Wait
5151 		 * for dio in flight.  Temporarily disable
5152 		 * dioread_nolock to prevent livelock.
5153 		 */
5154 		if (orphan) {
5155 			if (!ext4_should_journal_data(inode)) {
5156 				ext4_inode_block_unlocked_dio(inode);
5157 				inode_dio_wait(inode);
5158 				ext4_inode_resume_unlocked_dio(inode);
5159 			} else
5160 				ext4_wait_for_tail_page_commit(inode);
5161 		}
5162 		down_write(&EXT4_I(inode)->i_mmap_sem);
5163 		/*
5164 		 * Truncate pagecache after we've waited for commit
5165 		 * in data=journal mode to make pages freeable.
5166 		 */
5167 		truncate_pagecache(inode, inode->i_size);
5168 		if (shrink)
5169 			ext4_truncate(inode);
5170 		up_write(&EXT4_I(inode)->i_mmap_sem);
5171 	}
5172 
5173 	if (!rc) {
5174 		setattr_copy(inode, attr);
5175 		mark_inode_dirty(inode);
5176 	}
5177 
5178 	/*
5179 	 * If the call to ext4_truncate failed to get a transaction handle at
5180 	 * all, we need to clean up the in-core orphan list manually.
5181 	 */
5182 	if (orphan && inode->i_nlink)
5183 		ext4_orphan_del(NULL, inode);
5184 
5185 	if (!rc && (ia_valid & ATTR_MODE))
5186 		rc = posix_acl_chmod(inode, inode->i_mode);
5187 
5188 err_out:
5189 	ext4_std_error(inode->i_sb, error);
5190 	if (!error)
5191 		error = rc;
5192 	return error;
5193 }
5194 
5195 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5196 		 struct kstat *stat)
5197 {
5198 	struct inode *inode;
5199 	unsigned long long delalloc_blocks;
5200 
5201 	inode = d_inode(dentry);
5202 	generic_fillattr(inode, stat);
5203 
5204 	/*
5205 	 * If there is inline data in the inode, the inode will normally not
5206 	 * have data blocks allocated (it may have an external xattr block).
5207 	 * Report at least one sector for such files, so tools like tar, rsync,
5208 	 * others doen't incorrectly think the file is completely sparse.
5209 	 */
5210 	if (unlikely(ext4_has_inline_data(inode)))
5211 		stat->blocks += (stat->size + 511) >> 9;
5212 
5213 	/*
5214 	 * We can't update i_blocks if the block allocation is delayed
5215 	 * otherwise in the case of system crash before the real block
5216 	 * allocation is done, we will have i_blocks inconsistent with
5217 	 * on-disk file blocks.
5218 	 * We always keep i_blocks updated together with real
5219 	 * allocation. But to not confuse with user, stat
5220 	 * will return the blocks that include the delayed allocation
5221 	 * blocks for this file.
5222 	 */
5223 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5224 				   EXT4_I(inode)->i_reserved_data_blocks);
5225 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5226 	return 0;
5227 }
5228 
5229 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5230 				   int pextents)
5231 {
5232 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5233 		return ext4_ind_trans_blocks(inode, lblocks);
5234 	return ext4_ext_index_trans_blocks(inode, pextents);
5235 }
5236 
5237 /*
5238  * Account for index blocks, block groups bitmaps and block group
5239  * descriptor blocks if modify datablocks and index blocks
5240  * worse case, the indexs blocks spread over different block groups
5241  *
5242  * If datablocks are discontiguous, they are possible to spread over
5243  * different block groups too. If they are contiguous, with flexbg,
5244  * they could still across block group boundary.
5245  *
5246  * Also account for superblock, inode, quota and xattr blocks
5247  */
5248 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5249 				  int pextents)
5250 {
5251 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5252 	int gdpblocks;
5253 	int idxblocks;
5254 	int ret = 0;
5255 
5256 	/*
5257 	 * How many index blocks need to touch to map @lblocks logical blocks
5258 	 * to @pextents physical extents?
5259 	 */
5260 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5261 
5262 	ret = idxblocks;
5263 
5264 	/*
5265 	 * Now let's see how many group bitmaps and group descriptors need
5266 	 * to account
5267 	 */
5268 	groups = idxblocks + pextents;
5269 	gdpblocks = groups;
5270 	if (groups > ngroups)
5271 		groups = ngroups;
5272 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5273 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5274 
5275 	/* bitmaps and block group descriptor blocks */
5276 	ret += groups + gdpblocks;
5277 
5278 	/* Blocks for super block, inode, quota and xattr blocks */
5279 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5280 
5281 	return ret;
5282 }
5283 
5284 /*
5285  * Calculate the total number of credits to reserve to fit
5286  * the modification of a single pages into a single transaction,
5287  * which may include multiple chunks of block allocations.
5288  *
5289  * This could be called via ext4_write_begin()
5290  *
5291  * We need to consider the worse case, when
5292  * one new block per extent.
5293  */
5294 int ext4_writepage_trans_blocks(struct inode *inode)
5295 {
5296 	int bpp = ext4_journal_blocks_per_page(inode);
5297 	int ret;
5298 
5299 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5300 
5301 	/* Account for data blocks for journalled mode */
5302 	if (ext4_should_journal_data(inode))
5303 		ret += bpp;
5304 	return ret;
5305 }
5306 
5307 /*
5308  * Calculate the journal credits for a chunk of data modification.
5309  *
5310  * This is called from DIO, fallocate or whoever calling
5311  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5312  *
5313  * journal buffers for data blocks are not included here, as DIO
5314  * and fallocate do no need to journal data buffers.
5315  */
5316 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5317 {
5318 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5319 }
5320 
5321 /*
5322  * The caller must have previously called ext4_reserve_inode_write().
5323  * Give this, we know that the caller already has write access to iloc->bh.
5324  */
5325 int ext4_mark_iloc_dirty(handle_t *handle,
5326 			 struct inode *inode, struct ext4_iloc *iloc)
5327 {
5328 	int err = 0;
5329 
5330 	if (IS_I_VERSION(inode))
5331 		inode_inc_iversion(inode);
5332 
5333 	/* the do_update_inode consumes one bh->b_count */
5334 	get_bh(iloc->bh);
5335 
5336 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5337 	err = ext4_do_update_inode(handle, inode, iloc);
5338 	put_bh(iloc->bh);
5339 	return err;
5340 }
5341 
5342 /*
5343  * On success, We end up with an outstanding reference count against
5344  * iloc->bh.  This _must_ be cleaned up later.
5345  */
5346 
5347 int
5348 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5349 			 struct ext4_iloc *iloc)
5350 {
5351 	int err;
5352 
5353 	err = ext4_get_inode_loc(inode, iloc);
5354 	if (!err) {
5355 		BUFFER_TRACE(iloc->bh, "get_write_access");
5356 		err = ext4_journal_get_write_access(handle, iloc->bh);
5357 		if (err) {
5358 			brelse(iloc->bh);
5359 			iloc->bh = NULL;
5360 		}
5361 	}
5362 	ext4_std_error(inode->i_sb, err);
5363 	return err;
5364 }
5365 
5366 /*
5367  * Expand an inode by new_extra_isize bytes.
5368  * Returns 0 on success or negative error number on failure.
5369  */
5370 static int ext4_expand_extra_isize(struct inode *inode,
5371 				   unsigned int new_extra_isize,
5372 				   struct ext4_iloc iloc,
5373 				   handle_t *handle)
5374 {
5375 	struct ext4_inode *raw_inode;
5376 	struct ext4_xattr_ibody_header *header;
5377 
5378 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5379 		return 0;
5380 
5381 	raw_inode = ext4_raw_inode(&iloc);
5382 
5383 	header = IHDR(inode, raw_inode);
5384 
5385 	/* No extended attributes present */
5386 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5387 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5388 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5389 			new_extra_isize);
5390 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5391 		return 0;
5392 	}
5393 
5394 	/* try to expand with EAs present */
5395 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5396 					  raw_inode, handle);
5397 }
5398 
5399 /*
5400  * What we do here is to mark the in-core inode as clean with respect to inode
5401  * dirtiness (it may still be data-dirty).
5402  * This means that the in-core inode may be reaped by prune_icache
5403  * without having to perform any I/O.  This is a very good thing,
5404  * because *any* task may call prune_icache - even ones which
5405  * have a transaction open against a different journal.
5406  *
5407  * Is this cheating?  Not really.  Sure, we haven't written the
5408  * inode out, but prune_icache isn't a user-visible syncing function.
5409  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5410  * we start and wait on commits.
5411  */
5412 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5413 {
5414 	struct ext4_iloc iloc;
5415 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5416 	static unsigned int mnt_count;
5417 	int err, ret;
5418 
5419 	might_sleep();
5420 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5421 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5422 	if (err)
5423 		return err;
5424 	if (ext4_handle_valid(handle) &&
5425 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5426 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5427 		/*
5428 		 * We need extra buffer credits since we may write into EA block
5429 		 * with this same handle. If journal_extend fails, then it will
5430 		 * only result in a minor loss of functionality for that inode.
5431 		 * If this is felt to be critical, then e2fsck should be run to
5432 		 * force a large enough s_min_extra_isize.
5433 		 */
5434 		if ((jbd2_journal_extend(handle,
5435 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5436 			ret = ext4_expand_extra_isize(inode,
5437 						      sbi->s_want_extra_isize,
5438 						      iloc, handle);
5439 			if (ret) {
5440 				ext4_set_inode_state(inode,
5441 						     EXT4_STATE_NO_EXPAND);
5442 				if (mnt_count !=
5443 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5444 					ext4_warning(inode->i_sb,
5445 					"Unable to expand inode %lu. Delete"
5446 					" some EAs or run e2fsck.",
5447 					inode->i_ino);
5448 					mnt_count =
5449 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5450 				}
5451 			}
5452 		}
5453 	}
5454 	return ext4_mark_iloc_dirty(handle, inode, &iloc);
5455 }
5456 
5457 /*
5458  * ext4_dirty_inode() is called from __mark_inode_dirty()
5459  *
5460  * We're really interested in the case where a file is being extended.
5461  * i_size has been changed by generic_commit_write() and we thus need
5462  * to include the updated inode in the current transaction.
5463  *
5464  * Also, dquot_alloc_block() will always dirty the inode when blocks
5465  * are allocated to the file.
5466  *
5467  * If the inode is marked synchronous, we don't honour that here - doing
5468  * so would cause a commit on atime updates, which we don't bother doing.
5469  * We handle synchronous inodes at the highest possible level.
5470  *
5471  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5472  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5473  * to copy into the on-disk inode structure are the timestamp files.
5474  */
5475 void ext4_dirty_inode(struct inode *inode, int flags)
5476 {
5477 	handle_t *handle;
5478 
5479 	if (flags == I_DIRTY_TIME)
5480 		return;
5481 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5482 	if (IS_ERR(handle))
5483 		goto out;
5484 
5485 	ext4_mark_inode_dirty(handle, inode);
5486 
5487 	ext4_journal_stop(handle);
5488 out:
5489 	return;
5490 }
5491 
5492 #if 0
5493 /*
5494  * Bind an inode's backing buffer_head into this transaction, to prevent
5495  * it from being flushed to disk early.  Unlike
5496  * ext4_reserve_inode_write, this leaves behind no bh reference and
5497  * returns no iloc structure, so the caller needs to repeat the iloc
5498  * lookup to mark the inode dirty later.
5499  */
5500 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5501 {
5502 	struct ext4_iloc iloc;
5503 
5504 	int err = 0;
5505 	if (handle) {
5506 		err = ext4_get_inode_loc(inode, &iloc);
5507 		if (!err) {
5508 			BUFFER_TRACE(iloc.bh, "get_write_access");
5509 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5510 			if (!err)
5511 				err = ext4_handle_dirty_metadata(handle,
5512 								 NULL,
5513 								 iloc.bh);
5514 			brelse(iloc.bh);
5515 		}
5516 	}
5517 	ext4_std_error(inode->i_sb, err);
5518 	return err;
5519 }
5520 #endif
5521 
5522 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5523 {
5524 	journal_t *journal;
5525 	handle_t *handle;
5526 	int err;
5527 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5528 
5529 	/*
5530 	 * We have to be very careful here: changing a data block's
5531 	 * journaling status dynamically is dangerous.  If we write a
5532 	 * data block to the journal, change the status and then delete
5533 	 * that block, we risk forgetting to revoke the old log record
5534 	 * from the journal and so a subsequent replay can corrupt data.
5535 	 * So, first we make sure that the journal is empty and that
5536 	 * nobody is changing anything.
5537 	 */
5538 
5539 	journal = EXT4_JOURNAL(inode);
5540 	if (!journal)
5541 		return 0;
5542 	if (is_journal_aborted(journal))
5543 		return -EROFS;
5544 
5545 	/* Wait for all existing dio workers */
5546 	ext4_inode_block_unlocked_dio(inode);
5547 	inode_dio_wait(inode);
5548 
5549 	/*
5550 	 * Before flushing the journal and switching inode's aops, we have
5551 	 * to flush all dirty data the inode has. There can be outstanding
5552 	 * delayed allocations, there can be unwritten extents created by
5553 	 * fallocate or buffered writes in dioread_nolock mode covered by
5554 	 * dirty data which can be converted only after flushing the dirty
5555 	 * data (and journalled aops don't know how to handle these cases).
5556 	 */
5557 	if (val) {
5558 		down_write(&EXT4_I(inode)->i_mmap_sem);
5559 		err = filemap_write_and_wait(inode->i_mapping);
5560 		if (err < 0) {
5561 			up_write(&EXT4_I(inode)->i_mmap_sem);
5562 			ext4_inode_resume_unlocked_dio(inode);
5563 			return err;
5564 		}
5565 	}
5566 
5567 	percpu_down_write(&sbi->s_journal_flag_rwsem);
5568 	jbd2_journal_lock_updates(journal);
5569 
5570 	/*
5571 	 * OK, there are no updates running now, and all cached data is
5572 	 * synced to disk.  We are now in a completely consistent state
5573 	 * which doesn't have anything in the journal, and we know that
5574 	 * no filesystem updates are running, so it is safe to modify
5575 	 * the inode's in-core data-journaling state flag now.
5576 	 */
5577 
5578 	if (val)
5579 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5580 	else {
5581 		err = jbd2_journal_flush(journal);
5582 		if (err < 0) {
5583 			jbd2_journal_unlock_updates(journal);
5584 			percpu_up_write(&sbi->s_journal_flag_rwsem);
5585 			ext4_inode_resume_unlocked_dio(inode);
5586 			return err;
5587 		}
5588 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5589 	}
5590 	ext4_set_aops(inode);
5591 
5592 	jbd2_journal_unlock_updates(journal);
5593 	percpu_up_write(&sbi->s_journal_flag_rwsem);
5594 
5595 	if (val)
5596 		up_write(&EXT4_I(inode)->i_mmap_sem);
5597 	ext4_inode_resume_unlocked_dio(inode);
5598 
5599 	/* Finally we can mark the inode as dirty. */
5600 
5601 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5602 	if (IS_ERR(handle))
5603 		return PTR_ERR(handle);
5604 
5605 	err = ext4_mark_inode_dirty(handle, inode);
5606 	ext4_handle_sync(handle);
5607 	ext4_journal_stop(handle);
5608 	ext4_std_error(inode->i_sb, err);
5609 
5610 	return err;
5611 }
5612 
5613 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5614 {
5615 	return !buffer_mapped(bh);
5616 }
5617 
5618 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5619 {
5620 	struct page *page = vmf->page;
5621 	loff_t size;
5622 	unsigned long len;
5623 	int ret;
5624 	struct file *file = vma->vm_file;
5625 	struct inode *inode = file_inode(file);
5626 	struct address_space *mapping = inode->i_mapping;
5627 	handle_t *handle;
5628 	get_block_t *get_block;
5629 	int retries = 0;
5630 
5631 	sb_start_pagefault(inode->i_sb);
5632 	file_update_time(vma->vm_file);
5633 
5634 	down_read(&EXT4_I(inode)->i_mmap_sem);
5635 	/* Delalloc case is easy... */
5636 	if (test_opt(inode->i_sb, DELALLOC) &&
5637 	    !ext4_should_journal_data(inode) &&
5638 	    !ext4_nonda_switch(inode->i_sb)) {
5639 		do {
5640 			ret = block_page_mkwrite(vma, vmf,
5641 						   ext4_da_get_block_prep);
5642 		} while (ret == -ENOSPC &&
5643 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5644 		goto out_ret;
5645 	}
5646 
5647 	lock_page(page);
5648 	size = i_size_read(inode);
5649 	/* Page got truncated from under us? */
5650 	if (page->mapping != mapping || page_offset(page) > size) {
5651 		unlock_page(page);
5652 		ret = VM_FAULT_NOPAGE;
5653 		goto out;
5654 	}
5655 
5656 	if (page->index == size >> PAGE_SHIFT)
5657 		len = size & ~PAGE_MASK;
5658 	else
5659 		len = PAGE_SIZE;
5660 	/*
5661 	 * Return if we have all the buffers mapped. This avoids the need to do
5662 	 * journal_start/journal_stop which can block and take a long time
5663 	 */
5664 	if (page_has_buffers(page)) {
5665 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5666 					    0, len, NULL,
5667 					    ext4_bh_unmapped)) {
5668 			/* Wait so that we don't change page under IO */
5669 			wait_for_stable_page(page);
5670 			ret = VM_FAULT_LOCKED;
5671 			goto out;
5672 		}
5673 	}
5674 	unlock_page(page);
5675 	/* OK, we need to fill the hole... */
5676 	if (ext4_should_dioread_nolock(inode))
5677 		get_block = ext4_get_block_unwritten;
5678 	else
5679 		get_block = ext4_get_block;
5680 retry_alloc:
5681 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5682 				    ext4_writepage_trans_blocks(inode));
5683 	if (IS_ERR(handle)) {
5684 		ret = VM_FAULT_SIGBUS;
5685 		goto out;
5686 	}
5687 	ret = block_page_mkwrite(vma, vmf, get_block);
5688 	if (!ret && ext4_should_journal_data(inode)) {
5689 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5690 			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
5691 			unlock_page(page);
5692 			ret = VM_FAULT_SIGBUS;
5693 			ext4_journal_stop(handle);
5694 			goto out;
5695 		}
5696 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5697 	}
5698 	ext4_journal_stop(handle);
5699 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5700 		goto retry_alloc;
5701 out_ret:
5702 	ret = block_page_mkwrite_return(ret);
5703 out:
5704 	up_read(&EXT4_I(inode)->i_mmap_sem);
5705 	sb_end_pagefault(inode->i_sb);
5706 	return ret;
5707 }
5708 
5709 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5710 {
5711 	struct inode *inode = file_inode(vma->vm_file);
5712 	int err;
5713 
5714 	down_read(&EXT4_I(inode)->i_mmap_sem);
5715 	err = filemap_fault(vma, vmf);
5716 	up_read(&EXT4_I(inode)->i_mmap_sem);
5717 
5718 	return err;
5719 }
5720 
5721 /*
5722  * Find the first extent at or after @lblk in an inode that is not a hole.
5723  * Search for @map_len blocks at most. The extent is returned in @result.
5724  *
5725  * The function returns 1 if we found an extent. The function returns 0 in
5726  * case there is no extent at or after @lblk and in that case also sets
5727  * @result->es_len to 0. In case of error, the error code is returned.
5728  */
5729 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5730 			 unsigned int map_len, struct extent_status *result)
5731 {
5732 	struct ext4_map_blocks map;
5733 	struct extent_status es = {};
5734 	int ret;
5735 
5736 	map.m_lblk = lblk;
5737 	map.m_len = map_len;
5738 
5739 	/*
5740 	 * For non-extent based files this loop may iterate several times since
5741 	 * we do not determine full hole size.
5742 	 */
5743 	while (map.m_len > 0) {
5744 		ret = ext4_map_blocks(NULL, inode, &map, 0);
5745 		if (ret < 0)
5746 			return ret;
5747 		/* There's extent covering m_lblk? Just return it. */
5748 		if (ret > 0) {
5749 			int status;
5750 
5751 			ext4_es_store_pblock(result, map.m_pblk);
5752 			result->es_lblk = map.m_lblk;
5753 			result->es_len = map.m_len;
5754 			if (map.m_flags & EXT4_MAP_UNWRITTEN)
5755 				status = EXTENT_STATUS_UNWRITTEN;
5756 			else
5757 				status = EXTENT_STATUS_WRITTEN;
5758 			ext4_es_store_status(result, status);
5759 			return 1;
5760 		}
5761 		ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5762 						  map.m_lblk + map.m_len - 1,
5763 						  &es);
5764 		/* Is delalloc data before next block in extent tree? */
5765 		if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5766 			ext4_lblk_t offset = 0;
5767 
5768 			if (es.es_lblk < lblk)
5769 				offset = lblk - es.es_lblk;
5770 			result->es_lblk = es.es_lblk + offset;
5771 			ext4_es_store_pblock(result,
5772 					     ext4_es_pblock(&es) + offset);
5773 			result->es_len = es.es_len - offset;
5774 			ext4_es_store_status(result, ext4_es_status(&es));
5775 
5776 			return 1;
5777 		}
5778 		/* There's a hole at m_lblk, advance us after it */
5779 		map.m_lblk += map.m_len;
5780 		map_len -= map.m_len;
5781 		map.m_len = map_len;
5782 		cond_resched();
5783 	}
5784 	result->es_len = 0;
5785 	return 0;
5786 }
5787