1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/module.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/jbd2.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/quotaops.h> 28 #include <linux/string.h> 29 #include <linux/buffer_head.h> 30 #include <linux/writeback.h> 31 #include <linux/pagevec.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/uio.h> 35 #include <linux/bio.h> 36 #include <linux/workqueue.h> 37 #include <linux/kernel.h> 38 #include <linux/printk.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 42 #include "ext4_jbd2.h" 43 #include "xattr.h" 44 #include "acl.h" 45 #include "truncate.h" 46 47 #include <trace/events/ext4.h> 48 49 #define MPAGE_DA_EXTENT_TAIL 0x01 50 51 static inline int ext4_begin_ordered_truncate(struct inode *inode, 52 loff_t new_size) 53 { 54 trace_ext4_begin_ordered_truncate(inode, new_size); 55 /* 56 * If jinode is zero, then we never opened the file for 57 * writing, so there's no need to call 58 * jbd2_journal_begin_ordered_truncate() since there's no 59 * outstanding writes we need to flush. 60 */ 61 if (!EXT4_I(inode)->jinode) 62 return 0; 63 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 64 EXT4_I(inode)->jinode, 65 new_size); 66 } 67 68 static void ext4_invalidatepage(struct page *page, unsigned long offset); 69 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 70 struct buffer_head *bh_result, int create); 71 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 72 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 73 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 74 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 75 76 /* 77 * Test whether an inode is a fast symlink. 78 */ 79 static int ext4_inode_is_fast_symlink(struct inode *inode) 80 { 81 int ea_blocks = EXT4_I(inode)->i_file_acl ? 82 (inode->i_sb->s_blocksize >> 9) : 0; 83 84 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 85 } 86 87 /* 88 * Restart the transaction associated with *handle. This does a commit, 89 * so before we call here everything must be consistently dirtied against 90 * this transaction. 91 */ 92 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 93 int nblocks) 94 { 95 int ret; 96 97 /* 98 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 99 * moment, get_block can be called only for blocks inside i_size since 100 * page cache has been already dropped and writes are blocked by 101 * i_mutex. So we can safely drop the i_data_sem here. 102 */ 103 BUG_ON(EXT4_JOURNAL(inode) == NULL); 104 jbd_debug(2, "restarting handle %p\n", handle); 105 up_write(&EXT4_I(inode)->i_data_sem); 106 ret = ext4_journal_restart(handle, nblocks); 107 down_write(&EXT4_I(inode)->i_data_sem); 108 ext4_discard_preallocations(inode); 109 110 return ret; 111 } 112 113 /* 114 * Called at the last iput() if i_nlink is zero. 115 */ 116 void ext4_evict_inode(struct inode *inode) 117 { 118 handle_t *handle; 119 int err; 120 121 trace_ext4_evict_inode(inode); 122 123 ext4_ioend_wait(inode); 124 125 if (inode->i_nlink) { 126 /* 127 * When journalling data dirty buffers are tracked only in the 128 * journal. So although mm thinks everything is clean and 129 * ready for reaping the inode might still have some pages to 130 * write in the running transaction or waiting to be 131 * checkpointed. Thus calling jbd2_journal_invalidatepage() 132 * (via truncate_inode_pages()) to discard these buffers can 133 * cause data loss. Also even if we did not discard these 134 * buffers, we would have no way to find them after the inode 135 * is reaped and thus user could see stale data if he tries to 136 * read them before the transaction is checkpointed. So be 137 * careful and force everything to disk here... We use 138 * ei->i_datasync_tid to store the newest transaction 139 * containing inode's data. 140 * 141 * Note that directories do not have this problem because they 142 * don't use page cache. 143 */ 144 if (ext4_should_journal_data(inode) && 145 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) { 146 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 147 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 148 149 jbd2_log_start_commit(journal, commit_tid); 150 jbd2_log_wait_commit(journal, commit_tid); 151 filemap_write_and_wait(&inode->i_data); 152 } 153 truncate_inode_pages(&inode->i_data, 0); 154 goto no_delete; 155 } 156 157 if (!is_bad_inode(inode)) 158 dquot_initialize(inode); 159 160 if (ext4_should_order_data(inode)) 161 ext4_begin_ordered_truncate(inode, 0); 162 truncate_inode_pages(&inode->i_data, 0); 163 164 if (is_bad_inode(inode)) 165 goto no_delete; 166 167 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3); 168 if (IS_ERR(handle)) { 169 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 170 /* 171 * If we're going to skip the normal cleanup, we still need to 172 * make sure that the in-core orphan linked list is properly 173 * cleaned up. 174 */ 175 ext4_orphan_del(NULL, inode); 176 goto no_delete; 177 } 178 179 if (IS_SYNC(inode)) 180 ext4_handle_sync(handle); 181 inode->i_size = 0; 182 err = ext4_mark_inode_dirty(handle, inode); 183 if (err) { 184 ext4_warning(inode->i_sb, 185 "couldn't mark inode dirty (err %d)", err); 186 goto stop_handle; 187 } 188 if (inode->i_blocks) 189 ext4_truncate(inode); 190 191 /* 192 * ext4_ext_truncate() doesn't reserve any slop when it 193 * restarts journal transactions; therefore there may not be 194 * enough credits left in the handle to remove the inode from 195 * the orphan list and set the dtime field. 196 */ 197 if (!ext4_handle_has_enough_credits(handle, 3)) { 198 err = ext4_journal_extend(handle, 3); 199 if (err > 0) 200 err = ext4_journal_restart(handle, 3); 201 if (err != 0) { 202 ext4_warning(inode->i_sb, 203 "couldn't extend journal (err %d)", err); 204 stop_handle: 205 ext4_journal_stop(handle); 206 ext4_orphan_del(NULL, inode); 207 goto no_delete; 208 } 209 } 210 211 /* 212 * Kill off the orphan record which ext4_truncate created. 213 * AKPM: I think this can be inside the above `if'. 214 * Note that ext4_orphan_del() has to be able to cope with the 215 * deletion of a non-existent orphan - this is because we don't 216 * know if ext4_truncate() actually created an orphan record. 217 * (Well, we could do this if we need to, but heck - it works) 218 */ 219 ext4_orphan_del(handle, inode); 220 EXT4_I(inode)->i_dtime = get_seconds(); 221 222 /* 223 * One subtle ordering requirement: if anything has gone wrong 224 * (transaction abort, IO errors, whatever), then we can still 225 * do these next steps (the fs will already have been marked as 226 * having errors), but we can't free the inode if the mark_dirty 227 * fails. 228 */ 229 if (ext4_mark_inode_dirty(handle, inode)) 230 /* If that failed, just do the required in-core inode clear. */ 231 ext4_clear_inode(inode); 232 else 233 ext4_free_inode(handle, inode); 234 ext4_journal_stop(handle); 235 return; 236 no_delete: 237 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 238 } 239 240 #ifdef CONFIG_QUOTA 241 qsize_t *ext4_get_reserved_space(struct inode *inode) 242 { 243 return &EXT4_I(inode)->i_reserved_quota; 244 } 245 #endif 246 247 /* 248 * Calculate the number of metadata blocks need to reserve 249 * to allocate a block located at @lblock 250 */ 251 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 252 { 253 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 254 return ext4_ext_calc_metadata_amount(inode, lblock); 255 256 return ext4_ind_calc_metadata_amount(inode, lblock); 257 } 258 259 /* 260 * Called with i_data_sem down, which is important since we can call 261 * ext4_discard_preallocations() from here. 262 */ 263 void ext4_da_update_reserve_space(struct inode *inode, 264 int used, int quota_claim) 265 { 266 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 267 struct ext4_inode_info *ei = EXT4_I(inode); 268 269 spin_lock(&ei->i_block_reservation_lock); 270 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 271 if (unlikely(used > ei->i_reserved_data_blocks)) { 272 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d " 273 "with only %d reserved data blocks\n", 274 __func__, inode->i_ino, used, 275 ei->i_reserved_data_blocks); 276 WARN_ON(1); 277 used = ei->i_reserved_data_blocks; 278 } 279 280 /* Update per-inode reservations */ 281 ei->i_reserved_data_blocks -= used; 282 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 283 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 284 used + ei->i_allocated_meta_blocks); 285 ei->i_allocated_meta_blocks = 0; 286 287 if (ei->i_reserved_data_blocks == 0) { 288 /* 289 * We can release all of the reserved metadata blocks 290 * only when we have written all of the delayed 291 * allocation blocks. 292 */ 293 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 294 ei->i_reserved_meta_blocks); 295 ei->i_reserved_meta_blocks = 0; 296 ei->i_da_metadata_calc_len = 0; 297 } 298 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 299 300 /* Update quota subsystem for data blocks */ 301 if (quota_claim) 302 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 303 else { 304 /* 305 * We did fallocate with an offset that is already delayed 306 * allocated. So on delayed allocated writeback we should 307 * not re-claim the quota for fallocated blocks. 308 */ 309 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 310 } 311 312 /* 313 * If we have done all the pending block allocations and if 314 * there aren't any writers on the inode, we can discard the 315 * inode's preallocations. 316 */ 317 if ((ei->i_reserved_data_blocks == 0) && 318 (atomic_read(&inode->i_writecount) == 0)) 319 ext4_discard_preallocations(inode); 320 } 321 322 static int __check_block_validity(struct inode *inode, const char *func, 323 unsigned int line, 324 struct ext4_map_blocks *map) 325 { 326 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 327 map->m_len)) { 328 ext4_error_inode(inode, func, line, map->m_pblk, 329 "lblock %lu mapped to illegal pblock " 330 "(length %d)", (unsigned long) map->m_lblk, 331 map->m_len); 332 return -EIO; 333 } 334 return 0; 335 } 336 337 #define check_block_validity(inode, map) \ 338 __check_block_validity((inode), __func__, __LINE__, (map)) 339 340 /* 341 * Return the number of contiguous dirty pages in a given inode 342 * starting at page frame idx. 343 */ 344 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx, 345 unsigned int max_pages) 346 { 347 struct address_space *mapping = inode->i_mapping; 348 pgoff_t index; 349 struct pagevec pvec; 350 pgoff_t num = 0; 351 int i, nr_pages, done = 0; 352 353 if (max_pages == 0) 354 return 0; 355 pagevec_init(&pvec, 0); 356 while (!done) { 357 index = idx; 358 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 359 PAGECACHE_TAG_DIRTY, 360 (pgoff_t)PAGEVEC_SIZE); 361 if (nr_pages == 0) 362 break; 363 for (i = 0; i < nr_pages; i++) { 364 struct page *page = pvec.pages[i]; 365 struct buffer_head *bh, *head; 366 367 lock_page(page); 368 if (unlikely(page->mapping != mapping) || 369 !PageDirty(page) || 370 PageWriteback(page) || 371 page->index != idx) { 372 done = 1; 373 unlock_page(page); 374 break; 375 } 376 if (page_has_buffers(page)) { 377 bh = head = page_buffers(page); 378 do { 379 if (!buffer_delay(bh) && 380 !buffer_unwritten(bh)) 381 done = 1; 382 bh = bh->b_this_page; 383 } while (!done && (bh != head)); 384 } 385 unlock_page(page); 386 if (done) 387 break; 388 idx++; 389 num++; 390 if (num >= max_pages) { 391 done = 1; 392 break; 393 } 394 } 395 pagevec_release(&pvec); 396 } 397 return num; 398 } 399 400 /* 401 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map. 402 */ 403 static void set_buffers_da_mapped(struct inode *inode, 404 struct ext4_map_blocks *map) 405 { 406 struct address_space *mapping = inode->i_mapping; 407 struct pagevec pvec; 408 int i, nr_pages; 409 pgoff_t index, end; 410 411 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 412 end = (map->m_lblk + map->m_len - 1) >> 413 (PAGE_CACHE_SHIFT - inode->i_blkbits); 414 415 pagevec_init(&pvec, 0); 416 while (index <= end) { 417 nr_pages = pagevec_lookup(&pvec, mapping, index, 418 min(end - index + 1, 419 (pgoff_t)PAGEVEC_SIZE)); 420 if (nr_pages == 0) 421 break; 422 for (i = 0; i < nr_pages; i++) { 423 struct page *page = pvec.pages[i]; 424 struct buffer_head *bh, *head; 425 426 if (unlikely(page->mapping != mapping) || 427 !PageDirty(page)) 428 break; 429 430 if (page_has_buffers(page)) { 431 bh = head = page_buffers(page); 432 do { 433 set_buffer_da_mapped(bh); 434 bh = bh->b_this_page; 435 } while (bh != head); 436 } 437 index++; 438 } 439 pagevec_release(&pvec); 440 } 441 } 442 443 /* 444 * The ext4_map_blocks() function tries to look up the requested blocks, 445 * and returns if the blocks are already mapped. 446 * 447 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 448 * and store the allocated blocks in the result buffer head and mark it 449 * mapped. 450 * 451 * If file type is extents based, it will call ext4_ext_map_blocks(), 452 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 453 * based files 454 * 455 * On success, it returns the number of blocks being mapped or allocate. 456 * if create==0 and the blocks are pre-allocated and uninitialized block, 457 * the result buffer head is unmapped. If the create ==1, it will make sure 458 * the buffer head is mapped. 459 * 460 * It returns 0 if plain look up failed (blocks have not been allocated), in 461 * that case, buffer head is unmapped 462 * 463 * It returns the error in case of allocation failure. 464 */ 465 int ext4_map_blocks(handle_t *handle, struct inode *inode, 466 struct ext4_map_blocks *map, int flags) 467 { 468 int retval; 469 470 map->m_flags = 0; 471 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 472 "logical block %lu\n", inode->i_ino, flags, map->m_len, 473 (unsigned long) map->m_lblk); 474 /* 475 * Try to see if we can get the block without requesting a new 476 * file system block. 477 */ 478 down_read((&EXT4_I(inode)->i_data_sem)); 479 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 480 retval = ext4_ext_map_blocks(handle, inode, map, flags & 481 EXT4_GET_BLOCKS_KEEP_SIZE); 482 } else { 483 retval = ext4_ind_map_blocks(handle, inode, map, flags & 484 EXT4_GET_BLOCKS_KEEP_SIZE); 485 } 486 up_read((&EXT4_I(inode)->i_data_sem)); 487 488 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 489 int ret = check_block_validity(inode, map); 490 if (ret != 0) 491 return ret; 492 } 493 494 /* If it is only a block(s) look up */ 495 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 496 return retval; 497 498 /* 499 * Returns if the blocks have already allocated 500 * 501 * Note that if blocks have been preallocated 502 * ext4_ext_get_block() returns the create = 0 503 * with buffer head unmapped. 504 */ 505 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 506 return retval; 507 508 /* 509 * When we call get_blocks without the create flag, the 510 * BH_Unwritten flag could have gotten set if the blocks 511 * requested were part of a uninitialized extent. We need to 512 * clear this flag now that we are committed to convert all or 513 * part of the uninitialized extent to be an initialized 514 * extent. This is because we need to avoid the combination 515 * of BH_Unwritten and BH_Mapped flags being simultaneously 516 * set on the buffer_head. 517 */ 518 map->m_flags &= ~EXT4_MAP_UNWRITTEN; 519 520 /* 521 * New blocks allocate and/or writing to uninitialized extent 522 * will possibly result in updating i_data, so we take 523 * the write lock of i_data_sem, and call get_blocks() 524 * with create == 1 flag. 525 */ 526 down_write((&EXT4_I(inode)->i_data_sem)); 527 528 /* 529 * if the caller is from delayed allocation writeout path 530 * we have already reserved fs blocks for allocation 531 * let the underlying get_block() function know to 532 * avoid double accounting 533 */ 534 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 535 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 536 /* 537 * We need to check for EXT4 here because migrate 538 * could have changed the inode type in between 539 */ 540 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 541 retval = ext4_ext_map_blocks(handle, inode, map, flags); 542 } else { 543 retval = ext4_ind_map_blocks(handle, inode, map, flags); 544 545 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 546 /* 547 * We allocated new blocks which will result in 548 * i_data's format changing. Force the migrate 549 * to fail by clearing migrate flags 550 */ 551 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 552 } 553 554 /* 555 * Update reserved blocks/metadata blocks after successful 556 * block allocation which had been deferred till now. We don't 557 * support fallocate for non extent files. So we can update 558 * reserve space here. 559 */ 560 if ((retval > 0) && 561 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 562 ext4_da_update_reserve_space(inode, retval, 1); 563 } 564 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 565 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 566 567 /* If we have successfully mapped the delayed allocated blocks, 568 * set the BH_Da_Mapped bit on them. Its important to do this 569 * under the protection of i_data_sem. 570 */ 571 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 572 set_buffers_da_mapped(inode, map); 573 } 574 575 up_write((&EXT4_I(inode)->i_data_sem)); 576 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 577 int ret = check_block_validity(inode, map); 578 if (ret != 0) 579 return ret; 580 } 581 return retval; 582 } 583 584 /* Maximum number of blocks we map for direct IO at once. */ 585 #define DIO_MAX_BLOCKS 4096 586 587 static int _ext4_get_block(struct inode *inode, sector_t iblock, 588 struct buffer_head *bh, int flags) 589 { 590 handle_t *handle = ext4_journal_current_handle(); 591 struct ext4_map_blocks map; 592 int ret = 0, started = 0; 593 int dio_credits; 594 595 map.m_lblk = iblock; 596 map.m_len = bh->b_size >> inode->i_blkbits; 597 598 if (flags && !handle) { 599 /* Direct IO write... */ 600 if (map.m_len > DIO_MAX_BLOCKS) 601 map.m_len = DIO_MAX_BLOCKS; 602 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 603 handle = ext4_journal_start(inode, dio_credits); 604 if (IS_ERR(handle)) { 605 ret = PTR_ERR(handle); 606 return ret; 607 } 608 started = 1; 609 } 610 611 ret = ext4_map_blocks(handle, inode, &map, flags); 612 if (ret > 0) { 613 map_bh(bh, inode->i_sb, map.m_pblk); 614 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 615 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 616 ret = 0; 617 } 618 if (started) 619 ext4_journal_stop(handle); 620 return ret; 621 } 622 623 int ext4_get_block(struct inode *inode, sector_t iblock, 624 struct buffer_head *bh, int create) 625 { 626 return _ext4_get_block(inode, iblock, bh, 627 create ? EXT4_GET_BLOCKS_CREATE : 0); 628 } 629 630 /* 631 * `handle' can be NULL if create is zero 632 */ 633 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 634 ext4_lblk_t block, int create, int *errp) 635 { 636 struct ext4_map_blocks map; 637 struct buffer_head *bh; 638 int fatal = 0, err; 639 640 J_ASSERT(handle != NULL || create == 0); 641 642 map.m_lblk = block; 643 map.m_len = 1; 644 err = ext4_map_blocks(handle, inode, &map, 645 create ? EXT4_GET_BLOCKS_CREATE : 0); 646 647 if (err < 0) 648 *errp = err; 649 if (err <= 0) 650 return NULL; 651 *errp = 0; 652 653 bh = sb_getblk(inode->i_sb, map.m_pblk); 654 if (!bh) { 655 *errp = -EIO; 656 return NULL; 657 } 658 if (map.m_flags & EXT4_MAP_NEW) { 659 J_ASSERT(create != 0); 660 J_ASSERT(handle != NULL); 661 662 /* 663 * Now that we do not always journal data, we should 664 * keep in mind whether this should always journal the 665 * new buffer as metadata. For now, regular file 666 * writes use ext4_get_block instead, so it's not a 667 * problem. 668 */ 669 lock_buffer(bh); 670 BUFFER_TRACE(bh, "call get_create_access"); 671 fatal = ext4_journal_get_create_access(handle, bh); 672 if (!fatal && !buffer_uptodate(bh)) { 673 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 674 set_buffer_uptodate(bh); 675 } 676 unlock_buffer(bh); 677 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 678 err = ext4_handle_dirty_metadata(handle, inode, bh); 679 if (!fatal) 680 fatal = err; 681 } else { 682 BUFFER_TRACE(bh, "not a new buffer"); 683 } 684 if (fatal) { 685 *errp = fatal; 686 brelse(bh); 687 bh = NULL; 688 } 689 return bh; 690 } 691 692 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 693 ext4_lblk_t block, int create, int *err) 694 { 695 struct buffer_head *bh; 696 697 bh = ext4_getblk(handle, inode, block, create, err); 698 if (!bh) 699 return bh; 700 if (buffer_uptodate(bh)) 701 return bh; 702 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 703 wait_on_buffer(bh); 704 if (buffer_uptodate(bh)) 705 return bh; 706 put_bh(bh); 707 *err = -EIO; 708 return NULL; 709 } 710 711 static int walk_page_buffers(handle_t *handle, 712 struct buffer_head *head, 713 unsigned from, 714 unsigned to, 715 int *partial, 716 int (*fn)(handle_t *handle, 717 struct buffer_head *bh)) 718 { 719 struct buffer_head *bh; 720 unsigned block_start, block_end; 721 unsigned blocksize = head->b_size; 722 int err, ret = 0; 723 struct buffer_head *next; 724 725 for (bh = head, block_start = 0; 726 ret == 0 && (bh != head || !block_start); 727 block_start = block_end, bh = next) { 728 next = bh->b_this_page; 729 block_end = block_start + blocksize; 730 if (block_end <= from || block_start >= to) { 731 if (partial && !buffer_uptodate(bh)) 732 *partial = 1; 733 continue; 734 } 735 err = (*fn)(handle, bh); 736 if (!ret) 737 ret = err; 738 } 739 return ret; 740 } 741 742 /* 743 * To preserve ordering, it is essential that the hole instantiation and 744 * the data write be encapsulated in a single transaction. We cannot 745 * close off a transaction and start a new one between the ext4_get_block() 746 * and the commit_write(). So doing the jbd2_journal_start at the start of 747 * prepare_write() is the right place. 748 * 749 * Also, this function can nest inside ext4_writepage() -> 750 * block_write_full_page(). In that case, we *know* that ext4_writepage() 751 * has generated enough buffer credits to do the whole page. So we won't 752 * block on the journal in that case, which is good, because the caller may 753 * be PF_MEMALLOC. 754 * 755 * By accident, ext4 can be reentered when a transaction is open via 756 * quota file writes. If we were to commit the transaction while thus 757 * reentered, there can be a deadlock - we would be holding a quota 758 * lock, and the commit would never complete if another thread had a 759 * transaction open and was blocking on the quota lock - a ranking 760 * violation. 761 * 762 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 763 * will _not_ run commit under these circumstances because handle->h_ref 764 * is elevated. We'll still have enough credits for the tiny quotafile 765 * write. 766 */ 767 static int do_journal_get_write_access(handle_t *handle, 768 struct buffer_head *bh) 769 { 770 int dirty = buffer_dirty(bh); 771 int ret; 772 773 if (!buffer_mapped(bh) || buffer_freed(bh)) 774 return 0; 775 /* 776 * __block_write_begin() could have dirtied some buffers. Clean 777 * the dirty bit as jbd2_journal_get_write_access() could complain 778 * otherwise about fs integrity issues. Setting of the dirty bit 779 * by __block_write_begin() isn't a real problem here as we clear 780 * the bit before releasing a page lock and thus writeback cannot 781 * ever write the buffer. 782 */ 783 if (dirty) 784 clear_buffer_dirty(bh); 785 ret = ext4_journal_get_write_access(handle, bh); 786 if (!ret && dirty) 787 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 788 return ret; 789 } 790 791 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 792 struct buffer_head *bh_result, int create); 793 static int ext4_write_begin(struct file *file, struct address_space *mapping, 794 loff_t pos, unsigned len, unsigned flags, 795 struct page **pagep, void **fsdata) 796 { 797 struct inode *inode = mapping->host; 798 int ret, needed_blocks; 799 handle_t *handle; 800 int retries = 0; 801 struct page *page; 802 pgoff_t index; 803 unsigned from, to; 804 805 trace_ext4_write_begin(inode, pos, len, flags); 806 /* 807 * Reserve one block more for addition to orphan list in case 808 * we allocate blocks but write fails for some reason 809 */ 810 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 811 index = pos >> PAGE_CACHE_SHIFT; 812 from = pos & (PAGE_CACHE_SIZE - 1); 813 to = from + len; 814 815 retry: 816 handle = ext4_journal_start(inode, needed_blocks); 817 if (IS_ERR(handle)) { 818 ret = PTR_ERR(handle); 819 goto out; 820 } 821 822 /* We cannot recurse into the filesystem as the transaction is already 823 * started */ 824 flags |= AOP_FLAG_NOFS; 825 826 page = grab_cache_page_write_begin(mapping, index, flags); 827 if (!page) { 828 ext4_journal_stop(handle); 829 ret = -ENOMEM; 830 goto out; 831 } 832 *pagep = page; 833 834 if (ext4_should_dioread_nolock(inode)) 835 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 836 else 837 ret = __block_write_begin(page, pos, len, ext4_get_block); 838 839 if (!ret && ext4_should_journal_data(inode)) { 840 ret = walk_page_buffers(handle, page_buffers(page), 841 from, to, NULL, do_journal_get_write_access); 842 } 843 844 if (ret) { 845 unlock_page(page); 846 page_cache_release(page); 847 /* 848 * __block_write_begin may have instantiated a few blocks 849 * outside i_size. Trim these off again. Don't need 850 * i_size_read because we hold i_mutex. 851 * 852 * Add inode to orphan list in case we crash before 853 * truncate finishes 854 */ 855 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 856 ext4_orphan_add(handle, inode); 857 858 ext4_journal_stop(handle); 859 if (pos + len > inode->i_size) { 860 ext4_truncate_failed_write(inode); 861 /* 862 * If truncate failed early the inode might 863 * still be on the orphan list; we need to 864 * make sure the inode is removed from the 865 * orphan list in that case. 866 */ 867 if (inode->i_nlink) 868 ext4_orphan_del(NULL, inode); 869 } 870 } 871 872 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 873 goto retry; 874 out: 875 return ret; 876 } 877 878 /* For write_end() in data=journal mode */ 879 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 880 { 881 if (!buffer_mapped(bh) || buffer_freed(bh)) 882 return 0; 883 set_buffer_uptodate(bh); 884 return ext4_handle_dirty_metadata(handle, NULL, bh); 885 } 886 887 static int ext4_generic_write_end(struct file *file, 888 struct address_space *mapping, 889 loff_t pos, unsigned len, unsigned copied, 890 struct page *page, void *fsdata) 891 { 892 int i_size_changed = 0; 893 struct inode *inode = mapping->host; 894 handle_t *handle = ext4_journal_current_handle(); 895 896 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 897 898 /* 899 * No need to use i_size_read() here, the i_size 900 * cannot change under us because we hold i_mutex. 901 * 902 * But it's important to update i_size while still holding page lock: 903 * page writeout could otherwise come in and zero beyond i_size. 904 */ 905 if (pos + copied > inode->i_size) { 906 i_size_write(inode, pos + copied); 907 i_size_changed = 1; 908 } 909 910 if (pos + copied > EXT4_I(inode)->i_disksize) { 911 /* We need to mark inode dirty even if 912 * new_i_size is less that inode->i_size 913 * bu greater than i_disksize.(hint delalloc) 914 */ 915 ext4_update_i_disksize(inode, (pos + copied)); 916 i_size_changed = 1; 917 } 918 unlock_page(page); 919 page_cache_release(page); 920 921 /* 922 * Don't mark the inode dirty under page lock. First, it unnecessarily 923 * makes the holding time of page lock longer. Second, it forces lock 924 * ordering of page lock and transaction start for journaling 925 * filesystems. 926 */ 927 if (i_size_changed) 928 ext4_mark_inode_dirty(handle, inode); 929 930 return copied; 931 } 932 933 /* 934 * We need to pick up the new inode size which generic_commit_write gave us 935 * `file' can be NULL - eg, when called from page_symlink(). 936 * 937 * ext4 never places buffers on inode->i_mapping->private_list. metadata 938 * buffers are managed internally. 939 */ 940 static int ext4_ordered_write_end(struct file *file, 941 struct address_space *mapping, 942 loff_t pos, unsigned len, unsigned copied, 943 struct page *page, void *fsdata) 944 { 945 handle_t *handle = ext4_journal_current_handle(); 946 struct inode *inode = mapping->host; 947 int ret = 0, ret2; 948 949 trace_ext4_ordered_write_end(inode, pos, len, copied); 950 ret = ext4_jbd2_file_inode(handle, inode); 951 952 if (ret == 0) { 953 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 954 page, fsdata); 955 copied = ret2; 956 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 957 /* if we have allocated more blocks and copied 958 * less. We will have blocks allocated outside 959 * inode->i_size. So truncate them 960 */ 961 ext4_orphan_add(handle, inode); 962 if (ret2 < 0) 963 ret = ret2; 964 } else { 965 unlock_page(page); 966 page_cache_release(page); 967 } 968 969 ret2 = ext4_journal_stop(handle); 970 if (!ret) 971 ret = ret2; 972 973 if (pos + len > inode->i_size) { 974 ext4_truncate_failed_write(inode); 975 /* 976 * If truncate failed early the inode might still be 977 * on the orphan list; we need to make sure the inode 978 * is removed from the orphan list in that case. 979 */ 980 if (inode->i_nlink) 981 ext4_orphan_del(NULL, inode); 982 } 983 984 985 return ret ? ret : copied; 986 } 987 988 static int ext4_writeback_write_end(struct file *file, 989 struct address_space *mapping, 990 loff_t pos, unsigned len, unsigned copied, 991 struct page *page, void *fsdata) 992 { 993 handle_t *handle = ext4_journal_current_handle(); 994 struct inode *inode = mapping->host; 995 int ret = 0, ret2; 996 997 trace_ext4_writeback_write_end(inode, pos, len, copied); 998 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 999 page, fsdata); 1000 copied = ret2; 1001 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1002 /* if we have allocated more blocks and copied 1003 * less. We will have blocks allocated outside 1004 * inode->i_size. So truncate them 1005 */ 1006 ext4_orphan_add(handle, inode); 1007 1008 if (ret2 < 0) 1009 ret = ret2; 1010 1011 ret2 = ext4_journal_stop(handle); 1012 if (!ret) 1013 ret = ret2; 1014 1015 if (pos + len > inode->i_size) { 1016 ext4_truncate_failed_write(inode); 1017 /* 1018 * If truncate failed early the inode might still be 1019 * on the orphan list; we need to make sure the inode 1020 * is removed from the orphan list in that case. 1021 */ 1022 if (inode->i_nlink) 1023 ext4_orphan_del(NULL, inode); 1024 } 1025 1026 return ret ? ret : copied; 1027 } 1028 1029 static int ext4_journalled_write_end(struct file *file, 1030 struct address_space *mapping, 1031 loff_t pos, unsigned len, unsigned copied, 1032 struct page *page, void *fsdata) 1033 { 1034 handle_t *handle = ext4_journal_current_handle(); 1035 struct inode *inode = mapping->host; 1036 int ret = 0, ret2; 1037 int partial = 0; 1038 unsigned from, to; 1039 loff_t new_i_size; 1040 1041 trace_ext4_journalled_write_end(inode, pos, len, copied); 1042 from = pos & (PAGE_CACHE_SIZE - 1); 1043 to = from + len; 1044 1045 BUG_ON(!ext4_handle_valid(handle)); 1046 1047 if (copied < len) { 1048 if (!PageUptodate(page)) 1049 copied = 0; 1050 page_zero_new_buffers(page, from+copied, to); 1051 } 1052 1053 ret = walk_page_buffers(handle, page_buffers(page), from, 1054 to, &partial, write_end_fn); 1055 if (!partial) 1056 SetPageUptodate(page); 1057 new_i_size = pos + copied; 1058 if (new_i_size > inode->i_size) 1059 i_size_write(inode, pos+copied); 1060 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1061 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1062 if (new_i_size > EXT4_I(inode)->i_disksize) { 1063 ext4_update_i_disksize(inode, new_i_size); 1064 ret2 = ext4_mark_inode_dirty(handle, inode); 1065 if (!ret) 1066 ret = ret2; 1067 } 1068 1069 unlock_page(page); 1070 page_cache_release(page); 1071 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1072 /* if we have allocated more blocks and copied 1073 * less. We will have blocks allocated outside 1074 * inode->i_size. So truncate them 1075 */ 1076 ext4_orphan_add(handle, inode); 1077 1078 ret2 = ext4_journal_stop(handle); 1079 if (!ret) 1080 ret = ret2; 1081 if (pos + len > inode->i_size) { 1082 ext4_truncate_failed_write(inode); 1083 /* 1084 * If truncate failed early the inode might still be 1085 * on the orphan list; we need to make sure the inode 1086 * is removed from the orphan list in that case. 1087 */ 1088 if (inode->i_nlink) 1089 ext4_orphan_del(NULL, inode); 1090 } 1091 1092 return ret ? ret : copied; 1093 } 1094 1095 /* 1096 * Reserve a single cluster located at lblock 1097 */ 1098 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1099 { 1100 int retries = 0; 1101 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1102 struct ext4_inode_info *ei = EXT4_I(inode); 1103 unsigned int md_needed; 1104 int ret; 1105 1106 /* 1107 * recalculate the amount of metadata blocks to reserve 1108 * in order to allocate nrblocks 1109 * worse case is one extent per block 1110 */ 1111 repeat: 1112 spin_lock(&ei->i_block_reservation_lock); 1113 md_needed = EXT4_NUM_B2C(sbi, 1114 ext4_calc_metadata_amount(inode, lblock)); 1115 trace_ext4_da_reserve_space(inode, md_needed); 1116 spin_unlock(&ei->i_block_reservation_lock); 1117 1118 /* 1119 * We will charge metadata quota at writeout time; this saves 1120 * us from metadata over-estimation, though we may go over by 1121 * a small amount in the end. Here we just reserve for data. 1122 */ 1123 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1124 if (ret) 1125 return ret; 1126 /* 1127 * We do still charge estimated metadata to the sb though; 1128 * we cannot afford to run out of free blocks. 1129 */ 1130 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) { 1131 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1132 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1133 yield(); 1134 goto repeat; 1135 } 1136 return -ENOSPC; 1137 } 1138 spin_lock(&ei->i_block_reservation_lock); 1139 ei->i_reserved_data_blocks++; 1140 ei->i_reserved_meta_blocks += md_needed; 1141 spin_unlock(&ei->i_block_reservation_lock); 1142 1143 return 0; /* success */ 1144 } 1145 1146 static void ext4_da_release_space(struct inode *inode, int to_free) 1147 { 1148 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1149 struct ext4_inode_info *ei = EXT4_I(inode); 1150 1151 if (!to_free) 1152 return; /* Nothing to release, exit */ 1153 1154 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1155 1156 trace_ext4_da_release_space(inode, to_free); 1157 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1158 /* 1159 * if there aren't enough reserved blocks, then the 1160 * counter is messed up somewhere. Since this 1161 * function is called from invalidate page, it's 1162 * harmless to return without any action. 1163 */ 1164 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: " 1165 "ino %lu, to_free %d with only %d reserved " 1166 "data blocks\n", inode->i_ino, to_free, 1167 ei->i_reserved_data_blocks); 1168 WARN_ON(1); 1169 to_free = ei->i_reserved_data_blocks; 1170 } 1171 ei->i_reserved_data_blocks -= to_free; 1172 1173 if (ei->i_reserved_data_blocks == 0) { 1174 /* 1175 * We can release all of the reserved metadata blocks 1176 * only when we have written all of the delayed 1177 * allocation blocks. 1178 * Note that in case of bigalloc, i_reserved_meta_blocks, 1179 * i_reserved_data_blocks, etc. refer to number of clusters. 1180 */ 1181 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 1182 ei->i_reserved_meta_blocks); 1183 ei->i_reserved_meta_blocks = 0; 1184 ei->i_da_metadata_calc_len = 0; 1185 } 1186 1187 /* update fs dirty data blocks counter */ 1188 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1189 1190 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1191 1192 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1193 } 1194 1195 static void ext4_da_page_release_reservation(struct page *page, 1196 unsigned long offset) 1197 { 1198 int to_release = 0; 1199 struct buffer_head *head, *bh; 1200 unsigned int curr_off = 0; 1201 struct inode *inode = page->mapping->host; 1202 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1203 int num_clusters; 1204 1205 head = page_buffers(page); 1206 bh = head; 1207 do { 1208 unsigned int next_off = curr_off + bh->b_size; 1209 1210 if ((offset <= curr_off) && (buffer_delay(bh))) { 1211 to_release++; 1212 clear_buffer_delay(bh); 1213 clear_buffer_da_mapped(bh); 1214 } 1215 curr_off = next_off; 1216 } while ((bh = bh->b_this_page) != head); 1217 1218 /* If we have released all the blocks belonging to a cluster, then we 1219 * need to release the reserved space for that cluster. */ 1220 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1221 while (num_clusters > 0) { 1222 ext4_fsblk_t lblk; 1223 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1224 ((num_clusters - 1) << sbi->s_cluster_bits); 1225 if (sbi->s_cluster_ratio == 1 || 1226 !ext4_find_delalloc_cluster(inode, lblk, 1)) 1227 ext4_da_release_space(inode, 1); 1228 1229 num_clusters--; 1230 } 1231 } 1232 1233 /* 1234 * Delayed allocation stuff 1235 */ 1236 1237 /* 1238 * mpage_da_submit_io - walks through extent of pages and try to write 1239 * them with writepage() call back 1240 * 1241 * @mpd->inode: inode 1242 * @mpd->first_page: first page of the extent 1243 * @mpd->next_page: page after the last page of the extent 1244 * 1245 * By the time mpage_da_submit_io() is called we expect all blocks 1246 * to be allocated. this may be wrong if allocation failed. 1247 * 1248 * As pages are already locked by write_cache_pages(), we can't use it 1249 */ 1250 static int mpage_da_submit_io(struct mpage_da_data *mpd, 1251 struct ext4_map_blocks *map) 1252 { 1253 struct pagevec pvec; 1254 unsigned long index, end; 1255 int ret = 0, err, nr_pages, i; 1256 struct inode *inode = mpd->inode; 1257 struct address_space *mapping = inode->i_mapping; 1258 loff_t size = i_size_read(inode); 1259 unsigned int len, block_start; 1260 struct buffer_head *bh, *page_bufs = NULL; 1261 int journal_data = ext4_should_journal_data(inode); 1262 sector_t pblock = 0, cur_logical = 0; 1263 struct ext4_io_submit io_submit; 1264 1265 BUG_ON(mpd->next_page <= mpd->first_page); 1266 memset(&io_submit, 0, sizeof(io_submit)); 1267 /* 1268 * We need to start from the first_page to the next_page - 1 1269 * to make sure we also write the mapped dirty buffer_heads. 1270 * If we look at mpd->b_blocknr we would only be looking 1271 * at the currently mapped buffer_heads. 1272 */ 1273 index = mpd->first_page; 1274 end = mpd->next_page - 1; 1275 1276 pagevec_init(&pvec, 0); 1277 while (index <= end) { 1278 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1279 if (nr_pages == 0) 1280 break; 1281 for (i = 0; i < nr_pages; i++) { 1282 int commit_write = 0, skip_page = 0; 1283 struct page *page = pvec.pages[i]; 1284 1285 index = page->index; 1286 if (index > end) 1287 break; 1288 1289 if (index == size >> PAGE_CACHE_SHIFT) 1290 len = size & ~PAGE_CACHE_MASK; 1291 else 1292 len = PAGE_CACHE_SIZE; 1293 if (map) { 1294 cur_logical = index << (PAGE_CACHE_SHIFT - 1295 inode->i_blkbits); 1296 pblock = map->m_pblk + (cur_logical - 1297 map->m_lblk); 1298 } 1299 index++; 1300 1301 BUG_ON(!PageLocked(page)); 1302 BUG_ON(PageWriteback(page)); 1303 1304 /* 1305 * If the page does not have buffers (for 1306 * whatever reason), try to create them using 1307 * __block_write_begin. If this fails, 1308 * skip the page and move on. 1309 */ 1310 if (!page_has_buffers(page)) { 1311 if (__block_write_begin(page, 0, len, 1312 noalloc_get_block_write)) { 1313 skip_page: 1314 unlock_page(page); 1315 continue; 1316 } 1317 commit_write = 1; 1318 } 1319 1320 bh = page_bufs = page_buffers(page); 1321 block_start = 0; 1322 do { 1323 if (!bh) 1324 goto skip_page; 1325 if (map && (cur_logical >= map->m_lblk) && 1326 (cur_logical <= (map->m_lblk + 1327 (map->m_len - 1)))) { 1328 if (buffer_delay(bh)) { 1329 clear_buffer_delay(bh); 1330 bh->b_blocknr = pblock; 1331 } 1332 if (buffer_da_mapped(bh)) 1333 clear_buffer_da_mapped(bh); 1334 if (buffer_unwritten(bh) || 1335 buffer_mapped(bh)) 1336 BUG_ON(bh->b_blocknr != pblock); 1337 if (map->m_flags & EXT4_MAP_UNINIT) 1338 set_buffer_uninit(bh); 1339 clear_buffer_unwritten(bh); 1340 } 1341 1342 /* skip page if block allocation undone */ 1343 if (buffer_delay(bh) || buffer_unwritten(bh)) 1344 skip_page = 1; 1345 bh = bh->b_this_page; 1346 block_start += bh->b_size; 1347 cur_logical++; 1348 pblock++; 1349 } while (bh != page_bufs); 1350 1351 if (skip_page) 1352 goto skip_page; 1353 1354 if (commit_write) 1355 /* mark the buffer_heads as dirty & uptodate */ 1356 block_commit_write(page, 0, len); 1357 1358 clear_page_dirty_for_io(page); 1359 /* 1360 * Delalloc doesn't support data journalling, 1361 * but eventually maybe we'll lift this 1362 * restriction. 1363 */ 1364 if (unlikely(journal_data && PageChecked(page))) 1365 err = __ext4_journalled_writepage(page, len); 1366 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT)) 1367 err = ext4_bio_write_page(&io_submit, page, 1368 len, mpd->wbc); 1369 else if (buffer_uninit(page_bufs)) { 1370 ext4_set_bh_endio(page_bufs, inode); 1371 err = block_write_full_page_endio(page, 1372 noalloc_get_block_write, 1373 mpd->wbc, ext4_end_io_buffer_write); 1374 } else 1375 err = block_write_full_page(page, 1376 noalloc_get_block_write, mpd->wbc); 1377 1378 if (!err) 1379 mpd->pages_written++; 1380 /* 1381 * In error case, we have to continue because 1382 * remaining pages are still locked 1383 */ 1384 if (ret == 0) 1385 ret = err; 1386 } 1387 pagevec_release(&pvec); 1388 } 1389 ext4_io_submit(&io_submit); 1390 return ret; 1391 } 1392 1393 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd) 1394 { 1395 int nr_pages, i; 1396 pgoff_t index, end; 1397 struct pagevec pvec; 1398 struct inode *inode = mpd->inode; 1399 struct address_space *mapping = inode->i_mapping; 1400 1401 index = mpd->first_page; 1402 end = mpd->next_page - 1; 1403 while (index <= end) { 1404 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1405 if (nr_pages == 0) 1406 break; 1407 for (i = 0; i < nr_pages; i++) { 1408 struct page *page = pvec.pages[i]; 1409 if (page->index > end) 1410 break; 1411 BUG_ON(!PageLocked(page)); 1412 BUG_ON(PageWriteback(page)); 1413 block_invalidatepage(page, 0); 1414 ClearPageUptodate(page); 1415 unlock_page(page); 1416 } 1417 index = pvec.pages[nr_pages - 1]->index + 1; 1418 pagevec_release(&pvec); 1419 } 1420 return; 1421 } 1422 1423 static void ext4_print_free_blocks(struct inode *inode) 1424 { 1425 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1426 printk(KERN_CRIT "Total free blocks count %lld\n", 1427 EXT4_C2B(EXT4_SB(inode->i_sb), 1428 ext4_count_free_clusters(inode->i_sb))); 1429 printk(KERN_CRIT "Free/Dirty block details\n"); 1430 printk(KERN_CRIT "free_blocks=%lld\n", 1431 (long long) EXT4_C2B(EXT4_SB(inode->i_sb), 1432 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1433 printk(KERN_CRIT "dirty_blocks=%lld\n", 1434 (long long) EXT4_C2B(EXT4_SB(inode->i_sb), 1435 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1436 printk(KERN_CRIT "Block reservation details\n"); 1437 printk(KERN_CRIT "i_reserved_data_blocks=%u\n", 1438 EXT4_I(inode)->i_reserved_data_blocks); 1439 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n", 1440 EXT4_I(inode)->i_reserved_meta_blocks); 1441 return; 1442 } 1443 1444 /* 1445 * mpage_da_map_and_submit - go through given space, map them 1446 * if necessary, and then submit them for I/O 1447 * 1448 * @mpd - bh describing space 1449 * 1450 * The function skips space we know is already mapped to disk blocks. 1451 * 1452 */ 1453 static void mpage_da_map_and_submit(struct mpage_da_data *mpd) 1454 { 1455 int err, blks, get_blocks_flags; 1456 struct ext4_map_blocks map, *mapp = NULL; 1457 sector_t next = mpd->b_blocknr; 1458 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits; 1459 loff_t disksize = EXT4_I(mpd->inode)->i_disksize; 1460 handle_t *handle = NULL; 1461 1462 /* 1463 * If the blocks are mapped already, or we couldn't accumulate 1464 * any blocks, then proceed immediately to the submission stage. 1465 */ 1466 if ((mpd->b_size == 0) || 1467 ((mpd->b_state & (1 << BH_Mapped)) && 1468 !(mpd->b_state & (1 << BH_Delay)) && 1469 !(mpd->b_state & (1 << BH_Unwritten)))) 1470 goto submit_io; 1471 1472 handle = ext4_journal_current_handle(); 1473 BUG_ON(!handle); 1474 1475 /* 1476 * Call ext4_map_blocks() to allocate any delayed allocation 1477 * blocks, or to convert an uninitialized extent to be 1478 * initialized (in the case where we have written into 1479 * one or more preallocated blocks). 1480 * 1481 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to 1482 * indicate that we are on the delayed allocation path. This 1483 * affects functions in many different parts of the allocation 1484 * call path. This flag exists primarily because we don't 1485 * want to change *many* call functions, so ext4_map_blocks() 1486 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the 1487 * inode's allocation semaphore is taken. 1488 * 1489 * If the blocks in questions were delalloc blocks, set 1490 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting 1491 * variables are updated after the blocks have been allocated. 1492 */ 1493 map.m_lblk = next; 1494 map.m_len = max_blocks; 1495 get_blocks_flags = EXT4_GET_BLOCKS_CREATE; 1496 if (ext4_should_dioread_nolock(mpd->inode)) 1497 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 1498 if (mpd->b_state & (1 << BH_Delay)) 1499 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 1500 1501 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags); 1502 if (blks < 0) { 1503 struct super_block *sb = mpd->inode->i_sb; 1504 1505 err = blks; 1506 /* 1507 * If get block returns EAGAIN or ENOSPC and there 1508 * appears to be free blocks we will just let 1509 * mpage_da_submit_io() unlock all of the pages. 1510 */ 1511 if (err == -EAGAIN) 1512 goto submit_io; 1513 1514 if (err == -ENOSPC && ext4_count_free_clusters(sb)) { 1515 mpd->retval = err; 1516 goto submit_io; 1517 } 1518 1519 /* 1520 * get block failure will cause us to loop in 1521 * writepages, because a_ops->writepage won't be able 1522 * to make progress. The page will be redirtied by 1523 * writepage and writepages will again try to write 1524 * the same. 1525 */ 1526 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) { 1527 ext4_msg(sb, KERN_CRIT, 1528 "delayed block allocation failed for inode %lu " 1529 "at logical offset %llu with max blocks %zd " 1530 "with error %d", mpd->inode->i_ino, 1531 (unsigned long long) next, 1532 mpd->b_size >> mpd->inode->i_blkbits, err); 1533 ext4_msg(sb, KERN_CRIT, 1534 "This should not happen!! Data will be lost\n"); 1535 if (err == -ENOSPC) 1536 ext4_print_free_blocks(mpd->inode); 1537 } 1538 /* invalidate all the pages */ 1539 ext4_da_block_invalidatepages(mpd); 1540 1541 /* Mark this page range as having been completed */ 1542 mpd->io_done = 1; 1543 return; 1544 } 1545 BUG_ON(blks == 0); 1546 1547 mapp = ↦ 1548 if (map.m_flags & EXT4_MAP_NEW) { 1549 struct block_device *bdev = mpd->inode->i_sb->s_bdev; 1550 int i; 1551 1552 for (i = 0; i < map.m_len; i++) 1553 unmap_underlying_metadata(bdev, map.m_pblk + i); 1554 1555 if (ext4_should_order_data(mpd->inode)) { 1556 err = ext4_jbd2_file_inode(handle, mpd->inode); 1557 if (err) { 1558 /* Only if the journal is aborted */ 1559 mpd->retval = err; 1560 goto submit_io; 1561 } 1562 } 1563 } 1564 1565 /* 1566 * Update on-disk size along with block allocation. 1567 */ 1568 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits; 1569 if (disksize > i_size_read(mpd->inode)) 1570 disksize = i_size_read(mpd->inode); 1571 if (disksize > EXT4_I(mpd->inode)->i_disksize) { 1572 ext4_update_i_disksize(mpd->inode, disksize); 1573 err = ext4_mark_inode_dirty(handle, mpd->inode); 1574 if (err) 1575 ext4_error(mpd->inode->i_sb, 1576 "Failed to mark inode %lu dirty", 1577 mpd->inode->i_ino); 1578 } 1579 1580 submit_io: 1581 mpage_da_submit_io(mpd, mapp); 1582 mpd->io_done = 1; 1583 } 1584 1585 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 1586 (1 << BH_Delay) | (1 << BH_Unwritten)) 1587 1588 /* 1589 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 1590 * 1591 * @mpd->lbh - extent of blocks 1592 * @logical - logical number of the block in the file 1593 * @bh - bh of the block (used to access block's state) 1594 * 1595 * the function is used to collect contig. blocks in same state 1596 */ 1597 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 1598 sector_t logical, size_t b_size, 1599 unsigned long b_state) 1600 { 1601 sector_t next; 1602 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits; 1603 1604 /* 1605 * XXX Don't go larger than mballoc is willing to allocate 1606 * This is a stopgap solution. We eventually need to fold 1607 * mpage_da_submit_io() into this function and then call 1608 * ext4_map_blocks() multiple times in a loop 1609 */ 1610 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize) 1611 goto flush_it; 1612 1613 /* check if thereserved journal credits might overflow */ 1614 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) { 1615 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 1616 /* 1617 * With non-extent format we are limited by the journal 1618 * credit available. Total credit needed to insert 1619 * nrblocks contiguous blocks is dependent on the 1620 * nrblocks. So limit nrblocks. 1621 */ 1622 goto flush_it; 1623 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > 1624 EXT4_MAX_TRANS_DATA) { 1625 /* 1626 * Adding the new buffer_head would make it cross the 1627 * allowed limit for which we have journal credit 1628 * reserved. So limit the new bh->b_size 1629 */ 1630 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << 1631 mpd->inode->i_blkbits; 1632 /* we will do mpage_da_submit_io in the next loop */ 1633 } 1634 } 1635 /* 1636 * First block in the extent 1637 */ 1638 if (mpd->b_size == 0) { 1639 mpd->b_blocknr = logical; 1640 mpd->b_size = b_size; 1641 mpd->b_state = b_state & BH_FLAGS; 1642 return; 1643 } 1644 1645 next = mpd->b_blocknr + nrblocks; 1646 /* 1647 * Can we merge the block to our big extent? 1648 */ 1649 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) { 1650 mpd->b_size += b_size; 1651 return; 1652 } 1653 1654 flush_it: 1655 /* 1656 * We couldn't merge the block to our extent, so we 1657 * need to flush current extent and start new one 1658 */ 1659 mpage_da_map_and_submit(mpd); 1660 return; 1661 } 1662 1663 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1664 { 1665 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1666 } 1667 1668 /* 1669 * This function is grabs code from the very beginning of 1670 * ext4_map_blocks, but assumes that the caller is from delayed write 1671 * time. This function looks up the requested blocks and sets the 1672 * buffer delay bit under the protection of i_data_sem. 1673 */ 1674 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1675 struct ext4_map_blocks *map, 1676 struct buffer_head *bh) 1677 { 1678 int retval; 1679 sector_t invalid_block = ~((sector_t) 0xffff); 1680 1681 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1682 invalid_block = ~0; 1683 1684 map->m_flags = 0; 1685 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1686 "logical block %lu\n", inode->i_ino, map->m_len, 1687 (unsigned long) map->m_lblk); 1688 /* 1689 * Try to see if we can get the block without requesting a new 1690 * file system block. 1691 */ 1692 down_read((&EXT4_I(inode)->i_data_sem)); 1693 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1694 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1695 else 1696 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1697 1698 if (retval == 0) { 1699 /* 1700 * XXX: __block_prepare_write() unmaps passed block, 1701 * is it OK? 1702 */ 1703 /* If the block was allocated from previously allocated cluster, 1704 * then we dont need to reserve it again. */ 1705 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) { 1706 retval = ext4_da_reserve_space(inode, iblock); 1707 if (retval) 1708 /* not enough space to reserve */ 1709 goto out_unlock; 1710 } 1711 1712 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served 1713 * and it should not appear on the bh->b_state. 1714 */ 1715 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 1716 1717 map_bh(bh, inode->i_sb, invalid_block); 1718 set_buffer_new(bh); 1719 set_buffer_delay(bh); 1720 } 1721 1722 out_unlock: 1723 up_read((&EXT4_I(inode)->i_data_sem)); 1724 1725 return retval; 1726 } 1727 1728 /* 1729 * This is a special get_blocks_t callback which is used by 1730 * ext4_da_write_begin(). It will either return mapped block or 1731 * reserve space for a single block. 1732 * 1733 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1734 * We also have b_blocknr = -1 and b_bdev initialized properly 1735 * 1736 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1737 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1738 * initialized properly. 1739 */ 1740 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1741 struct buffer_head *bh, int create) 1742 { 1743 struct ext4_map_blocks map; 1744 int ret = 0; 1745 1746 BUG_ON(create == 0); 1747 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1748 1749 map.m_lblk = iblock; 1750 map.m_len = 1; 1751 1752 /* 1753 * first, we need to know whether the block is allocated already 1754 * preallocated blocks are unmapped but should treated 1755 * the same as allocated blocks. 1756 */ 1757 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1758 if (ret <= 0) 1759 return ret; 1760 1761 map_bh(bh, inode->i_sb, map.m_pblk); 1762 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1763 1764 if (buffer_unwritten(bh)) { 1765 /* A delayed write to unwritten bh should be marked 1766 * new and mapped. Mapped ensures that we don't do 1767 * get_block multiple times when we write to the same 1768 * offset and new ensures that we do proper zero out 1769 * for partial write. 1770 */ 1771 set_buffer_new(bh); 1772 set_buffer_mapped(bh); 1773 } 1774 return 0; 1775 } 1776 1777 /* 1778 * This function is used as a standard get_block_t calback function 1779 * when there is no desire to allocate any blocks. It is used as a 1780 * callback function for block_write_begin() and block_write_full_page(). 1781 * These functions should only try to map a single block at a time. 1782 * 1783 * Since this function doesn't do block allocations even if the caller 1784 * requests it by passing in create=1, it is critically important that 1785 * any caller checks to make sure that any buffer heads are returned 1786 * by this function are either all already mapped or marked for 1787 * delayed allocation before calling block_write_full_page(). Otherwise, 1788 * b_blocknr could be left unitialized, and the page write functions will 1789 * be taken by surprise. 1790 */ 1791 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 1792 struct buffer_head *bh_result, int create) 1793 { 1794 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 1795 return _ext4_get_block(inode, iblock, bh_result, 0); 1796 } 1797 1798 static int bget_one(handle_t *handle, struct buffer_head *bh) 1799 { 1800 get_bh(bh); 1801 return 0; 1802 } 1803 1804 static int bput_one(handle_t *handle, struct buffer_head *bh) 1805 { 1806 put_bh(bh); 1807 return 0; 1808 } 1809 1810 static int __ext4_journalled_writepage(struct page *page, 1811 unsigned int len) 1812 { 1813 struct address_space *mapping = page->mapping; 1814 struct inode *inode = mapping->host; 1815 struct buffer_head *page_bufs; 1816 handle_t *handle = NULL; 1817 int ret = 0; 1818 int err; 1819 1820 ClearPageChecked(page); 1821 page_bufs = page_buffers(page); 1822 BUG_ON(!page_bufs); 1823 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one); 1824 /* As soon as we unlock the page, it can go away, but we have 1825 * references to buffers so we are safe */ 1826 unlock_page(page); 1827 1828 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 1829 if (IS_ERR(handle)) { 1830 ret = PTR_ERR(handle); 1831 goto out; 1832 } 1833 1834 BUG_ON(!ext4_handle_valid(handle)); 1835 1836 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL, 1837 do_journal_get_write_access); 1838 1839 err = walk_page_buffers(handle, page_bufs, 0, len, NULL, 1840 write_end_fn); 1841 if (ret == 0) 1842 ret = err; 1843 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1844 err = ext4_journal_stop(handle); 1845 if (!ret) 1846 ret = err; 1847 1848 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one); 1849 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1850 out: 1851 return ret; 1852 } 1853 1854 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 1855 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 1856 1857 /* 1858 * Note that we don't need to start a transaction unless we're journaling data 1859 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1860 * need to file the inode to the transaction's list in ordered mode because if 1861 * we are writing back data added by write(), the inode is already there and if 1862 * we are writing back data modified via mmap(), no one guarantees in which 1863 * transaction the data will hit the disk. In case we are journaling data, we 1864 * cannot start transaction directly because transaction start ranks above page 1865 * lock so we have to do some magic. 1866 * 1867 * This function can get called via... 1868 * - ext4_da_writepages after taking page lock (have journal handle) 1869 * - journal_submit_inode_data_buffers (no journal handle) 1870 * - shrink_page_list via pdflush (no journal handle) 1871 * - grab_page_cache when doing write_begin (have journal handle) 1872 * 1873 * We don't do any block allocation in this function. If we have page with 1874 * multiple blocks we need to write those buffer_heads that are mapped. This 1875 * is important for mmaped based write. So if we do with blocksize 1K 1876 * truncate(f, 1024); 1877 * a = mmap(f, 0, 4096); 1878 * a[0] = 'a'; 1879 * truncate(f, 4096); 1880 * we have in the page first buffer_head mapped via page_mkwrite call back 1881 * but other bufer_heads would be unmapped but dirty(dirty done via the 1882 * do_wp_page). So writepage should write the first block. If we modify 1883 * the mmap area beyond 1024 we will again get a page_fault and the 1884 * page_mkwrite callback will do the block allocation and mark the 1885 * buffer_heads mapped. 1886 * 1887 * We redirty the page if we have any buffer_heads that is either delay or 1888 * unwritten in the page. 1889 * 1890 * We can get recursively called as show below. 1891 * 1892 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1893 * ext4_writepage() 1894 * 1895 * But since we don't do any block allocation we should not deadlock. 1896 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1897 */ 1898 static int ext4_writepage(struct page *page, 1899 struct writeback_control *wbc) 1900 { 1901 int ret = 0, commit_write = 0; 1902 loff_t size; 1903 unsigned int len; 1904 struct buffer_head *page_bufs = NULL; 1905 struct inode *inode = page->mapping->host; 1906 1907 trace_ext4_writepage(page); 1908 size = i_size_read(inode); 1909 if (page->index == size >> PAGE_CACHE_SHIFT) 1910 len = size & ~PAGE_CACHE_MASK; 1911 else 1912 len = PAGE_CACHE_SIZE; 1913 1914 /* 1915 * If the page does not have buffers (for whatever reason), 1916 * try to create them using __block_write_begin. If this 1917 * fails, redirty the page and move on. 1918 */ 1919 if (!page_has_buffers(page)) { 1920 if (__block_write_begin(page, 0, len, 1921 noalloc_get_block_write)) { 1922 redirty_page: 1923 redirty_page_for_writepage(wbc, page); 1924 unlock_page(page); 1925 return 0; 1926 } 1927 commit_write = 1; 1928 } 1929 page_bufs = page_buffers(page); 1930 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 1931 ext4_bh_delay_or_unwritten)) { 1932 /* 1933 * We don't want to do block allocation, so redirty 1934 * the page and return. We may reach here when we do 1935 * a journal commit via journal_submit_inode_data_buffers. 1936 * We can also reach here via shrink_page_list but it 1937 * should never be for direct reclaim so warn if that 1938 * happens 1939 */ 1940 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 1941 PF_MEMALLOC); 1942 goto redirty_page; 1943 } 1944 if (commit_write) 1945 /* now mark the buffer_heads as dirty and uptodate */ 1946 block_commit_write(page, 0, len); 1947 1948 if (PageChecked(page) && ext4_should_journal_data(inode)) 1949 /* 1950 * It's mmapped pagecache. Add buffers and journal it. There 1951 * doesn't seem much point in redirtying the page here. 1952 */ 1953 return __ext4_journalled_writepage(page, len); 1954 1955 if (buffer_uninit(page_bufs)) { 1956 ext4_set_bh_endio(page_bufs, inode); 1957 ret = block_write_full_page_endio(page, noalloc_get_block_write, 1958 wbc, ext4_end_io_buffer_write); 1959 } else 1960 ret = block_write_full_page(page, noalloc_get_block_write, 1961 wbc); 1962 1963 return ret; 1964 } 1965 1966 /* 1967 * This is called via ext4_da_writepages() to 1968 * calculate the total number of credits to reserve to fit 1969 * a single extent allocation into a single transaction, 1970 * ext4_da_writpeages() will loop calling this before 1971 * the block allocation. 1972 */ 1973 1974 static int ext4_da_writepages_trans_blocks(struct inode *inode) 1975 { 1976 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 1977 1978 /* 1979 * With non-extent format the journal credit needed to 1980 * insert nrblocks contiguous block is dependent on 1981 * number of contiguous block. So we will limit 1982 * number of contiguous block to a sane value 1983 */ 1984 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) && 1985 (max_blocks > EXT4_MAX_TRANS_DATA)) 1986 max_blocks = EXT4_MAX_TRANS_DATA; 1987 1988 return ext4_chunk_trans_blocks(inode, max_blocks); 1989 } 1990 1991 /* 1992 * write_cache_pages_da - walk the list of dirty pages of the given 1993 * address space and accumulate pages that need writing, and call 1994 * mpage_da_map_and_submit to map a single contiguous memory region 1995 * and then write them. 1996 */ 1997 static int write_cache_pages_da(struct address_space *mapping, 1998 struct writeback_control *wbc, 1999 struct mpage_da_data *mpd, 2000 pgoff_t *done_index) 2001 { 2002 struct buffer_head *bh, *head; 2003 struct inode *inode = mapping->host; 2004 struct pagevec pvec; 2005 unsigned int nr_pages; 2006 sector_t logical; 2007 pgoff_t index, end; 2008 long nr_to_write = wbc->nr_to_write; 2009 int i, tag, ret = 0; 2010 2011 memset(mpd, 0, sizeof(struct mpage_da_data)); 2012 mpd->wbc = wbc; 2013 mpd->inode = inode; 2014 pagevec_init(&pvec, 0); 2015 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2016 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2017 2018 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2019 tag = PAGECACHE_TAG_TOWRITE; 2020 else 2021 tag = PAGECACHE_TAG_DIRTY; 2022 2023 *done_index = index; 2024 while (index <= end) { 2025 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2026 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2027 if (nr_pages == 0) 2028 return 0; 2029 2030 for (i = 0; i < nr_pages; i++) { 2031 struct page *page = pvec.pages[i]; 2032 2033 /* 2034 * At this point, the page may be truncated or 2035 * invalidated (changing page->mapping to NULL), or 2036 * even swizzled back from swapper_space to tmpfs file 2037 * mapping. However, page->index will not change 2038 * because we have a reference on the page. 2039 */ 2040 if (page->index > end) 2041 goto out; 2042 2043 *done_index = page->index + 1; 2044 2045 /* 2046 * If we can't merge this page, and we have 2047 * accumulated an contiguous region, write it 2048 */ 2049 if ((mpd->next_page != page->index) && 2050 (mpd->next_page != mpd->first_page)) { 2051 mpage_da_map_and_submit(mpd); 2052 goto ret_extent_tail; 2053 } 2054 2055 lock_page(page); 2056 2057 /* 2058 * If the page is no longer dirty, or its 2059 * mapping no longer corresponds to inode we 2060 * are writing (which means it has been 2061 * truncated or invalidated), or the page is 2062 * already under writeback and we are not 2063 * doing a data integrity writeback, skip the page 2064 */ 2065 if (!PageDirty(page) || 2066 (PageWriteback(page) && 2067 (wbc->sync_mode == WB_SYNC_NONE)) || 2068 unlikely(page->mapping != mapping)) { 2069 unlock_page(page); 2070 continue; 2071 } 2072 2073 wait_on_page_writeback(page); 2074 BUG_ON(PageWriteback(page)); 2075 2076 if (mpd->next_page != page->index) 2077 mpd->first_page = page->index; 2078 mpd->next_page = page->index + 1; 2079 logical = (sector_t) page->index << 2080 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2081 2082 if (!page_has_buffers(page)) { 2083 mpage_add_bh_to_extent(mpd, logical, 2084 PAGE_CACHE_SIZE, 2085 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2086 if (mpd->io_done) 2087 goto ret_extent_tail; 2088 } else { 2089 /* 2090 * Page with regular buffer heads, 2091 * just add all dirty ones 2092 */ 2093 head = page_buffers(page); 2094 bh = head; 2095 do { 2096 BUG_ON(buffer_locked(bh)); 2097 /* 2098 * We need to try to allocate 2099 * unmapped blocks in the same page. 2100 * Otherwise we won't make progress 2101 * with the page in ext4_writepage 2102 */ 2103 if (ext4_bh_delay_or_unwritten(NULL, bh)) { 2104 mpage_add_bh_to_extent(mpd, logical, 2105 bh->b_size, 2106 bh->b_state); 2107 if (mpd->io_done) 2108 goto ret_extent_tail; 2109 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) { 2110 /* 2111 * mapped dirty buffer. We need 2112 * to update the b_state 2113 * because we look at b_state 2114 * in mpage_da_map_blocks. We 2115 * don't update b_size because 2116 * if we find an unmapped 2117 * buffer_head later we need to 2118 * use the b_state flag of that 2119 * buffer_head. 2120 */ 2121 if (mpd->b_size == 0) 2122 mpd->b_state = bh->b_state & BH_FLAGS; 2123 } 2124 logical++; 2125 } while ((bh = bh->b_this_page) != head); 2126 } 2127 2128 if (nr_to_write > 0) { 2129 nr_to_write--; 2130 if (nr_to_write == 0 && 2131 wbc->sync_mode == WB_SYNC_NONE) 2132 /* 2133 * We stop writing back only if we are 2134 * not doing integrity sync. In case of 2135 * integrity sync we have to keep going 2136 * because someone may be concurrently 2137 * dirtying pages, and we might have 2138 * synced a lot of newly appeared dirty 2139 * pages, but have not synced all of the 2140 * old dirty pages. 2141 */ 2142 goto out; 2143 } 2144 } 2145 pagevec_release(&pvec); 2146 cond_resched(); 2147 } 2148 return 0; 2149 ret_extent_tail: 2150 ret = MPAGE_DA_EXTENT_TAIL; 2151 out: 2152 pagevec_release(&pvec); 2153 cond_resched(); 2154 return ret; 2155 } 2156 2157 2158 static int ext4_da_writepages(struct address_space *mapping, 2159 struct writeback_control *wbc) 2160 { 2161 pgoff_t index; 2162 int range_whole = 0; 2163 handle_t *handle = NULL; 2164 struct mpage_da_data mpd; 2165 struct inode *inode = mapping->host; 2166 int pages_written = 0; 2167 unsigned int max_pages; 2168 int range_cyclic, cycled = 1, io_done = 0; 2169 int needed_blocks, ret = 0; 2170 long desired_nr_to_write, nr_to_writebump = 0; 2171 loff_t range_start = wbc->range_start; 2172 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2173 pgoff_t done_index = 0; 2174 pgoff_t end; 2175 struct blk_plug plug; 2176 2177 trace_ext4_da_writepages(inode, wbc); 2178 2179 /* 2180 * No pages to write? This is mainly a kludge to avoid starting 2181 * a transaction for special inodes like journal inode on last iput() 2182 * because that could violate lock ordering on umount 2183 */ 2184 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2185 return 0; 2186 2187 /* 2188 * If the filesystem has aborted, it is read-only, so return 2189 * right away instead of dumping stack traces later on that 2190 * will obscure the real source of the problem. We test 2191 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2192 * the latter could be true if the filesystem is mounted 2193 * read-only, and in that case, ext4_da_writepages should 2194 * *never* be called, so if that ever happens, we would want 2195 * the stack trace. 2196 */ 2197 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2198 return -EROFS; 2199 2200 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2201 range_whole = 1; 2202 2203 range_cyclic = wbc->range_cyclic; 2204 if (wbc->range_cyclic) { 2205 index = mapping->writeback_index; 2206 if (index) 2207 cycled = 0; 2208 wbc->range_start = index << PAGE_CACHE_SHIFT; 2209 wbc->range_end = LLONG_MAX; 2210 wbc->range_cyclic = 0; 2211 end = -1; 2212 } else { 2213 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2214 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2215 } 2216 2217 /* 2218 * This works around two forms of stupidity. The first is in 2219 * the writeback code, which caps the maximum number of pages 2220 * written to be 1024 pages. This is wrong on multiple 2221 * levels; different architectues have a different page size, 2222 * which changes the maximum amount of data which gets 2223 * written. Secondly, 4 megabytes is way too small. XFS 2224 * forces this value to be 16 megabytes by multiplying 2225 * nr_to_write parameter by four, and then relies on its 2226 * allocator to allocate larger extents to make them 2227 * contiguous. Unfortunately this brings us to the second 2228 * stupidity, which is that ext4's mballoc code only allocates 2229 * at most 2048 blocks. So we force contiguous writes up to 2230 * the number of dirty blocks in the inode, or 2231 * sbi->max_writeback_mb_bump whichever is smaller. 2232 */ 2233 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT); 2234 if (!range_cyclic && range_whole) { 2235 if (wbc->nr_to_write == LONG_MAX) 2236 desired_nr_to_write = wbc->nr_to_write; 2237 else 2238 desired_nr_to_write = wbc->nr_to_write * 8; 2239 } else 2240 desired_nr_to_write = ext4_num_dirty_pages(inode, index, 2241 max_pages); 2242 if (desired_nr_to_write > max_pages) 2243 desired_nr_to_write = max_pages; 2244 2245 if (wbc->nr_to_write < desired_nr_to_write) { 2246 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write; 2247 wbc->nr_to_write = desired_nr_to_write; 2248 } 2249 2250 retry: 2251 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2252 tag_pages_for_writeback(mapping, index, end); 2253 2254 blk_start_plug(&plug); 2255 while (!ret && wbc->nr_to_write > 0) { 2256 2257 /* 2258 * we insert one extent at a time. So we need 2259 * credit needed for single extent allocation. 2260 * journalled mode is currently not supported 2261 * by delalloc 2262 */ 2263 BUG_ON(ext4_should_journal_data(inode)); 2264 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2265 2266 /* start a new transaction*/ 2267 handle = ext4_journal_start(inode, needed_blocks); 2268 if (IS_ERR(handle)) { 2269 ret = PTR_ERR(handle); 2270 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2271 "%ld pages, ino %lu; err %d", __func__, 2272 wbc->nr_to_write, inode->i_ino, ret); 2273 blk_finish_plug(&plug); 2274 goto out_writepages; 2275 } 2276 2277 /* 2278 * Now call write_cache_pages_da() to find the next 2279 * contiguous region of logical blocks that need 2280 * blocks to be allocated by ext4 and submit them. 2281 */ 2282 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index); 2283 /* 2284 * If we have a contiguous extent of pages and we 2285 * haven't done the I/O yet, map the blocks and submit 2286 * them for I/O. 2287 */ 2288 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 2289 mpage_da_map_and_submit(&mpd); 2290 ret = MPAGE_DA_EXTENT_TAIL; 2291 } 2292 trace_ext4_da_write_pages(inode, &mpd); 2293 wbc->nr_to_write -= mpd.pages_written; 2294 2295 ext4_journal_stop(handle); 2296 2297 if ((mpd.retval == -ENOSPC) && sbi->s_journal) { 2298 /* commit the transaction which would 2299 * free blocks released in the transaction 2300 * and try again 2301 */ 2302 jbd2_journal_force_commit_nested(sbi->s_journal); 2303 ret = 0; 2304 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 2305 /* 2306 * Got one extent now try with rest of the pages. 2307 * If mpd.retval is set -EIO, journal is aborted. 2308 * So we don't need to write any more. 2309 */ 2310 pages_written += mpd.pages_written; 2311 ret = mpd.retval; 2312 io_done = 1; 2313 } else if (wbc->nr_to_write) 2314 /* 2315 * There is no more writeout needed 2316 * or we requested for a noblocking writeout 2317 * and we found the device congested 2318 */ 2319 break; 2320 } 2321 blk_finish_plug(&plug); 2322 if (!io_done && !cycled) { 2323 cycled = 1; 2324 index = 0; 2325 wbc->range_start = index << PAGE_CACHE_SHIFT; 2326 wbc->range_end = mapping->writeback_index - 1; 2327 goto retry; 2328 } 2329 2330 /* Update index */ 2331 wbc->range_cyclic = range_cyclic; 2332 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2333 /* 2334 * set the writeback_index so that range_cyclic 2335 * mode will write it back later 2336 */ 2337 mapping->writeback_index = done_index; 2338 2339 out_writepages: 2340 wbc->nr_to_write -= nr_to_writebump; 2341 wbc->range_start = range_start; 2342 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written); 2343 return ret; 2344 } 2345 2346 #define FALL_BACK_TO_NONDELALLOC 1 2347 static int ext4_nonda_switch(struct super_block *sb) 2348 { 2349 s64 free_blocks, dirty_blocks; 2350 struct ext4_sb_info *sbi = EXT4_SB(sb); 2351 2352 /* 2353 * switch to non delalloc mode if we are running low 2354 * on free block. The free block accounting via percpu 2355 * counters can get slightly wrong with percpu_counter_batch getting 2356 * accumulated on each CPU without updating global counters 2357 * Delalloc need an accurate free block accounting. So switch 2358 * to non delalloc when we are near to error range. 2359 */ 2360 free_blocks = EXT4_C2B(sbi, 2361 percpu_counter_read_positive(&sbi->s_freeclusters_counter)); 2362 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2363 if (2 * free_blocks < 3 * dirty_blocks || 2364 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) { 2365 /* 2366 * free block count is less than 150% of dirty blocks 2367 * or free blocks is less than watermark 2368 */ 2369 return 1; 2370 } 2371 /* 2372 * Even if we don't switch but are nearing capacity, 2373 * start pushing delalloc when 1/2 of free blocks are dirty. 2374 */ 2375 if (free_blocks < 2 * dirty_blocks) 2376 writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE); 2377 2378 return 0; 2379 } 2380 2381 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2382 loff_t pos, unsigned len, unsigned flags, 2383 struct page **pagep, void **fsdata) 2384 { 2385 int ret, retries = 0; 2386 struct page *page; 2387 pgoff_t index; 2388 struct inode *inode = mapping->host; 2389 handle_t *handle; 2390 loff_t page_len; 2391 2392 index = pos >> PAGE_CACHE_SHIFT; 2393 2394 if (ext4_nonda_switch(inode->i_sb)) { 2395 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2396 return ext4_write_begin(file, mapping, pos, 2397 len, flags, pagep, fsdata); 2398 } 2399 *fsdata = (void *)0; 2400 trace_ext4_da_write_begin(inode, pos, len, flags); 2401 retry: 2402 /* 2403 * With delayed allocation, we don't log the i_disksize update 2404 * if there is delayed block allocation. But we still need 2405 * to journalling the i_disksize update if writes to the end 2406 * of file which has an already mapped buffer. 2407 */ 2408 handle = ext4_journal_start(inode, 1); 2409 if (IS_ERR(handle)) { 2410 ret = PTR_ERR(handle); 2411 goto out; 2412 } 2413 /* We cannot recurse into the filesystem as the transaction is already 2414 * started */ 2415 flags |= AOP_FLAG_NOFS; 2416 2417 page = grab_cache_page_write_begin(mapping, index, flags); 2418 if (!page) { 2419 ext4_journal_stop(handle); 2420 ret = -ENOMEM; 2421 goto out; 2422 } 2423 *pagep = page; 2424 2425 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2426 if (ret < 0) { 2427 unlock_page(page); 2428 ext4_journal_stop(handle); 2429 page_cache_release(page); 2430 /* 2431 * block_write_begin may have instantiated a few blocks 2432 * outside i_size. Trim these off again. Don't need 2433 * i_size_read because we hold i_mutex. 2434 */ 2435 if (pos + len > inode->i_size) 2436 ext4_truncate_failed_write(inode); 2437 } else { 2438 page_len = pos & (PAGE_CACHE_SIZE - 1); 2439 if (page_len > 0) { 2440 ret = ext4_discard_partial_page_buffers_no_lock(handle, 2441 inode, page, pos - page_len, page_len, 2442 EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED); 2443 } 2444 } 2445 2446 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 2447 goto retry; 2448 out: 2449 return ret; 2450 } 2451 2452 /* 2453 * Check if we should update i_disksize 2454 * when write to the end of file but not require block allocation 2455 */ 2456 static int ext4_da_should_update_i_disksize(struct page *page, 2457 unsigned long offset) 2458 { 2459 struct buffer_head *bh; 2460 struct inode *inode = page->mapping->host; 2461 unsigned int idx; 2462 int i; 2463 2464 bh = page_buffers(page); 2465 idx = offset >> inode->i_blkbits; 2466 2467 for (i = 0; i < idx; i++) 2468 bh = bh->b_this_page; 2469 2470 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2471 return 0; 2472 return 1; 2473 } 2474 2475 static int ext4_da_write_end(struct file *file, 2476 struct address_space *mapping, 2477 loff_t pos, unsigned len, unsigned copied, 2478 struct page *page, void *fsdata) 2479 { 2480 struct inode *inode = mapping->host; 2481 int ret = 0, ret2; 2482 handle_t *handle = ext4_journal_current_handle(); 2483 loff_t new_i_size; 2484 unsigned long start, end; 2485 int write_mode = (int)(unsigned long)fsdata; 2486 loff_t page_len; 2487 2488 if (write_mode == FALL_BACK_TO_NONDELALLOC) { 2489 if (ext4_should_order_data(inode)) { 2490 return ext4_ordered_write_end(file, mapping, pos, 2491 len, copied, page, fsdata); 2492 } else if (ext4_should_writeback_data(inode)) { 2493 return ext4_writeback_write_end(file, mapping, pos, 2494 len, copied, page, fsdata); 2495 } else { 2496 BUG(); 2497 } 2498 } 2499 2500 trace_ext4_da_write_end(inode, pos, len, copied); 2501 start = pos & (PAGE_CACHE_SIZE - 1); 2502 end = start + copied - 1; 2503 2504 /* 2505 * generic_write_end() will run mark_inode_dirty() if i_size 2506 * changes. So let's piggyback the i_disksize mark_inode_dirty 2507 * into that. 2508 */ 2509 2510 new_i_size = pos + copied; 2511 if (new_i_size > EXT4_I(inode)->i_disksize) { 2512 if (ext4_da_should_update_i_disksize(page, end)) { 2513 down_write(&EXT4_I(inode)->i_data_sem); 2514 if (new_i_size > EXT4_I(inode)->i_disksize) { 2515 /* 2516 * Updating i_disksize when extending file 2517 * without needing block allocation 2518 */ 2519 if (ext4_should_order_data(inode)) 2520 ret = ext4_jbd2_file_inode(handle, 2521 inode); 2522 2523 EXT4_I(inode)->i_disksize = new_i_size; 2524 } 2525 up_write(&EXT4_I(inode)->i_data_sem); 2526 /* We need to mark inode dirty even if 2527 * new_i_size is less that inode->i_size 2528 * bu greater than i_disksize.(hint delalloc) 2529 */ 2530 ext4_mark_inode_dirty(handle, inode); 2531 } 2532 } 2533 ret2 = generic_write_end(file, mapping, pos, len, copied, 2534 page, fsdata); 2535 2536 page_len = PAGE_CACHE_SIZE - 2537 ((pos + copied - 1) & (PAGE_CACHE_SIZE - 1)); 2538 2539 if (page_len > 0) { 2540 ret = ext4_discard_partial_page_buffers_no_lock(handle, 2541 inode, page, pos + copied - 1, page_len, 2542 EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED); 2543 } 2544 2545 copied = ret2; 2546 if (ret2 < 0) 2547 ret = ret2; 2548 ret2 = ext4_journal_stop(handle); 2549 if (!ret) 2550 ret = ret2; 2551 2552 return ret ? ret : copied; 2553 } 2554 2555 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 2556 { 2557 /* 2558 * Drop reserved blocks 2559 */ 2560 BUG_ON(!PageLocked(page)); 2561 if (!page_has_buffers(page)) 2562 goto out; 2563 2564 ext4_da_page_release_reservation(page, offset); 2565 2566 out: 2567 ext4_invalidatepage(page, offset); 2568 2569 return; 2570 } 2571 2572 /* 2573 * Force all delayed allocation blocks to be allocated for a given inode. 2574 */ 2575 int ext4_alloc_da_blocks(struct inode *inode) 2576 { 2577 trace_ext4_alloc_da_blocks(inode); 2578 2579 if (!EXT4_I(inode)->i_reserved_data_blocks && 2580 !EXT4_I(inode)->i_reserved_meta_blocks) 2581 return 0; 2582 2583 /* 2584 * We do something simple for now. The filemap_flush() will 2585 * also start triggering a write of the data blocks, which is 2586 * not strictly speaking necessary (and for users of 2587 * laptop_mode, not even desirable). However, to do otherwise 2588 * would require replicating code paths in: 2589 * 2590 * ext4_da_writepages() -> 2591 * write_cache_pages() ---> (via passed in callback function) 2592 * __mpage_da_writepage() --> 2593 * mpage_add_bh_to_extent() 2594 * mpage_da_map_blocks() 2595 * 2596 * The problem is that write_cache_pages(), located in 2597 * mm/page-writeback.c, marks pages clean in preparation for 2598 * doing I/O, which is not desirable if we're not planning on 2599 * doing I/O at all. 2600 * 2601 * We could call write_cache_pages(), and then redirty all of 2602 * the pages by calling redirty_page_for_writepage() but that 2603 * would be ugly in the extreme. So instead we would need to 2604 * replicate parts of the code in the above functions, 2605 * simplifying them because we wouldn't actually intend to 2606 * write out the pages, but rather only collect contiguous 2607 * logical block extents, call the multi-block allocator, and 2608 * then update the buffer heads with the block allocations. 2609 * 2610 * For now, though, we'll cheat by calling filemap_flush(), 2611 * which will map the blocks, and start the I/O, but not 2612 * actually wait for the I/O to complete. 2613 */ 2614 return filemap_flush(inode->i_mapping); 2615 } 2616 2617 /* 2618 * bmap() is special. It gets used by applications such as lilo and by 2619 * the swapper to find the on-disk block of a specific piece of data. 2620 * 2621 * Naturally, this is dangerous if the block concerned is still in the 2622 * journal. If somebody makes a swapfile on an ext4 data-journaling 2623 * filesystem and enables swap, then they may get a nasty shock when the 2624 * data getting swapped to that swapfile suddenly gets overwritten by 2625 * the original zero's written out previously to the journal and 2626 * awaiting writeback in the kernel's buffer cache. 2627 * 2628 * So, if we see any bmap calls here on a modified, data-journaled file, 2629 * take extra steps to flush any blocks which might be in the cache. 2630 */ 2631 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2632 { 2633 struct inode *inode = mapping->host; 2634 journal_t *journal; 2635 int err; 2636 2637 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2638 test_opt(inode->i_sb, DELALLOC)) { 2639 /* 2640 * With delalloc we want to sync the file 2641 * so that we can make sure we allocate 2642 * blocks for file 2643 */ 2644 filemap_write_and_wait(mapping); 2645 } 2646 2647 if (EXT4_JOURNAL(inode) && 2648 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2649 /* 2650 * This is a REALLY heavyweight approach, but the use of 2651 * bmap on dirty files is expected to be extremely rare: 2652 * only if we run lilo or swapon on a freshly made file 2653 * do we expect this to happen. 2654 * 2655 * (bmap requires CAP_SYS_RAWIO so this does not 2656 * represent an unprivileged user DOS attack --- we'd be 2657 * in trouble if mortal users could trigger this path at 2658 * will.) 2659 * 2660 * NB. EXT4_STATE_JDATA is not set on files other than 2661 * regular files. If somebody wants to bmap a directory 2662 * or symlink and gets confused because the buffer 2663 * hasn't yet been flushed to disk, they deserve 2664 * everything they get. 2665 */ 2666 2667 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2668 journal = EXT4_JOURNAL(inode); 2669 jbd2_journal_lock_updates(journal); 2670 err = jbd2_journal_flush(journal); 2671 jbd2_journal_unlock_updates(journal); 2672 2673 if (err) 2674 return 0; 2675 } 2676 2677 return generic_block_bmap(mapping, block, ext4_get_block); 2678 } 2679 2680 static int ext4_readpage(struct file *file, struct page *page) 2681 { 2682 trace_ext4_readpage(page); 2683 return mpage_readpage(page, ext4_get_block); 2684 } 2685 2686 static int 2687 ext4_readpages(struct file *file, struct address_space *mapping, 2688 struct list_head *pages, unsigned nr_pages) 2689 { 2690 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2691 } 2692 2693 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset) 2694 { 2695 struct buffer_head *head, *bh; 2696 unsigned int curr_off = 0; 2697 2698 if (!page_has_buffers(page)) 2699 return; 2700 head = bh = page_buffers(page); 2701 do { 2702 if (offset <= curr_off && test_clear_buffer_uninit(bh) 2703 && bh->b_private) { 2704 ext4_free_io_end(bh->b_private); 2705 bh->b_private = NULL; 2706 bh->b_end_io = NULL; 2707 } 2708 curr_off = curr_off + bh->b_size; 2709 bh = bh->b_this_page; 2710 } while (bh != head); 2711 } 2712 2713 static void ext4_invalidatepage(struct page *page, unsigned long offset) 2714 { 2715 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2716 2717 trace_ext4_invalidatepage(page, offset); 2718 2719 /* 2720 * free any io_end structure allocated for buffers to be discarded 2721 */ 2722 if (ext4_should_dioread_nolock(page->mapping->host)) 2723 ext4_invalidatepage_free_endio(page, offset); 2724 /* 2725 * If it's a full truncate we just forget about the pending dirtying 2726 */ 2727 if (offset == 0) 2728 ClearPageChecked(page); 2729 2730 if (journal) 2731 jbd2_journal_invalidatepage(journal, page, offset); 2732 else 2733 block_invalidatepage(page, offset); 2734 } 2735 2736 static int ext4_releasepage(struct page *page, gfp_t wait) 2737 { 2738 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2739 2740 trace_ext4_releasepage(page); 2741 2742 WARN_ON(PageChecked(page)); 2743 if (!page_has_buffers(page)) 2744 return 0; 2745 if (journal) 2746 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2747 else 2748 return try_to_free_buffers(page); 2749 } 2750 2751 /* 2752 * ext4_get_block used when preparing for a DIO write or buffer write. 2753 * We allocate an uinitialized extent if blocks haven't been allocated. 2754 * The extent will be converted to initialized after the IO is complete. 2755 */ 2756 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 2757 struct buffer_head *bh_result, int create) 2758 { 2759 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 2760 inode->i_ino, create); 2761 return _ext4_get_block(inode, iblock, bh_result, 2762 EXT4_GET_BLOCKS_IO_CREATE_EXT); 2763 } 2764 2765 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 2766 ssize_t size, void *private, int ret, 2767 bool is_async) 2768 { 2769 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode; 2770 ext4_io_end_t *io_end = iocb->private; 2771 struct workqueue_struct *wq; 2772 unsigned long flags; 2773 struct ext4_inode_info *ei; 2774 2775 /* if not async direct IO or dio with 0 bytes write, just return */ 2776 if (!io_end || !size) 2777 goto out; 2778 2779 ext_debug("ext4_end_io_dio(): io_end 0x%p" 2780 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n", 2781 iocb->private, io_end->inode->i_ino, iocb, offset, 2782 size); 2783 2784 /* if not aio dio with unwritten extents, just free io and return */ 2785 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) { 2786 ext4_free_io_end(io_end); 2787 iocb->private = NULL; 2788 out: 2789 if (is_async) 2790 aio_complete(iocb, ret, 0); 2791 inode_dio_done(inode); 2792 return; 2793 } 2794 2795 io_end->offset = offset; 2796 io_end->size = size; 2797 if (is_async) { 2798 io_end->iocb = iocb; 2799 io_end->result = ret; 2800 } 2801 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq; 2802 2803 /* Add the io_end to per-inode completed aio dio list*/ 2804 ei = EXT4_I(io_end->inode); 2805 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 2806 list_add_tail(&io_end->list, &ei->i_completed_io_list); 2807 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 2808 2809 /* queue the work to convert unwritten extents to written */ 2810 queue_work(wq, &io_end->work); 2811 iocb->private = NULL; 2812 2813 /* XXX: probably should move into the real I/O completion handler */ 2814 inode_dio_done(inode); 2815 } 2816 2817 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate) 2818 { 2819 ext4_io_end_t *io_end = bh->b_private; 2820 struct workqueue_struct *wq; 2821 struct inode *inode; 2822 unsigned long flags; 2823 2824 if (!test_clear_buffer_uninit(bh) || !io_end) 2825 goto out; 2826 2827 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) { 2828 printk("sb umounted, discard end_io request for inode %lu\n", 2829 io_end->inode->i_ino); 2830 ext4_free_io_end(io_end); 2831 goto out; 2832 } 2833 2834 /* 2835 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now, 2836 * but being more careful is always safe for the future change. 2837 */ 2838 inode = io_end->inode; 2839 ext4_set_io_unwritten_flag(inode, io_end); 2840 2841 /* Add the io_end to per-inode completed io list*/ 2842 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags); 2843 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list); 2844 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags); 2845 2846 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq; 2847 /* queue the work to convert unwritten extents to written */ 2848 queue_work(wq, &io_end->work); 2849 out: 2850 bh->b_private = NULL; 2851 bh->b_end_io = NULL; 2852 clear_buffer_uninit(bh); 2853 end_buffer_async_write(bh, uptodate); 2854 } 2855 2856 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode) 2857 { 2858 ext4_io_end_t *io_end; 2859 struct page *page = bh->b_page; 2860 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT; 2861 size_t size = bh->b_size; 2862 2863 retry: 2864 io_end = ext4_init_io_end(inode, GFP_ATOMIC); 2865 if (!io_end) { 2866 pr_warn_ratelimited("%s: allocation fail\n", __func__); 2867 schedule(); 2868 goto retry; 2869 } 2870 io_end->offset = offset; 2871 io_end->size = size; 2872 /* 2873 * We need to hold a reference to the page to make sure it 2874 * doesn't get evicted before ext4_end_io_work() has a chance 2875 * to convert the extent from written to unwritten. 2876 */ 2877 io_end->page = page; 2878 get_page(io_end->page); 2879 2880 bh->b_private = io_end; 2881 bh->b_end_io = ext4_end_io_buffer_write; 2882 return 0; 2883 } 2884 2885 /* 2886 * For ext4 extent files, ext4 will do direct-io write to holes, 2887 * preallocated extents, and those write extend the file, no need to 2888 * fall back to buffered IO. 2889 * 2890 * For holes, we fallocate those blocks, mark them as uninitialized 2891 * If those blocks were preallocated, we mark sure they are splited, but 2892 * still keep the range to write as uninitialized. 2893 * 2894 * The unwrritten extents will be converted to written when DIO is completed. 2895 * For async direct IO, since the IO may still pending when return, we 2896 * set up an end_io call back function, which will do the conversion 2897 * when async direct IO completed. 2898 * 2899 * If the O_DIRECT write will extend the file then add this inode to the 2900 * orphan list. So recovery will truncate it back to the original size 2901 * if the machine crashes during the write. 2902 * 2903 */ 2904 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 2905 const struct iovec *iov, loff_t offset, 2906 unsigned long nr_segs) 2907 { 2908 struct file *file = iocb->ki_filp; 2909 struct inode *inode = file->f_mapping->host; 2910 ssize_t ret; 2911 size_t count = iov_length(iov, nr_segs); 2912 2913 loff_t final_size = offset + count; 2914 if (rw == WRITE && final_size <= inode->i_size) { 2915 /* 2916 * We could direct write to holes and fallocate. 2917 * 2918 * Allocated blocks to fill the hole are marked as uninitialized 2919 * to prevent parallel buffered read to expose the stale data 2920 * before DIO complete the data IO. 2921 * 2922 * As to previously fallocated extents, ext4 get_block 2923 * will just simply mark the buffer mapped but still 2924 * keep the extents uninitialized. 2925 * 2926 * for non AIO case, we will convert those unwritten extents 2927 * to written after return back from blockdev_direct_IO. 2928 * 2929 * for async DIO, the conversion needs to be defered when 2930 * the IO is completed. The ext4 end_io callback function 2931 * will be called to take care of the conversion work. 2932 * Here for async case, we allocate an io_end structure to 2933 * hook to the iocb. 2934 */ 2935 iocb->private = NULL; 2936 EXT4_I(inode)->cur_aio_dio = NULL; 2937 if (!is_sync_kiocb(iocb)) { 2938 iocb->private = ext4_init_io_end(inode, GFP_NOFS); 2939 if (!iocb->private) 2940 return -ENOMEM; 2941 /* 2942 * we save the io structure for current async 2943 * direct IO, so that later ext4_map_blocks() 2944 * could flag the io structure whether there 2945 * is a unwritten extents needs to be converted 2946 * when IO is completed. 2947 */ 2948 EXT4_I(inode)->cur_aio_dio = iocb->private; 2949 } 2950 2951 ret = __blockdev_direct_IO(rw, iocb, inode, 2952 inode->i_sb->s_bdev, iov, 2953 offset, nr_segs, 2954 ext4_get_block_write, 2955 ext4_end_io_dio, 2956 NULL, 2957 DIO_LOCKING | DIO_SKIP_HOLES); 2958 if (iocb->private) 2959 EXT4_I(inode)->cur_aio_dio = NULL; 2960 /* 2961 * The io_end structure takes a reference to the inode, 2962 * that structure needs to be destroyed and the 2963 * reference to the inode need to be dropped, when IO is 2964 * complete, even with 0 byte write, or failed. 2965 * 2966 * In the successful AIO DIO case, the io_end structure will be 2967 * desctroyed and the reference to the inode will be dropped 2968 * after the end_io call back function is called. 2969 * 2970 * In the case there is 0 byte write, or error case, since 2971 * VFS direct IO won't invoke the end_io call back function, 2972 * we need to free the end_io structure here. 2973 */ 2974 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) { 2975 ext4_free_io_end(iocb->private); 2976 iocb->private = NULL; 2977 } else if (ret > 0 && ext4_test_inode_state(inode, 2978 EXT4_STATE_DIO_UNWRITTEN)) { 2979 int err; 2980 /* 2981 * for non AIO case, since the IO is already 2982 * completed, we could do the conversion right here 2983 */ 2984 err = ext4_convert_unwritten_extents(inode, 2985 offset, ret); 2986 if (err < 0) 2987 ret = err; 2988 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 2989 } 2990 return ret; 2991 } 2992 2993 /* for write the the end of file case, we fall back to old way */ 2994 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 2995 } 2996 2997 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 2998 const struct iovec *iov, loff_t offset, 2999 unsigned long nr_segs) 3000 { 3001 struct file *file = iocb->ki_filp; 3002 struct inode *inode = file->f_mapping->host; 3003 ssize_t ret; 3004 3005 /* 3006 * If we are doing data journalling we don't support O_DIRECT 3007 */ 3008 if (ext4_should_journal_data(inode)) 3009 return 0; 3010 3011 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw); 3012 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3013 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 3014 else 3015 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3016 trace_ext4_direct_IO_exit(inode, offset, 3017 iov_length(iov, nr_segs), rw, ret); 3018 return ret; 3019 } 3020 3021 /* 3022 * Pages can be marked dirty completely asynchronously from ext4's journalling 3023 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3024 * much here because ->set_page_dirty is called under VFS locks. The page is 3025 * not necessarily locked. 3026 * 3027 * We cannot just dirty the page and leave attached buffers clean, because the 3028 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3029 * or jbddirty because all the journalling code will explode. 3030 * 3031 * So what we do is to mark the page "pending dirty" and next time writepage 3032 * is called, propagate that into the buffers appropriately. 3033 */ 3034 static int ext4_journalled_set_page_dirty(struct page *page) 3035 { 3036 SetPageChecked(page); 3037 return __set_page_dirty_nobuffers(page); 3038 } 3039 3040 static const struct address_space_operations ext4_ordered_aops = { 3041 .readpage = ext4_readpage, 3042 .readpages = ext4_readpages, 3043 .writepage = ext4_writepage, 3044 .write_begin = ext4_write_begin, 3045 .write_end = ext4_ordered_write_end, 3046 .bmap = ext4_bmap, 3047 .invalidatepage = ext4_invalidatepage, 3048 .releasepage = ext4_releasepage, 3049 .direct_IO = ext4_direct_IO, 3050 .migratepage = buffer_migrate_page, 3051 .is_partially_uptodate = block_is_partially_uptodate, 3052 .error_remove_page = generic_error_remove_page, 3053 }; 3054 3055 static const struct address_space_operations ext4_writeback_aops = { 3056 .readpage = ext4_readpage, 3057 .readpages = ext4_readpages, 3058 .writepage = ext4_writepage, 3059 .write_begin = ext4_write_begin, 3060 .write_end = ext4_writeback_write_end, 3061 .bmap = ext4_bmap, 3062 .invalidatepage = ext4_invalidatepage, 3063 .releasepage = ext4_releasepage, 3064 .direct_IO = ext4_direct_IO, 3065 .migratepage = buffer_migrate_page, 3066 .is_partially_uptodate = block_is_partially_uptodate, 3067 .error_remove_page = generic_error_remove_page, 3068 }; 3069 3070 static const struct address_space_operations ext4_journalled_aops = { 3071 .readpage = ext4_readpage, 3072 .readpages = ext4_readpages, 3073 .writepage = ext4_writepage, 3074 .write_begin = ext4_write_begin, 3075 .write_end = ext4_journalled_write_end, 3076 .set_page_dirty = ext4_journalled_set_page_dirty, 3077 .bmap = ext4_bmap, 3078 .invalidatepage = ext4_invalidatepage, 3079 .releasepage = ext4_releasepage, 3080 .direct_IO = ext4_direct_IO, 3081 .is_partially_uptodate = block_is_partially_uptodate, 3082 .error_remove_page = generic_error_remove_page, 3083 }; 3084 3085 static const struct address_space_operations ext4_da_aops = { 3086 .readpage = ext4_readpage, 3087 .readpages = ext4_readpages, 3088 .writepage = ext4_writepage, 3089 .writepages = ext4_da_writepages, 3090 .write_begin = ext4_da_write_begin, 3091 .write_end = ext4_da_write_end, 3092 .bmap = ext4_bmap, 3093 .invalidatepage = ext4_da_invalidatepage, 3094 .releasepage = ext4_releasepage, 3095 .direct_IO = ext4_direct_IO, 3096 .migratepage = buffer_migrate_page, 3097 .is_partially_uptodate = block_is_partially_uptodate, 3098 .error_remove_page = generic_error_remove_page, 3099 }; 3100 3101 void ext4_set_aops(struct inode *inode) 3102 { 3103 if (ext4_should_order_data(inode) && 3104 test_opt(inode->i_sb, DELALLOC)) 3105 inode->i_mapping->a_ops = &ext4_da_aops; 3106 else if (ext4_should_order_data(inode)) 3107 inode->i_mapping->a_ops = &ext4_ordered_aops; 3108 else if (ext4_should_writeback_data(inode) && 3109 test_opt(inode->i_sb, DELALLOC)) 3110 inode->i_mapping->a_ops = &ext4_da_aops; 3111 else if (ext4_should_writeback_data(inode)) 3112 inode->i_mapping->a_ops = &ext4_writeback_aops; 3113 else 3114 inode->i_mapping->a_ops = &ext4_journalled_aops; 3115 } 3116 3117 3118 /* 3119 * ext4_discard_partial_page_buffers() 3120 * Wrapper function for ext4_discard_partial_page_buffers_no_lock. 3121 * This function finds and locks the page containing the offset 3122 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock. 3123 * Calling functions that already have the page locked should call 3124 * ext4_discard_partial_page_buffers_no_lock directly. 3125 */ 3126 int ext4_discard_partial_page_buffers(handle_t *handle, 3127 struct address_space *mapping, loff_t from, 3128 loff_t length, int flags) 3129 { 3130 struct inode *inode = mapping->host; 3131 struct page *page; 3132 int err = 0; 3133 3134 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3135 mapping_gfp_mask(mapping) & ~__GFP_FS); 3136 if (!page) 3137 return -ENOMEM; 3138 3139 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page, 3140 from, length, flags); 3141 3142 unlock_page(page); 3143 page_cache_release(page); 3144 return err; 3145 } 3146 3147 /* 3148 * ext4_discard_partial_page_buffers_no_lock() 3149 * Zeros a page range of length 'length' starting from offset 'from'. 3150 * Buffer heads that correspond to the block aligned regions of the 3151 * zeroed range will be unmapped. Unblock aligned regions 3152 * will have the corresponding buffer head mapped if needed so that 3153 * that region of the page can be updated with the partial zero out. 3154 * 3155 * This function assumes that the page has already been locked. The 3156 * The range to be discarded must be contained with in the given page. 3157 * If the specified range exceeds the end of the page it will be shortened 3158 * to the end of the page that corresponds to 'from'. This function is 3159 * appropriate for updating a page and it buffer heads to be unmapped and 3160 * zeroed for blocks that have been either released, or are going to be 3161 * released. 3162 * 3163 * handle: The journal handle 3164 * inode: The files inode 3165 * page: A locked page that contains the offset "from" 3166 * from: The starting byte offset (from the begining of the file) 3167 * to begin discarding 3168 * len: The length of bytes to discard 3169 * flags: Optional flags that may be used: 3170 * 3171 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED 3172 * Only zero the regions of the page whose buffer heads 3173 * have already been unmapped. This flag is appropriate 3174 * for updateing the contents of a page whose blocks may 3175 * have already been released, and we only want to zero 3176 * out the regions that correspond to those released blocks. 3177 * 3178 * Returns zero on sucess or negative on failure. 3179 */ 3180 int ext4_discard_partial_page_buffers_no_lock(handle_t *handle, 3181 struct inode *inode, struct page *page, loff_t from, 3182 loff_t length, int flags) 3183 { 3184 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3185 unsigned int offset = from & (PAGE_CACHE_SIZE-1); 3186 unsigned int blocksize, max, pos; 3187 ext4_lblk_t iblock; 3188 struct buffer_head *bh; 3189 int err = 0; 3190 3191 blocksize = inode->i_sb->s_blocksize; 3192 max = PAGE_CACHE_SIZE - offset; 3193 3194 if (index != page->index) 3195 return -EINVAL; 3196 3197 /* 3198 * correct length if it does not fall between 3199 * 'from' and the end of the page 3200 */ 3201 if (length > max || length < 0) 3202 length = max; 3203 3204 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3205 3206 if (!page_has_buffers(page)) { 3207 /* 3208 * If the range to be discarded covers a partial block 3209 * we need to get the page buffers. This is because 3210 * partial blocks cannot be released and the page needs 3211 * to be updated with the contents of the block before 3212 * we write the zeros on top of it. 3213 */ 3214 if ((from & (blocksize - 1)) || 3215 ((from + length) & (blocksize - 1))) { 3216 create_empty_buffers(page, blocksize, 0); 3217 } else { 3218 /* 3219 * If there are no partial blocks, 3220 * there is nothing to update, 3221 * so we can return now 3222 */ 3223 return 0; 3224 } 3225 } 3226 3227 /* Find the buffer that contains "offset" */ 3228 bh = page_buffers(page); 3229 pos = blocksize; 3230 while (offset >= pos) { 3231 bh = bh->b_this_page; 3232 iblock++; 3233 pos += blocksize; 3234 } 3235 3236 pos = offset; 3237 while (pos < offset + length) { 3238 unsigned int end_of_block, range_to_discard; 3239 3240 err = 0; 3241 3242 /* The length of space left to zero and unmap */ 3243 range_to_discard = offset + length - pos; 3244 3245 /* The length of space until the end of the block */ 3246 end_of_block = blocksize - (pos & (blocksize-1)); 3247 3248 /* 3249 * Do not unmap or zero past end of block 3250 * for this buffer head 3251 */ 3252 if (range_to_discard > end_of_block) 3253 range_to_discard = end_of_block; 3254 3255 3256 /* 3257 * Skip this buffer head if we are only zeroing unampped 3258 * regions of the page 3259 */ 3260 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED && 3261 buffer_mapped(bh)) 3262 goto next; 3263 3264 /* If the range is block aligned, unmap */ 3265 if (range_to_discard == blocksize) { 3266 clear_buffer_dirty(bh); 3267 bh->b_bdev = NULL; 3268 clear_buffer_mapped(bh); 3269 clear_buffer_req(bh); 3270 clear_buffer_new(bh); 3271 clear_buffer_delay(bh); 3272 clear_buffer_unwritten(bh); 3273 clear_buffer_uptodate(bh); 3274 zero_user(page, pos, range_to_discard); 3275 BUFFER_TRACE(bh, "Buffer discarded"); 3276 goto next; 3277 } 3278 3279 /* 3280 * If this block is not completely contained in the range 3281 * to be discarded, then it is not going to be released. Because 3282 * we need to keep this block, we need to make sure this part 3283 * of the page is uptodate before we modify it by writeing 3284 * partial zeros on it. 3285 */ 3286 if (!buffer_mapped(bh)) { 3287 /* 3288 * Buffer head must be mapped before we can read 3289 * from the block 3290 */ 3291 BUFFER_TRACE(bh, "unmapped"); 3292 ext4_get_block(inode, iblock, bh, 0); 3293 /* unmapped? It's a hole - nothing to do */ 3294 if (!buffer_mapped(bh)) { 3295 BUFFER_TRACE(bh, "still unmapped"); 3296 goto next; 3297 } 3298 } 3299 3300 /* Ok, it's mapped. Make sure it's up-to-date */ 3301 if (PageUptodate(page)) 3302 set_buffer_uptodate(bh); 3303 3304 if (!buffer_uptodate(bh)) { 3305 err = -EIO; 3306 ll_rw_block(READ, 1, &bh); 3307 wait_on_buffer(bh); 3308 /* Uhhuh. Read error. Complain and punt.*/ 3309 if (!buffer_uptodate(bh)) 3310 goto next; 3311 } 3312 3313 if (ext4_should_journal_data(inode)) { 3314 BUFFER_TRACE(bh, "get write access"); 3315 err = ext4_journal_get_write_access(handle, bh); 3316 if (err) 3317 goto next; 3318 } 3319 3320 zero_user(page, pos, range_to_discard); 3321 3322 err = 0; 3323 if (ext4_should_journal_data(inode)) { 3324 err = ext4_handle_dirty_metadata(handle, inode, bh); 3325 } else 3326 mark_buffer_dirty(bh); 3327 3328 BUFFER_TRACE(bh, "Partial buffer zeroed"); 3329 next: 3330 bh = bh->b_this_page; 3331 iblock++; 3332 pos += range_to_discard; 3333 } 3334 3335 return err; 3336 } 3337 3338 /* 3339 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3340 * up to the end of the block which corresponds to `from'. 3341 * This required during truncate. We need to physically zero the tail end 3342 * of that block so it doesn't yield old data if the file is later grown. 3343 */ 3344 int ext4_block_truncate_page(handle_t *handle, 3345 struct address_space *mapping, loff_t from) 3346 { 3347 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3348 unsigned length; 3349 unsigned blocksize; 3350 struct inode *inode = mapping->host; 3351 3352 blocksize = inode->i_sb->s_blocksize; 3353 length = blocksize - (offset & (blocksize - 1)); 3354 3355 return ext4_block_zero_page_range(handle, mapping, from, length); 3356 } 3357 3358 /* 3359 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3360 * starting from file offset 'from'. The range to be zero'd must 3361 * be contained with in one block. If the specified range exceeds 3362 * the end of the block it will be shortened to end of the block 3363 * that cooresponds to 'from' 3364 */ 3365 int ext4_block_zero_page_range(handle_t *handle, 3366 struct address_space *mapping, loff_t from, loff_t length) 3367 { 3368 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3369 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3370 unsigned blocksize, max, pos; 3371 ext4_lblk_t iblock; 3372 struct inode *inode = mapping->host; 3373 struct buffer_head *bh; 3374 struct page *page; 3375 int err = 0; 3376 3377 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3378 mapping_gfp_mask(mapping) & ~__GFP_FS); 3379 if (!page) 3380 return -ENOMEM; 3381 3382 blocksize = inode->i_sb->s_blocksize; 3383 max = blocksize - (offset & (blocksize - 1)); 3384 3385 /* 3386 * correct length if it does not fall between 3387 * 'from' and the end of the block 3388 */ 3389 if (length > max || length < 0) 3390 length = max; 3391 3392 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3393 3394 if (!page_has_buffers(page)) 3395 create_empty_buffers(page, blocksize, 0); 3396 3397 /* Find the buffer that contains "offset" */ 3398 bh = page_buffers(page); 3399 pos = blocksize; 3400 while (offset >= pos) { 3401 bh = bh->b_this_page; 3402 iblock++; 3403 pos += blocksize; 3404 } 3405 3406 err = 0; 3407 if (buffer_freed(bh)) { 3408 BUFFER_TRACE(bh, "freed: skip"); 3409 goto unlock; 3410 } 3411 3412 if (!buffer_mapped(bh)) { 3413 BUFFER_TRACE(bh, "unmapped"); 3414 ext4_get_block(inode, iblock, bh, 0); 3415 /* unmapped? It's a hole - nothing to do */ 3416 if (!buffer_mapped(bh)) { 3417 BUFFER_TRACE(bh, "still unmapped"); 3418 goto unlock; 3419 } 3420 } 3421 3422 /* Ok, it's mapped. Make sure it's up-to-date */ 3423 if (PageUptodate(page)) 3424 set_buffer_uptodate(bh); 3425 3426 if (!buffer_uptodate(bh)) { 3427 err = -EIO; 3428 ll_rw_block(READ, 1, &bh); 3429 wait_on_buffer(bh); 3430 /* Uhhuh. Read error. Complain and punt. */ 3431 if (!buffer_uptodate(bh)) 3432 goto unlock; 3433 } 3434 3435 if (ext4_should_journal_data(inode)) { 3436 BUFFER_TRACE(bh, "get write access"); 3437 err = ext4_journal_get_write_access(handle, bh); 3438 if (err) 3439 goto unlock; 3440 } 3441 3442 zero_user(page, offset, length); 3443 3444 BUFFER_TRACE(bh, "zeroed end of block"); 3445 3446 err = 0; 3447 if (ext4_should_journal_data(inode)) { 3448 err = ext4_handle_dirty_metadata(handle, inode, bh); 3449 } else 3450 mark_buffer_dirty(bh); 3451 3452 unlock: 3453 unlock_page(page); 3454 page_cache_release(page); 3455 return err; 3456 } 3457 3458 int ext4_can_truncate(struct inode *inode) 3459 { 3460 if (S_ISREG(inode->i_mode)) 3461 return 1; 3462 if (S_ISDIR(inode->i_mode)) 3463 return 1; 3464 if (S_ISLNK(inode->i_mode)) 3465 return !ext4_inode_is_fast_symlink(inode); 3466 return 0; 3467 } 3468 3469 /* 3470 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3471 * associated with the given offset and length 3472 * 3473 * @inode: File inode 3474 * @offset: The offset where the hole will begin 3475 * @len: The length of the hole 3476 * 3477 * Returns: 0 on sucess or negative on failure 3478 */ 3479 3480 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3481 { 3482 struct inode *inode = file->f_path.dentry->d_inode; 3483 if (!S_ISREG(inode->i_mode)) 3484 return -ENOTSUPP; 3485 3486 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 3487 /* TODO: Add support for non extent hole punching */ 3488 return -ENOTSUPP; 3489 } 3490 3491 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) { 3492 /* TODO: Add support for bigalloc file systems */ 3493 return -ENOTSUPP; 3494 } 3495 3496 return ext4_ext_punch_hole(file, offset, length); 3497 } 3498 3499 /* 3500 * ext4_truncate() 3501 * 3502 * We block out ext4_get_block() block instantiations across the entire 3503 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3504 * simultaneously on behalf of the same inode. 3505 * 3506 * As we work through the truncate and commmit bits of it to the journal there 3507 * is one core, guiding principle: the file's tree must always be consistent on 3508 * disk. We must be able to restart the truncate after a crash. 3509 * 3510 * The file's tree may be transiently inconsistent in memory (although it 3511 * probably isn't), but whenever we close off and commit a journal transaction, 3512 * the contents of (the filesystem + the journal) must be consistent and 3513 * restartable. It's pretty simple, really: bottom up, right to left (although 3514 * left-to-right works OK too). 3515 * 3516 * Note that at recovery time, journal replay occurs *before* the restart of 3517 * truncate against the orphan inode list. 3518 * 3519 * The committed inode has the new, desired i_size (which is the same as 3520 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3521 * that this inode's truncate did not complete and it will again call 3522 * ext4_truncate() to have another go. So there will be instantiated blocks 3523 * to the right of the truncation point in a crashed ext4 filesystem. But 3524 * that's fine - as long as they are linked from the inode, the post-crash 3525 * ext4_truncate() run will find them and release them. 3526 */ 3527 void ext4_truncate(struct inode *inode) 3528 { 3529 trace_ext4_truncate_enter(inode); 3530 3531 if (!ext4_can_truncate(inode)) 3532 return; 3533 3534 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3535 3536 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3537 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3538 3539 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3540 ext4_ext_truncate(inode); 3541 else 3542 ext4_ind_truncate(inode); 3543 3544 trace_ext4_truncate_exit(inode); 3545 } 3546 3547 /* 3548 * ext4_get_inode_loc returns with an extra refcount against the inode's 3549 * underlying buffer_head on success. If 'in_mem' is true, we have all 3550 * data in memory that is needed to recreate the on-disk version of this 3551 * inode. 3552 */ 3553 static int __ext4_get_inode_loc(struct inode *inode, 3554 struct ext4_iloc *iloc, int in_mem) 3555 { 3556 struct ext4_group_desc *gdp; 3557 struct buffer_head *bh; 3558 struct super_block *sb = inode->i_sb; 3559 ext4_fsblk_t block; 3560 int inodes_per_block, inode_offset; 3561 3562 iloc->bh = NULL; 3563 if (!ext4_valid_inum(sb, inode->i_ino)) 3564 return -EIO; 3565 3566 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3567 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3568 if (!gdp) 3569 return -EIO; 3570 3571 /* 3572 * Figure out the offset within the block group inode table 3573 */ 3574 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3575 inode_offset = ((inode->i_ino - 1) % 3576 EXT4_INODES_PER_GROUP(sb)); 3577 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3578 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3579 3580 bh = sb_getblk(sb, block); 3581 if (!bh) { 3582 EXT4_ERROR_INODE_BLOCK(inode, block, 3583 "unable to read itable block"); 3584 return -EIO; 3585 } 3586 if (!buffer_uptodate(bh)) { 3587 lock_buffer(bh); 3588 3589 /* 3590 * If the buffer has the write error flag, we have failed 3591 * to write out another inode in the same block. In this 3592 * case, we don't have to read the block because we may 3593 * read the old inode data successfully. 3594 */ 3595 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3596 set_buffer_uptodate(bh); 3597 3598 if (buffer_uptodate(bh)) { 3599 /* someone brought it uptodate while we waited */ 3600 unlock_buffer(bh); 3601 goto has_buffer; 3602 } 3603 3604 /* 3605 * If we have all information of the inode in memory and this 3606 * is the only valid inode in the block, we need not read the 3607 * block. 3608 */ 3609 if (in_mem) { 3610 struct buffer_head *bitmap_bh; 3611 int i, start; 3612 3613 start = inode_offset & ~(inodes_per_block - 1); 3614 3615 /* Is the inode bitmap in cache? */ 3616 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3617 if (!bitmap_bh) 3618 goto make_io; 3619 3620 /* 3621 * If the inode bitmap isn't in cache then the 3622 * optimisation may end up performing two reads instead 3623 * of one, so skip it. 3624 */ 3625 if (!buffer_uptodate(bitmap_bh)) { 3626 brelse(bitmap_bh); 3627 goto make_io; 3628 } 3629 for (i = start; i < start + inodes_per_block; i++) { 3630 if (i == inode_offset) 3631 continue; 3632 if (ext4_test_bit(i, bitmap_bh->b_data)) 3633 break; 3634 } 3635 brelse(bitmap_bh); 3636 if (i == start + inodes_per_block) { 3637 /* all other inodes are free, so skip I/O */ 3638 memset(bh->b_data, 0, bh->b_size); 3639 set_buffer_uptodate(bh); 3640 unlock_buffer(bh); 3641 goto has_buffer; 3642 } 3643 } 3644 3645 make_io: 3646 /* 3647 * If we need to do any I/O, try to pre-readahead extra 3648 * blocks from the inode table. 3649 */ 3650 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3651 ext4_fsblk_t b, end, table; 3652 unsigned num; 3653 3654 table = ext4_inode_table(sb, gdp); 3655 /* s_inode_readahead_blks is always a power of 2 */ 3656 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1); 3657 if (table > b) 3658 b = table; 3659 end = b + EXT4_SB(sb)->s_inode_readahead_blks; 3660 num = EXT4_INODES_PER_GROUP(sb); 3661 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3662 EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3663 num -= ext4_itable_unused_count(sb, gdp); 3664 table += num / inodes_per_block; 3665 if (end > table) 3666 end = table; 3667 while (b <= end) 3668 sb_breadahead(sb, b++); 3669 } 3670 3671 /* 3672 * There are other valid inodes in the buffer, this inode 3673 * has in-inode xattrs, or we don't have this inode in memory. 3674 * Read the block from disk. 3675 */ 3676 trace_ext4_load_inode(inode); 3677 get_bh(bh); 3678 bh->b_end_io = end_buffer_read_sync; 3679 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3680 wait_on_buffer(bh); 3681 if (!buffer_uptodate(bh)) { 3682 EXT4_ERROR_INODE_BLOCK(inode, block, 3683 "unable to read itable block"); 3684 brelse(bh); 3685 return -EIO; 3686 } 3687 } 3688 has_buffer: 3689 iloc->bh = bh; 3690 return 0; 3691 } 3692 3693 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3694 { 3695 /* We have all inode data except xattrs in memory here. */ 3696 return __ext4_get_inode_loc(inode, iloc, 3697 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3698 } 3699 3700 void ext4_set_inode_flags(struct inode *inode) 3701 { 3702 unsigned int flags = EXT4_I(inode)->i_flags; 3703 3704 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3705 if (flags & EXT4_SYNC_FL) 3706 inode->i_flags |= S_SYNC; 3707 if (flags & EXT4_APPEND_FL) 3708 inode->i_flags |= S_APPEND; 3709 if (flags & EXT4_IMMUTABLE_FL) 3710 inode->i_flags |= S_IMMUTABLE; 3711 if (flags & EXT4_NOATIME_FL) 3712 inode->i_flags |= S_NOATIME; 3713 if (flags & EXT4_DIRSYNC_FL) 3714 inode->i_flags |= S_DIRSYNC; 3715 } 3716 3717 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3718 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3719 { 3720 unsigned int vfs_fl; 3721 unsigned long old_fl, new_fl; 3722 3723 do { 3724 vfs_fl = ei->vfs_inode.i_flags; 3725 old_fl = ei->i_flags; 3726 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3727 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3728 EXT4_DIRSYNC_FL); 3729 if (vfs_fl & S_SYNC) 3730 new_fl |= EXT4_SYNC_FL; 3731 if (vfs_fl & S_APPEND) 3732 new_fl |= EXT4_APPEND_FL; 3733 if (vfs_fl & S_IMMUTABLE) 3734 new_fl |= EXT4_IMMUTABLE_FL; 3735 if (vfs_fl & S_NOATIME) 3736 new_fl |= EXT4_NOATIME_FL; 3737 if (vfs_fl & S_DIRSYNC) 3738 new_fl |= EXT4_DIRSYNC_FL; 3739 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3740 } 3741 3742 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3743 struct ext4_inode_info *ei) 3744 { 3745 blkcnt_t i_blocks ; 3746 struct inode *inode = &(ei->vfs_inode); 3747 struct super_block *sb = inode->i_sb; 3748 3749 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3750 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3751 /* we are using combined 48 bit field */ 3752 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3753 le32_to_cpu(raw_inode->i_blocks_lo); 3754 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 3755 /* i_blocks represent file system block size */ 3756 return i_blocks << (inode->i_blkbits - 9); 3757 } else { 3758 return i_blocks; 3759 } 3760 } else { 3761 return le32_to_cpu(raw_inode->i_blocks_lo); 3762 } 3763 } 3764 3765 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 3766 { 3767 struct ext4_iloc iloc; 3768 struct ext4_inode *raw_inode; 3769 struct ext4_inode_info *ei; 3770 struct inode *inode; 3771 journal_t *journal = EXT4_SB(sb)->s_journal; 3772 long ret; 3773 int block; 3774 3775 inode = iget_locked(sb, ino); 3776 if (!inode) 3777 return ERR_PTR(-ENOMEM); 3778 if (!(inode->i_state & I_NEW)) 3779 return inode; 3780 3781 ei = EXT4_I(inode); 3782 iloc.bh = NULL; 3783 3784 ret = __ext4_get_inode_loc(inode, &iloc, 0); 3785 if (ret < 0) 3786 goto bad_inode; 3787 raw_inode = ext4_raw_inode(&iloc); 3788 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 3789 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 3790 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 3791 if (!(test_opt(inode->i_sb, NO_UID32))) { 3792 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 3793 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 3794 } 3795 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 3796 3797 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 3798 ei->i_dir_start_lookup = 0; 3799 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 3800 /* We now have enough fields to check if the inode was active or not. 3801 * This is needed because nfsd might try to access dead inodes 3802 * the test is that same one that e2fsck uses 3803 * NeilBrown 1999oct15 3804 */ 3805 if (inode->i_nlink == 0) { 3806 if (inode->i_mode == 0 || 3807 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 3808 /* this inode is deleted */ 3809 ret = -ESTALE; 3810 goto bad_inode; 3811 } 3812 /* The only unlinked inodes we let through here have 3813 * valid i_mode and are being read by the orphan 3814 * recovery code: that's fine, we're about to complete 3815 * the process of deleting those. */ 3816 } 3817 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 3818 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 3819 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 3820 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 3821 ei->i_file_acl |= 3822 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 3823 inode->i_size = ext4_isize(raw_inode); 3824 ei->i_disksize = inode->i_size; 3825 #ifdef CONFIG_QUOTA 3826 ei->i_reserved_quota = 0; 3827 #endif 3828 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 3829 ei->i_block_group = iloc.block_group; 3830 ei->i_last_alloc_group = ~0; 3831 /* 3832 * NOTE! The in-memory inode i_data array is in little-endian order 3833 * even on big-endian machines: we do NOT byteswap the block numbers! 3834 */ 3835 for (block = 0; block < EXT4_N_BLOCKS; block++) 3836 ei->i_data[block] = raw_inode->i_block[block]; 3837 INIT_LIST_HEAD(&ei->i_orphan); 3838 3839 /* 3840 * Set transaction id's of transactions that have to be committed 3841 * to finish f[data]sync. We set them to currently running transaction 3842 * as we cannot be sure that the inode or some of its metadata isn't 3843 * part of the transaction - the inode could have been reclaimed and 3844 * now it is reread from disk. 3845 */ 3846 if (journal) { 3847 transaction_t *transaction; 3848 tid_t tid; 3849 3850 read_lock(&journal->j_state_lock); 3851 if (journal->j_running_transaction) 3852 transaction = journal->j_running_transaction; 3853 else 3854 transaction = journal->j_committing_transaction; 3855 if (transaction) 3856 tid = transaction->t_tid; 3857 else 3858 tid = journal->j_commit_sequence; 3859 read_unlock(&journal->j_state_lock); 3860 ei->i_sync_tid = tid; 3861 ei->i_datasync_tid = tid; 3862 } 3863 3864 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3865 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 3866 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 3867 EXT4_INODE_SIZE(inode->i_sb)) { 3868 ret = -EIO; 3869 goto bad_inode; 3870 } 3871 if (ei->i_extra_isize == 0) { 3872 /* The extra space is currently unused. Use it. */ 3873 ei->i_extra_isize = sizeof(struct ext4_inode) - 3874 EXT4_GOOD_OLD_INODE_SIZE; 3875 } else { 3876 __le32 *magic = (void *)raw_inode + 3877 EXT4_GOOD_OLD_INODE_SIZE + 3878 ei->i_extra_isize; 3879 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 3880 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 3881 } 3882 } else 3883 ei->i_extra_isize = 0; 3884 3885 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 3886 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 3887 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 3888 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 3889 3890 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 3891 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3892 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 3893 inode->i_version |= 3894 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 3895 } 3896 3897 ret = 0; 3898 if (ei->i_file_acl && 3899 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 3900 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 3901 ei->i_file_acl); 3902 ret = -EIO; 3903 goto bad_inode; 3904 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 3905 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 3906 (S_ISLNK(inode->i_mode) && 3907 !ext4_inode_is_fast_symlink(inode))) 3908 /* Validate extent which is part of inode */ 3909 ret = ext4_ext_check_inode(inode); 3910 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 3911 (S_ISLNK(inode->i_mode) && 3912 !ext4_inode_is_fast_symlink(inode))) { 3913 /* Validate block references which are part of inode */ 3914 ret = ext4_ind_check_inode(inode); 3915 } 3916 if (ret) 3917 goto bad_inode; 3918 3919 if (S_ISREG(inode->i_mode)) { 3920 inode->i_op = &ext4_file_inode_operations; 3921 inode->i_fop = &ext4_file_operations; 3922 ext4_set_aops(inode); 3923 } else if (S_ISDIR(inode->i_mode)) { 3924 inode->i_op = &ext4_dir_inode_operations; 3925 inode->i_fop = &ext4_dir_operations; 3926 } else if (S_ISLNK(inode->i_mode)) { 3927 if (ext4_inode_is_fast_symlink(inode)) { 3928 inode->i_op = &ext4_fast_symlink_inode_operations; 3929 nd_terminate_link(ei->i_data, inode->i_size, 3930 sizeof(ei->i_data) - 1); 3931 } else { 3932 inode->i_op = &ext4_symlink_inode_operations; 3933 ext4_set_aops(inode); 3934 } 3935 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 3936 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 3937 inode->i_op = &ext4_special_inode_operations; 3938 if (raw_inode->i_block[0]) 3939 init_special_inode(inode, inode->i_mode, 3940 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 3941 else 3942 init_special_inode(inode, inode->i_mode, 3943 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 3944 } else { 3945 ret = -EIO; 3946 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 3947 goto bad_inode; 3948 } 3949 brelse(iloc.bh); 3950 ext4_set_inode_flags(inode); 3951 unlock_new_inode(inode); 3952 return inode; 3953 3954 bad_inode: 3955 brelse(iloc.bh); 3956 iget_failed(inode); 3957 return ERR_PTR(ret); 3958 } 3959 3960 static int ext4_inode_blocks_set(handle_t *handle, 3961 struct ext4_inode *raw_inode, 3962 struct ext4_inode_info *ei) 3963 { 3964 struct inode *inode = &(ei->vfs_inode); 3965 u64 i_blocks = inode->i_blocks; 3966 struct super_block *sb = inode->i_sb; 3967 3968 if (i_blocks <= ~0U) { 3969 /* 3970 * i_blocks can be represnted in a 32 bit variable 3971 * as multiple of 512 bytes 3972 */ 3973 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3974 raw_inode->i_blocks_high = 0; 3975 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 3976 return 0; 3977 } 3978 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 3979 return -EFBIG; 3980 3981 if (i_blocks <= 0xffffffffffffULL) { 3982 /* 3983 * i_blocks can be represented in a 48 bit variable 3984 * as multiple of 512 bytes 3985 */ 3986 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3987 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 3988 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 3989 } else { 3990 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 3991 /* i_block is stored in file system block size */ 3992 i_blocks = i_blocks >> (inode->i_blkbits - 9); 3993 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3994 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 3995 } 3996 return 0; 3997 } 3998 3999 /* 4000 * Post the struct inode info into an on-disk inode location in the 4001 * buffer-cache. This gobbles the caller's reference to the 4002 * buffer_head in the inode location struct. 4003 * 4004 * The caller must have write access to iloc->bh. 4005 */ 4006 static int ext4_do_update_inode(handle_t *handle, 4007 struct inode *inode, 4008 struct ext4_iloc *iloc) 4009 { 4010 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4011 struct ext4_inode_info *ei = EXT4_I(inode); 4012 struct buffer_head *bh = iloc->bh; 4013 int err = 0, rc, block; 4014 4015 /* For fields not not tracking in the in-memory inode, 4016 * initialise them to zero for new inodes. */ 4017 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4018 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4019 4020 ext4_get_inode_flags(ei); 4021 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4022 if (!(test_opt(inode->i_sb, NO_UID32))) { 4023 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 4024 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 4025 /* 4026 * Fix up interoperability with old kernels. Otherwise, old inodes get 4027 * re-used with the upper 16 bits of the uid/gid intact 4028 */ 4029 if (!ei->i_dtime) { 4030 raw_inode->i_uid_high = 4031 cpu_to_le16(high_16_bits(inode->i_uid)); 4032 raw_inode->i_gid_high = 4033 cpu_to_le16(high_16_bits(inode->i_gid)); 4034 } else { 4035 raw_inode->i_uid_high = 0; 4036 raw_inode->i_gid_high = 0; 4037 } 4038 } else { 4039 raw_inode->i_uid_low = 4040 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 4041 raw_inode->i_gid_low = 4042 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 4043 raw_inode->i_uid_high = 0; 4044 raw_inode->i_gid_high = 0; 4045 } 4046 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4047 4048 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4049 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4050 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4051 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4052 4053 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 4054 goto out_brelse; 4055 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4056 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4057 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4058 cpu_to_le32(EXT4_OS_HURD)) 4059 raw_inode->i_file_acl_high = 4060 cpu_to_le16(ei->i_file_acl >> 32); 4061 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4062 ext4_isize_set(raw_inode, ei->i_disksize); 4063 if (ei->i_disksize > 0x7fffffffULL) { 4064 struct super_block *sb = inode->i_sb; 4065 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4066 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4067 EXT4_SB(sb)->s_es->s_rev_level == 4068 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 4069 /* If this is the first large file 4070 * created, add a flag to the superblock. 4071 */ 4072 err = ext4_journal_get_write_access(handle, 4073 EXT4_SB(sb)->s_sbh); 4074 if (err) 4075 goto out_brelse; 4076 ext4_update_dynamic_rev(sb); 4077 EXT4_SET_RO_COMPAT_FEATURE(sb, 4078 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4079 sb->s_dirt = 1; 4080 ext4_handle_sync(handle); 4081 err = ext4_handle_dirty_metadata(handle, NULL, 4082 EXT4_SB(sb)->s_sbh); 4083 } 4084 } 4085 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4086 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4087 if (old_valid_dev(inode->i_rdev)) { 4088 raw_inode->i_block[0] = 4089 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4090 raw_inode->i_block[1] = 0; 4091 } else { 4092 raw_inode->i_block[0] = 0; 4093 raw_inode->i_block[1] = 4094 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4095 raw_inode->i_block[2] = 0; 4096 } 4097 } else 4098 for (block = 0; block < EXT4_N_BLOCKS; block++) 4099 raw_inode->i_block[block] = ei->i_data[block]; 4100 4101 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4102 if (ei->i_extra_isize) { 4103 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4104 raw_inode->i_version_hi = 4105 cpu_to_le32(inode->i_version >> 32); 4106 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 4107 } 4108 4109 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4110 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4111 if (!err) 4112 err = rc; 4113 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4114 4115 ext4_update_inode_fsync_trans(handle, inode, 0); 4116 out_brelse: 4117 brelse(bh); 4118 ext4_std_error(inode->i_sb, err); 4119 return err; 4120 } 4121 4122 /* 4123 * ext4_write_inode() 4124 * 4125 * We are called from a few places: 4126 * 4127 * - Within generic_file_write() for O_SYNC files. 4128 * Here, there will be no transaction running. We wait for any running 4129 * trasnaction to commit. 4130 * 4131 * - Within sys_sync(), kupdate and such. 4132 * We wait on commit, if tol to. 4133 * 4134 * - Within prune_icache() (PF_MEMALLOC == true) 4135 * Here we simply return. We can't afford to block kswapd on the 4136 * journal commit. 4137 * 4138 * In all cases it is actually safe for us to return without doing anything, 4139 * because the inode has been copied into a raw inode buffer in 4140 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 4141 * knfsd. 4142 * 4143 * Note that we are absolutely dependent upon all inode dirtiers doing the 4144 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4145 * which we are interested. 4146 * 4147 * It would be a bug for them to not do this. The code: 4148 * 4149 * mark_inode_dirty(inode) 4150 * stuff(); 4151 * inode->i_size = expr; 4152 * 4153 * is in error because a kswapd-driven write_inode() could occur while 4154 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4155 * will no longer be on the superblock's dirty inode list. 4156 */ 4157 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4158 { 4159 int err; 4160 4161 if (current->flags & PF_MEMALLOC) 4162 return 0; 4163 4164 if (EXT4_SB(inode->i_sb)->s_journal) { 4165 if (ext4_journal_current_handle()) { 4166 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4167 dump_stack(); 4168 return -EIO; 4169 } 4170 4171 if (wbc->sync_mode != WB_SYNC_ALL) 4172 return 0; 4173 4174 err = ext4_force_commit(inode->i_sb); 4175 } else { 4176 struct ext4_iloc iloc; 4177 4178 err = __ext4_get_inode_loc(inode, &iloc, 0); 4179 if (err) 4180 return err; 4181 if (wbc->sync_mode == WB_SYNC_ALL) 4182 sync_dirty_buffer(iloc.bh); 4183 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4184 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4185 "IO error syncing inode"); 4186 err = -EIO; 4187 } 4188 brelse(iloc.bh); 4189 } 4190 return err; 4191 } 4192 4193 /* 4194 * ext4_setattr() 4195 * 4196 * Called from notify_change. 4197 * 4198 * We want to trap VFS attempts to truncate the file as soon as 4199 * possible. In particular, we want to make sure that when the VFS 4200 * shrinks i_size, we put the inode on the orphan list and modify 4201 * i_disksize immediately, so that during the subsequent flushing of 4202 * dirty pages and freeing of disk blocks, we can guarantee that any 4203 * commit will leave the blocks being flushed in an unused state on 4204 * disk. (On recovery, the inode will get truncated and the blocks will 4205 * be freed, so we have a strong guarantee that no future commit will 4206 * leave these blocks visible to the user.) 4207 * 4208 * Another thing we have to assure is that if we are in ordered mode 4209 * and inode is still attached to the committing transaction, we must 4210 * we start writeout of all the dirty pages which are being truncated. 4211 * This way we are sure that all the data written in the previous 4212 * transaction are already on disk (truncate waits for pages under 4213 * writeback). 4214 * 4215 * Called with inode->i_mutex down. 4216 */ 4217 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4218 { 4219 struct inode *inode = dentry->d_inode; 4220 int error, rc = 0; 4221 int orphan = 0; 4222 const unsigned int ia_valid = attr->ia_valid; 4223 4224 error = inode_change_ok(inode, attr); 4225 if (error) 4226 return error; 4227 4228 if (is_quota_modification(inode, attr)) 4229 dquot_initialize(inode); 4230 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 4231 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 4232 handle_t *handle; 4233 4234 /* (user+group)*(old+new) structure, inode write (sb, 4235 * inode block, ? - but truncate inode update has it) */ 4236 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+ 4237 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3); 4238 if (IS_ERR(handle)) { 4239 error = PTR_ERR(handle); 4240 goto err_out; 4241 } 4242 error = dquot_transfer(inode, attr); 4243 if (error) { 4244 ext4_journal_stop(handle); 4245 return error; 4246 } 4247 /* Update corresponding info in inode so that everything is in 4248 * one transaction */ 4249 if (attr->ia_valid & ATTR_UID) 4250 inode->i_uid = attr->ia_uid; 4251 if (attr->ia_valid & ATTR_GID) 4252 inode->i_gid = attr->ia_gid; 4253 error = ext4_mark_inode_dirty(handle, inode); 4254 ext4_journal_stop(handle); 4255 } 4256 4257 if (attr->ia_valid & ATTR_SIZE) { 4258 inode_dio_wait(inode); 4259 4260 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4261 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4262 4263 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4264 return -EFBIG; 4265 } 4266 } 4267 4268 if (S_ISREG(inode->i_mode) && 4269 attr->ia_valid & ATTR_SIZE && 4270 (attr->ia_size < inode->i_size)) { 4271 handle_t *handle; 4272 4273 handle = ext4_journal_start(inode, 3); 4274 if (IS_ERR(handle)) { 4275 error = PTR_ERR(handle); 4276 goto err_out; 4277 } 4278 if (ext4_handle_valid(handle)) { 4279 error = ext4_orphan_add(handle, inode); 4280 orphan = 1; 4281 } 4282 EXT4_I(inode)->i_disksize = attr->ia_size; 4283 rc = ext4_mark_inode_dirty(handle, inode); 4284 if (!error) 4285 error = rc; 4286 ext4_journal_stop(handle); 4287 4288 if (ext4_should_order_data(inode)) { 4289 error = ext4_begin_ordered_truncate(inode, 4290 attr->ia_size); 4291 if (error) { 4292 /* Do as much error cleanup as possible */ 4293 handle = ext4_journal_start(inode, 3); 4294 if (IS_ERR(handle)) { 4295 ext4_orphan_del(NULL, inode); 4296 goto err_out; 4297 } 4298 ext4_orphan_del(handle, inode); 4299 orphan = 0; 4300 ext4_journal_stop(handle); 4301 goto err_out; 4302 } 4303 } 4304 } 4305 4306 if (attr->ia_valid & ATTR_SIZE) { 4307 if (attr->ia_size != i_size_read(inode)) { 4308 truncate_setsize(inode, attr->ia_size); 4309 ext4_truncate(inode); 4310 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) 4311 ext4_truncate(inode); 4312 } 4313 4314 if (!rc) { 4315 setattr_copy(inode, attr); 4316 mark_inode_dirty(inode); 4317 } 4318 4319 /* 4320 * If the call to ext4_truncate failed to get a transaction handle at 4321 * all, we need to clean up the in-core orphan list manually. 4322 */ 4323 if (orphan && inode->i_nlink) 4324 ext4_orphan_del(NULL, inode); 4325 4326 if (!rc && (ia_valid & ATTR_MODE)) 4327 rc = ext4_acl_chmod(inode); 4328 4329 err_out: 4330 ext4_std_error(inode->i_sb, error); 4331 if (!error) 4332 error = rc; 4333 return error; 4334 } 4335 4336 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4337 struct kstat *stat) 4338 { 4339 struct inode *inode; 4340 unsigned long delalloc_blocks; 4341 4342 inode = dentry->d_inode; 4343 generic_fillattr(inode, stat); 4344 4345 /* 4346 * We can't update i_blocks if the block allocation is delayed 4347 * otherwise in the case of system crash before the real block 4348 * allocation is done, we will have i_blocks inconsistent with 4349 * on-disk file blocks. 4350 * We always keep i_blocks updated together with real 4351 * allocation. But to not confuse with user, stat 4352 * will return the blocks that include the delayed allocation 4353 * blocks for this file. 4354 */ 4355 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks; 4356 4357 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 4358 return 0; 4359 } 4360 4361 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4362 { 4363 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4364 return ext4_ind_trans_blocks(inode, nrblocks, chunk); 4365 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 4366 } 4367 4368 /* 4369 * Account for index blocks, block groups bitmaps and block group 4370 * descriptor blocks if modify datablocks and index blocks 4371 * worse case, the indexs blocks spread over different block groups 4372 * 4373 * If datablocks are discontiguous, they are possible to spread over 4374 * different block groups too. If they are contiuguous, with flexbg, 4375 * they could still across block group boundary. 4376 * 4377 * Also account for superblock, inode, quota and xattr blocks 4378 */ 4379 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4380 { 4381 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4382 int gdpblocks; 4383 int idxblocks; 4384 int ret = 0; 4385 4386 /* 4387 * How many index blocks need to touch to modify nrblocks? 4388 * The "Chunk" flag indicating whether the nrblocks is 4389 * physically contiguous on disk 4390 * 4391 * For Direct IO and fallocate, they calls get_block to allocate 4392 * one single extent at a time, so they could set the "Chunk" flag 4393 */ 4394 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 4395 4396 ret = idxblocks; 4397 4398 /* 4399 * Now let's see how many group bitmaps and group descriptors need 4400 * to account 4401 */ 4402 groups = idxblocks; 4403 if (chunk) 4404 groups += 1; 4405 else 4406 groups += nrblocks; 4407 4408 gdpblocks = groups; 4409 if (groups > ngroups) 4410 groups = ngroups; 4411 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4412 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4413 4414 /* bitmaps and block group descriptor blocks */ 4415 ret += groups + gdpblocks; 4416 4417 /* Blocks for super block, inode, quota and xattr blocks */ 4418 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4419 4420 return ret; 4421 } 4422 4423 /* 4424 * Calculate the total number of credits to reserve to fit 4425 * the modification of a single pages into a single transaction, 4426 * which may include multiple chunks of block allocations. 4427 * 4428 * This could be called via ext4_write_begin() 4429 * 4430 * We need to consider the worse case, when 4431 * one new block per extent. 4432 */ 4433 int ext4_writepage_trans_blocks(struct inode *inode) 4434 { 4435 int bpp = ext4_journal_blocks_per_page(inode); 4436 int ret; 4437 4438 ret = ext4_meta_trans_blocks(inode, bpp, 0); 4439 4440 /* Account for data blocks for journalled mode */ 4441 if (ext4_should_journal_data(inode)) 4442 ret += bpp; 4443 return ret; 4444 } 4445 4446 /* 4447 * Calculate the journal credits for a chunk of data modification. 4448 * 4449 * This is called from DIO, fallocate or whoever calling 4450 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4451 * 4452 * journal buffers for data blocks are not included here, as DIO 4453 * and fallocate do no need to journal data buffers. 4454 */ 4455 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4456 { 4457 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4458 } 4459 4460 /* 4461 * The caller must have previously called ext4_reserve_inode_write(). 4462 * Give this, we know that the caller already has write access to iloc->bh. 4463 */ 4464 int ext4_mark_iloc_dirty(handle_t *handle, 4465 struct inode *inode, struct ext4_iloc *iloc) 4466 { 4467 int err = 0; 4468 4469 if (test_opt(inode->i_sb, I_VERSION)) 4470 inode_inc_iversion(inode); 4471 4472 /* the do_update_inode consumes one bh->b_count */ 4473 get_bh(iloc->bh); 4474 4475 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4476 err = ext4_do_update_inode(handle, inode, iloc); 4477 put_bh(iloc->bh); 4478 return err; 4479 } 4480 4481 /* 4482 * On success, We end up with an outstanding reference count against 4483 * iloc->bh. This _must_ be cleaned up later. 4484 */ 4485 4486 int 4487 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4488 struct ext4_iloc *iloc) 4489 { 4490 int err; 4491 4492 err = ext4_get_inode_loc(inode, iloc); 4493 if (!err) { 4494 BUFFER_TRACE(iloc->bh, "get_write_access"); 4495 err = ext4_journal_get_write_access(handle, iloc->bh); 4496 if (err) { 4497 brelse(iloc->bh); 4498 iloc->bh = NULL; 4499 } 4500 } 4501 ext4_std_error(inode->i_sb, err); 4502 return err; 4503 } 4504 4505 /* 4506 * Expand an inode by new_extra_isize bytes. 4507 * Returns 0 on success or negative error number on failure. 4508 */ 4509 static int ext4_expand_extra_isize(struct inode *inode, 4510 unsigned int new_extra_isize, 4511 struct ext4_iloc iloc, 4512 handle_t *handle) 4513 { 4514 struct ext4_inode *raw_inode; 4515 struct ext4_xattr_ibody_header *header; 4516 4517 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4518 return 0; 4519 4520 raw_inode = ext4_raw_inode(&iloc); 4521 4522 header = IHDR(inode, raw_inode); 4523 4524 /* No extended attributes present */ 4525 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4526 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4527 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4528 new_extra_isize); 4529 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4530 return 0; 4531 } 4532 4533 /* try to expand with EAs present */ 4534 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4535 raw_inode, handle); 4536 } 4537 4538 /* 4539 * What we do here is to mark the in-core inode as clean with respect to inode 4540 * dirtiness (it may still be data-dirty). 4541 * This means that the in-core inode may be reaped by prune_icache 4542 * without having to perform any I/O. This is a very good thing, 4543 * because *any* task may call prune_icache - even ones which 4544 * have a transaction open against a different journal. 4545 * 4546 * Is this cheating? Not really. Sure, we haven't written the 4547 * inode out, but prune_icache isn't a user-visible syncing function. 4548 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4549 * we start and wait on commits. 4550 * 4551 * Is this efficient/effective? Well, we're being nice to the system 4552 * by cleaning up our inodes proactively so they can be reaped 4553 * without I/O. But we are potentially leaving up to five seconds' 4554 * worth of inodes floating about which prune_icache wants us to 4555 * write out. One way to fix that would be to get prune_icache() 4556 * to do a write_super() to free up some memory. It has the desired 4557 * effect. 4558 */ 4559 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4560 { 4561 struct ext4_iloc iloc; 4562 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4563 static unsigned int mnt_count; 4564 int err, ret; 4565 4566 might_sleep(); 4567 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 4568 err = ext4_reserve_inode_write(handle, inode, &iloc); 4569 if (ext4_handle_valid(handle) && 4570 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4571 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 4572 /* 4573 * We need extra buffer credits since we may write into EA block 4574 * with this same handle. If journal_extend fails, then it will 4575 * only result in a minor loss of functionality for that inode. 4576 * If this is felt to be critical, then e2fsck should be run to 4577 * force a large enough s_min_extra_isize. 4578 */ 4579 if ((jbd2_journal_extend(handle, 4580 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4581 ret = ext4_expand_extra_isize(inode, 4582 sbi->s_want_extra_isize, 4583 iloc, handle); 4584 if (ret) { 4585 ext4_set_inode_state(inode, 4586 EXT4_STATE_NO_EXPAND); 4587 if (mnt_count != 4588 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4589 ext4_warning(inode->i_sb, 4590 "Unable to expand inode %lu. Delete" 4591 " some EAs or run e2fsck.", 4592 inode->i_ino); 4593 mnt_count = 4594 le16_to_cpu(sbi->s_es->s_mnt_count); 4595 } 4596 } 4597 } 4598 } 4599 if (!err) 4600 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4601 return err; 4602 } 4603 4604 /* 4605 * ext4_dirty_inode() is called from __mark_inode_dirty() 4606 * 4607 * We're really interested in the case where a file is being extended. 4608 * i_size has been changed by generic_commit_write() and we thus need 4609 * to include the updated inode in the current transaction. 4610 * 4611 * Also, dquot_alloc_block() will always dirty the inode when blocks 4612 * are allocated to the file. 4613 * 4614 * If the inode is marked synchronous, we don't honour that here - doing 4615 * so would cause a commit on atime updates, which we don't bother doing. 4616 * We handle synchronous inodes at the highest possible level. 4617 */ 4618 void ext4_dirty_inode(struct inode *inode, int flags) 4619 { 4620 handle_t *handle; 4621 4622 handle = ext4_journal_start(inode, 2); 4623 if (IS_ERR(handle)) 4624 goto out; 4625 4626 ext4_mark_inode_dirty(handle, inode); 4627 4628 ext4_journal_stop(handle); 4629 out: 4630 return; 4631 } 4632 4633 #if 0 4634 /* 4635 * Bind an inode's backing buffer_head into this transaction, to prevent 4636 * it from being flushed to disk early. Unlike 4637 * ext4_reserve_inode_write, this leaves behind no bh reference and 4638 * returns no iloc structure, so the caller needs to repeat the iloc 4639 * lookup to mark the inode dirty later. 4640 */ 4641 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4642 { 4643 struct ext4_iloc iloc; 4644 4645 int err = 0; 4646 if (handle) { 4647 err = ext4_get_inode_loc(inode, &iloc); 4648 if (!err) { 4649 BUFFER_TRACE(iloc.bh, "get_write_access"); 4650 err = jbd2_journal_get_write_access(handle, iloc.bh); 4651 if (!err) 4652 err = ext4_handle_dirty_metadata(handle, 4653 NULL, 4654 iloc.bh); 4655 brelse(iloc.bh); 4656 } 4657 } 4658 ext4_std_error(inode->i_sb, err); 4659 return err; 4660 } 4661 #endif 4662 4663 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4664 { 4665 journal_t *journal; 4666 handle_t *handle; 4667 int err; 4668 4669 /* 4670 * We have to be very careful here: changing a data block's 4671 * journaling status dynamically is dangerous. If we write a 4672 * data block to the journal, change the status and then delete 4673 * that block, we risk forgetting to revoke the old log record 4674 * from the journal and so a subsequent replay can corrupt data. 4675 * So, first we make sure that the journal is empty and that 4676 * nobody is changing anything. 4677 */ 4678 4679 journal = EXT4_JOURNAL(inode); 4680 if (!journal) 4681 return 0; 4682 if (is_journal_aborted(journal)) 4683 return -EROFS; 4684 4685 jbd2_journal_lock_updates(journal); 4686 jbd2_journal_flush(journal); 4687 4688 /* 4689 * OK, there are no updates running now, and all cached data is 4690 * synced to disk. We are now in a completely consistent state 4691 * which doesn't have anything in the journal, and we know that 4692 * no filesystem updates are running, so it is safe to modify 4693 * the inode's in-core data-journaling state flag now. 4694 */ 4695 4696 if (val) 4697 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4698 else 4699 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4700 ext4_set_aops(inode); 4701 4702 jbd2_journal_unlock_updates(journal); 4703 4704 /* Finally we can mark the inode as dirty. */ 4705 4706 handle = ext4_journal_start(inode, 1); 4707 if (IS_ERR(handle)) 4708 return PTR_ERR(handle); 4709 4710 err = ext4_mark_inode_dirty(handle, inode); 4711 ext4_handle_sync(handle); 4712 ext4_journal_stop(handle); 4713 ext4_std_error(inode->i_sb, err); 4714 4715 return err; 4716 } 4717 4718 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 4719 { 4720 return !buffer_mapped(bh); 4721 } 4722 4723 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 4724 { 4725 struct page *page = vmf->page; 4726 loff_t size; 4727 unsigned long len; 4728 int ret; 4729 struct file *file = vma->vm_file; 4730 struct inode *inode = file->f_path.dentry->d_inode; 4731 struct address_space *mapping = inode->i_mapping; 4732 handle_t *handle; 4733 get_block_t *get_block; 4734 int retries = 0; 4735 4736 /* 4737 * This check is racy but catches the common case. We rely on 4738 * __block_page_mkwrite() to do a reliable check. 4739 */ 4740 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 4741 /* Delalloc case is easy... */ 4742 if (test_opt(inode->i_sb, DELALLOC) && 4743 !ext4_should_journal_data(inode) && 4744 !ext4_nonda_switch(inode->i_sb)) { 4745 do { 4746 ret = __block_page_mkwrite(vma, vmf, 4747 ext4_da_get_block_prep); 4748 } while (ret == -ENOSPC && 4749 ext4_should_retry_alloc(inode->i_sb, &retries)); 4750 goto out_ret; 4751 } 4752 4753 lock_page(page); 4754 size = i_size_read(inode); 4755 /* Page got truncated from under us? */ 4756 if (page->mapping != mapping || page_offset(page) > size) { 4757 unlock_page(page); 4758 ret = VM_FAULT_NOPAGE; 4759 goto out; 4760 } 4761 4762 if (page->index == size >> PAGE_CACHE_SHIFT) 4763 len = size & ~PAGE_CACHE_MASK; 4764 else 4765 len = PAGE_CACHE_SIZE; 4766 /* 4767 * Return if we have all the buffers mapped. This avoids the need to do 4768 * journal_start/journal_stop which can block and take a long time 4769 */ 4770 if (page_has_buffers(page)) { 4771 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 4772 ext4_bh_unmapped)) { 4773 /* Wait so that we don't change page under IO */ 4774 wait_on_page_writeback(page); 4775 ret = VM_FAULT_LOCKED; 4776 goto out; 4777 } 4778 } 4779 unlock_page(page); 4780 /* OK, we need to fill the hole... */ 4781 if (ext4_should_dioread_nolock(inode)) 4782 get_block = ext4_get_block_write; 4783 else 4784 get_block = ext4_get_block; 4785 retry_alloc: 4786 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 4787 if (IS_ERR(handle)) { 4788 ret = VM_FAULT_SIGBUS; 4789 goto out; 4790 } 4791 ret = __block_page_mkwrite(vma, vmf, get_block); 4792 if (!ret && ext4_should_journal_data(inode)) { 4793 if (walk_page_buffers(handle, page_buffers(page), 0, 4794 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 4795 unlock_page(page); 4796 ret = VM_FAULT_SIGBUS; 4797 ext4_journal_stop(handle); 4798 goto out; 4799 } 4800 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 4801 } 4802 ext4_journal_stop(handle); 4803 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 4804 goto retry_alloc; 4805 out_ret: 4806 ret = block_page_mkwrite_return(ret); 4807 out: 4808 return ret; 4809 } 4810