xref: /linux/fs/ext4/inode.c (revision 045ddc8991698a8e9c5668c6190faa8b5d516dc0)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/module.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/jbd2.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46 
47 #include <trace/events/ext4.h>
48 
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50 
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52 					      loff_t new_size)
53 {
54 	trace_ext4_begin_ordered_truncate(inode, new_size);
55 	/*
56 	 * If jinode is zero, then we never opened the file for
57 	 * writing, so there's no need to call
58 	 * jbd2_journal_begin_ordered_truncate() since there's no
59 	 * outstanding writes we need to flush.
60 	 */
61 	if (!EXT4_I(inode)->jinode)
62 		return 0;
63 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
64 						   EXT4_I(inode)->jinode,
65 						   new_size);
66 }
67 
68 static void ext4_invalidatepage(struct page *page, unsigned long offset);
69 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
70 				   struct buffer_head *bh_result, int create);
71 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
72 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
73 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
74 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
75 
76 /*
77  * Test whether an inode is a fast symlink.
78  */
79 static int ext4_inode_is_fast_symlink(struct inode *inode)
80 {
81 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
82 		(inode->i_sb->s_blocksize >> 9) : 0;
83 
84 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
85 }
86 
87 /*
88  * Restart the transaction associated with *handle.  This does a commit,
89  * so before we call here everything must be consistently dirtied against
90  * this transaction.
91  */
92 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
93 				 int nblocks)
94 {
95 	int ret;
96 
97 	/*
98 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
99 	 * moment, get_block can be called only for blocks inside i_size since
100 	 * page cache has been already dropped and writes are blocked by
101 	 * i_mutex. So we can safely drop the i_data_sem here.
102 	 */
103 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
104 	jbd_debug(2, "restarting handle %p\n", handle);
105 	up_write(&EXT4_I(inode)->i_data_sem);
106 	ret = ext4_journal_restart(handle, nblocks);
107 	down_write(&EXT4_I(inode)->i_data_sem);
108 	ext4_discard_preallocations(inode);
109 
110 	return ret;
111 }
112 
113 /*
114  * Called at the last iput() if i_nlink is zero.
115  */
116 void ext4_evict_inode(struct inode *inode)
117 {
118 	handle_t *handle;
119 	int err;
120 
121 	trace_ext4_evict_inode(inode);
122 
123 	ext4_ioend_wait(inode);
124 
125 	if (inode->i_nlink) {
126 		/*
127 		 * When journalling data dirty buffers are tracked only in the
128 		 * journal. So although mm thinks everything is clean and
129 		 * ready for reaping the inode might still have some pages to
130 		 * write in the running transaction or waiting to be
131 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
132 		 * (via truncate_inode_pages()) to discard these buffers can
133 		 * cause data loss. Also even if we did not discard these
134 		 * buffers, we would have no way to find them after the inode
135 		 * is reaped and thus user could see stale data if he tries to
136 		 * read them before the transaction is checkpointed. So be
137 		 * careful and force everything to disk here... We use
138 		 * ei->i_datasync_tid to store the newest transaction
139 		 * containing inode's data.
140 		 *
141 		 * Note that directories do not have this problem because they
142 		 * don't use page cache.
143 		 */
144 		if (ext4_should_journal_data(inode) &&
145 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
146 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
147 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
148 
149 			jbd2_log_start_commit(journal, commit_tid);
150 			jbd2_log_wait_commit(journal, commit_tid);
151 			filemap_write_and_wait(&inode->i_data);
152 		}
153 		truncate_inode_pages(&inode->i_data, 0);
154 		goto no_delete;
155 	}
156 
157 	if (!is_bad_inode(inode))
158 		dquot_initialize(inode);
159 
160 	if (ext4_should_order_data(inode))
161 		ext4_begin_ordered_truncate(inode, 0);
162 	truncate_inode_pages(&inode->i_data, 0);
163 
164 	if (is_bad_inode(inode))
165 		goto no_delete;
166 
167 	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
168 	if (IS_ERR(handle)) {
169 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
170 		/*
171 		 * If we're going to skip the normal cleanup, we still need to
172 		 * make sure that the in-core orphan linked list is properly
173 		 * cleaned up.
174 		 */
175 		ext4_orphan_del(NULL, inode);
176 		goto no_delete;
177 	}
178 
179 	if (IS_SYNC(inode))
180 		ext4_handle_sync(handle);
181 	inode->i_size = 0;
182 	err = ext4_mark_inode_dirty(handle, inode);
183 	if (err) {
184 		ext4_warning(inode->i_sb,
185 			     "couldn't mark inode dirty (err %d)", err);
186 		goto stop_handle;
187 	}
188 	if (inode->i_blocks)
189 		ext4_truncate(inode);
190 
191 	/*
192 	 * ext4_ext_truncate() doesn't reserve any slop when it
193 	 * restarts journal transactions; therefore there may not be
194 	 * enough credits left in the handle to remove the inode from
195 	 * the orphan list and set the dtime field.
196 	 */
197 	if (!ext4_handle_has_enough_credits(handle, 3)) {
198 		err = ext4_journal_extend(handle, 3);
199 		if (err > 0)
200 			err = ext4_journal_restart(handle, 3);
201 		if (err != 0) {
202 			ext4_warning(inode->i_sb,
203 				     "couldn't extend journal (err %d)", err);
204 		stop_handle:
205 			ext4_journal_stop(handle);
206 			ext4_orphan_del(NULL, inode);
207 			goto no_delete;
208 		}
209 	}
210 
211 	/*
212 	 * Kill off the orphan record which ext4_truncate created.
213 	 * AKPM: I think this can be inside the above `if'.
214 	 * Note that ext4_orphan_del() has to be able to cope with the
215 	 * deletion of a non-existent orphan - this is because we don't
216 	 * know if ext4_truncate() actually created an orphan record.
217 	 * (Well, we could do this if we need to, but heck - it works)
218 	 */
219 	ext4_orphan_del(handle, inode);
220 	EXT4_I(inode)->i_dtime	= get_seconds();
221 
222 	/*
223 	 * One subtle ordering requirement: if anything has gone wrong
224 	 * (transaction abort, IO errors, whatever), then we can still
225 	 * do these next steps (the fs will already have been marked as
226 	 * having errors), but we can't free the inode if the mark_dirty
227 	 * fails.
228 	 */
229 	if (ext4_mark_inode_dirty(handle, inode))
230 		/* If that failed, just do the required in-core inode clear. */
231 		ext4_clear_inode(inode);
232 	else
233 		ext4_free_inode(handle, inode);
234 	ext4_journal_stop(handle);
235 	return;
236 no_delete:
237 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
238 }
239 
240 #ifdef CONFIG_QUOTA
241 qsize_t *ext4_get_reserved_space(struct inode *inode)
242 {
243 	return &EXT4_I(inode)->i_reserved_quota;
244 }
245 #endif
246 
247 /*
248  * Calculate the number of metadata blocks need to reserve
249  * to allocate a block located at @lblock
250  */
251 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
252 {
253 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
254 		return ext4_ext_calc_metadata_amount(inode, lblock);
255 
256 	return ext4_ind_calc_metadata_amount(inode, lblock);
257 }
258 
259 /*
260  * Called with i_data_sem down, which is important since we can call
261  * ext4_discard_preallocations() from here.
262  */
263 void ext4_da_update_reserve_space(struct inode *inode,
264 					int used, int quota_claim)
265 {
266 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
267 	struct ext4_inode_info *ei = EXT4_I(inode);
268 
269 	spin_lock(&ei->i_block_reservation_lock);
270 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
271 	if (unlikely(used > ei->i_reserved_data_blocks)) {
272 		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
273 			 "with only %d reserved data blocks\n",
274 			 __func__, inode->i_ino, used,
275 			 ei->i_reserved_data_blocks);
276 		WARN_ON(1);
277 		used = ei->i_reserved_data_blocks;
278 	}
279 
280 	/* Update per-inode reservations */
281 	ei->i_reserved_data_blocks -= used;
282 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
283 	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
284 			   used + ei->i_allocated_meta_blocks);
285 	ei->i_allocated_meta_blocks = 0;
286 
287 	if (ei->i_reserved_data_blocks == 0) {
288 		/*
289 		 * We can release all of the reserved metadata blocks
290 		 * only when we have written all of the delayed
291 		 * allocation blocks.
292 		 */
293 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
294 				   ei->i_reserved_meta_blocks);
295 		ei->i_reserved_meta_blocks = 0;
296 		ei->i_da_metadata_calc_len = 0;
297 	}
298 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
299 
300 	/* Update quota subsystem for data blocks */
301 	if (quota_claim)
302 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
303 	else {
304 		/*
305 		 * We did fallocate with an offset that is already delayed
306 		 * allocated. So on delayed allocated writeback we should
307 		 * not re-claim the quota for fallocated blocks.
308 		 */
309 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
310 	}
311 
312 	/*
313 	 * If we have done all the pending block allocations and if
314 	 * there aren't any writers on the inode, we can discard the
315 	 * inode's preallocations.
316 	 */
317 	if ((ei->i_reserved_data_blocks == 0) &&
318 	    (atomic_read(&inode->i_writecount) == 0))
319 		ext4_discard_preallocations(inode);
320 }
321 
322 static int __check_block_validity(struct inode *inode, const char *func,
323 				unsigned int line,
324 				struct ext4_map_blocks *map)
325 {
326 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
327 				   map->m_len)) {
328 		ext4_error_inode(inode, func, line, map->m_pblk,
329 				 "lblock %lu mapped to illegal pblock "
330 				 "(length %d)", (unsigned long) map->m_lblk,
331 				 map->m_len);
332 		return -EIO;
333 	}
334 	return 0;
335 }
336 
337 #define check_block_validity(inode, map)	\
338 	__check_block_validity((inode), __func__, __LINE__, (map))
339 
340 /*
341  * Return the number of contiguous dirty pages in a given inode
342  * starting at page frame idx.
343  */
344 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
345 				    unsigned int max_pages)
346 {
347 	struct address_space *mapping = inode->i_mapping;
348 	pgoff_t	index;
349 	struct pagevec pvec;
350 	pgoff_t num = 0;
351 	int i, nr_pages, done = 0;
352 
353 	if (max_pages == 0)
354 		return 0;
355 	pagevec_init(&pvec, 0);
356 	while (!done) {
357 		index = idx;
358 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
359 					      PAGECACHE_TAG_DIRTY,
360 					      (pgoff_t)PAGEVEC_SIZE);
361 		if (nr_pages == 0)
362 			break;
363 		for (i = 0; i < nr_pages; i++) {
364 			struct page *page = pvec.pages[i];
365 			struct buffer_head *bh, *head;
366 
367 			lock_page(page);
368 			if (unlikely(page->mapping != mapping) ||
369 			    !PageDirty(page) ||
370 			    PageWriteback(page) ||
371 			    page->index != idx) {
372 				done = 1;
373 				unlock_page(page);
374 				break;
375 			}
376 			if (page_has_buffers(page)) {
377 				bh = head = page_buffers(page);
378 				do {
379 					if (!buffer_delay(bh) &&
380 					    !buffer_unwritten(bh))
381 						done = 1;
382 					bh = bh->b_this_page;
383 				} while (!done && (bh != head));
384 			}
385 			unlock_page(page);
386 			if (done)
387 				break;
388 			idx++;
389 			num++;
390 			if (num >= max_pages) {
391 				done = 1;
392 				break;
393 			}
394 		}
395 		pagevec_release(&pvec);
396 	}
397 	return num;
398 }
399 
400 /*
401  * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
402  */
403 static void set_buffers_da_mapped(struct inode *inode,
404 				   struct ext4_map_blocks *map)
405 {
406 	struct address_space *mapping = inode->i_mapping;
407 	struct pagevec pvec;
408 	int i, nr_pages;
409 	pgoff_t index, end;
410 
411 	index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
412 	end = (map->m_lblk + map->m_len - 1) >>
413 		(PAGE_CACHE_SHIFT - inode->i_blkbits);
414 
415 	pagevec_init(&pvec, 0);
416 	while (index <= end) {
417 		nr_pages = pagevec_lookup(&pvec, mapping, index,
418 					  min(end - index + 1,
419 					      (pgoff_t)PAGEVEC_SIZE));
420 		if (nr_pages == 0)
421 			break;
422 		for (i = 0; i < nr_pages; i++) {
423 			struct page *page = pvec.pages[i];
424 			struct buffer_head *bh, *head;
425 
426 			if (unlikely(page->mapping != mapping) ||
427 			    !PageDirty(page))
428 				break;
429 
430 			if (page_has_buffers(page)) {
431 				bh = head = page_buffers(page);
432 				do {
433 					set_buffer_da_mapped(bh);
434 					bh = bh->b_this_page;
435 				} while (bh != head);
436 			}
437 			index++;
438 		}
439 		pagevec_release(&pvec);
440 	}
441 }
442 
443 /*
444  * The ext4_map_blocks() function tries to look up the requested blocks,
445  * and returns if the blocks are already mapped.
446  *
447  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
448  * and store the allocated blocks in the result buffer head and mark it
449  * mapped.
450  *
451  * If file type is extents based, it will call ext4_ext_map_blocks(),
452  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
453  * based files
454  *
455  * On success, it returns the number of blocks being mapped or allocate.
456  * if create==0 and the blocks are pre-allocated and uninitialized block,
457  * the result buffer head is unmapped. If the create ==1, it will make sure
458  * the buffer head is mapped.
459  *
460  * It returns 0 if plain look up failed (blocks have not been allocated), in
461  * that case, buffer head is unmapped
462  *
463  * It returns the error in case of allocation failure.
464  */
465 int ext4_map_blocks(handle_t *handle, struct inode *inode,
466 		    struct ext4_map_blocks *map, int flags)
467 {
468 	int retval;
469 
470 	map->m_flags = 0;
471 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
472 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
473 		  (unsigned long) map->m_lblk);
474 	/*
475 	 * Try to see if we can get the block without requesting a new
476 	 * file system block.
477 	 */
478 	down_read((&EXT4_I(inode)->i_data_sem));
479 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
480 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
481 					     EXT4_GET_BLOCKS_KEEP_SIZE);
482 	} else {
483 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
484 					     EXT4_GET_BLOCKS_KEEP_SIZE);
485 	}
486 	up_read((&EXT4_I(inode)->i_data_sem));
487 
488 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
489 		int ret = check_block_validity(inode, map);
490 		if (ret != 0)
491 			return ret;
492 	}
493 
494 	/* If it is only a block(s) look up */
495 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
496 		return retval;
497 
498 	/*
499 	 * Returns if the blocks have already allocated
500 	 *
501 	 * Note that if blocks have been preallocated
502 	 * ext4_ext_get_block() returns the create = 0
503 	 * with buffer head unmapped.
504 	 */
505 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
506 		return retval;
507 
508 	/*
509 	 * When we call get_blocks without the create flag, the
510 	 * BH_Unwritten flag could have gotten set if the blocks
511 	 * requested were part of a uninitialized extent.  We need to
512 	 * clear this flag now that we are committed to convert all or
513 	 * part of the uninitialized extent to be an initialized
514 	 * extent.  This is because we need to avoid the combination
515 	 * of BH_Unwritten and BH_Mapped flags being simultaneously
516 	 * set on the buffer_head.
517 	 */
518 	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
519 
520 	/*
521 	 * New blocks allocate and/or writing to uninitialized extent
522 	 * will possibly result in updating i_data, so we take
523 	 * the write lock of i_data_sem, and call get_blocks()
524 	 * with create == 1 flag.
525 	 */
526 	down_write((&EXT4_I(inode)->i_data_sem));
527 
528 	/*
529 	 * if the caller is from delayed allocation writeout path
530 	 * we have already reserved fs blocks for allocation
531 	 * let the underlying get_block() function know to
532 	 * avoid double accounting
533 	 */
534 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
535 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
536 	/*
537 	 * We need to check for EXT4 here because migrate
538 	 * could have changed the inode type in between
539 	 */
540 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
541 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
542 	} else {
543 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
544 
545 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
546 			/*
547 			 * We allocated new blocks which will result in
548 			 * i_data's format changing.  Force the migrate
549 			 * to fail by clearing migrate flags
550 			 */
551 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
552 		}
553 
554 		/*
555 		 * Update reserved blocks/metadata blocks after successful
556 		 * block allocation which had been deferred till now. We don't
557 		 * support fallocate for non extent files. So we can update
558 		 * reserve space here.
559 		 */
560 		if ((retval > 0) &&
561 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
562 			ext4_da_update_reserve_space(inode, retval, 1);
563 	}
564 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
565 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
566 
567 		/* If we have successfully mapped the delayed allocated blocks,
568 		 * set the BH_Da_Mapped bit on them. Its important to do this
569 		 * under the protection of i_data_sem.
570 		 */
571 		if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
572 			set_buffers_da_mapped(inode, map);
573 	}
574 
575 	up_write((&EXT4_I(inode)->i_data_sem));
576 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
577 		int ret = check_block_validity(inode, map);
578 		if (ret != 0)
579 			return ret;
580 	}
581 	return retval;
582 }
583 
584 /* Maximum number of blocks we map for direct IO at once. */
585 #define DIO_MAX_BLOCKS 4096
586 
587 static int _ext4_get_block(struct inode *inode, sector_t iblock,
588 			   struct buffer_head *bh, int flags)
589 {
590 	handle_t *handle = ext4_journal_current_handle();
591 	struct ext4_map_blocks map;
592 	int ret = 0, started = 0;
593 	int dio_credits;
594 
595 	map.m_lblk = iblock;
596 	map.m_len = bh->b_size >> inode->i_blkbits;
597 
598 	if (flags && !handle) {
599 		/* Direct IO write... */
600 		if (map.m_len > DIO_MAX_BLOCKS)
601 			map.m_len = DIO_MAX_BLOCKS;
602 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
603 		handle = ext4_journal_start(inode, dio_credits);
604 		if (IS_ERR(handle)) {
605 			ret = PTR_ERR(handle);
606 			return ret;
607 		}
608 		started = 1;
609 	}
610 
611 	ret = ext4_map_blocks(handle, inode, &map, flags);
612 	if (ret > 0) {
613 		map_bh(bh, inode->i_sb, map.m_pblk);
614 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
615 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
616 		ret = 0;
617 	}
618 	if (started)
619 		ext4_journal_stop(handle);
620 	return ret;
621 }
622 
623 int ext4_get_block(struct inode *inode, sector_t iblock,
624 		   struct buffer_head *bh, int create)
625 {
626 	return _ext4_get_block(inode, iblock, bh,
627 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
628 }
629 
630 /*
631  * `handle' can be NULL if create is zero
632  */
633 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
634 				ext4_lblk_t block, int create, int *errp)
635 {
636 	struct ext4_map_blocks map;
637 	struct buffer_head *bh;
638 	int fatal = 0, err;
639 
640 	J_ASSERT(handle != NULL || create == 0);
641 
642 	map.m_lblk = block;
643 	map.m_len = 1;
644 	err = ext4_map_blocks(handle, inode, &map,
645 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
646 
647 	if (err < 0)
648 		*errp = err;
649 	if (err <= 0)
650 		return NULL;
651 	*errp = 0;
652 
653 	bh = sb_getblk(inode->i_sb, map.m_pblk);
654 	if (!bh) {
655 		*errp = -EIO;
656 		return NULL;
657 	}
658 	if (map.m_flags & EXT4_MAP_NEW) {
659 		J_ASSERT(create != 0);
660 		J_ASSERT(handle != NULL);
661 
662 		/*
663 		 * Now that we do not always journal data, we should
664 		 * keep in mind whether this should always journal the
665 		 * new buffer as metadata.  For now, regular file
666 		 * writes use ext4_get_block instead, so it's not a
667 		 * problem.
668 		 */
669 		lock_buffer(bh);
670 		BUFFER_TRACE(bh, "call get_create_access");
671 		fatal = ext4_journal_get_create_access(handle, bh);
672 		if (!fatal && !buffer_uptodate(bh)) {
673 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
674 			set_buffer_uptodate(bh);
675 		}
676 		unlock_buffer(bh);
677 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
678 		err = ext4_handle_dirty_metadata(handle, inode, bh);
679 		if (!fatal)
680 			fatal = err;
681 	} else {
682 		BUFFER_TRACE(bh, "not a new buffer");
683 	}
684 	if (fatal) {
685 		*errp = fatal;
686 		brelse(bh);
687 		bh = NULL;
688 	}
689 	return bh;
690 }
691 
692 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
693 			       ext4_lblk_t block, int create, int *err)
694 {
695 	struct buffer_head *bh;
696 
697 	bh = ext4_getblk(handle, inode, block, create, err);
698 	if (!bh)
699 		return bh;
700 	if (buffer_uptodate(bh))
701 		return bh;
702 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
703 	wait_on_buffer(bh);
704 	if (buffer_uptodate(bh))
705 		return bh;
706 	put_bh(bh);
707 	*err = -EIO;
708 	return NULL;
709 }
710 
711 static int walk_page_buffers(handle_t *handle,
712 			     struct buffer_head *head,
713 			     unsigned from,
714 			     unsigned to,
715 			     int *partial,
716 			     int (*fn)(handle_t *handle,
717 				       struct buffer_head *bh))
718 {
719 	struct buffer_head *bh;
720 	unsigned block_start, block_end;
721 	unsigned blocksize = head->b_size;
722 	int err, ret = 0;
723 	struct buffer_head *next;
724 
725 	for (bh = head, block_start = 0;
726 	     ret == 0 && (bh != head || !block_start);
727 	     block_start = block_end, bh = next) {
728 		next = bh->b_this_page;
729 		block_end = block_start + blocksize;
730 		if (block_end <= from || block_start >= to) {
731 			if (partial && !buffer_uptodate(bh))
732 				*partial = 1;
733 			continue;
734 		}
735 		err = (*fn)(handle, bh);
736 		if (!ret)
737 			ret = err;
738 	}
739 	return ret;
740 }
741 
742 /*
743  * To preserve ordering, it is essential that the hole instantiation and
744  * the data write be encapsulated in a single transaction.  We cannot
745  * close off a transaction and start a new one between the ext4_get_block()
746  * and the commit_write().  So doing the jbd2_journal_start at the start of
747  * prepare_write() is the right place.
748  *
749  * Also, this function can nest inside ext4_writepage() ->
750  * block_write_full_page(). In that case, we *know* that ext4_writepage()
751  * has generated enough buffer credits to do the whole page.  So we won't
752  * block on the journal in that case, which is good, because the caller may
753  * be PF_MEMALLOC.
754  *
755  * By accident, ext4 can be reentered when a transaction is open via
756  * quota file writes.  If we were to commit the transaction while thus
757  * reentered, there can be a deadlock - we would be holding a quota
758  * lock, and the commit would never complete if another thread had a
759  * transaction open and was blocking on the quota lock - a ranking
760  * violation.
761  *
762  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
763  * will _not_ run commit under these circumstances because handle->h_ref
764  * is elevated.  We'll still have enough credits for the tiny quotafile
765  * write.
766  */
767 static int do_journal_get_write_access(handle_t *handle,
768 				       struct buffer_head *bh)
769 {
770 	int dirty = buffer_dirty(bh);
771 	int ret;
772 
773 	if (!buffer_mapped(bh) || buffer_freed(bh))
774 		return 0;
775 	/*
776 	 * __block_write_begin() could have dirtied some buffers. Clean
777 	 * the dirty bit as jbd2_journal_get_write_access() could complain
778 	 * otherwise about fs integrity issues. Setting of the dirty bit
779 	 * by __block_write_begin() isn't a real problem here as we clear
780 	 * the bit before releasing a page lock and thus writeback cannot
781 	 * ever write the buffer.
782 	 */
783 	if (dirty)
784 		clear_buffer_dirty(bh);
785 	ret = ext4_journal_get_write_access(handle, bh);
786 	if (!ret && dirty)
787 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
788 	return ret;
789 }
790 
791 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
792 		   struct buffer_head *bh_result, int create);
793 static int ext4_write_begin(struct file *file, struct address_space *mapping,
794 			    loff_t pos, unsigned len, unsigned flags,
795 			    struct page **pagep, void **fsdata)
796 {
797 	struct inode *inode = mapping->host;
798 	int ret, needed_blocks;
799 	handle_t *handle;
800 	int retries = 0;
801 	struct page *page;
802 	pgoff_t index;
803 	unsigned from, to;
804 
805 	trace_ext4_write_begin(inode, pos, len, flags);
806 	/*
807 	 * Reserve one block more for addition to orphan list in case
808 	 * we allocate blocks but write fails for some reason
809 	 */
810 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
811 	index = pos >> PAGE_CACHE_SHIFT;
812 	from = pos & (PAGE_CACHE_SIZE - 1);
813 	to = from + len;
814 
815 retry:
816 	handle = ext4_journal_start(inode, needed_blocks);
817 	if (IS_ERR(handle)) {
818 		ret = PTR_ERR(handle);
819 		goto out;
820 	}
821 
822 	/* We cannot recurse into the filesystem as the transaction is already
823 	 * started */
824 	flags |= AOP_FLAG_NOFS;
825 
826 	page = grab_cache_page_write_begin(mapping, index, flags);
827 	if (!page) {
828 		ext4_journal_stop(handle);
829 		ret = -ENOMEM;
830 		goto out;
831 	}
832 	*pagep = page;
833 
834 	if (ext4_should_dioread_nolock(inode))
835 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
836 	else
837 		ret = __block_write_begin(page, pos, len, ext4_get_block);
838 
839 	if (!ret && ext4_should_journal_data(inode)) {
840 		ret = walk_page_buffers(handle, page_buffers(page),
841 				from, to, NULL, do_journal_get_write_access);
842 	}
843 
844 	if (ret) {
845 		unlock_page(page);
846 		page_cache_release(page);
847 		/*
848 		 * __block_write_begin may have instantiated a few blocks
849 		 * outside i_size.  Trim these off again. Don't need
850 		 * i_size_read because we hold i_mutex.
851 		 *
852 		 * Add inode to orphan list in case we crash before
853 		 * truncate finishes
854 		 */
855 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
856 			ext4_orphan_add(handle, inode);
857 
858 		ext4_journal_stop(handle);
859 		if (pos + len > inode->i_size) {
860 			ext4_truncate_failed_write(inode);
861 			/*
862 			 * If truncate failed early the inode might
863 			 * still be on the orphan list; we need to
864 			 * make sure the inode is removed from the
865 			 * orphan list in that case.
866 			 */
867 			if (inode->i_nlink)
868 				ext4_orphan_del(NULL, inode);
869 		}
870 	}
871 
872 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
873 		goto retry;
874 out:
875 	return ret;
876 }
877 
878 /* For write_end() in data=journal mode */
879 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
880 {
881 	if (!buffer_mapped(bh) || buffer_freed(bh))
882 		return 0;
883 	set_buffer_uptodate(bh);
884 	return ext4_handle_dirty_metadata(handle, NULL, bh);
885 }
886 
887 static int ext4_generic_write_end(struct file *file,
888 				  struct address_space *mapping,
889 				  loff_t pos, unsigned len, unsigned copied,
890 				  struct page *page, void *fsdata)
891 {
892 	int i_size_changed = 0;
893 	struct inode *inode = mapping->host;
894 	handle_t *handle = ext4_journal_current_handle();
895 
896 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
897 
898 	/*
899 	 * No need to use i_size_read() here, the i_size
900 	 * cannot change under us because we hold i_mutex.
901 	 *
902 	 * But it's important to update i_size while still holding page lock:
903 	 * page writeout could otherwise come in and zero beyond i_size.
904 	 */
905 	if (pos + copied > inode->i_size) {
906 		i_size_write(inode, pos + copied);
907 		i_size_changed = 1;
908 	}
909 
910 	if (pos + copied >  EXT4_I(inode)->i_disksize) {
911 		/* We need to mark inode dirty even if
912 		 * new_i_size is less that inode->i_size
913 		 * bu greater than i_disksize.(hint delalloc)
914 		 */
915 		ext4_update_i_disksize(inode, (pos + copied));
916 		i_size_changed = 1;
917 	}
918 	unlock_page(page);
919 	page_cache_release(page);
920 
921 	/*
922 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
923 	 * makes the holding time of page lock longer. Second, it forces lock
924 	 * ordering of page lock and transaction start for journaling
925 	 * filesystems.
926 	 */
927 	if (i_size_changed)
928 		ext4_mark_inode_dirty(handle, inode);
929 
930 	return copied;
931 }
932 
933 /*
934  * We need to pick up the new inode size which generic_commit_write gave us
935  * `file' can be NULL - eg, when called from page_symlink().
936  *
937  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
938  * buffers are managed internally.
939  */
940 static int ext4_ordered_write_end(struct file *file,
941 				  struct address_space *mapping,
942 				  loff_t pos, unsigned len, unsigned copied,
943 				  struct page *page, void *fsdata)
944 {
945 	handle_t *handle = ext4_journal_current_handle();
946 	struct inode *inode = mapping->host;
947 	int ret = 0, ret2;
948 
949 	trace_ext4_ordered_write_end(inode, pos, len, copied);
950 	ret = ext4_jbd2_file_inode(handle, inode);
951 
952 	if (ret == 0) {
953 		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
954 							page, fsdata);
955 		copied = ret2;
956 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
957 			/* if we have allocated more blocks and copied
958 			 * less. We will have blocks allocated outside
959 			 * inode->i_size. So truncate them
960 			 */
961 			ext4_orphan_add(handle, inode);
962 		if (ret2 < 0)
963 			ret = ret2;
964 	} else {
965 		unlock_page(page);
966 		page_cache_release(page);
967 	}
968 
969 	ret2 = ext4_journal_stop(handle);
970 	if (!ret)
971 		ret = ret2;
972 
973 	if (pos + len > inode->i_size) {
974 		ext4_truncate_failed_write(inode);
975 		/*
976 		 * If truncate failed early the inode might still be
977 		 * on the orphan list; we need to make sure the inode
978 		 * is removed from the orphan list in that case.
979 		 */
980 		if (inode->i_nlink)
981 			ext4_orphan_del(NULL, inode);
982 	}
983 
984 
985 	return ret ? ret : copied;
986 }
987 
988 static int ext4_writeback_write_end(struct file *file,
989 				    struct address_space *mapping,
990 				    loff_t pos, unsigned len, unsigned copied,
991 				    struct page *page, void *fsdata)
992 {
993 	handle_t *handle = ext4_journal_current_handle();
994 	struct inode *inode = mapping->host;
995 	int ret = 0, ret2;
996 
997 	trace_ext4_writeback_write_end(inode, pos, len, copied);
998 	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
999 							page, fsdata);
1000 	copied = ret2;
1001 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1002 		/* if we have allocated more blocks and copied
1003 		 * less. We will have blocks allocated outside
1004 		 * inode->i_size. So truncate them
1005 		 */
1006 		ext4_orphan_add(handle, inode);
1007 
1008 	if (ret2 < 0)
1009 		ret = ret2;
1010 
1011 	ret2 = ext4_journal_stop(handle);
1012 	if (!ret)
1013 		ret = ret2;
1014 
1015 	if (pos + len > inode->i_size) {
1016 		ext4_truncate_failed_write(inode);
1017 		/*
1018 		 * If truncate failed early the inode might still be
1019 		 * on the orphan list; we need to make sure the inode
1020 		 * is removed from the orphan list in that case.
1021 		 */
1022 		if (inode->i_nlink)
1023 			ext4_orphan_del(NULL, inode);
1024 	}
1025 
1026 	return ret ? ret : copied;
1027 }
1028 
1029 static int ext4_journalled_write_end(struct file *file,
1030 				     struct address_space *mapping,
1031 				     loff_t pos, unsigned len, unsigned copied,
1032 				     struct page *page, void *fsdata)
1033 {
1034 	handle_t *handle = ext4_journal_current_handle();
1035 	struct inode *inode = mapping->host;
1036 	int ret = 0, ret2;
1037 	int partial = 0;
1038 	unsigned from, to;
1039 	loff_t new_i_size;
1040 
1041 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1042 	from = pos & (PAGE_CACHE_SIZE - 1);
1043 	to = from + len;
1044 
1045 	BUG_ON(!ext4_handle_valid(handle));
1046 
1047 	if (copied < len) {
1048 		if (!PageUptodate(page))
1049 			copied = 0;
1050 		page_zero_new_buffers(page, from+copied, to);
1051 	}
1052 
1053 	ret = walk_page_buffers(handle, page_buffers(page), from,
1054 				to, &partial, write_end_fn);
1055 	if (!partial)
1056 		SetPageUptodate(page);
1057 	new_i_size = pos + copied;
1058 	if (new_i_size > inode->i_size)
1059 		i_size_write(inode, pos+copied);
1060 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1061 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1062 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1063 		ext4_update_i_disksize(inode, new_i_size);
1064 		ret2 = ext4_mark_inode_dirty(handle, inode);
1065 		if (!ret)
1066 			ret = ret2;
1067 	}
1068 
1069 	unlock_page(page);
1070 	page_cache_release(page);
1071 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1072 		/* if we have allocated more blocks and copied
1073 		 * less. We will have blocks allocated outside
1074 		 * inode->i_size. So truncate them
1075 		 */
1076 		ext4_orphan_add(handle, inode);
1077 
1078 	ret2 = ext4_journal_stop(handle);
1079 	if (!ret)
1080 		ret = ret2;
1081 	if (pos + len > inode->i_size) {
1082 		ext4_truncate_failed_write(inode);
1083 		/*
1084 		 * If truncate failed early the inode might still be
1085 		 * on the orphan list; we need to make sure the inode
1086 		 * is removed from the orphan list in that case.
1087 		 */
1088 		if (inode->i_nlink)
1089 			ext4_orphan_del(NULL, inode);
1090 	}
1091 
1092 	return ret ? ret : copied;
1093 }
1094 
1095 /*
1096  * Reserve a single cluster located at lblock
1097  */
1098 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1099 {
1100 	int retries = 0;
1101 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1102 	struct ext4_inode_info *ei = EXT4_I(inode);
1103 	unsigned int md_needed;
1104 	int ret;
1105 
1106 	/*
1107 	 * recalculate the amount of metadata blocks to reserve
1108 	 * in order to allocate nrblocks
1109 	 * worse case is one extent per block
1110 	 */
1111 repeat:
1112 	spin_lock(&ei->i_block_reservation_lock);
1113 	md_needed = EXT4_NUM_B2C(sbi,
1114 				 ext4_calc_metadata_amount(inode, lblock));
1115 	trace_ext4_da_reserve_space(inode, md_needed);
1116 	spin_unlock(&ei->i_block_reservation_lock);
1117 
1118 	/*
1119 	 * We will charge metadata quota at writeout time; this saves
1120 	 * us from metadata over-estimation, though we may go over by
1121 	 * a small amount in the end.  Here we just reserve for data.
1122 	 */
1123 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1124 	if (ret)
1125 		return ret;
1126 	/*
1127 	 * We do still charge estimated metadata to the sb though;
1128 	 * we cannot afford to run out of free blocks.
1129 	 */
1130 	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1131 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1132 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1133 			yield();
1134 			goto repeat;
1135 		}
1136 		return -ENOSPC;
1137 	}
1138 	spin_lock(&ei->i_block_reservation_lock);
1139 	ei->i_reserved_data_blocks++;
1140 	ei->i_reserved_meta_blocks += md_needed;
1141 	spin_unlock(&ei->i_block_reservation_lock);
1142 
1143 	return 0;       /* success */
1144 }
1145 
1146 static void ext4_da_release_space(struct inode *inode, int to_free)
1147 {
1148 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1149 	struct ext4_inode_info *ei = EXT4_I(inode);
1150 
1151 	if (!to_free)
1152 		return;		/* Nothing to release, exit */
1153 
1154 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1155 
1156 	trace_ext4_da_release_space(inode, to_free);
1157 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1158 		/*
1159 		 * if there aren't enough reserved blocks, then the
1160 		 * counter is messed up somewhere.  Since this
1161 		 * function is called from invalidate page, it's
1162 		 * harmless to return without any action.
1163 		 */
1164 		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1165 			 "ino %lu, to_free %d with only %d reserved "
1166 			 "data blocks\n", inode->i_ino, to_free,
1167 			 ei->i_reserved_data_blocks);
1168 		WARN_ON(1);
1169 		to_free = ei->i_reserved_data_blocks;
1170 	}
1171 	ei->i_reserved_data_blocks -= to_free;
1172 
1173 	if (ei->i_reserved_data_blocks == 0) {
1174 		/*
1175 		 * We can release all of the reserved metadata blocks
1176 		 * only when we have written all of the delayed
1177 		 * allocation blocks.
1178 		 * Note that in case of bigalloc, i_reserved_meta_blocks,
1179 		 * i_reserved_data_blocks, etc. refer to number of clusters.
1180 		 */
1181 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1182 				   ei->i_reserved_meta_blocks);
1183 		ei->i_reserved_meta_blocks = 0;
1184 		ei->i_da_metadata_calc_len = 0;
1185 	}
1186 
1187 	/* update fs dirty data blocks counter */
1188 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1189 
1190 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1191 
1192 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1193 }
1194 
1195 static void ext4_da_page_release_reservation(struct page *page,
1196 					     unsigned long offset)
1197 {
1198 	int to_release = 0;
1199 	struct buffer_head *head, *bh;
1200 	unsigned int curr_off = 0;
1201 	struct inode *inode = page->mapping->host;
1202 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1203 	int num_clusters;
1204 
1205 	head = page_buffers(page);
1206 	bh = head;
1207 	do {
1208 		unsigned int next_off = curr_off + bh->b_size;
1209 
1210 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1211 			to_release++;
1212 			clear_buffer_delay(bh);
1213 			clear_buffer_da_mapped(bh);
1214 		}
1215 		curr_off = next_off;
1216 	} while ((bh = bh->b_this_page) != head);
1217 
1218 	/* If we have released all the blocks belonging to a cluster, then we
1219 	 * need to release the reserved space for that cluster. */
1220 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1221 	while (num_clusters > 0) {
1222 		ext4_fsblk_t lblk;
1223 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1224 			((num_clusters - 1) << sbi->s_cluster_bits);
1225 		if (sbi->s_cluster_ratio == 1 ||
1226 		    !ext4_find_delalloc_cluster(inode, lblk, 1))
1227 			ext4_da_release_space(inode, 1);
1228 
1229 		num_clusters--;
1230 	}
1231 }
1232 
1233 /*
1234  * Delayed allocation stuff
1235  */
1236 
1237 /*
1238  * mpage_da_submit_io - walks through extent of pages and try to write
1239  * them with writepage() call back
1240  *
1241  * @mpd->inode: inode
1242  * @mpd->first_page: first page of the extent
1243  * @mpd->next_page: page after the last page of the extent
1244  *
1245  * By the time mpage_da_submit_io() is called we expect all blocks
1246  * to be allocated. this may be wrong if allocation failed.
1247  *
1248  * As pages are already locked by write_cache_pages(), we can't use it
1249  */
1250 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1251 			      struct ext4_map_blocks *map)
1252 {
1253 	struct pagevec pvec;
1254 	unsigned long index, end;
1255 	int ret = 0, err, nr_pages, i;
1256 	struct inode *inode = mpd->inode;
1257 	struct address_space *mapping = inode->i_mapping;
1258 	loff_t size = i_size_read(inode);
1259 	unsigned int len, block_start;
1260 	struct buffer_head *bh, *page_bufs = NULL;
1261 	int journal_data = ext4_should_journal_data(inode);
1262 	sector_t pblock = 0, cur_logical = 0;
1263 	struct ext4_io_submit io_submit;
1264 
1265 	BUG_ON(mpd->next_page <= mpd->first_page);
1266 	memset(&io_submit, 0, sizeof(io_submit));
1267 	/*
1268 	 * We need to start from the first_page to the next_page - 1
1269 	 * to make sure we also write the mapped dirty buffer_heads.
1270 	 * If we look at mpd->b_blocknr we would only be looking
1271 	 * at the currently mapped buffer_heads.
1272 	 */
1273 	index = mpd->first_page;
1274 	end = mpd->next_page - 1;
1275 
1276 	pagevec_init(&pvec, 0);
1277 	while (index <= end) {
1278 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1279 		if (nr_pages == 0)
1280 			break;
1281 		for (i = 0; i < nr_pages; i++) {
1282 			int commit_write = 0, skip_page = 0;
1283 			struct page *page = pvec.pages[i];
1284 
1285 			index = page->index;
1286 			if (index > end)
1287 				break;
1288 
1289 			if (index == size >> PAGE_CACHE_SHIFT)
1290 				len = size & ~PAGE_CACHE_MASK;
1291 			else
1292 				len = PAGE_CACHE_SIZE;
1293 			if (map) {
1294 				cur_logical = index << (PAGE_CACHE_SHIFT -
1295 							inode->i_blkbits);
1296 				pblock = map->m_pblk + (cur_logical -
1297 							map->m_lblk);
1298 			}
1299 			index++;
1300 
1301 			BUG_ON(!PageLocked(page));
1302 			BUG_ON(PageWriteback(page));
1303 
1304 			/*
1305 			 * If the page does not have buffers (for
1306 			 * whatever reason), try to create them using
1307 			 * __block_write_begin.  If this fails,
1308 			 * skip the page and move on.
1309 			 */
1310 			if (!page_has_buffers(page)) {
1311 				if (__block_write_begin(page, 0, len,
1312 						noalloc_get_block_write)) {
1313 				skip_page:
1314 					unlock_page(page);
1315 					continue;
1316 				}
1317 				commit_write = 1;
1318 			}
1319 
1320 			bh = page_bufs = page_buffers(page);
1321 			block_start = 0;
1322 			do {
1323 				if (!bh)
1324 					goto skip_page;
1325 				if (map && (cur_logical >= map->m_lblk) &&
1326 				    (cur_logical <= (map->m_lblk +
1327 						     (map->m_len - 1)))) {
1328 					if (buffer_delay(bh)) {
1329 						clear_buffer_delay(bh);
1330 						bh->b_blocknr = pblock;
1331 					}
1332 					if (buffer_da_mapped(bh))
1333 						clear_buffer_da_mapped(bh);
1334 					if (buffer_unwritten(bh) ||
1335 					    buffer_mapped(bh))
1336 						BUG_ON(bh->b_blocknr != pblock);
1337 					if (map->m_flags & EXT4_MAP_UNINIT)
1338 						set_buffer_uninit(bh);
1339 					clear_buffer_unwritten(bh);
1340 				}
1341 
1342 				/* skip page if block allocation undone */
1343 				if (buffer_delay(bh) || buffer_unwritten(bh))
1344 					skip_page = 1;
1345 				bh = bh->b_this_page;
1346 				block_start += bh->b_size;
1347 				cur_logical++;
1348 				pblock++;
1349 			} while (bh != page_bufs);
1350 
1351 			if (skip_page)
1352 				goto skip_page;
1353 
1354 			if (commit_write)
1355 				/* mark the buffer_heads as dirty & uptodate */
1356 				block_commit_write(page, 0, len);
1357 
1358 			clear_page_dirty_for_io(page);
1359 			/*
1360 			 * Delalloc doesn't support data journalling,
1361 			 * but eventually maybe we'll lift this
1362 			 * restriction.
1363 			 */
1364 			if (unlikely(journal_data && PageChecked(page)))
1365 				err = __ext4_journalled_writepage(page, len);
1366 			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1367 				err = ext4_bio_write_page(&io_submit, page,
1368 							  len, mpd->wbc);
1369 			else if (buffer_uninit(page_bufs)) {
1370 				ext4_set_bh_endio(page_bufs, inode);
1371 				err = block_write_full_page_endio(page,
1372 					noalloc_get_block_write,
1373 					mpd->wbc, ext4_end_io_buffer_write);
1374 			} else
1375 				err = block_write_full_page(page,
1376 					noalloc_get_block_write, mpd->wbc);
1377 
1378 			if (!err)
1379 				mpd->pages_written++;
1380 			/*
1381 			 * In error case, we have to continue because
1382 			 * remaining pages are still locked
1383 			 */
1384 			if (ret == 0)
1385 				ret = err;
1386 		}
1387 		pagevec_release(&pvec);
1388 	}
1389 	ext4_io_submit(&io_submit);
1390 	return ret;
1391 }
1392 
1393 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1394 {
1395 	int nr_pages, i;
1396 	pgoff_t index, end;
1397 	struct pagevec pvec;
1398 	struct inode *inode = mpd->inode;
1399 	struct address_space *mapping = inode->i_mapping;
1400 
1401 	index = mpd->first_page;
1402 	end   = mpd->next_page - 1;
1403 	while (index <= end) {
1404 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1405 		if (nr_pages == 0)
1406 			break;
1407 		for (i = 0; i < nr_pages; i++) {
1408 			struct page *page = pvec.pages[i];
1409 			if (page->index > end)
1410 				break;
1411 			BUG_ON(!PageLocked(page));
1412 			BUG_ON(PageWriteback(page));
1413 			block_invalidatepage(page, 0);
1414 			ClearPageUptodate(page);
1415 			unlock_page(page);
1416 		}
1417 		index = pvec.pages[nr_pages - 1]->index + 1;
1418 		pagevec_release(&pvec);
1419 	}
1420 	return;
1421 }
1422 
1423 static void ext4_print_free_blocks(struct inode *inode)
1424 {
1425 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1426 	printk(KERN_CRIT "Total free blocks count %lld\n",
1427 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1428 			ext4_count_free_clusters(inode->i_sb)));
1429 	printk(KERN_CRIT "Free/Dirty block details\n");
1430 	printk(KERN_CRIT "free_blocks=%lld\n",
1431 	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1432 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1433 	printk(KERN_CRIT "dirty_blocks=%lld\n",
1434 	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1435 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1436 	printk(KERN_CRIT "Block reservation details\n");
1437 	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1438 	       EXT4_I(inode)->i_reserved_data_blocks);
1439 	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1440 	       EXT4_I(inode)->i_reserved_meta_blocks);
1441 	return;
1442 }
1443 
1444 /*
1445  * mpage_da_map_and_submit - go through given space, map them
1446  *       if necessary, and then submit them for I/O
1447  *
1448  * @mpd - bh describing space
1449  *
1450  * The function skips space we know is already mapped to disk blocks.
1451  *
1452  */
1453 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1454 {
1455 	int err, blks, get_blocks_flags;
1456 	struct ext4_map_blocks map, *mapp = NULL;
1457 	sector_t next = mpd->b_blocknr;
1458 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1459 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1460 	handle_t *handle = NULL;
1461 
1462 	/*
1463 	 * If the blocks are mapped already, or we couldn't accumulate
1464 	 * any blocks, then proceed immediately to the submission stage.
1465 	 */
1466 	if ((mpd->b_size == 0) ||
1467 	    ((mpd->b_state  & (1 << BH_Mapped)) &&
1468 	     !(mpd->b_state & (1 << BH_Delay)) &&
1469 	     !(mpd->b_state & (1 << BH_Unwritten))))
1470 		goto submit_io;
1471 
1472 	handle = ext4_journal_current_handle();
1473 	BUG_ON(!handle);
1474 
1475 	/*
1476 	 * Call ext4_map_blocks() to allocate any delayed allocation
1477 	 * blocks, or to convert an uninitialized extent to be
1478 	 * initialized (in the case where we have written into
1479 	 * one or more preallocated blocks).
1480 	 *
1481 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1482 	 * indicate that we are on the delayed allocation path.  This
1483 	 * affects functions in many different parts of the allocation
1484 	 * call path.  This flag exists primarily because we don't
1485 	 * want to change *many* call functions, so ext4_map_blocks()
1486 	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1487 	 * inode's allocation semaphore is taken.
1488 	 *
1489 	 * If the blocks in questions were delalloc blocks, set
1490 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1491 	 * variables are updated after the blocks have been allocated.
1492 	 */
1493 	map.m_lblk = next;
1494 	map.m_len = max_blocks;
1495 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1496 	if (ext4_should_dioread_nolock(mpd->inode))
1497 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1498 	if (mpd->b_state & (1 << BH_Delay))
1499 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1500 
1501 	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1502 	if (blks < 0) {
1503 		struct super_block *sb = mpd->inode->i_sb;
1504 
1505 		err = blks;
1506 		/*
1507 		 * If get block returns EAGAIN or ENOSPC and there
1508 		 * appears to be free blocks we will just let
1509 		 * mpage_da_submit_io() unlock all of the pages.
1510 		 */
1511 		if (err == -EAGAIN)
1512 			goto submit_io;
1513 
1514 		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1515 			mpd->retval = err;
1516 			goto submit_io;
1517 		}
1518 
1519 		/*
1520 		 * get block failure will cause us to loop in
1521 		 * writepages, because a_ops->writepage won't be able
1522 		 * to make progress. The page will be redirtied by
1523 		 * writepage and writepages will again try to write
1524 		 * the same.
1525 		 */
1526 		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1527 			ext4_msg(sb, KERN_CRIT,
1528 				 "delayed block allocation failed for inode %lu "
1529 				 "at logical offset %llu with max blocks %zd "
1530 				 "with error %d", mpd->inode->i_ino,
1531 				 (unsigned long long) next,
1532 				 mpd->b_size >> mpd->inode->i_blkbits, err);
1533 			ext4_msg(sb, KERN_CRIT,
1534 				"This should not happen!! Data will be lost\n");
1535 			if (err == -ENOSPC)
1536 				ext4_print_free_blocks(mpd->inode);
1537 		}
1538 		/* invalidate all the pages */
1539 		ext4_da_block_invalidatepages(mpd);
1540 
1541 		/* Mark this page range as having been completed */
1542 		mpd->io_done = 1;
1543 		return;
1544 	}
1545 	BUG_ON(blks == 0);
1546 
1547 	mapp = &map;
1548 	if (map.m_flags & EXT4_MAP_NEW) {
1549 		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1550 		int i;
1551 
1552 		for (i = 0; i < map.m_len; i++)
1553 			unmap_underlying_metadata(bdev, map.m_pblk + i);
1554 
1555 		if (ext4_should_order_data(mpd->inode)) {
1556 			err = ext4_jbd2_file_inode(handle, mpd->inode);
1557 			if (err) {
1558 				/* Only if the journal is aborted */
1559 				mpd->retval = err;
1560 				goto submit_io;
1561 			}
1562 		}
1563 	}
1564 
1565 	/*
1566 	 * Update on-disk size along with block allocation.
1567 	 */
1568 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1569 	if (disksize > i_size_read(mpd->inode))
1570 		disksize = i_size_read(mpd->inode);
1571 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1572 		ext4_update_i_disksize(mpd->inode, disksize);
1573 		err = ext4_mark_inode_dirty(handle, mpd->inode);
1574 		if (err)
1575 			ext4_error(mpd->inode->i_sb,
1576 				   "Failed to mark inode %lu dirty",
1577 				   mpd->inode->i_ino);
1578 	}
1579 
1580 submit_io:
1581 	mpage_da_submit_io(mpd, mapp);
1582 	mpd->io_done = 1;
1583 }
1584 
1585 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1586 		(1 << BH_Delay) | (1 << BH_Unwritten))
1587 
1588 /*
1589  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1590  *
1591  * @mpd->lbh - extent of blocks
1592  * @logical - logical number of the block in the file
1593  * @bh - bh of the block (used to access block's state)
1594  *
1595  * the function is used to collect contig. blocks in same state
1596  */
1597 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1598 				   sector_t logical, size_t b_size,
1599 				   unsigned long b_state)
1600 {
1601 	sector_t next;
1602 	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1603 
1604 	/*
1605 	 * XXX Don't go larger than mballoc is willing to allocate
1606 	 * This is a stopgap solution.  We eventually need to fold
1607 	 * mpage_da_submit_io() into this function and then call
1608 	 * ext4_map_blocks() multiple times in a loop
1609 	 */
1610 	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1611 		goto flush_it;
1612 
1613 	/* check if thereserved journal credits might overflow */
1614 	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1615 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1616 			/*
1617 			 * With non-extent format we are limited by the journal
1618 			 * credit available.  Total credit needed to insert
1619 			 * nrblocks contiguous blocks is dependent on the
1620 			 * nrblocks.  So limit nrblocks.
1621 			 */
1622 			goto flush_it;
1623 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1624 				EXT4_MAX_TRANS_DATA) {
1625 			/*
1626 			 * Adding the new buffer_head would make it cross the
1627 			 * allowed limit for which we have journal credit
1628 			 * reserved. So limit the new bh->b_size
1629 			 */
1630 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1631 						mpd->inode->i_blkbits;
1632 			/* we will do mpage_da_submit_io in the next loop */
1633 		}
1634 	}
1635 	/*
1636 	 * First block in the extent
1637 	 */
1638 	if (mpd->b_size == 0) {
1639 		mpd->b_blocknr = logical;
1640 		mpd->b_size = b_size;
1641 		mpd->b_state = b_state & BH_FLAGS;
1642 		return;
1643 	}
1644 
1645 	next = mpd->b_blocknr + nrblocks;
1646 	/*
1647 	 * Can we merge the block to our big extent?
1648 	 */
1649 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1650 		mpd->b_size += b_size;
1651 		return;
1652 	}
1653 
1654 flush_it:
1655 	/*
1656 	 * We couldn't merge the block to our extent, so we
1657 	 * need to flush current  extent and start new one
1658 	 */
1659 	mpage_da_map_and_submit(mpd);
1660 	return;
1661 }
1662 
1663 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1664 {
1665 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1666 }
1667 
1668 /*
1669  * This function is grabs code from the very beginning of
1670  * ext4_map_blocks, but assumes that the caller is from delayed write
1671  * time. This function looks up the requested blocks and sets the
1672  * buffer delay bit under the protection of i_data_sem.
1673  */
1674 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1675 			      struct ext4_map_blocks *map,
1676 			      struct buffer_head *bh)
1677 {
1678 	int retval;
1679 	sector_t invalid_block = ~((sector_t) 0xffff);
1680 
1681 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1682 		invalid_block = ~0;
1683 
1684 	map->m_flags = 0;
1685 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1686 		  "logical block %lu\n", inode->i_ino, map->m_len,
1687 		  (unsigned long) map->m_lblk);
1688 	/*
1689 	 * Try to see if we can get the block without requesting a new
1690 	 * file system block.
1691 	 */
1692 	down_read((&EXT4_I(inode)->i_data_sem));
1693 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1694 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1695 	else
1696 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1697 
1698 	if (retval == 0) {
1699 		/*
1700 		 * XXX: __block_prepare_write() unmaps passed block,
1701 		 * is it OK?
1702 		 */
1703 		/* If the block was allocated from previously allocated cluster,
1704 		 * then we dont need to reserve it again. */
1705 		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1706 			retval = ext4_da_reserve_space(inode, iblock);
1707 			if (retval)
1708 				/* not enough space to reserve */
1709 				goto out_unlock;
1710 		}
1711 
1712 		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1713 		 * and it should not appear on the bh->b_state.
1714 		 */
1715 		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1716 
1717 		map_bh(bh, inode->i_sb, invalid_block);
1718 		set_buffer_new(bh);
1719 		set_buffer_delay(bh);
1720 	}
1721 
1722 out_unlock:
1723 	up_read((&EXT4_I(inode)->i_data_sem));
1724 
1725 	return retval;
1726 }
1727 
1728 /*
1729  * This is a special get_blocks_t callback which is used by
1730  * ext4_da_write_begin().  It will either return mapped block or
1731  * reserve space for a single block.
1732  *
1733  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1734  * We also have b_blocknr = -1 and b_bdev initialized properly
1735  *
1736  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1737  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1738  * initialized properly.
1739  */
1740 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1741 				  struct buffer_head *bh, int create)
1742 {
1743 	struct ext4_map_blocks map;
1744 	int ret = 0;
1745 
1746 	BUG_ON(create == 0);
1747 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1748 
1749 	map.m_lblk = iblock;
1750 	map.m_len = 1;
1751 
1752 	/*
1753 	 * first, we need to know whether the block is allocated already
1754 	 * preallocated blocks are unmapped but should treated
1755 	 * the same as allocated blocks.
1756 	 */
1757 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1758 	if (ret <= 0)
1759 		return ret;
1760 
1761 	map_bh(bh, inode->i_sb, map.m_pblk);
1762 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1763 
1764 	if (buffer_unwritten(bh)) {
1765 		/* A delayed write to unwritten bh should be marked
1766 		 * new and mapped.  Mapped ensures that we don't do
1767 		 * get_block multiple times when we write to the same
1768 		 * offset and new ensures that we do proper zero out
1769 		 * for partial write.
1770 		 */
1771 		set_buffer_new(bh);
1772 		set_buffer_mapped(bh);
1773 	}
1774 	return 0;
1775 }
1776 
1777 /*
1778  * This function is used as a standard get_block_t calback function
1779  * when there is no desire to allocate any blocks.  It is used as a
1780  * callback function for block_write_begin() and block_write_full_page().
1781  * These functions should only try to map a single block at a time.
1782  *
1783  * Since this function doesn't do block allocations even if the caller
1784  * requests it by passing in create=1, it is critically important that
1785  * any caller checks to make sure that any buffer heads are returned
1786  * by this function are either all already mapped or marked for
1787  * delayed allocation before calling  block_write_full_page().  Otherwise,
1788  * b_blocknr could be left unitialized, and the page write functions will
1789  * be taken by surprise.
1790  */
1791 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1792 				   struct buffer_head *bh_result, int create)
1793 {
1794 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1795 	return _ext4_get_block(inode, iblock, bh_result, 0);
1796 }
1797 
1798 static int bget_one(handle_t *handle, struct buffer_head *bh)
1799 {
1800 	get_bh(bh);
1801 	return 0;
1802 }
1803 
1804 static int bput_one(handle_t *handle, struct buffer_head *bh)
1805 {
1806 	put_bh(bh);
1807 	return 0;
1808 }
1809 
1810 static int __ext4_journalled_writepage(struct page *page,
1811 				       unsigned int len)
1812 {
1813 	struct address_space *mapping = page->mapping;
1814 	struct inode *inode = mapping->host;
1815 	struct buffer_head *page_bufs;
1816 	handle_t *handle = NULL;
1817 	int ret = 0;
1818 	int err;
1819 
1820 	ClearPageChecked(page);
1821 	page_bufs = page_buffers(page);
1822 	BUG_ON(!page_bufs);
1823 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1824 	/* As soon as we unlock the page, it can go away, but we have
1825 	 * references to buffers so we are safe */
1826 	unlock_page(page);
1827 
1828 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1829 	if (IS_ERR(handle)) {
1830 		ret = PTR_ERR(handle);
1831 		goto out;
1832 	}
1833 
1834 	BUG_ON(!ext4_handle_valid(handle));
1835 
1836 	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1837 				do_journal_get_write_access);
1838 
1839 	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1840 				write_end_fn);
1841 	if (ret == 0)
1842 		ret = err;
1843 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1844 	err = ext4_journal_stop(handle);
1845 	if (!ret)
1846 		ret = err;
1847 
1848 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1849 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1850 out:
1851 	return ret;
1852 }
1853 
1854 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1855 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1856 
1857 /*
1858  * Note that we don't need to start a transaction unless we're journaling data
1859  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1860  * need to file the inode to the transaction's list in ordered mode because if
1861  * we are writing back data added by write(), the inode is already there and if
1862  * we are writing back data modified via mmap(), no one guarantees in which
1863  * transaction the data will hit the disk. In case we are journaling data, we
1864  * cannot start transaction directly because transaction start ranks above page
1865  * lock so we have to do some magic.
1866  *
1867  * This function can get called via...
1868  *   - ext4_da_writepages after taking page lock (have journal handle)
1869  *   - journal_submit_inode_data_buffers (no journal handle)
1870  *   - shrink_page_list via pdflush (no journal handle)
1871  *   - grab_page_cache when doing write_begin (have journal handle)
1872  *
1873  * We don't do any block allocation in this function. If we have page with
1874  * multiple blocks we need to write those buffer_heads that are mapped. This
1875  * is important for mmaped based write. So if we do with blocksize 1K
1876  * truncate(f, 1024);
1877  * a = mmap(f, 0, 4096);
1878  * a[0] = 'a';
1879  * truncate(f, 4096);
1880  * we have in the page first buffer_head mapped via page_mkwrite call back
1881  * but other bufer_heads would be unmapped but dirty(dirty done via the
1882  * do_wp_page). So writepage should write the first block. If we modify
1883  * the mmap area beyond 1024 we will again get a page_fault and the
1884  * page_mkwrite callback will do the block allocation and mark the
1885  * buffer_heads mapped.
1886  *
1887  * We redirty the page if we have any buffer_heads that is either delay or
1888  * unwritten in the page.
1889  *
1890  * We can get recursively called as show below.
1891  *
1892  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1893  *		ext4_writepage()
1894  *
1895  * But since we don't do any block allocation we should not deadlock.
1896  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1897  */
1898 static int ext4_writepage(struct page *page,
1899 			  struct writeback_control *wbc)
1900 {
1901 	int ret = 0, commit_write = 0;
1902 	loff_t size;
1903 	unsigned int len;
1904 	struct buffer_head *page_bufs = NULL;
1905 	struct inode *inode = page->mapping->host;
1906 
1907 	trace_ext4_writepage(page);
1908 	size = i_size_read(inode);
1909 	if (page->index == size >> PAGE_CACHE_SHIFT)
1910 		len = size & ~PAGE_CACHE_MASK;
1911 	else
1912 		len = PAGE_CACHE_SIZE;
1913 
1914 	/*
1915 	 * If the page does not have buffers (for whatever reason),
1916 	 * try to create them using __block_write_begin.  If this
1917 	 * fails, redirty the page and move on.
1918 	 */
1919 	if (!page_has_buffers(page)) {
1920 		if (__block_write_begin(page, 0, len,
1921 					noalloc_get_block_write)) {
1922 		redirty_page:
1923 			redirty_page_for_writepage(wbc, page);
1924 			unlock_page(page);
1925 			return 0;
1926 		}
1927 		commit_write = 1;
1928 	}
1929 	page_bufs = page_buffers(page);
1930 	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1931 			      ext4_bh_delay_or_unwritten)) {
1932 		/*
1933 		 * We don't want to do block allocation, so redirty
1934 		 * the page and return.  We may reach here when we do
1935 		 * a journal commit via journal_submit_inode_data_buffers.
1936 		 * We can also reach here via shrink_page_list but it
1937 		 * should never be for direct reclaim so warn if that
1938 		 * happens
1939 		 */
1940 		WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1941 								PF_MEMALLOC);
1942 		goto redirty_page;
1943 	}
1944 	if (commit_write)
1945 		/* now mark the buffer_heads as dirty and uptodate */
1946 		block_commit_write(page, 0, len);
1947 
1948 	if (PageChecked(page) && ext4_should_journal_data(inode))
1949 		/*
1950 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1951 		 * doesn't seem much point in redirtying the page here.
1952 		 */
1953 		return __ext4_journalled_writepage(page, len);
1954 
1955 	if (buffer_uninit(page_bufs)) {
1956 		ext4_set_bh_endio(page_bufs, inode);
1957 		ret = block_write_full_page_endio(page, noalloc_get_block_write,
1958 					    wbc, ext4_end_io_buffer_write);
1959 	} else
1960 		ret = block_write_full_page(page, noalloc_get_block_write,
1961 					    wbc);
1962 
1963 	return ret;
1964 }
1965 
1966 /*
1967  * This is called via ext4_da_writepages() to
1968  * calculate the total number of credits to reserve to fit
1969  * a single extent allocation into a single transaction,
1970  * ext4_da_writpeages() will loop calling this before
1971  * the block allocation.
1972  */
1973 
1974 static int ext4_da_writepages_trans_blocks(struct inode *inode)
1975 {
1976 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1977 
1978 	/*
1979 	 * With non-extent format the journal credit needed to
1980 	 * insert nrblocks contiguous block is dependent on
1981 	 * number of contiguous block. So we will limit
1982 	 * number of contiguous block to a sane value
1983 	 */
1984 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1985 	    (max_blocks > EXT4_MAX_TRANS_DATA))
1986 		max_blocks = EXT4_MAX_TRANS_DATA;
1987 
1988 	return ext4_chunk_trans_blocks(inode, max_blocks);
1989 }
1990 
1991 /*
1992  * write_cache_pages_da - walk the list of dirty pages of the given
1993  * address space and accumulate pages that need writing, and call
1994  * mpage_da_map_and_submit to map a single contiguous memory region
1995  * and then write them.
1996  */
1997 static int write_cache_pages_da(struct address_space *mapping,
1998 				struct writeback_control *wbc,
1999 				struct mpage_da_data *mpd,
2000 				pgoff_t *done_index)
2001 {
2002 	struct buffer_head	*bh, *head;
2003 	struct inode		*inode = mapping->host;
2004 	struct pagevec		pvec;
2005 	unsigned int		nr_pages;
2006 	sector_t		logical;
2007 	pgoff_t			index, end;
2008 	long			nr_to_write = wbc->nr_to_write;
2009 	int			i, tag, ret = 0;
2010 
2011 	memset(mpd, 0, sizeof(struct mpage_da_data));
2012 	mpd->wbc = wbc;
2013 	mpd->inode = inode;
2014 	pagevec_init(&pvec, 0);
2015 	index = wbc->range_start >> PAGE_CACHE_SHIFT;
2016 	end = wbc->range_end >> PAGE_CACHE_SHIFT;
2017 
2018 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2019 		tag = PAGECACHE_TAG_TOWRITE;
2020 	else
2021 		tag = PAGECACHE_TAG_DIRTY;
2022 
2023 	*done_index = index;
2024 	while (index <= end) {
2025 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2026 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2027 		if (nr_pages == 0)
2028 			return 0;
2029 
2030 		for (i = 0; i < nr_pages; i++) {
2031 			struct page *page = pvec.pages[i];
2032 
2033 			/*
2034 			 * At this point, the page may be truncated or
2035 			 * invalidated (changing page->mapping to NULL), or
2036 			 * even swizzled back from swapper_space to tmpfs file
2037 			 * mapping. However, page->index will not change
2038 			 * because we have a reference on the page.
2039 			 */
2040 			if (page->index > end)
2041 				goto out;
2042 
2043 			*done_index = page->index + 1;
2044 
2045 			/*
2046 			 * If we can't merge this page, and we have
2047 			 * accumulated an contiguous region, write it
2048 			 */
2049 			if ((mpd->next_page != page->index) &&
2050 			    (mpd->next_page != mpd->first_page)) {
2051 				mpage_da_map_and_submit(mpd);
2052 				goto ret_extent_tail;
2053 			}
2054 
2055 			lock_page(page);
2056 
2057 			/*
2058 			 * If the page is no longer dirty, or its
2059 			 * mapping no longer corresponds to inode we
2060 			 * are writing (which means it has been
2061 			 * truncated or invalidated), or the page is
2062 			 * already under writeback and we are not
2063 			 * doing a data integrity writeback, skip the page
2064 			 */
2065 			if (!PageDirty(page) ||
2066 			    (PageWriteback(page) &&
2067 			     (wbc->sync_mode == WB_SYNC_NONE)) ||
2068 			    unlikely(page->mapping != mapping)) {
2069 				unlock_page(page);
2070 				continue;
2071 			}
2072 
2073 			wait_on_page_writeback(page);
2074 			BUG_ON(PageWriteback(page));
2075 
2076 			if (mpd->next_page != page->index)
2077 				mpd->first_page = page->index;
2078 			mpd->next_page = page->index + 1;
2079 			logical = (sector_t) page->index <<
2080 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2081 
2082 			if (!page_has_buffers(page)) {
2083 				mpage_add_bh_to_extent(mpd, logical,
2084 						       PAGE_CACHE_SIZE,
2085 						       (1 << BH_Dirty) | (1 << BH_Uptodate));
2086 				if (mpd->io_done)
2087 					goto ret_extent_tail;
2088 			} else {
2089 				/*
2090 				 * Page with regular buffer heads,
2091 				 * just add all dirty ones
2092 				 */
2093 				head = page_buffers(page);
2094 				bh = head;
2095 				do {
2096 					BUG_ON(buffer_locked(bh));
2097 					/*
2098 					 * We need to try to allocate
2099 					 * unmapped blocks in the same page.
2100 					 * Otherwise we won't make progress
2101 					 * with the page in ext4_writepage
2102 					 */
2103 					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2104 						mpage_add_bh_to_extent(mpd, logical,
2105 								       bh->b_size,
2106 								       bh->b_state);
2107 						if (mpd->io_done)
2108 							goto ret_extent_tail;
2109 					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2110 						/*
2111 						 * mapped dirty buffer. We need
2112 						 * to update the b_state
2113 						 * because we look at b_state
2114 						 * in mpage_da_map_blocks.  We
2115 						 * don't update b_size because
2116 						 * if we find an unmapped
2117 						 * buffer_head later we need to
2118 						 * use the b_state flag of that
2119 						 * buffer_head.
2120 						 */
2121 						if (mpd->b_size == 0)
2122 							mpd->b_state = bh->b_state & BH_FLAGS;
2123 					}
2124 					logical++;
2125 				} while ((bh = bh->b_this_page) != head);
2126 			}
2127 
2128 			if (nr_to_write > 0) {
2129 				nr_to_write--;
2130 				if (nr_to_write == 0 &&
2131 				    wbc->sync_mode == WB_SYNC_NONE)
2132 					/*
2133 					 * We stop writing back only if we are
2134 					 * not doing integrity sync. In case of
2135 					 * integrity sync we have to keep going
2136 					 * because someone may be concurrently
2137 					 * dirtying pages, and we might have
2138 					 * synced a lot of newly appeared dirty
2139 					 * pages, but have not synced all of the
2140 					 * old dirty pages.
2141 					 */
2142 					goto out;
2143 			}
2144 		}
2145 		pagevec_release(&pvec);
2146 		cond_resched();
2147 	}
2148 	return 0;
2149 ret_extent_tail:
2150 	ret = MPAGE_DA_EXTENT_TAIL;
2151 out:
2152 	pagevec_release(&pvec);
2153 	cond_resched();
2154 	return ret;
2155 }
2156 
2157 
2158 static int ext4_da_writepages(struct address_space *mapping,
2159 			      struct writeback_control *wbc)
2160 {
2161 	pgoff_t	index;
2162 	int range_whole = 0;
2163 	handle_t *handle = NULL;
2164 	struct mpage_da_data mpd;
2165 	struct inode *inode = mapping->host;
2166 	int pages_written = 0;
2167 	unsigned int max_pages;
2168 	int range_cyclic, cycled = 1, io_done = 0;
2169 	int needed_blocks, ret = 0;
2170 	long desired_nr_to_write, nr_to_writebump = 0;
2171 	loff_t range_start = wbc->range_start;
2172 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2173 	pgoff_t done_index = 0;
2174 	pgoff_t end;
2175 	struct blk_plug plug;
2176 
2177 	trace_ext4_da_writepages(inode, wbc);
2178 
2179 	/*
2180 	 * No pages to write? This is mainly a kludge to avoid starting
2181 	 * a transaction for special inodes like journal inode on last iput()
2182 	 * because that could violate lock ordering on umount
2183 	 */
2184 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2185 		return 0;
2186 
2187 	/*
2188 	 * If the filesystem has aborted, it is read-only, so return
2189 	 * right away instead of dumping stack traces later on that
2190 	 * will obscure the real source of the problem.  We test
2191 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2192 	 * the latter could be true if the filesystem is mounted
2193 	 * read-only, and in that case, ext4_da_writepages should
2194 	 * *never* be called, so if that ever happens, we would want
2195 	 * the stack trace.
2196 	 */
2197 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2198 		return -EROFS;
2199 
2200 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2201 		range_whole = 1;
2202 
2203 	range_cyclic = wbc->range_cyclic;
2204 	if (wbc->range_cyclic) {
2205 		index = mapping->writeback_index;
2206 		if (index)
2207 			cycled = 0;
2208 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2209 		wbc->range_end  = LLONG_MAX;
2210 		wbc->range_cyclic = 0;
2211 		end = -1;
2212 	} else {
2213 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2214 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2215 	}
2216 
2217 	/*
2218 	 * This works around two forms of stupidity.  The first is in
2219 	 * the writeback code, which caps the maximum number of pages
2220 	 * written to be 1024 pages.  This is wrong on multiple
2221 	 * levels; different architectues have a different page size,
2222 	 * which changes the maximum amount of data which gets
2223 	 * written.  Secondly, 4 megabytes is way too small.  XFS
2224 	 * forces this value to be 16 megabytes by multiplying
2225 	 * nr_to_write parameter by four, and then relies on its
2226 	 * allocator to allocate larger extents to make them
2227 	 * contiguous.  Unfortunately this brings us to the second
2228 	 * stupidity, which is that ext4's mballoc code only allocates
2229 	 * at most 2048 blocks.  So we force contiguous writes up to
2230 	 * the number of dirty blocks in the inode, or
2231 	 * sbi->max_writeback_mb_bump whichever is smaller.
2232 	 */
2233 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2234 	if (!range_cyclic && range_whole) {
2235 		if (wbc->nr_to_write == LONG_MAX)
2236 			desired_nr_to_write = wbc->nr_to_write;
2237 		else
2238 			desired_nr_to_write = wbc->nr_to_write * 8;
2239 	} else
2240 		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2241 							   max_pages);
2242 	if (desired_nr_to_write > max_pages)
2243 		desired_nr_to_write = max_pages;
2244 
2245 	if (wbc->nr_to_write < desired_nr_to_write) {
2246 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2247 		wbc->nr_to_write = desired_nr_to_write;
2248 	}
2249 
2250 retry:
2251 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2252 		tag_pages_for_writeback(mapping, index, end);
2253 
2254 	blk_start_plug(&plug);
2255 	while (!ret && wbc->nr_to_write > 0) {
2256 
2257 		/*
2258 		 * we  insert one extent at a time. So we need
2259 		 * credit needed for single extent allocation.
2260 		 * journalled mode is currently not supported
2261 		 * by delalloc
2262 		 */
2263 		BUG_ON(ext4_should_journal_data(inode));
2264 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2265 
2266 		/* start a new transaction*/
2267 		handle = ext4_journal_start(inode, needed_blocks);
2268 		if (IS_ERR(handle)) {
2269 			ret = PTR_ERR(handle);
2270 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2271 			       "%ld pages, ino %lu; err %d", __func__,
2272 				wbc->nr_to_write, inode->i_ino, ret);
2273 			blk_finish_plug(&plug);
2274 			goto out_writepages;
2275 		}
2276 
2277 		/*
2278 		 * Now call write_cache_pages_da() to find the next
2279 		 * contiguous region of logical blocks that need
2280 		 * blocks to be allocated by ext4 and submit them.
2281 		 */
2282 		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2283 		/*
2284 		 * If we have a contiguous extent of pages and we
2285 		 * haven't done the I/O yet, map the blocks and submit
2286 		 * them for I/O.
2287 		 */
2288 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2289 			mpage_da_map_and_submit(&mpd);
2290 			ret = MPAGE_DA_EXTENT_TAIL;
2291 		}
2292 		trace_ext4_da_write_pages(inode, &mpd);
2293 		wbc->nr_to_write -= mpd.pages_written;
2294 
2295 		ext4_journal_stop(handle);
2296 
2297 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2298 			/* commit the transaction which would
2299 			 * free blocks released in the transaction
2300 			 * and try again
2301 			 */
2302 			jbd2_journal_force_commit_nested(sbi->s_journal);
2303 			ret = 0;
2304 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2305 			/*
2306 			 * Got one extent now try with rest of the pages.
2307 			 * If mpd.retval is set -EIO, journal is aborted.
2308 			 * So we don't need to write any more.
2309 			 */
2310 			pages_written += mpd.pages_written;
2311 			ret = mpd.retval;
2312 			io_done = 1;
2313 		} else if (wbc->nr_to_write)
2314 			/*
2315 			 * There is no more writeout needed
2316 			 * or we requested for a noblocking writeout
2317 			 * and we found the device congested
2318 			 */
2319 			break;
2320 	}
2321 	blk_finish_plug(&plug);
2322 	if (!io_done && !cycled) {
2323 		cycled = 1;
2324 		index = 0;
2325 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2326 		wbc->range_end  = mapping->writeback_index - 1;
2327 		goto retry;
2328 	}
2329 
2330 	/* Update index */
2331 	wbc->range_cyclic = range_cyclic;
2332 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2333 		/*
2334 		 * set the writeback_index so that range_cyclic
2335 		 * mode will write it back later
2336 		 */
2337 		mapping->writeback_index = done_index;
2338 
2339 out_writepages:
2340 	wbc->nr_to_write -= nr_to_writebump;
2341 	wbc->range_start = range_start;
2342 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2343 	return ret;
2344 }
2345 
2346 #define FALL_BACK_TO_NONDELALLOC 1
2347 static int ext4_nonda_switch(struct super_block *sb)
2348 {
2349 	s64 free_blocks, dirty_blocks;
2350 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2351 
2352 	/*
2353 	 * switch to non delalloc mode if we are running low
2354 	 * on free block. The free block accounting via percpu
2355 	 * counters can get slightly wrong with percpu_counter_batch getting
2356 	 * accumulated on each CPU without updating global counters
2357 	 * Delalloc need an accurate free block accounting. So switch
2358 	 * to non delalloc when we are near to error range.
2359 	 */
2360 	free_blocks  = EXT4_C2B(sbi,
2361 		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2362 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2363 	if (2 * free_blocks < 3 * dirty_blocks ||
2364 		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2365 		/*
2366 		 * free block count is less than 150% of dirty blocks
2367 		 * or free blocks is less than watermark
2368 		 */
2369 		return 1;
2370 	}
2371 	/*
2372 	 * Even if we don't switch but are nearing capacity,
2373 	 * start pushing delalloc when 1/2 of free blocks are dirty.
2374 	 */
2375 	if (free_blocks < 2 * dirty_blocks)
2376 		writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE);
2377 
2378 	return 0;
2379 }
2380 
2381 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2382 			       loff_t pos, unsigned len, unsigned flags,
2383 			       struct page **pagep, void **fsdata)
2384 {
2385 	int ret, retries = 0;
2386 	struct page *page;
2387 	pgoff_t index;
2388 	struct inode *inode = mapping->host;
2389 	handle_t *handle;
2390 	loff_t page_len;
2391 
2392 	index = pos >> PAGE_CACHE_SHIFT;
2393 
2394 	if (ext4_nonda_switch(inode->i_sb)) {
2395 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2396 		return ext4_write_begin(file, mapping, pos,
2397 					len, flags, pagep, fsdata);
2398 	}
2399 	*fsdata = (void *)0;
2400 	trace_ext4_da_write_begin(inode, pos, len, flags);
2401 retry:
2402 	/*
2403 	 * With delayed allocation, we don't log the i_disksize update
2404 	 * if there is delayed block allocation. But we still need
2405 	 * to journalling the i_disksize update if writes to the end
2406 	 * of file which has an already mapped buffer.
2407 	 */
2408 	handle = ext4_journal_start(inode, 1);
2409 	if (IS_ERR(handle)) {
2410 		ret = PTR_ERR(handle);
2411 		goto out;
2412 	}
2413 	/* We cannot recurse into the filesystem as the transaction is already
2414 	 * started */
2415 	flags |= AOP_FLAG_NOFS;
2416 
2417 	page = grab_cache_page_write_begin(mapping, index, flags);
2418 	if (!page) {
2419 		ext4_journal_stop(handle);
2420 		ret = -ENOMEM;
2421 		goto out;
2422 	}
2423 	*pagep = page;
2424 
2425 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2426 	if (ret < 0) {
2427 		unlock_page(page);
2428 		ext4_journal_stop(handle);
2429 		page_cache_release(page);
2430 		/*
2431 		 * block_write_begin may have instantiated a few blocks
2432 		 * outside i_size.  Trim these off again. Don't need
2433 		 * i_size_read because we hold i_mutex.
2434 		 */
2435 		if (pos + len > inode->i_size)
2436 			ext4_truncate_failed_write(inode);
2437 	} else {
2438 		page_len = pos & (PAGE_CACHE_SIZE - 1);
2439 		if (page_len > 0) {
2440 			ret = ext4_discard_partial_page_buffers_no_lock(handle,
2441 				inode, page, pos - page_len, page_len,
2442 				EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
2443 		}
2444 	}
2445 
2446 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2447 		goto retry;
2448 out:
2449 	return ret;
2450 }
2451 
2452 /*
2453  * Check if we should update i_disksize
2454  * when write to the end of file but not require block allocation
2455  */
2456 static int ext4_da_should_update_i_disksize(struct page *page,
2457 					    unsigned long offset)
2458 {
2459 	struct buffer_head *bh;
2460 	struct inode *inode = page->mapping->host;
2461 	unsigned int idx;
2462 	int i;
2463 
2464 	bh = page_buffers(page);
2465 	idx = offset >> inode->i_blkbits;
2466 
2467 	for (i = 0; i < idx; i++)
2468 		bh = bh->b_this_page;
2469 
2470 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2471 		return 0;
2472 	return 1;
2473 }
2474 
2475 static int ext4_da_write_end(struct file *file,
2476 			     struct address_space *mapping,
2477 			     loff_t pos, unsigned len, unsigned copied,
2478 			     struct page *page, void *fsdata)
2479 {
2480 	struct inode *inode = mapping->host;
2481 	int ret = 0, ret2;
2482 	handle_t *handle = ext4_journal_current_handle();
2483 	loff_t new_i_size;
2484 	unsigned long start, end;
2485 	int write_mode = (int)(unsigned long)fsdata;
2486 	loff_t page_len;
2487 
2488 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2489 		if (ext4_should_order_data(inode)) {
2490 			return ext4_ordered_write_end(file, mapping, pos,
2491 					len, copied, page, fsdata);
2492 		} else if (ext4_should_writeback_data(inode)) {
2493 			return ext4_writeback_write_end(file, mapping, pos,
2494 					len, copied, page, fsdata);
2495 		} else {
2496 			BUG();
2497 		}
2498 	}
2499 
2500 	trace_ext4_da_write_end(inode, pos, len, copied);
2501 	start = pos & (PAGE_CACHE_SIZE - 1);
2502 	end = start + copied - 1;
2503 
2504 	/*
2505 	 * generic_write_end() will run mark_inode_dirty() if i_size
2506 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2507 	 * into that.
2508 	 */
2509 
2510 	new_i_size = pos + copied;
2511 	if (new_i_size > EXT4_I(inode)->i_disksize) {
2512 		if (ext4_da_should_update_i_disksize(page, end)) {
2513 			down_write(&EXT4_I(inode)->i_data_sem);
2514 			if (new_i_size > EXT4_I(inode)->i_disksize) {
2515 				/*
2516 				 * Updating i_disksize when extending file
2517 				 * without needing block allocation
2518 				 */
2519 				if (ext4_should_order_data(inode))
2520 					ret = ext4_jbd2_file_inode(handle,
2521 								   inode);
2522 
2523 				EXT4_I(inode)->i_disksize = new_i_size;
2524 			}
2525 			up_write(&EXT4_I(inode)->i_data_sem);
2526 			/* We need to mark inode dirty even if
2527 			 * new_i_size is less that inode->i_size
2528 			 * bu greater than i_disksize.(hint delalloc)
2529 			 */
2530 			ext4_mark_inode_dirty(handle, inode);
2531 		}
2532 	}
2533 	ret2 = generic_write_end(file, mapping, pos, len, copied,
2534 							page, fsdata);
2535 
2536 	page_len = PAGE_CACHE_SIZE -
2537 			((pos + copied - 1) & (PAGE_CACHE_SIZE - 1));
2538 
2539 	if (page_len > 0) {
2540 		ret = ext4_discard_partial_page_buffers_no_lock(handle,
2541 			inode, page, pos + copied - 1, page_len,
2542 			EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
2543 	}
2544 
2545 	copied = ret2;
2546 	if (ret2 < 0)
2547 		ret = ret2;
2548 	ret2 = ext4_journal_stop(handle);
2549 	if (!ret)
2550 		ret = ret2;
2551 
2552 	return ret ? ret : copied;
2553 }
2554 
2555 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2556 {
2557 	/*
2558 	 * Drop reserved blocks
2559 	 */
2560 	BUG_ON(!PageLocked(page));
2561 	if (!page_has_buffers(page))
2562 		goto out;
2563 
2564 	ext4_da_page_release_reservation(page, offset);
2565 
2566 out:
2567 	ext4_invalidatepage(page, offset);
2568 
2569 	return;
2570 }
2571 
2572 /*
2573  * Force all delayed allocation blocks to be allocated for a given inode.
2574  */
2575 int ext4_alloc_da_blocks(struct inode *inode)
2576 {
2577 	trace_ext4_alloc_da_blocks(inode);
2578 
2579 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2580 	    !EXT4_I(inode)->i_reserved_meta_blocks)
2581 		return 0;
2582 
2583 	/*
2584 	 * We do something simple for now.  The filemap_flush() will
2585 	 * also start triggering a write of the data blocks, which is
2586 	 * not strictly speaking necessary (and for users of
2587 	 * laptop_mode, not even desirable).  However, to do otherwise
2588 	 * would require replicating code paths in:
2589 	 *
2590 	 * ext4_da_writepages() ->
2591 	 *    write_cache_pages() ---> (via passed in callback function)
2592 	 *        __mpage_da_writepage() -->
2593 	 *           mpage_add_bh_to_extent()
2594 	 *           mpage_da_map_blocks()
2595 	 *
2596 	 * The problem is that write_cache_pages(), located in
2597 	 * mm/page-writeback.c, marks pages clean in preparation for
2598 	 * doing I/O, which is not desirable if we're not planning on
2599 	 * doing I/O at all.
2600 	 *
2601 	 * We could call write_cache_pages(), and then redirty all of
2602 	 * the pages by calling redirty_page_for_writepage() but that
2603 	 * would be ugly in the extreme.  So instead we would need to
2604 	 * replicate parts of the code in the above functions,
2605 	 * simplifying them because we wouldn't actually intend to
2606 	 * write out the pages, but rather only collect contiguous
2607 	 * logical block extents, call the multi-block allocator, and
2608 	 * then update the buffer heads with the block allocations.
2609 	 *
2610 	 * For now, though, we'll cheat by calling filemap_flush(),
2611 	 * which will map the blocks, and start the I/O, but not
2612 	 * actually wait for the I/O to complete.
2613 	 */
2614 	return filemap_flush(inode->i_mapping);
2615 }
2616 
2617 /*
2618  * bmap() is special.  It gets used by applications such as lilo and by
2619  * the swapper to find the on-disk block of a specific piece of data.
2620  *
2621  * Naturally, this is dangerous if the block concerned is still in the
2622  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2623  * filesystem and enables swap, then they may get a nasty shock when the
2624  * data getting swapped to that swapfile suddenly gets overwritten by
2625  * the original zero's written out previously to the journal and
2626  * awaiting writeback in the kernel's buffer cache.
2627  *
2628  * So, if we see any bmap calls here on a modified, data-journaled file,
2629  * take extra steps to flush any blocks which might be in the cache.
2630  */
2631 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2632 {
2633 	struct inode *inode = mapping->host;
2634 	journal_t *journal;
2635 	int err;
2636 
2637 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2638 			test_opt(inode->i_sb, DELALLOC)) {
2639 		/*
2640 		 * With delalloc we want to sync the file
2641 		 * so that we can make sure we allocate
2642 		 * blocks for file
2643 		 */
2644 		filemap_write_and_wait(mapping);
2645 	}
2646 
2647 	if (EXT4_JOURNAL(inode) &&
2648 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2649 		/*
2650 		 * This is a REALLY heavyweight approach, but the use of
2651 		 * bmap on dirty files is expected to be extremely rare:
2652 		 * only if we run lilo or swapon on a freshly made file
2653 		 * do we expect this to happen.
2654 		 *
2655 		 * (bmap requires CAP_SYS_RAWIO so this does not
2656 		 * represent an unprivileged user DOS attack --- we'd be
2657 		 * in trouble if mortal users could trigger this path at
2658 		 * will.)
2659 		 *
2660 		 * NB. EXT4_STATE_JDATA is not set on files other than
2661 		 * regular files.  If somebody wants to bmap a directory
2662 		 * or symlink and gets confused because the buffer
2663 		 * hasn't yet been flushed to disk, they deserve
2664 		 * everything they get.
2665 		 */
2666 
2667 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2668 		journal = EXT4_JOURNAL(inode);
2669 		jbd2_journal_lock_updates(journal);
2670 		err = jbd2_journal_flush(journal);
2671 		jbd2_journal_unlock_updates(journal);
2672 
2673 		if (err)
2674 			return 0;
2675 	}
2676 
2677 	return generic_block_bmap(mapping, block, ext4_get_block);
2678 }
2679 
2680 static int ext4_readpage(struct file *file, struct page *page)
2681 {
2682 	trace_ext4_readpage(page);
2683 	return mpage_readpage(page, ext4_get_block);
2684 }
2685 
2686 static int
2687 ext4_readpages(struct file *file, struct address_space *mapping,
2688 		struct list_head *pages, unsigned nr_pages)
2689 {
2690 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2691 }
2692 
2693 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2694 {
2695 	struct buffer_head *head, *bh;
2696 	unsigned int curr_off = 0;
2697 
2698 	if (!page_has_buffers(page))
2699 		return;
2700 	head = bh = page_buffers(page);
2701 	do {
2702 		if (offset <= curr_off && test_clear_buffer_uninit(bh)
2703 					&& bh->b_private) {
2704 			ext4_free_io_end(bh->b_private);
2705 			bh->b_private = NULL;
2706 			bh->b_end_io = NULL;
2707 		}
2708 		curr_off = curr_off + bh->b_size;
2709 		bh = bh->b_this_page;
2710 	} while (bh != head);
2711 }
2712 
2713 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2714 {
2715 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2716 
2717 	trace_ext4_invalidatepage(page, offset);
2718 
2719 	/*
2720 	 * free any io_end structure allocated for buffers to be discarded
2721 	 */
2722 	if (ext4_should_dioread_nolock(page->mapping->host))
2723 		ext4_invalidatepage_free_endio(page, offset);
2724 	/*
2725 	 * If it's a full truncate we just forget about the pending dirtying
2726 	 */
2727 	if (offset == 0)
2728 		ClearPageChecked(page);
2729 
2730 	if (journal)
2731 		jbd2_journal_invalidatepage(journal, page, offset);
2732 	else
2733 		block_invalidatepage(page, offset);
2734 }
2735 
2736 static int ext4_releasepage(struct page *page, gfp_t wait)
2737 {
2738 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2739 
2740 	trace_ext4_releasepage(page);
2741 
2742 	WARN_ON(PageChecked(page));
2743 	if (!page_has_buffers(page))
2744 		return 0;
2745 	if (journal)
2746 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2747 	else
2748 		return try_to_free_buffers(page);
2749 }
2750 
2751 /*
2752  * ext4_get_block used when preparing for a DIO write or buffer write.
2753  * We allocate an uinitialized extent if blocks haven't been allocated.
2754  * The extent will be converted to initialized after the IO is complete.
2755  */
2756 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2757 		   struct buffer_head *bh_result, int create)
2758 {
2759 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2760 		   inode->i_ino, create);
2761 	return _ext4_get_block(inode, iblock, bh_result,
2762 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2763 }
2764 
2765 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2766 			    ssize_t size, void *private, int ret,
2767 			    bool is_async)
2768 {
2769 	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2770         ext4_io_end_t *io_end = iocb->private;
2771 	struct workqueue_struct *wq;
2772 	unsigned long flags;
2773 	struct ext4_inode_info *ei;
2774 
2775 	/* if not async direct IO or dio with 0 bytes write, just return */
2776 	if (!io_end || !size)
2777 		goto out;
2778 
2779 	ext_debug("ext4_end_io_dio(): io_end 0x%p"
2780 		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2781  		  iocb->private, io_end->inode->i_ino, iocb, offset,
2782 		  size);
2783 
2784 	/* if not aio dio with unwritten extents, just free io and return */
2785 	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2786 		ext4_free_io_end(io_end);
2787 		iocb->private = NULL;
2788 out:
2789 		if (is_async)
2790 			aio_complete(iocb, ret, 0);
2791 		inode_dio_done(inode);
2792 		return;
2793 	}
2794 
2795 	io_end->offset = offset;
2796 	io_end->size = size;
2797 	if (is_async) {
2798 		io_end->iocb = iocb;
2799 		io_end->result = ret;
2800 	}
2801 	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2802 
2803 	/* Add the io_end to per-inode completed aio dio list*/
2804 	ei = EXT4_I(io_end->inode);
2805 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2806 	list_add_tail(&io_end->list, &ei->i_completed_io_list);
2807 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2808 
2809 	/* queue the work to convert unwritten extents to written */
2810 	queue_work(wq, &io_end->work);
2811 	iocb->private = NULL;
2812 
2813 	/* XXX: probably should move into the real I/O completion handler */
2814 	inode_dio_done(inode);
2815 }
2816 
2817 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2818 {
2819 	ext4_io_end_t *io_end = bh->b_private;
2820 	struct workqueue_struct *wq;
2821 	struct inode *inode;
2822 	unsigned long flags;
2823 
2824 	if (!test_clear_buffer_uninit(bh) || !io_end)
2825 		goto out;
2826 
2827 	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2828 		printk("sb umounted, discard end_io request for inode %lu\n",
2829 			io_end->inode->i_ino);
2830 		ext4_free_io_end(io_end);
2831 		goto out;
2832 	}
2833 
2834 	/*
2835 	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2836 	 * but being more careful is always safe for the future change.
2837 	 */
2838 	inode = io_end->inode;
2839 	ext4_set_io_unwritten_flag(inode, io_end);
2840 
2841 	/* Add the io_end to per-inode completed io list*/
2842 	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2843 	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2844 	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2845 
2846 	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2847 	/* queue the work to convert unwritten extents to written */
2848 	queue_work(wq, &io_end->work);
2849 out:
2850 	bh->b_private = NULL;
2851 	bh->b_end_io = NULL;
2852 	clear_buffer_uninit(bh);
2853 	end_buffer_async_write(bh, uptodate);
2854 }
2855 
2856 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2857 {
2858 	ext4_io_end_t *io_end;
2859 	struct page *page = bh->b_page;
2860 	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2861 	size_t size = bh->b_size;
2862 
2863 retry:
2864 	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2865 	if (!io_end) {
2866 		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2867 		schedule();
2868 		goto retry;
2869 	}
2870 	io_end->offset = offset;
2871 	io_end->size = size;
2872 	/*
2873 	 * We need to hold a reference to the page to make sure it
2874 	 * doesn't get evicted before ext4_end_io_work() has a chance
2875 	 * to convert the extent from written to unwritten.
2876 	 */
2877 	io_end->page = page;
2878 	get_page(io_end->page);
2879 
2880 	bh->b_private = io_end;
2881 	bh->b_end_io = ext4_end_io_buffer_write;
2882 	return 0;
2883 }
2884 
2885 /*
2886  * For ext4 extent files, ext4 will do direct-io write to holes,
2887  * preallocated extents, and those write extend the file, no need to
2888  * fall back to buffered IO.
2889  *
2890  * For holes, we fallocate those blocks, mark them as uninitialized
2891  * If those blocks were preallocated, we mark sure they are splited, but
2892  * still keep the range to write as uninitialized.
2893  *
2894  * The unwrritten extents will be converted to written when DIO is completed.
2895  * For async direct IO, since the IO may still pending when return, we
2896  * set up an end_io call back function, which will do the conversion
2897  * when async direct IO completed.
2898  *
2899  * If the O_DIRECT write will extend the file then add this inode to the
2900  * orphan list.  So recovery will truncate it back to the original size
2901  * if the machine crashes during the write.
2902  *
2903  */
2904 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2905 			      const struct iovec *iov, loff_t offset,
2906 			      unsigned long nr_segs)
2907 {
2908 	struct file *file = iocb->ki_filp;
2909 	struct inode *inode = file->f_mapping->host;
2910 	ssize_t ret;
2911 	size_t count = iov_length(iov, nr_segs);
2912 
2913 	loff_t final_size = offset + count;
2914 	if (rw == WRITE && final_size <= inode->i_size) {
2915 		/*
2916  		 * We could direct write to holes and fallocate.
2917 		 *
2918  		 * Allocated blocks to fill the hole are marked as uninitialized
2919  		 * to prevent parallel buffered read to expose the stale data
2920  		 * before DIO complete the data IO.
2921 		 *
2922  		 * As to previously fallocated extents, ext4 get_block
2923  		 * will just simply mark the buffer mapped but still
2924  		 * keep the extents uninitialized.
2925  		 *
2926 		 * for non AIO case, we will convert those unwritten extents
2927 		 * to written after return back from blockdev_direct_IO.
2928 		 *
2929 		 * for async DIO, the conversion needs to be defered when
2930 		 * the IO is completed. The ext4 end_io callback function
2931 		 * will be called to take care of the conversion work.
2932 		 * Here for async case, we allocate an io_end structure to
2933 		 * hook to the iocb.
2934  		 */
2935 		iocb->private = NULL;
2936 		EXT4_I(inode)->cur_aio_dio = NULL;
2937 		if (!is_sync_kiocb(iocb)) {
2938 			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2939 			if (!iocb->private)
2940 				return -ENOMEM;
2941 			/*
2942 			 * we save the io structure for current async
2943 			 * direct IO, so that later ext4_map_blocks()
2944 			 * could flag the io structure whether there
2945 			 * is a unwritten extents needs to be converted
2946 			 * when IO is completed.
2947 			 */
2948 			EXT4_I(inode)->cur_aio_dio = iocb->private;
2949 		}
2950 
2951 		ret = __blockdev_direct_IO(rw, iocb, inode,
2952 					 inode->i_sb->s_bdev, iov,
2953 					 offset, nr_segs,
2954 					 ext4_get_block_write,
2955 					 ext4_end_io_dio,
2956 					 NULL,
2957 					 DIO_LOCKING | DIO_SKIP_HOLES);
2958 		if (iocb->private)
2959 			EXT4_I(inode)->cur_aio_dio = NULL;
2960 		/*
2961 		 * The io_end structure takes a reference to the inode,
2962 		 * that structure needs to be destroyed and the
2963 		 * reference to the inode need to be dropped, when IO is
2964 		 * complete, even with 0 byte write, or failed.
2965 		 *
2966 		 * In the successful AIO DIO case, the io_end structure will be
2967 		 * desctroyed and the reference to the inode will be dropped
2968 		 * after the end_io call back function is called.
2969 		 *
2970 		 * In the case there is 0 byte write, or error case, since
2971 		 * VFS direct IO won't invoke the end_io call back function,
2972 		 * we need to free the end_io structure here.
2973 		 */
2974 		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2975 			ext4_free_io_end(iocb->private);
2976 			iocb->private = NULL;
2977 		} else if (ret > 0 && ext4_test_inode_state(inode,
2978 						EXT4_STATE_DIO_UNWRITTEN)) {
2979 			int err;
2980 			/*
2981 			 * for non AIO case, since the IO is already
2982 			 * completed, we could do the conversion right here
2983 			 */
2984 			err = ext4_convert_unwritten_extents(inode,
2985 							     offset, ret);
2986 			if (err < 0)
2987 				ret = err;
2988 			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2989 		}
2990 		return ret;
2991 	}
2992 
2993 	/* for write the the end of file case, we fall back to old way */
2994 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2995 }
2996 
2997 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2998 			      const struct iovec *iov, loff_t offset,
2999 			      unsigned long nr_segs)
3000 {
3001 	struct file *file = iocb->ki_filp;
3002 	struct inode *inode = file->f_mapping->host;
3003 	ssize_t ret;
3004 
3005 	/*
3006 	 * If we are doing data journalling we don't support O_DIRECT
3007 	 */
3008 	if (ext4_should_journal_data(inode))
3009 		return 0;
3010 
3011 	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3012 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3013 		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3014 	else
3015 		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3016 	trace_ext4_direct_IO_exit(inode, offset,
3017 				iov_length(iov, nr_segs), rw, ret);
3018 	return ret;
3019 }
3020 
3021 /*
3022  * Pages can be marked dirty completely asynchronously from ext4's journalling
3023  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3024  * much here because ->set_page_dirty is called under VFS locks.  The page is
3025  * not necessarily locked.
3026  *
3027  * We cannot just dirty the page and leave attached buffers clean, because the
3028  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3029  * or jbddirty because all the journalling code will explode.
3030  *
3031  * So what we do is to mark the page "pending dirty" and next time writepage
3032  * is called, propagate that into the buffers appropriately.
3033  */
3034 static int ext4_journalled_set_page_dirty(struct page *page)
3035 {
3036 	SetPageChecked(page);
3037 	return __set_page_dirty_nobuffers(page);
3038 }
3039 
3040 static const struct address_space_operations ext4_ordered_aops = {
3041 	.readpage		= ext4_readpage,
3042 	.readpages		= ext4_readpages,
3043 	.writepage		= ext4_writepage,
3044 	.write_begin		= ext4_write_begin,
3045 	.write_end		= ext4_ordered_write_end,
3046 	.bmap			= ext4_bmap,
3047 	.invalidatepage		= ext4_invalidatepage,
3048 	.releasepage		= ext4_releasepage,
3049 	.direct_IO		= ext4_direct_IO,
3050 	.migratepage		= buffer_migrate_page,
3051 	.is_partially_uptodate  = block_is_partially_uptodate,
3052 	.error_remove_page	= generic_error_remove_page,
3053 };
3054 
3055 static const struct address_space_operations ext4_writeback_aops = {
3056 	.readpage		= ext4_readpage,
3057 	.readpages		= ext4_readpages,
3058 	.writepage		= ext4_writepage,
3059 	.write_begin		= ext4_write_begin,
3060 	.write_end		= ext4_writeback_write_end,
3061 	.bmap			= ext4_bmap,
3062 	.invalidatepage		= ext4_invalidatepage,
3063 	.releasepage		= ext4_releasepage,
3064 	.direct_IO		= ext4_direct_IO,
3065 	.migratepage		= buffer_migrate_page,
3066 	.is_partially_uptodate  = block_is_partially_uptodate,
3067 	.error_remove_page	= generic_error_remove_page,
3068 };
3069 
3070 static const struct address_space_operations ext4_journalled_aops = {
3071 	.readpage		= ext4_readpage,
3072 	.readpages		= ext4_readpages,
3073 	.writepage		= ext4_writepage,
3074 	.write_begin		= ext4_write_begin,
3075 	.write_end		= ext4_journalled_write_end,
3076 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3077 	.bmap			= ext4_bmap,
3078 	.invalidatepage		= ext4_invalidatepage,
3079 	.releasepage		= ext4_releasepage,
3080 	.direct_IO		= ext4_direct_IO,
3081 	.is_partially_uptodate  = block_is_partially_uptodate,
3082 	.error_remove_page	= generic_error_remove_page,
3083 };
3084 
3085 static const struct address_space_operations ext4_da_aops = {
3086 	.readpage		= ext4_readpage,
3087 	.readpages		= ext4_readpages,
3088 	.writepage		= ext4_writepage,
3089 	.writepages		= ext4_da_writepages,
3090 	.write_begin		= ext4_da_write_begin,
3091 	.write_end		= ext4_da_write_end,
3092 	.bmap			= ext4_bmap,
3093 	.invalidatepage		= ext4_da_invalidatepage,
3094 	.releasepage		= ext4_releasepage,
3095 	.direct_IO		= ext4_direct_IO,
3096 	.migratepage		= buffer_migrate_page,
3097 	.is_partially_uptodate  = block_is_partially_uptodate,
3098 	.error_remove_page	= generic_error_remove_page,
3099 };
3100 
3101 void ext4_set_aops(struct inode *inode)
3102 {
3103 	if (ext4_should_order_data(inode) &&
3104 		test_opt(inode->i_sb, DELALLOC))
3105 		inode->i_mapping->a_ops = &ext4_da_aops;
3106 	else if (ext4_should_order_data(inode))
3107 		inode->i_mapping->a_ops = &ext4_ordered_aops;
3108 	else if (ext4_should_writeback_data(inode) &&
3109 		 test_opt(inode->i_sb, DELALLOC))
3110 		inode->i_mapping->a_ops = &ext4_da_aops;
3111 	else if (ext4_should_writeback_data(inode))
3112 		inode->i_mapping->a_ops = &ext4_writeback_aops;
3113 	else
3114 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3115 }
3116 
3117 
3118 /*
3119  * ext4_discard_partial_page_buffers()
3120  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3121  * This function finds and locks the page containing the offset
3122  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3123  * Calling functions that already have the page locked should call
3124  * ext4_discard_partial_page_buffers_no_lock directly.
3125  */
3126 int ext4_discard_partial_page_buffers(handle_t *handle,
3127 		struct address_space *mapping, loff_t from,
3128 		loff_t length, int flags)
3129 {
3130 	struct inode *inode = mapping->host;
3131 	struct page *page;
3132 	int err = 0;
3133 
3134 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3135 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3136 	if (!page)
3137 		return -ENOMEM;
3138 
3139 	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3140 		from, length, flags);
3141 
3142 	unlock_page(page);
3143 	page_cache_release(page);
3144 	return err;
3145 }
3146 
3147 /*
3148  * ext4_discard_partial_page_buffers_no_lock()
3149  * Zeros a page range of length 'length' starting from offset 'from'.
3150  * Buffer heads that correspond to the block aligned regions of the
3151  * zeroed range will be unmapped.  Unblock aligned regions
3152  * will have the corresponding buffer head mapped if needed so that
3153  * that region of the page can be updated with the partial zero out.
3154  *
3155  * This function assumes that the page has already been  locked.  The
3156  * The range to be discarded must be contained with in the given page.
3157  * If the specified range exceeds the end of the page it will be shortened
3158  * to the end of the page that corresponds to 'from'.  This function is
3159  * appropriate for updating a page and it buffer heads to be unmapped and
3160  * zeroed for blocks that have been either released, or are going to be
3161  * released.
3162  *
3163  * handle: The journal handle
3164  * inode:  The files inode
3165  * page:   A locked page that contains the offset "from"
3166  * from:   The starting byte offset (from the begining of the file)
3167  *         to begin discarding
3168  * len:    The length of bytes to discard
3169  * flags:  Optional flags that may be used:
3170  *
3171  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3172  *         Only zero the regions of the page whose buffer heads
3173  *         have already been unmapped.  This flag is appropriate
3174  *         for updateing the contents of a page whose blocks may
3175  *         have already been released, and we only want to zero
3176  *         out the regions that correspond to those released blocks.
3177  *
3178  * Returns zero on sucess or negative on failure.
3179  */
3180 int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3181 		struct inode *inode, struct page *page, loff_t from,
3182 		loff_t length, int flags)
3183 {
3184 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3185 	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3186 	unsigned int blocksize, max, pos;
3187 	ext4_lblk_t iblock;
3188 	struct buffer_head *bh;
3189 	int err = 0;
3190 
3191 	blocksize = inode->i_sb->s_blocksize;
3192 	max = PAGE_CACHE_SIZE - offset;
3193 
3194 	if (index != page->index)
3195 		return -EINVAL;
3196 
3197 	/*
3198 	 * correct length if it does not fall between
3199 	 * 'from' and the end of the page
3200 	 */
3201 	if (length > max || length < 0)
3202 		length = max;
3203 
3204 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3205 
3206 	if (!page_has_buffers(page)) {
3207 		/*
3208 		 * If the range to be discarded covers a partial block
3209 		 * we need to get the page buffers.  This is because
3210 		 * partial blocks cannot be released and the page needs
3211 		 * to be updated with the contents of the block before
3212 		 * we write the zeros on top of it.
3213 		 */
3214 		if ((from & (blocksize - 1)) ||
3215 		    ((from + length) & (blocksize - 1))) {
3216 			create_empty_buffers(page, blocksize, 0);
3217 		} else {
3218 			/*
3219 			 * If there are no partial blocks,
3220 			 * there is nothing to update,
3221 			 * so we can return now
3222 			 */
3223 			return 0;
3224 		}
3225 	}
3226 
3227 	/* Find the buffer that contains "offset" */
3228 	bh = page_buffers(page);
3229 	pos = blocksize;
3230 	while (offset >= pos) {
3231 		bh = bh->b_this_page;
3232 		iblock++;
3233 		pos += blocksize;
3234 	}
3235 
3236 	pos = offset;
3237 	while (pos < offset + length) {
3238 		unsigned int end_of_block, range_to_discard;
3239 
3240 		err = 0;
3241 
3242 		/* The length of space left to zero and unmap */
3243 		range_to_discard = offset + length - pos;
3244 
3245 		/* The length of space until the end of the block */
3246 		end_of_block = blocksize - (pos & (blocksize-1));
3247 
3248 		/*
3249 		 * Do not unmap or zero past end of block
3250 		 * for this buffer head
3251 		 */
3252 		if (range_to_discard > end_of_block)
3253 			range_to_discard = end_of_block;
3254 
3255 
3256 		/*
3257 		 * Skip this buffer head if we are only zeroing unampped
3258 		 * regions of the page
3259 		 */
3260 		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3261 			buffer_mapped(bh))
3262 				goto next;
3263 
3264 		/* If the range is block aligned, unmap */
3265 		if (range_to_discard == blocksize) {
3266 			clear_buffer_dirty(bh);
3267 			bh->b_bdev = NULL;
3268 			clear_buffer_mapped(bh);
3269 			clear_buffer_req(bh);
3270 			clear_buffer_new(bh);
3271 			clear_buffer_delay(bh);
3272 			clear_buffer_unwritten(bh);
3273 			clear_buffer_uptodate(bh);
3274 			zero_user(page, pos, range_to_discard);
3275 			BUFFER_TRACE(bh, "Buffer discarded");
3276 			goto next;
3277 		}
3278 
3279 		/*
3280 		 * If this block is not completely contained in the range
3281 		 * to be discarded, then it is not going to be released. Because
3282 		 * we need to keep this block, we need to make sure this part
3283 		 * of the page is uptodate before we modify it by writeing
3284 		 * partial zeros on it.
3285 		 */
3286 		if (!buffer_mapped(bh)) {
3287 			/*
3288 			 * Buffer head must be mapped before we can read
3289 			 * from the block
3290 			 */
3291 			BUFFER_TRACE(bh, "unmapped");
3292 			ext4_get_block(inode, iblock, bh, 0);
3293 			/* unmapped? It's a hole - nothing to do */
3294 			if (!buffer_mapped(bh)) {
3295 				BUFFER_TRACE(bh, "still unmapped");
3296 				goto next;
3297 			}
3298 		}
3299 
3300 		/* Ok, it's mapped. Make sure it's up-to-date */
3301 		if (PageUptodate(page))
3302 			set_buffer_uptodate(bh);
3303 
3304 		if (!buffer_uptodate(bh)) {
3305 			err = -EIO;
3306 			ll_rw_block(READ, 1, &bh);
3307 			wait_on_buffer(bh);
3308 			/* Uhhuh. Read error. Complain and punt.*/
3309 			if (!buffer_uptodate(bh))
3310 				goto next;
3311 		}
3312 
3313 		if (ext4_should_journal_data(inode)) {
3314 			BUFFER_TRACE(bh, "get write access");
3315 			err = ext4_journal_get_write_access(handle, bh);
3316 			if (err)
3317 				goto next;
3318 		}
3319 
3320 		zero_user(page, pos, range_to_discard);
3321 
3322 		err = 0;
3323 		if (ext4_should_journal_data(inode)) {
3324 			err = ext4_handle_dirty_metadata(handle, inode, bh);
3325 		} else
3326 			mark_buffer_dirty(bh);
3327 
3328 		BUFFER_TRACE(bh, "Partial buffer zeroed");
3329 next:
3330 		bh = bh->b_this_page;
3331 		iblock++;
3332 		pos += range_to_discard;
3333 	}
3334 
3335 	return err;
3336 }
3337 
3338 /*
3339  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3340  * up to the end of the block which corresponds to `from'.
3341  * This required during truncate. We need to physically zero the tail end
3342  * of that block so it doesn't yield old data if the file is later grown.
3343  */
3344 int ext4_block_truncate_page(handle_t *handle,
3345 		struct address_space *mapping, loff_t from)
3346 {
3347 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3348 	unsigned length;
3349 	unsigned blocksize;
3350 	struct inode *inode = mapping->host;
3351 
3352 	blocksize = inode->i_sb->s_blocksize;
3353 	length = blocksize - (offset & (blocksize - 1));
3354 
3355 	return ext4_block_zero_page_range(handle, mapping, from, length);
3356 }
3357 
3358 /*
3359  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3360  * starting from file offset 'from'.  The range to be zero'd must
3361  * be contained with in one block.  If the specified range exceeds
3362  * the end of the block it will be shortened to end of the block
3363  * that cooresponds to 'from'
3364  */
3365 int ext4_block_zero_page_range(handle_t *handle,
3366 		struct address_space *mapping, loff_t from, loff_t length)
3367 {
3368 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3369 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3370 	unsigned blocksize, max, pos;
3371 	ext4_lblk_t iblock;
3372 	struct inode *inode = mapping->host;
3373 	struct buffer_head *bh;
3374 	struct page *page;
3375 	int err = 0;
3376 
3377 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3378 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3379 	if (!page)
3380 		return -ENOMEM;
3381 
3382 	blocksize = inode->i_sb->s_blocksize;
3383 	max = blocksize - (offset & (blocksize - 1));
3384 
3385 	/*
3386 	 * correct length if it does not fall between
3387 	 * 'from' and the end of the block
3388 	 */
3389 	if (length > max || length < 0)
3390 		length = max;
3391 
3392 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3393 
3394 	if (!page_has_buffers(page))
3395 		create_empty_buffers(page, blocksize, 0);
3396 
3397 	/* Find the buffer that contains "offset" */
3398 	bh = page_buffers(page);
3399 	pos = blocksize;
3400 	while (offset >= pos) {
3401 		bh = bh->b_this_page;
3402 		iblock++;
3403 		pos += blocksize;
3404 	}
3405 
3406 	err = 0;
3407 	if (buffer_freed(bh)) {
3408 		BUFFER_TRACE(bh, "freed: skip");
3409 		goto unlock;
3410 	}
3411 
3412 	if (!buffer_mapped(bh)) {
3413 		BUFFER_TRACE(bh, "unmapped");
3414 		ext4_get_block(inode, iblock, bh, 0);
3415 		/* unmapped? It's a hole - nothing to do */
3416 		if (!buffer_mapped(bh)) {
3417 			BUFFER_TRACE(bh, "still unmapped");
3418 			goto unlock;
3419 		}
3420 	}
3421 
3422 	/* Ok, it's mapped. Make sure it's up-to-date */
3423 	if (PageUptodate(page))
3424 		set_buffer_uptodate(bh);
3425 
3426 	if (!buffer_uptodate(bh)) {
3427 		err = -EIO;
3428 		ll_rw_block(READ, 1, &bh);
3429 		wait_on_buffer(bh);
3430 		/* Uhhuh. Read error. Complain and punt. */
3431 		if (!buffer_uptodate(bh))
3432 			goto unlock;
3433 	}
3434 
3435 	if (ext4_should_journal_data(inode)) {
3436 		BUFFER_TRACE(bh, "get write access");
3437 		err = ext4_journal_get_write_access(handle, bh);
3438 		if (err)
3439 			goto unlock;
3440 	}
3441 
3442 	zero_user(page, offset, length);
3443 
3444 	BUFFER_TRACE(bh, "zeroed end of block");
3445 
3446 	err = 0;
3447 	if (ext4_should_journal_data(inode)) {
3448 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3449 	} else
3450 		mark_buffer_dirty(bh);
3451 
3452 unlock:
3453 	unlock_page(page);
3454 	page_cache_release(page);
3455 	return err;
3456 }
3457 
3458 int ext4_can_truncate(struct inode *inode)
3459 {
3460 	if (S_ISREG(inode->i_mode))
3461 		return 1;
3462 	if (S_ISDIR(inode->i_mode))
3463 		return 1;
3464 	if (S_ISLNK(inode->i_mode))
3465 		return !ext4_inode_is_fast_symlink(inode);
3466 	return 0;
3467 }
3468 
3469 /*
3470  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3471  * associated with the given offset and length
3472  *
3473  * @inode:  File inode
3474  * @offset: The offset where the hole will begin
3475  * @len:    The length of the hole
3476  *
3477  * Returns: 0 on sucess or negative on failure
3478  */
3479 
3480 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3481 {
3482 	struct inode *inode = file->f_path.dentry->d_inode;
3483 	if (!S_ISREG(inode->i_mode))
3484 		return -ENOTSUPP;
3485 
3486 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3487 		/* TODO: Add support for non extent hole punching */
3488 		return -ENOTSUPP;
3489 	}
3490 
3491 	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3492 		/* TODO: Add support for bigalloc file systems */
3493 		return -ENOTSUPP;
3494 	}
3495 
3496 	return ext4_ext_punch_hole(file, offset, length);
3497 }
3498 
3499 /*
3500  * ext4_truncate()
3501  *
3502  * We block out ext4_get_block() block instantiations across the entire
3503  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3504  * simultaneously on behalf of the same inode.
3505  *
3506  * As we work through the truncate and commmit bits of it to the journal there
3507  * is one core, guiding principle: the file's tree must always be consistent on
3508  * disk.  We must be able to restart the truncate after a crash.
3509  *
3510  * The file's tree may be transiently inconsistent in memory (although it
3511  * probably isn't), but whenever we close off and commit a journal transaction,
3512  * the contents of (the filesystem + the journal) must be consistent and
3513  * restartable.  It's pretty simple, really: bottom up, right to left (although
3514  * left-to-right works OK too).
3515  *
3516  * Note that at recovery time, journal replay occurs *before* the restart of
3517  * truncate against the orphan inode list.
3518  *
3519  * The committed inode has the new, desired i_size (which is the same as
3520  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3521  * that this inode's truncate did not complete and it will again call
3522  * ext4_truncate() to have another go.  So there will be instantiated blocks
3523  * to the right of the truncation point in a crashed ext4 filesystem.  But
3524  * that's fine - as long as they are linked from the inode, the post-crash
3525  * ext4_truncate() run will find them and release them.
3526  */
3527 void ext4_truncate(struct inode *inode)
3528 {
3529 	trace_ext4_truncate_enter(inode);
3530 
3531 	if (!ext4_can_truncate(inode))
3532 		return;
3533 
3534 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3535 
3536 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3537 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3538 
3539 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3540 		ext4_ext_truncate(inode);
3541 	else
3542 		ext4_ind_truncate(inode);
3543 
3544 	trace_ext4_truncate_exit(inode);
3545 }
3546 
3547 /*
3548  * ext4_get_inode_loc returns with an extra refcount against the inode's
3549  * underlying buffer_head on success. If 'in_mem' is true, we have all
3550  * data in memory that is needed to recreate the on-disk version of this
3551  * inode.
3552  */
3553 static int __ext4_get_inode_loc(struct inode *inode,
3554 				struct ext4_iloc *iloc, int in_mem)
3555 {
3556 	struct ext4_group_desc	*gdp;
3557 	struct buffer_head	*bh;
3558 	struct super_block	*sb = inode->i_sb;
3559 	ext4_fsblk_t		block;
3560 	int			inodes_per_block, inode_offset;
3561 
3562 	iloc->bh = NULL;
3563 	if (!ext4_valid_inum(sb, inode->i_ino))
3564 		return -EIO;
3565 
3566 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3567 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3568 	if (!gdp)
3569 		return -EIO;
3570 
3571 	/*
3572 	 * Figure out the offset within the block group inode table
3573 	 */
3574 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3575 	inode_offset = ((inode->i_ino - 1) %
3576 			EXT4_INODES_PER_GROUP(sb));
3577 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3578 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3579 
3580 	bh = sb_getblk(sb, block);
3581 	if (!bh) {
3582 		EXT4_ERROR_INODE_BLOCK(inode, block,
3583 				       "unable to read itable block");
3584 		return -EIO;
3585 	}
3586 	if (!buffer_uptodate(bh)) {
3587 		lock_buffer(bh);
3588 
3589 		/*
3590 		 * If the buffer has the write error flag, we have failed
3591 		 * to write out another inode in the same block.  In this
3592 		 * case, we don't have to read the block because we may
3593 		 * read the old inode data successfully.
3594 		 */
3595 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3596 			set_buffer_uptodate(bh);
3597 
3598 		if (buffer_uptodate(bh)) {
3599 			/* someone brought it uptodate while we waited */
3600 			unlock_buffer(bh);
3601 			goto has_buffer;
3602 		}
3603 
3604 		/*
3605 		 * If we have all information of the inode in memory and this
3606 		 * is the only valid inode in the block, we need not read the
3607 		 * block.
3608 		 */
3609 		if (in_mem) {
3610 			struct buffer_head *bitmap_bh;
3611 			int i, start;
3612 
3613 			start = inode_offset & ~(inodes_per_block - 1);
3614 
3615 			/* Is the inode bitmap in cache? */
3616 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3617 			if (!bitmap_bh)
3618 				goto make_io;
3619 
3620 			/*
3621 			 * If the inode bitmap isn't in cache then the
3622 			 * optimisation may end up performing two reads instead
3623 			 * of one, so skip it.
3624 			 */
3625 			if (!buffer_uptodate(bitmap_bh)) {
3626 				brelse(bitmap_bh);
3627 				goto make_io;
3628 			}
3629 			for (i = start; i < start + inodes_per_block; i++) {
3630 				if (i == inode_offset)
3631 					continue;
3632 				if (ext4_test_bit(i, bitmap_bh->b_data))
3633 					break;
3634 			}
3635 			brelse(bitmap_bh);
3636 			if (i == start + inodes_per_block) {
3637 				/* all other inodes are free, so skip I/O */
3638 				memset(bh->b_data, 0, bh->b_size);
3639 				set_buffer_uptodate(bh);
3640 				unlock_buffer(bh);
3641 				goto has_buffer;
3642 			}
3643 		}
3644 
3645 make_io:
3646 		/*
3647 		 * If we need to do any I/O, try to pre-readahead extra
3648 		 * blocks from the inode table.
3649 		 */
3650 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3651 			ext4_fsblk_t b, end, table;
3652 			unsigned num;
3653 
3654 			table = ext4_inode_table(sb, gdp);
3655 			/* s_inode_readahead_blks is always a power of 2 */
3656 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3657 			if (table > b)
3658 				b = table;
3659 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3660 			num = EXT4_INODES_PER_GROUP(sb);
3661 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3662 				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3663 				num -= ext4_itable_unused_count(sb, gdp);
3664 			table += num / inodes_per_block;
3665 			if (end > table)
3666 				end = table;
3667 			while (b <= end)
3668 				sb_breadahead(sb, b++);
3669 		}
3670 
3671 		/*
3672 		 * There are other valid inodes in the buffer, this inode
3673 		 * has in-inode xattrs, or we don't have this inode in memory.
3674 		 * Read the block from disk.
3675 		 */
3676 		trace_ext4_load_inode(inode);
3677 		get_bh(bh);
3678 		bh->b_end_io = end_buffer_read_sync;
3679 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3680 		wait_on_buffer(bh);
3681 		if (!buffer_uptodate(bh)) {
3682 			EXT4_ERROR_INODE_BLOCK(inode, block,
3683 					       "unable to read itable block");
3684 			brelse(bh);
3685 			return -EIO;
3686 		}
3687 	}
3688 has_buffer:
3689 	iloc->bh = bh;
3690 	return 0;
3691 }
3692 
3693 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3694 {
3695 	/* We have all inode data except xattrs in memory here. */
3696 	return __ext4_get_inode_loc(inode, iloc,
3697 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3698 }
3699 
3700 void ext4_set_inode_flags(struct inode *inode)
3701 {
3702 	unsigned int flags = EXT4_I(inode)->i_flags;
3703 
3704 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3705 	if (flags & EXT4_SYNC_FL)
3706 		inode->i_flags |= S_SYNC;
3707 	if (flags & EXT4_APPEND_FL)
3708 		inode->i_flags |= S_APPEND;
3709 	if (flags & EXT4_IMMUTABLE_FL)
3710 		inode->i_flags |= S_IMMUTABLE;
3711 	if (flags & EXT4_NOATIME_FL)
3712 		inode->i_flags |= S_NOATIME;
3713 	if (flags & EXT4_DIRSYNC_FL)
3714 		inode->i_flags |= S_DIRSYNC;
3715 }
3716 
3717 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3718 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3719 {
3720 	unsigned int vfs_fl;
3721 	unsigned long old_fl, new_fl;
3722 
3723 	do {
3724 		vfs_fl = ei->vfs_inode.i_flags;
3725 		old_fl = ei->i_flags;
3726 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3727 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3728 				EXT4_DIRSYNC_FL);
3729 		if (vfs_fl & S_SYNC)
3730 			new_fl |= EXT4_SYNC_FL;
3731 		if (vfs_fl & S_APPEND)
3732 			new_fl |= EXT4_APPEND_FL;
3733 		if (vfs_fl & S_IMMUTABLE)
3734 			new_fl |= EXT4_IMMUTABLE_FL;
3735 		if (vfs_fl & S_NOATIME)
3736 			new_fl |= EXT4_NOATIME_FL;
3737 		if (vfs_fl & S_DIRSYNC)
3738 			new_fl |= EXT4_DIRSYNC_FL;
3739 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3740 }
3741 
3742 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3743 				  struct ext4_inode_info *ei)
3744 {
3745 	blkcnt_t i_blocks ;
3746 	struct inode *inode = &(ei->vfs_inode);
3747 	struct super_block *sb = inode->i_sb;
3748 
3749 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3750 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3751 		/* we are using combined 48 bit field */
3752 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3753 					le32_to_cpu(raw_inode->i_blocks_lo);
3754 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3755 			/* i_blocks represent file system block size */
3756 			return i_blocks  << (inode->i_blkbits - 9);
3757 		} else {
3758 			return i_blocks;
3759 		}
3760 	} else {
3761 		return le32_to_cpu(raw_inode->i_blocks_lo);
3762 	}
3763 }
3764 
3765 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3766 {
3767 	struct ext4_iloc iloc;
3768 	struct ext4_inode *raw_inode;
3769 	struct ext4_inode_info *ei;
3770 	struct inode *inode;
3771 	journal_t *journal = EXT4_SB(sb)->s_journal;
3772 	long ret;
3773 	int block;
3774 
3775 	inode = iget_locked(sb, ino);
3776 	if (!inode)
3777 		return ERR_PTR(-ENOMEM);
3778 	if (!(inode->i_state & I_NEW))
3779 		return inode;
3780 
3781 	ei = EXT4_I(inode);
3782 	iloc.bh = NULL;
3783 
3784 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3785 	if (ret < 0)
3786 		goto bad_inode;
3787 	raw_inode = ext4_raw_inode(&iloc);
3788 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3789 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3790 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3791 	if (!(test_opt(inode->i_sb, NO_UID32))) {
3792 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3793 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3794 	}
3795 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3796 
3797 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3798 	ei->i_dir_start_lookup = 0;
3799 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3800 	/* We now have enough fields to check if the inode was active or not.
3801 	 * This is needed because nfsd might try to access dead inodes
3802 	 * the test is that same one that e2fsck uses
3803 	 * NeilBrown 1999oct15
3804 	 */
3805 	if (inode->i_nlink == 0) {
3806 		if (inode->i_mode == 0 ||
3807 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3808 			/* this inode is deleted */
3809 			ret = -ESTALE;
3810 			goto bad_inode;
3811 		}
3812 		/* The only unlinked inodes we let through here have
3813 		 * valid i_mode and are being read by the orphan
3814 		 * recovery code: that's fine, we're about to complete
3815 		 * the process of deleting those. */
3816 	}
3817 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3818 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3819 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3820 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3821 		ei->i_file_acl |=
3822 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3823 	inode->i_size = ext4_isize(raw_inode);
3824 	ei->i_disksize = inode->i_size;
3825 #ifdef CONFIG_QUOTA
3826 	ei->i_reserved_quota = 0;
3827 #endif
3828 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3829 	ei->i_block_group = iloc.block_group;
3830 	ei->i_last_alloc_group = ~0;
3831 	/*
3832 	 * NOTE! The in-memory inode i_data array is in little-endian order
3833 	 * even on big-endian machines: we do NOT byteswap the block numbers!
3834 	 */
3835 	for (block = 0; block < EXT4_N_BLOCKS; block++)
3836 		ei->i_data[block] = raw_inode->i_block[block];
3837 	INIT_LIST_HEAD(&ei->i_orphan);
3838 
3839 	/*
3840 	 * Set transaction id's of transactions that have to be committed
3841 	 * to finish f[data]sync. We set them to currently running transaction
3842 	 * as we cannot be sure that the inode or some of its metadata isn't
3843 	 * part of the transaction - the inode could have been reclaimed and
3844 	 * now it is reread from disk.
3845 	 */
3846 	if (journal) {
3847 		transaction_t *transaction;
3848 		tid_t tid;
3849 
3850 		read_lock(&journal->j_state_lock);
3851 		if (journal->j_running_transaction)
3852 			transaction = journal->j_running_transaction;
3853 		else
3854 			transaction = journal->j_committing_transaction;
3855 		if (transaction)
3856 			tid = transaction->t_tid;
3857 		else
3858 			tid = journal->j_commit_sequence;
3859 		read_unlock(&journal->j_state_lock);
3860 		ei->i_sync_tid = tid;
3861 		ei->i_datasync_tid = tid;
3862 	}
3863 
3864 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3865 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3866 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3867 		    EXT4_INODE_SIZE(inode->i_sb)) {
3868 			ret = -EIO;
3869 			goto bad_inode;
3870 		}
3871 		if (ei->i_extra_isize == 0) {
3872 			/* The extra space is currently unused. Use it. */
3873 			ei->i_extra_isize = sizeof(struct ext4_inode) -
3874 					    EXT4_GOOD_OLD_INODE_SIZE;
3875 		} else {
3876 			__le32 *magic = (void *)raw_inode +
3877 					EXT4_GOOD_OLD_INODE_SIZE +
3878 					ei->i_extra_isize;
3879 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3880 				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3881 		}
3882 	} else
3883 		ei->i_extra_isize = 0;
3884 
3885 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3886 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3887 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3888 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3889 
3890 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3891 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3892 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3893 			inode->i_version |=
3894 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3895 	}
3896 
3897 	ret = 0;
3898 	if (ei->i_file_acl &&
3899 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3900 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3901 				 ei->i_file_acl);
3902 		ret = -EIO;
3903 		goto bad_inode;
3904 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3905 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3906 		    (S_ISLNK(inode->i_mode) &&
3907 		     !ext4_inode_is_fast_symlink(inode)))
3908 			/* Validate extent which is part of inode */
3909 			ret = ext4_ext_check_inode(inode);
3910 	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3911 		   (S_ISLNK(inode->i_mode) &&
3912 		    !ext4_inode_is_fast_symlink(inode))) {
3913 		/* Validate block references which are part of inode */
3914 		ret = ext4_ind_check_inode(inode);
3915 	}
3916 	if (ret)
3917 		goto bad_inode;
3918 
3919 	if (S_ISREG(inode->i_mode)) {
3920 		inode->i_op = &ext4_file_inode_operations;
3921 		inode->i_fop = &ext4_file_operations;
3922 		ext4_set_aops(inode);
3923 	} else if (S_ISDIR(inode->i_mode)) {
3924 		inode->i_op = &ext4_dir_inode_operations;
3925 		inode->i_fop = &ext4_dir_operations;
3926 	} else if (S_ISLNK(inode->i_mode)) {
3927 		if (ext4_inode_is_fast_symlink(inode)) {
3928 			inode->i_op = &ext4_fast_symlink_inode_operations;
3929 			nd_terminate_link(ei->i_data, inode->i_size,
3930 				sizeof(ei->i_data) - 1);
3931 		} else {
3932 			inode->i_op = &ext4_symlink_inode_operations;
3933 			ext4_set_aops(inode);
3934 		}
3935 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3936 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3937 		inode->i_op = &ext4_special_inode_operations;
3938 		if (raw_inode->i_block[0])
3939 			init_special_inode(inode, inode->i_mode,
3940 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3941 		else
3942 			init_special_inode(inode, inode->i_mode,
3943 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3944 	} else {
3945 		ret = -EIO;
3946 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3947 		goto bad_inode;
3948 	}
3949 	brelse(iloc.bh);
3950 	ext4_set_inode_flags(inode);
3951 	unlock_new_inode(inode);
3952 	return inode;
3953 
3954 bad_inode:
3955 	brelse(iloc.bh);
3956 	iget_failed(inode);
3957 	return ERR_PTR(ret);
3958 }
3959 
3960 static int ext4_inode_blocks_set(handle_t *handle,
3961 				struct ext4_inode *raw_inode,
3962 				struct ext4_inode_info *ei)
3963 {
3964 	struct inode *inode = &(ei->vfs_inode);
3965 	u64 i_blocks = inode->i_blocks;
3966 	struct super_block *sb = inode->i_sb;
3967 
3968 	if (i_blocks <= ~0U) {
3969 		/*
3970 		 * i_blocks can be represnted in a 32 bit variable
3971 		 * as multiple of 512 bytes
3972 		 */
3973 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3974 		raw_inode->i_blocks_high = 0;
3975 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3976 		return 0;
3977 	}
3978 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3979 		return -EFBIG;
3980 
3981 	if (i_blocks <= 0xffffffffffffULL) {
3982 		/*
3983 		 * i_blocks can be represented in a 48 bit variable
3984 		 * as multiple of 512 bytes
3985 		 */
3986 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3987 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3988 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3989 	} else {
3990 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3991 		/* i_block is stored in file system block size */
3992 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
3993 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3994 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3995 	}
3996 	return 0;
3997 }
3998 
3999 /*
4000  * Post the struct inode info into an on-disk inode location in the
4001  * buffer-cache.  This gobbles the caller's reference to the
4002  * buffer_head in the inode location struct.
4003  *
4004  * The caller must have write access to iloc->bh.
4005  */
4006 static int ext4_do_update_inode(handle_t *handle,
4007 				struct inode *inode,
4008 				struct ext4_iloc *iloc)
4009 {
4010 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4011 	struct ext4_inode_info *ei = EXT4_I(inode);
4012 	struct buffer_head *bh = iloc->bh;
4013 	int err = 0, rc, block;
4014 
4015 	/* For fields not not tracking in the in-memory inode,
4016 	 * initialise them to zero for new inodes. */
4017 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4018 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4019 
4020 	ext4_get_inode_flags(ei);
4021 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4022 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4023 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4024 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4025 /*
4026  * Fix up interoperability with old kernels. Otherwise, old inodes get
4027  * re-used with the upper 16 bits of the uid/gid intact
4028  */
4029 		if (!ei->i_dtime) {
4030 			raw_inode->i_uid_high =
4031 				cpu_to_le16(high_16_bits(inode->i_uid));
4032 			raw_inode->i_gid_high =
4033 				cpu_to_le16(high_16_bits(inode->i_gid));
4034 		} else {
4035 			raw_inode->i_uid_high = 0;
4036 			raw_inode->i_gid_high = 0;
4037 		}
4038 	} else {
4039 		raw_inode->i_uid_low =
4040 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
4041 		raw_inode->i_gid_low =
4042 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
4043 		raw_inode->i_uid_high = 0;
4044 		raw_inode->i_gid_high = 0;
4045 	}
4046 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4047 
4048 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4049 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4050 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4051 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4052 
4053 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4054 		goto out_brelse;
4055 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4056 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4057 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4058 	    cpu_to_le32(EXT4_OS_HURD))
4059 		raw_inode->i_file_acl_high =
4060 			cpu_to_le16(ei->i_file_acl >> 32);
4061 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4062 	ext4_isize_set(raw_inode, ei->i_disksize);
4063 	if (ei->i_disksize > 0x7fffffffULL) {
4064 		struct super_block *sb = inode->i_sb;
4065 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4066 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4067 				EXT4_SB(sb)->s_es->s_rev_level ==
4068 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4069 			/* If this is the first large file
4070 			 * created, add a flag to the superblock.
4071 			 */
4072 			err = ext4_journal_get_write_access(handle,
4073 					EXT4_SB(sb)->s_sbh);
4074 			if (err)
4075 				goto out_brelse;
4076 			ext4_update_dynamic_rev(sb);
4077 			EXT4_SET_RO_COMPAT_FEATURE(sb,
4078 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4079 			sb->s_dirt = 1;
4080 			ext4_handle_sync(handle);
4081 			err = ext4_handle_dirty_metadata(handle, NULL,
4082 					EXT4_SB(sb)->s_sbh);
4083 		}
4084 	}
4085 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4086 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4087 		if (old_valid_dev(inode->i_rdev)) {
4088 			raw_inode->i_block[0] =
4089 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4090 			raw_inode->i_block[1] = 0;
4091 		} else {
4092 			raw_inode->i_block[0] = 0;
4093 			raw_inode->i_block[1] =
4094 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4095 			raw_inode->i_block[2] = 0;
4096 		}
4097 	} else
4098 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4099 			raw_inode->i_block[block] = ei->i_data[block];
4100 
4101 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4102 	if (ei->i_extra_isize) {
4103 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4104 			raw_inode->i_version_hi =
4105 			cpu_to_le32(inode->i_version >> 32);
4106 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4107 	}
4108 
4109 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4110 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4111 	if (!err)
4112 		err = rc;
4113 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4114 
4115 	ext4_update_inode_fsync_trans(handle, inode, 0);
4116 out_brelse:
4117 	brelse(bh);
4118 	ext4_std_error(inode->i_sb, err);
4119 	return err;
4120 }
4121 
4122 /*
4123  * ext4_write_inode()
4124  *
4125  * We are called from a few places:
4126  *
4127  * - Within generic_file_write() for O_SYNC files.
4128  *   Here, there will be no transaction running. We wait for any running
4129  *   trasnaction to commit.
4130  *
4131  * - Within sys_sync(), kupdate and such.
4132  *   We wait on commit, if tol to.
4133  *
4134  * - Within prune_icache() (PF_MEMALLOC == true)
4135  *   Here we simply return.  We can't afford to block kswapd on the
4136  *   journal commit.
4137  *
4138  * In all cases it is actually safe for us to return without doing anything,
4139  * because the inode has been copied into a raw inode buffer in
4140  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4141  * knfsd.
4142  *
4143  * Note that we are absolutely dependent upon all inode dirtiers doing the
4144  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4145  * which we are interested.
4146  *
4147  * It would be a bug for them to not do this.  The code:
4148  *
4149  *	mark_inode_dirty(inode)
4150  *	stuff();
4151  *	inode->i_size = expr;
4152  *
4153  * is in error because a kswapd-driven write_inode() could occur while
4154  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4155  * will no longer be on the superblock's dirty inode list.
4156  */
4157 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4158 {
4159 	int err;
4160 
4161 	if (current->flags & PF_MEMALLOC)
4162 		return 0;
4163 
4164 	if (EXT4_SB(inode->i_sb)->s_journal) {
4165 		if (ext4_journal_current_handle()) {
4166 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4167 			dump_stack();
4168 			return -EIO;
4169 		}
4170 
4171 		if (wbc->sync_mode != WB_SYNC_ALL)
4172 			return 0;
4173 
4174 		err = ext4_force_commit(inode->i_sb);
4175 	} else {
4176 		struct ext4_iloc iloc;
4177 
4178 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4179 		if (err)
4180 			return err;
4181 		if (wbc->sync_mode == WB_SYNC_ALL)
4182 			sync_dirty_buffer(iloc.bh);
4183 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4184 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4185 					 "IO error syncing inode");
4186 			err = -EIO;
4187 		}
4188 		brelse(iloc.bh);
4189 	}
4190 	return err;
4191 }
4192 
4193 /*
4194  * ext4_setattr()
4195  *
4196  * Called from notify_change.
4197  *
4198  * We want to trap VFS attempts to truncate the file as soon as
4199  * possible.  In particular, we want to make sure that when the VFS
4200  * shrinks i_size, we put the inode on the orphan list and modify
4201  * i_disksize immediately, so that during the subsequent flushing of
4202  * dirty pages and freeing of disk blocks, we can guarantee that any
4203  * commit will leave the blocks being flushed in an unused state on
4204  * disk.  (On recovery, the inode will get truncated and the blocks will
4205  * be freed, so we have a strong guarantee that no future commit will
4206  * leave these blocks visible to the user.)
4207  *
4208  * Another thing we have to assure is that if we are in ordered mode
4209  * and inode is still attached to the committing transaction, we must
4210  * we start writeout of all the dirty pages which are being truncated.
4211  * This way we are sure that all the data written in the previous
4212  * transaction are already on disk (truncate waits for pages under
4213  * writeback).
4214  *
4215  * Called with inode->i_mutex down.
4216  */
4217 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4218 {
4219 	struct inode *inode = dentry->d_inode;
4220 	int error, rc = 0;
4221 	int orphan = 0;
4222 	const unsigned int ia_valid = attr->ia_valid;
4223 
4224 	error = inode_change_ok(inode, attr);
4225 	if (error)
4226 		return error;
4227 
4228 	if (is_quota_modification(inode, attr))
4229 		dquot_initialize(inode);
4230 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4231 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4232 		handle_t *handle;
4233 
4234 		/* (user+group)*(old+new) structure, inode write (sb,
4235 		 * inode block, ? - but truncate inode update has it) */
4236 		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4237 					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4238 		if (IS_ERR(handle)) {
4239 			error = PTR_ERR(handle);
4240 			goto err_out;
4241 		}
4242 		error = dquot_transfer(inode, attr);
4243 		if (error) {
4244 			ext4_journal_stop(handle);
4245 			return error;
4246 		}
4247 		/* Update corresponding info in inode so that everything is in
4248 		 * one transaction */
4249 		if (attr->ia_valid & ATTR_UID)
4250 			inode->i_uid = attr->ia_uid;
4251 		if (attr->ia_valid & ATTR_GID)
4252 			inode->i_gid = attr->ia_gid;
4253 		error = ext4_mark_inode_dirty(handle, inode);
4254 		ext4_journal_stop(handle);
4255 	}
4256 
4257 	if (attr->ia_valid & ATTR_SIZE) {
4258 		inode_dio_wait(inode);
4259 
4260 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4261 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4262 
4263 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4264 				return -EFBIG;
4265 		}
4266 	}
4267 
4268 	if (S_ISREG(inode->i_mode) &&
4269 	    attr->ia_valid & ATTR_SIZE &&
4270 	    (attr->ia_size < inode->i_size)) {
4271 		handle_t *handle;
4272 
4273 		handle = ext4_journal_start(inode, 3);
4274 		if (IS_ERR(handle)) {
4275 			error = PTR_ERR(handle);
4276 			goto err_out;
4277 		}
4278 		if (ext4_handle_valid(handle)) {
4279 			error = ext4_orphan_add(handle, inode);
4280 			orphan = 1;
4281 		}
4282 		EXT4_I(inode)->i_disksize = attr->ia_size;
4283 		rc = ext4_mark_inode_dirty(handle, inode);
4284 		if (!error)
4285 			error = rc;
4286 		ext4_journal_stop(handle);
4287 
4288 		if (ext4_should_order_data(inode)) {
4289 			error = ext4_begin_ordered_truncate(inode,
4290 							    attr->ia_size);
4291 			if (error) {
4292 				/* Do as much error cleanup as possible */
4293 				handle = ext4_journal_start(inode, 3);
4294 				if (IS_ERR(handle)) {
4295 					ext4_orphan_del(NULL, inode);
4296 					goto err_out;
4297 				}
4298 				ext4_orphan_del(handle, inode);
4299 				orphan = 0;
4300 				ext4_journal_stop(handle);
4301 				goto err_out;
4302 			}
4303 		}
4304 	}
4305 
4306 	if (attr->ia_valid & ATTR_SIZE) {
4307 		if (attr->ia_size != i_size_read(inode)) {
4308 			truncate_setsize(inode, attr->ia_size);
4309 			ext4_truncate(inode);
4310 		} else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
4311 			ext4_truncate(inode);
4312 	}
4313 
4314 	if (!rc) {
4315 		setattr_copy(inode, attr);
4316 		mark_inode_dirty(inode);
4317 	}
4318 
4319 	/*
4320 	 * If the call to ext4_truncate failed to get a transaction handle at
4321 	 * all, we need to clean up the in-core orphan list manually.
4322 	 */
4323 	if (orphan && inode->i_nlink)
4324 		ext4_orphan_del(NULL, inode);
4325 
4326 	if (!rc && (ia_valid & ATTR_MODE))
4327 		rc = ext4_acl_chmod(inode);
4328 
4329 err_out:
4330 	ext4_std_error(inode->i_sb, error);
4331 	if (!error)
4332 		error = rc;
4333 	return error;
4334 }
4335 
4336 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4337 		 struct kstat *stat)
4338 {
4339 	struct inode *inode;
4340 	unsigned long delalloc_blocks;
4341 
4342 	inode = dentry->d_inode;
4343 	generic_fillattr(inode, stat);
4344 
4345 	/*
4346 	 * We can't update i_blocks if the block allocation is delayed
4347 	 * otherwise in the case of system crash before the real block
4348 	 * allocation is done, we will have i_blocks inconsistent with
4349 	 * on-disk file blocks.
4350 	 * We always keep i_blocks updated together with real
4351 	 * allocation. But to not confuse with user, stat
4352 	 * will return the blocks that include the delayed allocation
4353 	 * blocks for this file.
4354 	 */
4355 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4356 
4357 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4358 	return 0;
4359 }
4360 
4361 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4362 {
4363 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4364 		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4365 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4366 }
4367 
4368 /*
4369  * Account for index blocks, block groups bitmaps and block group
4370  * descriptor blocks if modify datablocks and index blocks
4371  * worse case, the indexs blocks spread over different block groups
4372  *
4373  * If datablocks are discontiguous, they are possible to spread over
4374  * different block groups too. If they are contiuguous, with flexbg,
4375  * they could still across block group boundary.
4376  *
4377  * Also account for superblock, inode, quota and xattr blocks
4378  */
4379 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4380 {
4381 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4382 	int gdpblocks;
4383 	int idxblocks;
4384 	int ret = 0;
4385 
4386 	/*
4387 	 * How many index blocks need to touch to modify nrblocks?
4388 	 * The "Chunk" flag indicating whether the nrblocks is
4389 	 * physically contiguous on disk
4390 	 *
4391 	 * For Direct IO and fallocate, they calls get_block to allocate
4392 	 * one single extent at a time, so they could set the "Chunk" flag
4393 	 */
4394 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4395 
4396 	ret = idxblocks;
4397 
4398 	/*
4399 	 * Now let's see how many group bitmaps and group descriptors need
4400 	 * to account
4401 	 */
4402 	groups = idxblocks;
4403 	if (chunk)
4404 		groups += 1;
4405 	else
4406 		groups += nrblocks;
4407 
4408 	gdpblocks = groups;
4409 	if (groups > ngroups)
4410 		groups = ngroups;
4411 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4412 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4413 
4414 	/* bitmaps and block group descriptor blocks */
4415 	ret += groups + gdpblocks;
4416 
4417 	/* Blocks for super block, inode, quota and xattr blocks */
4418 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4419 
4420 	return ret;
4421 }
4422 
4423 /*
4424  * Calculate the total number of credits to reserve to fit
4425  * the modification of a single pages into a single transaction,
4426  * which may include multiple chunks of block allocations.
4427  *
4428  * This could be called via ext4_write_begin()
4429  *
4430  * We need to consider the worse case, when
4431  * one new block per extent.
4432  */
4433 int ext4_writepage_trans_blocks(struct inode *inode)
4434 {
4435 	int bpp = ext4_journal_blocks_per_page(inode);
4436 	int ret;
4437 
4438 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4439 
4440 	/* Account for data blocks for journalled mode */
4441 	if (ext4_should_journal_data(inode))
4442 		ret += bpp;
4443 	return ret;
4444 }
4445 
4446 /*
4447  * Calculate the journal credits for a chunk of data modification.
4448  *
4449  * This is called from DIO, fallocate or whoever calling
4450  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4451  *
4452  * journal buffers for data blocks are not included here, as DIO
4453  * and fallocate do no need to journal data buffers.
4454  */
4455 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4456 {
4457 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4458 }
4459 
4460 /*
4461  * The caller must have previously called ext4_reserve_inode_write().
4462  * Give this, we know that the caller already has write access to iloc->bh.
4463  */
4464 int ext4_mark_iloc_dirty(handle_t *handle,
4465 			 struct inode *inode, struct ext4_iloc *iloc)
4466 {
4467 	int err = 0;
4468 
4469 	if (test_opt(inode->i_sb, I_VERSION))
4470 		inode_inc_iversion(inode);
4471 
4472 	/* the do_update_inode consumes one bh->b_count */
4473 	get_bh(iloc->bh);
4474 
4475 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4476 	err = ext4_do_update_inode(handle, inode, iloc);
4477 	put_bh(iloc->bh);
4478 	return err;
4479 }
4480 
4481 /*
4482  * On success, We end up with an outstanding reference count against
4483  * iloc->bh.  This _must_ be cleaned up later.
4484  */
4485 
4486 int
4487 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4488 			 struct ext4_iloc *iloc)
4489 {
4490 	int err;
4491 
4492 	err = ext4_get_inode_loc(inode, iloc);
4493 	if (!err) {
4494 		BUFFER_TRACE(iloc->bh, "get_write_access");
4495 		err = ext4_journal_get_write_access(handle, iloc->bh);
4496 		if (err) {
4497 			brelse(iloc->bh);
4498 			iloc->bh = NULL;
4499 		}
4500 	}
4501 	ext4_std_error(inode->i_sb, err);
4502 	return err;
4503 }
4504 
4505 /*
4506  * Expand an inode by new_extra_isize bytes.
4507  * Returns 0 on success or negative error number on failure.
4508  */
4509 static int ext4_expand_extra_isize(struct inode *inode,
4510 				   unsigned int new_extra_isize,
4511 				   struct ext4_iloc iloc,
4512 				   handle_t *handle)
4513 {
4514 	struct ext4_inode *raw_inode;
4515 	struct ext4_xattr_ibody_header *header;
4516 
4517 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4518 		return 0;
4519 
4520 	raw_inode = ext4_raw_inode(&iloc);
4521 
4522 	header = IHDR(inode, raw_inode);
4523 
4524 	/* No extended attributes present */
4525 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4526 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4527 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4528 			new_extra_isize);
4529 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4530 		return 0;
4531 	}
4532 
4533 	/* try to expand with EAs present */
4534 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4535 					  raw_inode, handle);
4536 }
4537 
4538 /*
4539  * What we do here is to mark the in-core inode as clean with respect to inode
4540  * dirtiness (it may still be data-dirty).
4541  * This means that the in-core inode may be reaped by prune_icache
4542  * without having to perform any I/O.  This is a very good thing,
4543  * because *any* task may call prune_icache - even ones which
4544  * have a transaction open against a different journal.
4545  *
4546  * Is this cheating?  Not really.  Sure, we haven't written the
4547  * inode out, but prune_icache isn't a user-visible syncing function.
4548  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4549  * we start and wait on commits.
4550  *
4551  * Is this efficient/effective?  Well, we're being nice to the system
4552  * by cleaning up our inodes proactively so they can be reaped
4553  * without I/O.  But we are potentially leaving up to five seconds'
4554  * worth of inodes floating about which prune_icache wants us to
4555  * write out.  One way to fix that would be to get prune_icache()
4556  * to do a write_super() to free up some memory.  It has the desired
4557  * effect.
4558  */
4559 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4560 {
4561 	struct ext4_iloc iloc;
4562 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4563 	static unsigned int mnt_count;
4564 	int err, ret;
4565 
4566 	might_sleep();
4567 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4568 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4569 	if (ext4_handle_valid(handle) &&
4570 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4571 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4572 		/*
4573 		 * We need extra buffer credits since we may write into EA block
4574 		 * with this same handle. If journal_extend fails, then it will
4575 		 * only result in a minor loss of functionality for that inode.
4576 		 * If this is felt to be critical, then e2fsck should be run to
4577 		 * force a large enough s_min_extra_isize.
4578 		 */
4579 		if ((jbd2_journal_extend(handle,
4580 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4581 			ret = ext4_expand_extra_isize(inode,
4582 						      sbi->s_want_extra_isize,
4583 						      iloc, handle);
4584 			if (ret) {
4585 				ext4_set_inode_state(inode,
4586 						     EXT4_STATE_NO_EXPAND);
4587 				if (mnt_count !=
4588 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4589 					ext4_warning(inode->i_sb,
4590 					"Unable to expand inode %lu. Delete"
4591 					" some EAs or run e2fsck.",
4592 					inode->i_ino);
4593 					mnt_count =
4594 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4595 				}
4596 			}
4597 		}
4598 	}
4599 	if (!err)
4600 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4601 	return err;
4602 }
4603 
4604 /*
4605  * ext4_dirty_inode() is called from __mark_inode_dirty()
4606  *
4607  * We're really interested in the case where a file is being extended.
4608  * i_size has been changed by generic_commit_write() and we thus need
4609  * to include the updated inode in the current transaction.
4610  *
4611  * Also, dquot_alloc_block() will always dirty the inode when blocks
4612  * are allocated to the file.
4613  *
4614  * If the inode is marked synchronous, we don't honour that here - doing
4615  * so would cause a commit on atime updates, which we don't bother doing.
4616  * We handle synchronous inodes at the highest possible level.
4617  */
4618 void ext4_dirty_inode(struct inode *inode, int flags)
4619 {
4620 	handle_t *handle;
4621 
4622 	handle = ext4_journal_start(inode, 2);
4623 	if (IS_ERR(handle))
4624 		goto out;
4625 
4626 	ext4_mark_inode_dirty(handle, inode);
4627 
4628 	ext4_journal_stop(handle);
4629 out:
4630 	return;
4631 }
4632 
4633 #if 0
4634 /*
4635  * Bind an inode's backing buffer_head into this transaction, to prevent
4636  * it from being flushed to disk early.  Unlike
4637  * ext4_reserve_inode_write, this leaves behind no bh reference and
4638  * returns no iloc structure, so the caller needs to repeat the iloc
4639  * lookup to mark the inode dirty later.
4640  */
4641 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4642 {
4643 	struct ext4_iloc iloc;
4644 
4645 	int err = 0;
4646 	if (handle) {
4647 		err = ext4_get_inode_loc(inode, &iloc);
4648 		if (!err) {
4649 			BUFFER_TRACE(iloc.bh, "get_write_access");
4650 			err = jbd2_journal_get_write_access(handle, iloc.bh);
4651 			if (!err)
4652 				err = ext4_handle_dirty_metadata(handle,
4653 								 NULL,
4654 								 iloc.bh);
4655 			brelse(iloc.bh);
4656 		}
4657 	}
4658 	ext4_std_error(inode->i_sb, err);
4659 	return err;
4660 }
4661 #endif
4662 
4663 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4664 {
4665 	journal_t *journal;
4666 	handle_t *handle;
4667 	int err;
4668 
4669 	/*
4670 	 * We have to be very careful here: changing a data block's
4671 	 * journaling status dynamically is dangerous.  If we write a
4672 	 * data block to the journal, change the status and then delete
4673 	 * that block, we risk forgetting to revoke the old log record
4674 	 * from the journal and so a subsequent replay can corrupt data.
4675 	 * So, first we make sure that the journal is empty and that
4676 	 * nobody is changing anything.
4677 	 */
4678 
4679 	journal = EXT4_JOURNAL(inode);
4680 	if (!journal)
4681 		return 0;
4682 	if (is_journal_aborted(journal))
4683 		return -EROFS;
4684 
4685 	jbd2_journal_lock_updates(journal);
4686 	jbd2_journal_flush(journal);
4687 
4688 	/*
4689 	 * OK, there are no updates running now, and all cached data is
4690 	 * synced to disk.  We are now in a completely consistent state
4691 	 * which doesn't have anything in the journal, and we know that
4692 	 * no filesystem updates are running, so it is safe to modify
4693 	 * the inode's in-core data-journaling state flag now.
4694 	 */
4695 
4696 	if (val)
4697 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4698 	else
4699 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4700 	ext4_set_aops(inode);
4701 
4702 	jbd2_journal_unlock_updates(journal);
4703 
4704 	/* Finally we can mark the inode as dirty. */
4705 
4706 	handle = ext4_journal_start(inode, 1);
4707 	if (IS_ERR(handle))
4708 		return PTR_ERR(handle);
4709 
4710 	err = ext4_mark_inode_dirty(handle, inode);
4711 	ext4_handle_sync(handle);
4712 	ext4_journal_stop(handle);
4713 	ext4_std_error(inode->i_sb, err);
4714 
4715 	return err;
4716 }
4717 
4718 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4719 {
4720 	return !buffer_mapped(bh);
4721 }
4722 
4723 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4724 {
4725 	struct page *page = vmf->page;
4726 	loff_t size;
4727 	unsigned long len;
4728 	int ret;
4729 	struct file *file = vma->vm_file;
4730 	struct inode *inode = file->f_path.dentry->d_inode;
4731 	struct address_space *mapping = inode->i_mapping;
4732 	handle_t *handle;
4733 	get_block_t *get_block;
4734 	int retries = 0;
4735 
4736 	/*
4737 	 * This check is racy but catches the common case. We rely on
4738 	 * __block_page_mkwrite() to do a reliable check.
4739 	 */
4740 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4741 	/* Delalloc case is easy... */
4742 	if (test_opt(inode->i_sb, DELALLOC) &&
4743 	    !ext4_should_journal_data(inode) &&
4744 	    !ext4_nonda_switch(inode->i_sb)) {
4745 		do {
4746 			ret = __block_page_mkwrite(vma, vmf,
4747 						   ext4_da_get_block_prep);
4748 		} while (ret == -ENOSPC &&
4749 		       ext4_should_retry_alloc(inode->i_sb, &retries));
4750 		goto out_ret;
4751 	}
4752 
4753 	lock_page(page);
4754 	size = i_size_read(inode);
4755 	/* Page got truncated from under us? */
4756 	if (page->mapping != mapping || page_offset(page) > size) {
4757 		unlock_page(page);
4758 		ret = VM_FAULT_NOPAGE;
4759 		goto out;
4760 	}
4761 
4762 	if (page->index == size >> PAGE_CACHE_SHIFT)
4763 		len = size & ~PAGE_CACHE_MASK;
4764 	else
4765 		len = PAGE_CACHE_SIZE;
4766 	/*
4767 	 * Return if we have all the buffers mapped. This avoids the need to do
4768 	 * journal_start/journal_stop which can block and take a long time
4769 	 */
4770 	if (page_has_buffers(page)) {
4771 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4772 					ext4_bh_unmapped)) {
4773 			/* Wait so that we don't change page under IO */
4774 			wait_on_page_writeback(page);
4775 			ret = VM_FAULT_LOCKED;
4776 			goto out;
4777 		}
4778 	}
4779 	unlock_page(page);
4780 	/* OK, we need to fill the hole... */
4781 	if (ext4_should_dioread_nolock(inode))
4782 		get_block = ext4_get_block_write;
4783 	else
4784 		get_block = ext4_get_block;
4785 retry_alloc:
4786 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4787 	if (IS_ERR(handle)) {
4788 		ret = VM_FAULT_SIGBUS;
4789 		goto out;
4790 	}
4791 	ret = __block_page_mkwrite(vma, vmf, get_block);
4792 	if (!ret && ext4_should_journal_data(inode)) {
4793 		if (walk_page_buffers(handle, page_buffers(page), 0,
4794 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4795 			unlock_page(page);
4796 			ret = VM_FAULT_SIGBUS;
4797 			ext4_journal_stop(handle);
4798 			goto out;
4799 		}
4800 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4801 	}
4802 	ext4_journal_stop(handle);
4803 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4804 		goto retry_alloc;
4805 out_ret:
4806 	ret = block_page_mkwrite_return(ret);
4807 out:
4808 	return ret;
4809 }
4810