xref: /linux/fs/ext4/inode.c (revision 00a6d7b6762c27d441e9ac8faff36384bc0fc180)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42 
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47 
48 #include <trace/events/ext4.h>
49 
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51 
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 			      struct ext4_inode_info *ei)
54 {
55 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 	__u16 csum_lo;
57 	__u16 csum_hi = 0;
58 	__u32 csum;
59 
60 	csum_lo = le16_to_cpu(raw->i_checksum_lo);
61 	raw->i_checksum_lo = 0;
62 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64 		csum_hi = le16_to_cpu(raw->i_checksum_hi);
65 		raw->i_checksum_hi = 0;
66 	}
67 
68 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69 			   EXT4_INODE_SIZE(inode->i_sb));
70 
71 	raw->i_checksum_lo = cpu_to_le16(csum_lo);
72 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74 		raw->i_checksum_hi = cpu_to_le16(csum_hi);
75 
76 	return csum;
77 }
78 
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80 				  struct ext4_inode_info *ei)
81 {
82 	__u32 provided, calculated;
83 
84 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85 	    cpu_to_le32(EXT4_OS_LINUX) ||
86 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
87 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
88 		return 1;
89 
90 	provided = le16_to_cpu(raw->i_checksum_lo);
91 	calculated = ext4_inode_csum(inode, raw, ei);
92 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
93 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
94 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95 	else
96 		calculated &= 0xFFFF;
97 
98 	return provided == calculated;
99 }
100 
101 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
102 				struct ext4_inode_info *ei)
103 {
104 	__u32 csum;
105 
106 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
107 	    cpu_to_le32(EXT4_OS_LINUX) ||
108 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
109 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
110 		return;
111 
112 	csum = ext4_inode_csum(inode, raw, ei);
113 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
114 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
115 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
116 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117 }
118 
119 static inline int ext4_begin_ordered_truncate(struct inode *inode,
120 					      loff_t new_size)
121 {
122 	trace_ext4_begin_ordered_truncate(inode, new_size);
123 	/*
124 	 * If jinode is zero, then we never opened the file for
125 	 * writing, so there's no need to call
126 	 * jbd2_journal_begin_ordered_truncate() since there's no
127 	 * outstanding writes we need to flush.
128 	 */
129 	if (!EXT4_I(inode)->jinode)
130 		return 0;
131 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
132 						   EXT4_I(inode)->jinode,
133 						   new_size);
134 }
135 
136 static void ext4_invalidatepage(struct page *page, unsigned int offset,
137 				unsigned int length);
138 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
139 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141 				  int pextents);
142 
143 /*
144  * Test whether an inode is a fast symlink.
145  */
146 static int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148         int ea_blocks = EXT4_I(inode)->i_file_acl ?
149 		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
150 
151 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
152 }
153 
154 /*
155  * Restart the transaction associated with *handle.  This does a commit,
156  * so before we call here everything must be consistently dirtied against
157  * this transaction.
158  */
159 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
160 				 int nblocks)
161 {
162 	int ret;
163 
164 	/*
165 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
166 	 * moment, get_block can be called only for blocks inside i_size since
167 	 * page cache has been already dropped and writes are blocked by
168 	 * i_mutex. So we can safely drop the i_data_sem here.
169 	 */
170 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
171 	jbd_debug(2, "restarting handle %p\n", handle);
172 	up_write(&EXT4_I(inode)->i_data_sem);
173 	ret = ext4_journal_restart(handle, nblocks);
174 	down_write(&EXT4_I(inode)->i_data_sem);
175 	ext4_discard_preallocations(inode);
176 
177 	return ret;
178 }
179 
180 /*
181  * Called at the last iput() if i_nlink is zero.
182  */
183 void ext4_evict_inode(struct inode *inode)
184 {
185 	handle_t *handle;
186 	int err;
187 
188 	trace_ext4_evict_inode(inode);
189 
190 	if (inode->i_nlink) {
191 		/*
192 		 * When journalling data dirty buffers are tracked only in the
193 		 * journal. So although mm thinks everything is clean and
194 		 * ready for reaping the inode might still have some pages to
195 		 * write in the running transaction or waiting to be
196 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
197 		 * (via truncate_inode_pages()) to discard these buffers can
198 		 * cause data loss. Also even if we did not discard these
199 		 * buffers, we would have no way to find them after the inode
200 		 * is reaped and thus user could see stale data if he tries to
201 		 * read them before the transaction is checkpointed. So be
202 		 * careful and force everything to disk here... We use
203 		 * ei->i_datasync_tid to store the newest transaction
204 		 * containing inode's data.
205 		 *
206 		 * Note that directories do not have this problem because they
207 		 * don't use page cache.
208 		 */
209 		if (ext4_should_journal_data(inode) &&
210 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
211 		    inode->i_ino != EXT4_JOURNAL_INO) {
212 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
213 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214 
215 			jbd2_complete_transaction(journal, commit_tid);
216 			filemap_write_and_wait(&inode->i_data);
217 		}
218 		truncate_inode_pages_final(&inode->i_data);
219 
220 		WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
221 		goto no_delete;
222 	}
223 
224 	if (!is_bad_inode(inode))
225 		dquot_initialize(inode);
226 
227 	if (ext4_should_order_data(inode))
228 		ext4_begin_ordered_truncate(inode, 0);
229 	truncate_inode_pages_final(&inode->i_data);
230 
231 	WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
232 	if (is_bad_inode(inode))
233 		goto no_delete;
234 
235 	/*
236 	 * Protect us against freezing - iput() caller didn't have to have any
237 	 * protection against it
238 	 */
239 	sb_start_intwrite(inode->i_sb);
240 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
241 				    ext4_blocks_for_truncate(inode)+3);
242 	if (IS_ERR(handle)) {
243 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
244 		/*
245 		 * If we're going to skip the normal cleanup, we still need to
246 		 * make sure that the in-core orphan linked list is properly
247 		 * cleaned up.
248 		 */
249 		ext4_orphan_del(NULL, inode);
250 		sb_end_intwrite(inode->i_sb);
251 		goto no_delete;
252 	}
253 
254 	if (IS_SYNC(inode))
255 		ext4_handle_sync(handle);
256 	inode->i_size = 0;
257 	err = ext4_mark_inode_dirty(handle, inode);
258 	if (err) {
259 		ext4_warning(inode->i_sb,
260 			     "couldn't mark inode dirty (err %d)", err);
261 		goto stop_handle;
262 	}
263 	if (inode->i_blocks)
264 		ext4_truncate(inode);
265 
266 	/*
267 	 * ext4_ext_truncate() doesn't reserve any slop when it
268 	 * restarts journal transactions; therefore there may not be
269 	 * enough credits left in the handle to remove the inode from
270 	 * the orphan list and set the dtime field.
271 	 */
272 	if (!ext4_handle_has_enough_credits(handle, 3)) {
273 		err = ext4_journal_extend(handle, 3);
274 		if (err > 0)
275 			err = ext4_journal_restart(handle, 3);
276 		if (err != 0) {
277 			ext4_warning(inode->i_sb,
278 				     "couldn't extend journal (err %d)", err);
279 		stop_handle:
280 			ext4_journal_stop(handle);
281 			ext4_orphan_del(NULL, inode);
282 			sb_end_intwrite(inode->i_sb);
283 			goto no_delete;
284 		}
285 	}
286 
287 	/*
288 	 * Kill off the orphan record which ext4_truncate created.
289 	 * AKPM: I think this can be inside the above `if'.
290 	 * Note that ext4_orphan_del() has to be able to cope with the
291 	 * deletion of a non-existent orphan - this is because we don't
292 	 * know if ext4_truncate() actually created an orphan record.
293 	 * (Well, we could do this if we need to, but heck - it works)
294 	 */
295 	ext4_orphan_del(handle, inode);
296 	EXT4_I(inode)->i_dtime	= get_seconds();
297 
298 	/*
299 	 * One subtle ordering requirement: if anything has gone wrong
300 	 * (transaction abort, IO errors, whatever), then we can still
301 	 * do these next steps (the fs will already have been marked as
302 	 * having errors), but we can't free the inode if the mark_dirty
303 	 * fails.
304 	 */
305 	if (ext4_mark_inode_dirty(handle, inode))
306 		/* If that failed, just do the required in-core inode clear. */
307 		ext4_clear_inode(inode);
308 	else
309 		ext4_free_inode(handle, inode);
310 	ext4_journal_stop(handle);
311 	sb_end_intwrite(inode->i_sb);
312 	return;
313 no_delete:
314 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
315 }
316 
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320 	return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323 
324 /*
325  * Calculate the number of metadata blocks need to reserve
326  * to allocate a block located at @lblock
327  */
328 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329 {
330 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
331 		return ext4_ext_calc_metadata_amount(inode, lblock);
332 
333 	return ext4_ind_calc_metadata_amount(inode, lblock);
334 }
335 
336 /*
337  * Called with i_data_sem down, which is important since we can call
338  * ext4_discard_preallocations() from here.
339  */
340 void ext4_da_update_reserve_space(struct inode *inode,
341 					int used, int quota_claim)
342 {
343 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
344 	struct ext4_inode_info *ei = EXT4_I(inode);
345 
346 	spin_lock(&ei->i_block_reservation_lock);
347 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
348 	if (unlikely(used > ei->i_reserved_data_blocks)) {
349 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
350 			 "with only %d reserved data blocks",
351 			 __func__, inode->i_ino, used,
352 			 ei->i_reserved_data_blocks);
353 		WARN_ON(1);
354 		used = ei->i_reserved_data_blocks;
355 	}
356 
357 	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
358 		ext4_warning(inode->i_sb, "ino %lu, allocated %d "
359 			"with only %d reserved metadata blocks "
360 			"(releasing %d blocks with reserved %d data blocks)",
361 			inode->i_ino, ei->i_allocated_meta_blocks,
362 			     ei->i_reserved_meta_blocks, used,
363 			     ei->i_reserved_data_blocks);
364 		WARN_ON(1);
365 		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
366 	}
367 
368 	/* Update per-inode reservations */
369 	ei->i_reserved_data_blocks -= used;
370 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
371 	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
372 			   used + ei->i_allocated_meta_blocks);
373 	ei->i_allocated_meta_blocks = 0;
374 
375 	if (ei->i_reserved_data_blocks == 0) {
376 		/*
377 		 * We can release all of the reserved metadata blocks
378 		 * only when we have written all of the delayed
379 		 * allocation blocks.
380 		 */
381 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
382 				   ei->i_reserved_meta_blocks);
383 		ei->i_reserved_meta_blocks = 0;
384 		ei->i_da_metadata_calc_len = 0;
385 	}
386 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
387 
388 	/* Update quota subsystem for data blocks */
389 	if (quota_claim)
390 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
391 	else {
392 		/*
393 		 * We did fallocate with an offset that is already delayed
394 		 * allocated. So on delayed allocated writeback we should
395 		 * not re-claim the quota for fallocated blocks.
396 		 */
397 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
398 	}
399 
400 	/*
401 	 * If we have done all the pending block allocations and if
402 	 * there aren't any writers on the inode, we can discard the
403 	 * inode's preallocations.
404 	 */
405 	if ((ei->i_reserved_data_blocks == 0) &&
406 	    (atomic_read(&inode->i_writecount) == 0))
407 		ext4_discard_preallocations(inode);
408 }
409 
410 static int __check_block_validity(struct inode *inode, const char *func,
411 				unsigned int line,
412 				struct ext4_map_blocks *map)
413 {
414 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
415 				   map->m_len)) {
416 		ext4_error_inode(inode, func, line, map->m_pblk,
417 				 "lblock %lu mapped to illegal pblock "
418 				 "(length %d)", (unsigned long) map->m_lblk,
419 				 map->m_len);
420 		return -EIO;
421 	}
422 	return 0;
423 }
424 
425 #define check_block_validity(inode, map)	\
426 	__check_block_validity((inode), __func__, __LINE__, (map))
427 
428 #ifdef ES_AGGRESSIVE_TEST
429 static void ext4_map_blocks_es_recheck(handle_t *handle,
430 				       struct inode *inode,
431 				       struct ext4_map_blocks *es_map,
432 				       struct ext4_map_blocks *map,
433 				       int flags)
434 {
435 	int retval;
436 
437 	map->m_flags = 0;
438 	/*
439 	 * There is a race window that the result is not the same.
440 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
441 	 * is that we lookup a block mapping in extent status tree with
442 	 * out taking i_data_sem.  So at the time the unwritten extent
443 	 * could be converted.
444 	 */
445 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
446 		down_read((&EXT4_I(inode)->i_data_sem));
447 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
448 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
449 					     EXT4_GET_BLOCKS_KEEP_SIZE);
450 	} else {
451 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
452 					     EXT4_GET_BLOCKS_KEEP_SIZE);
453 	}
454 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
455 		up_read((&EXT4_I(inode)->i_data_sem));
456 	/*
457 	 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
458 	 * because it shouldn't be marked in es_map->m_flags.
459 	 */
460 	map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
461 
462 	/*
463 	 * We don't check m_len because extent will be collpased in status
464 	 * tree.  So the m_len might not equal.
465 	 */
466 	if (es_map->m_lblk != map->m_lblk ||
467 	    es_map->m_flags != map->m_flags ||
468 	    es_map->m_pblk != map->m_pblk) {
469 		printk("ES cache assertion failed for inode: %lu "
470 		       "es_cached ex [%d/%d/%llu/%x] != "
471 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
473 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
474 		       map->m_len, map->m_pblk, map->m_flags,
475 		       retval, flags);
476 	}
477 }
478 #endif /* ES_AGGRESSIVE_TEST */
479 
480 /*
481  * The ext4_map_blocks() function tries to look up the requested blocks,
482  * and returns if the blocks are already mapped.
483  *
484  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485  * and store the allocated blocks in the result buffer head and mark it
486  * mapped.
487  *
488  * If file type is extents based, it will call ext4_ext_map_blocks(),
489  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
490  * based files
491  *
492  * On success, it returns the number of blocks being mapped or allocate.
493  * if create==0 and the blocks are pre-allocated and uninitialized block,
494  * the result buffer head is unmapped. If the create ==1, it will make sure
495  * the buffer head is mapped.
496  *
497  * It returns 0 if plain look up failed (blocks have not been allocated), in
498  * that case, buffer head is unmapped
499  *
500  * It returns the error in case of allocation failure.
501  */
502 int ext4_map_blocks(handle_t *handle, struct inode *inode,
503 		    struct ext4_map_blocks *map, int flags)
504 {
505 	struct extent_status es;
506 	int retval;
507 	int ret = 0;
508 #ifdef ES_AGGRESSIVE_TEST
509 	struct ext4_map_blocks orig_map;
510 
511 	memcpy(&orig_map, map, sizeof(*map));
512 #endif
513 
514 	map->m_flags = 0;
515 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
516 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
517 		  (unsigned long) map->m_lblk);
518 
519 	/*
520 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
521 	 */
522 	if (unlikely(map->m_len > INT_MAX))
523 		map->m_len = INT_MAX;
524 
525 	/* We can handle the block number less than EXT_MAX_BLOCKS */
526 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
527 		return -EIO;
528 
529 	/* Lookup extent status tree firstly */
530 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
531 		ext4_es_lru_add(inode);
532 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
533 			map->m_pblk = ext4_es_pblock(&es) +
534 					map->m_lblk - es.es_lblk;
535 			map->m_flags |= ext4_es_is_written(&es) ?
536 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
537 			retval = es.es_len - (map->m_lblk - es.es_lblk);
538 			if (retval > map->m_len)
539 				retval = map->m_len;
540 			map->m_len = retval;
541 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
542 			retval = 0;
543 		} else {
544 			BUG_ON(1);
545 		}
546 #ifdef ES_AGGRESSIVE_TEST
547 		ext4_map_blocks_es_recheck(handle, inode, map,
548 					   &orig_map, flags);
549 #endif
550 		goto found;
551 	}
552 
553 	/*
554 	 * Try to see if we can get the block without requesting a new
555 	 * file system block.
556 	 */
557 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
558 		down_read((&EXT4_I(inode)->i_data_sem));
559 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
560 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
561 					     EXT4_GET_BLOCKS_KEEP_SIZE);
562 	} else {
563 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
564 					     EXT4_GET_BLOCKS_KEEP_SIZE);
565 	}
566 	if (retval > 0) {
567 		unsigned int status;
568 
569 		if (unlikely(retval != map->m_len)) {
570 			ext4_warning(inode->i_sb,
571 				     "ES len assertion failed for inode "
572 				     "%lu: retval %d != map->m_len %d",
573 				     inode->i_ino, retval, map->m_len);
574 			WARN_ON(1);
575 		}
576 
577 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
578 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
579 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
580 		    ext4_find_delalloc_range(inode, map->m_lblk,
581 					     map->m_lblk + map->m_len - 1))
582 			status |= EXTENT_STATUS_DELAYED;
583 		ret = ext4_es_insert_extent(inode, map->m_lblk,
584 					    map->m_len, map->m_pblk, status);
585 		if (ret < 0)
586 			retval = ret;
587 	}
588 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
589 		up_read((&EXT4_I(inode)->i_data_sem));
590 
591 found:
592 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
593 		ret = check_block_validity(inode, map);
594 		if (ret != 0)
595 			return ret;
596 	}
597 
598 	/* If it is only a block(s) look up */
599 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
600 		return retval;
601 
602 	/*
603 	 * Returns if the blocks have already allocated
604 	 *
605 	 * Note that if blocks have been preallocated
606 	 * ext4_ext_get_block() returns the create = 0
607 	 * with buffer head unmapped.
608 	 */
609 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
610 		/*
611 		 * If we need to convert extent to unwritten
612 		 * we continue and do the actual work in
613 		 * ext4_ext_map_blocks()
614 		 */
615 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
616 			return retval;
617 
618 	/*
619 	 * Here we clear m_flags because after allocating an new extent,
620 	 * it will be set again.
621 	 */
622 	map->m_flags &= ~EXT4_MAP_FLAGS;
623 
624 	/*
625 	 * New blocks allocate and/or writing to uninitialized extent
626 	 * will possibly result in updating i_data, so we take
627 	 * the write lock of i_data_sem, and call get_blocks()
628 	 * with create == 1 flag.
629 	 */
630 	down_write((&EXT4_I(inode)->i_data_sem));
631 
632 	/*
633 	 * if the caller is from delayed allocation writeout path
634 	 * we have already reserved fs blocks for allocation
635 	 * let the underlying get_block() function know to
636 	 * avoid double accounting
637 	 */
638 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
639 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
640 	/*
641 	 * We need to check for EXT4 here because migrate
642 	 * could have changed the inode type in between
643 	 */
644 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
645 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
646 	} else {
647 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
648 
649 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
650 			/*
651 			 * We allocated new blocks which will result in
652 			 * i_data's format changing.  Force the migrate
653 			 * to fail by clearing migrate flags
654 			 */
655 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
656 		}
657 
658 		/*
659 		 * Update reserved blocks/metadata blocks after successful
660 		 * block allocation which had been deferred till now. We don't
661 		 * support fallocate for non extent files. So we can update
662 		 * reserve space here.
663 		 */
664 		if ((retval > 0) &&
665 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
666 			ext4_da_update_reserve_space(inode, retval, 1);
667 	}
668 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
669 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
670 
671 	if (retval > 0) {
672 		unsigned int status;
673 
674 		if (unlikely(retval != map->m_len)) {
675 			ext4_warning(inode->i_sb,
676 				     "ES len assertion failed for inode "
677 				     "%lu: retval %d != map->m_len %d",
678 				     inode->i_ino, retval, map->m_len);
679 			WARN_ON(1);
680 		}
681 
682 		/*
683 		 * If the extent has been zeroed out, we don't need to update
684 		 * extent status tree.
685 		 */
686 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
687 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
688 			if (ext4_es_is_written(&es))
689 				goto has_zeroout;
690 		}
691 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
692 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
693 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
694 		    ext4_find_delalloc_range(inode, map->m_lblk,
695 					     map->m_lblk + map->m_len - 1))
696 			status |= EXTENT_STATUS_DELAYED;
697 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
698 					    map->m_pblk, status);
699 		if (ret < 0)
700 			retval = ret;
701 	}
702 
703 has_zeroout:
704 	up_write((&EXT4_I(inode)->i_data_sem));
705 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
706 		ret = check_block_validity(inode, map);
707 		if (ret != 0)
708 			return ret;
709 	}
710 	return retval;
711 }
712 
713 /* Maximum number of blocks we map for direct IO at once. */
714 #define DIO_MAX_BLOCKS 4096
715 
716 static int _ext4_get_block(struct inode *inode, sector_t iblock,
717 			   struct buffer_head *bh, int flags)
718 {
719 	handle_t *handle = ext4_journal_current_handle();
720 	struct ext4_map_blocks map;
721 	int ret = 0, started = 0;
722 	int dio_credits;
723 
724 	if (ext4_has_inline_data(inode))
725 		return -ERANGE;
726 
727 	map.m_lblk = iblock;
728 	map.m_len = bh->b_size >> inode->i_blkbits;
729 
730 	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
731 		/* Direct IO write... */
732 		if (map.m_len > DIO_MAX_BLOCKS)
733 			map.m_len = DIO_MAX_BLOCKS;
734 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
735 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
736 					    dio_credits);
737 		if (IS_ERR(handle)) {
738 			ret = PTR_ERR(handle);
739 			return ret;
740 		}
741 		started = 1;
742 	}
743 
744 	ret = ext4_map_blocks(handle, inode, &map, flags);
745 	if (ret > 0) {
746 		ext4_io_end_t *io_end = ext4_inode_aio(inode);
747 
748 		map_bh(bh, inode->i_sb, map.m_pblk);
749 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
750 		if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
751 			set_buffer_defer_completion(bh);
752 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
753 		ret = 0;
754 	}
755 	if (started)
756 		ext4_journal_stop(handle);
757 	return ret;
758 }
759 
760 int ext4_get_block(struct inode *inode, sector_t iblock,
761 		   struct buffer_head *bh, int create)
762 {
763 	return _ext4_get_block(inode, iblock, bh,
764 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
765 }
766 
767 /*
768  * `handle' can be NULL if create is zero
769  */
770 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
771 				ext4_lblk_t block, int create, int *errp)
772 {
773 	struct ext4_map_blocks map;
774 	struct buffer_head *bh;
775 	int fatal = 0, err;
776 
777 	J_ASSERT(handle != NULL || create == 0);
778 
779 	map.m_lblk = block;
780 	map.m_len = 1;
781 	err = ext4_map_blocks(handle, inode, &map,
782 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
783 
784 	/* ensure we send some value back into *errp */
785 	*errp = 0;
786 
787 	if (create && err == 0)
788 		err = -ENOSPC;	/* should never happen */
789 	if (err < 0)
790 		*errp = err;
791 	if (err <= 0)
792 		return NULL;
793 
794 	bh = sb_getblk(inode->i_sb, map.m_pblk);
795 	if (unlikely(!bh)) {
796 		*errp = -ENOMEM;
797 		return NULL;
798 	}
799 	if (map.m_flags & EXT4_MAP_NEW) {
800 		J_ASSERT(create != 0);
801 		J_ASSERT(handle != NULL);
802 
803 		/*
804 		 * Now that we do not always journal data, we should
805 		 * keep in mind whether this should always journal the
806 		 * new buffer as metadata.  For now, regular file
807 		 * writes use ext4_get_block instead, so it's not a
808 		 * problem.
809 		 */
810 		lock_buffer(bh);
811 		BUFFER_TRACE(bh, "call get_create_access");
812 		fatal = ext4_journal_get_create_access(handle, bh);
813 		if (!fatal && !buffer_uptodate(bh)) {
814 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
815 			set_buffer_uptodate(bh);
816 		}
817 		unlock_buffer(bh);
818 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
819 		err = ext4_handle_dirty_metadata(handle, inode, bh);
820 		if (!fatal)
821 			fatal = err;
822 	} else {
823 		BUFFER_TRACE(bh, "not a new buffer");
824 	}
825 	if (fatal) {
826 		*errp = fatal;
827 		brelse(bh);
828 		bh = NULL;
829 	}
830 	return bh;
831 }
832 
833 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
834 			       ext4_lblk_t block, int create, int *err)
835 {
836 	struct buffer_head *bh;
837 
838 	bh = ext4_getblk(handle, inode, block, create, err);
839 	if (!bh)
840 		return bh;
841 	if (buffer_uptodate(bh))
842 		return bh;
843 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
844 	wait_on_buffer(bh);
845 	if (buffer_uptodate(bh))
846 		return bh;
847 	put_bh(bh);
848 	*err = -EIO;
849 	return NULL;
850 }
851 
852 int ext4_walk_page_buffers(handle_t *handle,
853 			   struct buffer_head *head,
854 			   unsigned from,
855 			   unsigned to,
856 			   int *partial,
857 			   int (*fn)(handle_t *handle,
858 				     struct buffer_head *bh))
859 {
860 	struct buffer_head *bh;
861 	unsigned block_start, block_end;
862 	unsigned blocksize = head->b_size;
863 	int err, ret = 0;
864 	struct buffer_head *next;
865 
866 	for (bh = head, block_start = 0;
867 	     ret == 0 && (bh != head || !block_start);
868 	     block_start = block_end, bh = next) {
869 		next = bh->b_this_page;
870 		block_end = block_start + blocksize;
871 		if (block_end <= from || block_start >= to) {
872 			if (partial && !buffer_uptodate(bh))
873 				*partial = 1;
874 			continue;
875 		}
876 		err = (*fn)(handle, bh);
877 		if (!ret)
878 			ret = err;
879 	}
880 	return ret;
881 }
882 
883 /*
884  * To preserve ordering, it is essential that the hole instantiation and
885  * the data write be encapsulated in a single transaction.  We cannot
886  * close off a transaction and start a new one between the ext4_get_block()
887  * and the commit_write().  So doing the jbd2_journal_start at the start of
888  * prepare_write() is the right place.
889  *
890  * Also, this function can nest inside ext4_writepage().  In that case, we
891  * *know* that ext4_writepage() has generated enough buffer credits to do the
892  * whole page.  So we won't block on the journal in that case, which is good,
893  * because the caller may be PF_MEMALLOC.
894  *
895  * By accident, ext4 can be reentered when a transaction is open via
896  * quota file writes.  If we were to commit the transaction while thus
897  * reentered, there can be a deadlock - we would be holding a quota
898  * lock, and the commit would never complete if another thread had a
899  * transaction open and was blocking on the quota lock - a ranking
900  * violation.
901  *
902  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
903  * will _not_ run commit under these circumstances because handle->h_ref
904  * is elevated.  We'll still have enough credits for the tiny quotafile
905  * write.
906  */
907 int do_journal_get_write_access(handle_t *handle,
908 				struct buffer_head *bh)
909 {
910 	int dirty = buffer_dirty(bh);
911 	int ret;
912 
913 	if (!buffer_mapped(bh) || buffer_freed(bh))
914 		return 0;
915 	/*
916 	 * __block_write_begin() could have dirtied some buffers. Clean
917 	 * the dirty bit as jbd2_journal_get_write_access() could complain
918 	 * otherwise about fs integrity issues. Setting of the dirty bit
919 	 * by __block_write_begin() isn't a real problem here as we clear
920 	 * the bit before releasing a page lock and thus writeback cannot
921 	 * ever write the buffer.
922 	 */
923 	if (dirty)
924 		clear_buffer_dirty(bh);
925 	ret = ext4_journal_get_write_access(handle, bh);
926 	if (!ret && dirty)
927 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
928 	return ret;
929 }
930 
931 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
932 		   struct buffer_head *bh_result, int create);
933 static int ext4_write_begin(struct file *file, struct address_space *mapping,
934 			    loff_t pos, unsigned len, unsigned flags,
935 			    struct page **pagep, void **fsdata)
936 {
937 	struct inode *inode = mapping->host;
938 	int ret, needed_blocks;
939 	handle_t *handle;
940 	int retries = 0;
941 	struct page *page;
942 	pgoff_t index;
943 	unsigned from, to;
944 
945 	trace_ext4_write_begin(inode, pos, len, flags);
946 	/*
947 	 * Reserve one block more for addition to orphan list in case
948 	 * we allocate blocks but write fails for some reason
949 	 */
950 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
951 	index = pos >> PAGE_CACHE_SHIFT;
952 	from = pos & (PAGE_CACHE_SIZE - 1);
953 	to = from + len;
954 
955 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
956 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
957 						    flags, pagep);
958 		if (ret < 0)
959 			return ret;
960 		if (ret == 1)
961 			return 0;
962 	}
963 
964 	/*
965 	 * grab_cache_page_write_begin() can take a long time if the
966 	 * system is thrashing due to memory pressure, or if the page
967 	 * is being written back.  So grab it first before we start
968 	 * the transaction handle.  This also allows us to allocate
969 	 * the page (if needed) without using GFP_NOFS.
970 	 */
971 retry_grab:
972 	page = grab_cache_page_write_begin(mapping, index, flags);
973 	if (!page)
974 		return -ENOMEM;
975 	unlock_page(page);
976 
977 retry_journal:
978 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
979 	if (IS_ERR(handle)) {
980 		page_cache_release(page);
981 		return PTR_ERR(handle);
982 	}
983 
984 	lock_page(page);
985 	if (page->mapping != mapping) {
986 		/* The page got truncated from under us */
987 		unlock_page(page);
988 		page_cache_release(page);
989 		ext4_journal_stop(handle);
990 		goto retry_grab;
991 	}
992 	/* In case writeback began while the page was unlocked */
993 	wait_for_stable_page(page);
994 
995 	if (ext4_should_dioread_nolock(inode))
996 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
997 	else
998 		ret = __block_write_begin(page, pos, len, ext4_get_block);
999 
1000 	if (!ret && ext4_should_journal_data(inode)) {
1001 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1002 					     from, to, NULL,
1003 					     do_journal_get_write_access);
1004 	}
1005 
1006 	if (ret) {
1007 		unlock_page(page);
1008 		/*
1009 		 * __block_write_begin may have instantiated a few blocks
1010 		 * outside i_size.  Trim these off again. Don't need
1011 		 * i_size_read because we hold i_mutex.
1012 		 *
1013 		 * Add inode to orphan list in case we crash before
1014 		 * truncate finishes
1015 		 */
1016 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1017 			ext4_orphan_add(handle, inode);
1018 
1019 		ext4_journal_stop(handle);
1020 		if (pos + len > inode->i_size) {
1021 			ext4_truncate_failed_write(inode);
1022 			/*
1023 			 * If truncate failed early the inode might
1024 			 * still be on the orphan list; we need to
1025 			 * make sure the inode is removed from the
1026 			 * orphan list in that case.
1027 			 */
1028 			if (inode->i_nlink)
1029 				ext4_orphan_del(NULL, inode);
1030 		}
1031 
1032 		if (ret == -ENOSPC &&
1033 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1034 			goto retry_journal;
1035 		page_cache_release(page);
1036 		return ret;
1037 	}
1038 	*pagep = page;
1039 	return ret;
1040 }
1041 
1042 /* For write_end() in data=journal mode */
1043 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1044 {
1045 	int ret;
1046 	if (!buffer_mapped(bh) || buffer_freed(bh))
1047 		return 0;
1048 	set_buffer_uptodate(bh);
1049 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1050 	clear_buffer_meta(bh);
1051 	clear_buffer_prio(bh);
1052 	return ret;
1053 }
1054 
1055 /*
1056  * We need to pick up the new inode size which generic_commit_write gave us
1057  * `file' can be NULL - eg, when called from page_symlink().
1058  *
1059  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1060  * buffers are managed internally.
1061  */
1062 static int ext4_write_end(struct file *file,
1063 			  struct address_space *mapping,
1064 			  loff_t pos, unsigned len, unsigned copied,
1065 			  struct page *page, void *fsdata)
1066 {
1067 	handle_t *handle = ext4_journal_current_handle();
1068 	struct inode *inode = mapping->host;
1069 	int ret = 0, ret2;
1070 	int i_size_changed = 0;
1071 
1072 	trace_ext4_write_end(inode, pos, len, copied);
1073 	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1074 		ret = ext4_jbd2_file_inode(handle, inode);
1075 		if (ret) {
1076 			unlock_page(page);
1077 			page_cache_release(page);
1078 			goto errout;
1079 		}
1080 	}
1081 
1082 	if (ext4_has_inline_data(inode)) {
1083 		ret = ext4_write_inline_data_end(inode, pos, len,
1084 						 copied, page);
1085 		if (ret < 0)
1086 			goto errout;
1087 		copied = ret;
1088 	} else
1089 		copied = block_write_end(file, mapping, pos,
1090 					 len, copied, page, fsdata);
1091 
1092 	/*
1093 	 * No need to use i_size_read() here, the i_size
1094 	 * cannot change under us because we hole i_mutex.
1095 	 *
1096 	 * But it's important to update i_size while still holding page lock:
1097 	 * page writeout could otherwise come in and zero beyond i_size.
1098 	 */
1099 	if (pos + copied > inode->i_size) {
1100 		i_size_write(inode, pos + copied);
1101 		i_size_changed = 1;
1102 	}
1103 
1104 	if (pos + copied > EXT4_I(inode)->i_disksize) {
1105 		/* We need to mark inode dirty even if
1106 		 * new_i_size is less that inode->i_size
1107 		 * but greater than i_disksize. (hint delalloc)
1108 		 */
1109 		ext4_update_i_disksize(inode, (pos + copied));
1110 		i_size_changed = 1;
1111 	}
1112 	unlock_page(page);
1113 	page_cache_release(page);
1114 
1115 	/*
1116 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1117 	 * makes the holding time of page lock longer. Second, it forces lock
1118 	 * ordering of page lock and transaction start for journaling
1119 	 * filesystems.
1120 	 */
1121 	if (i_size_changed)
1122 		ext4_mark_inode_dirty(handle, inode);
1123 
1124 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1125 		/* if we have allocated more blocks and copied
1126 		 * less. We will have blocks allocated outside
1127 		 * inode->i_size. So truncate them
1128 		 */
1129 		ext4_orphan_add(handle, inode);
1130 errout:
1131 	ret2 = ext4_journal_stop(handle);
1132 	if (!ret)
1133 		ret = ret2;
1134 
1135 	if (pos + len > inode->i_size) {
1136 		ext4_truncate_failed_write(inode);
1137 		/*
1138 		 * If truncate failed early the inode might still be
1139 		 * on the orphan list; we need to make sure the inode
1140 		 * is removed from the orphan list in that case.
1141 		 */
1142 		if (inode->i_nlink)
1143 			ext4_orphan_del(NULL, inode);
1144 	}
1145 
1146 	return ret ? ret : copied;
1147 }
1148 
1149 static int ext4_journalled_write_end(struct file *file,
1150 				     struct address_space *mapping,
1151 				     loff_t pos, unsigned len, unsigned copied,
1152 				     struct page *page, void *fsdata)
1153 {
1154 	handle_t *handle = ext4_journal_current_handle();
1155 	struct inode *inode = mapping->host;
1156 	int ret = 0, ret2;
1157 	int partial = 0;
1158 	unsigned from, to;
1159 	loff_t new_i_size;
1160 
1161 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1162 	from = pos & (PAGE_CACHE_SIZE - 1);
1163 	to = from + len;
1164 
1165 	BUG_ON(!ext4_handle_valid(handle));
1166 
1167 	if (ext4_has_inline_data(inode))
1168 		copied = ext4_write_inline_data_end(inode, pos, len,
1169 						    copied, page);
1170 	else {
1171 		if (copied < len) {
1172 			if (!PageUptodate(page))
1173 				copied = 0;
1174 			page_zero_new_buffers(page, from+copied, to);
1175 		}
1176 
1177 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1178 					     to, &partial, write_end_fn);
1179 		if (!partial)
1180 			SetPageUptodate(page);
1181 	}
1182 	new_i_size = pos + copied;
1183 	if (new_i_size > inode->i_size)
1184 		i_size_write(inode, pos+copied);
1185 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1186 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1187 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1188 		ext4_update_i_disksize(inode, new_i_size);
1189 		ret2 = ext4_mark_inode_dirty(handle, inode);
1190 		if (!ret)
1191 			ret = ret2;
1192 	}
1193 
1194 	unlock_page(page);
1195 	page_cache_release(page);
1196 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1197 		/* if we have allocated more blocks and copied
1198 		 * less. We will have blocks allocated outside
1199 		 * inode->i_size. So truncate them
1200 		 */
1201 		ext4_orphan_add(handle, inode);
1202 
1203 	ret2 = ext4_journal_stop(handle);
1204 	if (!ret)
1205 		ret = ret2;
1206 	if (pos + len > inode->i_size) {
1207 		ext4_truncate_failed_write(inode);
1208 		/*
1209 		 * If truncate failed early the inode might still be
1210 		 * on the orphan list; we need to make sure the inode
1211 		 * is removed from the orphan list in that case.
1212 		 */
1213 		if (inode->i_nlink)
1214 			ext4_orphan_del(NULL, inode);
1215 	}
1216 
1217 	return ret ? ret : copied;
1218 }
1219 
1220 /*
1221  * Reserve a metadata for a single block located at lblock
1222  */
1223 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1224 {
1225 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1226 	struct ext4_inode_info *ei = EXT4_I(inode);
1227 	unsigned int md_needed;
1228 	ext4_lblk_t save_last_lblock;
1229 	int save_len;
1230 
1231 	/*
1232 	 * recalculate the amount of metadata blocks to reserve
1233 	 * in order to allocate nrblocks
1234 	 * worse case is one extent per block
1235 	 */
1236 	spin_lock(&ei->i_block_reservation_lock);
1237 	/*
1238 	 * ext4_calc_metadata_amount() has side effects, which we have
1239 	 * to be prepared undo if we fail to claim space.
1240 	 */
1241 	save_len = ei->i_da_metadata_calc_len;
1242 	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1243 	md_needed = EXT4_NUM_B2C(sbi,
1244 				 ext4_calc_metadata_amount(inode, lblock));
1245 	trace_ext4_da_reserve_space(inode, md_needed);
1246 
1247 	/*
1248 	 * We do still charge estimated metadata to the sb though;
1249 	 * we cannot afford to run out of free blocks.
1250 	 */
1251 	if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1252 		ei->i_da_metadata_calc_len = save_len;
1253 		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1254 		spin_unlock(&ei->i_block_reservation_lock);
1255 		return -ENOSPC;
1256 	}
1257 	ei->i_reserved_meta_blocks += md_needed;
1258 	spin_unlock(&ei->i_block_reservation_lock);
1259 
1260 	return 0;       /* success */
1261 }
1262 
1263 /*
1264  * Reserve a single cluster located at lblock
1265  */
1266 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1267 {
1268 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1269 	struct ext4_inode_info *ei = EXT4_I(inode);
1270 	unsigned int md_needed;
1271 	int ret;
1272 	ext4_lblk_t save_last_lblock;
1273 	int save_len;
1274 
1275 	/*
1276 	 * We will charge metadata quota at writeout time; this saves
1277 	 * us from metadata over-estimation, though we may go over by
1278 	 * a small amount in the end.  Here we just reserve for data.
1279 	 */
1280 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1281 	if (ret)
1282 		return ret;
1283 
1284 	/*
1285 	 * recalculate the amount of metadata blocks to reserve
1286 	 * in order to allocate nrblocks
1287 	 * worse case is one extent per block
1288 	 */
1289 	spin_lock(&ei->i_block_reservation_lock);
1290 	/*
1291 	 * ext4_calc_metadata_amount() has side effects, which we have
1292 	 * to be prepared undo if we fail to claim space.
1293 	 */
1294 	save_len = ei->i_da_metadata_calc_len;
1295 	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1296 	md_needed = EXT4_NUM_B2C(sbi,
1297 				 ext4_calc_metadata_amount(inode, lblock));
1298 	trace_ext4_da_reserve_space(inode, md_needed);
1299 
1300 	/*
1301 	 * We do still charge estimated metadata to the sb though;
1302 	 * we cannot afford to run out of free blocks.
1303 	 */
1304 	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1305 		ei->i_da_metadata_calc_len = save_len;
1306 		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1307 		spin_unlock(&ei->i_block_reservation_lock);
1308 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1309 		return -ENOSPC;
1310 	}
1311 	ei->i_reserved_data_blocks++;
1312 	ei->i_reserved_meta_blocks += md_needed;
1313 	spin_unlock(&ei->i_block_reservation_lock);
1314 
1315 	return 0;       /* success */
1316 }
1317 
1318 static void ext4_da_release_space(struct inode *inode, int to_free)
1319 {
1320 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1321 	struct ext4_inode_info *ei = EXT4_I(inode);
1322 
1323 	if (!to_free)
1324 		return;		/* Nothing to release, exit */
1325 
1326 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1327 
1328 	trace_ext4_da_release_space(inode, to_free);
1329 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1330 		/*
1331 		 * if there aren't enough reserved blocks, then the
1332 		 * counter is messed up somewhere.  Since this
1333 		 * function is called from invalidate page, it's
1334 		 * harmless to return without any action.
1335 		 */
1336 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1337 			 "ino %lu, to_free %d with only %d reserved "
1338 			 "data blocks", inode->i_ino, to_free,
1339 			 ei->i_reserved_data_blocks);
1340 		WARN_ON(1);
1341 		to_free = ei->i_reserved_data_blocks;
1342 	}
1343 	ei->i_reserved_data_blocks -= to_free;
1344 
1345 	if (ei->i_reserved_data_blocks == 0) {
1346 		/*
1347 		 * We can release all of the reserved metadata blocks
1348 		 * only when we have written all of the delayed
1349 		 * allocation blocks.
1350 		 * Note that in case of bigalloc, i_reserved_meta_blocks,
1351 		 * i_reserved_data_blocks, etc. refer to number of clusters.
1352 		 */
1353 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1354 				   ei->i_reserved_meta_blocks);
1355 		ei->i_reserved_meta_blocks = 0;
1356 		ei->i_da_metadata_calc_len = 0;
1357 	}
1358 
1359 	/* update fs dirty data blocks counter */
1360 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1361 
1362 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1363 
1364 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1365 }
1366 
1367 static void ext4_da_page_release_reservation(struct page *page,
1368 					     unsigned int offset,
1369 					     unsigned int length)
1370 {
1371 	int to_release = 0;
1372 	struct buffer_head *head, *bh;
1373 	unsigned int curr_off = 0;
1374 	struct inode *inode = page->mapping->host;
1375 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1376 	unsigned int stop = offset + length;
1377 	int num_clusters;
1378 	ext4_fsblk_t lblk;
1379 
1380 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1381 
1382 	head = page_buffers(page);
1383 	bh = head;
1384 	do {
1385 		unsigned int next_off = curr_off + bh->b_size;
1386 
1387 		if (next_off > stop)
1388 			break;
1389 
1390 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1391 			to_release++;
1392 			clear_buffer_delay(bh);
1393 		}
1394 		curr_off = next_off;
1395 	} while ((bh = bh->b_this_page) != head);
1396 
1397 	if (to_release) {
1398 		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1399 		ext4_es_remove_extent(inode, lblk, to_release);
1400 	}
1401 
1402 	/* If we have released all the blocks belonging to a cluster, then we
1403 	 * need to release the reserved space for that cluster. */
1404 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1405 	while (num_clusters > 0) {
1406 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1407 			((num_clusters - 1) << sbi->s_cluster_bits);
1408 		if (sbi->s_cluster_ratio == 1 ||
1409 		    !ext4_find_delalloc_cluster(inode, lblk))
1410 			ext4_da_release_space(inode, 1);
1411 
1412 		num_clusters--;
1413 	}
1414 }
1415 
1416 /*
1417  * Delayed allocation stuff
1418  */
1419 
1420 struct mpage_da_data {
1421 	struct inode *inode;
1422 	struct writeback_control *wbc;
1423 
1424 	pgoff_t first_page;	/* The first page to write */
1425 	pgoff_t next_page;	/* Current page to examine */
1426 	pgoff_t last_page;	/* Last page to examine */
1427 	/*
1428 	 * Extent to map - this can be after first_page because that can be
1429 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1430 	 * is delalloc or unwritten.
1431 	 */
1432 	struct ext4_map_blocks map;
1433 	struct ext4_io_submit io_submit;	/* IO submission data */
1434 };
1435 
1436 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1437 				       bool invalidate)
1438 {
1439 	int nr_pages, i;
1440 	pgoff_t index, end;
1441 	struct pagevec pvec;
1442 	struct inode *inode = mpd->inode;
1443 	struct address_space *mapping = inode->i_mapping;
1444 
1445 	/* This is necessary when next_page == 0. */
1446 	if (mpd->first_page >= mpd->next_page)
1447 		return;
1448 
1449 	index = mpd->first_page;
1450 	end   = mpd->next_page - 1;
1451 	if (invalidate) {
1452 		ext4_lblk_t start, last;
1453 		start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1454 		last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1455 		ext4_es_remove_extent(inode, start, last - start + 1);
1456 	}
1457 
1458 	pagevec_init(&pvec, 0);
1459 	while (index <= end) {
1460 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1461 		if (nr_pages == 0)
1462 			break;
1463 		for (i = 0; i < nr_pages; i++) {
1464 			struct page *page = pvec.pages[i];
1465 			if (page->index > end)
1466 				break;
1467 			BUG_ON(!PageLocked(page));
1468 			BUG_ON(PageWriteback(page));
1469 			if (invalidate) {
1470 				block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1471 				ClearPageUptodate(page);
1472 			}
1473 			unlock_page(page);
1474 		}
1475 		index = pvec.pages[nr_pages - 1]->index + 1;
1476 		pagevec_release(&pvec);
1477 	}
1478 }
1479 
1480 static void ext4_print_free_blocks(struct inode *inode)
1481 {
1482 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1483 	struct super_block *sb = inode->i_sb;
1484 	struct ext4_inode_info *ei = EXT4_I(inode);
1485 
1486 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1487 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1488 			ext4_count_free_clusters(sb)));
1489 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1490 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1491 	       (long long) EXT4_C2B(EXT4_SB(sb),
1492 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1493 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1494 	       (long long) EXT4_C2B(EXT4_SB(sb),
1495 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1496 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1497 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1498 		 ei->i_reserved_data_blocks);
1499 	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1500 	       ei->i_reserved_meta_blocks);
1501 	ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1502 	       ei->i_allocated_meta_blocks);
1503 	return;
1504 }
1505 
1506 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1507 {
1508 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1509 }
1510 
1511 /*
1512  * This function is grabs code from the very beginning of
1513  * ext4_map_blocks, but assumes that the caller is from delayed write
1514  * time. This function looks up the requested blocks and sets the
1515  * buffer delay bit under the protection of i_data_sem.
1516  */
1517 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1518 			      struct ext4_map_blocks *map,
1519 			      struct buffer_head *bh)
1520 {
1521 	struct extent_status es;
1522 	int retval;
1523 	sector_t invalid_block = ~((sector_t) 0xffff);
1524 #ifdef ES_AGGRESSIVE_TEST
1525 	struct ext4_map_blocks orig_map;
1526 
1527 	memcpy(&orig_map, map, sizeof(*map));
1528 #endif
1529 
1530 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1531 		invalid_block = ~0;
1532 
1533 	map->m_flags = 0;
1534 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1535 		  "logical block %lu\n", inode->i_ino, map->m_len,
1536 		  (unsigned long) map->m_lblk);
1537 
1538 	/* Lookup extent status tree firstly */
1539 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1540 		ext4_es_lru_add(inode);
1541 		if (ext4_es_is_hole(&es)) {
1542 			retval = 0;
1543 			down_read((&EXT4_I(inode)->i_data_sem));
1544 			goto add_delayed;
1545 		}
1546 
1547 		/*
1548 		 * Delayed extent could be allocated by fallocate.
1549 		 * So we need to check it.
1550 		 */
1551 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1552 			map_bh(bh, inode->i_sb, invalid_block);
1553 			set_buffer_new(bh);
1554 			set_buffer_delay(bh);
1555 			return 0;
1556 		}
1557 
1558 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1559 		retval = es.es_len - (iblock - es.es_lblk);
1560 		if (retval > map->m_len)
1561 			retval = map->m_len;
1562 		map->m_len = retval;
1563 		if (ext4_es_is_written(&es))
1564 			map->m_flags |= EXT4_MAP_MAPPED;
1565 		else if (ext4_es_is_unwritten(&es))
1566 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1567 		else
1568 			BUG_ON(1);
1569 
1570 #ifdef ES_AGGRESSIVE_TEST
1571 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1572 #endif
1573 		return retval;
1574 	}
1575 
1576 	/*
1577 	 * Try to see if we can get the block without requesting a new
1578 	 * file system block.
1579 	 */
1580 	down_read((&EXT4_I(inode)->i_data_sem));
1581 	if (ext4_has_inline_data(inode)) {
1582 		/*
1583 		 * We will soon create blocks for this page, and let
1584 		 * us pretend as if the blocks aren't allocated yet.
1585 		 * In case of clusters, we have to handle the work
1586 		 * of mapping from cluster so that the reserved space
1587 		 * is calculated properly.
1588 		 */
1589 		if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1590 		    ext4_find_delalloc_cluster(inode, map->m_lblk))
1591 			map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1592 		retval = 0;
1593 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1594 		retval = ext4_ext_map_blocks(NULL, inode, map,
1595 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1596 	else
1597 		retval = ext4_ind_map_blocks(NULL, inode, map,
1598 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1599 
1600 add_delayed:
1601 	if (retval == 0) {
1602 		int ret;
1603 		/*
1604 		 * XXX: __block_prepare_write() unmaps passed block,
1605 		 * is it OK?
1606 		 */
1607 		/*
1608 		 * If the block was allocated from previously allocated cluster,
1609 		 * then we don't need to reserve it again. However we still need
1610 		 * to reserve metadata for every block we're going to write.
1611 		 */
1612 		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1613 			ret = ext4_da_reserve_space(inode, iblock);
1614 			if (ret) {
1615 				/* not enough space to reserve */
1616 				retval = ret;
1617 				goto out_unlock;
1618 			}
1619 		} else {
1620 			ret = ext4_da_reserve_metadata(inode, iblock);
1621 			if (ret) {
1622 				/* not enough space to reserve */
1623 				retval = ret;
1624 				goto out_unlock;
1625 			}
1626 		}
1627 
1628 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1629 					    ~0, EXTENT_STATUS_DELAYED);
1630 		if (ret) {
1631 			retval = ret;
1632 			goto out_unlock;
1633 		}
1634 
1635 		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1636 		 * and it should not appear on the bh->b_state.
1637 		 */
1638 		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1639 
1640 		map_bh(bh, inode->i_sb, invalid_block);
1641 		set_buffer_new(bh);
1642 		set_buffer_delay(bh);
1643 	} else if (retval > 0) {
1644 		int ret;
1645 		unsigned int status;
1646 
1647 		if (unlikely(retval != map->m_len)) {
1648 			ext4_warning(inode->i_sb,
1649 				     "ES len assertion failed for inode "
1650 				     "%lu: retval %d != map->m_len %d",
1651 				     inode->i_ino, retval, map->m_len);
1652 			WARN_ON(1);
1653 		}
1654 
1655 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1656 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1657 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1658 					    map->m_pblk, status);
1659 		if (ret != 0)
1660 			retval = ret;
1661 	}
1662 
1663 out_unlock:
1664 	up_read((&EXT4_I(inode)->i_data_sem));
1665 
1666 	return retval;
1667 }
1668 
1669 /*
1670  * This is a special get_blocks_t callback which is used by
1671  * ext4_da_write_begin().  It will either return mapped block or
1672  * reserve space for a single block.
1673  *
1674  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1675  * We also have b_blocknr = -1 and b_bdev initialized properly
1676  *
1677  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1678  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1679  * initialized properly.
1680  */
1681 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1682 			   struct buffer_head *bh, int create)
1683 {
1684 	struct ext4_map_blocks map;
1685 	int ret = 0;
1686 
1687 	BUG_ON(create == 0);
1688 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1689 
1690 	map.m_lblk = iblock;
1691 	map.m_len = 1;
1692 
1693 	/*
1694 	 * first, we need to know whether the block is allocated already
1695 	 * preallocated blocks are unmapped but should treated
1696 	 * the same as allocated blocks.
1697 	 */
1698 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1699 	if (ret <= 0)
1700 		return ret;
1701 
1702 	map_bh(bh, inode->i_sb, map.m_pblk);
1703 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1704 
1705 	if (buffer_unwritten(bh)) {
1706 		/* A delayed write to unwritten bh should be marked
1707 		 * new and mapped.  Mapped ensures that we don't do
1708 		 * get_block multiple times when we write to the same
1709 		 * offset and new ensures that we do proper zero out
1710 		 * for partial write.
1711 		 */
1712 		set_buffer_new(bh);
1713 		set_buffer_mapped(bh);
1714 	}
1715 	return 0;
1716 }
1717 
1718 static int bget_one(handle_t *handle, struct buffer_head *bh)
1719 {
1720 	get_bh(bh);
1721 	return 0;
1722 }
1723 
1724 static int bput_one(handle_t *handle, struct buffer_head *bh)
1725 {
1726 	put_bh(bh);
1727 	return 0;
1728 }
1729 
1730 static int __ext4_journalled_writepage(struct page *page,
1731 				       unsigned int len)
1732 {
1733 	struct address_space *mapping = page->mapping;
1734 	struct inode *inode = mapping->host;
1735 	struct buffer_head *page_bufs = NULL;
1736 	handle_t *handle = NULL;
1737 	int ret = 0, err = 0;
1738 	int inline_data = ext4_has_inline_data(inode);
1739 	struct buffer_head *inode_bh = NULL;
1740 
1741 	ClearPageChecked(page);
1742 
1743 	if (inline_data) {
1744 		BUG_ON(page->index != 0);
1745 		BUG_ON(len > ext4_get_max_inline_size(inode));
1746 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1747 		if (inode_bh == NULL)
1748 			goto out;
1749 	} else {
1750 		page_bufs = page_buffers(page);
1751 		if (!page_bufs) {
1752 			BUG();
1753 			goto out;
1754 		}
1755 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1756 				       NULL, bget_one);
1757 	}
1758 	/* As soon as we unlock the page, it can go away, but we have
1759 	 * references to buffers so we are safe */
1760 	unlock_page(page);
1761 
1762 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1763 				    ext4_writepage_trans_blocks(inode));
1764 	if (IS_ERR(handle)) {
1765 		ret = PTR_ERR(handle);
1766 		goto out;
1767 	}
1768 
1769 	BUG_ON(!ext4_handle_valid(handle));
1770 
1771 	if (inline_data) {
1772 		ret = ext4_journal_get_write_access(handle, inode_bh);
1773 
1774 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1775 
1776 	} else {
1777 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1778 					     do_journal_get_write_access);
1779 
1780 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1781 					     write_end_fn);
1782 	}
1783 	if (ret == 0)
1784 		ret = err;
1785 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1786 	err = ext4_journal_stop(handle);
1787 	if (!ret)
1788 		ret = err;
1789 
1790 	if (!ext4_has_inline_data(inode))
1791 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1792 				       NULL, bput_one);
1793 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1794 out:
1795 	brelse(inode_bh);
1796 	return ret;
1797 }
1798 
1799 /*
1800  * Note that we don't need to start a transaction unless we're journaling data
1801  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1802  * need to file the inode to the transaction's list in ordered mode because if
1803  * we are writing back data added by write(), the inode is already there and if
1804  * we are writing back data modified via mmap(), no one guarantees in which
1805  * transaction the data will hit the disk. In case we are journaling data, we
1806  * cannot start transaction directly because transaction start ranks above page
1807  * lock so we have to do some magic.
1808  *
1809  * This function can get called via...
1810  *   - ext4_writepages after taking page lock (have journal handle)
1811  *   - journal_submit_inode_data_buffers (no journal handle)
1812  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1813  *   - grab_page_cache when doing write_begin (have journal handle)
1814  *
1815  * We don't do any block allocation in this function. If we have page with
1816  * multiple blocks we need to write those buffer_heads that are mapped. This
1817  * is important for mmaped based write. So if we do with blocksize 1K
1818  * truncate(f, 1024);
1819  * a = mmap(f, 0, 4096);
1820  * a[0] = 'a';
1821  * truncate(f, 4096);
1822  * we have in the page first buffer_head mapped via page_mkwrite call back
1823  * but other buffer_heads would be unmapped but dirty (dirty done via the
1824  * do_wp_page). So writepage should write the first block. If we modify
1825  * the mmap area beyond 1024 we will again get a page_fault and the
1826  * page_mkwrite callback will do the block allocation and mark the
1827  * buffer_heads mapped.
1828  *
1829  * We redirty the page if we have any buffer_heads that is either delay or
1830  * unwritten in the page.
1831  *
1832  * We can get recursively called as show below.
1833  *
1834  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1835  *		ext4_writepage()
1836  *
1837  * But since we don't do any block allocation we should not deadlock.
1838  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1839  */
1840 static int ext4_writepage(struct page *page,
1841 			  struct writeback_control *wbc)
1842 {
1843 	int ret = 0;
1844 	loff_t size;
1845 	unsigned int len;
1846 	struct buffer_head *page_bufs = NULL;
1847 	struct inode *inode = page->mapping->host;
1848 	struct ext4_io_submit io_submit;
1849 
1850 	trace_ext4_writepage(page);
1851 	size = i_size_read(inode);
1852 	if (page->index == size >> PAGE_CACHE_SHIFT)
1853 		len = size & ~PAGE_CACHE_MASK;
1854 	else
1855 		len = PAGE_CACHE_SIZE;
1856 
1857 	page_bufs = page_buffers(page);
1858 	/*
1859 	 * We cannot do block allocation or other extent handling in this
1860 	 * function. If there are buffers needing that, we have to redirty
1861 	 * the page. But we may reach here when we do a journal commit via
1862 	 * journal_submit_inode_data_buffers() and in that case we must write
1863 	 * allocated buffers to achieve data=ordered mode guarantees.
1864 	 */
1865 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1866 				   ext4_bh_delay_or_unwritten)) {
1867 		redirty_page_for_writepage(wbc, page);
1868 		if (current->flags & PF_MEMALLOC) {
1869 			/*
1870 			 * For memory cleaning there's no point in writing only
1871 			 * some buffers. So just bail out. Warn if we came here
1872 			 * from direct reclaim.
1873 			 */
1874 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1875 							== PF_MEMALLOC);
1876 			unlock_page(page);
1877 			return 0;
1878 		}
1879 	}
1880 
1881 	if (PageChecked(page) && ext4_should_journal_data(inode))
1882 		/*
1883 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1884 		 * doesn't seem much point in redirtying the page here.
1885 		 */
1886 		return __ext4_journalled_writepage(page, len);
1887 
1888 	ext4_io_submit_init(&io_submit, wbc);
1889 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1890 	if (!io_submit.io_end) {
1891 		redirty_page_for_writepage(wbc, page);
1892 		unlock_page(page);
1893 		return -ENOMEM;
1894 	}
1895 	ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1896 	ext4_io_submit(&io_submit);
1897 	/* Drop io_end reference we got from init */
1898 	ext4_put_io_end_defer(io_submit.io_end);
1899 	return ret;
1900 }
1901 
1902 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1903 {
1904 	int len;
1905 	loff_t size = i_size_read(mpd->inode);
1906 	int err;
1907 
1908 	BUG_ON(page->index != mpd->first_page);
1909 	if (page->index == size >> PAGE_CACHE_SHIFT)
1910 		len = size & ~PAGE_CACHE_MASK;
1911 	else
1912 		len = PAGE_CACHE_SIZE;
1913 	clear_page_dirty_for_io(page);
1914 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1915 	if (!err)
1916 		mpd->wbc->nr_to_write--;
1917 	mpd->first_page++;
1918 
1919 	return err;
1920 }
1921 
1922 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1923 
1924 /*
1925  * mballoc gives us at most this number of blocks...
1926  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1927  * The rest of mballoc seems to handle chunks up to full group size.
1928  */
1929 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1930 
1931 /*
1932  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1933  *
1934  * @mpd - extent of blocks
1935  * @lblk - logical number of the block in the file
1936  * @bh - buffer head we want to add to the extent
1937  *
1938  * The function is used to collect contig. blocks in the same state. If the
1939  * buffer doesn't require mapping for writeback and we haven't started the
1940  * extent of buffers to map yet, the function returns 'true' immediately - the
1941  * caller can write the buffer right away. Otherwise the function returns true
1942  * if the block has been added to the extent, false if the block couldn't be
1943  * added.
1944  */
1945 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1946 				   struct buffer_head *bh)
1947 {
1948 	struct ext4_map_blocks *map = &mpd->map;
1949 
1950 	/* Buffer that doesn't need mapping for writeback? */
1951 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1952 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1953 		/* So far no extent to map => we write the buffer right away */
1954 		if (map->m_len == 0)
1955 			return true;
1956 		return false;
1957 	}
1958 
1959 	/* First block in the extent? */
1960 	if (map->m_len == 0) {
1961 		map->m_lblk = lblk;
1962 		map->m_len = 1;
1963 		map->m_flags = bh->b_state & BH_FLAGS;
1964 		return true;
1965 	}
1966 
1967 	/* Don't go larger than mballoc is willing to allocate */
1968 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1969 		return false;
1970 
1971 	/* Can we merge the block to our big extent? */
1972 	if (lblk == map->m_lblk + map->m_len &&
1973 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1974 		map->m_len++;
1975 		return true;
1976 	}
1977 	return false;
1978 }
1979 
1980 /*
1981  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1982  *
1983  * @mpd - extent of blocks for mapping
1984  * @head - the first buffer in the page
1985  * @bh - buffer we should start processing from
1986  * @lblk - logical number of the block in the file corresponding to @bh
1987  *
1988  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1989  * the page for IO if all buffers in this page were mapped and there's no
1990  * accumulated extent of buffers to map or add buffers in the page to the
1991  * extent of buffers to map. The function returns 1 if the caller can continue
1992  * by processing the next page, 0 if it should stop adding buffers to the
1993  * extent to map because we cannot extend it anymore. It can also return value
1994  * < 0 in case of error during IO submission.
1995  */
1996 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1997 				   struct buffer_head *head,
1998 				   struct buffer_head *bh,
1999 				   ext4_lblk_t lblk)
2000 {
2001 	struct inode *inode = mpd->inode;
2002 	int err;
2003 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2004 							>> inode->i_blkbits;
2005 
2006 	do {
2007 		BUG_ON(buffer_locked(bh));
2008 
2009 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2010 			/* Found extent to map? */
2011 			if (mpd->map.m_len)
2012 				return 0;
2013 			/* Everything mapped so far and we hit EOF */
2014 			break;
2015 		}
2016 	} while (lblk++, (bh = bh->b_this_page) != head);
2017 	/* So far everything mapped? Submit the page for IO. */
2018 	if (mpd->map.m_len == 0) {
2019 		err = mpage_submit_page(mpd, head->b_page);
2020 		if (err < 0)
2021 			return err;
2022 	}
2023 	return lblk < blocks;
2024 }
2025 
2026 /*
2027  * mpage_map_buffers - update buffers corresponding to changed extent and
2028  *		       submit fully mapped pages for IO
2029  *
2030  * @mpd - description of extent to map, on return next extent to map
2031  *
2032  * Scan buffers corresponding to changed extent (we expect corresponding pages
2033  * to be already locked) and update buffer state according to new extent state.
2034  * We map delalloc buffers to their physical location, clear unwritten bits,
2035  * and mark buffers as uninit when we perform writes to uninitialized extents
2036  * and do extent conversion after IO is finished. If the last page is not fully
2037  * mapped, we update @map to the next extent in the last page that needs
2038  * mapping. Otherwise we submit the page for IO.
2039  */
2040 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2041 {
2042 	struct pagevec pvec;
2043 	int nr_pages, i;
2044 	struct inode *inode = mpd->inode;
2045 	struct buffer_head *head, *bh;
2046 	int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2047 	pgoff_t start, end;
2048 	ext4_lblk_t lblk;
2049 	sector_t pblock;
2050 	int err;
2051 
2052 	start = mpd->map.m_lblk >> bpp_bits;
2053 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2054 	lblk = start << bpp_bits;
2055 	pblock = mpd->map.m_pblk;
2056 
2057 	pagevec_init(&pvec, 0);
2058 	while (start <= end) {
2059 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2060 					  PAGEVEC_SIZE);
2061 		if (nr_pages == 0)
2062 			break;
2063 		for (i = 0; i < nr_pages; i++) {
2064 			struct page *page = pvec.pages[i];
2065 
2066 			if (page->index > end)
2067 				break;
2068 			/* Up to 'end' pages must be contiguous */
2069 			BUG_ON(page->index != start);
2070 			bh = head = page_buffers(page);
2071 			do {
2072 				if (lblk < mpd->map.m_lblk)
2073 					continue;
2074 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2075 					/*
2076 					 * Buffer after end of mapped extent.
2077 					 * Find next buffer in the page to map.
2078 					 */
2079 					mpd->map.m_len = 0;
2080 					mpd->map.m_flags = 0;
2081 					/*
2082 					 * FIXME: If dioread_nolock supports
2083 					 * blocksize < pagesize, we need to make
2084 					 * sure we add size mapped so far to
2085 					 * io_end->size as the following call
2086 					 * can submit the page for IO.
2087 					 */
2088 					err = mpage_process_page_bufs(mpd, head,
2089 								      bh, lblk);
2090 					pagevec_release(&pvec);
2091 					if (err > 0)
2092 						err = 0;
2093 					return err;
2094 				}
2095 				if (buffer_delay(bh)) {
2096 					clear_buffer_delay(bh);
2097 					bh->b_blocknr = pblock++;
2098 				}
2099 				clear_buffer_unwritten(bh);
2100 			} while (lblk++, (bh = bh->b_this_page) != head);
2101 
2102 			/*
2103 			 * FIXME: This is going to break if dioread_nolock
2104 			 * supports blocksize < pagesize as we will try to
2105 			 * convert potentially unmapped parts of inode.
2106 			 */
2107 			mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2108 			/* Page fully mapped - let IO run! */
2109 			err = mpage_submit_page(mpd, page);
2110 			if (err < 0) {
2111 				pagevec_release(&pvec);
2112 				return err;
2113 			}
2114 			start++;
2115 		}
2116 		pagevec_release(&pvec);
2117 	}
2118 	/* Extent fully mapped and matches with page boundary. We are done. */
2119 	mpd->map.m_len = 0;
2120 	mpd->map.m_flags = 0;
2121 	return 0;
2122 }
2123 
2124 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2125 {
2126 	struct inode *inode = mpd->inode;
2127 	struct ext4_map_blocks *map = &mpd->map;
2128 	int get_blocks_flags;
2129 	int err;
2130 
2131 	trace_ext4_da_write_pages_extent(inode, map);
2132 	/*
2133 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2134 	 * to convert an uninitialized extent to be initialized (in the case
2135 	 * where we have written into one or more preallocated blocks).  It is
2136 	 * possible that we're going to need more metadata blocks than
2137 	 * previously reserved. However we must not fail because we're in
2138 	 * writeback and there is nothing we can do about it so it might result
2139 	 * in data loss.  So use reserved blocks to allocate metadata if
2140 	 * possible.
2141 	 *
2142 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2143 	 * in question are delalloc blocks.  This affects functions in many
2144 	 * different parts of the allocation call path.  This flag exists
2145 	 * primarily because we don't want to change *many* call functions, so
2146 	 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2147 	 * once the inode's allocation semaphore is taken.
2148 	 */
2149 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2150 			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
2151 	if (ext4_should_dioread_nolock(inode))
2152 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2153 	if (map->m_flags & (1 << BH_Delay))
2154 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2155 
2156 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2157 	if (err < 0)
2158 		return err;
2159 	if (map->m_flags & EXT4_MAP_UNINIT) {
2160 		if (!mpd->io_submit.io_end->handle &&
2161 		    ext4_handle_valid(handle)) {
2162 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2163 			handle->h_rsv_handle = NULL;
2164 		}
2165 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2166 	}
2167 
2168 	BUG_ON(map->m_len == 0);
2169 	if (map->m_flags & EXT4_MAP_NEW) {
2170 		struct block_device *bdev = inode->i_sb->s_bdev;
2171 		int i;
2172 
2173 		for (i = 0; i < map->m_len; i++)
2174 			unmap_underlying_metadata(bdev, map->m_pblk + i);
2175 	}
2176 	return 0;
2177 }
2178 
2179 /*
2180  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2181  *				 mpd->len and submit pages underlying it for IO
2182  *
2183  * @handle - handle for journal operations
2184  * @mpd - extent to map
2185  * @give_up_on_write - we set this to true iff there is a fatal error and there
2186  *                     is no hope of writing the data. The caller should discard
2187  *                     dirty pages to avoid infinite loops.
2188  *
2189  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2190  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2191  * them to initialized or split the described range from larger unwritten
2192  * extent. Note that we need not map all the described range since allocation
2193  * can return less blocks or the range is covered by more unwritten extents. We
2194  * cannot map more because we are limited by reserved transaction credits. On
2195  * the other hand we always make sure that the last touched page is fully
2196  * mapped so that it can be written out (and thus forward progress is
2197  * guaranteed). After mapping we submit all mapped pages for IO.
2198  */
2199 static int mpage_map_and_submit_extent(handle_t *handle,
2200 				       struct mpage_da_data *mpd,
2201 				       bool *give_up_on_write)
2202 {
2203 	struct inode *inode = mpd->inode;
2204 	struct ext4_map_blocks *map = &mpd->map;
2205 	int err;
2206 	loff_t disksize;
2207 
2208 	mpd->io_submit.io_end->offset =
2209 				((loff_t)map->m_lblk) << inode->i_blkbits;
2210 	do {
2211 		err = mpage_map_one_extent(handle, mpd);
2212 		if (err < 0) {
2213 			struct super_block *sb = inode->i_sb;
2214 
2215 			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2216 				goto invalidate_dirty_pages;
2217 			/*
2218 			 * Let the uper layers retry transient errors.
2219 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2220 			 * is non-zero, a commit should free up blocks.
2221 			 */
2222 			if ((err == -ENOMEM) ||
2223 			    (err == -ENOSPC && ext4_count_free_clusters(sb)))
2224 				return err;
2225 			ext4_msg(sb, KERN_CRIT,
2226 				 "Delayed block allocation failed for "
2227 				 "inode %lu at logical offset %llu with"
2228 				 " max blocks %u with error %d",
2229 				 inode->i_ino,
2230 				 (unsigned long long)map->m_lblk,
2231 				 (unsigned)map->m_len, -err);
2232 			ext4_msg(sb, KERN_CRIT,
2233 				 "This should not happen!! Data will "
2234 				 "be lost\n");
2235 			if (err == -ENOSPC)
2236 				ext4_print_free_blocks(inode);
2237 		invalidate_dirty_pages:
2238 			*give_up_on_write = true;
2239 			return err;
2240 		}
2241 		/*
2242 		 * Update buffer state, submit mapped pages, and get us new
2243 		 * extent to map
2244 		 */
2245 		err = mpage_map_and_submit_buffers(mpd);
2246 		if (err < 0)
2247 			return err;
2248 	} while (map->m_len);
2249 
2250 	/*
2251 	 * Update on-disk size after IO is submitted.  Races with
2252 	 * truncate are avoided by checking i_size under i_data_sem.
2253 	 */
2254 	disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2255 	if (disksize > EXT4_I(inode)->i_disksize) {
2256 		int err2;
2257 		loff_t i_size;
2258 
2259 		down_write(&EXT4_I(inode)->i_data_sem);
2260 		i_size = i_size_read(inode);
2261 		if (disksize > i_size)
2262 			disksize = i_size;
2263 		if (disksize > EXT4_I(inode)->i_disksize)
2264 			EXT4_I(inode)->i_disksize = disksize;
2265 		err2 = ext4_mark_inode_dirty(handle, inode);
2266 		up_write(&EXT4_I(inode)->i_data_sem);
2267 		if (err2)
2268 			ext4_error(inode->i_sb,
2269 				   "Failed to mark inode %lu dirty",
2270 				   inode->i_ino);
2271 		if (!err)
2272 			err = err2;
2273 	}
2274 	return err;
2275 }
2276 
2277 /*
2278  * Calculate the total number of credits to reserve for one writepages
2279  * iteration. This is called from ext4_writepages(). We map an extent of
2280  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2281  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2282  * bpp - 1 blocks in bpp different extents.
2283  */
2284 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2285 {
2286 	int bpp = ext4_journal_blocks_per_page(inode);
2287 
2288 	return ext4_meta_trans_blocks(inode,
2289 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2290 }
2291 
2292 /*
2293  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2294  * 				 and underlying extent to map
2295  *
2296  * @mpd - where to look for pages
2297  *
2298  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2299  * IO immediately. When we find a page which isn't mapped we start accumulating
2300  * extent of buffers underlying these pages that needs mapping (formed by
2301  * either delayed or unwritten buffers). We also lock the pages containing
2302  * these buffers. The extent found is returned in @mpd structure (starting at
2303  * mpd->lblk with length mpd->len blocks).
2304  *
2305  * Note that this function can attach bios to one io_end structure which are
2306  * neither logically nor physically contiguous. Although it may seem as an
2307  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2308  * case as we need to track IO to all buffers underlying a page in one io_end.
2309  */
2310 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2311 {
2312 	struct address_space *mapping = mpd->inode->i_mapping;
2313 	struct pagevec pvec;
2314 	unsigned int nr_pages;
2315 	long left = mpd->wbc->nr_to_write;
2316 	pgoff_t index = mpd->first_page;
2317 	pgoff_t end = mpd->last_page;
2318 	int tag;
2319 	int i, err = 0;
2320 	int blkbits = mpd->inode->i_blkbits;
2321 	ext4_lblk_t lblk;
2322 	struct buffer_head *head;
2323 
2324 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2325 		tag = PAGECACHE_TAG_TOWRITE;
2326 	else
2327 		tag = PAGECACHE_TAG_DIRTY;
2328 
2329 	pagevec_init(&pvec, 0);
2330 	mpd->map.m_len = 0;
2331 	mpd->next_page = index;
2332 	while (index <= end) {
2333 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2334 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2335 		if (nr_pages == 0)
2336 			goto out;
2337 
2338 		for (i = 0; i < nr_pages; i++) {
2339 			struct page *page = pvec.pages[i];
2340 
2341 			/*
2342 			 * At this point, the page may be truncated or
2343 			 * invalidated (changing page->mapping to NULL), or
2344 			 * even swizzled back from swapper_space to tmpfs file
2345 			 * mapping. However, page->index will not change
2346 			 * because we have a reference on the page.
2347 			 */
2348 			if (page->index > end)
2349 				goto out;
2350 
2351 			/*
2352 			 * Accumulated enough dirty pages? This doesn't apply
2353 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2354 			 * keep going because someone may be concurrently
2355 			 * dirtying pages, and we might have synced a lot of
2356 			 * newly appeared dirty pages, but have not synced all
2357 			 * of the old dirty pages.
2358 			 */
2359 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2360 				goto out;
2361 
2362 			/* If we can't merge this page, we are done. */
2363 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2364 				goto out;
2365 
2366 			lock_page(page);
2367 			/*
2368 			 * If the page is no longer dirty, or its mapping no
2369 			 * longer corresponds to inode we are writing (which
2370 			 * means it has been truncated or invalidated), or the
2371 			 * page is already under writeback and we are not doing
2372 			 * a data integrity writeback, skip the page
2373 			 */
2374 			if (!PageDirty(page) ||
2375 			    (PageWriteback(page) &&
2376 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2377 			    unlikely(page->mapping != mapping)) {
2378 				unlock_page(page);
2379 				continue;
2380 			}
2381 
2382 			wait_on_page_writeback(page);
2383 			BUG_ON(PageWriteback(page));
2384 
2385 			if (mpd->map.m_len == 0)
2386 				mpd->first_page = page->index;
2387 			mpd->next_page = page->index + 1;
2388 			/* Add all dirty buffers to mpd */
2389 			lblk = ((ext4_lblk_t)page->index) <<
2390 				(PAGE_CACHE_SHIFT - blkbits);
2391 			head = page_buffers(page);
2392 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2393 			if (err <= 0)
2394 				goto out;
2395 			err = 0;
2396 			left--;
2397 		}
2398 		pagevec_release(&pvec);
2399 		cond_resched();
2400 	}
2401 	return 0;
2402 out:
2403 	pagevec_release(&pvec);
2404 	return err;
2405 }
2406 
2407 static int __writepage(struct page *page, struct writeback_control *wbc,
2408 		       void *data)
2409 {
2410 	struct address_space *mapping = data;
2411 	int ret = ext4_writepage(page, wbc);
2412 	mapping_set_error(mapping, ret);
2413 	return ret;
2414 }
2415 
2416 static int ext4_writepages(struct address_space *mapping,
2417 			   struct writeback_control *wbc)
2418 {
2419 	pgoff_t	writeback_index = 0;
2420 	long nr_to_write = wbc->nr_to_write;
2421 	int range_whole = 0;
2422 	int cycled = 1;
2423 	handle_t *handle = NULL;
2424 	struct mpage_da_data mpd;
2425 	struct inode *inode = mapping->host;
2426 	int needed_blocks, rsv_blocks = 0, ret = 0;
2427 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2428 	bool done;
2429 	struct blk_plug plug;
2430 	bool give_up_on_write = false;
2431 
2432 	trace_ext4_writepages(inode, wbc);
2433 
2434 	/*
2435 	 * No pages to write? This is mainly a kludge to avoid starting
2436 	 * a transaction for special inodes like journal inode on last iput()
2437 	 * because that could violate lock ordering on umount
2438 	 */
2439 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2440 		goto out_writepages;
2441 
2442 	if (ext4_should_journal_data(inode)) {
2443 		struct blk_plug plug;
2444 
2445 		blk_start_plug(&plug);
2446 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2447 		blk_finish_plug(&plug);
2448 		goto out_writepages;
2449 	}
2450 
2451 	/*
2452 	 * If the filesystem has aborted, it is read-only, so return
2453 	 * right away instead of dumping stack traces later on that
2454 	 * will obscure the real source of the problem.  We test
2455 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2456 	 * the latter could be true if the filesystem is mounted
2457 	 * read-only, and in that case, ext4_writepages should
2458 	 * *never* be called, so if that ever happens, we would want
2459 	 * the stack trace.
2460 	 */
2461 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2462 		ret = -EROFS;
2463 		goto out_writepages;
2464 	}
2465 
2466 	if (ext4_should_dioread_nolock(inode)) {
2467 		/*
2468 		 * We may need to convert up to one extent per block in
2469 		 * the page and we may dirty the inode.
2470 		 */
2471 		rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2472 	}
2473 
2474 	/*
2475 	 * If we have inline data and arrive here, it means that
2476 	 * we will soon create the block for the 1st page, so
2477 	 * we'd better clear the inline data here.
2478 	 */
2479 	if (ext4_has_inline_data(inode)) {
2480 		/* Just inode will be modified... */
2481 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2482 		if (IS_ERR(handle)) {
2483 			ret = PTR_ERR(handle);
2484 			goto out_writepages;
2485 		}
2486 		BUG_ON(ext4_test_inode_state(inode,
2487 				EXT4_STATE_MAY_INLINE_DATA));
2488 		ext4_destroy_inline_data(handle, inode);
2489 		ext4_journal_stop(handle);
2490 	}
2491 
2492 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2493 		range_whole = 1;
2494 
2495 	if (wbc->range_cyclic) {
2496 		writeback_index = mapping->writeback_index;
2497 		if (writeback_index)
2498 			cycled = 0;
2499 		mpd.first_page = writeback_index;
2500 		mpd.last_page = -1;
2501 	} else {
2502 		mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2503 		mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2504 	}
2505 
2506 	mpd.inode = inode;
2507 	mpd.wbc = wbc;
2508 	ext4_io_submit_init(&mpd.io_submit, wbc);
2509 retry:
2510 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2511 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2512 	done = false;
2513 	blk_start_plug(&plug);
2514 	while (!done && mpd.first_page <= mpd.last_page) {
2515 		/* For each extent of pages we use new io_end */
2516 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2517 		if (!mpd.io_submit.io_end) {
2518 			ret = -ENOMEM;
2519 			break;
2520 		}
2521 
2522 		/*
2523 		 * We have two constraints: We find one extent to map and we
2524 		 * must always write out whole page (makes a difference when
2525 		 * blocksize < pagesize) so that we don't block on IO when we
2526 		 * try to write out the rest of the page. Journalled mode is
2527 		 * not supported by delalloc.
2528 		 */
2529 		BUG_ON(ext4_should_journal_data(inode));
2530 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2531 
2532 		/* start a new transaction */
2533 		handle = ext4_journal_start_with_reserve(inode,
2534 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2535 		if (IS_ERR(handle)) {
2536 			ret = PTR_ERR(handle);
2537 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2538 			       "%ld pages, ino %lu; err %d", __func__,
2539 				wbc->nr_to_write, inode->i_ino, ret);
2540 			/* Release allocated io_end */
2541 			ext4_put_io_end(mpd.io_submit.io_end);
2542 			break;
2543 		}
2544 
2545 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2546 		ret = mpage_prepare_extent_to_map(&mpd);
2547 		if (!ret) {
2548 			if (mpd.map.m_len)
2549 				ret = mpage_map_and_submit_extent(handle, &mpd,
2550 					&give_up_on_write);
2551 			else {
2552 				/*
2553 				 * We scanned the whole range (or exhausted
2554 				 * nr_to_write), submitted what was mapped and
2555 				 * didn't find anything needing mapping. We are
2556 				 * done.
2557 				 */
2558 				done = true;
2559 			}
2560 		}
2561 		ext4_journal_stop(handle);
2562 		/* Submit prepared bio */
2563 		ext4_io_submit(&mpd.io_submit);
2564 		/* Unlock pages we didn't use */
2565 		mpage_release_unused_pages(&mpd, give_up_on_write);
2566 		/* Drop our io_end reference we got from init */
2567 		ext4_put_io_end(mpd.io_submit.io_end);
2568 
2569 		if (ret == -ENOSPC && sbi->s_journal) {
2570 			/*
2571 			 * Commit the transaction which would
2572 			 * free blocks released in the transaction
2573 			 * and try again
2574 			 */
2575 			jbd2_journal_force_commit_nested(sbi->s_journal);
2576 			ret = 0;
2577 			continue;
2578 		}
2579 		/* Fatal error - ENOMEM, EIO... */
2580 		if (ret)
2581 			break;
2582 	}
2583 	blk_finish_plug(&plug);
2584 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2585 		cycled = 1;
2586 		mpd.last_page = writeback_index - 1;
2587 		mpd.first_page = 0;
2588 		goto retry;
2589 	}
2590 
2591 	/* Update index */
2592 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2593 		/*
2594 		 * Set the writeback_index so that range_cyclic
2595 		 * mode will write it back later
2596 		 */
2597 		mapping->writeback_index = mpd.first_page;
2598 
2599 out_writepages:
2600 	trace_ext4_writepages_result(inode, wbc, ret,
2601 				     nr_to_write - wbc->nr_to_write);
2602 	return ret;
2603 }
2604 
2605 static int ext4_nonda_switch(struct super_block *sb)
2606 {
2607 	s64 free_clusters, dirty_clusters;
2608 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2609 
2610 	/*
2611 	 * switch to non delalloc mode if we are running low
2612 	 * on free block. The free block accounting via percpu
2613 	 * counters can get slightly wrong with percpu_counter_batch getting
2614 	 * accumulated on each CPU without updating global counters
2615 	 * Delalloc need an accurate free block accounting. So switch
2616 	 * to non delalloc when we are near to error range.
2617 	 */
2618 	free_clusters =
2619 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2620 	dirty_clusters =
2621 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2622 	/*
2623 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2624 	 */
2625 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2626 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2627 
2628 	if (2 * free_clusters < 3 * dirty_clusters ||
2629 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2630 		/*
2631 		 * free block count is less than 150% of dirty blocks
2632 		 * or free blocks is less than watermark
2633 		 */
2634 		return 1;
2635 	}
2636 	return 0;
2637 }
2638 
2639 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2640 			       loff_t pos, unsigned len, unsigned flags,
2641 			       struct page **pagep, void **fsdata)
2642 {
2643 	int ret, retries = 0;
2644 	struct page *page;
2645 	pgoff_t index;
2646 	struct inode *inode = mapping->host;
2647 	handle_t *handle;
2648 
2649 	index = pos >> PAGE_CACHE_SHIFT;
2650 
2651 	if (ext4_nonda_switch(inode->i_sb)) {
2652 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2653 		return ext4_write_begin(file, mapping, pos,
2654 					len, flags, pagep, fsdata);
2655 	}
2656 	*fsdata = (void *)0;
2657 	trace_ext4_da_write_begin(inode, pos, len, flags);
2658 
2659 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2660 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2661 						      pos, len, flags,
2662 						      pagep, fsdata);
2663 		if (ret < 0)
2664 			return ret;
2665 		if (ret == 1)
2666 			return 0;
2667 	}
2668 
2669 	/*
2670 	 * grab_cache_page_write_begin() can take a long time if the
2671 	 * system is thrashing due to memory pressure, or if the page
2672 	 * is being written back.  So grab it first before we start
2673 	 * the transaction handle.  This also allows us to allocate
2674 	 * the page (if needed) without using GFP_NOFS.
2675 	 */
2676 retry_grab:
2677 	page = grab_cache_page_write_begin(mapping, index, flags);
2678 	if (!page)
2679 		return -ENOMEM;
2680 	unlock_page(page);
2681 
2682 	/*
2683 	 * With delayed allocation, we don't log the i_disksize update
2684 	 * if there is delayed block allocation. But we still need
2685 	 * to journalling the i_disksize update if writes to the end
2686 	 * of file which has an already mapped buffer.
2687 	 */
2688 retry_journal:
2689 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2690 	if (IS_ERR(handle)) {
2691 		page_cache_release(page);
2692 		return PTR_ERR(handle);
2693 	}
2694 
2695 	lock_page(page);
2696 	if (page->mapping != mapping) {
2697 		/* The page got truncated from under us */
2698 		unlock_page(page);
2699 		page_cache_release(page);
2700 		ext4_journal_stop(handle);
2701 		goto retry_grab;
2702 	}
2703 	/* In case writeback began while the page was unlocked */
2704 	wait_for_stable_page(page);
2705 
2706 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2707 	if (ret < 0) {
2708 		unlock_page(page);
2709 		ext4_journal_stop(handle);
2710 		/*
2711 		 * block_write_begin may have instantiated a few blocks
2712 		 * outside i_size.  Trim these off again. Don't need
2713 		 * i_size_read because we hold i_mutex.
2714 		 */
2715 		if (pos + len > inode->i_size)
2716 			ext4_truncate_failed_write(inode);
2717 
2718 		if (ret == -ENOSPC &&
2719 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2720 			goto retry_journal;
2721 
2722 		page_cache_release(page);
2723 		return ret;
2724 	}
2725 
2726 	*pagep = page;
2727 	return ret;
2728 }
2729 
2730 /*
2731  * Check if we should update i_disksize
2732  * when write to the end of file but not require block allocation
2733  */
2734 static int ext4_da_should_update_i_disksize(struct page *page,
2735 					    unsigned long offset)
2736 {
2737 	struct buffer_head *bh;
2738 	struct inode *inode = page->mapping->host;
2739 	unsigned int idx;
2740 	int i;
2741 
2742 	bh = page_buffers(page);
2743 	idx = offset >> inode->i_blkbits;
2744 
2745 	for (i = 0; i < idx; i++)
2746 		bh = bh->b_this_page;
2747 
2748 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2749 		return 0;
2750 	return 1;
2751 }
2752 
2753 static int ext4_da_write_end(struct file *file,
2754 			     struct address_space *mapping,
2755 			     loff_t pos, unsigned len, unsigned copied,
2756 			     struct page *page, void *fsdata)
2757 {
2758 	struct inode *inode = mapping->host;
2759 	int ret = 0, ret2;
2760 	handle_t *handle = ext4_journal_current_handle();
2761 	loff_t new_i_size;
2762 	unsigned long start, end;
2763 	int write_mode = (int)(unsigned long)fsdata;
2764 
2765 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2766 		return ext4_write_end(file, mapping, pos,
2767 				      len, copied, page, fsdata);
2768 
2769 	trace_ext4_da_write_end(inode, pos, len, copied);
2770 	start = pos & (PAGE_CACHE_SIZE - 1);
2771 	end = start + copied - 1;
2772 
2773 	/*
2774 	 * generic_write_end() will run mark_inode_dirty() if i_size
2775 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2776 	 * into that.
2777 	 */
2778 	new_i_size = pos + copied;
2779 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2780 		if (ext4_has_inline_data(inode) ||
2781 		    ext4_da_should_update_i_disksize(page, end)) {
2782 			down_write(&EXT4_I(inode)->i_data_sem);
2783 			if (new_i_size > EXT4_I(inode)->i_disksize)
2784 				EXT4_I(inode)->i_disksize = new_i_size;
2785 			up_write(&EXT4_I(inode)->i_data_sem);
2786 			/* We need to mark inode dirty even if
2787 			 * new_i_size is less that inode->i_size
2788 			 * bu greater than i_disksize.(hint delalloc)
2789 			 */
2790 			ext4_mark_inode_dirty(handle, inode);
2791 		}
2792 	}
2793 
2794 	if (write_mode != CONVERT_INLINE_DATA &&
2795 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2796 	    ext4_has_inline_data(inode))
2797 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2798 						     page);
2799 	else
2800 		ret2 = generic_write_end(file, mapping, pos, len, copied,
2801 							page, fsdata);
2802 
2803 	copied = ret2;
2804 	if (ret2 < 0)
2805 		ret = ret2;
2806 	ret2 = ext4_journal_stop(handle);
2807 	if (!ret)
2808 		ret = ret2;
2809 
2810 	return ret ? ret : copied;
2811 }
2812 
2813 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2814 				   unsigned int length)
2815 {
2816 	/*
2817 	 * Drop reserved blocks
2818 	 */
2819 	BUG_ON(!PageLocked(page));
2820 	if (!page_has_buffers(page))
2821 		goto out;
2822 
2823 	ext4_da_page_release_reservation(page, offset, length);
2824 
2825 out:
2826 	ext4_invalidatepage(page, offset, length);
2827 
2828 	return;
2829 }
2830 
2831 /*
2832  * Force all delayed allocation blocks to be allocated for a given inode.
2833  */
2834 int ext4_alloc_da_blocks(struct inode *inode)
2835 {
2836 	trace_ext4_alloc_da_blocks(inode);
2837 
2838 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2839 	    !EXT4_I(inode)->i_reserved_meta_blocks)
2840 		return 0;
2841 
2842 	/*
2843 	 * We do something simple for now.  The filemap_flush() will
2844 	 * also start triggering a write of the data blocks, which is
2845 	 * not strictly speaking necessary (and for users of
2846 	 * laptop_mode, not even desirable).  However, to do otherwise
2847 	 * would require replicating code paths in:
2848 	 *
2849 	 * ext4_writepages() ->
2850 	 *    write_cache_pages() ---> (via passed in callback function)
2851 	 *        __mpage_da_writepage() -->
2852 	 *           mpage_add_bh_to_extent()
2853 	 *           mpage_da_map_blocks()
2854 	 *
2855 	 * The problem is that write_cache_pages(), located in
2856 	 * mm/page-writeback.c, marks pages clean in preparation for
2857 	 * doing I/O, which is not desirable if we're not planning on
2858 	 * doing I/O at all.
2859 	 *
2860 	 * We could call write_cache_pages(), and then redirty all of
2861 	 * the pages by calling redirty_page_for_writepage() but that
2862 	 * would be ugly in the extreme.  So instead we would need to
2863 	 * replicate parts of the code in the above functions,
2864 	 * simplifying them because we wouldn't actually intend to
2865 	 * write out the pages, but rather only collect contiguous
2866 	 * logical block extents, call the multi-block allocator, and
2867 	 * then update the buffer heads with the block allocations.
2868 	 *
2869 	 * For now, though, we'll cheat by calling filemap_flush(),
2870 	 * which will map the blocks, and start the I/O, but not
2871 	 * actually wait for the I/O to complete.
2872 	 */
2873 	return filemap_flush(inode->i_mapping);
2874 }
2875 
2876 /*
2877  * bmap() is special.  It gets used by applications such as lilo and by
2878  * the swapper to find the on-disk block of a specific piece of data.
2879  *
2880  * Naturally, this is dangerous if the block concerned is still in the
2881  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2882  * filesystem and enables swap, then they may get a nasty shock when the
2883  * data getting swapped to that swapfile suddenly gets overwritten by
2884  * the original zero's written out previously to the journal and
2885  * awaiting writeback in the kernel's buffer cache.
2886  *
2887  * So, if we see any bmap calls here on a modified, data-journaled file,
2888  * take extra steps to flush any blocks which might be in the cache.
2889  */
2890 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2891 {
2892 	struct inode *inode = mapping->host;
2893 	journal_t *journal;
2894 	int err;
2895 
2896 	/*
2897 	 * We can get here for an inline file via the FIBMAP ioctl
2898 	 */
2899 	if (ext4_has_inline_data(inode))
2900 		return 0;
2901 
2902 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2903 			test_opt(inode->i_sb, DELALLOC)) {
2904 		/*
2905 		 * With delalloc we want to sync the file
2906 		 * so that we can make sure we allocate
2907 		 * blocks for file
2908 		 */
2909 		filemap_write_and_wait(mapping);
2910 	}
2911 
2912 	if (EXT4_JOURNAL(inode) &&
2913 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2914 		/*
2915 		 * This is a REALLY heavyweight approach, but the use of
2916 		 * bmap on dirty files is expected to be extremely rare:
2917 		 * only if we run lilo or swapon on a freshly made file
2918 		 * do we expect this to happen.
2919 		 *
2920 		 * (bmap requires CAP_SYS_RAWIO so this does not
2921 		 * represent an unprivileged user DOS attack --- we'd be
2922 		 * in trouble if mortal users could trigger this path at
2923 		 * will.)
2924 		 *
2925 		 * NB. EXT4_STATE_JDATA is not set on files other than
2926 		 * regular files.  If somebody wants to bmap a directory
2927 		 * or symlink and gets confused because the buffer
2928 		 * hasn't yet been flushed to disk, they deserve
2929 		 * everything they get.
2930 		 */
2931 
2932 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2933 		journal = EXT4_JOURNAL(inode);
2934 		jbd2_journal_lock_updates(journal);
2935 		err = jbd2_journal_flush(journal);
2936 		jbd2_journal_unlock_updates(journal);
2937 
2938 		if (err)
2939 			return 0;
2940 	}
2941 
2942 	return generic_block_bmap(mapping, block, ext4_get_block);
2943 }
2944 
2945 static int ext4_readpage(struct file *file, struct page *page)
2946 {
2947 	int ret = -EAGAIN;
2948 	struct inode *inode = page->mapping->host;
2949 
2950 	trace_ext4_readpage(page);
2951 
2952 	if (ext4_has_inline_data(inode))
2953 		ret = ext4_readpage_inline(inode, page);
2954 
2955 	if (ret == -EAGAIN)
2956 		return mpage_readpage(page, ext4_get_block);
2957 
2958 	return ret;
2959 }
2960 
2961 static int
2962 ext4_readpages(struct file *file, struct address_space *mapping,
2963 		struct list_head *pages, unsigned nr_pages)
2964 {
2965 	struct inode *inode = mapping->host;
2966 
2967 	/* If the file has inline data, no need to do readpages. */
2968 	if (ext4_has_inline_data(inode))
2969 		return 0;
2970 
2971 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2972 }
2973 
2974 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2975 				unsigned int length)
2976 {
2977 	trace_ext4_invalidatepage(page, offset, length);
2978 
2979 	/* No journalling happens on data buffers when this function is used */
2980 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2981 
2982 	block_invalidatepage(page, offset, length);
2983 }
2984 
2985 static int __ext4_journalled_invalidatepage(struct page *page,
2986 					    unsigned int offset,
2987 					    unsigned int length)
2988 {
2989 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2990 
2991 	trace_ext4_journalled_invalidatepage(page, offset, length);
2992 
2993 	/*
2994 	 * If it's a full truncate we just forget about the pending dirtying
2995 	 */
2996 	if (offset == 0 && length == PAGE_CACHE_SIZE)
2997 		ClearPageChecked(page);
2998 
2999 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3000 }
3001 
3002 /* Wrapper for aops... */
3003 static void ext4_journalled_invalidatepage(struct page *page,
3004 					   unsigned int offset,
3005 					   unsigned int length)
3006 {
3007 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3008 }
3009 
3010 static int ext4_releasepage(struct page *page, gfp_t wait)
3011 {
3012 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3013 
3014 	trace_ext4_releasepage(page);
3015 
3016 	/* Page has dirty journalled data -> cannot release */
3017 	if (PageChecked(page))
3018 		return 0;
3019 	if (journal)
3020 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3021 	else
3022 		return try_to_free_buffers(page);
3023 }
3024 
3025 /*
3026  * ext4_get_block used when preparing for a DIO write or buffer write.
3027  * We allocate an uinitialized extent if blocks haven't been allocated.
3028  * The extent will be converted to initialized after the IO is complete.
3029  */
3030 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3031 		   struct buffer_head *bh_result, int create)
3032 {
3033 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3034 		   inode->i_ino, create);
3035 	return _ext4_get_block(inode, iblock, bh_result,
3036 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3037 }
3038 
3039 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3040 		   struct buffer_head *bh_result, int create)
3041 {
3042 	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3043 		   inode->i_ino, create);
3044 	return _ext4_get_block(inode, iblock, bh_result,
3045 			       EXT4_GET_BLOCKS_NO_LOCK);
3046 }
3047 
3048 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3049 			    ssize_t size, void *private)
3050 {
3051         ext4_io_end_t *io_end = iocb->private;
3052 
3053 	/* if not async direct IO just return */
3054 	if (!io_end)
3055 		return;
3056 
3057 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3058 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3059  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3060 		  size);
3061 
3062 	iocb->private = NULL;
3063 	io_end->offset = offset;
3064 	io_end->size = size;
3065 	ext4_put_io_end(io_end);
3066 }
3067 
3068 /*
3069  * For ext4 extent files, ext4 will do direct-io write to holes,
3070  * preallocated extents, and those write extend the file, no need to
3071  * fall back to buffered IO.
3072  *
3073  * For holes, we fallocate those blocks, mark them as uninitialized
3074  * If those blocks were preallocated, we mark sure they are split, but
3075  * still keep the range to write as uninitialized.
3076  *
3077  * The unwritten extents will be converted to written when DIO is completed.
3078  * For async direct IO, since the IO may still pending when return, we
3079  * set up an end_io call back function, which will do the conversion
3080  * when async direct IO completed.
3081  *
3082  * If the O_DIRECT write will extend the file then add this inode to the
3083  * orphan list.  So recovery will truncate it back to the original size
3084  * if the machine crashes during the write.
3085  *
3086  */
3087 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3088 			      const struct iovec *iov, loff_t offset,
3089 			      unsigned long nr_segs)
3090 {
3091 	struct file *file = iocb->ki_filp;
3092 	struct inode *inode = file->f_mapping->host;
3093 	ssize_t ret;
3094 	size_t count = iov_length(iov, nr_segs);
3095 	int overwrite = 0;
3096 	get_block_t *get_block_func = NULL;
3097 	int dio_flags = 0;
3098 	loff_t final_size = offset + count;
3099 	ext4_io_end_t *io_end = NULL;
3100 
3101 	/* Use the old path for reads and writes beyond i_size. */
3102 	if (rw != WRITE || final_size > inode->i_size)
3103 		return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3104 
3105 	BUG_ON(iocb->private == NULL);
3106 
3107 	/*
3108 	 * Make all waiters for direct IO properly wait also for extent
3109 	 * conversion. This also disallows race between truncate() and
3110 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3111 	 */
3112 	if (rw == WRITE)
3113 		atomic_inc(&inode->i_dio_count);
3114 
3115 	/* If we do a overwrite dio, i_mutex locking can be released */
3116 	overwrite = *((int *)iocb->private);
3117 
3118 	if (overwrite) {
3119 		down_read(&EXT4_I(inode)->i_data_sem);
3120 		mutex_unlock(&inode->i_mutex);
3121 	}
3122 
3123 	/*
3124 	 * We could direct write to holes and fallocate.
3125 	 *
3126 	 * Allocated blocks to fill the hole are marked as
3127 	 * uninitialized to prevent parallel buffered read to expose
3128 	 * the stale data before DIO complete the data IO.
3129 	 *
3130 	 * As to previously fallocated extents, ext4 get_block will
3131 	 * just simply mark the buffer mapped but still keep the
3132 	 * extents uninitialized.
3133 	 *
3134 	 * For non AIO case, we will convert those unwritten extents
3135 	 * to written after return back from blockdev_direct_IO.
3136 	 *
3137 	 * For async DIO, the conversion needs to be deferred when the
3138 	 * IO is completed. The ext4 end_io callback function will be
3139 	 * called to take care of the conversion work.  Here for async
3140 	 * case, we allocate an io_end structure to hook to the iocb.
3141 	 */
3142 	iocb->private = NULL;
3143 	ext4_inode_aio_set(inode, NULL);
3144 	if (!is_sync_kiocb(iocb)) {
3145 		io_end = ext4_init_io_end(inode, GFP_NOFS);
3146 		if (!io_end) {
3147 			ret = -ENOMEM;
3148 			goto retake_lock;
3149 		}
3150 		/*
3151 		 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3152 		 */
3153 		iocb->private = ext4_get_io_end(io_end);
3154 		/*
3155 		 * we save the io structure for current async direct
3156 		 * IO, so that later ext4_map_blocks() could flag the
3157 		 * io structure whether there is a unwritten extents
3158 		 * needs to be converted when IO is completed.
3159 		 */
3160 		ext4_inode_aio_set(inode, io_end);
3161 	}
3162 
3163 	if (overwrite) {
3164 		get_block_func = ext4_get_block_write_nolock;
3165 	} else {
3166 		get_block_func = ext4_get_block_write;
3167 		dio_flags = DIO_LOCKING;
3168 	}
3169 	ret = __blockdev_direct_IO(rw, iocb, inode,
3170 				   inode->i_sb->s_bdev, iov,
3171 				   offset, nr_segs,
3172 				   get_block_func,
3173 				   ext4_end_io_dio,
3174 				   NULL,
3175 				   dio_flags);
3176 
3177 	/*
3178 	 * Put our reference to io_end. This can free the io_end structure e.g.
3179 	 * in sync IO case or in case of error. It can even perform extent
3180 	 * conversion if all bios we submitted finished before we got here.
3181 	 * Note that in that case iocb->private can be already set to NULL
3182 	 * here.
3183 	 */
3184 	if (io_end) {
3185 		ext4_inode_aio_set(inode, NULL);
3186 		ext4_put_io_end(io_end);
3187 		/*
3188 		 * When no IO was submitted ext4_end_io_dio() was not
3189 		 * called so we have to put iocb's reference.
3190 		 */
3191 		if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3192 			WARN_ON(iocb->private != io_end);
3193 			WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3194 			ext4_put_io_end(io_end);
3195 			iocb->private = NULL;
3196 		}
3197 	}
3198 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3199 						EXT4_STATE_DIO_UNWRITTEN)) {
3200 		int err;
3201 		/*
3202 		 * for non AIO case, since the IO is already
3203 		 * completed, we could do the conversion right here
3204 		 */
3205 		err = ext4_convert_unwritten_extents(NULL, inode,
3206 						     offset, ret);
3207 		if (err < 0)
3208 			ret = err;
3209 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3210 	}
3211 
3212 retake_lock:
3213 	if (rw == WRITE)
3214 		inode_dio_done(inode);
3215 	/* take i_mutex locking again if we do a ovewrite dio */
3216 	if (overwrite) {
3217 		up_read(&EXT4_I(inode)->i_data_sem);
3218 		mutex_lock(&inode->i_mutex);
3219 	}
3220 
3221 	return ret;
3222 }
3223 
3224 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3225 			      const struct iovec *iov, loff_t offset,
3226 			      unsigned long nr_segs)
3227 {
3228 	struct file *file = iocb->ki_filp;
3229 	struct inode *inode = file->f_mapping->host;
3230 	ssize_t ret;
3231 
3232 	/*
3233 	 * If we are doing data journalling we don't support O_DIRECT
3234 	 */
3235 	if (ext4_should_journal_data(inode))
3236 		return 0;
3237 
3238 	/* Let buffer I/O handle the inline data case. */
3239 	if (ext4_has_inline_data(inode))
3240 		return 0;
3241 
3242 	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3243 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3244 		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3245 	else
3246 		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3247 	trace_ext4_direct_IO_exit(inode, offset,
3248 				iov_length(iov, nr_segs), rw, ret);
3249 	return ret;
3250 }
3251 
3252 /*
3253  * Pages can be marked dirty completely asynchronously from ext4's journalling
3254  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3255  * much here because ->set_page_dirty is called under VFS locks.  The page is
3256  * not necessarily locked.
3257  *
3258  * We cannot just dirty the page and leave attached buffers clean, because the
3259  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3260  * or jbddirty because all the journalling code will explode.
3261  *
3262  * So what we do is to mark the page "pending dirty" and next time writepage
3263  * is called, propagate that into the buffers appropriately.
3264  */
3265 static int ext4_journalled_set_page_dirty(struct page *page)
3266 {
3267 	SetPageChecked(page);
3268 	return __set_page_dirty_nobuffers(page);
3269 }
3270 
3271 static const struct address_space_operations ext4_aops = {
3272 	.readpage		= ext4_readpage,
3273 	.readpages		= ext4_readpages,
3274 	.writepage		= ext4_writepage,
3275 	.writepages		= ext4_writepages,
3276 	.write_begin		= ext4_write_begin,
3277 	.write_end		= ext4_write_end,
3278 	.bmap			= ext4_bmap,
3279 	.invalidatepage		= ext4_invalidatepage,
3280 	.releasepage		= ext4_releasepage,
3281 	.direct_IO		= ext4_direct_IO,
3282 	.migratepage		= buffer_migrate_page,
3283 	.is_partially_uptodate  = block_is_partially_uptodate,
3284 	.error_remove_page	= generic_error_remove_page,
3285 };
3286 
3287 static const struct address_space_operations ext4_journalled_aops = {
3288 	.readpage		= ext4_readpage,
3289 	.readpages		= ext4_readpages,
3290 	.writepage		= ext4_writepage,
3291 	.writepages		= ext4_writepages,
3292 	.write_begin		= ext4_write_begin,
3293 	.write_end		= ext4_journalled_write_end,
3294 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3295 	.bmap			= ext4_bmap,
3296 	.invalidatepage		= ext4_journalled_invalidatepage,
3297 	.releasepage		= ext4_releasepage,
3298 	.direct_IO		= ext4_direct_IO,
3299 	.is_partially_uptodate  = block_is_partially_uptodate,
3300 	.error_remove_page	= generic_error_remove_page,
3301 };
3302 
3303 static const struct address_space_operations ext4_da_aops = {
3304 	.readpage		= ext4_readpage,
3305 	.readpages		= ext4_readpages,
3306 	.writepage		= ext4_writepage,
3307 	.writepages		= ext4_writepages,
3308 	.write_begin		= ext4_da_write_begin,
3309 	.write_end		= ext4_da_write_end,
3310 	.bmap			= ext4_bmap,
3311 	.invalidatepage		= ext4_da_invalidatepage,
3312 	.releasepage		= ext4_releasepage,
3313 	.direct_IO		= ext4_direct_IO,
3314 	.migratepage		= buffer_migrate_page,
3315 	.is_partially_uptodate  = block_is_partially_uptodate,
3316 	.error_remove_page	= generic_error_remove_page,
3317 };
3318 
3319 void ext4_set_aops(struct inode *inode)
3320 {
3321 	switch (ext4_inode_journal_mode(inode)) {
3322 	case EXT4_INODE_ORDERED_DATA_MODE:
3323 		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3324 		break;
3325 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3326 		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3327 		break;
3328 	case EXT4_INODE_JOURNAL_DATA_MODE:
3329 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3330 		return;
3331 	default:
3332 		BUG();
3333 	}
3334 	if (test_opt(inode->i_sb, DELALLOC))
3335 		inode->i_mapping->a_ops = &ext4_da_aops;
3336 	else
3337 		inode->i_mapping->a_ops = &ext4_aops;
3338 }
3339 
3340 /*
3341  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3342  * starting from file offset 'from'.  The range to be zero'd must
3343  * be contained with in one block.  If the specified range exceeds
3344  * the end of the block it will be shortened to end of the block
3345  * that cooresponds to 'from'
3346  */
3347 static int ext4_block_zero_page_range(handle_t *handle,
3348 		struct address_space *mapping, loff_t from, loff_t length)
3349 {
3350 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3351 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3352 	unsigned blocksize, max, pos;
3353 	ext4_lblk_t iblock;
3354 	struct inode *inode = mapping->host;
3355 	struct buffer_head *bh;
3356 	struct page *page;
3357 	int err = 0;
3358 
3359 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3360 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3361 	if (!page)
3362 		return -ENOMEM;
3363 
3364 	blocksize = inode->i_sb->s_blocksize;
3365 	max = blocksize - (offset & (blocksize - 1));
3366 
3367 	/*
3368 	 * correct length if it does not fall between
3369 	 * 'from' and the end of the block
3370 	 */
3371 	if (length > max || length < 0)
3372 		length = max;
3373 
3374 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3375 
3376 	if (!page_has_buffers(page))
3377 		create_empty_buffers(page, blocksize, 0);
3378 
3379 	/* Find the buffer that contains "offset" */
3380 	bh = page_buffers(page);
3381 	pos = blocksize;
3382 	while (offset >= pos) {
3383 		bh = bh->b_this_page;
3384 		iblock++;
3385 		pos += blocksize;
3386 	}
3387 	if (buffer_freed(bh)) {
3388 		BUFFER_TRACE(bh, "freed: skip");
3389 		goto unlock;
3390 	}
3391 	if (!buffer_mapped(bh)) {
3392 		BUFFER_TRACE(bh, "unmapped");
3393 		ext4_get_block(inode, iblock, bh, 0);
3394 		/* unmapped? It's a hole - nothing to do */
3395 		if (!buffer_mapped(bh)) {
3396 			BUFFER_TRACE(bh, "still unmapped");
3397 			goto unlock;
3398 		}
3399 	}
3400 
3401 	/* Ok, it's mapped. Make sure it's up-to-date */
3402 	if (PageUptodate(page))
3403 		set_buffer_uptodate(bh);
3404 
3405 	if (!buffer_uptodate(bh)) {
3406 		err = -EIO;
3407 		ll_rw_block(READ, 1, &bh);
3408 		wait_on_buffer(bh);
3409 		/* Uhhuh. Read error. Complain and punt. */
3410 		if (!buffer_uptodate(bh))
3411 			goto unlock;
3412 	}
3413 	if (ext4_should_journal_data(inode)) {
3414 		BUFFER_TRACE(bh, "get write access");
3415 		err = ext4_journal_get_write_access(handle, bh);
3416 		if (err)
3417 			goto unlock;
3418 	}
3419 	zero_user(page, offset, length);
3420 	BUFFER_TRACE(bh, "zeroed end of block");
3421 
3422 	if (ext4_should_journal_data(inode)) {
3423 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3424 	} else {
3425 		err = 0;
3426 		mark_buffer_dirty(bh);
3427 		if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3428 			err = ext4_jbd2_file_inode(handle, inode);
3429 	}
3430 
3431 unlock:
3432 	unlock_page(page);
3433 	page_cache_release(page);
3434 	return err;
3435 }
3436 
3437 /*
3438  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3439  * up to the end of the block which corresponds to `from'.
3440  * This required during truncate. We need to physically zero the tail end
3441  * of that block so it doesn't yield old data if the file is later grown.
3442  */
3443 int ext4_block_truncate_page(handle_t *handle,
3444 		struct address_space *mapping, loff_t from)
3445 {
3446 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3447 	unsigned length;
3448 	unsigned blocksize;
3449 	struct inode *inode = mapping->host;
3450 
3451 	blocksize = inode->i_sb->s_blocksize;
3452 	length = blocksize - (offset & (blocksize - 1));
3453 
3454 	return ext4_block_zero_page_range(handle, mapping, from, length);
3455 }
3456 
3457 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3458 			     loff_t lstart, loff_t length)
3459 {
3460 	struct super_block *sb = inode->i_sb;
3461 	struct address_space *mapping = inode->i_mapping;
3462 	unsigned partial_start, partial_end;
3463 	ext4_fsblk_t start, end;
3464 	loff_t byte_end = (lstart + length - 1);
3465 	int err = 0;
3466 
3467 	partial_start = lstart & (sb->s_blocksize - 1);
3468 	partial_end = byte_end & (sb->s_blocksize - 1);
3469 
3470 	start = lstart >> sb->s_blocksize_bits;
3471 	end = byte_end >> sb->s_blocksize_bits;
3472 
3473 	/* Handle partial zero within the single block */
3474 	if (start == end &&
3475 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3476 		err = ext4_block_zero_page_range(handle, mapping,
3477 						 lstart, length);
3478 		return err;
3479 	}
3480 	/* Handle partial zero out on the start of the range */
3481 	if (partial_start) {
3482 		err = ext4_block_zero_page_range(handle, mapping,
3483 						 lstart, sb->s_blocksize);
3484 		if (err)
3485 			return err;
3486 	}
3487 	/* Handle partial zero out on the end of the range */
3488 	if (partial_end != sb->s_blocksize - 1)
3489 		err = ext4_block_zero_page_range(handle, mapping,
3490 						 byte_end - partial_end,
3491 						 partial_end + 1);
3492 	return err;
3493 }
3494 
3495 int ext4_can_truncate(struct inode *inode)
3496 {
3497 	if (S_ISREG(inode->i_mode))
3498 		return 1;
3499 	if (S_ISDIR(inode->i_mode))
3500 		return 1;
3501 	if (S_ISLNK(inode->i_mode))
3502 		return !ext4_inode_is_fast_symlink(inode);
3503 	return 0;
3504 }
3505 
3506 /*
3507  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3508  * associated with the given offset and length
3509  *
3510  * @inode:  File inode
3511  * @offset: The offset where the hole will begin
3512  * @len:    The length of the hole
3513  *
3514  * Returns: 0 on success or negative on failure
3515  */
3516 
3517 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3518 {
3519 	struct super_block *sb = inode->i_sb;
3520 	ext4_lblk_t first_block, stop_block;
3521 	struct address_space *mapping = inode->i_mapping;
3522 	loff_t first_block_offset, last_block_offset;
3523 	handle_t *handle;
3524 	unsigned int credits;
3525 	int ret = 0;
3526 
3527 	if (!S_ISREG(inode->i_mode))
3528 		return -EOPNOTSUPP;
3529 
3530 	trace_ext4_punch_hole(inode, offset, length, 0);
3531 
3532 	/*
3533 	 * Write out all dirty pages to avoid race conditions
3534 	 * Then release them.
3535 	 */
3536 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3537 		ret = filemap_write_and_wait_range(mapping, offset,
3538 						   offset + length - 1);
3539 		if (ret)
3540 			return ret;
3541 	}
3542 
3543 	mutex_lock(&inode->i_mutex);
3544 
3545 	/* No need to punch hole beyond i_size */
3546 	if (offset >= inode->i_size)
3547 		goto out_mutex;
3548 
3549 	/*
3550 	 * If the hole extends beyond i_size, set the hole
3551 	 * to end after the page that contains i_size
3552 	 */
3553 	if (offset + length > inode->i_size) {
3554 		length = inode->i_size +
3555 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3556 		   offset;
3557 	}
3558 
3559 	if (offset & (sb->s_blocksize - 1) ||
3560 	    (offset + length) & (sb->s_blocksize - 1)) {
3561 		/*
3562 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3563 		 * partial block
3564 		 */
3565 		ret = ext4_inode_attach_jinode(inode);
3566 		if (ret < 0)
3567 			goto out_mutex;
3568 
3569 	}
3570 
3571 	first_block_offset = round_up(offset, sb->s_blocksize);
3572 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3573 
3574 	/* Now release the pages and zero block aligned part of pages*/
3575 	if (last_block_offset > first_block_offset)
3576 		truncate_pagecache_range(inode, first_block_offset,
3577 					 last_block_offset);
3578 
3579 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3580 	ext4_inode_block_unlocked_dio(inode);
3581 	inode_dio_wait(inode);
3582 
3583 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3584 		credits = ext4_writepage_trans_blocks(inode);
3585 	else
3586 		credits = ext4_blocks_for_truncate(inode);
3587 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3588 	if (IS_ERR(handle)) {
3589 		ret = PTR_ERR(handle);
3590 		ext4_std_error(sb, ret);
3591 		goto out_dio;
3592 	}
3593 
3594 	ret = ext4_zero_partial_blocks(handle, inode, offset,
3595 				       length);
3596 	if (ret)
3597 		goto out_stop;
3598 
3599 	first_block = (offset + sb->s_blocksize - 1) >>
3600 		EXT4_BLOCK_SIZE_BITS(sb);
3601 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3602 
3603 	/* If there are no blocks to remove, return now */
3604 	if (first_block >= stop_block)
3605 		goto out_stop;
3606 
3607 	down_write(&EXT4_I(inode)->i_data_sem);
3608 	ext4_discard_preallocations(inode);
3609 
3610 	ret = ext4_es_remove_extent(inode, first_block,
3611 				    stop_block - first_block);
3612 	if (ret) {
3613 		up_write(&EXT4_I(inode)->i_data_sem);
3614 		goto out_stop;
3615 	}
3616 
3617 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3618 		ret = ext4_ext_remove_space(inode, first_block,
3619 					    stop_block - 1);
3620 	else
3621 		ret = ext4_free_hole_blocks(handle, inode, first_block,
3622 					    stop_block);
3623 
3624 	up_write(&EXT4_I(inode)->i_data_sem);
3625 	if (IS_SYNC(inode))
3626 		ext4_handle_sync(handle);
3627 
3628 	/* Now release the pages again to reduce race window */
3629 	if (last_block_offset > first_block_offset)
3630 		truncate_pagecache_range(inode, first_block_offset,
3631 					 last_block_offset);
3632 
3633 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3634 	ext4_mark_inode_dirty(handle, inode);
3635 out_stop:
3636 	ext4_journal_stop(handle);
3637 out_dio:
3638 	ext4_inode_resume_unlocked_dio(inode);
3639 out_mutex:
3640 	mutex_unlock(&inode->i_mutex);
3641 	return ret;
3642 }
3643 
3644 int ext4_inode_attach_jinode(struct inode *inode)
3645 {
3646 	struct ext4_inode_info *ei = EXT4_I(inode);
3647 	struct jbd2_inode *jinode;
3648 
3649 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3650 		return 0;
3651 
3652 	jinode = jbd2_alloc_inode(GFP_KERNEL);
3653 	spin_lock(&inode->i_lock);
3654 	if (!ei->jinode) {
3655 		if (!jinode) {
3656 			spin_unlock(&inode->i_lock);
3657 			return -ENOMEM;
3658 		}
3659 		ei->jinode = jinode;
3660 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
3661 		jinode = NULL;
3662 	}
3663 	spin_unlock(&inode->i_lock);
3664 	if (unlikely(jinode != NULL))
3665 		jbd2_free_inode(jinode);
3666 	return 0;
3667 }
3668 
3669 /*
3670  * ext4_truncate()
3671  *
3672  * We block out ext4_get_block() block instantiations across the entire
3673  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3674  * simultaneously on behalf of the same inode.
3675  *
3676  * As we work through the truncate and commit bits of it to the journal there
3677  * is one core, guiding principle: the file's tree must always be consistent on
3678  * disk.  We must be able to restart the truncate after a crash.
3679  *
3680  * The file's tree may be transiently inconsistent in memory (although it
3681  * probably isn't), but whenever we close off and commit a journal transaction,
3682  * the contents of (the filesystem + the journal) must be consistent and
3683  * restartable.  It's pretty simple, really: bottom up, right to left (although
3684  * left-to-right works OK too).
3685  *
3686  * Note that at recovery time, journal replay occurs *before* the restart of
3687  * truncate against the orphan inode list.
3688  *
3689  * The committed inode has the new, desired i_size (which is the same as
3690  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3691  * that this inode's truncate did not complete and it will again call
3692  * ext4_truncate() to have another go.  So there will be instantiated blocks
3693  * to the right of the truncation point in a crashed ext4 filesystem.  But
3694  * that's fine - as long as they are linked from the inode, the post-crash
3695  * ext4_truncate() run will find them and release them.
3696  */
3697 void ext4_truncate(struct inode *inode)
3698 {
3699 	struct ext4_inode_info *ei = EXT4_I(inode);
3700 	unsigned int credits;
3701 	handle_t *handle;
3702 	struct address_space *mapping = inode->i_mapping;
3703 
3704 	/*
3705 	 * There is a possibility that we're either freeing the inode
3706 	 * or it's a completely new inode. In those cases we might not
3707 	 * have i_mutex locked because it's not necessary.
3708 	 */
3709 	if (!(inode->i_state & (I_NEW|I_FREEING)))
3710 		WARN_ON(!mutex_is_locked(&inode->i_mutex));
3711 	trace_ext4_truncate_enter(inode);
3712 
3713 	if (!ext4_can_truncate(inode))
3714 		return;
3715 
3716 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3717 
3718 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3719 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3720 
3721 	if (ext4_has_inline_data(inode)) {
3722 		int has_inline = 1;
3723 
3724 		ext4_inline_data_truncate(inode, &has_inline);
3725 		if (has_inline)
3726 			return;
3727 	}
3728 
3729 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
3730 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3731 		if (ext4_inode_attach_jinode(inode) < 0)
3732 			return;
3733 	}
3734 
3735 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3736 		credits = ext4_writepage_trans_blocks(inode);
3737 	else
3738 		credits = ext4_blocks_for_truncate(inode);
3739 
3740 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3741 	if (IS_ERR(handle)) {
3742 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
3743 		return;
3744 	}
3745 
3746 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3747 		ext4_block_truncate_page(handle, mapping, inode->i_size);
3748 
3749 	/*
3750 	 * We add the inode to the orphan list, so that if this
3751 	 * truncate spans multiple transactions, and we crash, we will
3752 	 * resume the truncate when the filesystem recovers.  It also
3753 	 * marks the inode dirty, to catch the new size.
3754 	 *
3755 	 * Implication: the file must always be in a sane, consistent
3756 	 * truncatable state while each transaction commits.
3757 	 */
3758 	if (ext4_orphan_add(handle, inode))
3759 		goto out_stop;
3760 
3761 	down_write(&EXT4_I(inode)->i_data_sem);
3762 
3763 	ext4_discard_preallocations(inode);
3764 
3765 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3766 		ext4_ext_truncate(handle, inode);
3767 	else
3768 		ext4_ind_truncate(handle, inode);
3769 
3770 	up_write(&ei->i_data_sem);
3771 
3772 	if (IS_SYNC(inode))
3773 		ext4_handle_sync(handle);
3774 
3775 out_stop:
3776 	/*
3777 	 * If this was a simple ftruncate() and the file will remain alive,
3778 	 * then we need to clear up the orphan record which we created above.
3779 	 * However, if this was a real unlink then we were called by
3780 	 * ext4_delete_inode(), and we allow that function to clean up the
3781 	 * orphan info for us.
3782 	 */
3783 	if (inode->i_nlink)
3784 		ext4_orphan_del(handle, inode);
3785 
3786 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3787 	ext4_mark_inode_dirty(handle, inode);
3788 	ext4_journal_stop(handle);
3789 
3790 	trace_ext4_truncate_exit(inode);
3791 }
3792 
3793 /*
3794  * ext4_get_inode_loc returns with an extra refcount against the inode's
3795  * underlying buffer_head on success. If 'in_mem' is true, we have all
3796  * data in memory that is needed to recreate the on-disk version of this
3797  * inode.
3798  */
3799 static int __ext4_get_inode_loc(struct inode *inode,
3800 				struct ext4_iloc *iloc, int in_mem)
3801 {
3802 	struct ext4_group_desc	*gdp;
3803 	struct buffer_head	*bh;
3804 	struct super_block	*sb = inode->i_sb;
3805 	ext4_fsblk_t		block;
3806 	int			inodes_per_block, inode_offset;
3807 
3808 	iloc->bh = NULL;
3809 	if (!ext4_valid_inum(sb, inode->i_ino))
3810 		return -EIO;
3811 
3812 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3813 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3814 	if (!gdp)
3815 		return -EIO;
3816 
3817 	/*
3818 	 * Figure out the offset within the block group inode table
3819 	 */
3820 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3821 	inode_offset = ((inode->i_ino - 1) %
3822 			EXT4_INODES_PER_GROUP(sb));
3823 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3824 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3825 
3826 	bh = sb_getblk(sb, block);
3827 	if (unlikely(!bh))
3828 		return -ENOMEM;
3829 	if (!buffer_uptodate(bh)) {
3830 		lock_buffer(bh);
3831 
3832 		/*
3833 		 * If the buffer has the write error flag, we have failed
3834 		 * to write out another inode in the same block.  In this
3835 		 * case, we don't have to read the block because we may
3836 		 * read the old inode data successfully.
3837 		 */
3838 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3839 			set_buffer_uptodate(bh);
3840 
3841 		if (buffer_uptodate(bh)) {
3842 			/* someone brought it uptodate while we waited */
3843 			unlock_buffer(bh);
3844 			goto has_buffer;
3845 		}
3846 
3847 		/*
3848 		 * If we have all information of the inode in memory and this
3849 		 * is the only valid inode in the block, we need not read the
3850 		 * block.
3851 		 */
3852 		if (in_mem) {
3853 			struct buffer_head *bitmap_bh;
3854 			int i, start;
3855 
3856 			start = inode_offset & ~(inodes_per_block - 1);
3857 
3858 			/* Is the inode bitmap in cache? */
3859 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3860 			if (unlikely(!bitmap_bh))
3861 				goto make_io;
3862 
3863 			/*
3864 			 * If the inode bitmap isn't in cache then the
3865 			 * optimisation may end up performing two reads instead
3866 			 * of one, so skip it.
3867 			 */
3868 			if (!buffer_uptodate(bitmap_bh)) {
3869 				brelse(bitmap_bh);
3870 				goto make_io;
3871 			}
3872 			for (i = start; i < start + inodes_per_block; i++) {
3873 				if (i == inode_offset)
3874 					continue;
3875 				if (ext4_test_bit(i, bitmap_bh->b_data))
3876 					break;
3877 			}
3878 			brelse(bitmap_bh);
3879 			if (i == start + inodes_per_block) {
3880 				/* all other inodes are free, so skip I/O */
3881 				memset(bh->b_data, 0, bh->b_size);
3882 				set_buffer_uptodate(bh);
3883 				unlock_buffer(bh);
3884 				goto has_buffer;
3885 			}
3886 		}
3887 
3888 make_io:
3889 		/*
3890 		 * If we need to do any I/O, try to pre-readahead extra
3891 		 * blocks from the inode table.
3892 		 */
3893 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3894 			ext4_fsblk_t b, end, table;
3895 			unsigned num;
3896 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3897 
3898 			table = ext4_inode_table(sb, gdp);
3899 			/* s_inode_readahead_blks is always a power of 2 */
3900 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
3901 			if (table > b)
3902 				b = table;
3903 			end = b + ra_blks;
3904 			num = EXT4_INODES_PER_GROUP(sb);
3905 			if (ext4_has_group_desc_csum(sb))
3906 				num -= ext4_itable_unused_count(sb, gdp);
3907 			table += num / inodes_per_block;
3908 			if (end > table)
3909 				end = table;
3910 			while (b <= end)
3911 				sb_breadahead(sb, b++);
3912 		}
3913 
3914 		/*
3915 		 * There are other valid inodes in the buffer, this inode
3916 		 * has in-inode xattrs, or we don't have this inode in memory.
3917 		 * Read the block from disk.
3918 		 */
3919 		trace_ext4_load_inode(inode);
3920 		get_bh(bh);
3921 		bh->b_end_io = end_buffer_read_sync;
3922 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3923 		wait_on_buffer(bh);
3924 		if (!buffer_uptodate(bh)) {
3925 			EXT4_ERROR_INODE_BLOCK(inode, block,
3926 					       "unable to read itable block");
3927 			brelse(bh);
3928 			return -EIO;
3929 		}
3930 	}
3931 has_buffer:
3932 	iloc->bh = bh;
3933 	return 0;
3934 }
3935 
3936 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3937 {
3938 	/* We have all inode data except xattrs in memory here. */
3939 	return __ext4_get_inode_loc(inode, iloc,
3940 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3941 }
3942 
3943 void ext4_set_inode_flags(struct inode *inode)
3944 {
3945 	unsigned int flags = EXT4_I(inode)->i_flags;
3946 	unsigned int new_fl = 0;
3947 
3948 	if (flags & EXT4_SYNC_FL)
3949 		new_fl |= S_SYNC;
3950 	if (flags & EXT4_APPEND_FL)
3951 		new_fl |= S_APPEND;
3952 	if (flags & EXT4_IMMUTABLE_FL)
3953 		new_fl |= S_IMMUTABLE;
3954 	if (flags & EXT4_NOATIME_FL)
3955 		new_fl |= S_NOATIME;
3956 	if (flags & EXT4_DIRSYNC_FL)
3957 		new_fl |= S_DIRSYNC;
3958 	inode_set_flags(inode, new_fl,
3959 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3960 }
3961 
3962 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3963 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3964 {
3965 	unsigned int vfs_fl;
3966 	unsigned long old_fl, new_fl;
3967 
3968 	do {
3969 		vfs_fl = ei->vfs_inode.i_flags;
3970 		old_fl = ei->i_flags;
3971 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3972 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3973 				EXT4_DIRSYNC_FL);
3974 		if (vfs_fl & S_SYNC)
3975 			new_fl |= EXT4_SYNC_FL;
3976 		if (vfs_fl & S_APPEND)
3977 			new_fl |= EXT4_APPEND_FL;
3978 		if (vfs_fl & S_IMMUTABLE)
3979 			new_fl |= EXT4_IMMUTABLE_FL;
3980 		if (vfs_fl & S_NOATIME)
3981 			new_fl |= EXT4_NOATIME_FL;
3982 		if (vfs_fl & S_DIRSYNC)
3983 			new_fl |= EXT4_DIRSYNC_FL;
3984 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3985 }
3986 
3987 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3988 				  struct ext4_inode_info *ei)
3989 {
3990 	blkcnt_t i_blocks ;
3991 	struct inode *inode = &(ei->vfs_inode);
3992 	struct super_block *sb = inode->i_sb;
3993 
3994 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3995 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3996 		/* we are using combined 48 bit field */
3997 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3998 					le32_to_cpu(raw_inode->i_blocks_lo);
3999 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4000 			/* i_blocks represent file system block size */
4001 			return i_blocks  << (inode->i_blkbits - 9);
4002 		} else {
4003 			return i_blocks;
4004 		}
4005 	} else {
4006 		return le32_to_cpu(raw_inode->i_blocks_lo);
4007 	}
4008 }
4009 
4010 static inline void ext4_iget_extra_inode(struct inode *inode,
4011 					 struct ext4_inode *raw_inode,
4012 					 struct ext4_inode_info *ei)
4013 {
4014 	__le32 *magic = (void *)raw_inode +
4015 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4016 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4017 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4018 		ext4_find_inline_data_nolock(inode);
4019 	} else
4020 		EXT4_I(inode)->i_inline_off = 0;
4021 }
4022 
4023 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4024 {
4025 	struct ext4_iloc iloc;
4026 	struct ext4_inode *raw_inode;
4027 	struct ext4_inode_info *ei;
4028 	struct inode *inode;
4029 	journal_t *journal = EXT4_SB(sb)->s_journal;
4030 	long ret;
4031 	int block;
4032 	uid_t i_uid;
4033 	gid_t i_gid;
4034 
4035 	inode = iget_locked(sb, ino);
4036 	if (!inode)
4037 		return ERR_PTR(-ENOMEM);
4038 	if (!(inode->i_state & I_NEW))
4039 		return inode;
4040 
4041 	ei = EXT4_I(inode);
4042 	iloc.bh = NULL;
4043 
4044 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4045 	if (ret < 0)
4046 		goto bad_inode;
4047 	raw_inode = ext4_raw_inode(&iloc);
4048 
4049 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4050 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4051 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4052 		    EXT4_INODE_SIZE(inode->i_sb)) {
4053 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4054 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4055 				EXT4_INODE_SIZE(inode->i_sb));
4056 			ret = -EIO;
4057 			goto bad_inode;
4058 		}
4059 	} else
4060 		ei->i_extra_isize = 0;
4061 
4062 	/* Precompute checksum seed for inode metadata */
4063 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4064 			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4065 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4066 		__u32 csum;
4067 		__le32 inum = cpu_to_le32(inode->i_ino);
4068 		__le32 gen = raw_inode->i_generation;
4069 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4070 				   sizeof(inum));
4071 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4072 					      sizeof(gen));
4073 	}
4074 
4075 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4076 		EXT4_ERROR_INODE(inode, "checksum invalid");
4077 		ret = -EIO;
4078 		goto bad_inode;
4079 	}
4080 
4081 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4082 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4083 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4084 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4085 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4086 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4087 	}
4088 	i_uid_write(inode, i_uid);
4089 	i_gid_write(inode, i_gid);
4090 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4091 
4092 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4093 	ei->i_inline_off = 0;
4094 	ei->i_dir_start_lookup = 0;
4095 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4096 	/* We now have enough fields to check if the inode was active or not.
4097 	 * This is needed because nfsd might try to access dead inodes
4098 	 * the test is that same one that e2fsck uses
4099 	 * NeilBrown 1999oct15
4100 	 */
4101 	if (inode->i_nlink == 0) {
4102 		if ((inode->i_mode == 0 ||
4103 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4104 		    ino != EXT4_BOOT_LOADER_INO) {
4105 			/* this inode is deleted */
4106 			ret = -ESTALE;
4107 			goto bad_inode;
4108 		}
4109 		/* The only unlinked inodes we let through here have
4110 		 * valid i_mode and are being read by the orphan
4111 		 * recovery code: that's fine, we're about to complete
4112 		 * the process of deleting those.
4113 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4114 		 * not initialized on a new filesystem. */
4115 	}
4116 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4117 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4118 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4119 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4120 		ei->i_file_acl |=
4121 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4122 	inode->i_size = ext4_isize(raw_inode);
4123 	ei->i_disksize = inode->i_size;
4124 #ifdef CONFIG_QUOTA
4125 	ei->i_reserved_quota = 0;
4126 #endif
4127 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4128 	ei->i_block_group = iloc.block_group;
4129 	ei->i_last_alloc_group = ~0;
4130 	/*
4131 	 * NOTE! The in-memory inode i_data array is in little-endian order
4132 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4133 	 */
4134 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4135 		ei->i_data[block] = raw_inode->i_block[block];
4136 	INIT_LIST_HEAD(&ei->i_orphan);
4137 
4138 	/*
4139 	 * Set transaction id's of transactions that have to be committed
4140 	 * to finish f[data]sync. We set them to currently running transaction
4141 	 * as we cannot be sure that the inode or some of its metadata isn't
4142 	 * part of the transaction - the inode could have been reclaimed and
4143 	 * now it is reread from disk.
4144 	 */
4145 	if (journal) {
4146 		transaction_t *transaction;
4147 		tid_t tid;
4148 
4149 		read_lock(&journal->j_state_lock);
4150 		if (journal->j_running_transaction)
4151 			transaction = journal->j_running_transaction;
4152 		else
4153 			transaction = journal->j_committing_transaction;
4154 		if (transaction)
4155 			tid = transaction->t_tid;
4156 		else
4157 			tid = journal->j_commit_sequence;
4158 		read_unlock(&journal->j_state_lock);
4159 		ei->i_sync_tid = tid;
4160 		ei->i_datasync_tid = tid;
4161 	}
4162 
4163 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4164 		if (ei->i_extra_isize == 0) {
4165 			/* The extra space is currently unused. Use it. */
4166 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4167 					    EXT4_GOOD_OLD_INODE_SIZE;
4168 		} else {
4169 			ext4_iget_extra_inode(inode, raw_inode, ei);
4170 		}
4171 	}
4172 
4173 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4174 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4175 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4176 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4177 
4178 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4179 		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4180 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4181 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4182 				inode->i_version |=
4183 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4184 		}
4185 	}
4186 
4187 	ret = 0;
4188 	if (ei->i_file_acl &&
4189 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4190 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4191 				 ei->i_file_acl);
4192 		ret = -EIO;
4193 		goto bad_inode;
4194 	} else if (!ext4_has_inline_data(inode)) {
4195 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4196 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4197 			    (S_ISLNK(inode->i_mode) &&
4198 			     !ext4_inode_is_fast_symlink(inode))))
4199 				/* Validate extent which is part of inode */
4200 				ret = ext4_ext_check_inode(inode);
4201 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4202 			   (S_ISLNK(inode->i_mode) &&
4203 			    !ext4_inode_is_fast_symlink(inode))) {
4204 			/* Validate block references which are part of inode */
4205 			ret = ext4_ind_check_inode(inode);
4206 		}
4207 	}
4208 	if (ret)
4209 		goto bad_inode;
4210 
4211 	if (S_ISREG(inode->i_mode)) {
4212 		inode->i_op = &ext4_file_inode_operations;
4213 		inode->i_fop = &ext4_file_operations;
4214 		ext4_set_aops(inode);
4215 	} else if (S_ISDIR(inode->i_mode)) {
4216 		inode->i_op = &ext4_dir_inode_operations;
4217 		inode->i_fop = &ext4_dir_operations;
4218 	} else if (S_ISLNK(inode->i_mode)) {
4219 		if (ext4_inode_is_fast_symlink(inode)) {
4220 			inode->i_op = &ext4_fast_symlink_inode_operations;
4221 			nd_terminate_link(ei->i_data, inode->i_size,
4222 				sizeof(ei->i_data) - 1);
4223 		} else {
4224 			inode->i_op = &ext4_symlink_inode_operations;
4225 			ext4_set_aops(inode);
4226 		}
4227 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4228 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4229 		inode->i_op = &ext4_special_inode_operations;
4230 		if (raw_inode->i_block[0])
4231 			init_special_inode(inode, inode->i_mode,
4232 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4233 		else
4234 			init_special_inode(inode, inode->i_mode,
4235 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4236 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4237 		make_bad_inode(inode);
4238 	} else {
4239 		ret = -EIO;
4240 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4241 		goto bad_inode;
4242 	}
4243 	brelse(iloc.bh);
4244 	ext4_set_inode_flags(inode);
4245 	unlock_new_inode(inode);
4246 	return inode;
4247 
4248 bad_inode:
4249 	brelse(iloc.bh);
4250 	iget_failed(inode);
4251 	return ERR_PTR(ret);
4252 }
4253 
4254 static int ext4_inode_blocks_set(handle_t *handle,
4255 				struct ext4_inode *raw_inode,
4256 				struct ext4_inode_info *ei)
4257 {
4258 	struct inode *inode = &(ei->vfs_inode);
4259 	u64 i_blocks = inode->i_blocks;
4260 	struct super_block *sb = inode->i_sb;
4261 
4262 	if (i_blocks <= ~0U) {
4263 		/*
4264 		 * i_blocks can be represented in a 32 bit variable
4265 		 * as multiple of 512 bytes
4266 		 */
4267 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4268 		raw_inode->i_blocks_high = 0;
4269 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4270 		return 0;
4271 	}
4272 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4273 		return -EFBIG;
4274 
4275 	if (i_blocks <= 0xffffffffffffULL) {
4276 		/*
4277 		 * i_blocks can be represented in a 48 bit variable
4278 		 * as multiple of 512 bytes
4279 		 */
4280 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4281 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4282 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4283 	} else {
4284 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4285 		/* i_block is stored in file system block size */
4286 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4287 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4288 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4289 	}
4290 	return 0;
4291 }
4292 
4293 /*
4294  * Post the struct inode info into an on-disk inode location in the
4295  * buffer-cache.  This gobbles the caller's reference to the
4296  * buffer_head in the inode location struct.
4297  *
4298  * The caller must have write access to iloc->bh.
4299  */
4300 static int ext4_do_update_inode(handle_t *handle,
4301 				struct inode *inode,
4302 				struct ext4_iloc *iloc)
4303 {
4304 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4305 	struct ext4_inode_info *ei = EXT4_I(inode);
4306 	struct buffer_head *bh = iloc->bh;
4307 	int err = 0, rc, block;
4308 	int need_datasync = 0;
4309 	uid_t i_uid;
4310 	gid_t i_gid;
4311 
4312 	/* For fields not not tracking in the in-memory inode,
4313 	 * initialise them to zero for new inodes. */
4314 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4315 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4316 
4317 	ext4_get_inode_flags(ei);
4318 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4319 	i_uid = i_uid_read(inode);
4320 	i_gid = i_gid_read(inode);
4321 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4322 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4323 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4324 /*
4325  * Fix up interoperability with old kernels. Otherwise, old inodes get
4326  * re-used with the upper 16 bits of the uid/gid intact
4327  */
4328 		if (!ei->i_dtime) {
4329 			raw_inode->i_uid_high =
4330 				cpu_to_le16(high_16_bits(i_uid));
4331 			raw_inode->i_gid_high =
4332 				cpu_to_le16(high_16_bits(i_gid));
4333 		} else {
4334 			raw_inode->i_uid_high = 0;
4335 			raw_inode->i_gid_high = 0;
4336 		}
4337 	} else {
4338 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4339 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4340 		raw_inode->i_uid_high = 0;
4341 		raw_inode->i_gid_high = 0;
4342 	}
4343 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4344 
4345 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4346 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4347 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4348 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4349 
4350 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4351 		goto out_brelse;
4352 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4353 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4354 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4355 		raw_inode->i_file_acl_high =
4356 			cpu_to_le16(ei->i_file_acl >> 32);
4357 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4358 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4359 		ext4_isize_set(raw_inode, ei->i_disksize);
4360 		need_datasync = 1;
4361 	}
4362 	if (ei->i_disksize > 0x7fffffffULL) {
4363 		struct super_block *sb = inode->i_sb;
4364 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4365 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4366 				EXT4_SB(sb)->s_es->s_rev_level ==
4367 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4368 			/* If this is the first large file
4369 			 * created, add a flag to the superblock.
4370 			 */
4371 			err = ext4_journal_get_write_access(handle,
4372 					EXT4_SB(sb)->s_sbh);
4373 			if (err)
4374 				goto out_brelse;
4375 			ext4_update_dynamic_rev(sb);
4376 			EXT4_SET_RO_COMPAT_FEATURE(sb,
4377 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4378 			ext4_handle_sync(handle);
4379 			err = ext4_handle_dirty_super(handle, sb);
4380 		}
4381 	}
4382 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4383 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4384 		if (old_valid_dev(inode->i_rdev)) {
4385 			raw_inode->i_block[0] =
4386 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4387 			raw_inode->i_block[1] = 0;
4388 		} else {
4389 			raw_inode->i_block[0] = 0;
4390 			raw_inode->i_block[1] =
4391 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4392 			raw_inode->i_block[2] = 0;
4393 		}
4394 	} else if (!ext4_has_inline_data(inode)) {
4395 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4396 			raw_inode->i_block[block] = ei->i_data[block];
4397 	}
4398 
4399 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4400 		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4401 		if (ei->i_extra_isize) {
4402 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4403 				raw_inode->i_version_hi =
4404 					cpu_to_le32(inode->i_version >> 32);
4405 			raw_inode->i_extra_isize =
4406 				cpu_to_le16(ei->i_extra_isize);
4407 		}
4408 	}
4409 
4410 	ext4_inode_csum_set(inode, raw_inode, ei);
4411 
4412 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4413 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4414 	if (!err)
4415 		err = rc;
4416 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4417 
4418 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4419 out_brelse:
4420 	brelse(bh);
4421 	ext4_std_error(inode->i_sb, err);
4422 	return err;
4423 }
4424 
4425 /*
4426  * ext4_write_inode()
4427  *
4428  * We are called from a few places:
4429  *
4430  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4431  *   Here, there will be no transaction running. We wait for any running
4432  *   transaction to commit.
4433  *
4434  * - Within flush work (sys_sync(), kupdate and such).
4435  *   We wait on commit, if told to.
4436  *
4437  * - Within iput_final() -> write_inode_now()
4438  *   We wait on commit, if told to.
4439  *
4440  * In all cases it is actually safe for us to return without doing anything,
4441  * because the inode has been copied into a raw inode buffer in
4442  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4443  * writeback.
4444  *
4445  * Note that we are absolutely dependent upon all inode dirtiers doing the
4446  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4447  * which we are interested.
4448  *
4449  * It would be a bug for them to not do this.  The code:
4450  *
4451  *	mark_inode_dirty(inode)
4452  *	stuff();
4453  *	inode->i_size = expr;
4454  *
4455  * is in error because write_inode() could occur while `stuff()' is running,
4456  * and the new i_size will be lost.  Plus the inode will no longer be on the
4457  * superblock's dirty inode list.
4458  */
4459 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4460 {
4461 	int err;
4462 
4463 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4464 		return 0;
4465 
4466 	if (EXT4_SB(inode->i_sb)->s_journal) {
4467 		if (ext4_journal_current_handle()) {
4468 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4469 			dump_stack();
4470 			return -EIO;
4471 		}
4472 
4473 		/*
4474 		 * No need to force transaction in WB_SYNC_NONE mode. Also
4475 		 * ext4_sync_fs() will force the commit after everything is
4476 		 * written.
4477 		 */
4478 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4479 			return 0;
4480 
4481 		err = ext4_force_commit(inode->i_sb);
4482 	} else {
4483 		struct ext4_iloc iloc;
4484 
4485 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4486 		if (err)
4487 			return err;
4488 		/*
4489 		 * sync(2) will flush the whole buffer cache. No need to do
4490 		 * it here separately for each inode.
4491 		 */
4492 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4493 			sync_dirty_buffer(iloc.bh);
4494 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4495 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4496 					 "IO error syncing inode");
4497 			err = -EIO;
4498 		}
4499 		brelse(iloc.bh);
4500 	}
4501 	return err;
4502 }
4503 
4504 /*
4505  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4506  * buffers that are attached to a page stradding i_size and are undergoing
4507  * commit. In that case we have to wait for commit to finish and try again.
4508  */
4509 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4510 {
4511 	struct page *page;
4512 	unsigned offset;
4513 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4514 	tid_t commit_tid = 0;
4515 	int ret;
4516 
4517 	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4518 	/*
4519 	 * All buffers in the last page remain valid? Then there's nothing to
4520 	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4521 	 * blocksize case
4522 	 */
4523 	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4524 		return;
4525 	while (1) {
4526 		page = find_lock_page(inode->i_mapping,
4527 				      inode->i_size >> PAGE_CACHE_SHIFT);
4528 		if (!page)
4529 			return;
4530 		ret = __ext4_journalled_invalidatepage(page, offset,
4531 						PAGE_CACHE_SIZE - offset);
4532 		unlock_page(page);
4533 		page_cache_release(page);
4534 		if (ret != -EBUSY)
4535 			return;
4536 		commit_tid = 0;
4537 		read_lock(&journal->j_state_lock);
4538 		if (journal->j_committing_transaction)
4539 			commit_tid = journal->j_committing_transaction->t_tid;
4540 		read_unlock(&journal->j_state_lock);
4541 		if (commit_tid)
4542 			jbd2_log_wait_commit(journal, commit_tid);
4543 	}
4544 }
4545 
4546 /*
4547  * ext4_setattr()
4548  *
4549  * Called from notify_change.
4550  *
4551  * We want to trap VFS attempts to truncate the file as soon as
4552  * possible.  In particular, we want to make sure that when the VFS
4553  * shrinks i_size, we put the inode on the orphan list and modify
4554  * i_disksize immediately, so that during the subsequent flushing of
4555  * dirty pages and freeing of disk blocks, we can guarantee that any
4556  * commit will leave the blocks being flushed in an unused state on
4557  * disk.  (On recovery, the inode will get truncated and the blocks will
4558  * be freed, so we have a strong guarantee that no future commit will
4559  * leave these blocks visible to the user.)
4560  *
4561  * Another thing we have to assure is that if we are in ordered mode
4562  * and inode is still attached to the committing transaction, we must
4563  * we start writeout of all the dirty pages which are being truncated.
4564  * This way we are sure that all the data written in the previous
4565  * transaction are already on disk (truncate waits for pages under
4566  * writeback).
4567  *
4568  * Called with inode->i_mutex down.
4569  */
4570 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4571 {
4572 	struct inode *inode = dentry->d_inode;
4573 	int error, rc = 0;
4574 	int orphan = 0;
4575 	const unsigned int ia_valid = attr->ia_valid;
4576 
4577 	error = inode_change_ok(inode, attr);
4578 	if (error)
4579 		return error;
4580 
4581 	if (is_quota_modification(inode, attr))
4582 		dquot_initialize(inode);
4583 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4584 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4585 		handle_t *handle;
4586 
4587 		/* (user+group)*(old+new) structure, inode write (sb,
4588 		 * inode block, ? - but truncate inode update has it) */
4589 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4590 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4591 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4592 		if (IS_ERR(handle)) {
4593 			error = PTR_ERR(handle);
4594 			goto err_out;
4595 		}
4596 		error = dquot_transfer(inode, attr);
4597 		if (error) {
4598 			ext4_journal_stop(handle);
4599 			return error;
4600 		}
4601 		/* Update corresponding info in inode so that everything is in
4602 		 * one transaction */
4603 		if (attr->ia_valid & ATTR_UID)
4604 			inode->i_uid = attr->ia_uid;
4605 		if (attr->ia_valid & ATTR_GID)
4606 			inode->i_gid = attr->ia_gid;
4607 		error = ext4_mark_inode_dirty(handle, inode);
4608 		ext4_journal_stop(handle);
4609 	}
4610 
4611 	if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4612 		handle_t *handle;
4613 
4614 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4615 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4616 
4617 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4618 				return -EFBIG;
4619 		}
4620 
4621 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4622 			inode_inc_iversion(inode);
4623 
4624 		if (S_ISREG(inode->i_mode) &&
4625 		    (attr->ia_size < inode->i_size)) {
4626 			if (ext4_should_order_data(inode)) {
4627 				error = ext4_begin_ordered_truncate(inode,
4628 							    attr->ia_size);
4629 				if (error)
4630 					goto err_out;
4631 			}
4632 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4633 			if (IS_ERR(handle)) {
4634 				error = PTR_ERR(handle);
4635 				goto err_out;
4636 			}
4637 			if (ext4_handle_valid(handle)) {
4638 				error = ext4_orphan_add(handle, inode);
4639 				orphan = 1;
4640 			}
4641 			down_write(&EXT4_I(inode)->i_data_sem);
4642 			EXT4_I(inode)->i_disksize = attr->ia_size;
4643 			rc = ext4_mark_inode_dirty(handle, inode);
4644 			if (!error)
4645 				error = rc;
4646 			/*
4647 			 * We have to update i_size under i_data_sem together
4648 			 * with i_disksize to avoid races with writeback code
4649 			 * running ext4_wb_update_i_disksize().
4650 			 */
4651 			if (!error)
4652 				i_size_write(inode, attr->ia_size);
4653 			up_write(&EXT4_I(inode)->i_data_sem);
4654 			ext4_journal_stop(handle);
4655 			if (error) {
4656 				ext4_orphan_del(NULL, inode);
4657 				goto err_out;
4658 			}
4659 		} else
4660 			i_size_write(inode, attr->ia_size);
4661 
4662 		/*
4663 		 * Blocks are going to be removed from the inode. Wait
4664 		 * for dio in flight.  Temporarily disable
4665 		 * dioread_nolock to prevent livelock.
4666 		 */
4667 		if (orphan) {
4668 			if (!ext4_should_journal_data(inode)) {
4669 				ext4_inode_block_unlocked_dio(inode);
4670 				inode_dio_wait(inode);
4671 				ext4_inode_resume_unlocked_dio(inode);
4672 			} else
4673 				ext4_wait_for_tail_page_commit(inode);
4674 		}
4675 		/*
4676 		 * Truncate pagecache after we've waited for commit
4677 		 * in data=journal mode to make pages freeable.
4678 		 */
4679 			truncate_pagecache(inode, inode->i_size);
4680 	}
4681 	/*
4682 	 * We want to call ext4_truncate() even if attr->ia_size ==
4683 	 * inode->i_size for cases like truncation of fallocated space
4684 	 */
4685 	if (attr->ia_valid & ATTR_SIZE)
4686 		ext4_truncate(inode);
4687 
4688 	if (!rc) {
4689 		setattr_copy(inode, attr);
4690 		mark_inode_dirty(inode);
4691 	}
4692 
4693 	/*
4694 	 * If the call to ext4_truncate failed to get a transaction handle at
4695 	 * all, we need to clean up the in-core orphan list manually.
4696 	 */
4697 	if (orphan && inode->i_nlink)
4698 		ext4_orphan_del(NULL, inode);
4699 
4700 	if (!rc && (ia_valid & ATTR_MODE))
4701 		rc = posix_acl_chmod(inode, inode->i_mode);
4702 
4703 err_out:
4704 	ext4_std_error(inode->i_sb, error);
4705 	if (!error)
4706 		error = rc;
4707 	return error;
4708 }
4709 
4710 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4711 		 struct kstat *stat)
4712 {
4713 	struct inode *inode;
4714 	unsigned long long delalloc_blocks;
4715 
4716 	inode = dentry->d_inode;
4717 	generic_fillattr(inode, stat);
4718 
4719 	/*
4720 	 * If there is inline data in the inode, the inode will normally not
4721 	 * have data blocks allocated (it may have an external xattr block).
4722 	 * Report at least one sector for such files, so tools like tar, rsync,
4723 	 * others doen't incorrectly think the file is completely sparse.
4724 	 */
4725 	if (unlikely(ext4_has_inline_data(inode)))
4726 		stat->blocks += (stat->size + 511) >> 9;
4727 
4728 	/*
4729 	 * We can't update i_blocks if the block allocation is delayed
4730 	 * otherwise in the case of system crash before the real block
4731 	 * allocation is done, we will have i_blocks inconsistent with
4732 	 * on-disk file blocks.
4733 	 * We always keep i_blocks updated together with real
4734 	 * allocation. But to not confuse with user, stat
4735 	 * will return the blocks that include the delayed allocation
4736 	 * blocks for this file.
4737 	 */
4738 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4739 				   EXT4_I(inode)->i_reserved_data_blocks);
4740 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4741 	return 0;
4742 }
4743 
4744 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4745 				   int pextents)
4746 {
4747 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4748 		return ext4_ind_trans_blocks(inode, lblocks);
4749 	return ext4_ext_index_trans_blocks(inode, pextents);
4750 }
4751 
4752 /*
4753  * Account for index blocks, block groups bitmaps and block group
4754  * descriptor blocks if modify datablocks and index blocks
4755  * worse case, the indexs blocks spread over different block groups
4756  *
4757  * If datablocks are discontiguous, they are possible to spread over
4758  * different block groups too. If they are contiguous, with flexbg,
4759  * they could still across block group boundary.
4760  *
4761  * Also account for superblock, inode, quota and xattr blocks
4762  */
4763 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4764 				  int pextents)
4765 {
4766 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4767 	int gdpblocks;
4768 	int idxblocks;
4769 	int ret = 0;
4770 
4771 	/*
4772 	 * How many index blocks need to touch to map @lblocks logical blocks
4773 	 * to @pextents physical extents?
4774 	 */
4775 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4776 
4777 	ret = idxblocks;
4778 
4779 	/*
4780 	 * Now let's see how many group bitmaps and group descriptors need
4781 	 * to account
4782 	 */
4783 	groups = idxblocks + pextents;
4784 	gdpblocks = groups;
4785 	if (groups > ngroups)
4786 		groups = ngroups;
4787 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4788 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4789 
4790 	/* bitmaps and block group descriptor blocks */
4791 	ret += groups + gdpblocks;
4792 
4793 	/* Blocks for super block, inode, quota and xattr blocks */
4794 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4795 
4796 	return ret;
4797 }
4798 
4799 /*
4800  * Calculate the total number of credits to reserve to fit
4801  * the modification of a single pages into a single transaction,
4802  * which may include multiple chunks of block allocations.
4803  *
4804  * This could be called via ext4_write_begin()
4805  *
4806  * We need to consider the worse case, when
4807  * one new block per extent.
4808  */
4809 int ext4_writepage_trans_blocks(struct inode *inode)
4810 {
4811 	int bpp = ext4_journal_blocks_per_page(inode);
4812 	int ret;
4813 
4814 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4815 
4816 	/* Account for data blocks for journalled mode */
4817 	if (ext4_should_journal_data(inode))
4818 		ret += bpp;
4819 	return ret;
4820 }
4821 
4822 /*
4823  * Calculate the journal credits for a chunk of data modification.
4824  *
4825  * This is called from DIO, fallocate or whoever calling
4826  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4827  *
4828  * journal buffers for data blocks are not included here, as DIO
4829  * and fallocate do no need to journal data buffers.
4830  */
4831 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4832 {
4833 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4834 }
4835 
4836 /*
4837  * The caller must have previously called ext4_reserve_inode_write().
4838  * Give this, we know that the caller already has write access to iloc->bh.
4839  */
4840 int ext4_mark_iloc_dirty(handle_t *handle,
4841 			 struct inode *inode, struct ext4_iloc *iloc)
4842 {
4843 	int err = 0;
4844 
4845 	if (IS_I_VERSION(inode))
4846 		inode_inc_iversion(inode);
4847 
4848 	/* the do_update_inode consumes one bh->b_count */
4849 	get_bh(iloc->bh);
4850 
4851 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4852 	err = ext4_do_update_inode(handle, inode, iloc);
4853 	put_bh(iloc->bh);
4854 	return err;
4855 }
4856 
4857 /*
4858  * On success, We end up with an outstanding reference count against
4859  * iloc->bh.  This _must_ be cleaned up later.
4860  */
4861 
4862 int
4863 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4864 			 struct ext4_iloc *iloc)
4865 {
4866 	int err;
4867 
4868 	err = ext4_get_inode_loc(inode, iloc);
4869 	if (!err) {
4870 		BUFFER_TRACE(iloc->bh, "get_write_access");
4871 		err = ext4_journal_get_write_access(handle, iloc->bh);
4872 		if (err) {
4873 			brelse(iloc->bh);
4874 			iloc->bh = NULL;
4875 		}
4876 	}
4877 	ext4_std_error(inode->i_sb, err);
4878 	return err;
4879 }
4880 
4881 /*
4882  * Expand an inode by new_extra_isize bytes.
4883  * Returns 0 on success or negative error number on failure.
4884  */
4885 static int ext4_expand_extra_isize(struct inode *inode,
4886 				   unsigned int new_extra_isize,
4887 				   struct ext4_iloc iloc,
4888 				   handle_t *handle)
4889 {
4890 	struct ext4_inode *raw_inode;
4891 	struct ext4_xattr_ibody_header *header;
4892 
4893 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4894 		return 0;
4895 
4896 	raw_inode = ext4_raw_inode(&iloc);
4897 
4898 	header = IHDR(inode, raw_inode);
4899 
4900 	/* No extended attributes present */
4901 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4902 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4903 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4904 			new_extra_isize);
4905 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4906 		return 0;
4907 	}
4908 
4909 	/* try to expand with EAs present */
4910 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4911 					  raw_inode, handle);
4912 }
4913 
4914 /*
4915  * What we do here is to mark the in-core inode as clean with respect to inode
4916  * dirtiness (it may still be data-dirty).
4917  * This means that the in-core inode may be reaped by prune_icache
4918  * without having to perform any I/O.  This is a very good thing,
4919  * because *any* task may call prune_icache - even ones which
4920  * have a transaction open against a different journal.
4921  *
4922  * Is this cheating?  Not really.  Sure, we haven't written the
4923  * inode out, but prune_icache isn't a user-visible syncing function.
4924  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4925  * we start and wait on commits.
4926  */
4927 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4928 {
4929 	struct ext4_iloc iloc;
4930 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4931 	static unsigned int mnt_count;
4932 	int err, ret;
4933 
4934 	might_sleep();
4935 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4936 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4937 	if (ext4_handle_valid(handle) &&
4938 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4939 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4940 		/*
4941 		 * We need extra buffer credits since we may write into EA block
4942 		 * with this same handle. If journal_extend fails, then it will
4943 		 * only result in a minor loss of functionality for that inode.
4944 		 * If this is felt to be critical, then e2fsck should be run to
4945 		 * force a large enough s_min_extra_isize.
4946 		 */
4947 		if ((jbd2_journal_extend(handle,
4948 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4949 			ret = ext4_expand_extra_isize(inode,
4950 						      sbi->s_want_extra_isize,
4951 						      iloc, handle);
4952 			if (ret) {
4953 				ext4_set_inode_state(inode,
4954 						     EXT4_STATE_NO_EXPAND);
4955 				if (mnt_count !=
4956 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4957 					ext4_warning(inode->i_sb,
4958 					"Unable to expand inode %lu. Delete"
4959 					" some EAs or run e2fsck.",
4960 					inode->i_ino);
4961 					mnt_count =
4962 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4963 				}
4964 			}
4965 		}
4966 	}
4967 	if (!err)
4968 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4969 	return err;
4970 }
4971 
4972 /*
4973  * ext4_dirty_inode() is called from __mark_inode_dirty()
4974  *
4975  * We're really interested in the case where a file is being extended.
4976  * i_size has been changed by generic_commit_write() and we thus need
4977  * to include the updated inode in the current transaction.
4978  *
4979  * Also, dquot_alloc_block() will always dirty the inode when blocks
4980  * are allocated to the file.
4981  *
4982  * If the inode is marked synchronous, we don't honour that here - doing
4983  * so would cause a commit on atime updates, which we don't bother doing.
4984  * We handle synchronous inodes at the highest possible level.
4985  */
4986 void ext4_dirty_inode(struct inode *inode, int flags)
4987 {
4988 	handle_t *handle;
4989 
4990 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4991 	if (IS_ERR(handle))
4992 		goto out;
4993 
4994 	ext4_mark_inode_dirty(handle, inode);
4995 
4996 	ext4_journal_stop(handle);
4997 out:
4998 	return;
4999 }
5000 
5001 #if 0
5002 /*
5003  * Bind an inode's backing buffer_head into this transaction, to prevent
5004  * it from being flushed to disk early.  Unlike
5005  * ext4_reserve_inode_write, this leaves behind no bh reference and
5006  * returns no iloc structure, so the caller needs to repeat the iloc
5007  * lookup to mark the inode dirty later.
5008  */
5009 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5010 {
5011 	struct ext4_iloc iloc;
5012 
5013 	int err = 0;
5014 	if (handle) {
5015 		err = ext4_get_inode_loc(inode, &iloc);
5016 		if (!err) {
5017 			BUFFER_TRACE(iloc.bh, "get_write_access");
5018 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5019 			if (!err)
5020 				err = ext4_handle_dirty_metadata(handle,
5021 								 NULL,
5022 								 iloc.bh);
5023 			brelse(iloc.bh);
5024 		}
5025 	}
5026 	ext4_std_error(inode->i_sb, err);
5027 	return err;
5028 }
5029 #endif
5030 
5031 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5032 {
5033 	journal_t *journal;
5034 	handle_t *handle;
5035 	int err;
5036 
5037 	/*
5038 	 * We have to be very careful here: changing a data block's
5039 	 * journaling status dynamically is dangerous.  If we write a
5040 	 * data block to the journal, change the status and then delete
5041 	 * that block, we risk forgetting to revoke the old log record
5042 	 * from the journal and so a subsequent replay can corrupt data.
5043 	 * So, first we make sure that the journal is empty and that
5044 	 * nobody is changing anything.
5045 	 */
5046 
5047 	journal = EXT4_JOURNAL(inode);
5048 	if (!journal)
5049 		return 0;
5050 	if (is_journal_aborted(journal))
5051 		return -EROFS;
5052 	/* We have to allocate physical blocks for delalloc blocks
5053 	 * before flushing journal. otherwise delalloc blocks can not
5054 	 * be allocated any more. even more truncate on delalloc blocks
5055 	 * could trigger BUG by flushing delalloc blocks in journal.
5056 	 * There is no delalloc block in non-journal data mode.
5057 	 */
5058 	if (val && test_opt(inode->i_sb, DELALLOC)) {
5059 		err = ext4_alloc_da_blocks(inode);
5060 		if (err < 0)
5061 			return err;
5062 	}
5063 
5064 	/* Wait for all existing dio workers */
5065 	ext4_inode_block_unlocked_dio(inode);
5066 	inode_dio_wait(inode);
5067 
5068 	jbd2_journal_lock_updates(journal);
5069 
5070 	/*
5071 	 * OK, there are no updates running now, and all cached data is
5072 	 * synced to disk.  We are now in a completely consistent state
5073 	 * which doesn't have anything in the journal, and we know that
5074 	 * no filesystem updates are running, so it is safe to modify
5075 	 * the inode's in-core data-journaling state flag now.
5076 	 */
5077 
5078 	if (val)
5079 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5080 	else {
5081 		jbd2_journal_flush(journal);
5082 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5083 	}
5084 	ext4_set_aops(inode);
5085 
5086 	jbd2_journal_unlock_updates(journal);
5087 	ext4_inode_resume_unlocked_dio(inode);
5088 
5089 	/* Finally we can mark the inode as dirty. */
5090 
5091 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5092 	if (IS_ERR(handle))
5093 		return PTR_ERR(handle);
5094 
5095 	err = ext4_mark_inode_dirty(handle, inode);
5096 	ext4_handle_sync(handle);
5097 	ext4_journal_stop(handle);
5098 	ext4_std_error(inode->i_sb, err);
5099 
5100 	return err;
5101 }
5102 
5103 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5104 {
5105 	return !buffer_mapped(bh);
5106 }
5107 
5108 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5109 {
5110 	struct page *page = vmf->page;
5111 	loff_t size;
5112 	unsigned long len;
5113 	int ret;
5114 	struct file *file = vma->vm_file;
5115 	struct inode *inode = file_inode(file);
5116 	struct address_space *mapping = inode->i_mapping;
5117 	handle_t *handle;
5118 	get_block_t *get_block;
5119 	int retries = 0;
5120 
5121 	sb_start_pagefault(inode->i_sb);
5122 	file_update_time(vma->vm_file);
5123 	/* Delalloc case is easy... */
5124 	if (test_opt(inode->i_sb, DELALLOC) &&
5125 	    !ext4_should_journal_data(inode) &&
5126 	    !ext4_nonda_switch(inode->i_sb)) {
5127 		do {
5128 			ret = __block_page_mkwrite(vma, vmf,
5129 						   ext4_da_get_block_prep);
5130 		} while (ret == -ENOSPC &&
5131 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5132 		goto out_ret;
5133 	}
5134 
5135 	lock_page(page);
5136 	size = i_size_read(inode);
5137 	/* Page got truncated from under us? */
5138 	if (page->mapping != mapping || page_offset(page) > size) {
5139 		unlock_page(page);
5140 		ret = VM_FAULT_NOPAGE;
5141 		goto out;
5142 	}
5143 
5144 	if (page->index == size >> PAGE_CACHE_SHIFT)
5145 		len = size & ~PAGE_CACHE_MASK;
5146 	else
5147 		len = PAGE_CACHE_SIZE;
5148 	/*
5149 	 * Return if we have all the buffers mapped. This avoids the need to do
5150 	 * journal_start/journal_stop which can block and take a long time
5151 	 */
5152 	if (page_has_buffers(page)) {
5153 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5154 					    0, len, NULL,
5155 					    ext4_bh_unmapped)) {
5156 			/* Wait so that we don't change page under IO */
5157 			wait_for_stable_page(page);
5158 			ret = VM_FAULT_LOCKED;
5159 			goto out;
5160 		}
5161 	}
5162 	unlock_page(page);
5163 	/* OK, we need to fill the hole... */
5164 	if (ext4_should_dioread_nolock(inode))
5165 		get_block = ext4_get_block_write;
5166 	else
5167 		get_block = ext4_get_block;
5168 retry_alloc:
5169 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5170 				    ext4_writepage_trans_blocks(inode));
5171 	if (IS_ERR(handle)) {
5172 		ret = VM_FAULT_SIGBUS;
5173 		goto out;
5174 	}
5175 	ret = __block_page_mkwrite(vma, vmf, get_block);
5176 	if (!ret && ext4_should_journal_data(inode)) {
5177 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5178 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5179 			unlock_page(page);
5180 			ret = VM_FAULT_SIGBUS;
5181 			ext4_journal_stop(handle);
5182 			goto out;
5183 		}
5184 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5185 	}
5186 	ext4_journal_stop(handle);
5187 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5188 		goto retry_alloc;
5189 out_ret:
5190 	ret = block_page_mkwrite_return(ret);
5191 out:
5192 	sb_end_pagefault(inode->i_sb);
5193 	return ret;
5194 }
5195