1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/jbd2.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 #include <linux/aio.h> 41 #include <linux/bitops.h> 42 43 #include "ext4_jbd2.h" 44 #include "xattr.h" 45 #include "acl.h" 46 #include "truncate.h" 47 48 #include <trace/events/ext4.h> 49 50 #define MPAGE_DA_EXTENT_TAIL 0x01 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u16 csum_lo; 57 __u16 csum_hi = 0; 58 __u32 csum; 59 60 csum_lo = le16_to_cpu(raw->i_checksum_lo); 61 raw->i_checksum_lo = 0; 62 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 63 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 64 csum_hi = le16_to_cpu(raw->i_checksum_hi); 65 raw->i_checksum_hi = 0; 66 } 67 68 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 69 EXT4_INODE_SIZE(inode->i_sb)); 70 71 raw->i_checksum_lo = cpu_to_le16(csum_lo); 72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 73 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 74 raw->i_checksum_hi = cpu_to_le16(csum_hi); 75 76 return csum; 77 } 78 79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 80 struct ext4_inode_info *ei) 81 { 82 __u32 provided, calculated; 83 84 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 85 cpu_to_le32(EXT4_OS_LINUX) || 86 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 87 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 88 return 1; 89 90 provided = le16_to_cpu(raw->i_checksum_lo); 91 calculated = ext4_inode_csum(inode, raw, ei); 92 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 93 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 94 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 95 else 96 calculated &= 0xFFFF; 97 98 return provided == calculated; 99 } 100 101 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 102 struct ext4_inode_info *ei) 103 { 104 __u32 csum; 105 106 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 107 cpu_to_le32(EXT4_OS_LINUX) || 108 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 109 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 110 return; 111 112 csum = ext4_inode_csum(inode, raw, ei); 113 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 114 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 115 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 116 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 117 } 118 119 static inline int ext4_begin_ordered_truncate(struct inode *inode, 120 loff_t new_size) 121 { 122 trace_ext4_begin_ordered_truncate(inode, new_size); 123 /* 124 * If jinode is zero, then we never opened the file for 125 * writing, so there's no need to call 126 * jbd2_journal_begin_ordered_truncate() since there's no 127 * outstanding writes we need to flush. 128 */ 129 if (!EXT4_I(inode)->jinode) 130 return 0; 131 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 132 EXT4_I(inode)->jinode, 133 new_size); 134 } 135 136 static void ext4_invalidatepage(struct page *page, unsigned int offset, 137 unsigned int length); 138 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 139 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 141 int pextents); 142 143 /* 144 * Test whether an inode is a fast symlink. 145 */ 146 static int ext4_inode_is_fast_symlink(struct inode *inode) 147 { 148 int ea_blocks = EXT4_I(inode)->i_file_acl ? 149 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 150 151 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 152 } 153 154 /* 155 * Restart the transaction associated with *handle. This does a commit, 156 * so before we call here everything must be consistently dirtied against 157 * this transaction. 158 */ 159 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 160 int nblocks) 161 { 162 int ret; 163 164 /* 165 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 166 * moment, get_block can be called only for blocks inside i_size since 167 * page cache has been already dropped and writes are blocked by 168 * i_mutex. So we can safely drop the i_data_sem here. 169 */ 170 BUG_ON(EXT4_JOURNAL(inode) == NULL); 171 jbd_debug(2, "restarting handle %p\n", handle); 172 up_write(&EXT4_I(inode)->i_data_sem); 173 ret = ext4_journal_restart(handle, nblocks); 174 down_write(&EXT4_I(inode)->i_data_sem); 175 ext4_discard_preallocations(inode); 176 177 return ret; 178 } 179 180 /* 181 * Called at the last iput() if i_nlink is zero. 182 */ 183 void ext4_evict_inode(struct inode *inode) 184 { 185 handle_t *handle; 186 int err; 187 188 trace_ext4_evict_inode(inode); 189 190 if (inode->i_nlink) { 191 /* 192 * When journalling data dirty buffers are tracked only in the 193 * journal. So although mm thinks everything is clean and 194 * ready for reaping the inode might still have some pages to 195 * write in the running transaction or waiting to be 196 * checkpointed. Thus calling jbd2_journal_invalidatepage() 197 * (via truncate_inode_pages()) to discard these buffers can 198 * cause data loss. Also even if we did not discard these 199 * buffers, we would have no way to find them after the inode 200 * is reaped and thus user could see stale data if he tries to 201 * read them before the transaction is checkpointed. So be 202 * careful and force everything to disk here... We use 203 * ei->i_datasync_tid to store the newest transaction 204 * containing inode's data. 205 * 206 * Note that directories do not have this problem because they 207 * don't use page cache. 208 */ 209 if (ext4_should_journal_data(inode) && 210 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 211 inode->i_ino != EXT4_JOURNAL_INO) { 212 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 213 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 214 215 jbd2_complete_transaction(journal, commit_tid); 216 filemap_write_and_wait(&inode->i_data); 217 } 218 truncate_inode_pages_final(&inode->i_data); 219 220 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 221 goto no_delete; 222 } 223 224 if (!is_bad_inode(inode)) 225 dquot_initialize(inode); 226 227 if (ext4_should_order_data(inode)) 228 ext4_begin_ordered_truncate(inode, 0); 229 truncate_inode_pages_final(&inode->i_data); 230 231 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 232 if (is_bad_inode(inode)) 233 goto no_delete; 234 235 /* 236 * Protect us against freezing - iput() caller didn't have to have any 237 * protection against it 238 */ 239 sb_start_intwrite(inode->i_sb); 240 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 241 ext4_blocks_for_truncate(inode)+3); 242 if (IS_ERR(handle)) { 243 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 244 /* 245 * If we're going to skip the normal cleanup, we still need to 246 * make sure that the in-core orphan linked list is properly 247 * cleaned up. 248 */ 249 ext4_orphan_del(NULL, inode); 250 sb_end_intwrite(inode->i_sb); 251 goto no_delete; 252 } 253 254 if (IS_SYNC(inode)) 255 ext4_handle_sync(handle); 256 inode->i_size = 0; 257 err = ext4_mark_inode_dirty(handle, inode); 258 if (err) { 259 ext4_warning(inode->i_sb, 260 "couldn't mark inode dirty (err %d)", err); 261 goto stop_handle; 262 } 263 if (inode->i_blocks) 264 ext4_truncate(inode); 265 266 /* 267 * ext4_ext_truncate() doesn't reserve any slop when it 268 * restarts journal transactions; therefore there may not be 269 * enough credits left in the handle to remove the inode from 270 * the orphan list and set the dtime field. 271 */ 272 if (!ext4_handle_has_enough_credits(handle, 3)) { 273 err = ext4_journal_extend(handle, 3); 274 if (err > 0) 275 err = ext4_journal_restart(handle, 3); 276 if (err != 0) { 277 ext4_warning(inode->i_sb, 278 "couldn't extend journal (err %d)", err); 279 stop_handle: 280 ext4_journal_stop(handle); 281 ext4_orphan_del(NULL, inode); 282 sb_end_intwrite(inode->i_sb); 283 goto no_delete; 284 } 285 } 286 287 /* 288 * Kill off the orphan record which ext4_truncate created. 289 * AKPM: I think this can be inside the above `if'. 290 * Note that ext4_orphan_del() has to be able to cope with the 291 * deletion of a non-existent orphan - this is because we don't 292 * know if ext4_truncate() actually created an orphan record. 293 * (Well, we could do this if we need to, but heck - it works) 294 */ 295 ext4_orphan_del(handle, inode); 296 EXT4_I(inode)->i_dtime = get_seconds(); 297 298 /* 299 * One subtle ordering requirement: if anything has gone wrong 300 * (transaction abort, IO errors, whatever), then we can still 301 * do these next steps (the fs will already have been marked as 302 * having errors), but we can't free the inode if the mark_dirty 303 * fails. 304 */ 305 if (ext4_mark_inode_dirty(handle, inode)) 306 /* If that failed, just do the required in-core inode clear. */ 307 ext4_clear_inode(inode); 308 else 309 ext4_free_inode(handle, inode); 310 ext4_journal_stop(handle); 311 sb_end_intwrite(inode->i_sb); 312 return; 313 no_delete: 314 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 315 } 316 317 #ifdef CONFIG_QUOTA 318 qsize_t *ext4_get_reserved_space(struct inode *inode) 319 { 320 return &EXT4_I(inode)->i_reserved_quota; 321 } 322 #endif 323 324 /* 325 * Calculate the number of metadata blocks need to reserve 326 * to allocate a block located at @lblock 327 */ 328 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 329 { 330 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 331 return ext4_ext_calc_metadata_amount(inode, lblock); 332 333 return ext4_ind_calc_metadata_amount(inode, lblock); 334 } 335 336 /* 337 * Called with i_data_sem down, which is important since we can call 338 * ext4_discard_preallocations() from here. 339 */ 340 void ext4_da_update_reserve_space(struct inode *inode, 341 int used, int quota_claim) 342 { 343 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 344 struct ext4_inode_info *ei = EXT4_I(inode); 345 346 spin_lock(&ei->i_block_reservation_lock); 347 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 348 if (unlikely(used > ei->i_reserved_data_blocks)) { 349 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 350 "with only %d reserved data blocks", 351 __func__, inode->i_ino, used, 352 ei->i_reserved_data_blocks); 353 WARN_ON(1); 354 used = ei->i_reserved_data_blocks; 355 } 356 357 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) { 358 ext4_warning(inode->i_sb, "ino %lu, allocated %d " 359 "with only %d reserved metadata blocks " 360 "(releasing %d blocks with reserved %d data blocks)", 361 inode->i_ino, ei->i_allocated_meta_blocks, 362 ei->i_reserved_meta_blocks, used, 363 ei->i_reserved_data_blocks); 364 WARN_ON(1); 365 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks; 366 } 367 368 /* Update per-inode reservations */ 369 ei->i_reserved_data_blocks -= used; 370 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 371 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 372 used + ei->i_allocated_meta_blocks); 373 ei->i_allocated_meta_blocks = 0; 374 375 if (ei->i_reserved_data_blocks == 0) { 376 /* 377 * We can release all of the reserved metadata blocks 378 * only when we have written all of the delayed 379 * allocation blocks. 380 */ 381 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 382 ei->i_reserved_meta_blocks); 383 ei->i_reserved_meta_blocks = 0; 384 ei->i_da_metadata_calc_len = 0; 385 } 386 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 387 388 /* Update quota subsystem for data blocks */ 389 if (quota_claim) 390 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 391 else { 392 /* 393 * We did fallocate with an offset that is already delayed 394 * allocated. So on delayed allocated writeback we should 395 * not re-claim the quota for fallocated blocks. 396 */ 397 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 398 } 399 400 /* 401 * If we have done all the pending block allocations and if 402 * there aren't any writers on the inode, we can discard the 403 * inode's preallocations. 404 */ 405 if ((ei->i_reserved_data_blocks == 0) && 406 (atomic_read(&inode->i_writecount) == 0)) 407 ext4_discard_preallocations(inode); 408 } 409 410 static int __check_block_validity(struct inode *inode, const char *func, 411 unsigned int line, 412 struct ext4_map_blocks *map) 413 { 414 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 415 map->m_len)) { 416 ext4_error_inode(inode, func, line, map->m_pblk, 417 "lblock %lu mapped to illegal pblock " 418 "(length %d)", (unsigned long) map->m_lblk, 419 map->m_len); 420 return -EIO; 421 } 422 return 0; 423 } 424 425 #define check_block_validity(inode, map) \ 426 __check_block_validity((inode), __func__, __LINE__, (map)) 427 428 #ifdef ES_AGGRESSIVE_TEST 429 static void ext4_map_blocks_es_recheck(handle_t *handle, 430 struct inode *inode, 431 struct ext4_map_blocks *es_map, 432 struct ext4_map_blocks *map, 433 int flags) 434 { 435 int retval; 436 437 map->m_flags = 0; 438 /* 439 * There is a race window that the result is not the same. 440 * e.g. xfstests #223 when dioread_nolock enables. The reason 441 * is that we lookup a block mapping in extent status tree with 442 * out taking i_data_sem. So at the time the unwritten extent 443 * could be converted. 444 */ 445 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 446 down_read((&EXT4_I(inode)->i_data_sem)); 447 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 448 retval = ext4_ext_map_blocks(handle, inode, map, flags & 449 EXT4_GET_BLOCKS_KEEP_SIZE); 450 } else { 451 retval = ext4_ind_map_blocks(handle, inode, map, flags & 452 EXT4_GET_BLOCKS_KEEP_SIZE); 453 } 454 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 455 up_read((&EXT4_I(inode)->i_data_sem)); 456 /* 457 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag 458 * because it shouldn't be marked in es_map->m_flags. 459 */ 460 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY); 461 462 /* 463 * We don't check m_len because extent will be collpased in status 464 * tree. So the m_len might not equal. 465 */ 466 if (es_map->m_lblk != map->m_lblk || 467 es_map->m_flags != map->m_flags || 468 es_map->m_pblk != map->m_pblk) { 469 printk("ES cache assertion failed for inode: %lu " 470 "es_cached ex [%d/%d/%llu/%x] != " 471 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 472 inode->i_ino, es_map->m_lblk, es_map->m_len, 473 es_map->m_pblk, es_map->m_flags, map->m_lblk, 474 map->m_len, map->m_pblk, map->m_flags, 475 retval, flags); 476 } 477 } 478 #endif /* ES_AGGRESSIVE_TEST */ 479 480 /* 481 * The ext4_map_blocks() function tries to look up the requested blocks, 482 * and returns if the blocks are already mapped. 483 * 484 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 485 * and store the allocated blocks in the result buffer head and mark it 486 * mapped. 487 * 488 * If file type is extents based, it will call ext4_ext_map_blocks(), 489 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 490 * based files 491 * 492 * On success, it returns the number of blocks being mapped or allocate. 493 * if create==0 and the blocks are pre-allocated and uninitialized block, 494 * the result buffer head is unmapped. If the create ==1, it will make sure 495 * the buffer head is mapped. 496 * 497 * It returns 0 if plain look up failed (blocks have not been allocated), in 498 * that case, buffer head is unmapped 499 * 500 * It returns the error in case of allocation failure. 501 */ 502 int ext4_map_blocks(handle_t *handle, struct inode *inode, 503 struct ext4_map_blocks *map, int flags) 504 { 505 struct extent_status es; 506 int retval; 507 int ret = 0; 508 #ifdef ES_AGGRESSIVE_TEST 509 struct ext4_map_blocks orig_map; 510 511 memcpy(&orig_map, map, sizeof(*map)); 512 #endif 513 514 map->m_flags = 0; 515 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 516 "logical block %lu\n", inode->i_ino, flags, map->m_len, 517 (unsigned long) map->m_lblk); 518 519 /* 520 * ext4_map_blocks returns an int, and m_len is an unsigned int 521 */ 522 if (unlikely(map->m_len > INT_MAX)) 523 map->m_len = INT_MAX; 524 525 /* We can handle the block number less than EXT_MAX_BLOCKS */ 526 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 527 return -EIO; 528 529 /* Lookup extent status tree firstly */ 530 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 531 ext4_es_lru_add(inode); 532 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 533 map->m_pblk = ext4_es_pblock(&es) + 534 map->m_lblk - es.es_lblk; 535 map->m_flags |= ext4_es_is_written(&es) ? 536 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 537 retval = es.es_len - (map->m_lblk - es.es_lblk); 538 if (retval > map->m_len) 539 retval = map->m_len; 540 map->m_len = retval; 541 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 542 retval = 0; 543 } else { 544 BUG_ON(1); 545 } 546 #ifdef ES_AGGRESSIVE_TEST 547 ext4_map_blocks_es_recheck(handle, inode, map, 548 &orig_map, flags); 549 #endif 550 goto found; 551 } 552 553 /* 554 * Try to see if we can get the block without requesting a new 555 * file system block. 556 */ 557 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 558 down_read((&EXT4_I(inode)->i_data_sem)); 559 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 560 retval = ext4_ext_map_blocks(handle, inode, map, flags & 561 EXT4_GET_BLOCKS_KEEP_SIZE); 562 } else { 563 retval = ext4_ind_map_blocks(handle, inode, map, flags & 564 EXT4_GET_BLOCKS_KEEP_SIZE); 565 } 566 if (retval > 0) { 567 unsigned int status; 568 569 if (unlikely(retval != map->m_len)) { 570 ext4_warning(inode->i_sb, 571 "ES len assertion failed for inode " 572 "%lu: retval %d != map->m_len %d", 573 inode->i_ino, retval, map->m_len); 574 WARN_ON(1); 575 } 576 577 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 578 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 579 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 580 ext4_find_delalloc_range(inode, map->m_lblk, 581 map->m_lblk + map->m_len - 1)) 582 status |= EXTENT_STATUS_DELAYED; 583 ret = ext4_es_insert_extent(inode, map->m_lblk, 584 map->m_len, map->m_pblk, status); 585 if (ret < 0) 586 retval = ret; 587 } 588 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 589 up_read((&EXT4_I(inode)->i_data_sem)); 590 591 found: 592 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 593 ret = check_block_validity(inode, map); 594 if (ret != 0) 595 return ret; 596 } 597 598 /* If it is only a block(s) look up */ 599 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 600 return retval; 601 602 /* 603 * Returns if the blocks have already allocated 604 * 605 * Note that if blocks have been preallocated 606 * ext4_ext_get_block() returns the create = 0 607 * with buffer head unmapped. 608 */ 609 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 610 /* 611 * If we need to convert extent to unwritten 612 * we continue and do the actual work in 613 * ext4_ext_map_blocks() 614 */ 615 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 616 return retval; 617 618 /* 619 * Here we clear m_flags because after allocating an new extent, 620 * it will be set again. 621 */ 622 map->m_flags &= ~EXT4_MAP_FLAGS; 623 624 /* 625 * New blocks allocate and/or writing to uninitialized extent 626 * will possibly result in updating i_data, so we take 627 * the write lock of i_data_sem, and call get_blocks() 628 * with create == 1 flag. 629 */ 630 down_write((&EXT4_I(inode)->i_data_sem)); 631 632 /* 633 * if the caller is from delayed allocation writeout path 634 * we have already reserved fs blocks for allocation 635 * let the underlying get_block() function know to 636 * avoid double accounting 637 */ 638 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 639 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 640 /* 641 * We need to check for EXT4 here because migrate 642 * could have changed the inode type in between 643 */ 644 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 645 retval = ext4_ext_map_blocks(handle, inode, map, flags); 646 } else { 647 retval = ext4_ind_map_blocks(handle, inode, map, flags); 648 649 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 650 /* 651 * We allocated new blocks which will result in 652 * i_data's format changing. Force the migrate 653 * to fail by clearing migrate flags 654 */ 655 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 656 } 657 658 /* 659 * Update reserved blocks/metadata blocks after successful 660 * block allocation which had been deferred till now. We don't 661 * support fallocate for non extent files. So we can update 662 * reserve space here. 663 */ 664 if ((retval > 0) && 665 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 666 ext4_da_update_reserve_space(inode, retval, 1); 667 } 668 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 669 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 670 671 if (retval > 0) { 672 unsigned int status; 673 674 if (unlikely(retval != map->m_len)) { 675 ext4_warning(inode->i_sb, 676 "ES len assertion failed for inode " 677 "%lu: retval %d != map->m_len %d", 678 inode->i_ino, retval, map->m_len); 679 WARN_ON(1); 680 } 681 682 /* 683 * If the extent has been zeroed out, we don't need to update 684 * extent status tree. 685 */ 686 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 687 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 688 if (ext4_es_is_written(&es)) 689 goto has_zeroout; 690 } 691 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 692 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 693 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 694 ext4_find_delalloc_range(inode, map->m_lblk, 695 map->m_lblk + map->m_len - 1)) 696 status |= EXTENT_STATUS_DELAYED; 697 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 698 map->m_pblk, status); 699 if (ret < 0) 700 retval = ret; 701 } 702 703 has_zeroout: 704 up_write((&EXT4_I(inode)->i_data_sem)); 705 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 706 ret = check_block_validity(inode, map); 707 if (ret != 0) 708 return ret; 709 } 710 return retval; 711 } 712 713 /* Maximum number of blocks we map for direct IO at once. */ 714 #define DIO_MAX_BLOCKS 4096 715 716 static int _ext4_get_block(struct inode *inode, sector_t iblock, 717 struct buffer_head *bh, int flags) 718 { 719 handle_t *handle = ext4_journal_current_handle(); 720 struct ext4_map_blocks map; 721 int ret = 0, started = 0; 722 int dio_credits; 723 724 if (ext4_has_inline_data(inode)) 725 return -ERANGE; 726 727 map.m_lblk = iblock; 728 map.m_len = bh->b_size >> inode->i_blkbits; 729 730 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) { 731 /* Direct IO write... */ 732 if (map.m_len > DIO_MAX_BLOCKS) 733 map.m_len = DIO_MAX_BLOCKS; 734 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 735 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 736 dio_credits); 737 if (IS_ERR(handle)) { 738 ret = PTR_ERR(handle); 739 return ret; 740 } 741 started = 1; 742 } 743 744 ret = ext4_map_blocks(handle, inode, &map, flags); 745 if (ret > 0) { 746 ext4_io_end_t *io_end = ext4_inode_aio(inode); 747 748 map_bh(bh, inode->i_sb, map.m_pblk); 749 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 750 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN) 751 set_buffer_defer_completion(bh); 752 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 753 ret = 0; 754 } 755 if (started) 756 ext4_journal_stop(handle); 757 return ret; 758 } 759 760 int ext4_get_block(struct inode *inode, sector_t iblock, 761 struct buffer_head *bh, int create) 762 { 763 return _ext4_get_block(inode, iblock, bh, 764 create ? EXT4_GET_BLOCKS_CREATE : 0); 765 } 766 767 /* 768 * `handle' can be NULL if create is zero 769 */ 770 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 771 ext4_lblk_t block, int create, int *errp) 772 { 773 struct ext4_map_blocks map; 774 struct buffer_head *bh; 775 int fatal = 0, err; 776 777 J_ASSERT(handle != NULL || create == 0); 778 779 map.m_lblk = block; 780 map.m_len = 1; 781 err = ext4_map_blocks(handle, inode, &map, 782 create ? EXT4_GET_BLOCKS_CREATE : 0); 783 784 /* ensure we send some value back into *errp */ 785 *errp = 0; 786 787 if (create && err == 0) 788 err = -ENOSPC; /* should never happen */ 789 if (err < 0) 790 *errp = err; 791 if (err <= 0) 792 return NULL; 793 794 bh = sb_getblk(inode->i_sb, map.m_pblk); 795 if (unlikely(!bh)) { 796 *errp = -ENOMEM; 797 return NULL; 798 } 799 if (map.m_flags & EXT4_MAP_NEW) { 800 J_ASSERT(create != 0); 801 J_ASSERT(handle != NULL); 802 803 /* 804 * Now that we do not always journal data, we should 805 * keep in mind whether this should always journal the 806 * new buffer as metadata. For now, regular file 807 * writes use ext4_get_block instead, so it's not a 808 * problem. 809 */ 810 lock_buffer(bh); 811 BUFFER_TRACE(bh, "call get_create_access"); 812 fatal = ext4_journal_get_create_access(handle, bh); 813 if (!fatal && !buffer_uptodate(bh)) { 814 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 815 set_buffer_uptodate(bh); 816 } 817 unlock_buffer(bh); 818 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 819 err = ext4_handle_dirty_metadata(handle, inode, bh); 820 if (!fatal) 821 fatal = err; 822 } else { 823 BUFFER_TRACE(bh, "not a new buffer"); 824 } 825 if (fatal) { 826 *errp = fatal; 827 brelse(bh); 828 bh = NULL; 829 } 830 return bh; 831 } 832 833 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 834 ext4_lblk_t block, int create, int *err) 835 { 836 struct buffer_head *bh; 837 838 bh = ext4_getblk(handle, inode, block, create, err); 839 if (!bh) 840 return bh; 841 if (buffer_uptodate(bh)) 842 return bh; 843 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 844 wait_on_buffer(bh); 845 if (buffer_uptodate(bh)) 846 return bh; 847 put_bh(bh); 848 *err = -EIO; 849 return NULL; 850 } 851 852 int ext4_walk_page_buffers(handle_t *handle, 853 struct buffer_head *head, 854 unsigned from, 855 unsigned to, 856 int *partial, 857 int (*fn)(handle_t *handle, 858 struct buffer_head *bh)) 859 { 860 struct buffer_head *bh; 861 unsigned block_start, block_end; 862 unsigned blocksize = head->b_size; 863 int err, ret = 0; 864 struct buffer_head *next; 865 866 for (bh = head, block_start = 0; 867 ret == 0 && (bh != head || !block_start); 868 block_start = block_end, bh = next) { 869 next = bh->b_this_page; 870 block_end = block_start + blocksize; 871 if (block_end <= from || block_start >= to) { 872 if (partial && !buffer_uptodate(bh)) 873 *partial = 1; 874 continue; 875 } 876 err = (*fn)(handle, bh); 877 if (!ret) 878 ret = err; 879 } 880 return ret; 881 } 882 883 /* 884 * To preserve ordering, it is essential that the hole instantiation and 885 * the data write be encapsulated in a single transaction. We cannot 886 * close off a transaction and start a new one between the ext4_get_block() 887 * and the commit_write(). So doing the jbd2_journal_start at the start of 888 * prepare_write() is the right place. 889 * 890 * Also, this function can nest inside ext4_writepage(). In that case, we 891 * *know* that ext4_writepage() has generated enough buffer credits to do the 892 * whole page. So we won't block on the journal in that case, which is good, 893 * because the caller may be PF_MEMALLOC. 894 * 895 * By accident, ext4 can be reentered when a transaction is open via 896 * quota file writes. If we were to commit the transaction while thus 897 * reentered, there can be a deadlock - we would be holding a quota 898 * lock, and the commit would never complete if another thread had a 899 * transaction open and was blocking on the quota lock - a ranking 900 * violation. 901 * 902 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 903 * will _not_ run commit under these circumstances because handle->h_ref 904 * is elevated. We'll still have enough credits for the tiny quotafile 905 * write. 906 */ 907 int do_journal_get_write_access(handle_t *handle, 908 struct buffer_head *bh) 909 { 910 int dirty = buffer_dirty(bh); 911 int ret; 912 913 if (!buffer_mapped(bh) || buffer_freed(bh)) 914 return 0; 915 /* 916 * __block_write_begin() could have dirtied some buffers. Clean 917 * the dirty bit as jbd2_journal_get_write_access() could complain 918 * otherwise about fs integrity issues. Setting of the dirty bit 919 * by __block_write_begin() isn't a real problem here as we clear 920 * the bit before releasing a page lock and thus writeback cannot 921 * ever write the buffer. 922 */ 923 if (dirty) 924 clear_buffer_dirty(bh); 925 ret = ext4_journal_get_write_access(handle, bh); 926 if (!ret && dirty) 927 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 928 return ret; 929 } 930 931 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 932 struct buffer_head *bh_result, int create); 933 static int ext4_write_begin(struct file *file, struct address_space *mapping, 934 loff_t pos, unsigned len, unsigned flags, 935 struct page **pagep, void **fsdata) 936 { 937 struct inode *inode = mapping->host; 938 int ret, needed_blocks; 939 handle_t *handle; 940 int retries = 0; 941 struct page *page; 942 pgoff_t index; 943 unsigned from, to; 944 945 trace_ext4_write_begin(inode, pos, len, flags); 946 /* 947 * Reserve one block more for addition to orphan list in case 948 * we allocate blocks but write fails for some reason 949 */ 950 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 951 index = pos >> PAGE_CACHE_SHIFT; 952 from = pos & (PAGE_CACHE_SIZE - 1); 953 to = from + len; 954 955 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 956 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 957 flags, pagep); 958 if (ret < 0) 959 return ret; 960 if (ret == 1) 961 return 0; 962 } 963 964 /* 965 * grab_cache_page_write_begin() can take a long time if the 966 * system is thrashing due to memory pressure, or if the page 967 * is being written back. So grab it first before we start 968 * the transaction handle. This also allows us to allocate 969 * the page (if needed) without using GFP_NOFS. 970 */ 971 retry_grab: 972 page = grab_cache_page_write_begin(mapping, index, flags); 973 if (!page) 974 return -ENOMEM; 975 unlock_page(page); 976 977 retry_journal: 978 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 979 if (IS_ERR(handle)) { 980 page_cache_release(page); 981 return PTR_ERR(handle); 982 } 983 984 lock_page(page); 985 if (page->mapping != mapping) { 986 /* The page got truncated from under us */ 987 unlock_page(page); 988 page_cache_release(page); 989 ext4_journal_stop(handle); 990 goto retry_grab; 991 } 992 /* In case writeback began while the page was unlocked */ 993 wait_for_stable_page(page); 994 995 if (ext4_should_dioread_nolock(inode)) 996 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 997 else 998 ret = __block_write_begin(page, pos, len, ext4_get_block); 999 1000 if (!ret && ext4_should_journal_data(inode)) { 1001 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1002 from, to, NULL, 1003 do_journal_get_write_access); 1004 } 1005 1006 if (ret) { 1007 unlock_page(page); 1008 /* 1009 * __block_write_begin may have instantiated a few blocks 1010 * outside i_size. Trim these off again. Don't need 1011 * i_size_read because we hold i_mutex. 1012 * 1013 * Add inode to orphan list in case we crash before 1014 * truncate finishes 1015 */ 1016 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1017 ext4_orphan_add(handle, inode); 1018 1019 ext4_journal_stop(handle); 1020 if (pos + len > inode->i_size) { 1021 ext4_truncate_failed_write(inode); 1022 /* 1023 * If truncate failed early the inode might 1024 * still be on the orphan list; we need to 1025 * make sure the inode is removed from the 1026 * orphan list in that case. 1027 */ 1028 if (inode->i_nlink) 1029 ext4_orphan_del(NULL, inode); 1030 } 1031 1032 if (ret == -ENOSPC && 1033 ext4_should_retry_alloc(inode->i_sb, &retries)) 1034 goto retry_journal; 1035 page_cache_release(page); 1036 return ret; 1037 } 1038 *pagep = page; 1039 return ret; 1040 } 1041 1042 /* For write_end() in data=journal mode */ 1043 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1044 { 1045 int ret; 1046 if (!buffer_mapped(bh) || buffer_freed(bh)) 1047 return 0; 1048 set_buffer_uptodate(bh); 1049 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1050 clear_buffer_meta(bh); 1051 clear_buffer_prio(bh); 1052 return ret; 1053 } 1054 1055 /* 1056 * We need to pick up the new inode size which generic_commit_write gave us 1057 * `file' can be NULL - eg, when called from page_symlink(). 1058 * 1059 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1060 * buffers are managed internally. 1061 */ 1062 static int ext4_write_end(struct file *file, 1063 struct address_space *mapping, 1064 loff_t pos, unsigned len, unsigned copied, 1065 struct page *page, void *fsdata) 1066 { 1067 handle_t *handle = ext4_journal_current_handle(); 1068 struct inode *inode = mapping->host; 1069 int ret = 0, ret2; 1070 int i_size_changed = 0; 1071 1072 trace_ext4_write_end(inode, pos, len, copied); 1073 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) { 1074 ret = ext4_jbd2_file_inode(handle, inode); 1075 if (ret) { 1076 unlock_page(page); 1077 page_cache_release(page); 1078 goto errout; 1079 } 1080 } 1081 1082 if (ext4_has_inline_data(inode)) { 1083 ret = ext4_write_inline_data_end(inode, pos, len, 1084 copied, page); 1085 if (ret < 0) 1086 goto errout; 1087 copied = ret; 1088 } else 1089 copied = block_write_end(file, mapping, pos, 1090 len, copied, page, fsdata); 1091 1092 /* 1093 * No need to use i_size_read() here, the i_size 1094 * cannot change under us because we hole i_mutex. 1095 * 1096 * But it's important to update i_size while still holding page lock: 1097 * page writeout could otherwise come in and zero beyond i_size. 1098 */ 1099 if (pos + copied > inode->i_size) { 1100 i_size_write(inode, pos + copied); 1101 i_size_changed = 1; 1102 } 1103 1104 if (pos + copied > EXT4_I(inode)->i_disksize) { 1105 /* We need to mark inode dirty even if 1106 * new_i_size is less that inode->i_size 1107 * but greater than i_disksize. (hint delalloc) 1108 */ 1109 ext4_update_i_disksize(inode, (pos + copied)); 1110 i_size_changed = 1; 1111 } 1112 unlock_page(page); 1113 page_cache_release(page); 1114 1115 /* 1116 * Don't mark the inode dirty under page lock. First, it unnecessarily 1117 * makes the holding time of page lock longer. Second, it forces lock 1118 * ordering of page lock and transaction start for journaling 1119 * filesystems. 1120 */ 1121 if (i_size_changed) 1122 ext4_mark_inode_dirty(handle, inode); 1123 1124 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1125 /* if we have allocated more blocks and copied 1126 * less. We will have blocks allocated outside 1127 * inode->i_size. So truncate them 1128 */ 1129 ext4_orphan_add(handle, inode); 1130 errout: 1131 ret2 = ext4_journal_stop(handle); 1132 if (!ret) 1133 ret = ret2; 1134 1135 if (pos + len > inode->i_size) { 1136 ext4_truncate_failed_write(inode); 1137 /* 1138 * If truncate failed early the inode might still be 1139 * on the orphan list; we need to make sure the inode 1140 * is removed from the orphan list in that case. 1141 */ 1142 if (inode->i_nlink) 1143 ext4_orphan_del(NULL, inode); 1144 } 1145 1146 return ret ? ret : copied; 1147 } 1148 1149 static int ext4_journalled_write_end(struct file *file, 1150 struct address_space *mapping, 1151 loff_t pos, unsigned len, unsigned copied, 1152 struct page *page, void *fsdata) 1153 { 1154 handle_t *handle = ext4_journal_current_handle(); 1155 struct inode *inode = mapping->host; 1156 int ret = 0, ret2; 1157 int partial = 0; 1158 unsigned from, to; 1159 loff_t new_i_size; 1160 1161 trace_ext4_journalled_write_end(inode, pos, len, copied); 1162 from = pos & (PAGE_CACHE_SIZE - 1); 1163 to = from + len; 1164 1165 BUG_ON(!ext4_handle_valid(handle)); 1166 1167 if (ext4_has_inline_data(inode)) 1168 copied = ext4_write_inline_data_end(inode, pos, len, 1169 copied, page); 1170 else { 1171 if (copied < len) { 1172 if (!PageUptodate(page)) 1173 copied = 0; 1174 page_zero_new_buffers(page, from+copied, to); 1175 } 1176 1177 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1178 to, &partial, write_end_fn); 1179 if (!partial) 1180 SetPageUptodate(page); 1181 } 1182 new_i_size = pos + copied; 1183 if (new_i_size > inode->i_size) 1184 i_size_write(inode, pos+copied); 1185 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1186 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1187 if (new_i_size > EXT4_I(inode)->i_disksize) { 1188 ext4_update_i_disksize(inode, new_i_size); 1189 ret2 = ext4_mark_inode_dirty(handle, inode); 1190 if (!ret) 1191 ret = ret2; 1192 } 1193 1194 unlock_page(page); 1195 page_cache_release(page); 1196 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1197 /* if we have allocated more blocks and copied 1198 * less. We will have blocks allocated outside 1199 * inode->i_size. So truncate them 1200 */ 1201 ext4_orphan_add(handle, inode); 1202 1203 ret2 = ext4_journal_stop(handle); 1204 if (!ret) 1205 ret = ret2; 1206 if (pos + len > inode->i_size) { 1207 ext4_truncate_failed_write(inode); 1208 /* 1209 * If truncate failed early the inode might still be 1210 * on the orphan list; we need to make sure the inode 1211 * is removed from the orphan list in that case. 1212 */ 1213 if (inode->i_nlink) 1214 ext4_orphan_del(NULL, inode); 1215 } 1216 1217 return ret ? ret : copied; 1218 } 1219 1220 /* 1221 * Reserve a metadata for a single block located at lblock 1222 */ 1223 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock) 1224 { 1225 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1226 struct ext4_inode_info *ei = EXT4_I(inode); 1227 unsigned int md_needed; 1228 ext4_lblk_t save_last_lblock; 1229 int save_len; 1230 1231 /* 1232 * recalculate the amount of metadata blocks to reserve 1233 * in order to allocate nrblocks 1234 * worse case is one extent per block 1235 */ 1236 spin_lock(&ei->i_block_reservation_lock); 1237 /* 1238 * ext4_calc_metadata_amount() has side effects, which we have 1239 * to be prepared undo if we fail to claim space. 1240 */ 1241 save_len = ei->i_da_metadata_calc_len; 1242 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1243 md_needed = EXT4_NUM_B2C(sbi, 1244 ext4_calc_metadata_amount(inode, lblock)); 1245 trace_ext4_da_reserve_space(inode, md_needed); 1246 1247 /* 1248 * We do still charge estimated metadata to the sb though; 1249 * we cannot afford to run out of free blocks. 1250 */ 1251 if (ext4_claim_free_clusters(sbi, md_needed, 0)) { 1252 ei->i_da_metadata_calc_len = save_len; 1253 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1254 spin_unlock(&ei->i_block_reservation_lock); 1255 return -ENOSPC; 1256 } 1257 ei->i_reserved_meta_blocks += md_needed; 1258 spin_unlock(&ei->i_block_reservation_lock); 1259 1260 return 0; /* success */ 1261 } 1262 1263 /* 1264 * Reserve a single cluster located at lblock 1265 */ 1266 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1267 { 1268 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1269 struct ext4_inode_info *ei = EXT4_I(inode); 1270 unsigned int md_needed; 1271 int ret; 1272 ext4_lblk_t save_last_lblock; 1273 int save_len; 1274 1275 /* 1276 * We will charge metadata quota at writeout time; this saves 1277 * us from metadata over-estimation, though we may go over by 1278 * a small amount in the end. Here we just reserve for data. 1279 */ 1280 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1281 if (ret) 1282 return ret; 1283 1284 /* 1285 * recalculate the amount of metadata blocks to reserve 1286 * in order to allocate nrblocks 1287 * worse case is one extent per block 1288 */ 1289 spin_lock(&ei->i_block_reservation_lock); 1290 /* 1291 * ext4_calc_metadata_amount() has side effects, which we have 1292 * to be prepared undo if we fail to claim space. 1293 */ 1294 save_len = ei->i_da_metadata_calc_len; 1295 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1296 md_needed = EXT4_NUM_B2C(sbi, 1297 ext4_calc_metadata_amount(inode, lblock)); 1298 trace_ext4_da_reserve_space(inode, md_needed); 1299 1300 /* 1301 * We do still charge estimated metadata to the sb though; 1302 * we cannot afford to run out of free blocks. 1303 */ 1304 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) { 1305 ei->i_da_metadata_calc_len = save_len; 1306 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1307 spin_unlock(&ei->i_block_reservation_lock); 1308 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1309 return -ENOSPC; 1310 } 1311 ei->i_reserved_data_blocks++; 1312 ei->i_reserved_meta_blocks += md_needed; 1313 spin_unlock(&ei->i_block_reservation_lock); 1314 1315 return 0; /* success */ 1316 } 1317 1318 static void ext4_da_release_space(struct inode *inode, int to_free) 1319 { 1320 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1321 struct ext4_inode_info *ei = EXT4_I(inode); 1322 1323 if (!to_free) 1324 return; /* Nothing to release, exit */ 1325 1326 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1327 1328 trace_ext4_da_release_space(inode, to_free); 1329 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1330 /* 1331 * if there aren't enough reserved blocks, then the 1332 * counter is messed up somewhere. Since this 1333 * function is called from invalidate page, it's 1334 * harmless to return without any action. 1335 */ 1336 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1337 "ino %lu, to_free %d with only %d reserved " 1338 "data blocks", inode->i_ino, to_free, 1339 ei->i_reserved_data_blocks); 1340 WARN_ON(1); 1341 to_free = ei->i_reserved_data_blocks; 1342 } 1343 ei->i_reserved_data_blocks -= to_free; 1344 1345 if (ei->i_reserved_data_blocks == 0) { 1346 /* 1347 * We can release all of the reserved metadata blocks 1348 * only when we have written all of the delayed 1349 * allocation blocks. 1350 * Note that in case of bigalloc, i_reserved_meta_blocks, 1351 * i_reserved_data_blocks, etc. refer to number of clusters. 1352 */ 1353 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 1354 ei->i_reserved_meta_blocks); 1355 ei->i_reserved_meta_blocks = 0; 1356 ei->i_da_metadata_calc_len = 0; 1357 } 1358 1359 /* update fs dirty data blocks counter */ 1360 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1361 1362 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1363 1364 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1365 } 1366 1367 static void ext4_da_page_release_reservation(struct page *page, 1368 unsigned int offset, 1369 unsigned int length) 1370 { 1371 int to_release = 0; 1372 struct buffer_head *head, *bh; 1373 unsigned int curr_off = 0; 1374 struct inode *inode = page->mapping->host; 1375 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1376 unsigned int stop = offset + length; 1377 int num_clusters; 1378 ext4_fsblk_t lblk; 1379 1380 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 1381 1382 head = page_buffers(page); 1383 bh = head; 1384 do { 1385 unsigned int next_off = curr_off + bh->b_size; 1386 1387 if (next_off > stop) 1388 break; 1389 1390 if ((offset <= curr_off) && (buffer_delay(bh))) { 1391 to_release++; 1392 clear_buffer_delay(bh); 1393 } 1394 curr_off = next_off; 1395 } while ((bh = bh->b_this_page) != head); 1396 1397 if (to_release) { 1398 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1399 ext4_es_remove_extent(inode, lblk, to_release); 1400 } 1401 1402 /* If we have released all the blocks belonging to a cluster, then we 1403 * need to release the reserved space for that cluster. */ 1404 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1405 while (num_clusters > 0) { 1406 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1407 ((num_clusters - 1) << sbi->s_cluster_bits); 1408 if (sbi->s_cluster_ratio == 1 || 1409 !ext4_find_delalloc_cluster(inode, lblk)) 1410 ext4_da_release_space(inode, 1); 1411 1412 num_clusters--; 1413 } 1414 } 1415 1416 /* 1417 * Delayed allocation stuff 1418 */ 1419 1420 struct mpage_da_data { 1421 struct inode *inode; 1422 struct writeback_control *wbc; 1423 1424 pgoff_t first_page; /* The first page to write */ 1425 pgoff_t next_page; /* Current page to examine */ 1426 pgoff_t last_page; /* Last page to examine */ 1427 /* 1428 * Extent to map - this can be after first_page because that can be 1429 * fully mapped. We somewhat abuse m_flags to store whether the extent 1430 * is delalloc or unwritten. 1431 */ 1432 struct ext4_map_blocks map; 1433 struct ext4_io_submit io_submit; /* IO submission data */ 1434 }; 1435 1436 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1437 bool invalidate) 1438 { 1439 int nr_pages, i; 1440 pgoff_t index, end; 1441 struct pagevec pvec; 1442 struct inode *inode = mpd->inode; 1443 struct address_space *mapping = inode->i_mapping; 1444 1445 /* This is necessary when next_page == 0. */ 1446 if (mpd->first_page >= mpd->next_page) 1447 return; 1448 1449 index = mpd->first_page; 1450 end = mpd->next_page - 1; 1451 if (invalidate) { 1452 ext4_lblk_t start, last; 1453 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1454 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1455 ext4_es_remove_extent(inode, start, last - start + 1); 1456 } 1457 1458 pagevec_init(&pvec, 0); 1459 while (index <= end) { 1460 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1461 if (nr_pages == 0) 1462 break; 1463 for (i = 0; i < nr_pages; i++) { 1464 struct page *page = pvec.pages[i]; 1465 if (page->index > end) 1466 break; 1467 BUG_ON(!PageLocked(page)); 1468 BUG_ON(PageWriteback(page)); 1469 if (invalidate) { 1470 block_invalidatepage(page, 0, PAGE_CACHE_SIZE); 1471 ClearPageUptodate(page); 1472 } 1473 unlock_page(page); 1474 } 1475 index = pvec.pages[nr_pages - 1]->index + 1; 1476 pagevec_release(&pvec); 1477 } 1478 } 1479 1480 static void ext4_print_free_blocks(struct inode *inode) 1481 { 1482 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1483 struct super_block *sb = inode->i_sb; 1484 struct ext4_inode_info *ei = EXT4_I(inode); 1485 1486 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1487 EXT4_C2B(EXT4_SB(inode->i_sb), 1488 ext4_count_free_clusters(sb))); 1489 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1490 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1491 (long long) EXT4_C2B(EXT4_SB(sb), 1492 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1493 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1494 (long long) EXT4_C2B(EXT4_SB(sb), 1495 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1496 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1497 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1498 ei->i_reserved_data_blocks); 1499 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u", 1500 ei->i_reserved_meta_blocks); 1501 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u", 1502 ei->i_allocated_meta_blocks); 1503 return; 1504 } 1505 1506 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1507 { 1508 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1509 } 1510 1511 /* 1512 * This function is grabs code from the very beginning of 1513 * ext4_map_blocks, but assumes that the caller is from delayed write 1514 * time. This function looks up the requested blocks and sets the 1515 * buffer delay bit under the protection of i_data_sem. 1516 */ 1517 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1518 struct ext4_map_blocks *map, 1519 struct buffer_head *bh) 1520 { 1521 struct extent_status es; 1522 int retval; 1523 sector_t invalid_block = ~((sector_t) 0xffff); 1524 #ifdef ES_AGGRESSIVE_TEST 1525 struct ext4_map_blocks orig_map; 1526 1527 memcpy(&orig_map, map, sizeof(*map)); 1528 #endif 1529 1530 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1531 invalid_block = ~0; 1532 1533 map->m_flags = 0; 1534 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1535 "logical block %lu\n", inode->i_ino, map->m_len, 1536 (unsigned long) map->m_lblk); 1537 1538 /* Lookup extent status tree firstly */ 1539 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1540 ext4_es_lru_add(inode); 1541 if (ext4_es_is_hole(&es)) { 1542 retval = 0; 1543 down_read((&EXT4_I(inode)->i_data_sem)); 1544 goto add_delayed; 1545 } 1546 1547 /* 1548 * Delayed extent could be allocated by fallocate. 1549 * So we need to check it. 1550 */ 1551 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1552 map_bh(bh, inode->i_sb, invalid_block); 1553 set_buffer_new(bh); 1554 set_buffer_delay(bh); 1555 return 0; 1556 } 1557 1558 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1559 retval = es.es_len - (iblock - es.es_lblk); 1560 if (retval > map->m_len) 1561 retval = map->m_len; 1562 map->m_len = retval; 1563 if (ext4_es_is_written(&es)) 1564 map->m_flags |= EXT4_MAP_MAPPED; 1565 else if (ext4_es_is_unwritten(&es)) 1566 map->m_flags |= EXT4_MAP_UNWRITTEN; 1567 else 1568 BUG_ON(1); 1569 1570 #ifdef ES_AGGRESSIVE_TEST 1571 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1572 #endif 1573 return retval; 1574 } 1575 1576 /* 1577 * Try to see if we can get the block without requesting a new 1578 * file system block. 1579 */ 1580 down_read((&EXT4_I(inode)->i_data_sem)); 1581 if (ext4_has_inline_data(inode)) { 1582 /* 1583 * We will soon create blocks for this page, and let 1584 * us pretend as if the blocks aren't allocated yet. 1585 * In case of clusters, we have to handle the work 1586 * of mapping from cluster so that the reserved space 1587 * is calculated properly. 1588 */ 1589 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) && 1590 ext4_find_delalloc_cluster(inode, map->m_lblk)) 1591 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 1592 retval = 0; 1593 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1594 retval = ext4_ext_map_blocks(NULL, inode, map, 1595 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1596 else 1597 retval = ext4_ind_map_blocks(NULL, inode, map, 1598 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1599 1600 add_delayed: 1601 if (retval == 0) { 1602 int ret; 1603 /* 1604 * XXX: __block_prepare_write() unmaps passed block, 1605 * is it OK? 1606 */ 1607 /* 1608 * If the block was allocated from previously allocated cluster, 1609 * then we don't need to reserve it again. However we still need 1610 * to reserve metadata for every block we're going to write. 1611 */ 1612 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) { 1613 ret = ext4_da_reserve_space(inode, iblock); 1614 if (ret) { 1615 /* not enough space to reserve */ 1616 retval = ret; 1617 goto out_unlock; 1618 } 1619 } else { 1620 ret = ext4_da_reserve_metadata(inode, iblock); 1621 if (ret) { 1622 /* not enough space to reserve */ 1623 retval = ret; 1624 goto out_unlock; 1625 } 1626 } 1627 1628 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1629 ~0, EXTENT_STATUS_DELAYED); 1630 if (ret) { 1631 retval = ret; 1632 goto out_unlock; 1633 } 1634 1635 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served 1636 * and it should not appear on the bh->b_state. 1637 */ 1638 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 1639 1640 map_bh(bh, inode->i_sb, invalid_block); 1641 set_buffer_new(bh); 1642 set_buffer_delay(bh); 1643 } else if (retval > 0) { 1644 int ret; 1645 unsigned int status; 1646 1647 if (unlikely(retval != map->m_len)) { 1648 ext4_warning(inode->i_sb, 1649 "ES len assertion failed for inode " 1650 "%lu: retval %d != map->m_len %d", 1651 inode->i_ino, retval, map->m_len); 1652 WARN_ON(1); 1653 } 1654 1655 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1656 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1657 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1658 map->m_pblk, status); 1659 if (ret != 0) 1660 retval = ret; 1661 } 1662 1663 out_unlock: 1664 up_read((&EXT4_I(inode)->i_data_sem)); 1665 1666 return retval; 1667 } 1668 1669 /* 1670 * This is a special get_blocks_t callback which is used by 1671 * ext4_da_write_begin(). It will either return mapped block or 1672 * reserve space for a single block. 1673 * 1674 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1675 * We also have b_blocknr = -1 and b_bdev initialized properly 1676 * 1677 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1678 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1679 * initialized properly. 1680 */ 1681 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1682 struct buffer_head *bh, int create) 1683 { 1684 struct ext4_map_blocks map; 1685 int ret = 0; 1686 1687 BUG_ON(create == 0); 1688 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1689 1690 map.m_lblk = iblock; 1691 map.m_len = 1; 1692 1693 /* 1694 * first, we need to know whether the block is allocated already 1695 * preallocated blocks are unmapped but should treated 1696 * the same as allocated blocks. 1697 */ 1698 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1699 if (ret <= 0) 1700 return ret; 1701 1702 map_bh(bh, inode->i_sb, map.m_pblk); 1703 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1704 1705 if (buffer_unwritten(bh)) { 1706 /* A delayed write to unwritten bh should be marked 1707 * new and mapped. Mapped ensures that we don't do 1708 * get_block multiple times when we write to the same 1709 * offset and new ensures that we do proper zero out 1710 * for partial write. 1711 */ 1712 set_buffer_new(bh); 1713 set_buffer_mapped(bh); 1714 } 1715 return 0; 1716 } 1717 1718 static int bget_one(handle_t *handle, struct buffer_head *bh) 1719 { 1720 get_bh(bh); 1721 return 0; 1722 } 1723 1724 static int bput_one(handle_t *handle, struct buffer_head *bh) 1725 { 1726 put_bh(bh); 1727 return 0; 1728 } 1729 1730 static int __ext4_journalled_writepage(struct page *page, 1731 unsigned int len) 1732 { 1733 struct address_space *mapping = page->mapping; 1734 struct inode *inode = mapping->host; 1735 struct buffer_head *page_bufs = NULL; 1736 handle_t *handle = NULL; 1737 int ret = 0, err = 0; 1738 int inline_data = ext4_has_inline_data(inode); 1739 struct buffer_head *inode_bh = NULL; 1740 1741 ClearPageChecked(page); 1742 1743 if (inline_data) { 1744 BUG_ON(page->index != 0); 1745 BUG_ON(len > ext4_get_max_inline_size(inode)); 1746 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1747 if (inode_bh == NULL) 1748 goto out; 1749 } else { 1750 page_bufs = page_buffers(page); 1751 if (!page_bufs) { 1752 BUG(); 1753 goto out; 1754 } 1755 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1756 NULL, bget_one); 1757 } 1758 /* As soon as we unlock the page, it can go away, but we have 1759 * references to buffers so we are safe */ 1760 unlock_page(page); 1761 1762 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1763 ext4_writepage_trans_blocks(inode)); 1764 if (IS_ERR(handle)) { 1765 ret = PTR_ERR(handle); 1766 goto out; 1767 } 1768 1769 BUG_ON(!ext4_handle_valid(handle)); 1770 1771 if (inline_data) { 1772 ret = ext4_journal_get_write_access(handle, inode_bh); 1773 1774 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 1775 1776 } else { 1777 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1778 do_journal_get_write_access); 1779 1780 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1781 write_end_fn); 1782 } 1783 if (ret == 0) 1784 ret = err; 1785 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1786 err = ext4_journal_stop(handle); 1787 if (!ret) 1788 ret = err; 1789 1790 if (!ext4_has_inline_data(inode)) 1791 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1792 NULL, bput_one); 1793 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1794 out: 1795 brelse(inode_bh); 1796 return ret; 1797 } 1798 1799 /* 1800 * Note that we don't need to start a transaction unless we're journaling data 1801 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1802 * need to file the inode to the transaction's list in ordered mode because if 1803 * we are writing back data added by write(), the inode is already there and if 1804 * we are writing back data modified via mmap(), no one guarantees in which 1805 * transaction the data will hit the disk. In case we are journaling data, we 1806 * cannot start transaction directly because transaction start ranks above page 1807 * lock so we have to do some magic. 1808 * 1809 * This function can get called via... 1810 * - ext4_writepages after taking page lock (have journal handle) 1811 * - journal_submit_inode_data_buffers (no journal handle) 1812 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1813 * - grab_page_cache when doing write_begin (have journal handle) 1814 * 1815 * We don't do any block allocation in this function. If we have page with 1816 * multiple blocks we need to write those buffer_heads that are mapped. This 1817 * is important for mmaped based write. So if we do with blocksize 1K 1818 * truncate(f, 1024); 1819 * a = mmap(f, 0, 4096); 1820 * a[0] = 'a'; 1821 * truncate(f, 4096); 1822 * we have in the page first buffer_head mapped via page_mkwrite call back 1823 * but other buffer_heads would be unmapped but dirty (dirty done via the 1824 * do_wp_page). So writepage should write the first block. If we modify 1825 * the mmap area beyond 1024 we will again get a page_fault and the 1826 * page_mkwrite callback will do the block allocation and mark the 1827 * buffer_heads mapped. 1828 * 1829 * We redirty the page if we have any buffer_heads that is either delay or 1830 * unwritten in the page. 1831 * 1832 * We can get recursively called as show below. 1833 * 1834 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1835 * ext4_writepage() 1836 * 1837 * But since we don't do any block allocation we should not deadlock. 1838 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1839 */ 1840 static int ext4_writepage(struct page *page, 1841 struct writeback_control *wbc) 1842 { 1843 int ret = 0; 1844 loff_t size; 1845 unsigned int len; 1846 struct buffer_head *page_bufs = NULL; 1847 struct inode *inode = page->mapping->host; 1848 struct ext4_io_submit io_submit; 1849 1850 trace_ext4_writepage(page); 1851 size = i_size_read(inode); 1852 if (page->index == size >> PAGE_CACHE_SHIFT) 1853 len = size & ~PAGE_CACHE_MASK; 1854 else 1855 len = PAGE_CACHE_SIZE; 1856 1857 page_bufs = page_buffers(page); 1858 /* 1859 * We cannot do block allocation or other extent handling in this 1860 * function. If there are buffers needing that, we have to redirty 1861 * the page. But we may reach here when we do a journal commit via 1862 * journal_submit_inode_data_buffers() and in that case we must write 1863 * allocated buffers to achieve data=ordered mode guarantees. 1864 */ 1865 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 1866 ext4_bh_delay_or_unwritten)) { 1867 redirty_page_for_writepage(wbc, page); 1868 if (current->flags & PF_MEMALLOC) { 1869 /* 1870 * For memory cleaning there's no point in writing only 1871 * some buffers. So just bail out. Warn if we came here 1872 * from direct reclaim. 1873 */ 1874 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 1875 == PF_MEMALLOC); 1876 unlock_page(page); 1877 return 0; 1878 } 1879 } 1880 1881 if (PageChecked(page) && ext4_should_journal_data(inode)) 1882 /* 1883 * It's mmapped pagecache. Add buffers and journal it. There 1884 * doesn't seem much point in redirtying the page here. 1885 */ 1886 return __ext4_journalled_writepage(page, len); 1887 1888 ext4_io_submit_init(&io_submit, wbc); 1889 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 1890 if (!io_submit.io_end) { 1891 redirty_page_for_writepage(wbc, page); 1892 unlock_page(page); 1893 return -ENOMEM; 1894 } 1895 ret = ext4_bio_write_page(&io_submit, page, len, wbc); 1896 ext4_io_submit(&io_submit); 1897 /* Drop io_end reference we got from init */ 1898 ext4_put_io_end_defer(io_submit.io_end); 1899 return ret; 1900 } 1901 1902 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 1903 { 1904 int len; 1905 loff_t size = i_size_read(mpd->inode); 1906 int err; 1907 1908 BUG_ON(page->index != mpd->first_page); 1909 if (page->index == size >> PAGE_CACHE_SHIFT) 1910 len = size & ~PAGE_CACHE_MASK; 1911 else 1912 len = PAGE_CACHE_SIZE; 1913 clear_page_dirty_for_io(page); 1914 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc); 1915 if (!err) 1916 mpd->wbc->nr_to_write--; 1917 mpd->first_page++; 1918 1919 return err; 1920 } 1921 1922 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 1923 1924 /* 1925 * mballoc gives us at most this number of blocks... 1926 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1927 * The rest of mballoc seems to handle chunks up to full group size. 1928 */ 1929 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1930 1931 /* 1932 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1933 * 1934 * @mpd - extent of blocks 1935 * @lblk - logical number of the block in the file 1936 * @bh - buffer head we want to add to the extent 1937 * 1938 * The function is used to collect contig. blocks in the same state. If the 1939 * buffer doesn't require mapping for writeback and we haven't started the 1940 * extent of buffers to map yet, the function returns 'true' immediately - the 1941 * caller can write the buffer right away. Otherwise the function returns true 1942 * if the block has been added to the extent, false if the block couldn't be 1943 * added. 1944 */ 1945 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1946 struct buffer_head *bh) 1947 { 1948 struct ext4_map_blocks *map = &mpd->map; 1949 1950 /* Buffer that doesn't need mapping for writeback? */ 1951 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1952 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1953 /* So far no extent to map => we write the buffer right away */ 1954 if (map->m_len == 0) 1955 return true; 1956 return false; 1957 } 1958 1959 /* First block in the extent? */ 1960 if (map->m_len == 0) { 1961 map->m_lblk = lblk; 1962 map->m_len = 1; 1963 map->m_flags = bh->b_state & BH_FLAGS; 1964 return true; 1965 } 1966 1967 /* Don't go larger than mballoc is willing to allocate */ 1968 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1969 return false; 1970 1971 /* Can we merge the block to our big extent? */ 1972 if (lblk == map->m_lblk + map->m_len && 1973 (bh->b_state & BH_FLAGS) == map->m_flags) { 1974 map->m_len++; 1975 return true; 1976 } 1977 return false; 1978 } 1979 1980 /* 1981 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 1982 * 1983 * @mpd - extent of blocks for mapping 1984 * @head - the first buffer in the page 1985 * @bh - buffer we should start processing from 1986 * @lblk - logical number of the block in the file corresponding to @bh 1987 * 1988 * Walk through page buffers from @bh upto @head (exclusive) and either submit 1989 * the page for IO if all buffers in this page were mapped and there's no 1990 * accumulated extent of buffers to map or add buffers in the page to the 1991 * extent of buffers to map. The function returns 1 if the caller can continue 1992 * by processing the next page, 0 if it should stop adding buffers to the 1993 * extent to map because we cannot extend it anymore. It can also return value 1994 * < 0 in case of error during IO submission. 1995 */ 1996 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 1997 struct buffer_head *head, 1998 struct buffer_head *bh, 1999 ext4_lblk_t lblk) 2000 { 2001 struct inode *inode = mpd->inode; 2002 int err; 2003 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) 2004 >> inode->i_blkbits; 2005 2006 do { 2007 BUG_ON(buffer_locked(bh)); 2008 2009 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2010 /* Found extent to map? */ 2011 if (mpd->map.m_len) 2012 return 0; 2013 /* Everything mapped so far and we hit EOF */ 2014 break; 2015 } 2016 } while (lblk++, (bh = bh->b_this_page) != head); 2017 /* So far everything mapped? Submit the page for IO. */ 2018 if (mpd->map.m_len == 0) { 2019 err = mpage_submit_page(mpd, head->b_page); 2020 if (err < 0) 2021 return err; 2022 } 2023 return lblk < blocks; 2024 } 2025 2026 /* 2027 * mpage_map_buffers - update buffers corresponding to changed extent and 2028 * submit fully mapped pages for IO 2029 * 2030 * @mpd - description of extent to map, on return next extent to map 2031 * 2032 * Scan buffers corresponding to changed extent (we expect corresponding pages 2033 * to be already locked) and update buffer state according to new extent state. 2034 * We map delalloc buffers to their physical location, clear unwritten bits, 2035 * and mark buffers as uninit when we perform writes to uninitialized extents 2036 * and do extent conversion after IO is finished. If the last page is not fully 2037 * mapped, we update @map to the next extent in the last page that needs 2038 * mapping. Otherwise we submit the page for IO. 2039 */ 2040 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2041 { 2042 struct pagevec pvec; 2043 int nr_pages, i; 2044 struct inode *inode = mpd->inode; 2045 struct buffer_head *head, *bh; 2046 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits; 2047 pgoff_t start, end; 2048 ext4_lblk_t lblk; 2049 sector_t pblock; 2050 int err; 2051 2052 start = mpd->map.m_lblk >> bpp_bits; 2053 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2054 lblk = start << bpp_bits; 2055 pblock = mpd->map.m_pblk; 2056 2057 pagevec_init(&pvec, 0); 2058 while (start <= end) { 2059 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, 2060 PAGEVEC_SIZE); 2061 if (nr_pages == 0) 2062 break; 2063 for (i = 0; i < nr_pages; i++) { 2064 struct page *page = pvec.pages[i]; 2065 2066 if (page->index > end) 2067 break; 2068 /* Up to 'end' pages must be contiguous */ 2069 BUG_ON(page->index != start); 2070 bh = head = page_buffers(page); 2071 do { 2072 if (lblk < mpd->map.m_lblk) 2073 continue; 2074 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2075 /* 2076 * Buffer after end of mapped extent. 2077 * Find next buffer in the page to map. 2078 */ 2079 mpd->map.m_len = 0; 2080 mpd->map.m_flags = 0; 2081 /* 2082 * FIXME: If dioread_nolock supports 2083 * blocksize < pagesize, we need to make 2084 * sure we add size mapped so far to 2085 * io_end->size as the following call 2086 * can submit the page for IO. 2087 */ 2088 err = mpage_process_page_bufs(mpd, head, 2089 bh, lblk); 2090 pagevec_release(&pvec); 2091 if (err > 0) 2092 err = 0; 2093 return err; 2094 } 2095 if (buffer_delay(bh)) { 2096 clear_buffer_delay(bh); 2097 bh->b_blocknr = pblock++; 2098 } 2099 clear_buffer_unwritten(bh); 2100 } while (lblk++, (bh = bh->b_this_page) != head); 2101 2102 /* 2103 * FIXME: This is going to break if dioread_nolock 2104 * supports blocksize < pagesize as we will try to 2105 * convert potentially unmapped parts of inode. 2106 */ 2107 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE; 2108 /* Page fully mapped - let IO run! */ 2109 err = mpage_submit_page(mpd, page); 2110 if (err < 0) { 2111 pagevec_release(&pvec); 2112 return err; 2113 } 2114 start++; 2115 } 2116 pagevec_release(&pvec); 2117 } 2118 /* Extent fully mapped and matches with page boundary. We are done. */ 2119 mpd->map.m_len = 0; 2120 mpd->map.m_flags = 0; 2121 return 0; 2122 } 2123 2124 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2125 { 2126 struct inode *inode = mpd->inode; 2127 struct ext4_map_blocks *map = &mpd->map; 2128 int get_blocks_flags; 2129 int err; 2130 2131 trace_ext4_da_write_pages_extent(inode, map); 2132 /* 2133 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2134 * to convert an uninitialized extent to be initialized (in the case 2135 * where we have written into one or more preallocated blocks). It is 2136 * possible that we're going to need more metadata blocks than 2137 * previously reserved. However we must not fail because we're in 2138 * writeback and there is nothing we can do about it so it might result 2139 * in data loss. So use reserved blocks to allocate metadata if 2140 * possible. 2141 * 2142 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks 2143 * in question are delalloc blocks. This affects functions in many 2144 * different parts of the allocation call path. This flag exists 2145 * primarily because we don't want to change *many* call functions, so 2146 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag 2147 * once the inode's allocation semaphore is taken. 2148 */ 2149 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2150 EXT4_GET_BLOCKS_METADATA_NOFAIL; 2151 if (ext4_should_dioread_nolock(inode)) 2152 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2153 if (map->m_flags & (1 << BH_Delay)) 2154 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2155 2156 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2157 if (err < 0) 2158 return err; 2159 if (map->m_flags & EXT4_MAP_UNINIT) { 2160 if (!mpd->io_submit.io_end->handle && 2161 ext4_handle_valid(handle)) { 2162 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2163 handle->h_rsv_handle = NULL; 2164 } 2165 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2166 } 2167 2168 BUG_ON(map->m_len == 0); 2169 if (map->m_flags & EXT4_MAP_NEW) { 2170 struct block_device *bdev = inode->i_sb->s_bdev; 2171 int i; 2172 2173 for (i = 0; i < map->m_len; i++) 2174 unmap_underlying_metadata(bdev, map->m_pblk + i); 2175 } 2176 return 0; 2177 } 2178 2179 /* 2180 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2181 * mpd->len and submit pages underlying it for IO 2182 * 2183 * @handle - handle for journal operations 2184 * @mpd - extent to map 2185 * @give_up_on_write - we set this to true iff there is a fatal error and there 2186 * is no hope of writing the data. The caller should discard 2187 * dirty pages to avoid infinite loops. 2188 * 2189 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2190 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2191 * them to initialized or split the described range from larger unwritten 2192 * extent. Note that we need not map all the described range since allocation 2193 * can return less blocks or the range is covered by more unwritten extents. We 2194 * cannot map more because we are limited by reserved transaction credits. On 2195 * the other hand we always make sure that the last touched page is fully 2196 * mapped so that it can be written out (and thus forward progress is 2197 * guaranteed). After mapping we submit all mapped pages for IO. 2198 */ 2199 static int mpage_map_and_submit_extent(handle_t *handle, 2200 struct mpage_da_data *mpd, 2201 bool *give_up_on_write) 2202 { 2203 struct inode *inode = mpd->inode; 2204 struct ext4_map_blocks *map = &mpd->map; 2205 int err; 2206 loff_t disksize; 2207 2208 mpd->io_submit.io_end->offset = 2209 ((loff_t)map->m_lblk) << inode->i_blkbits; 2210 do { 2211 err = mpage_map_one_extent(handle, mpd); 2212 if (err < 0) { 2213 struct super_block *sb = inode->i_sb; 2214 2215 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2216 goto invalidate_dirty_pages; 2217 /* 2218 * Let the uper layers retry transient errors. 2219 * In the case of ENOSPC, if ext4_count_free_blocks() 2220 * is non-zero, a commit should free up blocks. 2221 */ 2222 if ((err == -ENOMEM) || 2223 (err == -ENOSPC && ext4_count_free_clusters(sb))) 2224 return err; 2225 ext4_msg(sb, KERN_CRIT, 2226 "Delayed block allocation failed for " 2227 "inode %lu at logical offset %llu with" 2228 " max blocks %u with error %d", 2229 inode->i_ino, 2230 (unsigned long long)map->m_lblk, 2231 (unsigned)map->m_len, -err); 2232 ext4_msg(sb, KERN_CRIT, 2233 "This should not happen!! Data will " 2234 "be lost\n"); 2235 if (err == -ENOSPC) 2236 ext4_print_free_blocks(inode); 2237 invalidate_dirty_pages: 2238 *give_up_on_write = true; 2239 return err; 2240 } 2241 /* 2242 * Update buffer state, submit mapped pages, and get us new 2243 * extent to map 2244 */ 2245 err = mpage_map_and_submit_buffers(mpd); 2246 if (err < 0) 2247 return err; 2248 } while (map->m_len); 2249 2250 /* 2251 * Update on-disk size after IO is submitted. Races with 2252 * truncate are avoided by checking i_size under i_data_sem. 2253 */ 2254 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT; 2255 if (disksize > EXT4_I(inode)->i_disksize) { 2256 int err2; 2257 loff_t i_size; 2258 2259 down_write(&EXT4_I(inode)->i_data_sem); 2260 i_size = i_size_read(inode); 2261 if (disksize > i_size) 2262 disksize = i_size; 2263 if (disksize > EXT4_I(inode)->i_disksize) 2264 EXT4_I(inode)->i_disksize = disksize; 2265 err2 = ext4_mark_inode_dirty(handle, inode); 2266 up_write(&EXT4_I(inode)->i_data_sem); 2267 if (err2) 2268 ext4_error(inode->i_sb, 2269 "Failed to mark inode %lu dirty", 2270 inode->i_ino); 2271 if (!err) 2272 err = err2; 2273 } 2274 return err; 2275 } 2276 2277 /* 2278 * Calculate the total number of credits to reserve for one writepages 2279 * iteration. This is called from ext4_writepages(). We map an extent of 2280 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2281 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2282 * bpp - 1 blocks in bpp different extents. 2283 */ 2284 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2285 { 2286 int bpp = ext4_journal_blocks_per_page(inode); 2287 2288 return ext4_meta_trans_blocks(inode, 2289 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2290 } 2291 2292 /* 2293 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2294 * and underlying extent to map 2295 * 2296 * @mpd - where to look for pages 2297 * 2298 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2299 * IO immediately. When we find a page which isn't mapped we start accumulating 2300 * extent of buffers underlying these pages that needs mapping (formed by 2301 * either delayed or unwritten buffers). We also lock the pages containing 2302 * these buffers. The extent found is returned in @mpd structure (starting at 2303 * mpd->lblk with length mpd->len blocks). 2304 * 2305 * Note that this function can attach bios to one io_end structure which are 2306 * neither logically nor physically contiguous. Although it may seem as an 2307 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2308 * case as we need to track IO to all buffers underlying a page in one io_end. 2309 */ 2310 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2311 { 2312 struct address_space *mapping = mpd->inode->i_mapping; 2313 struct pagevec pvec; 2314 unsigned int nr_pages; 2315 long left = mpd->wbc->nr_to_write; 2316 pgoff_t index = mpd->first_page; 2317 pgoff_t end = mpd->last_page; 2318 int tag; 2319 int i, err = 0; 2320 int blkbits = mpd->inode->i_blkbits; 2321 ext4_lblk_t lblk; 2322 struct buffer_head *head; 2323 2324 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2325 tag = PAGECACHE_TAG_TOWRITE; 2326 else 2327 tag = PAGECACHE_TAG_DIRTY; 2328 2329 pagevec_init(&pvec, 0); 2330 mpd->map.m_len = 0; 2331 mpd->next_page = index; 2332 while (index <= end) { 2333 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2334 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2335 if (nr_pages == 0) 2336 goto out; 2337 2338 for (i = 0; i < nr_pages; i++) { 2339 struct page *page = pvec.pages[i]; 2340 2341 /* 2342 * At this point, the page may be truncated or 2343 * invalidated (changing page->mapping to NULL), or 2344 * even swizzled back from swapper_space to tmpfs file 2345 * mapping. However, page->index will not change 2346 * because we have a reference on the page. 2347 */ 2348 if (page->index > end) 2349 goto out; 2350 2351 /* 2352 * Accumulated enough dirty pages? This doesn't apply 2353 * to WB_SYNC_ALL mode. For integrity sync we have to 2354 * keep going because someone may be concurrently 2355 * dirtying pages, and we might have synced a lot of 2356 * newly appeared dirty pages, but have not synced all 2357 * of the old dirty pages. 2358 */ 2359 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2360 goto out; 2361 2362 /* If we can't merge this page, we are done. */ 2363 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2364 goto out; 2365 2366 lock_page(page); 2367 /* 2368 * If the page is no longer dirty, or its mapping no 2369 * longer corresponds to inode we are writing (which 2370 * means it has been truncated or invalidated), or the 2371 * page is already under writeback and we are not doing 2372 * a data integrity writeback, skip the page 2373 */ 2374 if (!PageDirty(page) || 2375 (PageWriteback(page) && 2376 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2377 unlikely(page->mapping != mapping)) { 2378 unlock_page(page); 2379 continue; 2380 } 2381 2382 wait_on_page_writeback(page); 2383 BUG_ON(PageWriteback(page)); 2384 2385 if (mpd->map.m_len == 0) 2386 mpd->first_page = page->index; 2387 mpd->next_page = page->index + 1; 2388 /* Add all dirty buffers to mpd */ 2389 lblk = ((ext4_lblk_t)page->index) << 2390 (PAGE_CACHE_SHIFT - blkbits); 2391 head = page_buffers(page); 2392 err = mpage_process_page_bufs(mpd, head, head, lblk); 2393 if (err <= 0) 2394 goto out; 2395 err = 0; 2396 left--; 2397 } 2398 pagevec_release(&pvec); 2399 cond_resched(); 2400 } 2401 return 0; 2402 out: 2403 pagevec_release(&pvec); 2404 return err; 2405 } 2406 2407 static int __writepage(struct page *page, struct writeback_control *wbc, 2408 void *data) 2409 { 2410 struct address_space *mapping = data; 2411 int ret = ext4_writepage(page, wbc); 2412 mapping_set_error(mapping, ret); 2413 return ret; 2414 } 2415 2416 static int ext4_writepages(struct address_space *mapping, 2417 struct writeback_control *wbc) 2418 { 2419 pgoff_t writeback_index = 0; 2420 long nr_to_write = wbc->nr_to_write; 2421 int range_whole = 0; 2422 int cycled = 1; 2423 handle_t *handle = NULL; 2424 struct mpage_da_data mpd; 2425 struct inode *inode = mapping->host; 2426 int needed_blocks, rsv_blocks = 0, ret = 0; 2427 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2428 bool done; 2429 struct blk_plug plug; 2430 bool give_up_on_write = false; 2431 2432 trace_ext4_writepages(inode, wbc); 2433 2434 /* 2435 * No pages to write? This is mainly a kludge to avoid starting 2436 * a transaction for special inodes like journal inode on last iput() 2437 * because that could violate lock ordering on umount 2438 */ 2439 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2440 goto out_writepages; 2441 2442 if (ext4_should_journal_data(inode)) { 2443 struct blk_plug plug; 2444 2445 blk_start_plug(&plug); 2446 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2447 blk_finish_plug(&plug); 2448 goto out_writepages; 2449 } 2450 2451 /* 2452 * If the filesystem has aborted, it is read-only, so return 2453 * right away instead of dumping stack traces later on that 2454 * will obscure the real source of the problem. We test 2455 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2456 * the latter could be true if the filesystem is mounted 2457 * read-only, and in that case, ext4_writepages should 2458 * *never* be called, so if that ever happens, we would want 2459 * the stack trace. 2460 */ 2461 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2462 ret = -EROFS; 2463 goto out_writepages; 2464 } 2465 2466 if (ext4_should_dioread_nolock(inode)) { 2467 /* 2468 * We may need to convert up to one extent per block in 2469 * the page and we may dirty the inode. 2470 */ 2471 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits); 2472 } 2473 2474 /* 2475 * If we have inline data and arrive here, it means that 2476 * we will soon create the block for the 1st page, so 2477 * we'd better clear the inline data here. 2478 */ 2479 if (ext4_has_inline_data(inode)) { 2480 /* Just inode will be modified... */ 2481 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2482 if (IS_ERR(handle)) { 2483 ret = PTR_ERR(handle); 2484 goto out_writepages; 2485 } 2486 BUG_ON(ext4_test_inode_state(inode, 2487 EXT4_STATE_MAY_INLINE_DATA)); 2488 ext4_destroy_inline_data(handle, inode); 2489 ext4_journal_stop(handle); 2490 } 2491 2492 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2493 range_whole = 1; 2494 2495 if (wbc->range_cyclic) { 2496 writeback_index = mapping->writeback_index; 2497 if (writeback_index) 2498 cycled = 0; 2499 mpd.first_page = writeback_index; 2500 mpd.last_page = -1; 2501 } else { 2502 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT; 2503 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT; 2504 } 2505 2506 mpd.inode = inode; 2507 mpd.wbc = wbc; 2508 ext4_io_submit_init(&mpd.io_submit, wbc); 2509 retry: 2510 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2511 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2512 done = false; 2513 blk_start_plug(&plug); 2514 while (!done && mpd.first_page <= mpd.last_page) { 2515 /* For each extent of pages we use new io_end */ 2516 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2517 if (!mpd.io_submit.io_end) { 2518 ret = -ENOMEM; 2519 break; 2520 } 2521 2522 /* 2523 * We have two constraints: We find one extent to map and we 2524 * must always write out whole page (makes a difference when 2525 * blocksize < pagesize) so that we don't block on IO when we 2526 * try to write out the rest of the page. Journalled mode is 2527 * not supported by delalloc. 2528 */ 2529 BUG_ON(ext4_should_journal_data(inode)); 2530 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2531 2532 /* start a new transaction */ 2533 handle = ext4_journal_start_with_reserve(inode, 2534 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2535 if (IS_ERR(handle)) { 2536 ret = PTR_ERR(handle); 2537 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2538 "%ld pages, ino %lu; err %d", __func__, 2539 wbc->nr_to_write, inode->i_ino, ret); 2540 /* Release allocated io_end */ 2541 ext4_put_io_end(mpd.io_submit.io_end); 2542 break; 2543 } 2544 2545 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2546 ret = mpage_prepare_extent_to_map(&mpd); 2547 if (!ret) { 2548 if (mpd.map.m_len) 2549 ret = mpage_map_and_submit_extent(handle, &mpd, 2550 &give_up_on_write); 2551 else { 2552 /* 2553 * We scanned the whole range (or exhausted 2554 * nr_to_write), submitted what was mapped and 2555 * didn't find anything needing mapping. We are 2556 * done. 2557 */ 2558 done = true; 2559 } 2560 } 2561 ext4_journal_stop(handle); 2562 /* Submit prepared bio */ 2563 ext4_io_submit(&mpd.io_submit); 2564 /* Unlock pages we didn't use */ 2565 mpage_release_unused_pages(&mpd, give_up_on_write); 2566 /* Drop our io_end reference we got from init */ 2567 ext4_put_io_end(mpd.io_submit.io_end); 2568 2569 if (ret == -ENOSPC && sbi->s_journal) { 2570 /* 2571 * Commit the transaction which would 2572 * free blocks released in the transaction 2573 * and try again 2574 */ 2575 jbd2_journal_force_commit_nested(sbi->s_journal); 2576 ret = 0; 2577 continue; 2578 } 2579 /* Fatal error - ENOMEM, EIO... */ 2580 if (ret) 2581 break; 2582 } 2583 blk_finish_plug(&plug); 2584 if (!ret && !cycled && wbc->nr_to_write > 0) { 2585 cycled = 1; 2586 mpd.last_page = writeback_index - 1; 2587 mpd.first_page = 0; 2588 goto retry; 2589 } 2590 2591 /* Update index */ 2592 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2593 /* 2594 * Set the writeback_index so that range_cyclic 2595 * mode will write it back later 2596 */ 2597 mapping->writeback_index = mpd.first_page; 2598 2599 out_writepages: 2600 trace_ext4_writepages_result(inode, wbc, ret, 2601 nr_to_write - wbc->nr_to_write); 2602 return ret; 2603 } 2604 2605 static int ext4_nonda_switch(struct super_block *sb) 2606 { 2607 s64 free_clusters, dirty_clusters; 2608 struct ext4_sb_info *sbi = EXT4_SB(sb); 2609 2610 /* 2611 * switch to non delalloc mode if we are running low 2612 * on free block. The free block accounting via percpu 2613 * counters can get slightly wrong with percpu_counter_batch getting 2614 * accumulated on each CPU without updating global counters 2615 * Delalloc need an accurate free block accounting. So switch 2616 * to non delalloc when we are near to error range. 2617 */ 2618 free_clusters = 2619 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2620 dirty_clusters = 2621 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2622 /* 2623 * Start pushing delalloc when 1/2 of free blocks are dirty. 2624 */ 2625 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2626 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2627 2628 if (2 * free_clusters < 3 * dirty_clusters || 2629 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2630 /* 2631 * free block count is less than 150% of dirty blocks 2632 * or free blocks is less than watermark 2633 */ 2634 return 1; 2635 } 2636 return 0; 2637 } 2638 2639 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2640 loff_t pos, unsigned len, unsigned flags, 2641 struct page **pagep, void **fsdata) 2642 { 2643 int ret, retries = 0; 2644 struct page *page; 2645 pgoff_t index; 2646 struct inode *inode = mapping->host; 2647 handle_t *handle; 2648 2649 index = pos >> PAGE_CACHE_SHIFT; 2650 2651 if (ext4_nonda_switch(inode->i_sb)) { 2652 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2653 return ext4_write_begin(file, mapping, pos, 2654 len, flags, pagep, fsdata); 2655 } 2656 *fsdata = (void *)0; 2657 trace_ext4_da_write_begin(inode, pos, len, flags); 2658 2659 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2660 ret = ext4_da_write_inline_data_begin(mapping, inode, 2661 pos, len, flags, 2662 pagep, fsdata); 2663 if (ret < 0) 2664 return ret; 2665 if (ret == 1) 2666 return 0; 2667 } 2668 2669 /* 2670 * grab_cache_page_write_begin() can take a long time if the 2671 * system is thrashing due to memory pressure, or if the page 2672 * is being written back. So grab it first before we start 2673 * the transaction handle. This also allows us to allocate 2674 * the page (if needed) without using GFP_NOFS. 2675 */ 2676 retry_grab: 2677 page = grab_cache_page_write_begin(mapping, index, flags); 2678 if (!page) 2679 return -ENOMEM; 2680 unlock_page(page); 2681 2682 /* 2683 * With delayed allocation, we don't log the i_disksize update 2684 * if there is delayed block allocation. But we still need 2685 * to journalling the i_disksize update if writes to the end 2686 * of file which has an already mapped buffer. 2687 */ 2688 retry_journal: 2689 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1); 2690 if (IS_ERR(handle)) { 2691 page_cache_release(page); 2692 return PTR_ERR(handle); 2693 } 2694 2695 lock_page(page); 2696 if (page->mapping != mapping) { 2697 /* The page got truncated from under us */ 2698 unlock_page(page); 2699 page_cache_release(page); 2700 ext4_journal_stop(handle); 2701 goto retry_grab; 2702 } 2703 /* In case writeback began while the page was unlocked */ 2704 wait_for_stable_page(page); 2705 2706 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2707 if (ret < 0) { 2708 unlock_page(page); 2709 ext4_journal_stop(handle); 2710 /* 2711 * block_write_begin may have instantiated a few blocks 2712 * outside i_size. Trim these off again. Don't need 2713 * i_size_read because we hold i_mutex. 2714 */ 2715 if (pos + len > inode->i_size) 2716 ext4_truncate_failed_write(inode); 2717 2718 if (ret == -ENOSPC && 2719 ext4_should_retry_alloc(inode->i_sb, &retries)) 2720 goto retry_journal; 2721 2722 page_cache_release(page); 2723 return ret; 2724 } 2725 2726 *pagep = page; 2727 return ret; 2728 } 2729 2730 /* 2731 * Check if we should update i_disksize 2732 * when write to the end of file but not require block allocation 2733 */ 2734 static int ext4_da_should_update_i_disksize(struct page *page, 2735 unsigned long offset) 2736 { 2737 struct buffer_head *bh; 2738 struct inode *inode = page->mapping->host; 2739 unsigned int idx; 2740 int i; 2741 2742 bh = page_buffers(page); 2743 idx = offset >> inode->i_blkbits; 2744 2745 for (i = 0; i < idx; i++) 2746 bh = bh->b_this_page; 2747 2748 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2749 return 0; 2750 return 1; 2751 } 2752 2753 static int ext4_da_write_end(struct file *file, 2754 struct address_space *mapping, 2755 loff_t pos, unsigned len, unsigned copied, 2756 struct page *page, void *fsdata) 2757 { 2758 struct inode *inode = mapping->host; 2759 int ret = 0, ret2; 2760 handle_t *handle = ext4_journal_current_handle(); 2761 loff_t new_i_size; 2762 unsigned long start, end; 2763 int write_mode = (int)(unsigned long)fsdata; 2764 2765 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2766 return ext4_write_end(file, mapping, pos, 2767 len, copied, page, fsdata); 2768 2769 trace_ext4_da_write_end(inode, pos, len, copied); 2770 start = pos & (PAGE_CACHE_SIZE - 1); 2771 end = start + copied - 1; 2772 2773 /* 2774 * generic_write_end() will run mark_inode_dirty() if i_size 2775 * changes. So let's piggyback the i_disksize mark_inode_dirty 2776 * into that. 2777 */ 2778 new_i_size = pos + copied; 2779 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2780 if (ext4_has_inline_data(inode) || 2781 ext4_da_should_update_i_disksize(page, end)) { 2782 down_write(&EXT4_I(inode)->i_data_sem); 2783 if (new_i_size > EXT4_I(inode)->i_disksize) 2784 EXT4_I(inode)->i_disksize = new_i_size; 2785 up_write(&EXT4_I(inode)->i_data_sem); 2786 /* We need to mark inode dirty even if 2787 * new_i_size is less that inode->i_size 2788 * bu greater than i_disksize.(hint delalloc) 2789 */ 2790 ext4_mark_inode_dirty(handle, inode); 2791 } 2792 } 2793 2794 if (write_mode != CONVERT_INLINE_DATA && 2795 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2796 ext4_has_inline_data(inode)) 2797 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 2798 page); 2799 else 2800 ret2 = generic_write_end(file, mapping, pos, len, copied, 2801 page, fsdata); 2802 2803 copied = ret2; 2804 if (ret2 < 0) 2805 ret = ret2; 2806 ret2 = ext4_journal_stop(handle); 2807 if (!ret) 2808 ret = ret2; 2809 2810 return ret ? ret : copied; 2811 } 2812 2813 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 2814 unsigned int length) 2815 { 2816 /* 2817 * Drop reserved blocks 2818 */ 2819 BUG_ON(!PageLocked(page)); 2820 if (!page_has_buffers(page)) 2821 goto out; 2822 2823 ext4_da_page_release_reservation(page, offset, length); 2824 2825 out: 2826 ext4_invalidatepage(page, offset, length); 2827 2828 return; 2829 } 2830 2831 /* 2832 * Force all delayed allocation blocks to be allocated for a given inode. 2833 */ 2834 int ext4_alloc_da_blocks(struct inode *inode) 2835 { 2836 trace_ext4_alloc_da_blocks(inode); 2837 2838 if (!EXT4_I(inode)->i_reserved_data_blocks && 2839 !EXT4_I(inode)->i_reserved_meta_blocks) 2840 return 0; 2841 2842 /* 2843 * We do something simple for now. The filemap_flush() will 2844 * also start triggering a write of the data blocks, which is 2845 * not strictly speaking necessary (and for users of 2846 * laptop_mode, not even desirable). However, to do otherwise 2847 * would require replicating code paths in: 2848 * 2849 * ext4_writepages() -> 2850 * write_cache_pages() ---> (via passed in callback function) 2851 * __mpage_da_writepage() --> 2852 * mpage_add_bh_to_extent() 2853 * mpage_da_map_blocks() 2854 * 2855 * The problem is that write_cache_pages(), located in 2856 * mm/page-writeback.c, marks pages clean in preparation for 2857 * doing I/O, which is not desirable if we're not planning on 2858 * doing I/O at all. 2859 * 2860 * We could call write_cache_pages(), and then redirty all of 2861 * the pages by calling redirty_page_for_writepage() but that 2862 * would be ugly in the extreme. So instead we would need to 2863 * replicate parts of the code in the above functions, 2864 * simplifying them because we wouldn't actually intend to 2865 * write out the pages, but rather only collect contiguous 2866 * logical block extents, call the multi-block allocator, and 2867 * then update the buffer heads with the block allocations. 2868 * 2869 * For now, though, we'll cheat by calling filemap_flush(), 2870 * which will map the blocks, and start the I/O, but not 2871 * actually wait for the I/O to complete. 2872 */ 2873 return filemap_flush(inode->i_mapping); 2874 } 2875 2876 /* 2877 * bmap() is special. It gets used by applications such as lilo and by 2878 * the swapper to find the on-disk block of a specific piece of data. 2879 * 2880 * Naturally, this is dangerous if the block concerned is still in the 2881 * journal. If somebody makes a swapfile on an ext4 data-journaling 2882 * filesystem and enables swap, then they may get a nasty shock when the 2883 * data getting swapped to that swapfile suddenly gets overwritten by 2884 * the original zero's written out previously to the journal and 2885 * awaiting writeback in the kernel's buffer cache. 2886 * 2887 * So, if we see any bmap calls here on a modified, data-journaled file, 2888 * take extra steps to flush any blocks which might be in the cache. 2889 */ 2890 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2891 { 2892 struct inode *inode = mapping->host; 2893 journal_t *journal; 2894 int err; 2895 2896 /* 2897 * We can get here for an inline file via the FIBMAP ioctl 2898 */ 2899 if (ext4_has_inline_data(inode)) 2900 return 0; 2901 2902 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2903 test_opt(inode->i_sb, DELALLOC)) { 2904 /* 2905 * With delalloc we want to sync the file 2906 * so that we can make sure we allocate 2907 * blocks for file 2908 */ 2909 filemap_write_and_wait(mapping); 2910 } 2911 2912 if (EXT4_JOURNAL(inode) && 2913 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2914 /* 2915 * This is a REALLY heavyweight approach, but the use of 2916 * bmap on dirty files is expected to be extremely rare: 2917 * only if we run lilo or swapon on a freshly made file 2918 * do we expect this to happen. 2919 * 2920 * (bmap requires CAP_SYS_RAWIO so this does not 2921 * represent an unprivileged user DOS attack --- we'd be 2922 * in trouble if mortal users could trigger this path at 2923 * will.) 2924 * 2925 * NB. EXT4_STATE_JDATA is not set on files other than 2926 * regular files. If somebody wants to bmap a directory 2927 * or symlink and gets confused because the buffer 2928 * hasn't yet been flushed to disk, they deserve 2929 * everything they get. 2930 */ 2931 2932 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2933 journal = EXT4_JOURNAL(inode); 2934 jbd2_journal_lock_updates(journal); 2935 err = jbd2_journal_flush(journal); 2936 jbd2_journal_unlock_updates(journal); 2937 2938 if (err) 2939 return 0; 2940 } 2941 2942 return generic_block_bmap(mapping, block, ext4_get_block); 2943 } 2944 2945 static int ext4_readpage(struct file *file, struct page *page) 2946 { 2947 int ret = -EAGAIN; 2948 struct inode *inode = page->mapping->host; 2949 2950 trace_ext4_readpage(page); 2951 2952 if (ext4_has_inline_data(inode)) 2953 ret = ext4_readpage_inline(inode, page); 2954 2955 if (ret == -EAGAIN) 2956 return mpage_readpage(page, ext4_get_block); 2957 2958 return ret; 2959 } 2960 2961 static int 2962 ext4_readpages(struct file *file, struct address_space *mapping, 2963 struct list_head *pages, unsigned nr_pages) 2964 { 2965 struct inode *inode = mapping->host; 2966 2967 /* If the file has inline data, no need to do readpages. */ 2968 if (ext4_has_inline_data(inode)) 2969 return 0; 2970 2971 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2972 } 2973 2974 static void ext4_invalidatepage(struct page *page, unsigned int offset, 2975 unsigned int length) 2976 { 2977 trace_ext4_invalidatepage(page, offset, length); 2978 2979 /* No journalling happens on data buffers when this function is used */ 2980 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 2981 2982 block_invalidatepage(page, offset, length); 2983 } 2984 2985 static int __ext4_journalled_invalidatepage(struct page *page, 2986 unsigned int offset, 2987 unsigned int length) 2988 { 2989 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2990 2991 trace_ext4_journalled_invalidatepage(page, offset, length); 2992 2993 /* 2994 * If it's a full truncate we just forget about the pending dirtying 2995 */ 2996 if (offset == 0 && length == PAGE_CACHE_SIZE) 2997 ClearPageChecked(page); 2998 2999 return jbd2_journal_invalidatepage(journal, page, offset, length); 3000 } 3001 3002 /* Wrapper for aops... */ 3003 static void ext4_journalled_invalidatepage(struct page *page, 3004 unsigned int offset, 3005 unsigned int length) 3006 { 3007 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3008 } 3009 3010 static int ext4_releasepage(struct page *page, gfp_t wait) 3011 { 3012 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3013 3014 trace_ext4_releasepage(page); 3015 3016 /* Page has dirty journalled data -> cannot release */ 3017 if (PageChecked(page)) 3018 return 0; 3019 if (journal) 3020 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3021 else 3022 return try_to_free_buffers(page); 3023 } 3024 3025 /* 3026 * ext4_get_block used when preparing for a DIO write or buffer write. 3027 * We allocate an uinitialized extent if blocks haven't been allocated. 3028 * The extent will be converted to initialized after the IO is complete. 3029 */ 3030 int ext4_get_block_write(struct inode *inode, sector_t iblock, 3031 struct buffer_head *bh_result, int create) 3032 { 3033 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 3034 inode->i_ino, create); 3035 return _ext4_get_block(inode, iblock, bh_result, 3036 EXT4_GET_BLOCKS_IO_CREATE_EXT); 3037 } 3038 3039 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 3040 struct buffer_head *bh_result, int create) 3041 { 3042 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n", 3043 inode->i_ino, create); 3044 return _ext4_get_block(inode, iblock, bh_result, 3045 EXT4_GET_BLOCKS_NO_LOCK); 3046 } 3047 3048 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3049 ssize_t size, void *private) 3050 { 3051 ext4_io_end_t *io_end = iocb->private; 3052 3053 /* if not async direct IO just return */ 3054 if (!io_end) 3055 return; 3056 3057 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3058 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3059 iocb->private, io_end->inode->i_ino, iocb, offset, 3060 size); 3061 3062 iocb->private = NULL; 3063 io_end->offset = offset; 3064 io_end->size = size; 3065 ext4_put_io_end(io_end); 3066 } 3067 3068 /* 3069 * For ext4 extent files, ext4 will do direct-io write to holes, 3070 * preallocated extents, and those write extend the file, no need to 3071 * fall back to buffered IO. 3072 * 3073 * For holes, we fallocate those blocks, mark them as uninitialized 3074 * If those blocks were preallocated, we mark sure they are split, but 3075 * still keep the range to write as uninitialized. 3076 * 3077 * The unwritten extents will be converted to written when DIO is completed. 3078 * For async direct IO, since the IO may still pending when return, we 3079 * set up an end_io call back function, which will do the conversion 3080 * when async direct IO completed. 3081 * 3082 * If the O_DIRECT write will extend the file then add this inode to the 3083 * orphan list. So recovery will truncate it back to the original size 3084 * if the machine crashes during the write. 3085 * 3086 */ 3087 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 3088 const struct iovec *iov, loff_t offset, 3089 unsigned long nr_segs) 3090 { 3091 struct file *file = iocb->ki_filp; 3092 struct inode *inode = file->f_mapping->host; 3093 ssize_t ret; 3094 size_t count = iov_length(iov, nr_segs); 3095 int overwrite = 0; 3096 get_block_t *get_block_func = NULL; 3097 int dio_flags = 0; 3098 loff_t final_size = offset + count; 3099 ext4_io_end_t *io_end = NULL; 3100 3101 /* Use the old path for reads and writes beyond i_size. */ 3102 if (rw != WRITE || final_size > inode->i_size) 3103 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3104 3105 BUG_ON(iocb->private == NULL); 3106 3107 /* 3108 * Make all waiters for direct IO properly wait also for extent 3109 * conversion. This also disallows race between truncate() and 3110 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3111 */ 3112 if (rw == WRITE) 3113 atomic_inc(&inode->i_dio_count); 3114 3115 /* If we do a overwrite dio, i_mutex locking can be released */ 3116 overwrite = *((int *)iocb->private); 3117 3118 if (overwrite) { 3119 down_read(&EXT4_I(inode)->i_data_sem); 3120 mutex_unlock(&inode->i_mutex); 3121 } 3122 3123 /* 3124 * We could direct write to holes and fallocate. 3125 * 3126 * Allocated blocks to fill the hole are marked as 3127 * uninitialized to prevent parallel buffered read to expose 3128 * the stale data before DIO complete the data IO. 3129 * 3130 * As to previously fallocated extents, ext4 get_block will 3131 * just simply mark the buffer mapped but still keep the 3132 * extents uninitialized. 3133 * 3134 * For non AIO case, we will convert those unwritten extents 3135 * to written after return back from blockdev_direct_IO. 3136 * 3137 * For async DIO, the conversion needs to be deferred when the 3138 * IO is completed. The ext4 end_io callback function will be 3139 * called to take care of the conversion work. Here for async 3140 * case, we allocate an io_end structure to hook to the iocb. 3141 */ 3142 iocb->private = NULL; 3143 ext4_inode_aio_set(inode, NULL); 3144 if (!is_sync_kiocb(iocb)) { 3145 io_end = ext4_init_io_end(inode, GFP_NOFS); 3146 if (!io_end) { 3147 ret = -ENOMEM; 3148 goto retake_lock; 3149 } 3150 /* 3151 * Grab reference for DIO. Will be dropped in ext4_end_io_dio() 3152 */ 3153 iocb->private = ext4_get_io_end(io_end); 3154 /* 3155 * we save the io structure for current async direct 3156 * IO, so that later ext4_map_blocks() could flag the 3157 * io structure whether there is a unwritten extents 3158 * needs to be converted when IO is completed. 3159 */ 3160 ext4_inode_aio_set(inode, io_end); 3161 } 3162 3163 if (overwrite) { 3164 get_block_func = ext4_get_block_write_nolock; 3165 } else { 3166 get_block_func = ext4_get_block_write; 3167 dio_flags = DIO_LOCKING; 3168 } 3169 ret = __blockdev_direct_IO(rw, iocb, inode, 3170 inode->i_sb->s_bdev, iov, 3171 offset, nr_segs, 3172 get_block_func, 3173 ext4_end_io_dio, 3174 NULL, 3175 dio_flags); 3176 3177 /* 3178 * Put our reference to io_end. This can free the io_end structure e.g. 3179 * in sync IO case or in case of error. It can even perform extent 3180 * conversion if all bios we submitted finished before we got here. 3181 * Note that in that case iocb->private can be already set to NULL 3182 * here. 3183 */ 3184 if (io_end) { 3185 ext4_inode_aio_set(inode, NULL); 3186 ext4_put_io_end(io_end); 3187 /* 3188 * When no IO was submitted ext4_end_io_dio() was not 3189 * called so we have to put iocb's reference. 3190 */ 3191 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) { 3192 WARN_ON(iocb->private != io_end); 3193 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); 3194 ext4_put_io_end(io_end); 3195 iocb->private = NULL; 3196 } 3197 } 3198 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3199 EXT4_STATE_DIO_UNWRITTEN)) { 3200 int err; 3201 /* 3202 * for non AIO case, since the IO is already 3203 * completed, we could do the conversion right here 3204 */ 3205 err = ext4_convert_unwritten_extents(NULL, inode, 3206 offset, ret); 3207 if (err < 0) 3208 ret = err; 3209 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3210 } 3211 3212 retake_lock: 3213 if (rw == WRITE) 3214 inode_dio_done(inode); 3215 /* take i_mutex locking again if we do a ovewrite dio */ 3216 if (overwrite) { 3217 up_read(&EXT4_I(inode)->i_data_sem); 3218 mutex_lock(&inode->i_mutex); 3219 } 3220 3221 return ret; 3222 } 3223 3224 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3225 const struct iovec *iov, loff_t offset, 3226 unsigned long nr_segs) 3227 { 3228 struct file *file = iocb->ki_filp; 3229 struct inode *inode = file->f_mapping->host; 3230 ssize_t ret; 3231 3232 /* 3233 * If we are doing data journalling we don't support O_DIRECT 3234 */ 3235 if (ext4_should_journal_data(inode)) 3236 return 0; 3237 3238 /* Let buffer I/O handle the inline data case. */ 3239 if (ext4_has_inline_data(inode)) 3240 return 0; 3241 3242 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw); 3243 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3244 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 3245 else 3246 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3247 trace_ext4_direct_IO_exit(inode, offset, 3248 iov_length(iov, nr_segs), rw, ret); 3249 return ret; 3250 } 3251 3252 /* 3253 * Pages can be marked dirty completely asynchronously from ext4's journalling 3254 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3255 * much here because ->set_page_dirty is called under VFS locks. The page is 3256 * not necessarily locked. 3257 * 3258 * We cannot just dirty the page and leave attached buffers clean, because the 3259 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3260 * or jbddirty because all the journalling code will explode. 3261 * 3262 * So what we do is to mark the page "pending dirty" and next time writepage 3263 * is called, propagate that into the buffers appropriately. 3264 */ 3265 static int ext4_journalled_set_page_dirty(struct page *page) 3266 { 3267 SetPageChecked(page); 3268 return __set_page_dirty_nobuffers(page); 3269 } 3270 3271 static const struct address_space_operations ext4_aops = { 3272 .readpage = ext4_readpage, 3273 .readpages = ext4_readpages, 3274 .writepage = ext4_writepage, 3275 .writepages = ext4_writepages, 3276 .write_begin = ext4_write_begin, 3277 .write_end = ext4_write_end, 3278 .bmap = ext4_bmap, 3279 .invalidatepage = ext4_invalidatepage, 3280 .releasepage = ext4_releasepage, 3281 .direct_IO = ext4_direct_IO, 3282 .migratepage = buffer_migrate_page, 3283 .is_partially_uptodate = block_is_partially_uptodate, 3284 .error_remove_page = generic_error_remove_page, 3285 }; 3286 3287 static const struct address_space_operations ext4_journalled_aops = { 3288 .readpage = ext4_readpage, 3289 .readpages = ext4_readpages, 3290 .writepage = ext4_writepage, 3291 .writepages = ext4_writepages, 3292 .write_begin = ext4_write_begin, 3293 .write_end = ext4_journalled_write_end, 3294 .set_page_dirty = ext4_journalled_set_page_dirty, 3295 .bmap = ext4_bmap, 3296 .invalidatepage = ext4_journalled_invalidatepage, 3297 .releasepage = ext4_releasepage, 3298 .direct_IO = ext4_direct_IO, 3299 .is_partially_uptodate = block_is_partially_uptodate, 3300 .error_remove_page = generic_error_remove_page, 3301 }; 3302 3303 static const struct address_space_operations ext4_da_aops = { 3304 .readpage = ext4_readpage, 3305 .readpages = ext4_readpages, 3306 .writepage = ext4_writepage, 3307 .writepages = ext4_writepages, 3308 .write_begin = ext4_da_write_begin, 3309 .write_end = ext4_da_write_end, 3310 .bmap = ext4_bmap, 3311 .invalidatepage = ext4_da_invalidatepage, 3312 .releasepage = ext4_releasepage, 3313 .direct_IO = ext4_direct_IO, 3314 .migratepage = buffer_migrate_page, 3315 .is_partially_uptodate = block_is_partially_uptodate, 3316 .error_remove_page = generic_error_remove_page, 3317 }; 3318 3319 void ext4_set_aops(struct inode *inode) 3320 { 3321 switch (ext4_inode_journal_mode(inode)) { 3322 case EXT4_INODE_ORDERED_DATA_MODE: 3323 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3324 break; 3325 case EXT4_INODE_WRITEBACK_DATA_MODE: 3326 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3327 break; 3328 case EXT4_INODE_JOURNAL_DATA_MODE: 3329 inode->i_mapping->a_ops = &ext4_journalled_aops; 3330 return; 3331 default: 3332 BUG(); 3333 } 3334 if (test_opt(inode->i_sb, DELALLOC)) 3335 inode->i_mapping->a_ops = &ext4_da_aops; 3336 else 3337 inode->i_mapping->a_ops = &ext4_aops; 3338 } 3339 3340 /* 3341 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3342 * starting from file offset 'from'. The range to be zero'd must 3343 * be contained with in one block. If the specified range exceeds 3344 * the end of the block it will be shortened to end of the block 3345 * that cooresponds to 'from' 3346 */ 3347 static int ext4_block_zero_page_range(handle_t *handle, 3348 struct address_space *mapping, loff_t from, loff_t length) 3349 { 3350 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3351 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3352 unsigned blocksize, max, pos; 3353 ext4_lblk_t iblock; 3354 struct inode *inode = mapping->host; 3355 struct buffer_head *bh; 3356 struct page *page; 3357 int err = 0; 3358 3359 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3360 mapping_gfp_mask(mapping) & ~__GFP_FS); 3361 if (!page) 3362 return -ENOMEM; 3363 3364 blocksize = inode->i_sb->s_blocksize; 3365 max = blocksize - (offset & (blocksize - 1)); 3366 3367 /* 3368 * correct length if it does not fall between 3369 * 'from' and the end of the block 3370 */ 3371 if (length > max || length < 0) 3372 length = max; 3373 3374 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3375 3376 if (!page_has_buffers(page)) 3377 create_empty_buffers(page, blocksize, 0); 3378 3379 /* Find the buffer that contains "offset" */ 3380 bh = page_buffers(page); 3381 pos = blocksize; 3382 while (offset >= pos) { 3383 bh = bh->b_this_page; 3384 iblock++; 3385 pos += blocksize; 3386 } 3387 if (buffer_freed(bh)) { 3388 BUFFER_TRACE(bh, "freed: skip"); 3389 goto unlock; 3390 } 3391 if (!buffer_mapped(bh)) { 3392 BUFFER_TRACE(bh, "unmapped"); 3393 ext4_get_block(inode, iblock, bh, 0); 3394 /* unmapped? It's a hole - nothing to do */ 3395 if (!buffer_mapped(bh)) { 3396 BUFFER_TRACE(bh, "still unmapped"); 3397 goto unlock; 3398 } 3399 } 3400 3401 /* Ok, it's mapped. Make sure it's up-to-date */ 3402 if (PageUptodate(page)) 3403 set_buffer_uptodate(bh); 3404 3405 if (!buffer_uptodate(bh)) { 3406 err = -EIO; 3407 ll_rw_block(READ, 1, &bh); 3408 wait_on_buffer(bh); 3409 /* Uhhuh. Read error. Complain and punt. */ 3410 if (!buffer_uptodate(bh)) 3411 goto unlock; 3412 } 3413 if (ext4_should_journal_data(inode)) { 3414 BUFFER_TRACE(bh, "get write access"); 3415 err = ext4_journal_get_write_access(handle, bh); 3416 if (err) 3417 goto unlock; 3418 } 3419 zero_user(page, offset, length); 3420 BUFFER_TRACE(bh, "zeroed end of block"); 3421 3422 if (ext4_should_journal_data(inode)) { 3423 err = ext4_handle_dirty_metadata(handle, inode, bh); 3424 } else { 3425 err = 0; 3426 mark_buffer_dirty(bh); 3427 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) 3428 err = ext4_jbd2_file_inode(handle, inode); 3429 } 3430 3431 unlock: 3432 unlock_page(page); 3433 page_cache_release(page); 3434 return err; 3435 } 3436 3437 /* 3438 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3439 * up to the end of the block which corresponds to `from'. 3440 * This required during truncate. We need to physically zero the tail end 3441 * of that block so it doesn't yield old data if the file is later grown. 3442 */ 3443 int ext4_block_truncate_page(handle_t *handle, 3444 struct address_space *mapping, loff_t from) 3445 { 3446 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3447 unsigned length; 3448 unsigned blocksize; 3449 struct inode *inode = mapping->host; 3450 3451 blocksize = inode->i_sb->s_blocksize; 3452 length = blocksize - (offset & (blocksize - 1)); 3453 3454 return ext4_block_zero_page_range(handle, mapping, from, length); 3455 } 3456 3457 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3458 loff_t lstart, loff_t length) 3459 { 3460 struct super_block *sb = inode->i_sb; 3461 struct address_space *mapping = inode->i_mapping; 3462 unsigned partial_start, partial_end; 3463 ext4_fsblk_t start, end; 3464 loff_t byte_end = (lstart + length - 1); 3465 int err = 0; 3466 3467 partial_start = lstart & (sb->s_blocksize - 1); 3468 partial_end = byte_end & (sb->s_blocksize - 1); 3469 3470 start = lstart >> sb->s_blocksize_bits; 3471 end = byte_end >> sb->s_blocksize_bits; 3472 3473 /* Handle partial zero within the single block */ 3474 if (start == end && 3475 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3476 err = ext4_block_zero_page_range(handle, mapping, 3477 lstart, length); 3478 return err; 3479 } 3480 /* Handle partial zero out on the start of the range */ 3481 if (partial_start) { 3482 err = ext4_block_zero_page_range(handle, mapping, 3483 lstart, sb->s_blocksize); 3484 if (err) 3485 return err; 3486 } 3487 /* Handle partial zero out on the end of the range */ 3488 if (partial_end != sb->s_blocksize - 1) 3489 err = ext4_block_zero_page_range(handle, mapping, 3490 byte_end - partial_end, 3491 partial_end + 1); 3492 return err; 3493 } 3494 3495 int ext4_can_truncate(struct inode *inode) 3496 { 3497 if (S_ISREG(inode->i_mode)) 3498 return 1; 3499 if (S_ISDIR(inode->i_mode)) 3500 return 1; 3501 if (S_ISLNK(inode->i_mode)) 3502 return !ext4_inode_is_fast_symlink(inode); 3503 return 0; 3504 } 3505 3506 /* 3507 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3508 * associated with the given offset and length 3509 * 3510 * @inode: File inode 3511 * @offset: The offset where the hole will begin 3512 * @len: The length of the hole 3513 * 3514 * Returns: 0 on success or negative on failure 3515 */ 3516 3517 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3518 { 3519 struct super_block *sb = inode->i_sb; 3520 ext4_lblk_t first_block, stop_block; 3521 struct address_space *mapping = inode->i_mapping; 3522 loff_t first_block_offset, last_block_offset; 3523 handle_t *handle; 3524 unsigned int credits; 3525 int ret = 0; 3526 3527 if (!S_ISREG(inode->i_mode)) 3528 return -EOPNOTSUPP; 3529 3530 trace_ext4_punch_hole(inode, offset, length, 0); 3531 3532 /* 3533 * Write out all dirty pages to avoid race conditions 3534 * Then release them. 3535 */ 3536 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3537 ret = filemap_write_and_wait_range(mapping, offset, 3538 offset + length - 1); 3539 if (ret) 3540 return ret; 3541 } 3542 3543 mutex_lock(&inode->i_mutex); 3544 3545 /* No need to punch hole beyond i_size */ 3546 if (offset >= inode->i_size) 3547 goto out_mutex; 3548 3549 /* 3550 * If the hole extends beyond i_size, set the hole 3551 * to end after the page that contains i_size 3552 */ 3553 if (offset + length > inode->i_size) { 3554 length = inode->i_size + 3555 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 3556 offset; 3557 } 3558 3559 if (offset & (sb->s_blocksize - 1) || 3560 (offset + length) & (sb->s_blocksize - 1)) { 3561 /* 3562 * Attach jinode to inode for jbd2 if we do any zeroing of 3563 * partial block 3564 */ 3565 ret = ext4_inode_attach_jinode(inode); 3566 if (ret < 0) 3567 goto out_mutex; 3568 3569 } 3570 3571 first_block_offset = round_up(offset, sb->s_blocksize); 3572 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3573 3574 /* Now release the pages and zero block aligned part of pages*/ 3575 if (last_block_offset > first_block_offset) 3576 truncate_pagecache_range(inode, first_block_offset, 3577 last_block_offset); 3578 3579 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3580 ext4_inode_block_unlocked_dio(inode); 3581 inode_dio_wait(inode); 3582 3583 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3584 credits = ext4_writepage_trans_blocks(inode); 3585 else 3586 credits = ext4_blocks_for_truncate(inode); 3587 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3588 if (IS_ERR(handle)) { 3589 ret = PTR_ERR(handle); 3590 ext4_std_error(sb, ret); 3591 goto out_dio; 3592 } 3593 3594 ret = ext4_zero_partial_blocks(handle, inode, offset, 3595 length); 3596 if (ret) 3597 goto out_stop; 3598 3599 first_block = (offset + sb->s_blocksize - 1) >> 3600 EXT4_BLOCK_SIZE_BITS(sb); 3601 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3602 3603 /* If there are no blocks to remove, return now */ 3604 if (first_block >= stop_block) 3605 goto out_stop; 3606 3607 down_write(&EXT4_I(inode)->i_data_sem); 3608 ext4_discard_preallocations(inode); 3609 3610 ret = ext4_es_remove_extent(inode, first_block, 3611 stop_block - first_block); 3612 if (ret) { 3613 up_write(&EXT4_I(inode)->i_data_sem); 3614 goto out_stop; 3615 } 3616 3617 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3618 ret = ext4_ext_remove_space(inode, first_block, 3619 stop_block - 1); 3620 else 3621 ret = ext4_free_hole_blocks(handle, inode, first_block, 3622 stop_block); 3623 3624 up_write(&EXT4_I(inode)->i_data_sem); 3625 if (IS_SYNC(inode)) 3626 ext4_handle_sync(handle); 3627 3628 /* Now release the pages again to reduce race window */ 3629 if (last_block_offset > first_block_offset) 3630 truncate_pagecache_range(inode, first_block_offset, 3631 last_block_offset); 3632 3633 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3634 ext4_mark_inode_dirty(handle, inode); 3635 out_stop: 3636 ext4_journal_stop(handle); 3637 out_dio: 3638 ext4_inode_resume_unlocked_dio(inode); 3639 out_mutex: 3640 mutex_unlock(&inode->i_mutex); 3641 return ret; 3642 } 3643 3644 int ext4_inode_attach_jinode(struct inode *inode) 3645 { 3646 struct ext4_inode_info *ei = EXT4_I(inode); 3647 struct jbd2_inode *jinode; 3648 3649 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 3650 return 0; 3651 3652 jinode = jbd2_alloc_inode(GFP_KERNEL); 3653 spin_lock(&inode->i_lock); 3654 if (!ei->jinode) { 3655 if (!jinode) { 3656 spin_unlock(&inode->i_lock); 3657 return -ENOMEM; 3658 } 3659 ei->jinode = jinode; 3660 jbd2_journal_init_jbd_inode(ei->jinode, inode); 3661 jinode = NULL; 3662 } 3663 spin_unlock(&inode->i_lock); 3664 if (unlikely(jinode != NULL)) 3665 jbd2_free_inode(jinode); 3666 return 0; 3667 } 3668 3669 /* 3670 * ext4_truncate() 3671 * 3672 * We block out ext4_get_block() block instantiations across the entire 3673 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3674 * simultaneously on behalf of the same inode. 3675 * 3676 * As we work through the truncate and commit bits of it to the journal there 3677 * is one core, guiding principle: the file's tree must always be consistent on 3678 * disk. We must be able to restart the truncate after a crash. 3679 * 3680 * The file's tree may be transiently inconsistent in memory (although it 3681 * probably isn't), but whenever we close off and commit a journal transaction, 3682 * the contents of (the filesystem + the journal) must be consistent and 3683 * restartable. It's pretty simple, really: bottom up, right to left (although 3684 * left-to-right works OK too). 3685 * 3686 * Note that at recovery time, journal replay occurs *before* the restart of 3687 * truncate against the orphan inode list. 3688 * 3689 * The committed inode has the new, desired i_size (which is the same as 3690 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3691 * that this inode's truncate did not complete and it will again call 3692 * ext4_truncate() to have another go. So there will be instantiated blocks 3693 * to the right of the truncation point in a crashed ext4 filesystem. But 3694 * that's fine - as long as they are linked from the inode, the post-crash 3695 * ext4_truncate() run will find them and release them. 3696 */ 3697 void ext4_truncate(struct inode *inode) 3698 { 3699 struct ext4_inode_info *ei = EXT4_I(inode); 3700 unsigned int credits; 3701 handle_t *handle; 3702 struct address_space *mapping = inode->i_mapping; 3703 3704 /* 3705 * There is a possibility that we're either freeing the inode 3706 * or it's a completely new inode. In those cases we might not 3707 * have i_mutex locked because it's not necessary. 3708 */ 3709 if (!(inode->i_state & (I_NEW|I_FREEING))) 3710 WARN_ON(!mutex_is_locked(&inode->i_mutex)); 3711 trace_ext4_truncate_enter(inode); 3712 3713 if (!ext4_can_truncate(inode)) 3714 return; 3715 3716 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3717 3718 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3719 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3720 3721 if (ext4_has_inline_data(inode)) { 3722 int has_inline = 1; 3723 3724 ext4_inline_data_truncate(inode, &has_inline); 3725 if (has_inline) 3726 return; 3727 } 3728 3729 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 3730 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 3731 if (ext4_inode_attach_jinode(inode) < 0) 3732 return; 3733 } 3734 3735 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3736 credits = ext4_writepage_trans_blocks(inode); 3737 else 3738 credits = ext4_blocks_for_truncate(inode); 3739 3740 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3741 if (IS_ERR(handle)) { 3742 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 3743 return; 3744 } 3745 3746 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 3747 ext4_block_truncate_page(handle, mapping, inode->i_size); 3748 3749 /* 3750 * We add the inode to the orphan list, so that if this 3751 * truncate spans multiple transactions, and we crash, we will 3752 * resume the truncate when the filesystem recovers. It also 3753 * marks the inode dirty, to catch the new size. 3754 * 3755 * Implication: the file must always be in a sane, consistent 3756 * truncatable state while each transaction commits. 3757 */ 3758 if (ext4_orphan_add(handle, inode)) 3759 goto out_stop; 3760 3761 down_write(&EXT4_I(inode)->i_data_sem); 3762 3763 ext4_discard_preallocations(inode); 3764 3765 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3766 ext4_ext_truncate(handle, inode); 3767 else 3768 ext4_ind_truncate(handle, inode); 3769 3770 up_write(&ei->i_data_sem); 3771 3772 if (IS_SYNC(inode)) 3773 ext4_handle_sync(handle); 3774 3775 out_stop: 3776 /* 3777 * If this was a simple ftruncate() and the file will remain alive, 3778 * then we need to clear up the orphan record which we created above. 3779 * However, if this was a real unlink then we were called by 3780 * ext4_delete_inode(), and we allow that function to clean up the 3781 * orphan info for us. 3782 */ 3783 if (inode->i_nlink) 3784 ext4_orphan_del(handle, inode); 3785 3786 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3787 ext4_mark_inode_dirty(handle, inode); 3788 ext4_journal_stop(handle); 3789 3790 trace_ext4_truncate_exit(inode); 3791 } 3792 3793 /* 3794 * ext4_get_inode_loc returns with an extra refcount against the inode's 3795 * underlying buffer_head on success. If 'in_mem' is true, we have all 3796 * data in memory that is needed to recreate the on-disk version of this 3797 * inode. 3798 */ 3799 static int __ext4_get_inode_loc(struct inode *inode, 3800 struct ext4_iloc *iloc, int in_mem) 3801 { 3802 struct ext4_group_desc *gdp; 3803 struct buffer_head *bh; 3804 struct super_block *sb = inode->i_sb; 3805 ext4_fsblk_t block; 3806 int inodes_per_block, inode_offset; 3807 3808 iloc->bh = NULL; 3809 if (!ext4_valid_inum(sb, inode->i_ino)) 3810 return -EIO; 3811 3812 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3813 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3814 if (!gdp) 3815 return -EIO; 3816 3817 /* 3818 * Figure out the offset within the block group inode table 3819 */ 3820 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3821 inode_offset = ((inode->i_ino - 1) % 3822 EXT4_INODES_PER_GROUP(sb)); 3823 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3824 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3825 3826 bh = sb_getblk(sb, block); 3827 if (unlikely(!bh)) 3828 return -ENOMEM; 3829 if (!buffer_uptodate(bh)) { 3830 lock_buffer(bh); 3831 3832 /* 3833 * If the buffer has the write error flag, we have failed 3834 * to write out another inode in the same block. In this 3835 * case, we don't have to read the block because we may 3836 * read the old inode data successfully. 3837 */ 3838 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3839 set_buffer_uptodate(bh); 3840 3841 if (buffer_uptodate(bh)) { 3842 /* someone brought it uptodate while we waited */ 3843 unlock_buffer(bh); 3844 goto has_buffer; 3845 } 3846 3847 /* 3848 * If we have all information of the inode in memory and this 3849 * is the only valid inode in the block, we need not read the 3850 * block. 3851 */ 3852 if (in_mem) { 3853 struct buffer_head *bitmap_bh; 3854 int i, start; 3855 3856 start = inode_offset & ~(inodes_per_block - 1); 3857 3858 /* Is the inode bitmap in cache? */ 3859 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3860 if (unlikely(!bitmap_bh)) 3861 goto make_io; 3862 3863 /* 3864 * If the inode bitmap isn't in cache then the 3865 * optimisation may end up performing two reads instead 3866 * of one, so skip it. 3867 */ 3868 if (!buffer_uptodate(bitmap_bh)) { 3869 brelse(bitmap_bh); 3870 goto make_io; 3871 } 3872 for (i = start; i < start + inodes_per_block; i++) { 3873 if (i == inode_offset) 3874 continue; 3875 if (ext4_test_bit(i, bitmap_bh->b_data)) 3876 break; 3877 } 3878 brelse(bitmap_bh); 3879 if (i == start + inodes_per_block) { 3880 /* all other inodes are free, so skip I/O */ 3881 memset(bh->b_data, 0, bh->b_size); 3882 set_buffer_uptodate(bh); 3883 unlock_buffer(bh); 3884 goto has_buffer; 3885 } 3886 } 3887 3888 make_io: 3889 /* 3890 * If we need to do any I/O, try to pre-readahead extra 3891 * blocks from the inode table. 3892 */ 3893 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3894 ext4_fsblk_t b, end, table; 3895 unsigned num; 3896 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 3897 3898 table = ext4_inode_table(sb, gdp); 3899 /* s_inode_readahead_blks is always a power of 2 */ 3900 b = block & ~((ext4_fsblk_t) ra_blks - 1); 3901 if (table > b) 3902 b = table; 3903 end = b + ra_blks; 3904 num = EXT4_INODES_PER_GROUP(sb); 3905 if (ext4_has_group_desc_csum(sb)) 3906 num -= ext4_itable_unused_count(sb, gdp); 3907 table += num / inodes_per_block; 3908 if (end > table) 3909 end = table; 3910 while (b <= end) 3911 sb_breadahead(sb, b++); 3912 } 3913 3914 /* 3915 * There are other valid inodes in the buffer, this inode 3916 * has in-inode xattrs, or we don't have this inode in memory. 3917 * Read the block from disk. 3918 */ 3919 trace_ext4_load_inode(inode); 3920 get_bh(bh); 3921 bh->b_end_io = end_buffer_read_sync; 3922 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3923 wait_on_buffer(bh); 3924 if (!buffer_uptodate(bh)) { 3925 EXT4_ERROR_INODE_BLOCK(inode, block, 3926 "unable to read itable block"); 3927 brelse(bh); 3928 return -EIO; 3929 } 3930 } 3931 has_buffer: 3932 iloc->bh = bh; 3933 return 0; 3934 } 3935 3936 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3937 { 3938 /* We have all inode data except xattrs in memory here. */ 3939 return __ext4_get_inode_loc(inode, iloc, 3940 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3941 } 3942 3943 void ext4_set_inode_flags(struct inode *inode) 3944 { 3945 unsigned int flags = EXT4_I(inode)->i_flags; 3946 unsigned int new_fl = 0; 3947 3948 if (flags & EXT4_SYNC_FL) 3949 new_fl |= S_SYNC; 3950 if (flags & EXT4_APPEND_FL) 3951 new_fl |= S_APPEND; 3952 if (flags & EXT4_IMMUTABLE_FL) 3953 new_fl |= S_IMMUTABLE; 3954 if (flags & EXT4_NOATIME_FL) 3955 new_fl |= S_NOATIME; 3956 if (flags & EXT4_DIRSYNC_FL) 3957 new_fl |= S_DIRSYNC; 3958 inode_set_flags(inode, new_fl, 3959 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3960 } 3961 3962 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3963 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3964 { 3965 unsigned int vfs_fl; 3966 unsigned long old_fl, new_fl; 3967 3968 do { 3969 vfs_fl = ei->vfs_inode.i_flags; 3970 old_fl = ei->i_flags; 3971 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3972 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3973 EXT4_DIRSYNC_FL); 3974 if (vfs_fl & S_SYNC) 3975 new_fl |= EXT4_SYNC_FL; 3976 if (vfs_fl & S_APPEND) 3977 new_fl |= EXT4_APPEND_FL; 3978 if (vfs_fl & S_IMMUTABLE) 3979 new_fl |= EXT4_IMMUTABLE_FL; 3980 if (vfs_fl & S_NOATIME) 3981 new_fl |= EXT4_NOATIME_FL; 3982 if (vfs_fl & S_DIRSYNC) 3983 new_fl |= EXT4_DIRSYNC_FL; 3984 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3985 } 3986 3987 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3988 struct ext4_inode_info *ei) 3989 { 3990 blkcnt_t i_blocks ; 3991 struct inode *inode = &(ei->vfs_inode); 3992 struct super_block *sb = inode->i_sb; 3993 3994 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3995 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3996 /* we are using combined 48 bit field */ 3997 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3998 le32_to_cpu(raw_inode->i_blocks_lo); 3999 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4000 /* i_blocks represent file system block size */ 4001 return i_blocks << (inode->i_blkbits - 9); 4002 } else { 4003 return i_blocks; 4004 } 4005 } else { 4006 return le32_to_cpu(raw_inode->i_blocks_lo); 4007 } 4008 } 4009 4010 static inline void ext4_iget_extra_inode(struct inode *inode, 4011 struct ext4_inode *raw_inode, 4012 struct ext4_inode_info *ei) 4013 { 4014 __le32 *magic = (void *)raw_inode + 4015 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4016 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4017 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4018 ext4_find_inline_data_nolock(inode); 4019 } else 4020 EXT4_I(inode)->i_inline_off = 0; 4021 } 4022 4023 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4024 { 4025 struct ext4_iloc iloc; 4026 struct ext4_inode *raw_inode; 4027 struct ext4_inode_info *ei; 4028 struct inode *inode; 4029 journal_t *journal = EXT4_SB(sb)->s_journal; 4030 long ret; 4031 int block; 4032 uid_t i_uid; 4033 gid_t i_gid; 4034 4035 inode = iget_locked(sb, ino); 4036 if (!inode) 4037 return ERR_PTR(-ENOMEM); 4038 if (!(inode->i_state & I_NEW)) 4039 return inode; 4040 4041 ei = EXT4_I(inode); 4042 iloc.bh = NULL; 4043 4044 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4045 if (ret < 0) 4046 goto bad_inode; 4047 raw_inode = ext4_raw_inode(&iloc); 4048 4049 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4050 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4051 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4052 EXT4_INODE_SIZE(inode->i_sb)) { 4053 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 4054 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 4055 EXT4_INODE_SIZE(inode->i_sb)); 4056 ret = -EIO; 4057 goto bad_inode; 4058 } 4059 } else 4060 ei->i_extra_isize = 0; 4061 4062 /* Precompute checksum seed for inode metadata */ 4063 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4064 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 4065 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4066 __u32 csum; 4067 __le32 inum = cpu_to_le32(inode->i_ino); 4068 __le32 gen = raw_inode->i_generation; 4069 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4070 sizeof(inum)); 4071 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4072 sizeof(gen)); 4073 } 4074 4075 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4076 EXT4_ERROR_INODE(inode, "checksum invalid"); 4077 ret = -EIO; 4078 goto bad_inode; 4079 } 4080 4081 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4082 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4083 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4084 if (!(test_opt(inode->i_sb, NO_UID32))) { 4085 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4086 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4087 } 4088 i_uid_write(inode, i_uid); 4089 i_gid_write(inode, i_gid); 4090 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4091 4092 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4093 ei->i_inline_off = 0; 4094 ei->i_dir_start_lookup = 0; 4095 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4096 /* We now have enough fields to check if the inode was active or not. 4097 * This is needed because nfsd might try to access dead inodes 4098 * the test is that same one that e2fsck uses 4099 * NeilBrown 1999oct15 4100 */ 4101 if (inode->i_nlink == 0) { 4102 if ((inode->i_mode == 0 || 4103 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4104 ino != EXT4_BOOT_LOADER_INO) { 4105 /* this inode is deleted */ 4106 ret = -ESTALE; 4107 goto bad_inode; 4108 } 4109 /* The only unlinked inodes we let through here have 4110 * valid i_mode and are being read by the orphan 4111 * recovery code: that's fine, we're about to complete 4112 * the process of deleting those. 4113 * OR it is the EXT4_BOOT_LOADER_INO which is 4114 * not initialized on a new filesystem. */ 4115 } 4116 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4117 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4118 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4119 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 4120 ei->i_file_acl |= 4121 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4122 inode->i_size = ext4_isize(raw_inode); 4123 ei->i_disksize = inode->i_size; 4124 #ifdef CONFIG_QUOTA 4125 ei->i_reserved_quota = 0; 4126 #endif 4127 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4128 ei->i_block_group = iloc.block_group; 4129 ei->i_last_alloc_group = ~0; 4130 /* 4131 * NOTE! The in-memory inode i_data array is in little-endian order 4132 * even on big-endian machines: we do NOT byteswap the block numbers! 4133 */ 4134 for (block = 0; block < EXT4_N_BLOCKS; block++) 4135 ei->i_data[block] = raw_inode->i_block[block]; 4136 INIT_LIST_HEAD(&ei->i_orphan); 4137 4138 /* 4139 * Set transaction id's of transactions that have to be committed 4140 * to finish f[data]sync. We set them to currently running transaction 4141 * as we cannot be sure that the inode or some of its metadata isn't 4142 * part of the transaction - the inode could have been reclaimed and 4143 * now it is reread from disk. 4144 */ 4145 if (journal) { 4146 transaction_t *transaction; 4147 tid_t tid; 4148 4149 read_lock(&journal->j_state_lock); 4150 if (journal->j_running_transaction) 4151 transaction = journal->j_running_transaction; 4152 else 4153 transaction = journal->j_committing_transaction; 4154 if (transaction) 4155 tid = transaction->t_tid; 4156 else 4157 tid = journal->j_commit_sequence; 4158 read_unlock(&journal->j_state_lock); 4159 ei->i_sync_tid = tid; 4160 ei->i_datasync_tid = tid; 4161 } 4162 4163 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4164 if (ei->i_extra_isize == 0) { 4165 /* The extra space is currently unused. Use it. */ 4166 ei->i_extra_isize = sizeof(struct ext4_inode) - 4167 EXT4_GOOD_OLD_INODE_SIZE; 4168 } else { 4169 ext4_iget_extra_inode(inode, raw_inode, ei); 4170 } 4171 } 4172 4173 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4174 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4175 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4176 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4177 4178 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4179 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4180 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4181 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4182 inode->i_version |= 4183 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4184 } 4185 } 4186 4187 ret = 0; 4188 if (ei->i_file_acl && 4189 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4190 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4191 ei->i_file_acl); 4192 ret = -EIO; 4193 goto bad_inode; 4194 } else if (!ext4_has_inline_data(inode)) { 4195 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4196 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4197 (S_ISLNK(inode->i_mode) && 4198 !ext4_inode_is_fast_symlink(inode)))) 4199 /* Validate extent which is part of inode */ 4200 ret = ext4_ext_check_inode(inode); 4201 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4202 (S_ISLNK(inode->i_mode) && 4203 !ext4_inode_is_fast_symlink(inode))) { 4204 /* Validate block references which are part of inode */ 4205 ret = ext4_ind_check_inode(inode); 4206 } 4207 } 4208 if (ret) 4209 goto bad_inode; 4210 4211 if (S_ISREG(inode->i_mode)) { 4212 inode->i_op = &ext4_file_inode_operations; 4213 inode->i_fop = &ext4_file_operations; 4214 ext4_set_aops(inode); 4215 } else if (S_ISDIR(inode->i_mode)) { 4216 inode->i_op = &ext4_dir_inode_operations; 4217 inode->i_fop = &ext4_dir_operations; 4218 } else if (S_ISLNK(inode->i_mode)) { 4219 if (ext4_inode_is_fast_symlink(inode)) { 4220 inode->i_op = &ext4_fast_symlink_inode_operations; 4221 nd_terminate_link(ei->i_data, inode->i_size, 4222 sizeof(ei->i_data) - 1); 4223 } else { 4224 inode->i_op = &ext4_symlink_inode_operations; 4225 ext4_set_aops(inode); 4226 } 4227 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4228 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4229 inode->i_op = &ext4_special_inode_operations; 4230 if (raw_inode->i_block[0]) 4231 init_special_inode(inode, inode->i_mode, 4232 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4233 else 4234 init_special_inode(inode, inode->i_mode, 4235 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4236 } else if (ino == EXT4_BOOT_LOADER_INO) { 4237 make_bad_inode(inode); 4238 } else { 4239 ret = -EIO; 4240 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4241 goto bad_inode; 4242 } 4243 brelse(iloc.bh); 4244 ext4_set_inode_flags(inode); 4245 unlock_new_inode(inode); 4246 return inode; 4247 4248 bad_inode: 4249 brelse(iloc.bh); 4250 iget_failed(inode); 4251 return ERR_PTR(ret); 4252 } 4253 4254 static int ext4_inode_blocks_set(handle_t *handle, 4255 struct ext4_inode *raw_inode, 4256 struct ext4_inode_info *ei) 4257 { 4258 struct inode *inode = &(ei->vfs_inode); 4259 u64 i_blocks = inode->i_blocks; 4260 struct super_block *sb = inode->i_sb; 4261 4262 if (i_blocks <= ~0U) { 4263 /* 4264 * i_blocks can be represented in a 32 bit variable 4265 * as multiple of 512 bytes 4266 */ 4267 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4268 raw_inode->i_blocks_high = 0; 4269 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4270 return 0; 4271 } 4272 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4273 return -EFBIG; 4274 4275 if (i_blocks <= 0xffffffffffffULL) { 4276 /* 4277 * i_blocks can be represented in a 48 bit variable 4278 * as multiple of 512 bytes 4279 */ 4280 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4281 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4282 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4283 } else { 4284 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4285 /* i_block is stored in file system block size */ 4286 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4287 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4288 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4289 } 4290 return 0; 4291 } 4292 4293 /* 4294 * Post the struct inode info into an on-disk inode location in the 4295 * buffer-cache. This gobbles the caller's reference to the 4296 * buffer_head in the inode location struct. 4297 * 4298 * The caller must have write access to iloc->bh. 4299 */ 4300 static int ext4_do_update_inode(handle_t *handle, 4301 struct inode *inode, 4302 struct ext4_iloc *iloc) 4303 { 4304 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4305 struct ext4_inode_info *ei = EXT4_I(inode); 4306 struct buffer_head *bh = iloc->bh; 4307 int err = 0, rc, block; 4308 int need_datasync = 0; 4309 uid_t i_uid; 4310 gid_t i_gid; 4311 4312 /* For fields not not tracking in the in-memory inode, 4313 * initialise them to zero for new inodes. */ 4314 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4315 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4316 4317 ext4_get_inode_flags(ei); 4318 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4319 i_uid = i_uid_read(inode); 4320 i_gid = i_gid_read(inode); 4321 if (!(test_opt(inode->i_sb, NO_UID32))) { 4322 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4323 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4324 /* 4325 * Fix up interoperability with old kernels. Otherwise, old inodes get 4326 * re-used with the upper 16 bits of the uid/gid intact 4327 */ 4328 if (!ei->i_dtime) { 4329 raw_inode->i_uid_high = 4330 cpu_to_le16(high_16_bits(i_uid)); 4331 raw_inode->i_gid_high = 4332 cpu_to_le16(high_16_bits(i_gid)); 4333 } else { 4334 raw_inode->i_uid_high = 0; 4335 raw_inode->i_gid_high = 0; 4336 } 4337 } else { 4338 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4339 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4340 raw_inode->i_uid_high = 0; 4341 raw_inode->i_gid_high = 0; 4342 } 4343 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4344 4345 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4346 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4347 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4348 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4349 4350 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 4351 goto out_brelse; 4352 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4353 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4354 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4355 raw_inode->i_file_acl_high = 4356 cpu_to_le16(ei->i_file_acl >> 32); 4357 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4358 if (ei->i_disksize != ext4_isize(raw_inode)) { 4359 ext4_isize_set(raw_inode, ei->i_disksize); 4360 need_datasync = 1; 4361 } 4362 if (ei->i_disksize > 0x7fffffffULL) { 4363 struct super_block *sb = inode->i_sb; 4364 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4365 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4366 EXT4_SB(sb)->s_es->s_rev_level == 4367 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 4368 /* If this is the first large file 4369 * created, add a flag to the superblock. 4370 */ 4371 err = ext4_journal_get_write_access(handle, 4372 EXT4_SB(sb)->s_sbh); 4373 if (err) 4374 goto out_brelse; 4375 ext4_update_dynamic_rev(sb); 4376 EXT4_SET_RO_COMPAT_FEATURE(sb, 4377 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4378 ext4_handle_sync(handle); 4379 err = ext4_handle_dirty_super(handle, sb); 4380 } 4381 } 4382 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4383 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4384 if (old_valid_dev(inode->i_rdev)) { 4385 raw_inode->i_block[0] = 4386 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4387 raw_inode->i_block[1] = 0; 4388 } else { 4389 raw_inode->i_block[0] = 0; 4390 raw_inode->i_block[1] = 4391 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4392 raw_inode->i_block[2] = 0; 4393 } 4394 } else if (!ext4_has_inline_data(inode)) { 4395 for (block = 0; block < EXT4_N_BLOCKS; block++) 4396 raw_inode->i_block[block] = ei->i_data[block]; 4397 } 4398 4399 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4400 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4401 if (ei->i_extra_isize) { 4402 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4403 raw_inode->i_version_hi = 4404 cpu_to_le32(inode->i_version >> 32); 4405 raw_inode->i_extra_isize = 4406 cpu_to_le16(ei->i_extra_isize); 4407 } 4408 } 4409 4410 ext4_inode_csum_set(inode, raw_inode, ei); 4411 4412 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4413 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4414 if (!err) 4415 err = rc; 4416 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4417 4418 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4419 out_brelse: 4420 brelse(bh); 4421 ext4_std_error(inode->i_sb, err); 4422 return err; 4423 } 4424 4425 /* 4426 * ext4_write_inode() 4427 * 4428 * We are called from a few places: 4429 * 4430 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 4431 * Here, there will be no transaction running. We wait for any running 4432 * transaction to commit. 4433 * 4434 * - Within flush work (sys_sync(), kupdate and such). 4435 * We wait on commit, if told to. 4436 * 4437 * - Within iput_final() -> write_inode_now() 4438 * We wait on commit, if told to. 4439 * 4440 * In all cases it is actually safe for us to return without doing anything, 4441 * because the inode has been copied into a raw inode buffer in 4442 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 4443 * writeback. 4444 * 4445 * Note that we are absolutely dependent upon all inode dirtiers doing the 4446 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4447 * which we are interested. 4448 * 4449 * It would be a bug for them to not do this. The code: 4450 * 4451 * mark_inode_dirty(inode) 4452 * stuff(); 4453 * inode->i_size = expr; 4454 * 4455 * is in error because write_inode() could occur while `stuff()' is running, 4456 * and the new i_size will be lost. Plus the inode will no longer be on the 4457 * superblock's dirty inode list. 4458 */ 4459 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4460 { 4461 int err; 4462 4463 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 4464 return 0; 4465 4466 if (EXT4_SB(inode->i_sb)->s_journal) { 4467 if (ext4_journal_current_handle()) { 4468 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4469 dump_stack(); 4470 return -EIO; 4471 } 4472 4473 /* 4474 * No need to force transaction in WB_SYNC_NONE mode. Also 4475 * ext4_sync_fs() will force the commit after everything is 4476 * written. 4477 */ 4478 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 4479 return 0; 4480 4481 err = ext4_force_commit(inode->i_sb); 4482 } else { 4483 struct ext4_iloc iloc; 4484 4485 err = __ext4_get_inode_loc(inode, &iloc, 0); 4486 if (err) 4487 return err; 4488 /* 4489 * sync(2) will flush the whole buffer cache. No need to do 4490 * it here separately for each inode. 4491 */ 4492 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 4493 sync_dirty_buffer(iloc.bh); 4494 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4495 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4496 "IO error syncing inode"); 4497 err = -EIO; 4498 } 4499 brelse(iloc.bh); 4500 } 4501 return err; 4502 } 4503 4504 /* 4505 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 4506 * buffers that are attached to a page stradding i_size and are undergoing 4507 * commit. In that case we have to wait for commit to finish and try again. 4508 */ 4509 static void ext4_wait_for_tail_page_commit(struct inode *inode) 4510 { 4511 struct page *page; 4512 unsigned offset; 4513 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 4514 tid_t commit_tid = 0; 4515 int ret; 4516 4517 offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 4518 /* 4519 * All buffers in the last page remain valid? Then there's nothing to 4520 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE == 4521 * blocksize case 4522 */ 4523 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits)) 4524 return; 4525 while (1) { 4526 page = find_lock_page(inode->i_mapping, 4527 inode->i_size >> PAGE_CACHE_SHIFT); 4528 if (!page) 4529 return; 4530 ret = __ext4_journalled_invalidatepage(page, offset, 4531 PAGE_CACHE_SIZE - offset); 4532 unlock_page(page); 4533 page_cache_release(page); 4534 if (ret != -EBUSY) 4535 return; 4536 commit_tid = 0; 4537 read_lock(&journal->j_state_lock); 4538 if (journal->j_committing_transaction) 4539 commit_tid = journal->j_committing_transaction->t_tid; 4540 read_unlock(&journal->j_state_lock); 4541 if (commit_tid) 4542 jbd2_log_wait_commit(journal, commit_tid); 4543 } 4544 } 4545 4546 /* 4547 * ext4_setattr() 4548 * 4549 * Called from notify_change. 4550 * 4551 * We want to trap VFS attempts to truncate the file as soon as 4552 * possible. In particular, we want to make sure that when the VFS 4553 * shrinks i_size, we put the inode on the orphan list and modify 4554 * i_disksize immediately, so that during the subsequent flushing of 4555 * dirty pages and freeing of disk blocks, we can guarantee that any 4556 * commit will leave the blocks being flushed in an unused state on 4557 * disk. (On recovery, the inode will get truncated and the blocks will 4558 * be freed, so we have a strong guarantee that no future commit will 4559 * leave these blocks visible to the user.) 4560 * 4561 * Another thing we have to assure is that if we are in ordered mode 4562 * and inode is still attached to the committing transaction, we must 4563 * we start writeout of all the dirty pages which are being truncated. 4564 * This way we are sure that all the data written in the previous 4565 * transaction are already on disk (truncate waits for pages under 4566 * writeback). 4567 * 4568 * Called with inode->i_mutex down. 4569 */ 4570 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4571 { 4572 struct inode *inode = dentry->d_inode; 4573 int error, rc = 0; 4574 int orphan = 0; 4575 const unsigned int ia_valid = attr->ia_valid; 4576 4577 error = inode_change_ok(inode, attr); 4578 if (error) 4579 return error; 4580 4581 if (is_quota_modification(inode, attr)) 4582 dquot_initialize(inode); 4583 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4584 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4585 handle_t *handle; 4586 4587 /* (user+group)*(old+new) structure, inode write (sb, 4588 * inode block, ? - but truncate inode update has it) */ 4589 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4590 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 4591 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 4592 if (IS_ERR(handle)) { 4593 error = PTR_ERR(handle); 4594 goto err_out; 4595 } 4596 error = dquot_transfer(inode, attr); 4597 if (error) { 4598 ext4_journal_stop(handle); 4599 return error; 4600 } 4601 /* Update corresponding info in inode so that everything is in 4602 * one transaction */ 4603 if (attr->ia_valid & ATTR_UID) 4604 inode->i_uid = attr->ia_uid; 4605 if (attr->ia_valid & ATTR_GID) 4606 inode->i_gid = attr->ia_gid; 4607 error = ext4_mark_inode_dirty(handle, inode); 4608 ext4_journal_stop(handle); 4609 } 4610 4611 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) { 4612 handle_t *handle; 4613 4614 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4615 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4616 4617 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4618 return -EFBIG; 4619 } 4620 4621 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 4622 inode_inc_iversion(inode); 4623 4624 if (S_ISREG(inode->i_mode) && 4625 (attr->ia_size < inode->i_size)) { 4626 if (ext4_should_order_data(inode)) { 4627 error = ext4_begin_ordered_truncate(inode, 4628 attr->ia_size); 4629 if (error) 4630 goto err_out; 4631 } 4632 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 4633 if (IS_ERR(handle)) { 4634 error = PTR_ERR(handle); 4635 goto err_out; 4636 } 4637 if (ext4_handle_valid(handle)) { 4638 error = ext4_orphan_add(handle, inode); 4639 orphan = 1; 4640 } 4641 down_write(&EXT4_I(inode)->i_data_sem); 4642 EXT4_I(inode)->i_disksize = attr->ia_size; 4643 rc = ext4_mark_inode_dirty(handle, inode); 4644 if (!error) 4645 error = rc; 4646 /* 4647 * We have to update i_size under i_data_sem together 4648 * with i_disksize to avoid races with writeback code 4649 * running ext4_wb_update_i_disksize(). 4650 */ 4651 if (!error) 4652 i_size_write(inode, attr->ia_size); 4653 up_write(&EXT4_I(inode)->i_data_sem); 4654 ext4_journal_stop(handle); 4655 if (error) { 4656 ext4_orphan_del(NULL, inode); 4657 goto err_out; 4658 } 4659 } else 4660 i_size_write(inode, attr->ia_size); 4661 4662 /* 4663 * Blocks are going to be removed from the inode. Wait 4664 * for dio in flight. Temporarily disable 4665 * dioread_nolock to prevent livelock. 4666 */ 4667 if (orphan) { 4668 if (!ext4_should_journal_data(inode)) { 4669 ext4_inode_block_unlocked_dio(inode); 4670 inode_dio_wait(inode); 4671 ext4_inode_resume_unlocked_dio(inode); 4672 } else 4673 ext4_wait_for_tail_page_commit(inode); 4674 } 4675 /* 4676 * Truncate pagecache after we've waited for commit 4677 * in data=journal mode to make pages freeable. 4678 */ 4679 truncate_pagecache(inode, inode->i_size); 4680 } 4681 /* 4682 * We want to call ext4_truncate() even if attr->ia_size == 4683 * inode->i_size for cases like truncation of fallocated space 4684 */ 4685 if (attr->ia_valid & ATTR_SIZE) 4686 ext4_truncate(inode); 4687 4688 if (!rc) { 4689 setattr_copy(inode, attr); 4690 mark_inode_dirty(inode); 4691 } 4692 4693 /* 4694 * If the call to ext4_truncate failed to get a transaction handle at 4695 * all, we need to clean up the in-core orphan list manually. 4696 */ 4697 if (orphan && inode->i_nlink) 4698 ext4_orphan_del(NULL, inode); 4699 4700 if (!rc && (ia_valid & ATTR_MODE)) 4701 rc = posix_acl_chmod(inode, inode->i_mode); 4702 4703 err_out: 4704 ext4_std_error(inode->i_sb, error); 4705 if (!error) 4706 error = rc; 4707 return error; 4708 } 4709 4710 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4711 struct kstat *stat) 4712 { 4713 struct inode *inode; 4714 unsigned long long delalloc_blocks; 4715 4716 inode = dentry->d_inode; 4717 generic_fillattr(inode, stat); 4718 4719 /* 4720 * If there is inline data in the inode, the inode will normally not 4721 * have data blocks allocated (it may have an external xattr block). 4722 * Report at least one sector for such files, so tools like tar, rsync, 4723 * others doen't incorrectly think the file is completely sparse. 4724 */ 4725 if (unlikely(ext4_has_inline_data(inode))) 4726 stat->blocks += (stat->size + 511) >> 9; 4727 4728 /* 4729 * We can't update i_blocks if the block allocation is delayed 4730 * otherwise in the case of system crash before the real block 4731 * allocation is done, we will have i_blocks inconsistent with 4732 * on-disk file blocks. 4733 * We always keep i_blocks updated together with real 4734 * allocation. But to not confuse with user, stat 4735 * will return the blocks that include the delayed allocation 4736 * blocks for this file. 4737 */ 4738 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 4739 EXT4_I(inode)->i_reserved_data_blocks); 4740 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 4741 return 0; 4742 } 4743 4744 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 4745 int pextents) 4746 { 4747 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4748 return ext4_ind_trans_blocks(inode, lblocks); 4749 return ext4_ext_index_trans_blocks(inode, pextents); 4750 } 4751 4752 /* 4753 * Account for index blocks, block groups bitmaps and block group 4754 * descriptor blocks if modify datablocks and index blocks 4755 * worse case, the indexs blocks spread over different block groups 4756 * 4757 * If datablocks are discontiguous, they are possible to spread over 4758 * different block groups too. If they are contiguous, with flexbg, 4759 * they could still across block group boundary. 4760 * 4761 * Also account for superblock, inode, quota and xattr blocks 4762 */ 4763 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 4764 int pextents) 4765 { 4766 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4767 int gdpblocks; 4768 int idxblocks; 4769 int ret = 0; 4770 4771 /* 4772 * How many index blocks need to touch to map @lblocks logical blocks 4773 * to @pextents physical extents? 4774 */ 4775 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 4776 4777 ret = idxblocks; 4778 4779 /* 4780 * Now let's see how many group bitmaps and group descriptors need 4781 * to account 4782 */ 4783 groups = idxblocks + pextents; 4784 gdpblocks = groups; 4785 if (groups > ngroups) 4786 groups = ngroups; 4787 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4788 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4789 4790 /* bitmaps and block group descriptor blocks */ 4791 ret += groups + gdpblocks; 4792 4793 /* Blocks for super block, inode, quota and xattr blocks */ 4794 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4795 4796 return ret; 4797 } 4798 4799 /* 4800 * Calculate the total number of credits to reserve to fit 4801 * the modification of a single pages into a single transaction, 4802 * which may include multiple chunks of block allocations. 4803 * 4804 * This could be called via ext4_write_begin() 4805 * 4806 * We need to consider the worse case, when 4807 * one new block per extent. 4808 */ 4809 int ext4_writepage_trans_blocks(struct inode *inode) 4810 { 4811 int bpp = ext4_journal_blocks_per_page(inode); 4812 int ret; 4813 4814 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 4815 4816 /* Account for data blocks for journalled mode */ 4817 if (ext4_should_journal_data(inode)) 4818 ret += bpp; 4819 return ret; 4820 } 4821 4822 /* 4823 * Calculate the journal credits for a chunk of data modification. 4824 * 4825 * This is called from DIO, fallocate or whoever calling 4826 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4827 * 4828 * journal buffers for data blocks are not included here, as DIO 4829 * and fallocate do no need to journal data buffers. 4830 */ 4831 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4832 { 4833 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4834 } 4835 4836 /* 4837 * The caller must have previously called ext4_reserve_inode_write(). 4838 * Give this, we know that the caller already has write access to iloc->bh. 4839 */ 4840 int ext4_mark_iloc_dirty(handle_t *handle, 4841 struct inode *inode, struct ext4_iloc *iloc) 4842 { 4843 int err = 0; 4844 4845 if (IS_I_VERSION(inode)) 4846 inode_inc_iversion(inode); 4847 4848 /* the do_update_inode consumes one bh->b_count */ 4849 get_bh(iloc->bh); 4850 4851 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4852 err = ext4_do_update_inode(handle, inode, iloc); 4853 put_bh(iloc->bh); 4854 return err; 4855 } 4856 4857 /* 4858 * On success, We end up with an outstanding reference count against 4859 * iloc->bh. This _must_ be cleaned up later. 4860 */ 4861 4862 int 4863 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4864 struct ext4_iloc *iloc) 4865 { 4866 int err; 4867 4868 err = ext4_get_inode_loc(inode, iloc); 4869 if (!err) { 4870 BUFFER_TRACE(iloc->bh, "get_write_access"); 4871 err = ext4_journal_get_write_access(handle, iloc->bh); 4872 if (err) { 4873 brelse(iloc->bh); 4874 iloc->bh = NULL; 4875 } 4876 } 4877 ext4_std_error(inode->i_sb, err); 4878 return err; 4879 } 4880 4881 /* 4882 * Expand an inode by new_extra_isize bytes. 4883 * Returns 0 on success or negative error number on failure. 4884 */ 4885 static int ext4_expand_extra_isize(struct inode *inode, 4886 unsigned int new_extra_isize, 4887 struct ext4_iloc iloc, 4888 handle_t *handle) 4889 { 4890 struct ext4_inode *raw_inode; 4891 struct ext4_xattr_ibody_header *header; 4892 4893 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4894 return 0; 4895 4896 raw_inode = ext4_raw_inode(&iloc); 4897 4898 header = IHDR(inode, raw_inode); 4899 4900 /* No extended attributes present */ 4901 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4902 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4903 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4904 new_extra_isize); 4905 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4906 return 0; 4907 } 4908 4909 /* try to expand with EAs present */ 4910 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4911 raw_inode, handle); 4912 } 4913 4914 /* 4915 * What we do here is to mark the in-core inode as clean with respect to inode 4916 * dirtiness (it may still be data-dirty). 4917 * This means that the in-core inode may be reaped by prune_icache 4918 * without having to perform any I/O. This is a very good thing, 4919 * because *any* task may call prune_icache - even ones which 4920 * have a transaction open against a different journal. 4921 * 4922 * Is this cheating? Not really. Sure, we haven't written the 4923 * inode out, but prune_icache isn't a user-visible syncing function. 4924 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4925 * we start and wait on commits. 4926 */ 4927 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4928 { 4929 struct ext4_iloc iloc; 4930 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4931 static unsigned int mnt_count; 4932 int err, ret; 4933 4934 might_sleep(); 4935 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 4936 err = ext4_reserve_inode_write(handle, inode, &iloc); 4937 if (ext4_handle_valid(handle) && 4938 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4939 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 4940 /* 4941 * We need extra buffer credits since we may write into EA block 4942 * with this same handle. If journal_extend fails, then it will 4943 * only result in a minor loss of functionality for that inode. 4944 * If this is felt to be critical, then e2fsck should be run to 4945 * force a large enough s_min_extra_isize. 4946 */ 4947 if ((jbd2_journal_extend(handle, 4948 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4949 ret = ext4_expand_extra_isize(inode, 4950 sbi->s_want_extra_isize, 4951 iloc, handle); 4952 if (ret) { 4953 ext4_set_inode_state(inode, 4954 EXT4_STATE_NO_EXPAND); 4955 if (mnt_count != 4956 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4957 ext4_warning(inode->i_sb, 4958 "Unable to expand inode %lu. Delete" 4959 " some EAs or run e2fsck.", 4960 inode->i_ino); 4961 mnt_count = 4962 le16_to_cpu(sbi->s_es->s_mnt_count); 4963 } 4964 } 4965 } 4966 } 4967 if (!err) 4968 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4969 return err; 4970 } 4971 4972 /* 4973 * ext4_dirty_inode() is called from __mark_inode_dirty() 4974 * 4975 * We're really interested in the case where a file is being extended. 4976 * i_size has been changed by generic_commit_write() and we thus need 4977 * to include the updated inode in the current transaction. 4978 * 4979 * Also, dquot_alloc_block() will always dirty the inode when blocks 4980 * are allocated to the file. 4981 * 4982 * If the inode is marked synchronous, we don't honour that here - doing 4983 * so would cause a commit on atime updates, which we don't bother doing. 4984 * We handle synchronous inodes at the highest possible level. 4985 */ 4986 void ext4_dirty_inode(struct inode *inode, int flags) 4987 { 4988 handle_t *handle; 4989 4990 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 4991 if (IS_ERR(handle)) 4992 goto out; 4993 4994 ext4_mark_inode_dirty(handle, inode); 4995 4996 ext4_journal_stop(handle); 4997 out: 4998 return; 4999 } 5000 5001 #if 0 5002 /* 5003 * Bind an inode's backing buffer_head into this transaction, to prevent 5004 * it from being flushed to disk early. Unlike 5005 * ext4_reserve_inode_write, this leaves behind no bh reference and 5006 * returns no iloc structure, so the caller needs to repeat the iloc 5007 * lookup to mark the inode dirty later. 5008 */ 5009 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5010 { 5011 struct ext4_iloc iloc; 5012 5013 int err = 0; 5014 if (handle) { 5015 err = ext4_get_inode_loc(inode, &iloc); 5016 if (!err) { 5017 BUFFER_TRACE(iloc.bh, "get_write_access"); 5018 err = jbd2_journal_get_write_access(handle, iloc.bh); 5019 if (!err) 5020 err = ext4_handle_dirty_metadata(handle, 5021 NULL, 5022 iloc.bh); 5023 brelse(iloc.bh); 5024 } 5025 } 5026 ext4_std_error(inode->i_sb, err); 5027 return err; 5028 } 5029 #endif 5030 5031 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5032 { 5033 journal_t *journal; 5034 handle_t *handle; 5035 int err; 5036 5037 /* 5038 * We have to be very careful here: changing a data block's 5039 * journaling status dynamically is dangerous. If we write a 5040 * data block to the journal, change the status and then delete 5041 * that block, we risk forgetting to revoke the old log record 5042 * from the journal and so a subsequent replay can corrupt data. 5043 * So, first we make sure that the journal is empty and that 5044 * nobody is changing anything. 5045 */ 5046 5047 journal = EXT4_JOURNAL(inode); 5048 if (!journal) 5049 return 0; 5050 if (is_journal_aborted(journal)) 5051 return -EROFS; 5052 /* We have to allocate physical blocks for delalloc blocks 5053 * before flushing journal. otherwise delalloc blocks can not 5054 * be allocated any more. even more truncate on delalloc blocks 5055 * could trigger BUG by flushing delalloc blocks in journal. 5056 * There is no delalloc block in non-journal data mode. 5057 */ 5058 if (val && test_opt(inode->i_sb, DELALLOC)) { 5059 err = ext4_alloc_da_blocks(inode); 5060 if (err < 0) 5061 return err; 5062 } 5063 5064 /* Wait for all existing dio workers */ 5065 ext4_inode_block_unlocked_dio(inode); 5066 inode_dio_wait(inode); 5067 5068 jbd2_journal_lock_updates(journal); 5069 5070 /* 5071 * OK, there are no updates running now, and all cached data is 5072 * synced to disk. We are now in a completely consistent state 5073 * which doesn't have anything in the journal, and we know that 5074 * no filesystem updates are running, so it is safe to modify 5075 * the inode's in-core data-journaling state flag now. 5076 */ 5077 5078 if (val) 5079 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5080 else { 5081 jbd2_journal_flush(journal); 5082 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5083 } 5084 ext4_set_aops(inode); 5085 5086 jbd2_journal_unlock_updates(journal); 5087 ext4_inode_resume_unlocked_dio(inode); 5088 5089 /* Finally we can mark the inode as dirty. */ 5090 5091 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5092 if (IS_ERR(handle)) 5093 return PTR_ERR(handle); 5094 5095 err = ext4_mark_inode_dirty(handle, inode); 5096 ext4_handle_sync(handle); 5097 ext4_journal_stop(handle); 5098 ext4_std_error(inode->i_sb, err); 5099 5100 return err; 5101 } 5102 5103 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5104 { 5105 return !buffer_mapped(bh); 5106 } 5107 5108 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5109 { 5110 struct page *page = vmf->page; 5111 loff_t size; 5112 unsigned long len; 5113 int ret; 5114 struct file *file = vma->vm_file; 5115 struct inode *inode = file_inode(file); 5116 struct address_space *mapping = inode->i_mapping; 5117 handle_t *handle; 5118 get_block_t *get_block; 5119 int retries = 0; 5120 5121 sb_start_pagefault(inode->i_sb); 5122 file_update_time(vma->vm_file); 5123 /* Delalloc case is easy... */ 5124 if (test_opt(inode->i_sb, DELALLOC) && 5125 !ext4_should_journal_data(inode) && 5126 !ext4_nonda_switch(inode->i_sb)) { 5127 do { 5128 ret = __block_page_mkwrite(vma, vmf, 5129 ext4_da_get_block_prep); 5130 } while (ret == -ENOSPC && 5131 ext4_should_retry_alloc(inode->i_sb, &retries)); 5132 goto out_ret; 5133 } 5134 5135 lock_page(page); 5136 size = i_size_read(inode); 5137 /* Page got truncated from under us? */ 5138 if (page->mapping != mapping || page_offset(page) > size) { 5139 unlock_page(page); 5140 ret = VM_FAULT_NOPAGE; 5141 goto out; 5142 } 5143 5144 if (page->index == size >> PAGE_CACHE_SHIFT) 5145 len = size & ~PAGE_CACHE_MASK; 5146 else 5147 len = PAGE_CACHE_SIZE; 5148 /* 5149 * Return if we have all the buffers mapped. This avoids the need to do 5150 * journal_start/journal_stop which can block and take a long time 5151 */ 5152 if (page_has_buffers(page)) { 5153 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5154 0, len, NULL, 5155 ext4_bh_unmapped)) { 5156 /* Wait so that we don't change page under IO */ 5157 wait_for_stable_page(page); 5158 ret = VM_FAULT_LOCKED; 5159 goto out; 5160 } 5161 } 5162 unlock_page(page); 5163 /* OK, we need to fill the hole... */ 5164 if (ext4_should_dioread_nolock(inode)) 5165 get_block = ext4_get_block_write; 5166 else 5167 get_block = ext4_get_block; 5168 retry_alloc: 5169 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5170 ext4_writepage_trans_blocks(inode)); 5171 if (IS_ERR(handle)) { 5172 ret = VM_FAULT_SIGBUS; 5173 goto out; 5174 } 5175 ret = __block_page_mkwrite(vma, vmf, get_block); 5176 if (!ret && ext4_should_journal_data(inode)) { 5177 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5178 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 5179 unlock_page(page); 5180 ret = VM_FAULT_SIGBUS; 5181 ext4_journal_stop(handle); 5182 goto out; 5183 } 5184 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5185 } 5186 ext4_journal_stop(handle); 5187 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5188 goto retry_alloc; 5189 out_ret: 5190 ret = block_page_mkwrite_return(ret); 5191 out: 5192 sb_end_pagefault(inode->i_sb); 5193 return ret; 5194 } 5195