xref: /linux/fs/ext4/inode.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44 
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49 
50 #include <trace/events/ext4.h>
51 
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 			      struct ext4_inode_info *ei)
54 {
55 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 	__u32 csum;
57 	__u16 dummy_csum = 0;
58 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 	unsigned int csum_size = sizeof(dummy_csum);
60 
61 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 	offset += csum_size;
64 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
66 
67 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 		offset = offsetof(struct ext4_inode, i_checksum_hi);
69 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 				   EXT4_GOOD_OLD_INODE_SIZE,
71 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
72 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74 					   csum_size);
75 			offset += csum_size;
76 		}
77 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
79 	}
80 
81 	return csum;
82 }
83 
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 				  struct ext4_inode_info *ei)
86 {
87 	__u32 provided, calculated;
88 
89 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 	    cpu_to_le32(EXT4_OS_LINUX) ||
91 	    !ext4_has_metadata_csum(inode->i_sb))
92 		return 1;
93 
94 	provided = le16_to_cpu(raw->i_checksum_lo);
95 	calculated = ext4_inode_csum(inode, raw, ei);
96 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 	else
100 		calculated &= 0xFFFF;
101 
102 	return provided == calculated;
103 }
104 
105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 			 struct ext4_inode_info *ei)
107 {
108 	__u32 csum;
109 
110 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 	    cpu_to_le32(EXT4_OS_LINUX) ||
112 	    !ext4_has_metadata_csum(inode->i_sb))
113 		return;
114 
115 	csum = ext4_inode_csum(inode, raw, ei);
116 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121 
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 					      loff_t new_size)
124 {
125 	trace_ext4_begin_ordered_truncate(inode, new_size);
126 	/*
127 	 * If jinode is zero, then we never opened the file for
128 	 * writing, so there's no need to call
129 	 * jbd2_journal_begin_ordered_truncate() since there's no
130 	 * outstanding writes we need to flush.
131 	 */
132 	if (!EXT4_I(inode)->jinode)
133 		return 0;
134 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 						   EXT4_I(inode)->jinode,
136 						   new_size);
137 }
138 
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140 				  int pextents);
141 
142 /*
143  * Test whether an inode is a fast symlink.
144  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
145  */
146 int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
149 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
150 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
151 
152 		if (ext4_has_inline_data(inode))
153 			return 0;
154 
155 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
156 	}
157 	return S_ISLNK(inode->i_mode) && inode->i_size &&
158 	       (inode->i_size < EXT4_N_BLOCKS * 4);
159 }
160 
161 /*
162  * Called at the last iput() if i_nlink is zero.
163  */
164 void ext4_evict_inode(struct inode *inode)
165 {
166 	handle_t *handle;
167 	int err;
168 	/*
169 	 * Credits for final inode cleanup and freeing:
170 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
171 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
172 	 */
173 	int extra_credits = 6;
174 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
175 	bool freeze_protected = false;
176 
177 	trace_ext4_evict_inode(inode);
178 
179 	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
180 		ext4_evict_ea_inode(inode);
181 	if (inode->i_nlink) {
182 		truncate_inode_pages_final(&inode->i_data);
183 
184 		goto no_delete;
185 	}
186 
187 	if (is_bad_inode(inode))
188 		goto no_delete;
189 	dquot_initialize(inode);
190 
191 	if (ext4_should_order_data(inode))
192 		ext4_begin_ordered_truncate(inode, 0);
193 	truncate_inode_pages_final(&inode->i_data);
194 
195 	/*
196 	 * For inodes with journalled data, transaction commit could have
197 	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
198 	 * extents converting worker could merge extents and also have dirtied
199 	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
200 	 * we still need to remove the inode from the writeback lists.
201 	 */
202 	if (!list_empty_careful(&inode->i_io_list))
203 		inode_io_list_del(inode);
204 
205 	/*
206 	 * Protect us against freezing - iput() caller didn't have to have any
207 	 * protection against it. When we are in a running transaction though,
208 	 * we are already protected against freezing and we cannot grab further
209 	 * protection due to lock ordering constraints.
210 	 */
211 	if (!ext4_journal_current_handle()) {
212 		sb_start_intwrite(inode->i_sb);
213 		freeze_protected = true;
214 	}
215 
216 	if (!IS_NOQUOTA(inode))
217 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
218 
219 	/*
220 	 * Block bitmap, group descriptor, and inode are accounted in both
221 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
222 	 */
223 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
224 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
225 	if (IS_ERR(handle)) {
226 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
227 		/*
228 		 * If we're going to skip the normal cleanup, we still need to
229 		 * make sure that the in-core orphan linked list is properly
230 		 * cleaned up.
231 		 */
232 		ext4_orphan_del(NULL, inode);
233 		if (freeze_protected)
234 			sb_end_intwrite(inode->i_sb);
235 		goto no_delete;
236 	}
237 
238 	if (IS_SYNC(inode))
239 		ext4_handle_sync(handle);
240 
241 	/*
242 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
243 	 * special handling of symlinks here because i_size is used to
244 	 * determine whether ext4_inode_info->i_data contains symlink data or
245 	 * block mappings. Setting i_size to 0 will remove its fast symlink
246 	 * status. Erase i_data so that it becomes a valid empty block map.
247 	 */
248 	if (ext4_inode_is_fast_symlink(inode))
249 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
250 	inode->i_size = 0;
251 	err = ext4_mark_inode_dirty(handle, inode);
252 	if (err) {
253 		ext4_warning(inode->i_sb,
254 			     "couldn't mark inode dirty (err %d)", err);
255 		goto stop_handle;
256 	}
257 	if (inode->i_blocks) {
258 		err = ext4_truncate(inode);
259 		if (err) {
260 			ext4_error_err(inode->i_sb, -err,
261 				       "couldn't truncate inode %lu (err %d)",
262 				       inode->i_ino, err);
263 			goto stop_handle;
264 		}
265 	}
266 
267 	/* Remove xattr references. */
268 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
269 				      extra_credits);
270 	if (err) {
271 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
272 stop_handle:
273 		ext4_journal_stop(handle);
274 		ext4_orphan_del(NULL, inode);
275 		if (freeze_protected)
276 			sb_end_intwrite(inode->i_sb);
277 		ext4_xattr_inode_array_free(ea_inode_array);
278 		goto no_delete;
279 	}
280 
281 	/*
282 	 * Kill off the orphan record which ext4_truncate created.
283 	 * AKPM: I think this can be inside the above `if'.
284 	 * Note that ext4_orphan_del() has to be able to cope with the
285 	 * deletion of a non-existent orphan - this is because we don't
286 	 * know if ext4_truncate() actually created an orphan record.
287 	 * (Well, we could do this if we need to, but heck - it works)
288 	 */
289 	ext4_orphan_del(handle, inode);
290 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
291 
292 	/*
293 	 * One subtle ordering requirement: if anything has gone wrong
294 	 * (transaction abort, IO errors, whatever), then we can still
295 	 * do these next steps (the fs will already have been marked as
296 	 * having errors), but we can't free the inode if the mark_dirty
297 	 * fails.
298 	 */
299 	if (ext4_mark_inode_dirty(handle, inode))
300 		/* If that failed, just do the required in-core inode clear. */
301 		ext4_clear_inode(inode);
302 	else
303 		ext4_free_inode(handle, inode);
304 	ext4_journal_stop(handle);
305 	if (freeze_protected)
306 		sb_end_intwrite(inode->i_sb);
307 	ext4_xattr_inode_array_free(ea_inode_array);
308 	return;
309 no_delete:
310 	/*
311 	 * Check out some where else accidentally dirty the evicting inode,
312 	 * which may probably cause inode use-after-free issues later.
313 	 */
314 	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
315 
316 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
317 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
318 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
319 }
320 
321 #ifdef CONFIG_QUOTA
322 qsize_t *ext4_get_reserved_space(struct inode *inode)
323 {
324 	return &EXT4_I(inode)->i_reserved_quota;
325 }
326 #endif
327 
328 /*
329  * Called with i_data_sem down, which is important since we can call
330  * ext4_discard_preallocations() from here.
331  */
332 void ext4_da_update_reserve_space(struct inode *inode,
333 					int used, int quota_claim)
334 {
335 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
336 	struct ext4_inode_info *ei = EXT4_I(inode);
337 
338 	spin_lock(&ei->i_block_reservation_lock);
339 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
340 	if (unlikely(used > ei->i_reserved_data_blocks)) {
341 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
342 			 "with only %d reserved data blocks",
343 			 __func__, inode->i_ino, used,
344 			 ei->i_reserved_data_blocks);
345 		WARN_ON(1);
346 		used = ei->i_reserved_data_blocks;
347 	}
348 
349 	/* Update per-inode reservations */
350 	ei->i_reserved_data_blocks -= used;
351 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
352 
353 	spin_unlock(&ei->i_block_reservation_lock);
354 
355 	/* Update quota subsystem for data blocks */
356 	if (quota_claim)
357 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
358 	else {
359 		/*
360 		 * We did fallocate with an offset that is already delayed
361 		 * allocated. So on delayed allocated writeback we should
362 		 * not re-claim the quota for fallocated blocks.
363 		 */
364 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
365 	}
366 
367 	/*
368 	 * If we have done all the pending block allocations and if
369 	 * there aren't any writers on the inode, we can discard the
370 	 * inode's preallocations.
371 	 */
372 	if ((ei->i_reserved_data_blocks == 0) &&
373 	    !inode_is_open_for_write(inode))
374 		ext4_discard_preallocations(inode);
375 }
376 
377 static int __check_block_validity(struct inode *inode, const char *func,
378 				unsigned int line,
379 				struct ext4_map_blocks *map)
380 {
381 	if (ext4_has_feature_journal(inode->i_sb) &&
382 	    (inode->i_ino ==
383 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
384 		return 0;
385 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
386 		ext4_error_inode(inode, func, line, map->m_pblk,
387 				 "lblock %lu mapped to illegal pblock %llu "
388 				 "(length %d)", (unsigned long) map->m_lblk,
389 				 map->m_pblk, map->m_len);
390 		return -EFSCORRUPTED;
391 	}
392 	return 0;
393 }
394 
395 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
396 		       ext4_lblk_t len)
397 {
398 	int ret;
399 
400 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
401 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
402 
403 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
404 	if (ret > 0)
405 		ret = 0;
406 
407 	return ret;
408 }
409 
410 #define check_block_validity(inode, map)	\
411 	__check_block_validity((inode), __func__, __LINE__, (map))
412 
413 #ifdef ES_AGGRESSIVE_TEST
414 static void ext4_map_blocks_es_recheck(handle_t *handle,
415 				       struct inode *inode,
416 				       struct ext4_map_blocks *es_map,
417 				       struct ext4_map_blocks *map,
418 				       int flags)
419 {
420 	int retval;
421 
422 	map->m_flags = 0;
423 	/*
424 	 * There is a race window that the result is not the same.
425 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
426 	 * is that we lookup a block mapping in extent status tree with
427 	 * out taking i_data_sem.  So at the time the unwritten extent
428 	 * could be converted.
429 	 */
430 	down_read(&EXT4_I(inode)->i_data_sem);
431 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
432 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
433 	} else {
434 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
435 	}
436 	up_read((&EXT4_I(inode)->i_data_sem));
437 
438 	/*
439 	 * We don't check m_len because extent will be collpased in status
440 	 * tree.  So the m_len might not equal.
441 	 */
442 	if (es_map->m_lblk != map->m_lblk ||
443 	    es_map->m_flags != map->m_flags ||
444 	    es_map->m_pblk != map->m_pblk) {
445 		printk("ES cache assertion failed for inode: %lu "
446 		       "es_cached ex [%d/%d/%llu/%x] != "
447 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
448 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
449 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
450 		       map->m_len, map->m_pblk, map->m_flags,
451 		       retval, flags);
452 	}
453 }
454 #endif /* ES_AGGRESSIVE_TEST */
455 
456 /*
457  * The ext4_map_blocks() function tries to look up the requested blocks,
458  * and returns if the blocks are already mapped.
459  *
460  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
461  * and store the allocated blocks in the result buffer head and mark it
462  * mapped.
463  *
464  * If file type is extents based, it will call ext4_ext_map_blocks(),
465  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
466  * based files
467  *
468  * On success, it returns the number of blocks being mapped or allocated.
469  * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are
470  * pre-allocated and unwritten, the resulting @map is marked as unwritten.
471  * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped.
472  *
473  * It returns 0 if plain look up failed (blocks have not been allocated), in
474  * that case, @map is returned as unmapped but we still do fill map->m_len to
475  * indicate the length of a hole starting at map->m_lblk.
476  *
477  * It returns the error in case of allocation failure.
478  */
479 int ext4_map_blocks(handle_t *handle, struct inode *inode,
480 		    struct ext4_map_blocks *map, int flags)
481 {
482 	struct extent_status es;
483 	int retval;
484 	int ret = 0;
485 #ifdef ES_AGGRESSIVE_TEST
486 	struct ext4_map_blocks orig_map;
487 
488 	memcpy(&orig_map, map, sizeof(*map));
489 #endif
490 
491 	map->m_flags = 0;
492 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
493 		  flags, map->m_len, (unsigned long) map->m_lblk);
494 
495 	/*
496 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
497 	 */
498 	if (unlikely(map->m_len > INT_MAX))
499 		map->m_len = INT_MAX;
500 
501 	/* We can handle the block number less than EXT_MAX_BLOCKS */
502 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
503 		return -EFSCORRUPTED;
504 
505 	/* Lookup extent status tree firstly */
506 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
507 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
508 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
509 			map->m_pblk = ext4_es_pblock(&es) +
510 					map->m_lblk - es.es_lblk;
511 			map->m_flags |= ext4_es_is_written(&es) ?
512 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
513 			retval = es.es_len - (map->m_lblk - es.es_lblk);
514 			if (retval > map->m_len)
515 				retval = map->m_len;
516 			map->m_len = retval;
517 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
518 			map->m_pblk = 0;
519 			map->m_flags |= ext4_es_is_delayed(&es) ?
520 					EXT4_MAP_DELAYED : 0;
521 			retval = es.es_len - (map->m_lblk - es.es_lblk);
522 			if (retval > map->m_len)
523 				retval = map->m_len;
524 			map->m_len = retval;
525 			retval = 0;
526 		} else {
527 			BUG();
528 		}
529 
530 		if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
531 			return retval;
532 #ifdef ES_AGGRESSIVE_TEST
533 		ext4_map_blocks_es_recheck(handle, inode, map,
534 					   &orig_map, flags);
535 #endif
536 		goto found;
537 	}
538 	/*
539 	 * In the query cache no-wait mode, nothing we can do more if we
540 	 * cannot find extent in the cache.
541 	 */
542 	if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
543 		return 0;
544 
545 	/*
546 	 * Try to see if we can get the block without requesting a new
547 	 * file system block.
548 	 */
549 	down_read(&EXT4_I(inode)->i_data_sem);
550 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
551 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
552 	} else {
553 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
554 	}
555 	if (retval > 0) {
556 		unsigned int status;
557 
558 		if (unlikely(retval != map->m_len)) {
559 			ext4_warning(inode->i_sb,
560 				     "ES len assertion failed for inode "
561 				     "%lu: retval %d != map->m_len %d",
562 				     inode->i_ino, retval, map->m_len);
563 			WARN_ON(1);
564 		}
565 
566 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
567 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
568 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
569 		    !(status & EXTENT_STATUS_WRITTEN) &&
570 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
571 				       map->m_lblk + map->m_len - 1))
572 			status |= EXTENT_STATUS_DELAYED;
573 		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
574 				      map->m_pblk, status);
575 	}
576 	up_read((&EXT4_I(inode)->i_data_sem));
577 
578 found:
579 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
580 		ret = check_block_validity(inode, map);
581 		if (ret != 0)
582 			return ret;
583 	}
584 
585 	/* If it is only a block(s) look up */
586 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
587 		return retval;
588 
589 	/*
590 	 * Returns if the blocks have already allocated
591 	 *
592 	 * Note that if blocks have been preallocated
593 	 * ext4_ext_map_blocks() returns with buffer head unmapped
594 	 */
595 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
596 		/*
597 		 * If we need to convert extent to unwritten
598 		 * we continue and do the actual work in
599 		 * ext4_ext_map_blocks()
600 		 */
601 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
602 			return retval;
603 
604 	/*
605 	 * Here we clear m_flags because after allocating an new extent,
606 	 * it will be set again.
607 	 */
608 	map->m_flags &= ~EXT4_MAP_FLAGS;
609 
610 	/*
611 	 * New blocks allocate and/or writing to unwritten extent
612 	 * will possibly result in updating i_data, so we take
613 	 * the write lock of i_data_sem, and call get_block()
614 	 * with create == 1 flag.
615 	 */
616 	down_write(&EXT4_I(inode)->i_data_sem);
617 
618 	/*
619 	 * We need to check for EXT4 here because migrate
620 	 * could have changed the inode type in between
621 	 */
622 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
623 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
624 	} else {
625 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
626 
627 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
628 			/*
629 			 * We allocated new blocks which will result in
630 			 * i_data's format changing.  Force the migrate
631 			 * to fail by clearing migrate flags
632 			 */
633 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
634 		}
635 	}
636 
637 	if (retval > 0) {
638 		unsigned int status;
639 
640 		if (unlikely(retval != map->m_len)) {
641 			ext4_warning(inode->i_sb,
642 				     "ES len assertion failed for inode "
643 				     "%lu: retval %d != map->m_len %d",
644 				     inode->i_ino, retval, map->m_len);
645 			WARN_ON(1);
646 		}
647 
648 		/*
649 		 * We have to zeroout blocks before inserting them into extent
650 		 * status tree. Otherwise someone could look them up there and
651 		 * use them before they are really zeroed. We also have to
652 		 * unmap metadata before zeroing as otherwise writeback can
653 		 * overwrite zeros with stale data from block device.
654 		 */
655 		if (flags & EXT4_GET_BLOCKS_ZERO &&
656 		    map->m_flags & EXT4_MAP_MAPPED &&
657 		    map->m_flags & EXT4_MAP_NEW) {
658 			ret = ext4_issue_zeroout(inode, map->m_lblk,
659 						 map->m_pblk, map->m_len);
660 			if (ret) {
661 				retval = ret;
662 				goto out_sem;
663 			}
664 		}
665 
666 		/*
667 		 * If the extent has been zeroed out, we don't need to update
668 		 * extent status tree.
669 		 */
670 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
671 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
672 			if (ext4_es_is_written(&es))
673 				goto out_sem;
674 		}
675 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
676 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
677 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
678 		    !(status & EXTENT_STATUS_WRITTEN) &&
679 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
680 				       map->m_lblk + map->m_len - 1))
681 			status |= EXTENT_STATUS_DELAYED;
682 		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
683 				      map->m_pblk, status);
684 	}
685 
686 out_sem:
687 	up_write((&EXT4_I(inode)->i_data_sem));
688 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
689 		ret = check_block_validity(inode, map);
690 		if (ret != 0)
691 			return ret;
692 
693 		/*
694 		 * Inodes with freshly allocated blocks where contents will be
695 		 * visible after transaction commit must be on transaction's
696 		 * ordered data list.
697 		 */
698 		if (map->m_flags & EXT4_MAP_NEW &&
699 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
700 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
701 		    !ext4_is_quota_file(inode) &&
702 		    ext4_should_order_data(inode)) {
703 			loff_t start_byte =
704 				(loff_t)map->m_lblk << inode->i_blkbits;
705 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
706 
707 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
708 				ret = ext4_jbd2_inode_add_wait(handle, inode,
709 						start_byte, length);
710 			else
711 				ret = ext4_jbd2_inode_add_write(handle, inode,
712 						start_byte, length);
713 			if (ret)
714 				return ret;
715 		}
716 	}
717 	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
718 				map->m_flags & EXT4_MAP_MAPPED))
719 		ext4_fc_track_range(handle, inode, map->m_lblk,
720 					map->m_lblk + map->m_len - 1);
721 	if (retval < 0)
722 		ext_debug(inode, "failed with err %d\n", retval);
723 	return retval;
724 }
725 
726 /*
727  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
728  * we have to be careful as someone else may be manipulating b_state as well.
729  */
730 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
731 {
732 	unsigned long old_state;
733 	unsigned long new_state;
734 
735 	flags &= EXT4_MAP_FLAGS;
736 
737 	/* Dummy buffer_head? Set non-atomically. */
738 	if (!bh->b_page) {
739 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
740 		return;
741 	}
742 	/*
743 	 * Someone else may be modifying b_state. Be careful! This is ugly but
744 	 * once we get rid of using bh as a container for mapping information
745 	 * to pass to / from get_block functions, this can go away.
746 	 */
747 	old_state = READ_ONCE(bh->b_state);
748 	do {
749 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
750 	} while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
751 }
752 
753 static int _ext4_get_block(struct inode *inode, sector_t iblock,
754 			   struct buffer_head *bh, int flags)
755 {
756 	struct ext4_map_blocks map;
757 	int ret = 0;
758 
759 	if (ext4_has_inline_data(inode))
760 		return -ERANGE;
761 
762 	map.m_lblk = iblock;
763 	map.m_len = bh->b_size >> inode->i_blkbits;
764 
765 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
766 			      flags);
767 	if (ret > 0) {
768 		map_bh(bh, inode->i_sb, map.m_pblk);
769 		ext4_update_bh_state(bh, map.m_flags);
770 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
771 		ret = 0;
772 	} else if (ret == 0) {
773 		/* hole case, need to fill in bh->b_size */
774 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
775 	}
776 	return ret;
777 }
778 
779 int ext4_get_block(struct inode *inode, sector_t iblock,
780 		   struct buffer_head *bh, int create)
781 {
782 	return _ext4_get_block(inode, iblock, bh,
783 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
784 }
785 
786 /*
787  * Get block function used when preparing for buffered write if we require
788  * creating an unwritten extent if blocks haven't been allocated.  The extent
789  * will be converted to written after the IO is complete.
790  */
791 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
792 			     struct buffer_head *bh_result, int create)
793 {
794 	int ret = 0;
795 
796 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
797 		   inode->i_ino, create);
798 	ret = _ext4_get_block(inode, iblock, bh_result,
799 			       EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
800 
801 	/*
802 	 * If the buffer is marked unwritten, mark it as new to make sure it is
803 	 * zeroed out correctly in case of partial writes. Otherwise, there is
804 	 * a chance of stale data getting exposed.
805 	 */
806 	if (ret == 0 && buffer_unwritten(bh_result))
807 		set_buffer_new(bh_result);
808 
809 	return ret;
810 }
811 
812 /* Maximum number of blocks we map for direct IO at once. */
813 #define DIO_MAX_BLOCKS 4096
814 
815 /*
816  * `handle' can be NULL if create is zero
817  */
818 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
819 				ext4_lblk_t block, int map_flags)
820 {
821 	struct ext4_map_blocks map;
822 	struct buffer_head *bh;
823 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
824 	bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
825 	int err;
826 
827 	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
828 		    || handle != NULL || create == 0);
829 	ASSERT(create == 0 || !nowait);
830 
831 	map.m_lblk = block;
832 	map.m_len = 1;
833 	err = ext4_map_blocks(handle, inode, &map, map_flags);
834 
835 	if (err == 0)
836 		return create ? ERR_PTR(-ENOSPC) : NULL;
837 	if (err < 0)
838 		return ERR_PTR(err);
839 
840 	if (nowait)
841 		return sb_find_get_block(inode->i_sb, map.m_pblk);
842 
843 	bh = sb_getblk(inode->i_sb, map.m_pblk);
844 	if (unlikely(!bh))
845 		return ERR_PTR(-ENOMEM);
846 	if (map.m_flags & EXT4_MAP_NEW) {
847 		ASSERT(create != 0);
848 		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
849 			    || (handle != NULL));
850 
851 		/*
852 		 * Now that we do not always journal data, we should
853 		 * keep in mind whether this should always journal the
854 		 * new buffer as metadata.  For now, regular file
855 		 * writes use ext4_get_block instead, so it's not a
856 		 * problem.
857 		 */
858 		lock_buffer(bh);
859 		BUFFER_TRACE(bh, "call get_create_access");
860 		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
861 						     EXT4_JTR_NONE);
862 		if (unlikely(err)) {
863 			unlock_buffer(bh);
864 			goto errout;
865 		}
866 		if (!buffer_uptodate(bh)) {
867 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
868 			set_buffer_uptodate(bh);
869 		}
870 		unlock_buffer(bh);
871 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
872 		err = ext4_handle_dirty_metadata(handle, inode, bh);
873 		if (unlikely(err))
874 			goto errout;
875 	} else
876 		BUFFER_TRACE(bh, "not a new buffer");
877 	return bh;
878 errout:
879 	brelse(bh);
880 	return ERR_PTR(err);
881 }
882 
883 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
884 			       ext4_lblk_t block, int map_flags)
885 {
886 	struct buffer_head *bh;
887 	int ret;
888 
889 	bh = ext4_getblk(handle, inode, block, map_flags);
890 	if (IS_ERR(bh))
891 		return bh;
892 	if (!bh || ext4_buffer_uptodate(bh))
893 		return bh;
894 
895 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
896 	if (ret) {
897 		put_bh(bh);
898 		return ERR_PTR(ret);
899 	}
900 	return bh;
901 }
902 
903 /* Read a contiguous batch of blocks. */
904 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
905 		     bool wait, struct buffer_head **bhs)
906 {
907 	int i, err;
908 
909 	for (i = 0; i < bh_count; i++) {
910 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
911 		if (IS_ERR(bhs[i])) {
912 			err = PTR_ERR(bhs[i]);
913 			bh_count = i;
914 			goto out_brelse;
915 		}
916 	}
917 
918 	for (i = 0; i < bh_count; i++)
919 		/* Note that NULL bhs[i] is valid because of holes. */
920 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
921 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
922 
923 	if (!wait)
924 		return 0;
925 
926 	for (i = 0; i < bh_count; i++)
927 		if (bhs[i])
928 			wait_on_buffer(bhs[i]);
929 
930 	for (i = 0; i < bh_count; i++) {
931 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
932 			err = -EIO;
933 			goto out_brelse;
934 		}
935 	}
936 	return 0;
937 
938 out_brelse:
939 	for (i = 0; i < bh_count; i++) {
940 		brelse(bhs[i]);
941 		bhs[i] = NULL;
942 	}
943 	return err;
944 }
945 
946 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
947 			   struct buffer_head *head,
948 			   unsigned from,
949 			   unsigned to,
950 			   int *partial,
951 			   int (*fn)(handle_t *handle, struct inode *inode,
952 				     struct buffer_head *bh))
953 {
954 	struct buffer_head *bh;
955 	unsigned block_start, block_end;
956 	unsigned blocksize = head->b_size;
957 	int err, ret = 0;
958 	struct buffer_head *next;
959 
960 	for (bh = head, block_start = 0;
961 	     ret == 0 && (bh != head || !block_start);
962 	     block_start = block_end, bh = next) {
963 		next = bh->b_this_page;
964 		block_end = block_start + blocksize;
965 		if (block_end <= from || block_start >= to) {
966 			if (partial && !buffer_uptodate(bh))
967 				*partial = 1;
968 			continue;
969 		}
970 		err = (*fn)(handle, inode, bh);
971 		if (!ret)
972 			ret = err;
973 	}
974 	return ret;
975 }
976 
977 /*
978  * Helper for handling dirtying of journalled data. We also mark the folio as
979  * dirty so that writeback code knows about this page (and inode) contains
980  * dirty data. ext4_writepages() then commits appropriate transaction to
981  * make data stable.
982  */
983 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
984 {
985 	folio_mark_dirty(bh->b_folio);
986 	return ext4_handle_dirty_metadata(handle, NULL, bh);
987 }
988 
989 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
990 				struct buffer_head *bh)
991 {
992 	int dirty = buffer_dirty(bh);
993 	int ret;
994 
995 	if (!buffer_mapped(bh) || buffer_freed(bh))
996 		return 0;
997 	/*
998 	 * __block_write_begin() could have dirtied some buffers. Clean
999 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1000 	 * otherwise about fs integrity issues. Setting of the dirty bit
1001 	 * by __block_write_begin() isn't a real problem here as we clear
1002 	 * the bit before releasing a page lock and thus writeback cannot
1003 	 * ever write the buffer.
1004 	 */
1005 	if (dirty)
1006 		clear_buffer_dirty(bh);
1007 	BUFFER_TRACE(bh, "get write access");
1008 	ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1009 					    EXT4_JTR_NONE);
1010 	if (!ret && dirty)
1011 		ret = ext4_dirty_journalled_data(handle, bh);
1012 	return ret;
1013 }
1014 
1015 #ifdef CONFIG_FS_ENCRYPTION
1016 static int ext4_block_write_begin(struct folio *folio, loff_t pos, unsigned len,
1017 				  get_block_t *get_block)
1018 {
1019 	unsigned from = pos & (PAGE_SIZE - 1);
1020 	unsigned to = from + len;
1021 	struct inode *inode = folio->mapping->host;
1022 	unsigned block_start, block_end;
1023 	sector_t block;
1024 	int err = 0;
1025 	unsigned blocksize = inode->i_sb->s_blocksize;
1026 	unsigned bbits;
1027 	struct buffer_head *bh, *head, *wait[2];
1028 	int nr_wait = 0;
1029 	int i;
1030 
1031 	BUG_ON(!folio_test_locked(folio));
1032 	BUG_ON(from > PAGE_SIZE);
1033 	BUG_ON(to > PAGE_SIZE);
1034 	BUG_ON(from > to);
1035 
1036 	head = folio_buffers(folio);
1037 	if (!head)
1038 		head = create_empty_buffers(folio, blocksize, 0);
1039 	bbits = ilog2(blocksize);
1040 	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1041 
1042 	for (bh = head, block_start = 0; bh != head || !block_start;
1043 	    block++, block_start = block_end, bh = bh->b_this_page) {
1044 		block_end = block_start + blocksize;
1045 		if (block_end <= from || block_start >= to) {
1046 			if (folio_test_uptodate(folio)) {
1047 				set_buffer_uptodate(bh);
1048 			}
1049 			continue;
1050 		}
1051 		if (buffer_new(bh))
1052 			clear_buffer_new(bh);
1053 		if (!buffer_mapped(bh)) {
1054 			WARN_ON(bh->b_size != blocksize);
1055 			err = get_block(inode, block, bh, 1);
1056 			if (err)
1057 				break;
1058 			if (buffer_new(bh)) {
1059 				if (folio_test_uptodate(folio)) {
1060 					clear_buffer_new(bh);
1061 					set_buffer_uptodate(bh);
1062 					mark_buffer_dirty(bh);
1063 					continue;
1064 				}
1065 				if (block_end > to || block_start < from)
1066 					folio_zero_segments(folio, to,
1067 							    block_end,
1068 							    block_start, from);
1069 				continue;
1070 			}
1071 		}
1072 		if (folio_test_uptodate(folio)) {
1073 			set_buffer_uptodate(bh);
1074 			continue;
1075 		}
1076 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1077 		    !buffer_unwritten(bh) &&
1078 		    (block_start < from || block_end > to)) {
1079 			ext4_read_bh_lock(bh, 0, false);
1080 			wait[nr_wait++] = bh;
1081 		}
1082 	}
1083 	/*
1084 	 * If we issued read requests, let them complete.
1085 	 */
1086 	for (i = 0; i < nr_wait; i++) {
1087 		wait_on_buffer(wait[i]);
1088 		if (!buffer_uptodate(wait[i]))
1089 			err = -EIO;
1090 	}
1091 	if (unlikely(err)) {
1092 		folio_zero_new_buffers(folio, from, to);
1093 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1094 		for (i = 0; i < nr_wait; i++) {
1095 			int err2;
1096 
1097 			err2 = fscrypt_decrypt_pagecache_blocks(folio,
1098 						blocksize, bh_offset(wait[i]));
1099 			if (err2) {
1100 				clear_buffer_uptodate(wait[i]);
1101 				err = err2;
1102 			}
1103 		}
1104 	}
1105 
1106 	return err;
1107 }
1108 #endif
1109 
1110 /*
1111  * To preserve ordering, it is essential that the hole instantiation and
1112  * the data write be encapsulated in a single transaction.  We cannot
1113  * close off a transaction and start a new one between the ext4_get_block()
1114  * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1115  * ext4_write_begin() is the right place.
1116  */
1117 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1118 			    loff_t pos, unsigned len,
1119 			    struct page **pagep, void **fsdata)
1120 {
1121 	struct inode *inode = mapping->host;
1122 	int ret, needed_blocks;
1123 	handle_t *handle;
1124 	int retries = 0;
1125 	struct folio *folio;
1126 	pgoff_t index;
1127 	unsigned from, to;
1128 
1129 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
1130 		return -EIO;
1131 
1132 	trace_ext4_write_begin(inode, pos, len);
1133 	/*
1134 	 * Reserve one block more for addition to orphan list in case
1135 	 * we allocate blocks but write fails for some reason
1136 	 */
1137 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1138 	index = pos >> PAGE_SHIFT;
1139 	from = pos & (PAGE_SIZE - 1);
1140 	to = from + len;
1141 
1142 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1143 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1144 						    pagep);
1145 		if (ret < 0)
1146 			return ret;
1147 		if (ret == 1)
1148 			return 0;
1149 	}
1150 
1151 	/*
1152 	 * __filemap_get_folio() can take a long time if the
1153 	 * system is thrashing due to memory pressure, or if the folio
1154 	 * is being written back.  So grab it first before we start
1155 	 * the transaction handle.  This also allows us to allocate
1156 	 * the folio (if needed) without using GFP_NOFS.
1157 	 */
1158 retry_grab:
1159 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1160 					mapping_gfp_mask(mapping));
1161 	if (IS_ERR(folio))
1162 		return PTR_ERR(folio);
1163 	/*
1164 	 * The same as page allocation, we prealloc buffer heads before
1165 	 * starting the handle.
1166 	 */
1167 	if (!folio_buffers(folio))
1168 		create_empty_buffers(folio, inode->i_sb->s_blocksize, 0);
1169 
1170 	folio_unlock(folio);
1171 
1172 retry_journal:
1173 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1174 	if (IS_ERR(handle)) {
1175 		folio_put(folio);
1176 		return PTR_ERR(handle);
1177 	}
1178 
1179 	folio_lock(folio);
1180 	if (folio->mapping != mapping) {
1181 		/* The folio got truncated from under us */
1182 		folio_unlock(folio);
1183 		folio_put(folio);
1184 		ext4_journal_stop(handle);
1185 		goto retry_grab;
1186 	}
1187 	/* In case writeback began while the folio was unlocked */
1188 	folio_wait_stable(folio);
1189 
1190 #ifdef CONFIG_FS_ENCRYPTION
1191 	if (ext4_should_dioread_nolock(inode))
1192 		ret = ext4_block_write_begin(folio, pos, len,
1193 					     ext4_get_block_unwritten);
1194 	else
1195 		ret = ext4_block_write_begin(folio, pos, len, ext4_get_block);
1196 #else
1197 	if (ext4_should_dioread_nolock(inode))
1198 		ret = __block_write_begin(&folio->page, pos, len,
1199 					  ext4_get_block_unwritten);
1200 	else
1201 		ret = __block_write_begin(&folio->page, pos, len, ext4_get_block);
1202 #endif
1203 	if (!ret && ext4_should_journal_data(inode)) {
1204 		ret = ext4_walk_page_buffers(handle, inode,
1205 					     folio_buffers(folio), from, to,
1206 					     NULL, do_journal_get_write_access);
1207 	}
1208 
1209 	if (ret) {
1210 		bool extended = (pos + len > inode->i_size) &&
1211 				!ext4_verity_in_progress(inode);
1212 
1213 		folio_unlock(folio);
1214 		/*
1215 		 * __block_write_begin may have instantiated a few blocks
1216 		 * outside i_size.  Trim these off again. Don't need
1217 		 * i_size_read because we hold i_rwsem.
1218 		 *
1219 		 * Add inode to orphan list in case we crash before
1220 		 * truncate finishes
1221 		 */
1222 		if (extended && ext4_can_truncate(inode))
1223 			ext4_orphan_add(handle, inode);
1224 
1225 		ext4_journal_stop(handle);
1226 		if (extended) {
1227 			ext4_truncate_failed_write(inode);
1228 			/*
1229 			 * If truncate failed early the inode might
1230 			 * still be on the orphan list; we need to
1231 			 * make sure the inode is removed from the
1232 			 * orphan list in that case.
1233 			 */
1234 			if (inode->i_nlink)
1235 				ext4_orphan_del(NULL, inode);
1236 		}
1237 
1238 		if (ret == -ENOSPC &&
1239 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1240 			goto retry_journal;
1241 		folio_put(folio);
1242 		return ret;
1243 	}
1244 	*pagep = &folio->page;
1245 	return ret;
1246 }
1247 
1248 /* For write_end() in data=journal mode */
1249 static int write_end_fn(handle_t *handle, struct inode *inode,
1250 			struct buffer_head *bh)
1251 {
1252 	int ret;
1253 	if (!buffer_mapped(bh) || buffer_freed(bh))
1254 		return 0;
1255 	set_buffer_uptodate(bh);
1256 	ret = ext4_dirty_journalled_data(handle, bh);
1257 	clear_buffer_meta(bh);
1258 	clear_buffer_prio(bh);
1259 	return ret;
1260 }
1261 
1262 /*
1263  * We need to pick up the new inode size which generic_commit_write gave us
1264  * `file' can be NULL - eg, when called from page_symlink().
1265  *
1266  * ext4 never places buffers on inode->i_mapping->i_private_list.  metadata
1267  * buffers are managed internally.
1268  */
1269 static int ext4_write_end(struct file *file,
1270 			  struct address_space *mapping,
1271 			  loff_t pos, unsigned len, unsigned copied,
1272 			  struct page *page, void *fsdata)
1273 {
1274 	struct folio *folio = page_folio(page);
1275 	handle_t *handle = ext4_journal_current_handle();
1276 	struct inode *inode = mapping->host;
1277 	loff_t old_size = inode->i_size;
1278 	int ret = 0, ret2;
1279 	int i_size_changed = 0;
1280 	bool verity = ext4_verity_in_progress(inode);
1281 
1282 	trace_ext4_write_end(inode, pos, len, copied);
1283 
1284 	if (ext4_has_inline_data(inode) &&
1285 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1286 		return ext4_write_inline_data_end(inode, pos, len, copied,
1287 						  folio);
1288 
1289 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1290 	/*
1291 	 * it's important to update i_size while still holding folio lock:
1292 	 * page writeout could otherwise come in and zero beyond i_size.
1293 	 *
1294 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1295 	 * blocks are being written past EOF, so skip the i_size update.
1296 	 */
1297 	if (!verity)
1298 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1299 	folio_unlock(folio);
1300 	folio_put(folio);
1301 
1302 	if (old_size < pos && !verity)
1303 		pagecache_isize_extended(inode, old_size, pos);
1304 	/*
1305 	 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1306 	 * makes the holding time of folio lock longer. Second, it forces lock
1307 	 * ordering of folio lock and transaction start for journaling
1308 	 * filesystems.
1309 	 */
1310 	if (i_size_changed)
1311 		ret = ext4_mark_inode_dirty(handle, inode);
1312 
1313 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1314 		/* if we have allocated more blocks and copied
1315 		 * less. We will have blocks allocated outside
1316 		 * inode->i_size. So truncate them
1317 		 */
1318 		ext4_orphan_add(handle, inode);
1319 
1320 	ret2 = ext4_journal_stop(handle);
1321 	if (!ret)
1322 		ret = ret2;
1323 
1324 	if (pos + len > inode->i_size && !verity) {
1325 		ext4_truncate_failed_write(inode);
1326 		/*
1327 		 * If truncate failed early the inode might still be
1328 		 * on the orphan list; we need to make sure the inode
1329 		 * is removed from the orphan list in that case.
1330 		 */
1331 		if (inode->i_nlink)
1332 			ext4_orphan_del(NULL, inode);
1333 	}
1334 
1335 	return ret ? ret : copied;
1336 }
1337 
1338 /*
1339  * This is a private version of folio_zero_new_buffers() which doesn't
1340  * set the buffer to be dirty, since in data=journalled mode we need
1341  * to call ext4_dirty_journalled_data() instead.
1342  */
1343 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1344 					    struct inode *inode,
1345 					    struct folio *folio,
1346 					    unsigned from, unsigned to)
1347 {
1348 	unsigned int block_start = 0, block_end;
1349 	struct buffer_head *head, *bh;
1350 
1351 	bh = head = folio_buffers(folio);
1352 	do {
1353 		block_end = block_start + bh->b_size;
1354 		if (buffer_new(bh)) {
1355 			if (block_end > from && block_start < to) {
1356 				if (!folio_test_uptodate(folio)) {
1357 					unsigned start, size;
1358 
1359 					start = max(from, block_start);
1360 					size = min(to, block_end) - start;
1361 
1362 					folio_zero_range(folio, start, size);
1363 					write_end_fn(handle, inode, bh);
1364 				}
1365 				clear_buffer_new(bh);
1366 			}
1367 		}
1368 		block_start = block_end;
1369 		bh = bh->b_this_page;
1370 	} while (bh != head);
1371 }
1372 
1373 static int ext4_journalled_write_end(struct file *file,
1374 				     struct address_space *mapping,
1375 				     loff_t pos, unsigned len, unsigned copied,
1376 				     struct page *page, void *fsdata)
1377 {
1378 	struct folio *folio = page_folio(page);
1379 	handle_t *handle = ext4_journal_current_handle();
1380 	struct inode *inode = mapping->host;
1381 	loff_t old_size = inode->i_size;
1382 	int ret = 0, ret2;
1383 	int partial = 0;
1384 	unsigned from, to;
1385 	int size_changed = 0;
1386 	bool verity = ext4_verity_in_progress(inode);
1387 
1388 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1389 	from = pos & (PAGE_SIZE - 1);
1390 	to = from + len;
1391 
1392 	BUG_ON(!ext4_handle_valid(handle));
1393 
1394 	if (ext4_has_inline_data(inode))
1395 		return ext4_write_inline_data_end(inode, pos, len, copied,
1396 						  folio);
1397 
1398 	if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1399 		copied = 0;
1400 		ext4_journalled_zero_new_buffers(handle, inode, folio,
1401 						 from, to);
1402 	} else {
1403 		if (unlikely(copied < len))
1404 			ext4_journalled_zero_new_buffers(handle, inode, folio,
1405 							 from + copied, to);
1406 		ret = ext4_walk_page_buffers(handle, inode,
1407 					     folio_buffers(folio),
1408 					     from, from + copied, &partial,
1409 					     write_end_fn);
1410 		if (!partial)
1411 			folio_mark_uptodate(folio);
1412 	}
1413 	if (!verity)
1414 		size_changed = ext4_update_inode_size(inode, pos + copied);
1415 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1416 	folio_unlock(folio);
1417 	folio_put(folio);
1418 
1419 	if (old_size < pos && !verity)
1420 		pagecache_isize_extended(inode, old_size, pos);
1421 
1422 	if (size_changed) {
1423 		ret2 = ext4_mark_inode_dirty(handle, inode);
1424 		if (!ret)
1425 			ret = ret2;
1426 	}
1427 
1428 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1429 		/* if we have allocated more blocks and copied
1430 		 * less. We will have blocks allocated outside
1431 		 * inode->i_size. So truncate them
1432 		 */
1433 		ext4_orphan_add(handle, inode);
1434 
1435 	ret2 = ext4_journal_stop(handle);
1436 	if (!ret)
1437 		ret = ret2;
1438 	if (pos + len > inode->i_size && !verity) {
1439 		ext4_truncate_failed_write(inode);
1440 		/*
1441 		 * If truncate failed early the inode might still be
1442 		 * on the orphan list; we need to make sure the inode
1443 		 * is removed from the orphan list in that case.
1444 		 */
1445 		if (inode->i_nlink)
1446 			ext4_orphan_del(NULL, inode);
1447 	}
1448 
1449 	return ret ? ret : copied;
1450 }
1451 
1452 /*
1453  * Reserve space for a single cluster
1454  */
1455 static int ext4_da_reserve_space(struct inode *inode)
1456 {
1457 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1458 	struct ext4_inode_info *ei = EXT4_I(inode);
1459 	int ret;
1460 
1461 	/*
1462 	 * We will charge metadata quota at writeout time; this saves
1463 	 * us from metadata over-estimation, though we may go over by
1464 	 * a small amount in the end.  Here we just reserve for data.
1465 	 */
1466 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1467 	if (ret)
1468 		return ret;
1469 
1470 	spin_lock(&ei->i_block_reservation_lock);
1471 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1472 		spin_unlock(&ei->i_block_reservation_lock);
1473 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1474 		return -ENOSPC;
1475 	}
1476 	ei->i_reserved_data_blocks++;
1477 	trace_ext4_da_reserve_space(inode);
1478 	spin_unlock(&ei->i_block_reservation_lock);
1479 
1480 	return 0;       /* success */
1481 }
1482 
1483 void ext4_da_release_space(struct inode *inode, int to_free)
1484 {
1485 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1486 	struct ext4_inode_info *ei = EXT4_I(inode);
1487 
1488 	if (!to_free)
1489 		return;		/* Nothing to release, exit */
1490 
1491 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1492 
1493 	trace_ext4_da_release_space(inode, to_free);
1494 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1495 		/*
1496 		 * if there aren't enough reserved blocks, then the
1497 		 * counter is messed up somewhere.  Since this
1498 		 * function is called from invalidate page, it's
1499 		 * harmless to return without any action.
1500 		 */
1501 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1502 			 "ino %lu, to_free %d with only %d reserved "
1503 			 "data blocks", inode->i_ino, to_free,
1504 			 ei->i_reserved_data_blocks);
1505 		WARN_ON(1);
1506 		to_free = ei->i_reserved_data_blocks;
1507 	}
1508 	ei->i_reserved_data_blocks -= to_free;
1509 
1510 	/* update fs dirty data blocks counter */
1511 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1512 
1513 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1514 
1515 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1516 }
1517 
1518 /*
1519  * Delayed allocation stuff
1520  */
1521 
1522 struct mpage_da_data {
1523 	/* These are input fields for ext4_do_writepages() */
1524 	struct inode *inode;
1525 	struct writeback_control *wbc;
1526 	unsigned int can_map:1;	/* Can writepages call map blocks? */
1527 
1528 	/* These are internal state of ext4_do_writepages() */
1529 	pgoff_t first_page;	/* The first page to write */
1530 	pgoff_t next_page;	/* Current page to examine */
1531 	pgoff_t last_page;	/* Last page to examine */
1532 	/*
1533 	 * Extent to map - this can be after first_page because that can be
1534 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1535 	 * is delalloc or unwritten.
1536 	 */
1537 	struct ext4_map_blocks map;
1538 	struct ext4_io_submit io_submit;	/* IO submission data */
1539 	unsigned int do_map:1;
1540 	unsigned int scanned_until_end:1;
1541 	unsigned int journalled_more_data:1;
1542 };
1543 
1544 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1545 				       bool invalidate)
1546 {
1547 	unsigned nr, i;
1548 	pgoff_t index, end;
1549 	struct folio_batch fbatch;
1550 	struct inode *inode = mpd->inode;
1551 	struct address_space *mapping = inode->i_mapping;
1552 
1553 	/* This is necessary when next_page == 0. */
1554 	if (mpd->first_page >= mpd->next_page)
1555 		return;
1556 
1557 	mpd->scanned_until_end = 0;
1558 	index = mpd->first_page;
1559 	end   = mpd->next_page - 1;
1560 	if (invalidate) {
1561 		ext4_lblk_t start, last;
1562 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1563 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1564 
1565 		/*
1566 		 * avoid racing with extent status tree scans made by
1567 		 * ext4_insert_delayed_block()
1568 		 */
1569 		down_write(&EXT4_I(inode)->i_data_sem);
1570 		ext4_es_remove_extent(inode, start, last - start + 1);
1571 		up_write(&EXT4_I(inode)->i_data_sem);
1572 	}
1573 
1574 	folio_batch_init(&fbatch);
1575 	while (index <= end) {
1576 		nr = filemap_get_folios(mapping, &index, end, &fbatch);
1577 		if (nr == 0)
1578 			break;
1579 		for (i = 0; i < nr; i++) {
1580 			struct folio *folio = fbatch.folios[i];
1581 
1582 			if (folio->index < mpd->first_page)
1583 				continue;
1584 			if (folio_next_index(folio) - 1 > end)
1585 				continue;
1586 			BUG_ON(!folio_test_locked(folio));
1587 			BUG_ON(folio_test_writeback(folio));
1588 			if (invalidate) {
1589 				if (folio_mapped(folio))
1590 					folio_clear_dirty_for_io(folio);
1591 				block_invalidate_folio(folio, 0,
1592 						folio_size(folio));
1593 				folio_clear_uptodate(folio);
1594 			}
1595 			folio_unlock(folio);
1596 		}
1597 		folio_batch_release(&fbatch);
1598 	}
1599 }
1600 
1601 static void ext4_print_free_blocks(struct inode *inode)
1602 {
1603 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1604 	struct super_block *sb = inode->i_sb;
1605 	struct ext4_inode_info *ei = EXT4_I(inode);
1606 
1607 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1608 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1609 			ext4_count_free_clusters(sb)));
1610 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1611 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1612 	       (long long) EXT4_C2B(EXT4_SB(sb),
1613 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1614 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1615 	       (long long) EXT4_C2B(EXT4_SB(sb),
1616 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1617 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1618 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1619 		 ei->i_reserved_data_blocks);
1620 	return;
1621 }
1622 
1623 /*
1624  * ext4_insert_delayed_block - adds a delayed block to the extents status
1625  *                             tree, incrementing the reserved cluster/block
1626  *                             count or making a pending reservation
1627  *                             where needed
1628  *
1629  * @inode - file containing the newly added block
1630  * @lblk - logical block to be added
1631  *
1632  * Returns 0 on success, negative error code on failure.
1633  */
1634 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1635 {
1636 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1637 	int ret;
1638 	bool allocated = false;
1639 
1640 	/*
1641 	 * If the cluster containing lblk is shared with a delayed,
1642 	 * written, or unwritten extent in a bigalloc file system, it's
1643 	 * already been accounted for and does not need to be reserved.
1644 	 * A pending reservation must be made for the cluster if it's
1645 	 * shared with a written or unwritten extent and doesn't already
1646 	 * have one.  Written and unwritten extents can be purged from the
1647 	 * extents status tree if the system is under memory pressure, so
1648 	 * it's necessary to examine the extent tree if a search of the
1649 	 * extents status tree doesn't get a match.
1650 	 */
1651 	if (sbi->s_cluster_ratio == 1) {
1652 		ret = ext4_da_reserve_space(inode);
1653 		if (ret != 0)   /* ENOSPC */
1654 			return ret;
1655 	} else {   /* bigalloc */
1656 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1657 			if (!ext4_es_scan_clu(inode,
1658 					      &ext4_es_is_mapped, lblk)) {
1659 				ret = ext4_clu_mapped(inode,
1660 						      EXT4_B2C(sbi, lblk));
1661 				if (ret < 0)
1662 					return ret;
1663 				if (ret == 0) {
1664 					ret = ext4_da_reserve_space(inode);
1665 					if (ret != 0)   /* ENOSPC */
1666 						return ret;
1667 				} else {
1668 					allocated = true;
1669 				}
1670 			} else {
1671 				allocated = true;
1672 			}
1673 		}
1674 	}
1675 
1676 	ext4_es_insert_delayed_block(inode, lblk, allocated);
1677 	return 0;
1678 }
1679 
1680 /*
1681  * This function is grabs code from the very beginning of
1682  * ext4_map_blocks, but assumes that the caller is from delayed write
1683  * time. This function looks up the requested blocks and sets the
1684  * buffer delay bit under the protection of i_data_sem.
1685  */
1686 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1687 			      struct ext4_map_blocks *map,
1688 			      struct buffer_head *bh)
1689 {
1690 	struct extent_status es;
1691 	int retval;
1692 	sector_t invalid_block = ~((sector_t) 0xffff);
1693 #ifdef ES_AGGRESSIVE_TEST
1694 	struct ext4_map_blocks orig_map;
1695 
1696 	memcpy(&orig_map, map, sizeof(*map));
1697 #endif
1698 
1699 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1700 		invalid_block = ~0;
1701 
1702 	map->m_flags = 0;
1703 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1704 		  (unsigned long) map->m_lblk);
1705 
1706 	/* Lookup extent status tree firstly */
1707 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1708 		if (ext4_es_is_hole(&es))
1709 			goto add_delayed;
1710 
1711 		/*
1712 		 * Delayed extent could be allocated by fallocate.
1713 		 * So we need to check it.
1714 		 */
1715 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1716 			map_bh(bh, inode->i_sb, invalid_block);
1717 			set_buffer_new(bh);
1718 			set_buffer_delay(bh);
1719 			return 0;
1720 		}
1721 
1722 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1723 		retval = es.es_len - (iblock - es.es_lblk);
1724 		if (retval > map->m_len)
1725 			retval = map->m_len;
1726 		map->m_len = retval;
1727 		if (ext4_es_is_written(&es))
1728 			map->m_flags |= EXT4_MAP_MAPPED;
1729 		else if (ext4_es_is_unwritten(&es))
1730 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1731 		else
1732 			BUG();
1733 
1734 #ifdef ES_AGGRESSIVE_TEST
1735 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1736 #endif
1737 		return retval;
1738 	}
1739 
1740 	/*
1741 	 * Try to see if we can get the block without requesting a new
1742 	 * file system block.
1743 	 */
1744 	down_read(&EXT4_I(inode)->i_data_sem);
1745 	if (ext4_has_inline_data(inode))
1746 		retval = 0;
1747 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1748 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1749 	else
1750 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1751 	if (retval < 0) {
1752 		up_read(&EXT4_I(inode)->i_data_sem);
1753 		return retval;
1754 	}
1755 	if (retval > 0) {
1756 		unsigned int status;
1757 
1758 		if (unlikely(retval != map->m_len)) {
1759 			ext4_warning(inode->i_sb,
1760 				     "ES len assertion failed for inode "
1761 				     "%lu: retval %d != map->m_len %d",
1762 				     inode->i_ino, retval, map->m_len);
1763 			WARN_ON(1);
1764 		}
1765 
1766 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1767 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1768 		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1769 				      map->m_pblk, status);
1770 		up_read(&EXT4_I(inode)->i_data_sem);
1771 		return retval;
1772 	}
1773 	up_read(&EXT4_I(inode)->i_data_sem);
1774 
1775 add_delayed:
1776 	down_write(&EXT4_I(inode)->i_data_sem);
1777 	retval = ext4_insert_delayed_block(inode, map->m_lblk);
1778 	up_write(&EXT4_I(inode)->i_data_sem);
1779 	if (retval)
1780 		return retval;
1781 
1782 	map_bh(bh, inode->i_sb, invalid_block);
1783 	set_buffer_new(bh);
1784 	set_buffer_delay(bh);
1785 	return retval;
1786 }
1787 
1788 /*
1789  * This is a special get_block_t callback which is used by
1790  * ext4_da_write_begin().  It will either return mapped block or
1791  * reserve space for a single block.
1792  *
1793  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1794  * We also have b_blocknr = -1 and b_bdev initialized properly
1795  *
1796  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1797  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1798  * initialized properly.
1799  */
1800 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1801 			   struct buffer_head *bh, int create)
1802 {
1803 	struct ext4_map_blocks map;
1804 	int ret = 0;
1805 
1806 	BUG_ON(create == 0);
1807 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1808 
1809 	map.m_lblk = iblock;
1810 	map.m_len = 1;
1811 
1812 	/*
1813 	 * first, we need to know whether the block is allocated already
1814 	 * preallocated blocks are unmapped but should treated
1815 	 * the same as allocated blocks.
1816 	 */
1817 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1818 	if (ret <= 0)
1819 		return ret;
1820 
1821 	map_bh(bh, inode->i_sb, map.m_pblk);
1822 	ext4_update_bh_state(bh, map.m_flags);
1823 
1824 	if (buffer_unwritten(bh)) {
1825 		/* A delayed write to unwritten bh should be marked
1826 		 * new and mapped.  Mapped ensures that we don't do
1827 		 * get_block multiple times when we write to the same
1828 		 * offset and new ensures that we do proper zero out
1829 		 * for partial write.
1830 		 */
1831 		set_buffer_new(bh);
1832 		set_buffer_mapped(bh);
1833 	}
1834 	return 0;
1835 }
1836 
1837 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
1838 {
1839 	mpd->first_page += folio_nr_pages(folio);
1840 	folio_unlock(folio);
1841 }
1842 
1843 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1844 {
1845 	size_t len;
1846 	loff_t size;
1847 	int err;
1848 
1849 	BUG_ON(folio->index != mpd->first_page);
1850 	folio_clear_dirty_for_io(folio);
1851 	/*
1852 	 * We have to be very careful here!  Nothing protects writeback path
1853 	 * against i_size changes and the page can be writeably mapped into
1854 	 * page tables. So an application can be growing i_size and writing
1855 	 * data through mmap while writeback runs. folio_clear_dirty_for_io()
1856 	 * write-protects our page in page tables and the page cannot get
1857 	 * written to again until we release folio lock. So only after
1858 	 * folio_clear_dirty_for_io() we are safe to sample i_size for
1859 	 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1860 	 * on the barrier provided by folio_test_clear_dirty() in
1861 	 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1862 	 * after page tables are updated.
1863 	 */
1864 	size = i_size_read(mpd->inode);
1865 	len = folio_size(folio);
1866 	if (folio_pos(folio) + len > size &&
1867 	    !ext4_verity_in_progress(mpd->inode))
1868 		len = size & (len - 1);
1869 	err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
1870 	if (!err)
1871 		mpd->wbc->nr_to_write--;
1872 
1873 	return err;
1874 }
1875 
1876 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1877 
1878 /*
1879  * mballoc gives us at most this number of blocks...
1880  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1881  * The rest of mballoc seems to handle chunks up to full group size.
1882  */
1883 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1884 
1885 /*
1886  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1887  *
1888  * @mpd - extent of blocks
1889  * @lblk - logical number of the block in the file
1890  * @bh - buffer head we want to add to the extent
1891  *
1892  * The function is used to collect contig. blocks in the same state. If the
1893  * buffer doesn't require mapping for writeback and we haven't started the
1894  * extent of buffers to map yet, the function returns 'true' immediately - the
1895  * caller can write the buffer right away. Otherwise the function returns true
1896  * if the block has been added to the extent, false if the block couldn't be
1897  * added.
1898  */
1899 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1900 				   struct buffer_head *bh)
1901 {
1902 	struct ext4_map_blocks *map = &mpd->map;
1903 
1904 	/* Buffer that doesn't need mapping for writeback? */
1905 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1906 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1907 		/* So far no extent to map => we write the buffer right away */
1908 		if (map->m_len == 0)
1909 			return true;
1910 		return false;
1911 	}
1912 
1913 	/* First block in the extent? */
1914 	if (map->m_len == 0) {
1915 		/* We cannot map unless handle is started... */
1916 		if (!mpd->do_map)
1917 			return false;
1918 		map->m_lblk = lblk;
1919 		map->m_len = 1;
1920 		map->m_flags = bh->b_state & BH_FLAGS;
1921 		return true;
1922 	}
1923 
1924 	/* Don't go larger than mballoc is willing to allocate */
1925 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1926 		return false;
1927 
1928 	/* Can we merge the block to our big extent? */
1929 	if (lblk == map->m_lblk + map->m_len &&
1930 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1931 		map->m_len++;
1932 		return true;
1933 	}
1934 	return false;
1935 }
1936 
1937 /*
1938  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1939  *
1940  * @mpd - extent of blocks for mapping
1941  * @head - the first buffer in the page
1942  * @bh - buffer we should start processing from
1943  * @lblk - logical number of the block in the file corresponding to @bh
1944  *
1945  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1946  * the page for IO if all buffers in this page were mapped and there's no
1947  * accumulated extent of buffers to map or add buffers in the page to the
1948  * extent of buffers to map. The function returns 1 if the caller can continue
1949  * by processing the next page, 0 if it should stop adding buffers to the
1950  * extent to map because we cannot extend it anymore. It can also return value
1951  * < 0 in case of error during IO submission.
1952  */
1953 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1954 				   struct buffer_head *head,
1955 				   struct buffer_head *bh,
1956 				   ext4_lblk_t lblk)
1957 {
1958 	struct inode *inode = mpd->inode;
1959 	int err;
1960 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
1961 							>> inode->i_blkbits;
1962 
1963 	if (ext4_verity_in_progress(inode))
1964 		blocks = EXT_MAX_BLOCKS;
1965 
1966 	do {
1967 		BUG_ON(buffer_locked(bh));
1968 
1969 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1970 			/* Found extent to map? */
1971 			if (mpd->map.m_len)
1972 				return 0;
1973 			/* Buffer needs mapping and handle is not started? */
1974 			if (!mpd->do_map)
1975 				return 0;
1976 			/* Everything mapped so far and we hit EOF */
1977 			break;
1978 		}
1979 	} while (lblk++, (bh = bh->b_this_page) != head);
1980 	/* So far everything mapped? Submit the page for IO. */
1981 	if (mpd->map.m_len == 0) {
1982 		err = mpage_submit_folio(mpd, head->b_folio);
1983 		if (err < 0)
1984 			return err;
1985 		mpage_folio_done(mpd, head->b_folio);
1986 	}
1987 	if (lblk >= blocks) {
1988 		mpd->scanned_until_end = 1;
1989 		return 0;
1990 	}
1991 	return 1;
1992 }
1993 
1994 /*
1995  * mpage_process_folio - update folio buffers corresponding to changed extent
1996  *			 and may submit fully mapped page for IO
1997  * @mpd: description of extent to map, on return next extent to map
1998  * @folio: Contains these buffers.
1999  * @m_lblk: logical block mapping.
2000  * @m_pblk: corresponding physical mapping.
2001  * @map_bh: determines on return whether this page requires any further
2002  *		  mapping or not.
2003  *
2004  * Scan given folio buffers corresponding to changed extent and update buffer
2005  * state according to new extent state.
2006  * We map delalloc buffers to their physical location, clear unwritten bits.
2007  * If the given folio is not fully mapped, we update @mpd to the next extent in
2008  * the given folio that needs mapping & return @map_bh as true.
2009  */
2010 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2011 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2012 			      bool *map_bh)
2013 {
2014 	struct buffer_head *head, *bh;
2015 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2016 	ext4_lblk_t lblk = *m_lblk;
2017 	ext4_fsblk_t pblock = *m_pblk;
2018 	int err = 0;
2019 	int blkbits = mpd->inode->i_blkbits;
2020 	ssize_t io_end_size = 0;
2021 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2022 
2023 	bh = head = folio_buffers(folio);
2024 	do {
2025 		if (lblk < mpd->map.m_lblk)
2026 			continue;
2027 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2028 			/*
2029 			 * Buffer after end of mapped extent.
2030 			 * Find next buffer in the folio to map.
2031 			 */
2032 			mpd->map.m_len = 0;
2033 			mpd->map.m_flags = 0;
2034 			io_end_vec->size += io_end_size;
2035 
2036 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2037 			if (err > 0)
2038 				err = 0;
2039 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2040 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2041 				if (IS_ERR(io_end_vec)) {
2042 					err = PTR_ERR(io_end_vec);
2043 					goto out;
2044 				}
2045 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2046 			}
2047 			*map_bh = true;
2048 			goto out;
2049 		}
2050 		if (buffer_delay(bh)) {
2051 			clear_buffer_delay(bh);
2052 			bh->b_blocknr = pblock++;
2053 		}
2054 		clear_buffer_unwritten(bh);
2055 		io_end_size += (1 << blkbits);
2056 	} while (lblk++, (bh = bh->b_this_page) != head);
2057 
2058 	io_end_vec->size += io_end_size;
2059 	*map_bh = false;
2060 out:
2061 	*m_lblk = lblk;
2062 	*m_pblk = pblock;
2063 	return err;
2064 }
2065 
2066 /*
2067  * mpage_map_buffers - update buffers corresponding to changed extent and
2068  *		       submit fully mapped pages for IO
2069  *
2070  * @mpd - description of extent to map, on return next extent to map
2071  *
2072  * Scan buffers corresponding to changed extent (we expect corresponding pages
2073  * to be already locked) and update buffer state according to new extent state.
2074  * We map delalloc buffers to their physical location, clear unwritten bits,
2075  * and mark buffers as uninit when we perform writes to unwritten extents
2076  * and do extent conversion after IO is finished. If the last page is not fully
2077  * mapped, we update @map to the next extent in the last page that needs
2078  * mapping. Otherwise we submit the page for IO.
2079  */
2080 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2081 {
2082 	struct folio_batch fbatch;
2083 	unsigned nr, i;
2084 	struct inode *inode = mpd->inode;
2085 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2086 	pgoff_t start, end;
2087 	ext4_lblk_t lblk;
2088 	ext4_fsblk_t pblock;
2089 	int err;
2090 	bool map_bh = false;
2091 
2092 	start = mpd->map.m_lblk >> bpp_bits;
2093 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2094 	lblk = start << bpp_bits;
2095 	pblock = mpd->map.m_pblk;
2096 
2097 	folio_batch_init(&fbatch);
2098 	while (start <= end) {
2099 		nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2100 		if (nr == 0)
2101 			break;
2102 		for (i = 0; i < nr; i++) {
2103 			struct folio *folio = fbatch.folios[i];
2104 
2105 			err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2106 						 &map_bh);
2107 			/*
2108 			 * If map_bh is true, means page may require further bh
2109 			 * mapping, or maybe the page was submitted for IO.
2110 			 * So we return to call further extent mapping.
2111 			 */
2112 			if (err < 0 || map_bh)
2113 				goto out;
2114 			/* Page fully mapped - let IO run! */
2115 			err = mpage_submit_folio(mpd, folio);
2116 			if (err < 0)
2117 				goto out;
2118 			mpage_folio_done(mpd, folio);
2119 		}
2120 		folio_batch_release(&fbatch);
2121 	}
2122 	/* Extent fully mapped and matches with page boundary. We are done. */
2123 	mpd->map.m_len = 0;
2124 	mpd->map.m_flags = 0;
2125 	return 0;
2126 out:
2127 	folio_batch_release(&fbatch);
2128 	return err;
2129 }
2130 
2131 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2132 {
2133 	struct inode *inode = mpd->inode;
2134 	struct ext4_map_blocks *map = &mpd->map;
2135 	int get_blocks_flags;
2136 	int err, dioread_nolock;
2137 
2138 	trace_ext4_da_write_pages_extent(inode, map);
2139 	/*
2140 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2141 	 * to convert an unwritten extent to be initialized (in the case
2142 	 * where we have written into one or more preallocated blocks).  It is
2143 	 * possible that we're going to need more metadata blocks than
2144 	 * previously reserved. However we must not fail because we're in
2145 	 * writeback and there is nothing we can do about it so it might result
2146 	 * in data loss.  So use reserved blocks to allocate metadata if
2147 	 * possible.
2148 	 *
2149 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2150 	 * the blocks in question are delalloc blocks.  This indicates
2151 	 * that the blocks and quotas has already been checked when
2152 	 * the data was copied into the page cache.
2153 	 */
2154 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2155 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2156 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2157 	dioread_nolock = ext4_should_dioread_nolock(inode);
2158 	if (dioread_nolock)
2159 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2160 	if (map->m_flags & BIT(BH_Delay))
2161 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2162 
2163 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2164 	if (err < 0)
2165 		return err;
2166 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2167 		if (!mpd->io_submit.io_end->handle &&
2168 		    ext4_handle_valid(handle)) {
2169 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2170 			handle->h_rsv_handle = NULL;
2171 		}
2172 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2173 	}
2174 
2175 	BUG_ON(map->m_len == 0);
2176 	return 0;
2177 }
2178 
2179 /*
2180  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2181  *				 mpd->len and submit pages underlying it for IO
2182  *
2183  * @handle - handle for journal operations
2184  * @mpd - extent to map
2185  * @give_up_on_write - we set this to true iff there is a fatal error and there
2186  *                     is no hope of writing the data. The caller should discard
2187  *                     dirty pages to avoid infinite loops.
2188  *
2189  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2190  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2191  * them to initialized or split the described range from larger unwritten
2192  * extent. Note that we need not map all the described range since allocation
2193  * can return less blocks or the range is covered by more unwritten extents. We
2194  * cannot map more because we are limited by reserved transaction credits. On
2195  * the other hand we always make sure that the last touched page is fully
2196  * mapped so that it can be written out (and thus forward progress is
2197  * guaranteed). After mapping we submit all mapped pages for IO.
2198  */
2199 static int mpage_map_and_submit_extent(handle_t *handle,
2200 				       struct mpage_da_data *mpd,
2201 				       bool *give_up_on_write)
2202 {
2203 	struct inode *inode = mpd->inode;
2204 	struct ext4_map_blocks *map = &mpd->map;
2205 	int err;
2206 	loff_t disksize;
2207 	int progress = 0;
2208 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2209 	struct ext4_io_end_vec *io_end_vec;
2210 
2211 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2212 	if (IS_ERR(io_end_vec))
2213 		return PTR_ERR(io_end_vec);
2214 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2215 	do {
2216 		err = mpage_map_one_extent(handle, mpd);
2217 		if (err < 0) {
2218 			struct super_block *sb = inode->i_sb;
2219 
2220 			if (ext4_forced_shutdown(sb))
2221 				goto invalidate_dirty_pages;
2222 			/*
2223 			 * Let the uper layers retry transient errors.
2224 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2225 			 * is non-zero, a commit should free up blocks.
2226 			 */
2227 			if ((err == -ENOMEM) ||
2228 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2229 				if (progress)
2230 					goto update_disksize;
2231 				return err;
2232 			}
2233 			ext4_msg(sb, KERN_CRIT,
2234 				 "Delayed block allocation failed for "
2235 				 "inode %lu at logical offset %llu with"
2236 				 " max blocks %u with error %d",
2237 				 inode->i_ino,
2238 				 (unsigned long long)map->m_lblk,
2239 				 (unsigned)map->m_len, -err);
2240 			ext4_msg(sb, KERN_CRIT,
2241 				 "This should not happen!! Data will "
2242 				 "be lost\n");
2243 			if (err == -ENOSPC)
2244 				ext4_print_free_blocks(inode);
2245 		invalidate_dirty_pages:
2246 			*give_up_on_write = true;
2247 			return err;
2248 		}
2249 		progress = 1;
2250 		/*
2251 		 * Update buffer state, submit mapped pages, and get us new
2252 		 * extent to map
2253 		 */
2254 		err = mpage_map_and_submit_buffers(mpd);
2255 		if (err < 0)
2256 			goto update_disksize;
2257 	} while (map->m_len);
2258 
2259 update_disksize:
2260 	/*
2261 	 * Update on-disk size after IO is submitted.  Races with
2262 	 * truncate are avoided by checking i_size under i_data_sem.
2263 	 */
2264 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2265 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2266 		int err2;
2267 		loff_t i_size;
2268 
2269 		down_write(&EXT4_I(inode)->i_data_sem);
2270 		i_size = i_size_read(inode);
2271 		if (disksize > i_size)
2272 			disksize = i_size;
2273 		if (disksize > EXT4_I(inode)->i_disksize)
2274 			EXT4_I(inode)->i_disksize = disksize;
2275 		up_write(&EXT4_I(inode)->i_data_sem);
2276 		err2 = ext4_mark_inode_dirty(handle, inode);
2277 		if (err2) {
2278 			ext4_error_err(inode->i_sb, -err2,
2279 				       "Failed to mark inode %lu dirty",
2280 				       inode->i_ino);
2281 		}
2282 		if (!err)
2283 			err = err2;
2284 	}
2285 	return err;
2286 }
2287 
2288 /*
2289  * Calculate the total number of credits to reserve for one writepages
2290  * iteration. This is called from ext4_writepages(). We map an extent of
2291  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2292  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2293  * bpp - 1 blocks in bpp different extents.
2294  */
2295 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2296 {
2297 	int bpp = ext4_journal_blocks_per_page(inode);
2298 
2299 	return ext4_meta_trans_blocks(inode,
2300 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2301 }
2302 
2303 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2304 				     size_t len)
2305 {
2306 	struct buffer_head *page_bufs = folio_buffers(folio);
2307 	struct inode *inode = folio->mapping->host;
2308 	int ret, err;
2309 
2310 	ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2311 				     NULL, do_journal_get_write_access);
2312 	err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2313 				     NULL, write_end_fn);
2314 	if (ret == 0)
2315 		ret = err;
2316 	err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2317 	if (ret == 0)
2318 		ret = err;
2319 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2320 
2321 	return ret;
2322 }
2323 
2324 static int mpage_journal_page_buffers(handle_t *handle,
2325 				      struct mpage_da_data *mpd,
2326 				      struct folio *folio)
2327 {
2328 	struct inode *inode = mpd->inode;
2329 	loff_t size = i_size_read(inode);
2330 	size_t len = folio_size(folio);
2331 
2332 	folio_clear_checked(folio);
2333 	mpd->wbc->nr_to_write--;
2334 
2335 	if (folio_pos(folio) + len > size &&
2336 	    !ext4_verity_in_progress(inode))
2337 		len = size & (len - 1);
2338 
2339 	return ext4_journal_folio_buffers(handle, folio, len);
2340 }
2341 
2342 /*
2343  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2344  * 				 needing mapping, submit mapped pages
2345  *
2346  * @mpd - where to look for pages
2347  *
2348  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2349  * IO immediately. If we cannot map blocks, we submit just already mapped
2350  * buffers in the page for IO and keep page dirty. When we can map blocks and
2351  * we find a page which isn't mapped we start accumulating extent of buffers
2352  * underlying these pages that needs mapping (formed by either delayed or
2353  * unwritten buffers). We also lock the pages containing these buffers. The
2354  * extent found is returned in @mpd structure (starting at mpd->lblk with
2355  * length mpd->len blocks).
2356  *
2357  * Note that this function can attach bios to one io_end structure which are
2358  * neither logically nor physically contiguous. Although it may seem as an
2359  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2360  * case as we need to track IO to all buffers underlying a page in one io_end.
2361  */
2362 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2363 {
2364 	struct address_space *mapping = mpd->inode->i_mapping;
2365 	struct folio_batch fbatch;
2366 	unsigned int nr_folios;
2367 	pgoff_t index = mpd->first_page;
2368 	pgoff_t end = mpd->last_page;
2369 	xa_mark_t tag;
2370 	int i, err = 0;
2371 	int blkbits = mpd->inode->i_blkbits;
2372 	ext4_lblk_t lblk;
2373 	struct buffer_head *head;
2374 	handle_t *handle = NULL;
2375 	int bpp = ext4_journal_blocks_per_page(mpd->inode);
2376 
2377 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2378 		tag = PAGECACHE_TAG_TOWRITE;
2379 	else
2380 		tag = PAGECACHE_TAG_DIRTY;
2381 
2382 	mpd->map.m_len = 0;
2383 	mpd->next_page = index;
2384 	if (ext4_should_journal_data(mpd->inode)) {
2385 		handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2386 					    bpp);
2387 		if (IS_ERR(handle))
2388 			return PTR_ERR(handle);
2389 	}
2390 	folio_batch_init(&fbatch);
2391 	while (index <= end) {
2392 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
2393 				tag, &fbatch);
2394 		if (nr_folios == 0)
2395 			break;
2396 
2397 		for (i = 0; i < nr_folios; i++) {
2398 			struct folio *folio = fbatch.folios[i];
2399 
2400 			/*
2401 			 * Accumulated enough dirty pages? This doesn't apply
2402 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2403 			 * keep going because someone may be concurrently
2404 			 * dirtying pages, and we might have synced a lot of
2405 			 * newly appeared dirty pages, but have not synced all
2406 			 * of the old dirty pages.
2407 			 */
2408 			if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2409 			    mpd->wbc->nr_to_write <=
2410 			    mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2411 				goto out;
2412 
2413 			/* If we can't merge this page, we are done. */
2414 			if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2415 				goto out;
2416 
2417 			if (handle) {
2418 				err = ext4_journal_ensure_credits(handle, bpp,
2419 								  0);
2420 				if (err < 0)
2421 					goto out;
2422 			}
2423 
2424 			folio_lock(folio);
2425 			/*
2426 			 * If the page is no longer dirty, or its mapping no
2427 			 * longer corresponds to inode we are writing (which
2428 			 * means it has been truncated or invalidated), or the
2429 			 * page is already under writeback and we are not doing
2430 			 * a data integrity writeback, skip the page
2431 			 */
2432 			if (!folio_test_dirty(folio) ||
2433 			    (folio_test_writeback(folio) &&
2434 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2435 			    unlikely(folio->mapping != mapping)) {
2436 				folio_unlock(folio);
2437 				continue;
2438 			}
2439 
2440 			folio_wait_writeback(folio);
2441 			BUG_ON(folio_test_writeback(folio));
2442 
2443 			/*
2444 			 * Should never happen but for buggy code in
2445 			 * other subsystems that call
2446 			 * set_page_dirty() without properly warning
2447 			 * the file system first.  See [1] for more
2448 			 * information.
2449 			 *
2450 			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2451 			 */
2452 			if (!folio_buffers(folio)) {
2453 				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2454 				folio_clear_dirty(folio);
2455 				folio_unlock(folio);
2456 				continue;
2457 			}
2458 
2459 			if (mpd->map.m_len == 0)
2460 				mpd->first_page = folio->index;
2461 			mpd->next_page = folio_next_index(folio);
2462 			/*
2463 			 * Writeout when we cannot modify metadata is simple.
2464 			 * Just submit the page. For data=journal mode we
2465 			 * first handle writeout of the page for checkpoint and
2466 			 * only after that handle delayed page dirtying. This
2467 			 * makes sure current data is checkpointed to the final
2468 			 * location before possibly journalling it again which
2469 			 * is desirable when the page is frequently dirtied
2470 			 * through a pin.
2471 			 */
2472 			if (!mpd->can_map) {
2473 				err = mpage_submit_folio(mpd, folio);
2474 				if (err < 0)
2475 					goto out;
2476 				/* Pending dirtying of journalled data? */
2477 				if (folio_test_checked(folio)) {
2478 					err = mpage_journal_page_buffers(handle,
2479 						mpd, folio);
2480 					if (err < 0)
2481 						goto out;
2482 					mpd->journalled_more_data = 1;
2483 				}
2484 				mpage_folio_done(mpd, folio);
2485 			} else {
2486 				/* Add all dirty buffers to mpd */
2487 				lblk = ((ext4_lblk_t)folio->index) <<
2488 					(PAGE_SHIFT - blkbits);
2489 				head = folio_buffers(folio);
2490 				err = mpage_process_page_bufs(mpd, head, head,
2491 						lblk);
2492 				if (err <= 0)
2493 					goto out;
2494 				err = 0;
2495 			}
2496 		}
2497 		folio_batch_release(&fbatch);
2498 		cond_resched();
2499 	}
2500 	mpd->scanned_until_end = 1;
2501 	if (handle)
2502 		ext4_journal_stop(handle);
2503 	return 0;
2504 out:
2505 	folio_batch_release(&fbatch);
2506 	if (handle)
2507 		ext4_journal_stop(handle);
2508 	return err;
2509 }
2510 
2511 static int ext4_do_writepages(struct mpage_da_data *mpd)
2512 {
2513 	struct writeback_control *wbc = mpd->wbc;
2514 	pgoff_t	writeback_index = 0;
2515 	long nr_to_write = wbc->nr_to_write;
2516 	int range_whole = 0;
2517 	int cycled = 1;
2518 	handle_t *handle = NULL;
2519 	struct inode *inode = mpd->inode;
2520 	struct address_space *mapping = inode->i_mapping;
2521 	int needed_blocks, rsv_blocks = 0, ret = 0;
2522 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2523 	struct blk_plug plug;
2524 	bool give_up_on_write = false;
2525 
2526 	trace_ext4_writepages(inode, wbc);
2527 
2528 	/*
2529 	 * No pages to write? This is mainly a kludge to avoid starting
2530 	 * a transaction for special inodes like journal inode on last iput()
2531 	 * because that could violate lock ordering on umount
2532 	 */
2533 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2534 		goto out_writepages;
2535 
2536 	/*
2537 	 * If the filesystem has aborted, it is read-only, so return
2538 	 * right away instead of dumping stack traces later on that
2539 	 * will obscure the real source of the problem.  We test
2540 	 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2541 	 * the latter could be true if the filesystem is mounted
2542 	 * read-only, and in that case, ext4_writepages should
2543 	 * *never* be called, so if that ever happens, we would want
2544 	 * the stack trace.
2545 	 */
2546 	if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) {
2547 		ret = -EROFS;
2548 		goto out_writepages;
2549 	}
2550 
2551 	/*
2552 	 * If we have inline data and arrive here, it means that
2553 	 * we will soon create the block for the 1st page, so
2554 	 * we'd better clear the inline data here.
2555 	 */
2556 	if (ext4_has_inline_data(inode)) {
2557 		/* Just inode will be modified... */
2558 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2559 		if (IS_ERR(handle)) {
2560 			ret = PTR_ERR(handle);
2561 			goto out_writepages;
2562 		}
2563 		BUG_ON(ext4_test_inode_state(inode,
2564 				EXT4_STATE_MAY_INLINE_DATA));
2565 		ext4_destroy_inline_data(handle, inode);
2566 		ext4_journal_stop(handle);
2567 	}
2568 
2569 	/*
2570 	 * data=journal mode does not do delalloc so we just need to writeout /
2571 	 * journal already mapped buffers. On the other hand we need to commit
2572 	 * transaction to make data stable. We expect all the data to be
2573 	 * already in the journal (the only exception are DMA pinned pages
2574 	 * dirtied behind our back) so we commit transaction here and run the
2575 	 * writeback loop to checkpoint them. The checkpointing is not actually
2576 	 * necessary to make data persistent *but* quite a few places (extent
2577 	 * shifting operations, fsverity, ...) depend on being able to drop
2578 	 * pagecache pages after calling filemap_write_and_wait() and for that
2579 	 * checkpointing needs to happen.
2580 	 */
2581 	if (ext4_should_journal_data(inode)) {
2582 		mpd->can_map = 0;
2583 		if (wbc->sync_mode == WB_SYNC_ALL)
2584 			ext4_fc_commit(sbi->s_journal,
2585 				       EXT4_I(inode)->i_datasync_tid);
2586 	}
2587 	mpd->journalled_more_data = 0;
2588 
2589 	if (ext4_should_dioread_nolock(inode)) {
2590 		/*
2591 		 * We may need to convert up to one extent per block in
2592 		 * the page and we may dirty the inode.
2593 		 */
2594 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2595 						PAGE_SIZE >> inode->i_blkbits);
2596 	}
2597 
2598 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2599 		range_whole = 1;
2600 
2601 	if (wbc->range_cyclic) {
2602 		writeback_index = mapping->writeback_index;
2603 		if (writeback_index)
2604 			cycled = 0;
2605 		mpd->first_page = writeback_index;
2606 		mpd->last_page = -1;
2607 	} else {
2608 		mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2609 		mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2610 	}
2611 
2612 	ext4_io_submit_init(&mpd->io_submit, wbc);
2613 retry:
2614 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2615 		tag_pages_for_writeback(mapping, mpd->first_page,
2616 					mpd->last_page);
2617 	blk_start_plug(&plug);
2618 
2619 	/*
2620 	 * First writeback pages that don't need mapping - we can avoid
2621 	 * starting a transaction unnecessarily and also avoid being blocked
2622 	 * in the block layer on device congestion while having transaction
2623 	 * started.
2624 	 */
2625 	mpd->do_map = 0;
2626 	mpd->scanned_until_end = 0;
2627 	mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2628 	if (!mpd->io_submit.io_end) {
2629 		ret = -ENOMEM;
2630 		goto unplug;
2631 	}
2632 	ret = mpage_prepare_extent_to_map(mpd);
2633 	/* Unlock pages we didn't use */
2634 	mpage_release_unused_pages(mpd, false);
2635 	/* Submit prepared bio */
2636 	ext4_io_submit(&mpd->io_submit);
2637 	ext4_put_io_end_defer(mpd->io_submit.io_end);
2638 	mpd->io_submit.io_end = NULL;
2639 	if (ret < 0)
2640 		goto unplug;
2641 
2642 	while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2643 		/* For each extent of pages we use new io_end */
2644 		mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2645 		if (!mpd->io_submit.io_end) {
2646 			ret = -ENOMEM;
2647 			break;
2648 		}
2649 
2650 		WARN_ON_ONCE(!mpd->can_map);
2651 		/*
2652 		 * We have two constraints: We find one extent to map and we
2653 		 * must always write out whole page (makes a difference when
2654 		 * blocksize < pagesize) so that we don't block on IO when we
2655 		 * try to write out the rest of the page. Journalled mode is
2656 		 * not supported by delalloc.
2657 		 */
2658 		BUG_ON(ext4_should_journal_data(inode));
2659 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2660 
2661 		/* start a new transaction */
2662 		handle = ext4_journal_start_with_reserve(inode,
2663 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2664 		if (IS_ERR(handle)) {
2665 			ret = PTR_ERR(handle);
2666 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2667 			       "%ld pages, ino %lu; err %d", __func__,
2668 				wbc->nr_to_write, inode->i_ino, ret);
2669 			/* Release allocated io_end */
2670 			ext4_put_io_end(mpd->io_submit.io_end);
2671 			mpd->io_submit.io_end = NULL;
2672 			break;
2673 		}
2674 		mpd->do_map = 1;
2675 
2676 		trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2677 		ret = mpage_prepare_extent_to_map(mpd);
2678 		if (!ret && mpd->map.m_len)
2679 			ret = mpage_map_and_submit_extent(handle, mpd,
2680 					&give_up_on_write);
2681 		/*
2682 		 * Caution: If the handle is synchronous,
2683 		 * ext4_journal_stop() can wait for transaction commit
2684 		 * to finish which may depend on writeback of pages to
2685 		 * complete or on page lock to be released.  In that
2686 		 * case, we have to wait until after we have
2687 		 * submitted all the IO, released page locks we hold,
2688 		 * and dropped io_end reference (for extent conversion
2689 		 * to be able to complete) before stopping the handle.
2690 		 */
2691 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2692 			ext4_journal_stop(handle);
2693 			handle = NULL;
2694 			mpd->do_map = 0;
2695 		}
2696 		/* Unlock pages we didn't use */
2697 		mpage_release_unused_pages(mpd, give_up_on_write);
2698 		/* Submit prepared bio */
2699 		ext4_io_submit(&mpd->io_submit);
2700 
2701 		/*
2702 		 * Drop our io_end reference we got from init. We have
2703 		 * to be careful and use deferred io_end finishing if
2704 		 * we are still holding the transaction as we can
2705 		 * release the last reference to io_end which may end
2706 		 * up doing unwritten extent conversion.
2707 		 */
2708 		if (handle) {
2709 			ext4_put_io_end_defer(mpd->io_submit.io_end);
2710 			ext4_journal_stop(handle);
2711 		} else
2712 			ext4_put_io_end(mpd->io_submit.io_end);
2713 		mpd->io_submit.io_end = NULL;
2714 
2715 		if (ret == -ENOSPC && sbi->s_journal) {
2716 			/*
2717 			 * Commit the transaction which would
2718 			 * free blocks released in the transaction
2719 			 * and try again
2720 			 */
2721 			jbd2_journal_force_commit_nested(sbi->s_journal);
2722 			ret = 0;
2723 			continue;
2724 		}
2725 		/* Fatal error - ENOMEM, EIO... */
2726 		if (ret)
2727 			break;
2728 	}
2729 unplug:
2730 	blk_finish_plug(&plug);
2731 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2732 		cycled = 1;
2733 		mpd->last_page = writeback_index - 1;
2734 		mpd->first_page = 0;
2735 		goto retry;
2736 	}
2737 
2738 	/* Update index */
2739 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2740 		/*
2741 		 * Set the writeback_index so that range_cyclic
2742 		 * mode will write it back later
2743 		 */
2744 		mapping->writeback_index = mpd->first_page;
2745 
2746 out_writepages:
2747 	trace_ext4_writepages_result(inode, wbc, ret,
2748 				     nr_to_write - wbc->nr_to_write);
2749 	return ret;
2750 }
2751 
2752 static int ext4_writepages(struct address_space *mapping,
2753 			   struct writeback_control *wbc)
2754 {
2755 	struct super_block *sb = mapping->host->i_sb;
2756 	struct mpage_da_data mpd = {
2757 		.inode = mapping->host,
2758 		.wbc = wbc,
2759 		.can_map = 1,
2760 	};
2761 	int ret;
2762 	int alloc_ctx;
2763 
2764 	if (unlikely(ext4_forced_shutdown(sb)))
2765 		return -EIO;
2766 
2767 	alloc_ctx = ext4_writepages_down_read(sb);
2768 	ret = ext4_do_writepages(&mpd);
2769 	/*
2770 	 * For data=journal writeback we could have come across pages marked
2771 	 * for delayed dirtying (PageChecked) which were just added to the
2772 	 * running transaction. Try once more to get them to stable storage.
2773 	 */
2774 	if (!ret && mpd.journalled_more_data)
2775 		ret = ext4_do_writepages(&mpd);
2776 	ext4_writepages_up_read(sb, alloc_ctx);
2777 
2778 	return ret;
2779 }
2780 
2781 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2782 {
2783 	struct writeback_control wbc = {
2784 		.sync_mode = WB_SYNC_ALL,
2785 		.nr_to_write = LONG_MAX,
2786 		.range_start = jinode->i_dirty_start,
2787 		.range_end = jinode->i_dirty_end,
2788 	};
2789 	struct mpage_da_data mpd = {
2790 		.inode = jinode->i_vfs_inode,
2791 		.wbc = &wbc,
2792 		.can_map = 0,
2793 	};
2794 	return ext4_do_writepages(&mpd);
2795 }
2796 
2797 static int ext4_dax_writepages(struct address_space *mapping,
2798 			       struct writeback_control *wbc)
2799 {
2800 	int ret;
2801 	long nr_to_write = wbc->nr_to_write;
2802 	struct inode *inode = mapping->host;
2803 	int alloc_ctx;
2804 
2805 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2806 		return -EIO;
2807 
2808 	alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2809 	trace_ext4_writepages(inode, wbc);
2810 
2811 	ret = dax_writeback_mapping_range(mapping,
2812 					  EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2813 	trace_ext4_writepages_result(inode, wbc, ret,
2814 				     nr_to_write - wbc->nr_to_write);
2815 	ext4_writepages_up_read(inode->i_sb, alloc_ctx);
2816 	return ret;
2817 }
2818 
2819 static int ext4_nonda_switch(struct super_block *sb)
2820 {
2821 	s64 free_clusters, dirty_clusters;
2822 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2823 
2824 	/*
2825 	 * switch to non delalloc mode if we are running low
2826 	 * on free block. The free block accounting via percpu
2827 	 * counters can get slightly wrong with percpu_counter_batch getting
2828 	 * accumulated on each CPU without updating global counters
2829 	 * Delalloc need an accurate free block accounting. So switch
2830 	 * to non delalloc when we are near to error range.
2831 	 */
2832 	free_clusters =
2833 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2834 	dirty_clusters =
2835 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2836 	/*
2837 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2838 	 */
2839 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2840 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2841 
2842 	if (2 * free_clusters < 3 * dirty_clusters ||
2843 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2844 		/*
2845 		 * free block count is less than 150% of dirty blocks
2846 		 * or free blocks is less than watermark
2847 		 */
2848 		return 1;
2849 	}
2850 	return 0;
2851 }
2852 
2853 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2854 			       loff_t pos, unsigned len,
2855 			       struct page **pagep, void **fsdata)
2856 {
2857 	int ret, retries = 0;
2858 	struct folio *folio;
2859 	pgoff_t index;
2860 	struct inode *inode = mapping->host;
2861 
2862 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2863 		return -EIO;
2864 
2865 	index = pos >> PAGE_SHIFT;
2866 
2867 	if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2868 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2869 		return ext4_write_begin(file, mapping, pos,
2870 					len, pagep, fsdata);
2871 	}
2872 	*fsdata = (void *)0;
2873 	trace_ext4_da_write_begin(inode, pos, len);
2874 
2875 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2876 		ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2877 						      pagep, fsdata);
2878 		if (ret < 0)
2879 			return ret;
2880 		if (ret == 1)
2881 			return 0;
2882 	}
2883 
2884 retry:
2885 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2886 			mapping_gfp_mask(mapping));
2887 	if (IS_ERR(folio))
2888 		return PTR_ERR(folio);
2889 
2890 #ifdef CONFIG_FS_ENCRYPTION
2891 	ret = ext4_block_write_begin(folio, pos, len, ext4_da_get_block_prep);
2892 #else
2893 	ret = __block_write_begin(&folio->page, pos, len, ext4_da_get_block_prep);
2894 #endif
2895 	if (ret < 0) {
2896 		folio_unlock(folio);
2897 		folio_put(folio);
2898 		/*
2899 		 * block_write_begin may have instantiated a few blocks
2900 		 * outside i_size.  Trim these off again. Don't need
2901 		 * i_size_read because we hold inode lock.
2902 		 */
2903 		if (pos + len > inode->i_size)
2904 			ext4_truncate_failed_write(inode);
2905 
2906 		if (ret == -ENOSPC &&
2907 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2908 			goto retry;
2909 		return ret;
2910 	}
2911 
2912 	*pagep = &folio->page;
2913 	return ret;
2914 }
2915 
2916 /*
2917  * Check if we should update i_disksize
2918  * when write to the end of file but not require block allocation
2919  */
2920 static int ext4_da_should_update_i_disksize(struct folio *folio,
2921 					    unsigned long offset)
2922 {
2923 	struct buffer_head *bh;
2924 	struct inode *inode = folio->mapping->host;
2925 	unsigned int idx;
2926 	int i;
2927 
2928 	bh = folio_buffers(folio);
2929 	idx = offset >> inode->i_blkbits;
2930 
2931 	for (i = 0; i < idx; i++)
2932 		bh = bh->b_this_page;
2933 
2934 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2935 		return 0;
2936 	return 1;
2937 }
2938 
2939 static int ext4_da_do_write_end(struct address_space *mapping,
2940 			loff_t pos, unsigned len, unsigned copied,
2941 			struct folio *folio)
2942 {
2943 	struct inode *inode = mapping->host;
2944 	loff_t old_size = inode->i_size;
2945 	bool disksize_changed = false;
2946 	loff_t new_i_size;
2947 
2948 	/*
2949 	 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
2950 	 * flag, which all that's needed to trigger page writeback.
2951 	 */
2952 	copied = block_write_end(NULL, mapping, pos, len, copied,
2953 			&folio->page, NULL);
2954 	new_i_size = pos + copied;
2955 
2956 	/*
2957 	 * It's important to update i_size while still holding folio lock,
2958 	 * because folio writeout could otherwise come in and zero beyond
2959 	 * i_size.
2960 	 *
2961 	 * Since we are holding inode lock, we are sure i_disksize <=
2962 	 * i_size. We also know that if i_disksize < i_size, there are
2963 	 * delalloc writes pending in the range up to i_size. If the end of
2964 	 * the current write is <= i_size, there's no need to touch
2965 	 * i_disksize since writeback will push i_disksize up to i_size
2966 	 * eventually. If the end of the current write is > i_size and
2967 	 * inside an allocated block which ext4_da_should_update_i_disksize()
2968 	 * checked, we need to update i_disksize here as certain
2969 	 * ext4_writepages() paths not allocating blocks and update i_disksize.
2970 	 */
2971 	if (new_i_size > inode->i_size) {
2972 		unsigned long end;
2973 
2974 		i_size_write(inode, new_i_size);
2975 		end = (new_i_size - 1) & (PAGE_SIZE - 1);
2976 		if (copied && ext4_da_should_update_i_disksize(folio, end)) {
2977 			ext4_update_i_disksize(inode, new_i_size);
2978 			disksize_changed = true;
2979 		}
2980 	}
2981 
2982 	folio_unlock(folio);
2983 	folio_put(folio);
2984 
2985 	if (old_size < pos)
2986 		pagecache_isize_extended(inode, old_size, pos);
2987 
2988 	if (disksize_changed) {
2989 		handle_t *handle;
2990 
2991 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
2992 		if (IS_ERR(handle))
2993 			return PTR_ERR(handle);
2994 		ext4_mark_inode_dirty(handle, inode);
2995 		ext4_journal_stop(handle);
2996 	}
2997 
2998 	return copied;
2999 }
3000 
3001 static int ext4_da_write_end(struct file *file,
3002 			     struct address_space *mapping,
3003 			     loff_t pos, unsigned len, unsigned copied,
3004 			     struct page *page, void *fsdata)
3005 {
3006 	struct inode *inode = mapping->host;
3007 	int write_mode = (int)(unsigned long)fsdata;
3008 	struct folio *folio = page_folio(page);
3009 
3010 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3011 		return ext4_write_end(file, mapping, pos,
3012 				      len, copied, &folio->page, fsdata);
3013 
3014 	trace_ext4_da_write_end(inode, pos, len, copied);
3015 
3016 	if (write_mode != CONVERT_INLINE_DATA &&
3017 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3018 	    ext4_has_inline_data(inode))
3019 		return ext4_write_inline_data_end(inode, pos, len, copied,
3020 						  folio);
3021 
3022 	if (unlikely(copied < len) && !folio_test_uptodate(folio))
3023 		copied = 0;
3024 
3025 	return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3026 }
3027 
3028 /*
3029  * Force all delayed allocation blocks to be allocated for a given inode.
3030  */
3031 int ext4_alloc_da_blocks(struct inode *inode)
3032 {
3033 	trace_ext4_alloc_da_blocks(inode);
3034 
3035 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3036 		return 0;
3037 
3038 	/*
3039 	 * We do something simple for now.  The filemap_flush() will
3040 	 * also start triggering a write of the data blocks, which is
3041 	 * not strictly speaking necessary (and for users of
3042 	 * laptop_mode, not even desirable).  However, to do otherwise
3043 	 * would require replicating code paths in:
3044 	 *
3045 	 * ext4_writepages() ->
3046 	 *    write_cache_pages() ---> (via passed in callback function)
3047 	 *        __mpage_da_writepage() -->
3048 	 *           mpage_add_bh_to_extent()
3049 	 *           mpage_da_map_blocks()
3050 	 *
3051 	 * The problem is that write_cache_pages(), located in
3052 	 * mm/page-writeback.c, marks pages clean in preparation for
3053 	 * doing I/O, which is not desirable if we're not planning on
3054 	 * doing I/O at all.
3055 	 *
3056 	 * We could call write_cache_pages(), and then redirty all of
3057 	 * the pages by calling redirty_page_for_writepage() but that
3058 	 * would be ugly in the extreme.  So instead we would need to
3059 	 * replicate parts of the code in the above functions,
3060 	 * simplifying them because we wouldn't actually intend to
3061 	 * write out the pages, but rather only collect contiguous
3062 	 * logical block extents, call the multi-block allocator, and
3063 	 * then update the buffer heads with the block allocations.
3064 	 *
3065 	 * For now, though, we'll cheat by calling filemap_flush(),
3066 	 * which will map the blocks, and start the I/O, but not
3067 	 * actually wait for the I/O to complete.
3068 	 */
3069 	return filemap_flush(inode->i_mapping);
3070 }
3071 
3072 /*
3073  * bmap() is special.  It gets used by applications such as lilo and by
3074  * the swapper to find the on-disk block of a specific piece of data.
3075  *
3076  * Naturally, this is dangerous if the block concerned is still in the
3077  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3078  * filesystem and enables swap, then they may get a nasty shock when the
3079  * data getting swapped to that swapfile suddenly gets overwritten by
3080  * the original zero's written out previously to the journal and
3081  * awaiting writeback in the kernel's buffer cache.
3082  *
3083  * So, if we see any bmap calls here on a modified, data-journaled file,
3084  * take extra steps to flush any blocks which might be in the cache.
3085  */
3086 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3087 {
3088 	struct inode *inode = mapping->host;
3089 	sector_t ret = 0;
3090 
3091 	inode_lock_shared(inode);
3092 	/*
3093 	 * We can get here for an inline file via the FIBMAP ioctl
3094 	 */
3095 	if (ext4_has_inline_data(inode))
3096 		goto out;
3097 
3098 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3099 	    (test_opt(inode->i_sb, DELALLOC) ||
3100 	     ext4_should_journal_data(inode))) {
3101 		/*
3102 		 * With delalloc or journalled data we want to sync the file so
3103 		 * that we can make sure we allocate blocks for file and data
3104 		 * is in place for the user to see it
3105 		 */
3106 		filemap_write_and_wait(mapping);
3107 	}
3108 
3109 	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3110 
3111 out:
3112 	inode_unlock_shared(inode);
3113 	return ret;
3114 }
3115 
3116 static int ext4_read_folio(struct file *file, struct folio *folio)
3117 {
3118 	int ret = -EAGAIN;
3119 	struct inode *inode = folio->mapping->host;
3120 
3121 	trace_ext4_read_folio(inode, folio);
3122 
3123 	if (ext4_has_inline_data(inode))
3124 		ret = ext4_readpage_inline(inode, folio);
3125 
3126 	if (ret == -EAGAIN)
3127 		return ext4_mpage_readpages(inode, NULL, folio);
3128 
3129 	return ret;
3130 }
3131 
3132 static void ext4_readahead(struct readahead_control *rac)
3133 {
3134 	struct inode *inode = rac->mapping->host;
3135 
3136 	/* If the file has inline data, no need to do readahead. */
3137 	if (ext4_has_inline_data(inode))
3138 		return;
3139 
3140 	ext4_mpage_readpages(inode, rac, NULL);
3141 }
3142 
3143 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3144 				size_t length)
3145 {
3146 	trace_ext4_invalidate_folio(folio, offset, length);
3147 
3148 	/* No journalling happens on data buffers when this function is used */
3149 	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3150 
3151 	block_invalidate_folio(folio, offset, length);
3152 }
3153 
3154 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3155 					    size_t offset, size_t length)
3156 {
3157 	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3158 
3159 	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3160 
3161 	/*
3162 	 * If it's a full truncate we just forget about the pending dirtying
3163 	 */
3164 	if (offset == 0 && length == folio_size(folio))
3165 		folio_clear_checked(folio);
3166 
3167 	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3168 }
3169 
3170 /* Wrapper for aops... */
3171 static void ext4_journalled_invalidate_folio(struct folio *folio,
3172 					   size_t offset,
3173 					   size_t length)
3174 {
3175 	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3176 }
3177 
3178 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3179 {
3180 	struct inode *inode = folio->mapping->host;
3181 	journal_t *journal = EXT4_JOURNAL(inode);
3182 
3183 	trace_ext4_release_folio(inode, folio);
3184 
3185 	/* Page has dirty journalled data -> cannot release */
3186 	if (folio_test_checked(folio))
3187 		return false;
3188 	if (journal)
3189 		return jbd2_journal_try_to_free_buffers(journal, folio);
3190 	else
3191 		return try_to_free_buffers(folio);
3192 }
3193 
3194 static bool ext4_inode_datasync_dirty(struct inode *inode)
3195 {
3196 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3197 
3198 	if (journal) {
3199 		if (jbd2_transaction_committed(journal,
3200 			EXT4_I(inode)->i_datasync_tid))
3201 			return false;
3202 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3203 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3204 		return true;
3205 	}
3206 
3207 	/* Any metadata buffers to write? */
3208 	if (!list_empty(&inode->i_mapping->i_private_list))
3209 		return true;
3210 	return inode->i_state & I_DIRTY_DATASYNC;
3211 }
3212 
3213 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3214 			   struct ext4_map_blocks *map, loff_t offset,
3215 			   loff_t length, unsigned int flags)
3216 {
3217 	u8 blkbits = inode->i_blkbits;
3218 
3219 	/*
3220 	 * Writes that span EOF might trigger an I/O size update on completion,
3221 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3222 	 * there is no other metadata changes being made or are pending.
3223 	 */
3224 	iomap->flags = 0;
3225 	if (ext4_inode_datasync_dirty(inode) ||
3226 	    offset + length > i_size_read(inode))
3227 		iomap->flags |= IOMAP_F_DIRTY;
3228 
3229 	if (map->m_flags & EXT4_MAP_NEW)
3230 		iomap->flags |= IOMAP_F_NEW;
3231 
3232 	if (flags & IOMAP_DAX)
3233 		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3234 	else
3235 		iomap->bdev = inode->i_sb->s_bdev;
3236 	iomap->offset = (u64) map->m_lblk << blkbits;
3237 	iomap->length = (u64) map->m_len << blkbits;
3238 
3239 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3240 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3241 		iomap->flags |= IOMAP_F_MERGED;
3242 
3243 	/*
3244 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3245 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3246 	 * set. In order for any allocated unwritten extents to be converted
3247 	 * into written extents correctly within the ->end_io() handler, we
3248 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3249 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3250 	 * been set first.
3251 	 */
3252 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3253 		iomap->type = IOMAP_UNWRITTEN;
3254 		iomap->addr = (u64) map->m_pblk << blkbits;
3255 		if (flags & IOMAP_DAX)
3256 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3257 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3258 		iomap->type = IOMAP_MAPPED;
3259 		iomap->addr = (u64) map->m_pblk << blkbits;
3260 		if (flags & IOMAP_DAX)
3261 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3262 	} else if (map->m_flags & EXT4_MAP_DELAYED) {
3263 		iomap->type = IOMAP_DELALLOC;
3264 		iomap->addr = IOMAP_NULL_ADDR;
3265 	} else {
3266 		iomap->type = IOMAP_HOLE;
3267 		iomap->addr = IOMAP_NULL_ADDR;
3268 	}
3269 }
3270 
3271 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3272 			    unsigned int flags)
3273 {
3274 	handle_t *handle;
3275 	u8 blkbits = inode->i_blkbits;
3276 	int ret, dio_credits, m_flags = 0, retries = 0;
3277 
3278 	/*
3279 	 * Trim the mapping request to the maximum value that we can map at
3280 	 * once for direct I/O.
3281 	 */
3282 	if (map->m_len > DIO_MAX_BLOCKS)
3283 		map->m_len = DIO_MAX_BLOCKS;
3284 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3285 
3286 retry:
3287 	/*
3288 	 * Either we allocate blocks and then don't get an unwritten extent, so
3289 	 * in that case we have reserved enough credits. Or, the blocks are
3290 	 * already allocated and unwritten. In that case, the extent conversion
3291 	 * fits into the credits as well.
3292 	 */
3293 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3294 	if (IS_ERR(handle))
3295 		return PTR_ERR(handle);
3296 
3297 	/*
3298 	 * DAX and direct I/O are the only two operations that are currently
3299 	 * supported with IOMAP_WRITE.
3300 	 */
3301 	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3302 	if (flags & IOMAP_DAX)
3303 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3304 	/*
3305 	 * We use i_size instead of i_disksize here because delalloc writeback
3306 	 * can complete at any point during the I/O and subsequently push the
3307 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3308 	 * happening and thus expose allocated blocks to direct I/O reads.
3309 	 */
3310 	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3311 		m_flags = EXT4_GET_BLOCKS_CREATE;
3312 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3313 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3314 
3315 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3316 
3317 	/*
3318 	 * We cannot fill holes in indirect tree based inodes as that could
3319 	 * expose stale data in the case of a crash. Use the magic error code
3320 	 * to fallback to buffered I/O.
3321 	 */
3322 	if (!m_flags && !ret)
3323 		ret = -ENOTBLK;
3324 
3325 	ext4_journal_stop(handle);
3326 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3327 		goto retry;
3328 
3329 	return ret;
3330 }
3331 
3332 
3333 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3334 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3335 {
3336 	int ret;
3337 	struct ext4_map_blocks map;
3338 	u8 blkbits = inode->i_blkbits;
3339 
3340 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3341 		return -EINVAL;
3342 
3343 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3344 		return -ERANGE;
3345 
3346 	/*
3347 	 * Calculate the first and last logical blocks respectively.
3348 	 */
3349 	map.m_lblk = offset >> blkbits;
3350 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3351 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3352 
3353 	if (flags & IOMAP_WRITE) {
3354 		/*
3355 		 * We check here if the blocks are already allocated, then we
3356 		 * don't need to start a journal txn and we can directly return
3357 		 * the mapping information. This could boost performance
3358 		 * especially in multi-threaded overwrite requests.
3359 		 */
3360 		if (offset + length <= i_size_read(inode)) {
3361 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3362 			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3363 				goto out;
3364 		}
3365 		ret = ext4_iomap_alloc(inode, &map, flags);
3366 	} else {
3367 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3368 	}
3369 
3370 	if (ret < 0)
3371 		return ret;
3372 out:
3373 	/*
3374 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3375 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3376 	 * limiting the length of the mapping returned.
3377 	 */
3378 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3379 
3380 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3381 
3382 	return 0;
3383 }
3384 
3385 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3386 		loff_t length, unsigned flags, struct iomap *iomap,
3387 		struct iomap *srcmap)
3388 {
3389 	int ret;
3390 
3391 	/*
3392 	 * Even for writes we don't need to allocate blocks, so just pretend
3393 	 * we are reading to save overhead of starting a transaction.
3394 	 */
3395 	flags &= ~IOMAP_WRITE;
3396 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3397 	WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3398 	return ret;
3399 }
3400 
3401 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3402 			  ssize_t written, unsigned flags, struct iomap *iomap)
3403 {
3404 	/*
3405 	 * Check to see whether an error occurred while writing out the data to
3406 	 * the allocated blocks. If so, return the magic error code so that we
3407 	 * fallback to buffered I/O and attempt to complete the remainder of
3408 	 * the I/O. Any blocks that may have been allocated in preparation for
3409 	 * the direct I/O will be reused during buffered I/O.
3410 	 */
3411 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3412 		return -ENOTBLK;
3413 
3414 	return 0;
3415 }
3416 
3417 const struct iomap_ops ext4_iomap_ops = {
3418 	.iomap_begin		= ext4_iomap_begin,
3419 	.iomap_end		= ext4_iomap_end,
3420 };
3421 
3422 const struct iomap_ops ext4_iomap_overwrite_ops = {
3423 	.iomap_begin		= ext4_iomap_overwrite_begin,
3424 	.iomap_end		= ext4_iomap_end,
3425 };
3426 
3427 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3428 				   loff_t length, unsigned int flags,
3429 				   struct iomap *iomap, struct iomap *srcmap)
3430 {
3431 	int ret;
3432 	struct ext4_map_blocks map;
3433 	u8 blkbits = inode->i_blkbits;
3434 
3435 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3436 		return -EINVAL;
3437 
3438 	if (ext4_has_inline_data(inode)) {
3439 		ret = ext4_inline_data_iomap(inode, iomap);
3440 		if (ret != -EAGAIN) {
3441 			if (ret == 0 && offset >= iomap->length)
3442 				ret = -ENOENT;
3443 			return ret;
3444 		}
3445 	}
3446 
3447 	/*
3448 	 * Calculate the first and last logical block respectively.
3449 	 */
3450 	map.m_lblk = offset >> blkbits;
3451 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3452 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3453 
3454 	/*
3455 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3456 	 * So handle it here itself instead of querying ext4_map_blocks().
3457 	 * Since ext4_map_blocks() will warn about it and will return
3458 	 * -EIO error.
3459 	 */
3460 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3461 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3462 
3463 		if (offset >= sbi->s_bitmap_maxbytes) {
3464 			map.m_flags = 0;
3465 			goto set_iomap;
3466 		}
3467 	}
3468 
3469 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3470 	if (ret < 0)
3471 		return ret;
3472 set_iomap:
3473 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3474 
3475 	return 0;
3476 }
3477 
3478 const struct iomap_ops ext4_iomap_report_ops = {
3479 	.iomap_begin = ext4_iomap_begin_report,
3480 };
3481 
3482 /*
3483  * For data=journal mode, folio should be marked dirty only when it was
3484  * writeably mapped. When that happens, it was already attached to the
3485  * transaction and marked as jbddirty (we take care of this in
3486  * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3487  * so we should have nothing to do here, except for the case when someone
3488  * had the page pinned and dirtied the page through this pin (e.g. by doing
3489  * direct IO to it). In that case we'd need to attach buffers here to the
3490  * transaction but we cannot due to lock ordering.  We cannot just dirty the
3491  * folio and leave attached buffers clean, because the buffers' dirty state is
3492  * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3493  * the journalling code will explode.  So what we do is to mark the folio
3494  * "pending dirty" and next time ext4_writepages() is called, attach buffers
3495  * to the transaction appropriately.
3496  */
3497 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3498 		struct folio *folio)
3499 {
3500 	WARN_ON_ONCE(!folio_buffers(folio));
3501 	if (folio_maybe_dma_pinned(folio))
3502 		folio_set_checked(folio);
3503 	return filemap_dirty_folio(mapping, folio);
3504 }
3505 
3506 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3507 {
3508 	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3509 	WARN_ON_ONCE(!folio_buffers(folio));
3510 	return block_dirty_folio(mapping, folio);
3511 }
3512 
3513 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3514 				    struct file *file, sector_t *span)
3515 {
3516 	return iomap_swapfile_activate(sis, file, span,
3517 				       &ext4_iomap_report_ops);
3518 }
3519 
3520 static const struct address_space_operations ext4_aops = {
3521 	.read_folio		= ext4_read_folio,
3522 	.readahead		= ext4_readahead,
3523 	.writepages		= ext4_writepages,
3524 	.write_begin		= ext4_write_begin,
3525 	.write_end		= ext4_write_end,
3526 	.dirty_folio		= ext4_dirty_folio,
3527 	.bmap			= ext4_bmap,
3528 	.invalidate_folio	= ext4_invalidate_folio,
3529 	.release_folio		= ext4_release_folio,
3530 	.migrate_folio		= buffer_migrate_folio,
3531 	.is_partially_uptodate  = block_is_partially_uptodate,
3532 	.error_remove_folio	= generic_error_remove_folio,
3533 	.swap_activate		= ext4_iomap_swap_activate,
3534 };
3535 
3536 static const struct address_space_operations ext4_journalled_aops = {
3537 	.read_folio		= ext4_read_folio,
3538 	.readahead		= ext4_readahead,
3539 	.writepages		= ext4_writepages,
3540 	.write_begin		= ext4_write_begin,
3541 	.write_end		= ext4_journalled_write_end,
3542 	.dirty_folio		= ext4_journalled_dirty_folio,
3543 	.bmap			= ext4_bmap,
3544 	.invalidate_folio	= ext4_journalled_invalidate_folio,
3545 	.release_folio		= ext4_release_folio,
3546 	.migrate_folio		= buffer_migrate_folio_norefs,
3547 	.is_partially_uptodate  = block_is_partially_uptodate,
3548 	.error_remove_folio	= generic_error_remove_folio,
3549 	.swap_activate		= ext4_iomap_swap_activate,
3550 };
3551 
3552 static const struct address_space_operations ext4_da_aops = {
3553 	.read_folio		= ext4_read_folio,
3554 	.readahead		= ext4_readahead,
3555 	.writepages		= ext4_writepages,
3556 	.write_begin		= ext4_da_write_begin,
3557 	.write_end		= ext4_da_write_end,
3558 	.dirty_folio		= ext4_dirty_folio,
3559 	.bmap			= ext4_bmap,
3560 	.invalidate_folio	= ext4_invalidate_folio,
3561 	.release_folio		= ext4_release_folio,
3562 	.migrate_folio		= buffer_migrate_folio,
3563 	.is_partially_uptodate  = block_is_partially_uptodate,
3564 	.error_remove_folio	= generic_error_remove_folio,
3565 	.swap_activate		= ext4_iomap_swap_activate,
3566 };
3567 
3568 static const struct address_space_operations ext4_dax_aops = {
3569 	.writepages		= ext4_dax_writepages,
3570 	.dirty_folio		= noop_dirty_folio,
3571 	.bmap			= ext4_bmap,
3572 	.swap_activate		= ext4_iomap_swap_activate,
3573 };
3574 
3575 void ext4_set_aops(struct inode *inode)
3576 {
3577 	switch (ext4_inode_journal_mode(inode)) {
3578 	case EXT4_INODE_ORDERED_DATA_MODE:
3579 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3580 		break;
3581 	case EXT4_INODE_JOURNAL_DATA_MODE:
3582 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3583 		return;
3584 	default:
3585 		BUG();
3586 	}
3587 	if (IS_DAX(inode))
3588 		inode->i_mapping->a_ops = &ext4_dax_aops;
3589 	else if (test_opt(inode->i_sb, DELALLOC))
3590 		inode->i_mapping->a_ops = &ext4_da_aops;
3591 	else
3592 		inode->i_mapping->a_ops = &ext4_aops;
3593 }
3594 
3595 /*
3596  * Here we can't skip an unwritten buffer even though it usually reads zero
3597  * because it might have data in pagecache (eg, if called from ext4_zero_range,
3598  * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a
3599  * racing writeback can come later and flush the stale pagecache to disk.
3600  */
3601 static int __ext4_block_zero_page_range(handle_t *handle,
3602 		struct address_space *mapping, loff_t from, loff_t length)
3603 {
3604 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3605 	unsigned offset = from & (PAGE_SIZE-1);
3606 	unsigned blocksize, pos;
3607 	ext4_lblk_t iblock;
3608 	struct inode *inode = mapping->host;
3609 	struct buffer_head *bh;
3610 	struct folio *folio;
3611 	int err = 0;
3612 
3613 	folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3614 				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3615 				    mapping_gfp_constraint(mapping, ~__GFP_FS));
3616 	if (IS_ERR(folio))
3617 		return PTR_ERR(folio);
3618 
3619 	blocksize = inode->i_sb->s_blocksize;
3620 
3621 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3622 
3623 	bh = folio_buffers(folio);
3624 	if (!bh)
3625 		bh = create_empty_buffers(folio, blocksize, 0);
3626 
3627 	/* Find the buffer that contains "offset" */
3628 	pos = blocksize;
3629 	while (offset >= pos) {
3630 		bh = bh->b_this_page;
3631 		iblock++;
3632 		pos += blocksize;
3633 	}
3634 	if (buffer_freed(bh)) {
3635 		BUFFER_TRACE(bh, "freed: skip");
3636 		goto unlock;
3637 	}
3638 	if (!buffer_mapped(bh)) {
3639 		BUFFER_TRACE(bh, "unmapped");
3640 		ext4_get_block(inode, iblock, bh, 0);
3641 		/* unmapped? It's a hole - nothing to do */
3642 		if (!buffer_mapped(bh)) {
3643 			BUFFER_TRACE(bh, "still unmapped");
3644 			goto unlock;
3645 		}
3646 	}
3647 
3648 	/* Ok, it's mapped. Make sure it's up-to-date */
3649 	if (folio_test_uptodate(folio))
3650 		set_buffer_uptodate(bh);
3651 
3652 	if (!buffer_uptodate(bh)) {
3653 		err = ext4_read_bh_lock(bh, 0, true);
3654 		if (err)
3655 			goto unlock;
3656 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3657 			/* We expect the key to be set. */
3658 			BUG_ON(!fscrypt_has_encryption_key(inode));
3659 			err = fscrypt_decrypt_pagecache_blocks(folio,
3660 							       blocksize,
3661 							       bh_offset(bh));
3662 			if (err) {
3663 				clear_buffer_uptodate(bh);
3664 				goto unlock;
3665 			}
3666 		}
3667 	}
3668 	if (ext4_should_journal_data(inode)) {
3669 		BUFFER_TRACE(bh, "get write access");
3670 		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3671 						    EXT4_JTR_NONE);
3672 		if (err)
3673 			goto unlock;
3674 	}
3675 	folio_zero_range(folio, offset, length);
3676 	BUFFER_TRACE(bh, "zeroed end of block");
3677 
3678 	if (ext4_should_journal_data(inode)) {
3679 		err = ext4_dirty_journalled_data(handle, bh);
3680 	} else {
3681 		err = 0;
3682 		mark_buffer_dirty(bh);
3683 		if (ext4_should_order_data(inode))
3684 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3685 					length);
3686 	}
3687 
3688 unlock:
3689 	folio_unlock(folio);
3690 	folio_put(folio);
3691 	return err;
3692 }
3693 
3694 /*
3695  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3696  * starting from file offset 'from'.  The range to be zero'd must
3697  * be contained with in one block.  If the specified range exceeds
3698  * the end of the block it will be shortened to end of the block
3699  * that corresponds to 'from'
3700  */
3701 static int ext4_block_zero_page_range(handle_t *handle,
3702 		struct address_space *mapping, loff_t from, loff_t length)
3703 {
3704 	struct inode *inode = mapping->host;
3705 	unsigned offset = from & (PAGE_SIZE-1);
3706 	unsigned blocksize = inode->i_sb->s_blocksize;
3707 	unsigned max = blocksize - (offset & (blocksize - 1));
3708 
3709 	/*
3710 	 * correct length if it does not fall between
3711 	 * 'from' and the end of the block
3712 	 */
3713 	if (length > max || length < 0)
3714 		length = max;
3715 
3716 	if (IS_DAX(inode)) {
3717 		return dax_zero_range(inode, from, length, NULL,
3718 				      &ext4_iomap_ops);
3719 	}
3720 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3721 }
3722 
3723 /*
3724  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3725  * up to the end of the block which corresponds to `from'.
3726  * This required during truncate. We need to physically zero the tail end
3727  * of that block so it doesn't yield old data if the file is later grown.
3728  */
3729 static int ext4_block_truncate_page(handle_t *handle,
3730 		struct address_space *mapping, loff_t from)
3731 {
3732 	unsigned offset = from & (PAGE_SIZE-1);
3733 	unsigned length;
3734 	unsigned blocksize;
3735 	struct inode *inode = mapping->host;
3736 
3737 	/* If we are processing an encrypted inode during orphan list handling */
3738 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3739 		return 0;
3740 
3741 	blocksize = inode->i_sb->s_blocksize;
3742 	length = blocksize - (offset & (blocksize - 1));
3743 
3744 	return ext4_block_zero_page_range(handle, mapping, from, length);
3745 }
3746 
3747 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3748 			     loff_t lstart, loff_t length)
3749 {
3750 	struct super_block *sb = inode->i_sb;
3751 	struct address_space *mapping = inode->i_mapping;
3752 	unsigned partial_start, partial_end;
3753 	ext4_fsblk_t start, end;
3754 	loff_t byte_end = (lstart + length - 1);
3755 	int err = 0;
3756 
3757 	partial_start = lstart & (sb->s_blocksize - 1);
3758 	partial_end = byte_end & (sb->s_blocksize - 1);
3759 
3760 	start = lstart >> sb->s_blocksize_bits;
3761 	end = byte_end >> sb->s_blocksize_bits;
3762 
3763 	/* Handle partial zero within the single block */
3764 	if (start == end &&
3765 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3766 		err = ext4_block_zero_page_range(handle, mapping,
3767 						 lstart, length);
3768 		return err;
3769 	}
3770 	/* Handle partial zero out on the start of the range */
3771 	if (partial_start) {
3772 		err = ext4_block_zero_page_range(handle, mapping,
3773 						 lstart, sb->s_blocksize);
3774 		if (err)
3775 			return err;
3776 	}
3777 	/* Handle partial zero out on the end of the range */
3778 	if (partial_end != sb->s_blocksize - 1)
3779 		err = ext4_block_zero_page_range(handle, mapping,
3780 						 byte_end - partial_end,
3781 						 partial_end + 1);
3782 	return err;
3783 }
3784 
3785 int ext4_can_truncate(struct inode *inode)
3786 {
3787 	if (S_ISREG(inode->i_mode))
3788 		return 1;
3789 	if (S_ISDIR(inode->i_mode))
3790 		return 1;
3791 	if (S_ISLNK(inode->i_mode))
3792 		return !ext4_inode_is_fast_symlink(inode);
3793 	return 0;
3794 }
3795 
3796 /*
3797  * We have to make sure i_disksize gets properly updated before we truncate
3798  * page cache due to hole punching or zero range. Otherwise i_disksize update
3799  * can get lost as it may have been postponed to submission of writeback but
3800  * that will never happen after we truncate page cache.
3801  */
3802 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3803 				      loff_t len)
3804 {
3805 	handle_t *handle;
3806 	int ret;
3807 
3808 	loff_t size = i_size_read(inode);
3809 
3810 	WARN_ON(!inode_is_locked(inode));
3811 	if (offset > size || offset + len < size)
3812 		return 0;
3813 
3814 	if (EXT4_I(inode)->i_disksize >= size)
3815 		return 0;
3816 
3817 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3818 	if (IS_ERR(handle))
3819 		return PTR_ERR(handle);
3820 	ext4_update_i_disksize(inode, size);
3821 	ret = ext4_mark_inode_dirty(handle, inode);
3822 	ext4_journal_stop(handle);
3823 
3824 	return ret;
3825 }
3826 
3827 static void ext4_wait_dax_page(struct inode *inode)
3828 {
3829 	filemap_invalidate_unlock(inode->i_mapping);
3830 	schedule();
3831 	filemap_invalidate_lock(inode->i_mapping);
3832 }
3833 
3834 int ext4_break_layouts(struct inode *inode)
3835 {
3836 	struct page *page;
3837 	int error;
3838 
3839 	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3840 		return -EINVAL;
3841 
3842 	do {
3843 		page = dax_layout_busy_page(inode->i_mapping);
3844 		if (!page)
3845 			return 0;
3846 
3847 		error = ___wait_var_event(&page->_refcount,
3848 				atomic_read(&page->_refcount) == 1,
3849 				TASK_INTERRUPTIBLE, 0, 0,
3850 				ext4_wait_dax_page(inode));
3851 	} while (error == 0);
3852 
3853 	return error;
3854 }
3855 
3856 /*
3857  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3858  * associated with the given offset and length
3859  *
3860  * @inode:  File inode
3861  * @offset: The offset where the hole will begin
3862  * @len:    The length of the hole
3863  *
3864  * Returns: 0 on success or negative on failure
3865  */
3866 
3867 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3868 {
3869 	struct inode *inode = file_inode(file);
3870 	struct super_block *sb = inode->i_sb;
3871 	ext4_lblk_t first_block, stop_block;
3872 	struct address_space *mapping = inode->i_mapping;
3873 	loff_t first_block_offset, last_block_offset, max_length;
3874 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3875 	handle_t *handle;
3876 	unsigned int credits;
3877 	int ret = 0, ret2 = 0;
3878 
3879 	trace_ext4_punch_hole(inode, offset, length, 0);
3880 
3881 	/*
3882 	 * Write out all dirty pages to avoid race conditions
3883 	 * Then release them.
3884 	 */
3885 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3886 		ret = filemap_write_and_wait_range(mapping, offset,
3887 						   offset + length - 1);
3888 		if (ret)
3889 			return ret;
3890 	}
3891 
3892 	inode_lock(inode);
3893 
3894 	/* No need to punch hole beyond i_size */
3895 	if (offset >= inode->i_size)
3896 		goto out_mutex;
3897 
3898 	/*
3899 	 * If the hole extends beyond i_size, set the hole
3900 	 * to end after the page that contains i_size
3901 	 */
3902 	if (offset + length > inode->i_size) {
3903 		length = inode->i_size +
3904 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3905 		   offset;
3906 	}
3907 
3908 	/*
3909 	 * For punch hole the length + offset needs to be within one block
3910 	 * before last range. Adjust the length if it goes beyond that limit.
3911 	 */
3912 	max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
3913 	if (offset + length > max_length)
3914 		length = max_length - offset;
3915 
3916 	if (offset & (sb->s_blocksize - 1) ||
3917 	    (offset + length) & (sb->s_blocksize - 1)) {
3918 		/*
3919 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3920 		 * partial block
3921 		 */
3922 		ret = ext4_inode_attach_jinode(inode);
3923 		if (ret < 0)
3924 			goto out_mutex;
3925 
3926 	}
3927 
3928 	/* Wait all existing dio workers, newcomers will block on i_rwsem */
3929 	inode_dio_wait(inode);
3930 
3931 	ret = file_modified(file);
3932 	if (ret)
3933 		goto out_mutex;
3934 
3935 	/*
3936 	 * Prevent page faults from reinstantiating pages we have released from
3937 	 * page cache.
3938 	 */
3939 	filemap_invalidate_lock(mapping);
3940 
3941 	ret = ext4_break_layouts(inode);
3942 	if (ret)
3943 		goto out_dio;
3944 
3945 	first_block_offset = round_up(offset, sb->s_blocksize);
3946 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3947 
3948 	/* Now release the pages and zero block aligned part of pages*/
3949 	if (last_block_offset > first_block_offset) {
3950 		ret = ext4_update_disksize_before_punch(inode, offset, length);
3951 		if (ret)
3952 			goto out_dio;
3953 		truncate_pagecache_range(inode, first_block_offset,
3954 					 last_block_offset);
3955 	}
3956 
3957 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3958 		credits = ext4_writepage_trans_blocks(inode);
3959 	else
3960 		credits = ext4_blocks_for_truncate(inode);
3961 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3962 	if (IS_ERR(handle)) {
3963 		ret = PTR_ERR(handle);
3964 		ext4_std_error(sb, ret);
3965 		goto out_dio;
3966 	}
3967 
3968 	ret = ext4_zero_partial_blocks(handle, inode, offset,
3969 				       length);
3970 	if (ret)
3971 		goto out_stop;
3972 
3973 	first_block = (offset + sb->s_blocksize - 1) >>
3974 		EXT4_BLOCK_SIZE_BITS(sb);
3975 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3976 
3977 	/* If there are blocks to remove, do it */
3978 	if (stop_block > first_block) {
3979 		ext4_lblk_t hole_len = stop_block - first_block;
3980 
3981 		down_write(&EXT4_I(inode)->i_data_sem);
3982 		ext4_discard_preallocations(inode);
3983 
3984 		ext4_es_remove_extent(inode, first_block, hole_len);
3985 
3986 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3987 			ret = ext4_ext_remove_space(inode, first_block,
3988 						    stop_block - 1);
3989 		else
3990 			ret = ext4_ind_remove_space(handle, inode, first_block,
3991 						    stop_block);
3992 
3993 		ext4_es_insert_extent(inode, first_block, hole_len, ~0,
3994 				      EXTENT_STATUS_HOLE);
3995 		up_write(&EXT4_I(inode)->i_data_sem);
3996 	}
3997 	ext4_fc_track_range(handle, inode, first_block, stop_block);
3998 	if (IS_SYNC(inode))
3999 		ext4_handle_sync(handle);
4000 
4001 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4002 	ret2 = ext4_mark_inode_dirty(handle, inode);
4003 	if (unlikely(ret2))
4004 		ret = ret2;
4005 	if (ret >= 0)
4006 		ext4_update_inode_fsync_trans(handle, inode, 1);
4007 out_stop:
4008 	ext4_journal_stop(handle);
4009 out_dio:
4010 	filemap_invalidate_unlock(mapping);
4011 out_mutex:
4012 	inode_unlock(inode);
4013 	return ret;
4014 }
4015 
4016 int ext4_inode_attach_jinode(struct inode *inode)
4017 {
4018 	struct ext4_inode_info *ei = EXT4_I(inode);
4019 	struct jbd2_inode *jinode;
4020 
4021 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4022 		return 0;
4023 
4024 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4025 	spin_lock(&inode->i_lock);
4026 	if (!ei->jinode) {
4027 		if (!jinode) {
4028 			spin_unlock(&inode->i_lock);
4029 			return -ENOMEM;
4030 		}
4031 		ei->jinode = jinode;
4032 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4033 		jinode = NULL;
4034 	}
4035 	spin_unlock(&inode->i_lock);
4036 	if (unlikely(jinode != NULL))
4037 		jbd2_free_inode(jinode);
4038 	return 0;
4039 }
4040 
4041 /*
4042  * ext4_truncate()
4043  *
4044  * We block out ext4_get_block() block instantiations across the entire
4045  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4046  * simultaneously on behalf of the same inode.
4047  *
4048  * As we work through the truncate and commit bits of it to the journal there
4049  * is one core, guiding principle: the file's tree must always be consistent on
4050  * disk.  We must be able to restart the truncate after a crash.
4051  *
4052  * The file's tree may be transiently inconsistent in memory (although it
4053  * probably isn't), but whenever we close off and commit a journal transaction,
4054  * the contents of (the filesystem + the journal) must be consistent and
4055  * restartable.  It's pretty simple, really: bottom up, right to left (although
4056  * left-to-right works OK too).
4057  *
4058  * Note that at recovery time, journal replay occurs *before* the restart of
4059  * truncate against the orphan inode list.
4060  *
4061  * The committed inode has the new, desired i_size (which is the same as
4062  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4063  * that this inode's truncate did not complete and it will again call
4064  * ext4_truncate() to have another go.  So there will be instantiated blocks
4065  * to the right of the truncation point in a crashed ext4 filesystem.  But
4066  * that's fine - as long as they are linked from the inode, the post-crash
4067  * ext4_truncate() run will find them and release them.
4068  */
4069 int ext4_truncate(struct inode *inode)
4070 {
4071 	struct ext4_inode_info *ei = EXT4_I(inode);
4072 	unsigned int credits;
4073 	int err = 0, err2;
4074 	handle_t *handle;
4075 	struct address_space *mapping = inode->i_mapping;
4076 
4077 	/*
4078 	 * There is a possibility that we're either freeing the inode
4079 	 * or it's a completely new inode. In those cases we might not
4080 	 * have i_rwsem locked because it's not necessary.
4081 	 */
4082 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4083 		WARN_ON(!inode_is_locked(inode));
4084 	trace_ext4_truncate_enter(inode);
4085 
4086 	if (!ext4_can_truncate(inode))
4087 		goto out_trace;
4088 
4089 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4090 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4091 
4092 	if (ext4_has_inline_data(inode)) {
4093 		int has_inline = 1;
4094 
4095 		err = ext4_inline_data_truncate(inode, &has_inline);
4096 		if (err || has_inline)
4097 			goto out_trace;
4098 	}
4099 
4100 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4101 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4102 		err = ext4_inode_attach_jinode(inode);
4103 		if (err)
4104 			goto out_trace;
4105 	}
4106 
4107 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4108 		credits = ext4_writepage_trans_blocks(inode);
4109 	else
4110 		credits = ext4_blocks_for_truncate(inode);
4111 
4112 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4113 	if (IS_ERR(handle)) {
4114 		err = PTR_ERR(handle);
4115 		goto out_trace;
4116 	}
4117 
4118 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4119 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4120 
4121 	/*
4122 	 * We add the inode to the orphan list, so that if this
4123 	 * truncate spans multiple transactions, and we crash, we will
4124 	 * resume the truncate when the filesystem recovers.  It also
4125 	 * marks the inode dirty, to catch the new size.
4126 	 *
4127 	 * Implication: the file must always be in a sane, consistent
4128 	 * truncatable state while each transaction commits.
4129 	 */
4130 	err = ext4_orphan_add(handle, inode);
4131 	if (err)
4132 		goto out_stop;
4133 
4134 	down_write(&EXT4_I(inode)->i_data_sem);
4135 
4136 	ext4_discard_preallocations(inode);
4137 
4138 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4139 		err = ext4_ext_truncate(handle, inode);
4140 	else
4141 		ext4_ind_truncate(handle, inode);
4142 
4143 	up_write(&ei->i_data_sem);
4144 	if (err)
4145 		goto out_stop;
4146 
4147 	if (IS_SYNC(inode))
4148 		ext4_handle_sync(handle);
4149 
4150 out_stop:
4151 	/*
4152 	 * If this was a simple ftruncate() and the file will remain alive,
4153 	 * then we need to clear up the orphan record which we created above.
4154 	 * However, if this was a real unlink then we were called by
4155 	 * ext4_evict_inode(), and we allow that function to clean up the
4156 	 * orphan info for us.
4157 	 */
4158 	if (inode->i_nlink)
4159 		ext4_orphan_del(handle, inode);
4160 
4161 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4162 	err2 = ext4_mark_inode_dirty(handle, inode);
4163 	if (unlikely(err2 && !err))
4164 		err = err2;
4165 	ext4_journal_stop(handle);
4166 
4167 out_trace:
4168 	trace_ext4_truncate_exit(inode);
4169 	return err;
4170 }
4171 
4172 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4173 {
4174 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4175 		return inode_peek_iversion_raw(inode);
4176 	else
4177 		return inode_peek_iversion(inode);
4178 }
4179 
4180 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4181 				 struct ext4_inode_info *ei)
4182 {
4183 	struct inode *inode = &(ei->vfs_inode);
4184 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4185 	struct super_block *sb = inode->i_sb;
4186 
4187 	if (i_blocks <= ~0U) {
4188 		/*
4189 		 * i_blocks can be represented in a 32 bit variable
4190 		 * as multiple of 512 bytes
4191 		 */
4192 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4193 		raw_inode->i_blocks_high = 0;
4194 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4195 		return 0;
4196 	}
4197 
4198 	/*
4199 	 * This should never happen since sb->s_maxbytes should not have
4200 	 * allowed this, sb->s_maxbytes was set according to the huge_file
4201 	 * feature in ext4_fill_super().
4202 	 */
4203 	if (!ext4_has_feature_huge_file(sb))
4204 		return -EFSCORRUPTED;
4205 
4206 	if (i_blocks <= 0xffffffffffffULL) {
4207 		/*
4208 		 * i_blocks can be represented in a 48 bit variable
4209 		 * as multiple of 512 bytes
4210 		 */
4211 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4212 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4213 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4214 	} else {
4215 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4216 		/* i_block is stored in file system block size */
4217 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4218 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4219 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4220 	}
4221 	return 0;
4222 }
4223 
4224 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4225 {
4226 	struct ext4_inode_info *ei = EXT4_I(inode);
4227 	uid_t i_uid;
4228 	gid_t i_gid;
4229 	projid_t i_projid;
4230 	int block;
4231 	int err;
4232 
4233 	err = ext4_inode_blocks_set(raw_inode, ei);
4234 
4235 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4236 	i_uid = i_uid_read(inode);
4237 	i_gid = i_gid_read(inode);
4238 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4239 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4240 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4241 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4242 		/*
4243 		 * Fix up interoperability with old kernels. Otherwise,
4244 		 * old inodes get re-used with the upper 16 bits of the
4245 		 * uid/gid intact.
4246 		 */
4247 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4248 			raw_inode->i_uid_high = 0;
4249 			raw_inode->i_gid_high = 0;
4250 		} else {
4251 			raw_inode->i_uid_high =
4252 				cpu_to_le16(high_16_bits(i_uid));
4253 			raw_inode->i_gid_high =
4254 				cpu_to_le16(high_16_bits(i_gid));
4255 		}
4256 	} else {
4257 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4258 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4259 		raw_inode->i_uid_high = 0;
4260 		raw_inode->i_gid_high = 0;
4261 	}
4262 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4263 
4264 	EXT4_INODE_SET_CTIME(inode, raw_inode);
4265 	EXT4_INODE_SET_MTIME(inode, raw_inode);
4266 	EXT4_INODE_SET_ATIME(inode, raw_inode);
4267 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4268 
4269 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4270 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4271 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4272 		raw_inode->i_file_acl_high =
4273 			cpu_to_le16(ei->i_file_acl >> 32);
4274 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4275 	ext4_isize_set(raw_inode, ei->i_disksize);
4276 
4277 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4278 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4279 		if (old_valid_dev(inode->i_rdev)) {
4280 			raw_inode->i_block[0] =
4281 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4282 			raw_inode->i_block[1] = 0;
4283 		} else {
4284 			raw_inode->i_block[0] = 0;
4285 			raw_inode->i_block[1] =
4286 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4287 			raw_inode->i_block[2] = 0;
4288 		}
4289 	} else if (!ext4_has_inline_data(inode)) {
4290 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4291 			raw_inode->i_block[block] = ei->i_data[block];
4292 	}
4293 
4294 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4295 		u64 ivers = ext4_inode_peek_iversion(inode);
4296 
4297 		raw_inode->i_disk_version = cpu_to_le32(ivers);
4298 		if (ei->i_extra_isize) {
4299 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4300 				raw_inode->i_version_hi =
4301 					cpu_to_le32(ivers >> 32);
4302 			raw_inode->i_extra_isize =
4303 				cpu_to_le16(ei->i_extra_isize);
4304 		}
4305 	}
4306 
4307 	if (i_projid != EXT4_DEF_PROJID &&
4308 	    !ext4_has_feature_project(inode->i_sb))
4309 		err = err ?: -EFSCORRUPTED;
4310 
4311 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4312 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4313 		raw_inode->i_projid = cpu_to_le32(i_projid);
4314 
4315 	ext4_inode_csum_set(inode, raw_inode, ei);
4316 	return err;
4317 }
4318 
4319 /*
4320  * ext4_get_inode_loc returns with an extra refcount against the inode's
4321  * underlying buffer_head on success. If we pass 'inode' and it does not
4322  * have in-inode xattr, we have all inode data in memory that is needed
4323  * to recreate the on-disk version of this inode.
4324  */
4325 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4326 				struct inode *inode, struct ext4_iloc *iloc,
4327 				ext4_fsblk_t *ret_block)
4328 {
4329 	struct ext4_group_desc	*gdp;
4330 	struct buffer_head	*bh;
4331 	ext4_fsblk_t		block;
4332 	struct blk_plug		plug;
4333 	int			inodes_per_block, inode_offset;
4334 
4335 	iloc->bh = NULL;
4336 	if (ino < EXT4_ROOT_INO ||
4337 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4338 		return -EFSCORRUPTED;
4339 
4340 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4341 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4342 	if (!gdp)
4343 		return -EIO;
4344 
4345 	/*
4346 	 * Figure out the offset within the block group inode table
4347 	 */
4348 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4349 	inode_offset = ((ino - 1) %
4350 			EXT4_INODES_PER_GROUP(sb));
4351 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4352 
4353 	block = ext4_inode_table(sb, gdp);
4354 	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4355 	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4356 		ext4_error(sb, "Invalid inode table block %llu in "
4357 			   "block_group %u", block, iloc->block_group);
4358 		return -EFSCORRUPTED;
4359 	}
4360 	block += (inode_offset / inodes_per_block);
4361 
4362 	bh = sb_getblk(sb, block);
4363 	if (unlikely(!bh))
4364 		return -ENOMEM;
4365 	if (ext4_buffer_uptodate(bh))
4366 		goto has_buffer;
4367 
4368 	lock_buffer(bh);
4369 	if (ext4_buffer_uptodate(bh)) {
4370 		/* Someone brought it uptodate while we waited */
4371 		unlock_buffer(bh);
4372 		goto has_buffer;
4373 	}
4374 
4375 	/*
4376 	 * If we have all information of the inode in memory and this
4377 	 * is the only valid inode in the block, we need not read the
4378 	 * block.
4379 	 */
4380 	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4381 		struct buffer_head *bitmap_bh;
4382 		int i, start;
4383 
4384 		start = inode_offset & ~(inodes_per_block - 1);
4385 
4386 		/* Is the inode bitmap in cache? */
4387 		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4388 		if (unlikely(!bitmap_bh))
4389 			goto make_io;
4390 
4391 		/*
4392 		 * If the inode bitmap isn't in cache then the
4393 		 * optimisation may end up performing two reads instead
4394 		 * of one, so skip it.
4395 		 */
4396 		if (!buffer_uptodate(bitmap_bh)) {
4397 			brelse(bitmap_bh);
4398 			goto make_io;
4399 		}
4400 		for (i = start; i < start + inodes_per_block; i++) {
4401 			if (i == inode_offset)
4402 				continue;
4403 			if (ext4_test_bit(i, bitmap_bh->b_data))
4404 				break;
4405 		}
4406 		brelse(bitmap_bh);
4407 		if (i == start + inodes_per_block) {
4408 			struct ext4_inode *raw_inode =
4409 				(struct ext4_inode *) (bh->b_data + iloc->offset);
4410 
4411 			/* all other inodes are free, so skip I/O */
4412 			memset(bh->b_data, 0, bh->b_size);
4413 			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4414 				ext4_fill_raw_inode(inode, raw_inode);
4415 			set_buffer_uptodate(bh);
4416 			unlock_buffer(bh);
4417 			goto has_buffer;
4418 		}
4419 	}
4420 
4421 make_io:
4422 	/*
4423 	 * If we need to do any I/O, try to pre-readahead extra
4424 	 * blocks from the inode table.
4425 	 */
4426 	blk_start_plug(&plug);
4427 	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4428 		ext4_fsblk_t b, end, table;
4429 		unsigned num;
4430 		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4431 
4432 		table = ext4_inode_table(sb, gdp);
4433 		/* s_inode_readahead_blks is always a power of 2 */
4434 		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4435 		if (table > b)
4436 			b = table;
4437 		end = b + ra_blks;
4438 		num = EXT4_INODES_PER_GROUP(sb);
4439 		if (ext4_has_group_desc_csum(sb))
4440 			num -= ext4_itable_unused_count(sb, gdp);
4441 		table += num / inodes_per_block;
4442 		if (end > table)
4443 			end = table;
4444 		while (b <= end)
4445 			ext4_sb_breadahead_unmovable(sb, b++);
4446 	}
4447 
4448 	/*
4449 	 * There are other valid inodes in the buffer, this inode
4450 	 * has in-inode xattrs, or we don't have this inode in memory.
4451 	 * Read the block from disk.
4452 	 */
4453 	trace_ext4_load_inode(sb, ino);
4454 	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4455 	blk_finish_plug(&plug);
4456 	wait_on_buffer(bh);
4457 	ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4458 	if (!buffer_uptodate(bh)) {
4459 		if (ret_block)
4460 			*ret_block = block;
4461 		brelse(bh);
4462 		return -EIO;
4463 	}
4464 has_buffer:
4465 	iloc->bh = bh;
4466 	return 0;
4467 }
4468 
4469 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4470 					struct ext4_iloc *iloc)
4471 {
4472 	ext4_fsblk_t err_blk = 0;
4473 	int ret;
4474 
4475 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4476 					&err_blk);
4477 
4478 	if (ret == -EIO)
4479 		ext4_error_inode_block(inode, err_blk, EIO,
4480 					"unable to read itable block");
4481 
4482 	return ret;
4483 }
4484 
4485 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4486 {
4487 	ext4_fsblk_t err_blk = 0;
4488 	int ret;
4489 
4490 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4491 					&err_blk);
4492 
4493 	if (ret == -EIO)
4494 		ext4_error_inode_block(inode, err_blk, EIO,
4495 					"unable to read itable block");
4496 
4497 	return ret;
4498 }
4499 
4500 
4501 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4502 			  struct ext4_iloc *iloc)
4503 {
4504 	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4505 }
4506 
4507 static bool ext4_should_enable_dax(struct inode *inode)
4508 {
4509 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4510 
4511 	if (test_opt2(inode->i_sb, DAX_NEVER))
4512 		return false;
4513 	if (!S_ISREG(inode->i_mode))
4514 		return false;
4515 	if (ext4_should_journal_data(inode))
4516 		return false;
4517 	if (ext4_has_inline_data(inode))
4518 		return false;
4519 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4520 		return false;
4521 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4522 		return false;
4523 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4524 		return false;
4525 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4526 		return true;
4527 
4528 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4529 }
4530 
4531 void ext4_set_inode_flags(struct inode *inode, bool init)
4532 {
4533 	unsigned int flags = EXT4_I(inode)->i_flags;
4534 	unsigned int new_fl = 0;
4535 
4536 	WARN_ON_ONCE(IS_DAX(inode) && init);
4537 
4538 	if (flags & EXT4_SYNC_FL)
4539 		new_fl |= S_SYNC;
4540 	if (flags & EXT4_APPEND_FL)
4541 		new_fl |= S_APPEND;
4542 	if (flags & EXT4_IMMUTABLE_FL)
4543 		new_fl |= S_IMMUTABLE;
4544 	if (flags & EXT4_NOATIME_FL)
4545 		new_fl |= S_NOATIME;
4546 	if (flags & EXT4_DIRSYNC_FL)
4547 		new_fl |= S_DIRSYNC;
4548 
4549 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4550 	 * here if already set. */
4551 	new_fl |= (inode->i_flags & S_DAX);
4552 	if (init && ext4_should_enable_dax(inode))
4553 		new_fl |= S_DAX;
4554 
4555 	if (flags & EXT4_ENCRYPT_FL)
4556 		new_fl |= S_ENCRYPTED;
4557 	if (flags & EXT4_CASEFOLD_FL)
4558 		new_fl |= S_CASEFOLD;
4559 	if (flags & EXT4_VERITY_FL)
4560 		new_fl |= S_VERITY;
4561 	inode_set_flags(inode, new_fl,
4562 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4563 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4564 }
4565 
4566 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4567 				  struct ext4_inode_info *ei)
4568 {
4569 	blkcnt_t i_blocks ;
4570 	struct inode *inode = &(ei->vfs_inode);
4571 	struct super_block *sb = inode->i_sb;
4572 
4573 	if (ext4_has_feature_huge_file(sb)) {
4574 		/* we are using combined 48 bit field */
4575 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4576 					le32_to_cpu(raw_inode->i_blocks_lo);
4577 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4578 			/* i_blocks represent file system block size */
4579 			return i_blocks  << (inode->i_blkbits - 9);
4580 		} else {
4581 			return i_blocks;
4582 		}
4583 	} else {
4584 		return le32_to_cpu(raw_inode->i_blocks_lo);
4585 	}
4586 }
4587 
4588 static inline int ext4_iget_extra_inode(struct inode *inode,
4589 					 struct ext4_inode *raw_inode,
4590 					 struct ext4_inode_info *ei)
4591 {
4592 	__le32 *magic = (void *)raw_inode +
4593 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4594 
4595 	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4596 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4597 		int err;
4598 
4599 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4600 		err = ext4_find_inline_data_nolock(inode);
4601 		if (!err && ext4_has_inline_data(inode))
4602 			ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4603 		return err;
4604 	} else
4605 		EXT4_I(inode)->i_inline_off = 0;
4606 	return 0;
4607 }
4608 
4609 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4610 {
4611 	if (!ext4_has_feature_project(inode->i_sb))
4612 		return -EOPNOTSUPP;
4613 	*projid = EXT4_I(inode)->i_projid;
4614 	return 0;
4615 }
4616 
4617 /*
4618  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4619  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4620  * set.
4621  */
4622 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4623 {
4624 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4625 		inode_set_iversion_raw(inode, val);
4626 	else
4627 		inode_set_iversion_queried(inode, val);
4628 }
4629 
4630 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4631 
4632 {
4633 	if (flags & EXT4_IGET_EA_INODE) {
4634 		if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4635 			return "missing EA_INODE flag";
4636 		if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4637 		    EXT4_I(inode)->i_file_acl)
4638 			return "ea_inode with extended attributes";
4639 	} else {
4640 		if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4641 			return "unexpected EA_INODE flag";
4642 	}
4643 	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4644 		return "unexpected bad inode w/o EXT4_IGET_BAD";
4645 	return NULL;
4646 }
4647 
4648 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4649 			  ext4_iget_flags flags, const char *function,
4650 			  unsigned int line)
4651 {
4652 	struct ext4_iloc iloc;
4653 	struct ext4_inode *raw_inode;
4654 	struct ext4_inode_info *ei;
4655 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4656 	struct inode *inode;
4657 	const char *err_str;
4658 	journal_t *journal = EXT4_SB(sb)->s_journal;
4659 	long ret;
4660 	loff_t size;
4661 	int block;
4662 	uid_t i_uid;
4663 	gid_t i_gid;
4664 	projid_t i_projid;
4665 
4666 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4667 	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4668 	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4669 	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4670 	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4671 	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4672 	    (ino < EXT4_ROOT_INO) ||
4673 	    (ino > le32_to_cpu(es->s_inodes_count))) {
4674 		if (flags & EXT4_IGET_HANDLE)
4675 			return ERR_PTR(-ESTALE);
4676 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4677 			     "inode #%lu: comm %s: iget: illegal inode #",
4678 			     ino, current->comm);
4679 		return ERR_PTR(-EFSCORRUPTED);
4680 	}
4681 
4682 	inode = iget_locked(sb, ino);
4683 	if (!inode)
4684 		return ERR_PTR(-ENOMEM);
4685 	if (!(inode->i_state & I_NEW)) {
4686 		if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4687 			ext4_error_inode(inode, function, line, 0, err_str);
4688 			iput(inode);
4689 			return ERR_PTR(-EFSCORRUPTED);
4690 		}
4691 		return inode;
4692 	}
4693 
4694 	ei = EXT4_I(inode);
4695 	iloc.bh = NULL;
4696 
4697 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4698 	if (ret < 0)
4699 		goto bad_inode;
4700 	raw_inode = ext4_raw_inode(&iloc);
4701 
4702 	if ((flags & EXT4_IGET_HANDLE) &&
4703 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4704 		ret = -ESTALE;
4705 		goto bad_inode;
4706 	}
4707 
4708 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4709 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4710 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4711 			EXT4_INODE_SIZE(inode->i_sb) ||
4712 		    (ei->i_extra_isize & 3)) {
4713 			ext4_error_inode(inode, function, line, 0,
4714 					 "iget: bad extra_isize %u "
4715 					 "(inode size %u)",
4716 					 ei->i_extra_isize,
4717 					 EXT4_INODE_SIZE(inode->i_sb));
4718 			ret = -EFSCORRUPTED;
4719 			goto bad_inode;
4720 		}
4721 	} else
4722 		ei->i_extra_isize = 0;
4723 
4724 	/* Precompute checksum seed for inode metadata */
4725 	if (ext4_has_metadata_csum(sb)) {
4726 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4727 		__u32 csum;
4728 		__le32 inum = cpu_to_le32(inode->i_ino);
4729 		__le32 gen = raw_inode->i_generation;
4730 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4731 				   sizeof(inum));
4732 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4733 					      sizeof(gen));
4734 	}
4735 
4736 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4737 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4738 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4739 		ext4_error_inode_err(inode, function, line, 0,
4740 				EFSBADCRC, "iget: checksum invalid");
4741 		ret = -EFSBADCRC;
4742 		goto bad_inode;
4743 	}
4744 
4745 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4746 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4747 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4748 	if (ext4_has_feature_project(sb) &&
4749 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4750 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4751 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4752 	else
4753 		i_projid = EXT4_DEF_PROJID;
4754 
4755 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4756 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4757 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4758 	}
4759 	i_uid_write(inode, i_uid);
4760 	i_gid_write(inode, i_gid);
4761 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4762 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4763 
4764 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4765 	ei->i_inline_off = 0;
4766 	ei->i_dir_start_lookup = 0;
4767 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4768 	/* We now have enough fields to check if the inode was active or not.
4769 	 * This is needed because nfsd might try to access dead inodes
4770 	 * the test is that same one that e2fsck uses
4771 	 * NeilBrown 1999oct15
4772 	 */
4773 	if (inode->i_nlink == 0) {
4774 		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4775 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4776 		    ino != EXT4_BOOT_LOADER_INO) {
4777 			/* this inode is deleted or unallocated */
4778 			if (flags & EXT4_IGET_SPECIAL) {
4779 				ext4_error_inode(inode, function, line, 0,
4780 						 "iget: special inode unallocated");
4781 				ret = -EFSCORRUPTED;
4782 			} else
4783 				ret = -ESTALE;
4784 			goto bad_inode;
4785 		}
4786 		/* The only unlinked inodes we let through here have
4787 		 * valid i_mode and are being read by the orphan
4788 		 * recovery code: that's fine, we're about to complete
4789 		 * the process of deleting those.
4790 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4791 		 * not initialized on a new filesystem. */
4792 	}
4793 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4794 	ext4_set_inode_flags(inode, true);
4795 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4796 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4797 	if (ext4_has_feature_64bit(sb))
4798 		ei->i_file_acl |=
4799 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4800 	inode->i_size = ext4_isize(sb, raw_inode);
4801 	if ((size = i_size_read(inode)) < 0) {
4802 		ext4_error_inode(inode, function, line, 0,
4803 				 "iget: bad i_size value: %lld", size);
4804 		ret = -EFSCORRUPTED;
4805 		goto bad_inode;
4806 	}
4807 	/*
4808 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4809 	 * we'd normally treat htree data as empty space. But with metadata
4810 	 * checksumming that corrupts checksums so forbid that.
4811 	 */
4812 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4813 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4814 		ext4_error_inode(inode, function, line, 0,
4815 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4816 		ret = -EFSCORRUPTED;
4817 		goto bad_inode;
4818 	}
4819 	ei->i_disksize = inode->i_size;
4820 #ifdef CONFIG_QUOTA
4821 	ei->i_reserved_quota = 0;
4822 #endif
4823 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4824 	ei->i_block_group = iloc.block_group;
4825 	ei->i_last_alloc_group = ~0;
4826 	/*
4827 	 * NOTE! The in-memory inode i_data array is in little-endian order
4828 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4829 	 */
4830 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4831 		ei->i_data[block] = raw_inode->i_block[block];
4832 	INIT_LIST_HEAD(&ei->i_orphan);
4833 	ext4_fc_init_inode(&ei->vfs_inode);
4834 
4835 	/*
4836 	 * Set transaction id's of transactions that have to be committed
4837 	 * to finish f[data]sync. We set them to currently running transaction
4838 	 * as we cannot be sure that the inode or some of its metadata isn't
4839 	 * part of the transaction - the inode could have been reclaimed and
4840 	 * now it is reread from disk.
4841 	 */
4842 	if (journal) {
4843 		transaction_t *transaction;
4844 		tid_t tid;
4845 
4846 		read_lock(&journal->j_state_lock);
4847 		if (journal->j_running_transaction)
4848 			transaction = journal->j_running_transaction;
4849 		else
4850 			transaction = journal->j_committing_transaction;
4851 		if (transaction)
4852 			tid = transaction->t_tid;
4853 		else
4854 			tid = journal->j_commit_sequence;
4855 		read_unlock(&journal->j_state_lock);
4856 		ei->i_sync_tid = tid;
4857 		ei->i_datasync_tid = tid;
4858 	}
4859 
4860 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4861 		if (ei->i_extra_isize == 0) {
4862 			/* The extra space is currently unused. Use it. */
4863 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4864 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4865 					    EXT4_GOOD_OLD_INODE_SIZE;
4866 		} else {
4867 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4868 			if (ret)
4869 				goto bad_inode;
4870 		}
4871 	}
4872 
4873 	EXT4_INODE_GET_CTIME(inode, raw_inode);
4874 	EXT4_INODE_GET_ATIME(inode, raw_inode);
4875 	EXT4_INODE_GET_MTIME(inode, raw_inode);
4876 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4877 
4878 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4879 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4880 
4881 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4882 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4883 				ivers |=
4884 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4885 		}
4886 		ext4_inode_set_iversion_queried(inode, ivers);
4887 	}
4888 
4889 	ret = 0;
4890 	if (ei->i_file_acl &&
4891 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4892 		ext4_error_inode(inode, function, line, 0,
4893 				 "iget: bad extended attribute block %llu",
4894 				 ei->i_file_acl);
4895 		ret = -EFSCORRUPTED;
4896 		goto bad_inode;
4897 	} else if (!ext4_has_inline_data(inode)) {
4898 		/* validate the block references in the inode */
4899 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4900 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4901 			(S_ISLNK(inode->i_mode) &&
4902 			!ext4_inode_is_fast_symlink(inode)))) {
4903 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4904 				ret = ext4_ext_check_inode(inode);
4905 			else
4906 				ret = ext4_ind_check_inode(inode);
4907 		}
4908 	}
4909 	if (ret)
4910 		goto bad_inode;
4911 
4912 	if (S_ISREG(inode->i_mode)) {
4913 		inode->i_op = &ext4_file_inode_operations;
4914 		inode->i_fop = &ext4_file_operations;
4915 		ext4_set_aops(inode);
4916 	} else if (S_ISDIR(inode->i_mode)) {
4917 		inode->i_op = &ext4_dir_inode_operations;
4918 		inode->i_fop = &ext4_dir_operations;
4919 	} else if (S_ISLNK(inode->i_mode)) {
4920 		/* VFS does not allow setting these so must be corruption */
4921 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4922 			ext4_error_inode(inode, function, line, 0,
4923 					 "iget: immutable or append flags "
4924 					 "not allowed on symlinks");
4925 			ret = -EFSCORRUPTED;
4926 			goto bad_inode;
4927 		}
4928 		if (IS_ENCRYPTED(inode)) {
4929 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4930 		} else if (ext4_inode_is_fast_symlink(inode)) {
4931 			inode->i_link = (char *)ei->i_data;
4932 			inode->i_op = &ext4_fast_symlink_inode_operations;
4933 			nd_terminate_link(ei->i_data, inode->i_size,
4934 				sizeof(ei->i_data) - 1);
4935 		} else {
4936 			inode->i_op = &ext4_symlink_inode_operations;
4937 		}
4938 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4939 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4940 		inode->i_op = &ext4_special_inode_operations;
4941 		if (raw_inode->i_block[0])
4942 			init_special_inode(inode, inode->i_mode,
4943 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4944 		else
4945 			init_special_inode(inode, inode->i_mode,
4946 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4947 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4948 		make_bad_inode(inode);
4949 	} else {
4950 		ret = -EFSCORRUPTED;
4951 		ext4_error_inode(inode, function, line, 0,
4952 				 "iget: bogus i_mode (%o)", inode->i_mode);
4953 		goto bad_inode;
4954 	}
4955 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
4956 		ext4_error_inode(inode, function, line, 0,
4957 				 "casefold flag without casefold feature");
4958 		ret = -EFSCORRUPTED;
4959 		goto bad_inode;
4960 	}
4961 	if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4962 		ext4_error_inode(inode, function, line, 0, err_str);
4963 		ret = -EFSCORRUPTED;
4964 		goto bad_inode;
4965 	}
4966 
4967 	brelse(iloc.bh);
4968 	unlock_new_inode(inode);
4969 	return inode;
4970 
4971 bad_inode:
4972 	brelse(iloc.bh);
4973 	iget_failed(inode);
4974 	return ERR_PTR(ret);
4975 }
4976 
4977 static void __ext4_update_other_inode_time(struct super_block *sb,
4978 					   unsigned long orig_ino,
4979 					   unsigned long ino,
4980 					   struct ext4_inode *raw_inode)
4981 {
4982 	struct inode *inode;
4983 
4984 	inode = find_inode_by_ino_rcu(sb, ino);
4985 	if (!inode)
4986 		return;
4987 
4988 	if (!inode_is_dirtytime_only(inode))
4989 		return;
4990 
4991 	spin_lock(&inode->i_lock);
4992 	if (inode_is_dirtytime_only(inode)) {
4993 		struct ext4_inode_info	*ei = EXT4_I(inode);
4994 
4995 		inode->i_state &= ~I_DIRTY_TIME;
4996 		spin_unlock(&inode->i_lock);
4997 
4998 		spin_lock(&ei->i_raw_lock);
4999 		EXT4_INODE_SET_CTIME(inode, raw_inode);
5000 		EXT4_INODE_SET_MTIME(inode, raw_inode);
5001 		EXT4_INODE_SET_ATIME(inode, raw_inode);
5002 		ext4_inode_csum_set(inode, raw_inode, ei);
5003 		spin_unlock(&ei->i_raw_lock);
5004 		trace_ext4_other_inode_update_time(inode, orig_ino);
5005 		return;
5006 	}
5007 	spin_unlock(&inode->i_lock);
5008 }
5009 
5010 /*
5011  * Opportunistically update the other time fields for other inodes in
5012  * the same inode table block.
5013  */
5014 static void ext4_update_other_inodes_time(struct super_block *sb,
5015 					  unsigned long orig_ino, char *buf)
5016 {
5017 	unsigned long ino;
5018 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5019 	int inode_size = EXT4_INODE_SIZE(sb);
5020 
5021 	/*
5022 	 * Calculate the first inode in the inode table block.  Inode
5023 	 * numbers are one-based.  That is, the first inode in a block
5024 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5025 	 */
5026 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5027 	rcu_read_lock();
5028 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5029 		if (ino == orig_ino)
5030 			continue;
5031 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5032 					       (struct ext4_inode *)buf);
5033 	}
5034 	rcu_read_unlock();
5035 }
5036 
5037 /*
5038  * Post the struct inode info into an on-disk inode location in the
5039  * buffer-cache.  This gobbles the caller's reference to the
5040  * buffer_head in the inode location struct.
5041  *
5042  * The caller must have write access to iloc->bh.
5043  */
5044 static int ext4_do_update_inode(handle_t *handle,
5045 				struct inode *inode,
5046 				struct ext4_iloc *iloc)
5047 {
5048 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5049 	struct ext4_inode_info *ei = EXT4_I(inode);
5050 	struct buffer_head *bh = iloc->bh;
5051 	struct super_block *sb = inode->i_sb;
5052 	int err;
5053 	int need_datasync = 0, set_large_file = 0;
5054 
5055 	spin_lock(&ei->i_raw_lock);
5056 
5057 	/*
5058 	 * For fields not tracked in the in-memory inode, initialise them
5059 	 * to zero for new inodes.
5060 	 */
5061 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5062 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5063 
5064 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5065 		need_datasync = 1;
5066 	if (ei->i_disksize > 0x7fffffffULL) {
5067 		if (!ext4_has_feature_large_file(sb) ||
5068 		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5069 			set_large_file = 1;
5070 	}
5071 
5072 	err = ext4_fill_raw_inode(inode, raw_inode);
5073 	spin_unlock(&ei->i_raw_lock);
5074 	if (err) {
5075 		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5076 		goto out_brelse;
5077 	}
5078 
5079 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5080 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5081 					      bh->b_data);
5082 
5083 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5084 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5085 	if (err)
5086 		goto out_error;
5087 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5088 	if (set_large_file) {
5089 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5090 		err = ext4_journal_get_write_access(handle, sb,
5091 						    EXT4_SB(sb)->s_sbh,
5092 						    EXT4_JTR_NONE);
5093 		if (err)
5094 			goto out_error;
5095 		lock_buffer(EXT4_SB(sb)->s_sbh);
5096 		ext4_set_feature_large_file(sb);
5097 		ext4_superblock_csum_set(sb);
5098 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5099 		ext4_handle_sync(handle);
5100 		err = ext4_handle_dirty_metadata(handle, NULL,
5101 						 EXT4_SB(sb)->s_sbh);
5102 	}
5103 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5104 out_error:
5105 	ext4_std_error(inode->i_sb, err);
5106 out_brelse:
5107 	brelse(bh);
5108 	return err;
5109 }
5110 
5111 /*
5112  * ext4_write_inode()
5113  *
5114  * We are called from a few places:
5115  *
5116  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5117  *   Here, there will be no transaction running. We wait for any running
5118  *   transaction to commit.
5119  *
5120  * - Within flush work (sys_sync(), kupdate and such).
5121  *   We wait on commit, if told to.
5122  *
5123  * - Within iput_final() -> write_inode_now()
5124  *   We wait on commit, if told to.
5125  *
5126  * In all cases it is actually safe for us to return without doing anything,
5127  * because the inode has been copied into a raw inode buffer in
5128  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5129  * writeback.
5130  *
5131  * Note that we are absolutely dependent upon all inode dirtiers doing the
5132  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5133  * which we are interested.
5134  *
5135  * It would be a bug for them to not do this.  The code:
5136  *
5137  *	mark_inode_dirty(inode)
5138  *	stuff();
5139  *	inode->i_size = expr;
5140  *
5141  * is in error because write_inode() could occur while `stuff()' is running,
5142  * and the new i_size will be lost.  Plus the inode will no longer be on the
5143  * superblock's dirty inode list.
5144  */
5145 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5146 {
5147 	int err;
5148 
5149 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5150 		return 0;
5151 
5152 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5153 		return -EIO;
5154 
5155 	if (EXT4_SB(inode->i_sb)->s_journal) {
5156 		if (ext4_journal_current_handle()) {
5157 			ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5158 			dump_stack();
5159 			return -EIO;
5160 		}
5161 
5162 		/*
5163 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5164 		 * ext4_sync_fs() will force the commit after everything is
5165 		 * written.
5166 		 */
5167 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5168 			return 0;
5169 
5170 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5171 						EXT4_I(inode)->i_sync_tid);
5172 	} else {
5173 		struct ext4_iloc iloc;
5174 
5175 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5176 		if (err)
5177 			return err;
5178 		/*
5179 		 * sync(2) will flush the whole buffer cache. No need to do
5180 		 * it here separately for each inode.
5181 		 */
5182 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5183 			sync_dirty_buffer(iloc.bh);
5184 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5185 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5186 					       "IO error syncing inode");
5187 			err = -EIO;
5188 		}
5189 		brelse(iloc.bh);
5190 	}
5191 	return err;
5192 }
5193 
5194 /*
5195  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5196  * buffers that are attached to a folio straddling i_size and are undergoing
5197  * commit. In that case we have to wait for commit to finish and try again.
5198  */
5199 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5200 {
5201 	unsigned offset;
5202 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5203 	tid_t commit_tid = 0;
5204 	int ret;
5205 
5206 	offset = inode->i_size & (PAGE_SIZE - 1);
5207 	/*
5208 	 * If the folio is fully truncated, we don't need to wait for any commit
5209 	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5210 	 * strip all buffers from the folio but keep the folio dirty which can then
5211 	 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5212 	 * buffers). Also we don't need to wait for any commit if all buffers in
5213 	 * the folio remain valid. This is most beneficial for the common case of
5214 	 * blocksize == PAGESIZE.
5215 	 */
5216 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5217 		return;
5218 	while (1) {
5219 		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5220 				      inode->i_size >> PAGE_SHIFT);
5221 		if (IS_ERR(folio))
5222 			return;
5223 		ret = __ext4_journalled_invalidate_folio(folio, offset,
5224 						folio_size(folio) - offset);
5225 		folio_unlock(folio);
5226 		folio_put(folio);
5227 		if (ret != -EBUSY)
5228 			return;
5229 		commit_tid = 0;
5230 		read_lock(&journal->j_state_lock);
5231 		if (journal->j_committing_transaction)
5232 			commit_tid = journal->j_committing_transaction->t_tid;
5233 		read_unlock(&journal->j_state_lock);
5234 		if (commit_tid)
5235 			jbd2_log_wait_commit(journal, commit_tid);
5236 	}
5237 }
5238 
5239 /*
5240  * ext4_setattr()
5241  *
5242  * Called from notify_change.
5243  *
5244  * We want to trap VFS attempts to truncate the file as soon as
5245  * possible.  In particular, we want to make sure that when the VFS
5246  * shrinks i_size, we put the inode on the orphan list and modify
5247  * i_disksize immediately, so that during the subsequent flushing of
5248  * dirty pages and freeing of disk blocks, we can guarantee that any
5249  * commit will leave the blocks being flushed in an unused state on
5250  * disk.  (On recovery, the inode will get truncated and the blocks will
5251  * be freed, so we have a strong guarantee that no future commit will
5252  * leave these blocks visible to the user.)
5253  *
5254  * Another thing we have to assure is that if we are in ordered mode
5255  * and inode is still attached to the committing transaction, we must
5256  * we start writeout of all the dirty pages which are being truncated.
5257  * This way we are sure that all the data written in the previous
5258  * transaction are already on disk (truncate waits for pages under
5259  * writeback).
5260  *
5261  * Called with inode->i_rwsem down.
5262  */
5263 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5264 		 struct iattr *attr)
5265 {
5266 	struct inode *inode = d_inode(dentry);
5267 	int error, rc = 0;
5268 	int orphan = 0;
5269 	const unsigned int ia_valid = attr->ia_valid;
5270 	bool inc_ivers = true;
5271 
5272 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5273 		return -EIO;
5274 
5275 	if (unlikely(IS_IMMUTABLE(inode)))
5276 		return -EPERM;
5277 
5278 	if (unlikely(IS_APPEND(inode) &&
5279 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5280 				  ATTR_GID | ATTR_TIMES_SET))))
5281 		return -EPERM;
5282 
5283 	error = setattr_prepare(idmap, dentry, attr);
5284 	if (error)
5285 		return error;
5286 
5287 	error = fscrypt_prepare_setattr(dentry, attr);
5288 	if (error)
5289 		return error;
5290 
5291 	error = fsverity_prepare_setattr(dentry, attr);
5292 	if (error)
5293 		return error;
5294 
5295 	if (is_quota_modification(idmap, inode, attr)) {
5296 		error = dquot_initialize(inode);
5297 		if (error)
5298 			return error;
5299 	}
5300 
5301 	if (i_uid_needs_update(idmap, attr, inode) ||
5302 	    i_gid_needs_update(idmap, attr, inode)) {
5303 		handle_t *handle;
5304 
5305 		/* (user+group)*(old+new) structure, inode write (sb,
5306 		 * inode block, ? - but truncate inode update has it) */
5307 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5308 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5309 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5310 		if (IS_ERR(handle)) {
5311 			error = PTR_ERR(handle);
5312 			goto err_out;
5313 		}
5314 
5315 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5316 		 * counts xattr inode references.
5317 		 */
5318 		down_read(&EXT4_I(inode)->xattr_sem);
5319 		error = dquot_transfer(idmap, inode, attr);
5320 		up_read(&EXT4_I(inode)->xattr_sem);
5321 
5322 		if (error) {
5323 			ext4_journal_stop(handle);
5324 			return error;
5325 		}
5326 		/* Update corresponding info in inode so that everything is in
5327 		 * one transaction */
5328 		i_uid_update(idmap, attr, inode);
5329 		i_gid_update(idmap, attr, inode);
5330 		error = ext4_mark_inode_dirty(handle, inode);
5331 		ext4_journal_stop(handle);
5332 		if (unlikely(error)) {
5333 			return error;
5334 		}
5335 	}
5336 
5337 	if (attr->ia_valid & ATTR_SIZE) {
5338 		handle_t *handle;
5339 		loff_t oldsize = inode->i_size;
5340 		loff_t old_disksize;
5341 		int shrink = (attr->ia_size < inode->i_size);
5342 
5343 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5344 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5345 
5346 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5347 				return -EFBIG;
5348 			}
5349 		}
5350 		if (!S_ISREG(inode->i_mode)) {
5351 			return -EINVAL;
5352 		}
5353 
5354 		if (attr->ia_size == inode->i_size)
5355 			inc_ivers = false;
5356 
5357 		if (shrink) {
5358 			if (ext4_should_order_data(inode)) {
5359 				error = ext4_begin_ordered_truncate(inode,
5360 							    attr->ia_size);
5361 				if (error)
5362 					goto err_out;
5363 			}
5364 			/*
5365 			 * Blocks are going to be removed from the inode. Wait
5366 			 * for dio in flight.
5367 			 */
5368 			inode_dio_wait(inode);
5369 		}
5370 
5371 		filemap_invalidate_lock(inode->i_mapping);
5372 
5373 		rc = ext4_break_layouts(inode);
5374 		if (rc) {
5375 			filemap_invalidate_unlock(inode->i_mapping);
5376 			goto err_out;
5377 		}
5378 
5379 		if (attr->ia_size != inode->i_size) {
5380 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5381 			if (IS_ERR(handle)) {
5382 				error = PTR_ERR(handle);
5383 				goto out_mmap_sem;
5384 			}
5385 			if (ext4_handle_valid(handle) && shrink) {
5386 				error = ext4_orphan_add(handle, inode);
5387 				orphan = 1;
5388 			}
5389 			/*
5390 			 * Update c/mtime on truncate up, ext4_truncate() will
5391 			 * update c/mtime in shrink case below
5392 			 */
5393 			if (!shrink)
5394 				inode_set_mtime_to_ts(inode,
5395 						      inode_set_ctime_current(inode));
5396 
5397 			if (shrink)
5398 				ext4_fc_track_range(handle, inode,
5399 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5400 					inode->i_sb->s_blocksize_bits,
5401 					EXT_MAX_BLOCKS - 1);
5402 			else
5403 				ext4_fc_track_range(
5404 					handle, inode,
5405 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5406 					inode->i_sb->s_blocksize_bits,
5407 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5408 					inode->i_sb->s_blocksize_bits);
5409 
5410 			down_write(&EXT4_I(inode)->i_data_sem);
5411 			old_disksize = EXT4_I(inode)->i_disksize;
5412 			EXT4_I(inode)->i_disksize = attr->ia_size;
5413 			rc = ext4_mark_inode_dirty(handle, inode);
5414 			if (!error)
5415 				error = rc;
5416 			/*
5417 			 * We have to update i_size under i_data_sem together
5418 			 * with i_disksize to avoid races with writeback code
5419 			 * running ext4_wb_update_i_disksize().
5420 			 */
5421 			if (!error)
5422 				i_size_write(inode, attr->ia_size);
5423 			else
5424 				EXT4_I(inode)->i_disksize = old_disksize;
5425 			up_write(&EXT4_I(inode)->i_data_sem);
5426 			ext4_journal_stop(handle);
5427 			if (error)
5428 				goto out_mmap_sem;
5429 			if (!shrink) {
5430 				pagecache_isize_extended(inode, oldsize,
5431 							 inode->i_size);
5432 			} else if (ext4_should_journal_data(inode)) {
5433 				ext4_wait_for_tail_page_commit(inode);
5434 			}
5435 		}
5436 
5437 		/*
5438 		 * Truncate pagecache after we've waited for commit
5439 		 * in data=journal mode to make pages freeable.
5440 		 */
5441 		truncate_pagecache(inode, inode->i_size);
5442 		/*
5443 		 * Call ext4_truncate() even if i_size didn't change to
5444 		 * truncate possible preallocated blocks.
5445 		 */
5446 		if (attr->ia_size <= oldsize) {
5447 			rc = ext4_truncate(inode);
5448 			if (rc)
5449 				error = rc;
5450 		}
5451 out_mmap_sem:
5452 		filemap_invalidate_unlock(inode->i_mapping);
5453 	}
5454 
5455 	if (!error) {
5456 		if (inc_ivers)
5457 			inode_inc_iversion(inode);
5458 		setattr_copy(idmap, inode, attr);
5459 		mark_inode_dirty(inode);
5460 	}
5461 
5462 	/*
5463 	 * If the call to ext4_truncate failed to get a transaction handle at
5464 	 * all, we need to clean up the in-core orphan list manually.
5465 	 */
5466 	if (orphan && inode->i_nlink)
5467 		ext4_orphan_del(NULL, inode);
5468 
5469 	if (!error && (ia_valid & ATTR_MODE))
5470 		rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5471 
5472 err_out:
5473 	if  (error)
5474 		ext4_std_error(inode->i_sb, error);
5475 	if (!error)
5476 		error = rc;
5477 	return error;
5478 }
5479 
5480 u32 ext4_dio_alignment(struct inode *inode)
5481 {
5482 	if (fsverity_active(inode))
5483 		return 0;
5484 	if (ext4_should_journal_data(inode))
5485 		return 0;
5486 	if (ext4_has_inline_data(inode))
5487 		return 0;
5488 	if (IS_ENCRYPTED(inode)) {
5489 		if (!fscrypt_dio_supported(inode))
5490 			return 0;
5491 		return i_blocksize(inode);
5492 	}
5493 	return 1; /* use the iomap defaults */
5494 }
5495 
5496 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5497 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5498 {
5499 	struct inode *inode = d_inode(path->dentry);
5500 	struct ext4_inode *raw_inode;
5501 	struct ext4_inode_info *ei = EXT4_I(inode);
5502 	unsigned int flags;
5503 
5504 	if ((request_mask & STATX_BTIME) &&
5505 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5506 		stat->result_mask |= STATX_BTIME;
5507 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5508 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5509 	}
5510 
5511 	/*
5512 	 * Return the DIO alignment restrictions if requested.  We only return
5513 	 * this information when requested, since on encrypted files it might
5514 	 * take a fair bit of work to get if the file wasn't opened recently.
5515 	 */
5516 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5517 		u32 dio_align = ext4_dio_alignment(inode);
5518 
5519 		stat->result_mask |= STATX_DIOALIGN;
5520 		if (dio_align == 1) {
5521 			struct block_device *bdev = inode->i_sb->s_bdev;
5522 
5523 			/* iomap defaults */
5524 			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5525 			stat->dio_offset_align = bdev_logical_block_size(bdev);
5526 		} else {
5527 			stat->dio_mem_align = dio_align;
5528 			stat->dio_offset_align = dio_align;
5529 		}
5530 	}
5531 
5532 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5533 	if (flags & EXT4_APPEND_FL)
5534 		stat->attributes |= STATX_ATTR_APPEND;
5535 	if (flags & EXT4_COMPR_FL)
5536 		stat->attributes |= STATX_ATTR_COMPRESSED;
5537 	if (flags & EXT4_ENCRYPT_FL)
5538 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5539 	if (flags & EXT4_IMMUTABLE_FL)
5540 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5541 	if (flags & EXT4_NODUMP_FL)
5542 		stat->attributes |= STATX_ATTR_NODUMP;
5543 	if (flags & EXT4_VERITY_FL)
5544 		stat->attributes |= STATX_ATTR_VERITY;
5545 
5546 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5547 				  STATX_ATTR_COMPRESSED |
5548 				  STATX_ATTR_ENCRYPTED |
5549 				  STATX_ATTR_IMMUTABLE |
5550 				  STATX_ATTR_NODUMP |
5551 				  STATX_ATTR_VERITY);
5552 
5553 	generic_fillattr(idmap, request_mask, inode, stat);
5554 	return 0;
5555 }
5556 
5557 int ext4_file_getattr(struct mnt_idmap *idmap,
5558 		      const struct path *path, struct kstat *stat,
5559 		      u32 request_mask, unsigned int query_flags)
5560 {
5561 	struct inode *inode = d_inode(path->dentry);
5562 	u64 delalloc_blocks;
5563 
5564 	ext4_getattr(idmap, path, stat, request_mask, query_flags);
5565 
5566 	/*
5567 	 * If there is inline data in the inode, the inode will normally not
5568 	 * have data blocks allocated (it may have an external xattr block).
5569 	 * Report at least one sector for such files, so tools like tar, rsync,
5570 	 * others don't incorrectly think the file is completely sparse.
5571 	 */
5572 	if (unlikely(ext4_has_inline_data(inode)))
5573 		stat->blocks += (stat->size + 511) >> 9;
5574 
5575 	/*
5576 	 * We can't update i_blocks if the block allocation is delayed
5577 	 * otherwise in the case of system crash before the real block
5578 	 * allocation is done, we will have i_blocks inconsistent with
5579 	 * on-disk file blocks.
5580 	 * We always keep i_blocks updated together with real
5581 	 * allocation. But to not confuse with user, stat
5582 	 * will return the blocks that include the delayed allocation
5583 	 * blocks for this file.
5584 	 */
5585 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5586 				   EXT4_I(inode)->i_reserved_data_blocks);
5587 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5588 	return 0;
5589 }
5590 
5591 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5592 				   int pextents)
5593 {
5594 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5595 		return ext4_ind_trans_blocks(inode, lblocks);
5596 	return ext4_ext_index_trans_blocks(inode, pextents);
5597 }
5598 
5599 /*
5600  * Account for index blocks, block groups bitmaps and block group
5601  * descriptor blocks if modify datablocks and index blocks
5602  * worse case, the indexs blocks spread over different block groups
5603  *
5604  * If datablocks are discontiguous, they are possible to spread over
5605  * different block groups too. If they are contiguous, with flexbg,
5606  * they could still across block group boundary.
5607  *
5608  * Also account for superblock, inode, quota and xattr blocks
5609  */
5610 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5611 				  int pextents)
5612 {
5613 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5614 	int gdpblocks;
5615 	int idxblocks;
5616 	int ret;
5617 
5618 	/*
5619 	 * How many index blocks need to touch to map @lblocks logical blocks
5620 	 * to @pextents physical extents?
5621 	 */
5622 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5623 
5624 	ret = idxblocks;
5625 
5626 	/*
5627 	 * Now let's see how many group bitmaps and group descriptors need
5628 	 * to account
5629 	 */
5630 	groups = idxblocks + pextents;
5631 	gdpblocks = groups;
5632 	if (groups > ngroups)
5633 		groups = ngroups;
5634 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5635 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5636 
5637 	/* bitmaps and block group descriptor blocks */
5638 	ret += groups + gdpblocks;
5639 
5640 	/* Blocks for super block, inode, quota and xattr blocks */
5641 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5642 
5643 	return ret;
5644 }
5645 
5646 /*
5647  * Calculate the total number of credits to reserve to fit
5648  * the modification of a single pages into a single transaction,
5649  * which may include multiple chunks of block allocations.
5650  *
5651  * This could be called via ext4_write_begin()
5652  *
5653  * We need to consider the worse case, when
5654  * one new block per extent.
5655  */
5656 int ext4_writepage_trans_blocks(struct inode *inode)
5657 {
5658 	int bpp = ext4_journal_blocks_per_page(inode);
5659 	int ret;
5660 
5661 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5662 
5663 	/* Account for data blocks for journalled mode */
5664 	if (ext4_should_journal_data(inode))
5665 		ret += bpp;
5666 	return ret;
5667 }
5668 
5669 /*
5670  * Calculate the journal credits for a chunk of data modification.
5671  *
5672  * This is called from DIO, fallocate or whoever calling
5673  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5674  *
5675  * journal buffers for data blocks are not included here, as DIO
5676  * and fallocate do no need to journal data buffers.
5677  */
5678 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5679 {
5680 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5681 }
5682 
5683 /*
5684  * The caller must have previously called ext4_reserve_inode_write().
5685  * Give this, we know that the caller already has write access to iloc->bh.
5686  */
5687 int ext4_mark_iloc_dirty(handle_t *handle,
5688 			 struct inode *inode, struct ext4_iloc *iloc)
5689 {
5690 	int err = 0;
5691 
5692 	if (unlikely(ext4_forced_shutdown(inode->i_sb))) {
5693 		put_bh(iloc->bh);
5694 		return -EIO;
5695 	}
5696 	ext4_fc_track_inode(handle, inode);
5697 
5698 	/* the do_update_inode consumes one bh->b_count */
5699 	get_bh(iloc->bh);
5700 
5701 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5702 	err = ext4_do_update_inode(handle, inode, iloc);
5703 	put_bh(iloc->bh);
5704 	return err;
5705 }
5706 
5707 /*
5708  * On success, We end up with an outstanding reference count against
5709  * iloc->bh.  This _must_ be cleaned up later.
5710  */
5711 
5712 int
5713 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5714 			 struct ext4_iloc *iloc)
5715 {
5716 	int err;
5717 
5718 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5719 		return -EIO;
5720 
5721 	err = ext4_get_inode_loc(inode, iloc);
5722 	if (!err) {
5723 		BUFFER_TRACE(iloc->bh, "get_write_access");
5724 		err = ext4_journal_get_write_access(handle, inode->i_sb,
5725 						    iloc->bh, EXT4_JTR_NONE);
5726 		if (err) {
5727 			brelse(iloc->bh);
5728 			iloc->bh = NULL;
5729 		}
5730 	}
5731 	ext4_std_error(inode->i_sb, err);
5732 	return err;
5733 }
5734 
5735 static int __ext4_expand_extra_isize(struct inode *inode,
5736 				     unsigned int new_extra_isize,
5737 				     struct ext4_iloc *iloc,
5738 				     handle_t *handle, int *no_expand)
5739 {
5740 	struct ext4_inode *raw_inode;
5741 	struct ext4_xattr_ibody_header *header;
5742 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5743 	struct ext4_inode_info *ei = EXT4_I(inode);
5744 	int error;
5745 
5746 	/* this was checked at iget time, but double check for good measure */
5747 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5748 	    (ei->i_extra_isize & 3)) {
5749 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5750 				 ei->i_extra_isize,
5751 				 EXT4_INODE_SIZE(inode->i_sb));
5752 		return -EFSCORRUPTED;
5753 	}
5754 	if ((new_extra_isize < ei->i_extra_isize) ||
5755 	    (new_extra_isize < 4) ||
5756 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5757 		return -EINVAL;	/* Should never happen */
5758 
5759 	raw_inode = ext4_raw_inode(iloc);
5760 
5761 	header = IHDR(inode, raw_inode);
5762 
5763 	/* No extended attributes present */
5764 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5765 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5766 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5767 		       EXT4_I(inode)->i_extra_isize, 0,
5768 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5769 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5770 		return 0;
5771 	}
5772 
5773 	/*
5774 	 * We may need to allocate external xattr block so we need quotas
5775 	 * initialized. Here we can be called with various locks held so we
5776 	 * cannot affort to initialize quotas ourselves. So just bail.
5777 	 */
5778 	if (dquot_initialize_needed(inode))
5779 		return -EAGAIN;
5780 
5781 	/* try to expand with EAs present */
5782 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5783 					   raw_inode, handle);
5784 	if (error) {
5785 		/*
5786 		 * Inode size expansion failed; don't try again
5787 		 */
5788 		*no_expand = 1;
5789 	}
5790 
5791 	return error;
5792 }
5793 
5794 /*
5795  * Expand an inode by new_extra_isize bytes.
5796  * Returns 0 on success or negative error number on failure.
5797  */
5798 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5799 					  unsigned int new_extra_isize,
5800 					  struct ext4_iloc iloc,
5801 					  handle_t *handle)
5802 {
5803 	int no_expand;
5804 	int error;
5805 
5806 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5807 		return -EOVERFLOW;
5808 
5809 	/*
5810 	 * In nojournal mode, we can immediately attempt to expand
5811 	 * the inode.  When journaled, we first need to obtain extra
5812 	 * buffer credits since we may write into the EA block
5813 	 * with this same handle. If journal_extend fails, then it will
5814 	 * only result in a minor loss of functionality for that inode.
5815 	 * If this is felt to be critical, then e2fsck should be run to
5816 	 * force a large enough s_min_extra_isize.
5817 	 */
5818 	if (ext4_journal_extend(handle,
5819 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5820 		return -ENOSPC;
5821 
5822 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5823 		return -EBUSY;
5824 
5825 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5826 					  handle, &no_expand);
5827 	ext4_write_unlock_xattr(inode, &no_expand);
5828 
5829 	return error;
5830 }
5831 
5832 int ext4_expand_extra_isize(struct inode *inode,
5833 			    unsigned int new_extra_isize,
5834 			    struct ext4_iloc *iloc)
5835 {
5836 	handle_t *handle;
5837 	int no_expand;
5838 	int error, rc;
5839 
5840 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5841 		brelse(iloc->bh);
5842 		return -EOVERFLOW;
5843 	}
5844 
5845 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5846 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5847 	if (IS_ERR(handle)) {
5848 		error = PTR_ERR(handle);
5849 		brelse(iloc->bh);
5850 		return error;
5851 	}
5852 
5853 	ext4_write_lock_xattr(inode, &no_expand);
5854 
5855 	BUFFER_TRACE(iloc->bh, "get_write_access");
5856 	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5857 					      EXT4_JTR_NONE);
5858 	if (error) {
5859 		brelse(iloc->bh);
5860 		goto out_unlock;
5861 	}
5862 
5863 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5864 					  handle, &no_expand);
5865 
5866 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5867 	if (!error)
5868 		error = rc;
5869 
5870 out_unlock:
5871 	ext4_write_unlock_xattr(inode, &no_expand);
5872 	ext4_journal_stop(handle);
5873 	return error;
5874 }
5875 
5876 /*
5877  * What we do here is to mark the in-core inode as clean with respect to inode
5878  * dirtiness (it may still be data-dirty).
5879  * This means that the in-core inode may be reaped by prune_icache
5880  * without having to perform any I/O.  This is a very good thing,
5881  * because *any* task may call prune_icache - even ones which
5882  * have a transaction open against a different journal.
5883  *
5884  * Is this cheating?  Not really.  Sure, we haven't written the
5885  * inode out, but prune_icache isn't a user-visible syncing function.
5886  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5887  * we start and wait on commits.
5888  */
5889 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5890 				const char *func, unsigned int line)
5891 {
5892 	struct ext4_iloc iloc;
5893 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5894 	int err;
5895 
5896 	might_sleep();
5897 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5898 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5899 	if (err)
5900 		goto out;
5901 
5902 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5903 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5904 					       iloc, handle);
5905 
5906 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5907 out:
5908 	if (unlikely(err))
5909 		ext4_error_inode_err(inode, func, line, 0, err,
5910 					"mark_inode_dirty error");
5911 	return err;
5912 }
5913 
5914 /*
5915  * ext4_dirty_inode() is called from __mark_inode_dirty()
5916  *
5917  * We're really interested in the case where a file is being extended.
5918  * i_size has been changed by generic_commit_write() and we thus need
5919  * to include the updated inode in the current transaction.
5920  *
5921  * Also, dquot_alloc_block() will always dirty the inode when blocks
5922  * are allocated to the file.
5923  *
5924  * If the inode is marked synchronous, we don't honour that here - doing
5925  * so would cause a commit on atime updates, which we don't bother doing.
5926  * We handle synchronous inodes at the highest possible level.
5927  */
5928 void ext4_dirty_inode(struct inode *inode, int flags)
5929 {
5930 	handle_t *handle;
5931 
5932 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5933 	if (IS_ERR(handle))
5934 		return;
5935 	ext4_mark_inode_dirty(handle, inode);
5936 	ext4_journal_stop(handle);
5937 }
5938 
5939 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5940 {
5941 	journal_t *journal;
5942 	handle_t *handle;
5943 	int err;
5944 	int alloc_ctx;
5945 
5946 	/*
5947 	 * We have to be very careful here: changing a data block's
5948 	 * journaling status dynamically is dangerous.  If we write a
5949 	 * data block to the journal, change the status and then delete
5950 	 * that block, we risk forgetting to revoke the old log record
5951 	 * from the journal and so a subsequent replay can corrupt data.
5952 	 * So, first we make sure that the journal is empty and that
5953 	 * nobody is changing anything.
5954 	 */
5955 
5956 	journal = EXT4_JOURNAL(inode);
5957 	if (!journal)
5958 		return 0;
5959 	if (is_journal_aborted(journal))
5960 		return -EROFS;
5961 
5962 	/* Wait for all existing dio workers */
5963 	inode_dio_wait(inode);
5964 
5965 	/*
5966 	 * Before flushing the journal and switching inode's aops, we have
5967 	 * to flush all dirty data the inode has. There can be outstanding
5968 	 * delayed allocations, there can be unwritten extents created by
5969 	 * fallocate or buffered writes in dioread_nolock mode covered by
5970 	 * dirty data which can be converted only after flushing the dirty
5971 	 * data (and journalled aops don't know how to handle these cases).
5972 	 */
5973 	if (val) {
5974 		filemap_invalidate_lock(inode->i_mapping);
5975 		err = filemap_write_and_wait(inode->i_mapping);
5976 		if (err < 0) {
5977 			filemap_invalidate_unlock(inode->i_mapping);
5978 			return err;
5979 		}
5980 	}
5981 
5982 	alloc_ctx = ext4_writepages_down_write(inode->i_sb);
5983 	jbd2_journal_lock_updates(journal);
5984 
5985 	/*
5986 	 * OK, there are no updates running now, and all cached data is
5987 	 * synced to disk.  We are now in a completely consistent state
5988 	 * which doesn't have anything in the journal, and we know that
5989 	 * no filesystem updates are running, so it is safe to modify
5990 	 * the inode's in-core data-journaling state flag now.
5991 	 */
5992 
5993 	if (val)
5994 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5995 	else {
5996 		err = jbd2_journal_flush(journal, 0);
5997 		if (err < 0) {
5998 			jbd2_journal_unlock_updates(journal);
5999 			ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6000 			return err;
6001 		}
6002 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6003 	}
6004 	ext4_set_aops(inode);
6005 
6006 	jbd2_journal_unlock_updates(journal);
6007 	ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6008 
6009 	if (val)
6010 		filemap_invalidate_unlock(inode->i_mapping);
6011 
6012 	/* Finally we can mark the inode as dirty. */
6013 
6014 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6015 	if (IS_ERR(handle))
6016 		return PTR_ERR(handle);
6017 
6018 	ext4_fc_mark_ineligible(inode->i_sb,
6019 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6020 	err = ext4_mark_inode_dirty(handle, inode);
6021 	ext4_handle_sync(handle);
6022 	ext4_journal_stop(handle);
6023 	ext4_std_error(inode->i_sb, err);
6024 
6025 	return err;
6026 }
6027 
6028 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6029 			    struct buffer_head *bh)
6030 {
6031 	return !buffer_mapped(bh);
6032 }
6033 
6034 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6035 {
6036 	struct vm_area_struct *vma = vmf->vma;
6037 	struct folio *folio = page_folio(vmf->page);
6038 	loff_t size;
6039 	unsigned long len;
6040 	int err;
6041 	vm_fault_t ret;
6042 	struct file *file = vma->vm_file;
6043 	struct inode *inode = file_inode(file);
6044 	struct address_space *mapping = inode->i_mapping;
6045 	handle_t *handle;
6046 	get_block_t *get_block;
6047 	int retries = 0;
6048 
6049 	if (unlikely(IS_IMMUTABLE(inode)))
6050 		return VM_FAULT_SIGBUS;
6051 
6052 	sb_start_pagefault(inode->i_sb);
6053 	file_update_time(vma->vm_file);
6054 
6055 	filemap_invalidate_lock_shared(mapping);
6056 
6057 	err = ext4_convert_inline_data(inode);
6058 	if (err)
6059 		goto out_ret;
6060 
6061 	/*
6062 	 * On data journalling we skip straight to the transaction handle:
6063 	 * there's no delalloc; page truncated will be checked later; the
6064 	 * early return w/ all buffers mapped (calculates size/len) can't
6065 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6066 	 */
6067 	if (ext4_should_journal_data(inode))
6068 		goto retry_alloc;
6069 
6070 	/* Delalloc case is easy... */
6071 	if (test_opt(inode->i_sb, DELALLOC) &&
6072 	    !ext4_nonda_switch(inode->i_sb)) {
6073 		do {
6074 			err = block_page_mkwrite(vma, vmf,
6075 						   ext4_da_get_block_prep);
6076 		} while (err == -ENOSPC &&
6077 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6078 		goto out_ret;
6079 	}
6080 
6081 	folio_lock(folio);
6082 	size = i_size_read(inode);
6083 	/* Page got truncated from under us? */
6084 	if (folio->mapping != mapping || folio_pos(folio) > size) {
6085 		folio_unlock(folio);
6086 		ret = VM_FAULT_NOPAGE;
6087 		goto out;
6088 	}
6089 
6090 	len = folio_size(folio);
6091 	if (folio_pos(folio) + len > size)
6092 		len = size - folio_pos(folio);
6093 	/*
6094 	 * Return if we have all the buffers mapped. This avoids the need to do
6095 	 * journal_start/journal_stop which can block and take a long time
6096 	 *
6097 	 * This cannot be done for data journalling, as we have to add the
6098 	 * inode to the transaction's list to writeprotect pages on commit.
6099 	 */
6100 	if (folio_buffers(folio)) {
6101 		if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6102 					    0, len, NULL,
6103 					    ext4_bh_unmapped)) {
6104 			/* Wait so that we don't change page under IO */
6105 			folio_wait_stable(folio);
6106 			ret = VM_FAULT_LOCKED;
6107 			goto out;
6108 		}
6109 	}
6110 	folio_unlock(folio);
6111 	/* OK, we need to fill the hole... */
6112 	if (ext4_should_dioread_nolock(inode))
6113 		get_block = ext4_get_block_unwritten;
6114 	else
6115 		get_block = ext4_get_block;
6116 retry_alloc:
6117 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6118 				    ext4_writepage_trans_blocks(inode));
6119 	if (IS_ERR(handle)) {
6120 		ret = VM_FAULT_SIGBUS;
6121 		goto out;
6122 	}
6123 	/*
6124 	 * Data journalling can't use block_page_mkwrite() because it
6125 	 * will set_buffer_dirty() before do_journal_get_write_access()
6126 	 * thus might hit warning messages for dirty metadata buffers.
6127 	 */
6128 	if (!ext4_should_journal_data(inode)) {
6129 		err = block_page_mkwrite(vma, vmf, get_block);
6130 	} else {
6131 		folio_lock(folio);
6132 		size = i_size_read(inode);
6133 		/* Page got truncated from under us? */
6134 		if (folio->mapping != mapping || folio_pos(folio) > size) {
6135 			ret = VM_FAULT_NOPAGE;
6136 			goto out_error;
6137 		}
6138 
6139 		len = folio_size(folio);
6140 		if (folio_pos(folio) + len > size)
6141 			len = size - folio_pos(folio);
6142 
6143 		err = __block_write_begin(&folio->page, 0, len, ext4_get_block);
6144 		if (!err) {
6145 			ret = VM_FAULT_SIGBUS;
6146 			if (ext4_journal_folio_buffers(handle, folio, len))
6147 				goto out_error;
6148 		} else {
6149 			folio_unlock(folio);
6150 		}
6151 	}
6152 	ext4_journal_stop(handle);
6153 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6154 		goto retry_alloc;
6155 out_ret:
6156 	ret = vmf_fs_error(err);
6157 out:
6158 	filemap_invalidate_unlock_shared(mapping);
6159 	sb_end_pagefault(inode->i_sb);
6160 	return ret;
6161 out_error:
6162 	folio_unlock(folio);
6163 	ext4_journal_stop(handle);
6164 	goto out;
6165 }
6166