1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/time.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/string.h> 30 #include <linux/buffer_head.h> 31 #include <linux/writeback.h> 32 #include <linux/pagevec.h> 33 #include <linux/mpage.h> 34 #include <linux/rmap.h> 35 #include <linux/namei.h> 36 #include <linux/uio.h> 37 #include <linux/bio.h> 38 #include <linux/workqueue.h> 39 #include <linux/kernel.h> 40 #include <linux/printk.h> 41 #include <linux/slab.h> 42 #include <linux/bitops.h> 43 #include <linux/iomap.h> 44 #include <linux/iversion.h> 45 46 #include "ext4_jbd2.h" 47 #include "xattr.h" 48 #include "acl.h" 49 #include "truncate.h" 50 51 #include <trace/events/ext4.h> 52 53 static void ext4_journalled_zero_new_buffers(handle_t *handle, 54 struct inode *inode, 55 struct folio *folio, 56 unsigned from, unsigned to); 57 58 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 59 struct ext4_inode_info *ei) 60 { 61 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 62 __u32 csum; 63 __u16 dummy_csum = 0; 64 int offset = offsetof(struct ext4_inode, i_checksum_lo); 65 unsigned int csum_size = sizeof(dummy_csum); 66 67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 68 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 69 offset += csum_size; 70 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 71 EXT4_GOOD_OLD_INODE_SIZE - offset); 72 73 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 74 offset = offsetof(struct ext4_inode, i_checksum_hi); 75 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 76 EXT4_GOOD_OLD_INODE_SIZE, 77 offset - EXT4_GOOD_OLD_INODE_SIZE); 78 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 79 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 80 csum_size); 81 offset += csum_size; 82 } 83 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 84 EXT4_INODE_SIZE(inode->i_sb) - offset); 85 } 86 87 return csum; 88 } 89 90 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 91 struct ext4_inode_info *ei) 92 { 93 __u32 provided, calculated; 94 95 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 96 cpu_to_le32(EXT4_OS_LINUX) || 97 !ext4_has_feature_metadata_csum(inode->i_sb)) 98 return 1; 99 100 provided = le16_to_cpu(raw->i_checksum_lo); 101 calculated = ext4_inode_csum(inode, raw, ei); 102 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 103 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 104 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 105 else 106 calculated &= 0xFFFF; 107 108 return provided == calculated; 109 } 110 111 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 112 struct ext4_inode_info *ei) 113 { 114 __u32 csum; 115 116 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 117 cpu_to_le32(EXT4_OS_LINUX) || 118 !ext4_has_feature_metadata_csum(inode->i_sb)) 119 return; 120 121 csum = ext4_inode_csum(inode, raw, ei); 122 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 123 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 124 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 125 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 126 } 127 128 static inline int ext4_begin_ordered_truncate(struct inode *inode, 129 loff_t new_size) 130 { 131 trace_ext4_begin_ordered_truncate(inode, new_size); 132 /* 133 * If jinode is zero, then we never opened the file for 134 * writing, so there's no need to call 135 * jbd2_journal_begin_ordered_truncate() since there's no 136 * outstanding writes we need to flush. 137 */ 138 if (!EXT4_I(inode)->jinode) 139 return 0; 140 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 141 EXT4_I(inode)->jinode, 142 new_size); 143 } 144 145 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 146 int pextents); 147 148 /* 149 * Test whether an inode is a fast symlink. 150 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 151 */ 152 int ext4_inode_is_fast_symlink(struct inode *inode) 153 { 154 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 155 int ea_blocks = EXT4_I(inode)->i_file_acl ? 156 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 157 158 if (ext4_has_inline_data(inode)) 159 return 0; 160 161 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 162 } 163 return S_ISLNK(inode->i_mode) && inode->i_size && 164 (inode->i_size < EXT4_N_BLOCKS * 4); 165 } 166 167 /* 168 * Called at the last iput() if i_nlink is zero. 169 */ 170 void ext4_evict_inode(struct inode *inode) 171 { 172 handle_t *handle; 173 int err; 174 /* 175 * Credits for final inode cleanup and freeing: 176 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 177 * (xattr block freeing), bitmap, group descriptor (inode freeing) 178 */ 179 int extra_credits = 6; 180 struct ext4_xattr_inode_array *ea_inode_array = NULL; 181 bool freeze_protected = false; 182 183 trace_ext4_evict_inode(inode); 184 185 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL) 186 ext4_evict_ea_inode(inode); 187 if (inode->i_nlink) { 188 truncate_inode_pages_final(&inode->i_data); 189 190 goto no_delete; 191 } 192 193 if (is_bad_inode(inode)) 194 goto no_delete; 195 dquot_initialize(inode); 196 197 if (ext4_should_order_data(inode)) 198 ext4_begin_ordered_truncate(inode, 0); 199 truncate_inode_pages_final(&inode->i_data); 200 201 /* 202 * For inodes with journalled data, transaction commit could have 203 * dirtied the inode. And for inodes with dioread_nolock, unwritten 204 * extents converting worker could merge extents and also have dirtied 205 * the inode. Flush worker is ignoring it because of I_FREEING flag but 206 * we still need to remove the inode from the writeback lists. 207 */ 208 if (!list_empty_careful(&inode->i_io_list)) 209 inode_io_list_del(inode); 210 211 /* 212 * Protect us against freezing - iput() caller didn't have to have any 213 * protection against it. When we are in a running transaction though, 214 * we are already protected against freezing and we cannot grab further 215 * protection due to lock ordering constraints. 216 */ 217 if (!ext4_journal_current_handle()) { 218 sb_start_intwrite(inode->i_sb); 219 freeze_protected = true; 220 } 221 222 if (!IS_NOQUOTA(inode)) 223 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 224 225 /* 226 * Block bitmap, group descriptor, and inode are accounted in both 227 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 228 */ 229 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 230 ext4_blocks_for_truncate(inode) + extra_credits - 3); 231 if (IS_ERR(handle)) { 232 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 233 /* 234 * If we're going to skip the normal cleanup, we still need to 235 * make sure that the in-core orphan linked list is properly 236 * cleaned up. 237 */ 238 ext4_orphan_del(NULL, inode); 239 if (freeze_protected) 240 sb_end_intwrite(inode->i_sb); 241 goto no_delete; 242 } 243 244 if (IS_SYNC(inode)) 245 ext4_handle_sync(handle); 246 247 /* 248 * Set inode->i_size to 0 before calling ext4_truncate(). We need 249 * special handling of symlinks here because i_size is used to 250 * determine whether ext4_inode_info->i_data contains symlink data or 251 * block mappings. Setting i_size to 0 will remove its fast symlink 252 * status. Erase i_data so that it becomes a valid empty block map. 253 */ 254 if (ext4_inode_is_fast_symlink(inode)) 255 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 256 inode->i_size = 0; 257 err = ext4_mark_inode_dirty(handle, inode); 258 if (err) { 259 ext4_warning(inode->i_sb, 260 "couldn't mark inode dirty (err %d)", err); 261 goto stop_handle; 262 } 263 if (inode->i_blocks) { 264 err = ext4_truncate(inode); 265 if (err) { 266 ext4_error_err(inode->i_sb, -err, 267 "couldn't truncate inode %lu (err %d)", 268 inode->i_ino, err); 269 goto stop_handle; 270 } 271 } 272 273 /* Remove xattr references. */ 274 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 275 extra_credits); 276 if (err) { 277 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 278 stop_handle: 279 ext4_journal_stop(handle); 280 ext4_orphan_del(NULL, inode); 281 if (freeze_protected) 282 sb_end_intwrite(inode->i_sb); 283 ext4_xattr_inode_array_free(ea_inode_array); 284 goto no_delete; 285 } 286 287 /* 288 * Kill off the orphan record which ext4_truncate created. 289 * AKPM: I think this can be inside the above `if'. 290 * Note that ext4_orphan_del() has to be able to cope with the 291 * deletion of a non-existent orphan - this is because we don't 292 * know if ext4_truncate() actually created an orphan record. 293 * (Well, we could do this if we need to, but heck - it works) 294 */ 295 ext4_orphan_del(handle, inode); 296 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 297 298 /* 299 * One subtle ordering requirement: if anything has gone wrong 300 * (transaction abort, IO errors, whatever), then we can still 301 * do these next steps (the fs will already have been marked as 302 * having errors), but we can't free the inode if the mark_dirty 303 * fails. 304 */ 305 if (ext4_mark_inode_dirty(handle, inode)) 306 /* If that failed, just do the required in-core inode clear. */ 307 ext4_clear_inode(inode); 308 else 309 ext4_free_inode(handle, inode); 310 ext4_journal_stop(handle); 311 if (freeze_protected) 312 sb_end_intwrite(inode->i_sb); 313 ext4_xattr_inode_array_free(ea_inode_array); 314 return; 315 no_delete: 316 /* 317 * Check out some where else accidentally dirty the evicting inode, 318 * which may probably cause inode use-after-free issues later. 319 */ 320 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list)); 321 322 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 323 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL); 324 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 325 } 326 327 #ifdef CONFIG_QUOTA 328 qsize_t *ext4_get_reserved_space(struct inode *inode) 329 { 330 return &EXT4_I(inode)->i_reserved_quota; 331 } 332 #endif 333 334 /* 335 * Called with i_data_sem down, which is important since we can call 336 * ext4_discard_preallocations() from here. 337 */ 338 void ext4_da_update_reserve_space(struct inode *inode, 339 int used, int quota_claim) 340 { 341 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 342 struct ext4_inode_info *ei = EXT4_I(inode); 343 344 spin_lock(&ei->i_block_reservation_lock); 345 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 346 if (unlikely(used > ei->i_reserved_data_blocks)) { 347 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 348 "with only %d reserved data blocks", 349 __func__, inode->i_ino, used, 350 ei->i_reserved_data_blocks); 351 WARN_ON(1); 352 used = ei->i_reserved_data_blocks; 353 } 354 355 /* Update per-inode reservations */ 356 ei->i_reserved_data_blocks -= used; 357 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 358 359 spin_unlock(&ei->i_block_reservation_lock); 360 361 /* Update quota subsystem for data blocks */ 362 if (quota_claim) 363 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 364 else { 365 /* 366 * We did fallocate with an offset that is already delayed 367 * allocated. So on delayed allocated writeback we should 368 * not re-claim the quota for fallocated blocks. 369 */ 370 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 371 } 372 373 /* 374 * If we have done all the pending block allocations and if 375 * there aren't any writers on the inode, we can discard the 376 * inode's preallocations. 377 */ 378 if ((ei->i_reserved_data_blocks == 0) && 379 !inode_is_open_for_write(inode)) 380 ext4_discard_preallocations(inode); 381 } 382 383 static int __check_block_validity(struct inode *inode, const char *func, 384 unsigned int line, 385 struct ext4_map_blocks *map) 386 { 387 if (ext4_has_feature_journal(inode->i_sb) && 388 (inode->i_ino == 389 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 390 return 0; 391 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 392 ext4_error_inode(inode, func, line, map->m_pblk, 393 "lblock %lu mapped to illegal pblock %llu " 394 "(length %d)", (unsigned long) map->m_lblk, 395 map->m_pblk, map->m_len); 396 return -EFSCORRUPTED; 397 } 398 return 0; 399 } 400 401 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 402 ext4_lblk_t len) 403 { 404 int ret; 405 406 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 407 return fscrypt_zeroout_range(inode, lblk, pblk, len); 408 409 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 410 if (ret > 0) 411 ret = 0; 412 413 return ret; 414 } 415 416 #define check_block_validity(inode, map) \ 417 __check_block_validity((inode), __func__, __LINE__, (map)) 418 419 #ifdef ES_AGGRESSIVE_TEST 420 static void ext4_map_blocks_es_recheck(handle_t *handle, 421 struct inode *inode, 422 struct ext4_map_blocks *es_map, 423 struct ext4_map_blocks *map, 424 int flags) 425 { 426 int retval; 427 428 map->m_flags = 0; 429 /* 430 * There is a race window that the result is not the same. 431 * e.g. xfstests #223 when dioread_nolock enables. The reason 432 * is that we lookup a block mapping in extent status tree with 433 * out taking i_data_sem. So at the time the unwritten extent 434 * could be converted. 435 */ 436 down_read(&EXT4_I(inode)->i_data_sem); 437 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 438 retval = ext4_ext_map_blocks(handle, inode, map, 0); 439 } else { 440 retval = ext4_ind_map_blocks(handle, inode, map, 0); 441 } 442 up_read((&EXT4_I(inode)->i_data_sem)); 443 444 /* 445 * We don't check m_len because extent will be collpased in status 446 * tree. So the m_len might not equal. 447 */ 448 if (es_map->m_lblk != map->m_lblk || 449 es_map->m_flags != map->m_flags || 450 es_map->m_pblk != map->m_pblk) { 451 printk("ES cache assertion failed for inode: %lu " 452 "es_cached ex [%d/%d/%llu/%x] != " 453 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 454 inode->i_ino, es_map->m_lblk, es_map->m_len, 455 es_map->m_pblk, es_map->m_flags, map->m_lblk, 456 map->m_len, map->m_pblk, map->m_flags, 457 retval, flags); 458 } 459 } 460 #endif /* ES_AGGRESSIVE_TEST */ 461 462 static int ext4_map_query_blocks(handle_t *handle, struct inode *inode, 463 struct ext4_map_blocks *map) 464 { 465 unsigned int status; 466 int retval; 467 468 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 469 retval = ext4_ext_map_blocks(handle, inode, map, 0); 470 else 471 retval = ext4_ind_map_blocks(handle, inode, map, 0); 472 473 if (retval <= 0) 474 return retval; 475 476 if (unlikely(retval != map->m_len)) { 477 ext4_warning(inode->i_sb, 478 "ES len assertion failed for inode " 479 "%lu: retval %d != map->m_len %d", 480 inode->i_ino, retval, map->m_len); 481 WARN_ON(1); 482 } 483 484 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 485 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 486 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 487 map->m_pblk, status, false); 488 return retval; 489 } 490 491 static int ext4_map_create_blocks(handle_t *handle, struct inode *inode, 492 struct ext4_map_blocks *map, int flags) 493 { 494 struct extent_status es; 495 unsigned int status; 496 int err, retval = 0; 497 498 /* 499 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE 500 * indicates that the blocks and quotas has already been 501 * checked when the data was copied into the page cache. 502 */ 503 if (map->m_flags & EXT4_MAP_DELAYED) 504 flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 505 506 /* 507 * Here we clear m_flags because after allocating an new extent, 508 * it will be set again. 509 */ 510 map->m_flags &= ~EXT4_MAP_FLAGS; 511 512 /* 513 * We need to check for EXT4 here because migrate could have 514 * changed the inode type in between. 515 */ 516 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 517 retval = ext4_ext_map_blocks(handle, inode, map, flags); 518 } else { 519 retval = ext4_ind_map_blocks(handle, inode, map, flags); 520 521 /* 522 * We allocated new blocks which will result in i_data's 523 * format changing. Force the migrate to fail by clearing 524 * migrate flags. 525 */ 526 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) 527 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 528 } 529 if (retval <= 0) 530 return retval; 531 532 if (unlikely(retval != map->m_len)) { 533 ext4_warning(inode->i_sb, 534 "ES len assertion failed for inode %lu: " 535 "retval %d != map->m_len %d", 536 inode->i_ino, retval, map->m_len); 537 WARN_ON(1); 538 } 539 540 /* 541 * We have to zeroout blocks before inserting them into extent 542 * status tree. Otherwise someone could look them up there and 543 * use them before they are really zeroed. We also have to 544 * unmap metadata before zeroing as otherwise writeback can 545 * overwrite zeros with stale data from block device. 546 */ 547 if (flags & EXT4_GET_BLOCKS_ZERO && 548 map->m_flags & EXT4_MAP_MAPPED && map->m_flags & EXT4_MAP_NEW) { 549 err = ext4_issue_zeroout(inode, map->m_lblk, map->m_pblk, 550 map->m_len); 551 if (err) 552 return err; 553 } 554 555 /* 556 * If the extent has been zeroed out, we don't need to update 557 * extent status tree. 558 */ 559 if (flags & EXT4_GET_BLOCKS_PRE_IO && 560 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 561 if (ext4_es_is_written(&es)) 562 return retval; 563 } 564 565 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 566 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 567 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, map->m_pblk, 568 status, flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE); 569 570 return retval; 571 } 572 573 /* 574 * The ext4_map_blocks() function tries to look up the requested blocks, 575 * and returns if the blocks are already mapped. 576 * 577 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 578 * and store the allocated blocks in the result buffer head and mark it 579 * mapped. 580 * 581 * If file type is extents based, it will call ext4_ext_map_blocks(), 582 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 583 * based files 584 * 585 * On success, it returns the number of blocks being mapped or allocated. 586 * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are 587 * pre-allocated and unwritten, the resulting @map is marked as unwritten. 588 * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped. 589 * 590 * It returns 0 if plain look up failed (blocks have not been allocated), in 591 * that case, @map is returned as unmapped but we still do fill map->m_len to 592 * indicate the length of a hole starting at map->m_lblk. 593 * 594 * It returns the error in case of allocation failure. 595 */ 596 int ext4_map_blocks(handle_t *handle, struct inode *inode, 597 struct ext4_map_blocks *map, int flags) 598 { 599 struct extent_status es; 600 int retval; 601 int ret = 0; 602 #ifdef ES_AGGRESSIVE_TEST 603 struct ext4_map_blocks orig_map; 604 605 memcpy(&orig_map, map, sizeof(*map)); 606 #endif 607 608 map->m_flags = 0; 609 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 610 flags, map->m_len, (unsigned long) map->m_lblk); 611 612 /* 613 * ext4_map_blocks returns an int, and m_len is an unsigned int 614 */ 615 if (unlikely(map->m_len > INT_MAX)) 616 map->m_len = INT_MAX; 617 618 /* We can handle the block number less than EXT_MAX_BLOCKS */ 619 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 620 return -EFSCORRUPTED; 621 622 /* Lookup extent status tree firstly */ 623 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && 624 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 625 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 626 map->m_pblk = ext4_es_pblock(&es) + 627 map->m_lblk - es.es_lblk; 628 map->m_flags |= ext4_es_is_written(&es) ? 629 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 630 retval = es.es_len - (map->m_lblk - es.es_lblk); 631 if (retval > map->m_len) 632 retval = map->m_len; 633 map->m_len = retval; 634 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 635 map->m_pblk = 0; 636 map->m_flags |= ext4_es_is_delayed(&es) ? 637 EXT4_MAP_DELAYED : 0; 638 retval = es.es_len - (map->m_lblk - es.es_lblk); 639 if (retval > map->m_len) 640 retval = map->m_len; 641 map->m_len = retval; 642 retval = 0; 643 } else { 644 BUG(); 645 } 646 647 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 648 return retval; 649 #ifdef ES_AGGRESSIVE_TEST 650 ext4_map_blocks_es_recheck(handle, inode, map, 651 &orig_map, flags); 652 #endif 653 goto found; 654 } 655 /* 656 * In the query cache no-wait mode, nothing we can do more if we 657 * cannot find extent in the cache. 658 */ 659 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 660 return 0; 661 662 /* 663 * Try to see if we can get the block without requesting a new 664 * file system block. 665 */ 666 down_read(&EXT4_I(inode)->i_data_sem); 667 retval = ext4_map_query_blocks(handle, inode, map); 668 up_read((&EXT4_I(inode)->i_data_sem)); 669 670 found: 671 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 672 ret = check_block_validity(inode, map); 673 if (ret != 0) 674 return ret; 675 } 676 677 /* If it is only a block(s) look up */ 678 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 679 return retval; 680 681 /* 682 * Returns if the blocks have already allocated 683 * 684 * Note that if blocks have been preallocated 685 * ext4_ext_map_blocks() returns with buffer head unmapped 686 */ 687 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 688 /* 689 * If we need to convert extent to unwritten 690 * we continue and do the actual work in 691 * ext4_ext_map_blocks() 692 */ 693 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 694 return retval; 695 696 /* 697 * New blocks allocate and/or writing to unwritten extent 698 * will possibly result in updating i_data, so we take 699 * the write lock of i_data_sem, and call get_block() 700 * with create == 1 flag. 701 */ 702 down_write(&EXT4_I(inode)->i_data_sem); 703 retval = ext4_map_create_blocks(handle, inode, map, flags); 704 up_write((&EXT4_I(inode)->i_data_sem)); 705 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 706 ret = check_block_validity(inode, map); 707 if (ret != 0) 708 return ret; 709 710 /* 711 * Inodes with freshly allocated blocks where contents will be 712 * visible after transaction commit must be on transaction's 713 * ordered data list. 714 */ 715 if (map->m_flags & EXT4_MAP_NEW && 716 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 717 !(flags & EXT4_GET_BLOCKS_ZERO) && 718 !ext4_is_quota_file(inode) && 719 ext4_should_order_data(inode)) { 720 loff_t start_byte = 721 (loff_t)map->m_lblk << inode->i_blkbits; 722 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 723 724 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 725 ret = ext4_jbd2_inode_add_wait(handle, inode, 726 start_byte, length); 727 else 728 ret = ext4_jbd2_inode_add_write(handle, inode, 729 start_byte, length); 730 if (ret) 731 return ret; 732 } 733 } 734 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN || 735 map->m_flags & EXT4_MAP_MAPPED)) 736 ext4_fc_track_range(handle, inode, map->m_lblk, 737 map->m_lblk + map->m_len - 1); 738 if (retval < 0) 739 ext_debug(inode, "failed with err %d\n", retval); 740 return retval; 741 } 742 743 /* 744 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 745 * we have to be careful as someone else may be manipulating b_state as well. 746 */ 747 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 748 { 749 unsigned long old_state; 750 unsigned long new_state; 751 752 flags &= EXT4_MAP_FLAGS; 753 754 /* Dummy buffer_head? Set non-atomically. */ 755 if (!bh->b_folio) { 756 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 757 return; 758 } 759 /* 760 * Someone else may be modifying b_state. Be careful! This is ugly but 761 * once we get rid of using bh as a container for mapping information 762 * to pass to / from get_block functions, this can go away. 763 */ 764 old_state = READ_ONCE(bh->b_state); 765 do { 766 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 767 } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state))); 768 } 769 770 static int _ext4_get_block(struct inode *inode, sector_t iblock, 771 struct buffer_head *bh, int flags) 772 { 773 struct ext4_map_blocks map; 774 int ret = 0; 775 776 if (ext4_has_inline_data(inode)) 777 return -ERANGE; 778 779 map.m_lblk = iblock; 780 map.m_len = bh->b_size >> inode->i_blkbits; 781 782 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 783 flags); 784 if (ret > 0) { 785 map_bh(bh, inode->i_sb, map.m_pblk); 786 ext4_update_bh_state(bh, map.m_flags); 787 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 788 ret = 0; 789 } else if (ret == 0) { 790 /* hole case, need to fill in bh->b_size */ 791 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 792 } 793 return ret; 794 } 795 796 int ext4_get_block(struct inode *inode, sector_t iblock, 797 struct buffer_head *bh, int create) 798 { 799 return _ext4_get_block(inode, iblock, bh, 800 create ? EXT4_GET_BLOCKS_CREATE : 0); 801 } 802 803 /* 804 * Get block function used when preparing for buffered write if we require 805 * creating an unwritten extent if blocks haven't been allocated. The extent 806 * will be converted to written after the IO is complete. 807 */ 808 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 809 struct buffer_head *bh_result, int create) 810 { 811 int ret = 0; 812 813 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 814 inode->i_ino, create); 815 ret = _ext4_get_block(inode, iblock, bh_result, 816 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT); 817 818 /* 819 * If the buffer is marked unwritten, mark it as new to make sure it is 820 * zeroed out correctly in case of partial writes. Otherwise, there is 821 * a chance of stale data getting exposed. 822 */ 823 if (ret == 0 && buffer_unwritten(bh_result)) 824 set_buffer_new(bh_result); 825 826 return ret; 827 } 828 829 /* Maximum number of blocks we map for direct IO at once. */ 830 #define DIO_MAX_BLOCKS 4096 831 832 /* 833 * `handle' can be NULL if create is zero 834 */ 835 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 836 ext4_lblk_t block, int map_flags) 837 { 838 struct ext4_map_blocks map; 839 struct buffer_head *bh; 840 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 841 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT; 842 int err; 843 844 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 845 || handle != NULL || create == 0); 846 ASSERT(create == 0 || !nowait); 847 848 map.m_lblk = block; 849 map.m_len = 1; 850 err = ext4_map_blocks(handle, inode, &map, map_flags); 851 852 if (err == 0) 853 return create ? ERR_PTR(-ENOSPC) : NULL; 854 if (err < 0) 855 return ERR_PTR(err); 856 857 if (nowait) 858 return sb_find_get_block(inode->i_sb, map.m_pblk); 859 860 /* 861 * Since bh could introduce extra ref count such as referred by 862 * journal_head etc. Try to avoid using __GFP_MOVABLE here 863 * as it may fail the migration when journal_head remains. 864 */ 865 bh = getblk_unmovable(inode->i_sb->s_bdev, map.m_pblk, 866 inode->i_sb->s_blocksize); 867 868 if (unlikely(!bh)) 869 return ERR_PTR(-ENOMEM); 870 if (map.m_flags & EXT4_MAP_NEW) { 871 ASSERT(create != 0); 872 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 873 || (handle != NULL)); 874 875 /* 876 * Now that we do not always journal data, we should 877 * keep in mind whether this should always journal the 878 * new buffer as metadata. For now, regular file 879 * writes use ext4_get_block instead, so it's not a 880 * problem. 881 */ 882 lock_buffer(bh); 883 BUFFER_TRACE(bh, "call get_create_access"); 884 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 885 EXT4_JTR_NONE); 886 if (unlikely(err)) { 887 unlock_buffer(bh); 888 goto errout; 889 } 890 if (!buffer_uptodate(bh)) { 891 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 892 set_buffer_uptodate(bh); 893 } 894 unlock_buffer(bh); 895 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 896 err = ext4_handle_dirty_metadata(handle, inode, bh); 897 if (unlikely(err)) 898 goto errout; 899 } else 900 BUFFER_TRACE(bh, "not a new buffer"); 901 return bh; 902 errout: 903 brelse(bh); 904 return ERR_PTR(err); 905 } 906 907 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 908 ext4_lblk_t block, int map_flags) 909 { 910 struct buffer_head *bh; 911 int ret; 912 913 bh = ext4_getblk(handle, inode, block, map_flags); 914 if (IS_ERR(bh)) 915 return bh; 916 if (!bh || ext4_buffer_uptodate(bh)) 917 return bh; 918 919 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 920 if (ret) { 921 put_bh(bh); 922 return ERR_PTR(ret); 923 } 924 return bh; 925 } 926 927 /* Read a contiguous batch of blocks. */ 928 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 929 bool wait, struct buffer_head **bhs) 930 { 931 int i, err; 932 933 for (i = 0; i < bh_count; i++) { 934 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 935 if (IS_ERR(bhs[i])) { 936 err = PTR_ERR(bhs[i]); 937 bh_count = i; 938 goto out_brelse; 939 } 940 } 941 942 for (i = 0; i < bh_count; i++) 943 /* Note that NULL bhs[i] is valid because of holes. */ 944 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 945 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 946 947 if (!wait) 948 return 0; 949 950 for (i = 0; i < bh_count; i++) 951 if (bhs[i]) 952 wait_on_buffer(bhs[i]); 953 954 for (i = 0; i < bh_count; i++) { 955 if (bhs[i] && !buffer_uptodate(bhs[i])) { 956 err = -EIO; 957 goto out_brelse; 958 } 959 } 960 return 0; 961 962 out_brelse: 963 for (i = 0; i < bh_count; i++) { 964 brelse(bhs[i]); 965 bhs[i] = NULL; 966 } 967 return err; 968 } 969 970 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, 971 struct buffer_head *head, 972 unsigned from, 973 unsigned to, 974 int *partial, 975 int (*fn)(handle_t *handle, struct inode *inode, 976 struct buffer_head *bh)) 977 { 978 struct buffer_head *bh; 979 unsigned block_start, block_end; 980 unsigned blocksize = head->b_size; 981 int err, ret = 0; 982 struct buffer_head *next; 983 984 for (bh = head, block_start = 0; 985 ret == 0 && (bh != head || !block_start); 986 block_start = block_end, bh = next) { 987 next = bh->b_this_page; 988 block_end = block_start + blocksize; 989 if (block_end <= from || block_start >= to) { 990 if (partial && !buffer_uptodate(bh)) 991 *partial = 1; 992 continue; 993 } 994 err = (*fn)(handle, inode, bh); 995 if (!ret) 996 ret = err; 997 } 998 return ret; 999 } 1000 1001 /* 1002 * Helper for handling dirtying of journalled data. We also mark the folio as 1003 * dirty so that writeback code knows about this page (and inode) contains 1004 * dirty data. ext4_writepages() then commits appropriate transaction to 1005 * make data stable. 1006 */ 1007 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh) 1008 { 1009 folio_mark_dirty(bh->b_folio); 1010 return ext4_handle_dirty_metadata(handle, NULL, bh); 1011 } 1012 1013 int do_journal_get_write_access(handle_t *handle, struct inode *inode, 1014 struct buffer_head *bh) 1015 { 1016 if (!buffer_mapped(bh) || buffer_freed(bh)) 1017 return 0; 1018 BUFFER_TRACE(bh, "get write access"); 1019 return ext4_journal_get_write_access(handle, inode->i_sb, bh, 1020 EXT4_JTR_NONE); 1021 } 1022 1023 int ext4_block_write_begin(handle_t *handle, struct folio *folio, 1024 loff_t pos, unsigned len, 1025 get_block_t *get_block) 1026 { 1027 unsigned from = pos & (PAGE_SIZE - 1); 1028 unsigned to = from + len; 1029 struct inode *inode = folio->mapping->host; 1030 unsigned block_start, block_end; 1031 sector_t block; 1032 int err = 0; 1033 unsigned blocksize = inode->i_sb->s_blocksize; 1034 unsigned bbits; 1035 struct buffer_head *bh, *head, *wait[2]; 1036 int nr_wait = 0; 1037 int i; 1038 bool should_journal_data = ext4_should_journal_data(inode); 1039 1040 BUG_ON(!folio_test_locked(folio)); 1041 BUG_ON(from > PAGE_SIZE); 1042 BUG_ON(to > PAGE_SIZE); 1043 BUG_ON(from > to); 1044 1045 head = folio_buffers(folio); 1046 if (!head) 1047 head = create_empty_buffers(folio, blocksize, 0); 1048 bbits = ilog2(blocksize); 1049 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 1050 1051 for (bh = head, block_start = 0; bh != head || !block_start; 1052 block++, block_start = block_end, bh = bh->b_this_page) { 1053 block_end = block_start + blocksize; 1054 if (block_end <= from || block_start >= to) { 1055 if (folio_test_uptodate(folio)) { 1056 set_buffer_uptodate(bh); 1057 } 1058 continue; 1059 } 1060 if (buffer_new(bh)) 1061 clear_buffer_new(bh); 1062 if (!buffer_mapped(bh)) { 1063 WARN_ON(bh->b_size != blocksize); 1064 err = get_block(inode, block, bh, 1); 1065 if (err) 1066 break; 1067 if (buffer_new(bh)) { 1068 /* 1069 * We may be zeroing partial buffers or all new 1070 * buffers in case of failure. Prepare JBD2 for 1071 * that. 1072 */ 1073 if (should_journal_data) 1074 do_journal_get_write_access(handle, 1075 inode, bh); 1076 if (folio_test_uptodate(folio)) { 1077 /* 1078 * Unlike __block_write_begin() we leave 1079 * dirtying of new uptodate buffers to 1080 * ->write_end() time or 1081 * folio_zero_new_buffers(). 1082 */ 1083 set_buffer_uptodate(bh); 1084 continue; 1085 } 1086 if (block_end > to || block_start < from) 1087 folio_zero_segments(folio, to, 1088 block_end, 1089 block_start, from); 1090 continue; 1091 } 1092 } 1093 if (folio_test_uptodate(folio)) { 1094 set_buffer_uptodate(bh); 1095 continue; 1096 } 1097 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1098 !buffer_unwritten(bh) && 1099 (block_start < from || block_end > to)) { 1100 ext4_read_bh_lock(bh, 0, false); 1101 wait[nr_wait++] = bh; 1102 } 1103 } 1104 /* 1105 * If we issued read requests, let them complete. 1106 */ 1107 for (i = 0; i < nr_wait; i++) { 1108 wait_on_buffer(wait[i]); 1109 if (!buffer_uptodate(wait[i])) 1110 err = -EIO; 1111 } 1112 if (unlikely(err)) { 1113 if (should_journal_data) 1114 ext4_journalled_zero_new_buffers(handle, inode, folio, 1115 from, to); 1116 else 1117 folio_zero_new_buffers(folio, from, to); 1118 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1119 for (i = 0; i < nr_wait; i++) { 1120 int err2; 1121 1122 err2 = fscrypt_decrypt_pagecache_blocks(folio, 1123 blocksize, bh_offset(wait[i])); 1124 if (err2) { 1125 clear_buffer_uptodate(wait[i]); 1126 err = err2; 1127 } 1128 } 1129 } 1130 1131 return err; 1132 } 1133 1134 /* 1135 * To preserve ordering, it is essential that the hole instantiation and 1136 * the data write be encapsulated in a single transaction. We cannot 1137 * close off a transaction and start a new one between the ext4_get_block() 1138 * and the ext4_write_end(). So doing the jbd2_journal_start at the start of 1139 * ext4_write_begin() is the right place. 1140 */ 1141 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1142 loff_t pos, unsigned len, 1143 struct folio **foliop, void **fsdata) 1144 { 1145 struct inode *inode = mapping->host; 1146 int ret, needed_blocks; 1147 handle_t *handle; 1148 int retries = 0; 1149 struct folio *folio; 1150 pgoff_t index; 1151 unsigned from, to; 1152 1153 ret = ext4_emergency_state(inode->i_sb); 1154 if (unlikely(ret)) 1155 return ret; 1156 1157 trace_ext4_write_begin(inode, pos, len); 1158 /* 1159 * Reserve one block more for addition to orphan list in case 1160 * we allocate blocks but write fails for some reason 1161 */ 1162 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1163 index = pos >> PAGE_SHIFT; 1164 from = pos & (PAGE_SIZE - 1); 1165 to = from + len; 1166 1167 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1168 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1169 foliop); 1170 if (ret < 0) 1171 return ret; 1172 if (ret == 1) 1173 return 0; 1174 } 1175 1176 /* 1177 * __filemap_get_folio() can take a long time if the 1178 * system is thrashing due to memory pressure, or if the folio 1179 * is being written back. So grab it first before we start 1180 * the transaction handle. This also allows us to allocate 1181 * the folio (if needed) without using GFP_NOFS. 1182 */ 1183 retry_grab: 1184 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 1185 mapping_gfp_mask(mapping)); 1186 if (IS_ERR(folio)) 1187 return PTR_ERR(folio); 1188 /* 1189 * The same as page allocation, we prealloc buffer heads before 1190 * starting the handle. 1191 */ 1192 if (!folio_buffers(folio)) 1193 create_empty_buffers(folio, inode->i_sb->s_blocksize, 0); 1194 1195 folio_unlock(folio); 1196 1197 retry_journal: 1198 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1199 if (IS_ERR(handle)) { 1200 folio_put(folio); 1201 return PTR_ERR(handle); 1202 } 1203 1204 folio_lock(folio); 1205 if (folio->mapping != mapping) { 1206 /* The folio got truncated from under us */ 1207 folio_unlock(folio); 1208 folio_put(folio); 1209 ext4_journal_stop(handle); 1210 goto retry_grab; 1211 } 1212 /* In case writeback began while the folio was unlocked */ 1213 folio_wait_stable(folio); 1214 1215 if (ext4_should_dioread_nolock(inode)) 1216 ret = ext4_block_write_begin(handle, folio, pos, len, 1217 ext4_get_block_unwritten); 1218 else 1219 ret = ext4_block_write_begin(handle, folio, pos, len, 1220 ext4_get_block); 1221 if (!ret && ext4_should_journal_data(inode)) { 1222 ret = ext4_walk_page_buffers(handle, inode, 1223 folio_buffers(folio), from, to, 1224 NULL, do_journal_get_write_access); 1225 } 1226 1227 if (ret) { 1228 bool extended = (pos + len > inode->i_size) && 1229 !ext4_verity_in_progress(inode); 1230 1231 folio_unlock(folio); 1232 /* 1233 * ext4_block_write_begin may have instantiated a few blocks 1234 * outside i_size. Trim these off again. Don't need 1235 * i_size_read because we hold i_rwsem. 1236 * 1237 * Add inode to orphan list in case we crash before 1238 * truncate finishes 1239 */ 1240 if (extended && ext4_can_truncate(inode)) 1241 ext4_orphan_add(handle, inode); 1242 1243 ext4_journal_stop(handle); 1244 if (extended) { 1245 ext4_truncate_failed_write(inode); 1246 /* 1247 * If truncate failed early the inode might 1248 * still be on the orphan list; we need to 1249 * make sure the inode is removed from the 1250 * orphan list in that case. 1251 */ 1252 if (inode->i_nlink) 1253 ext4_orphan_del(NULL, inode); 1254 } 1255 1256 if (ret == -ENOSPC && 1257 ext4_should_retry_alloc(inode->i_sb, &retries)) 1258 goto retry_journal; 1259 folio_put(folio); 1260 return ret; 1261 } 1262 *foliop = folio; 1263 return ret; 1264 } 1265 1266 /* For write_end() in data=journal mode */ 1267 static int write_end_fn(handle_t *handle, struct inode *inode, 1268 struct buffer_head *bh) 1269 { 1270 int ret; 1271 if (!buffer_mapped(bh) || buffer_freed(bh)) 1272 return 0; 1273 set_buffer_uptodate(bh); 1274 ret = ext4_dirty_journalled_data(handle, bh); 1275 clear_buffer_meta(bh); 1276 clear_buffer_prio(bh); 1277 return ret; 1278 } 1279 1280 /* 1281 * We need to pick up the new inode size which generic_commit_write gave us 1282 * `file' can be NULL - eg, when called from page_symlink(). 1283 * 1284 * ext4 never places buffers on inode->i_mapping->i_private_list. metadata 1285 * buffers are managed internally. 1286 */ 1287 static int ext4_write_end(struct file *file, 1288 struct address_space *mapping, 1289 loff_t pos, unsigned len, unsigned copied, 1290 struct folio *folio, void *fsdata) 1291 { 1292 handle_t *handle = ext4_journal_current_handle(); 1293 struct inode *inode = mapping->host; 1294 loff_t old_size = inode->i_size; 1295 int ret = 0, ret2; 1296 int i_size_changed = 0; 1297 bool verity = ext4_verity_in_progress(inode); 1298 1299 trace_ext4_write_end(inode, pos, len, copied); 1300 1301 if (ext4_has_inline_data(inode) && 1302 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) 1303 return ext4_write_inline_data_end(inode, pos, len, copied, 1304 folio); 1305 1306 copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata); 1307 /* 1308 * it's important to update i_size while still holding folio lock: 1309 * page writeout could otherwise come in and zero beyond i_size. 1310 * 1311 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1312 * blocks are being written past EOF, so skip the i_size update. 1313 */ 1314 if (!verity) 1315 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1316 folio_unlock(folio); 1317 folio_put(folio); 1318 1319 if (old_size < pos && !verity) { 1320 pagecache_isize_extended(inode, old_size, pos); 1321 ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size); 1322 } 1323 /* 1324 * Don't mark the inode dirty under folio lock. First, it unnecessarily 1325 * makes the holding time of folio lock longer. Second, it forces lock 1326 * ordering of folio lock and transaction start for journaling 1327 * filesystems. 1328 */ 1329 if (i_size_changed) 1330 ret = ext4_mark_inode_dirty(handle, inode); 1331 1332 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1333 /* if we have allocated more blocks and copied 1334 * less. We will have blocks allocated outside 1335 * inode->i_size. So truncate them 1336 */ 1337 ext4_orphan_add(handle, inode); 1338 1339 ret2 = ext4_journal_stop(handle); 1340 if (!ret) 1341 ret = ret2; 1342 1343 if (pos + len > inode->i_size && !verity) { 1344 ext4_truncate_failed_write(inode); 1345 /* 1346 * If truncate failed early the inode might still be 1347 * on the orphan list; we need to make sure the inode 1348 * is removed from the orphan list in that case. 1349 */ 1350 if (inode->i_nlink) 1351 ext4_orphan_del(NULL, inode); 1352 } 1353 1354 return ret ? ret : copied; 1355 } 1356 1357 /* 1358 * This is a private version of folio_zero_new_buffers() which doesn't 1359 * set the buffer to be dirty, since in data=journalled mode we need 1360 * to call ext4_dirty_journalled_data() instead. 1361 */ 1362 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1363 struct inode *inode, 1364 struct folio *folio, 1365 unsigned from, unsigned to) 1366 { 1367 unsigned int block_start = 0, block_end; 1368 struct buffer_head *head, *bh; 1369 1370 bh = head = folio_buffers(folio); 1371 do { 1372 block_end = block_start + bh->b_size; 1373 if (buffer_new(bh)) { 1374 if (block_end > from && block_start < to) { 1375 if (!folio_test_uptodate(folio)) { 1376 unsigned start, size; 1377 1378 start = max(from, block_start); 1379 size = min(to, block_end) - start; 1380 1381 folio_zero_range(folio, start, size); 1382 } 1383 clear_buffer_new(bh); 1384 write_end_fn(handle, inode, bh); 1385 } 1386 } 1387 block_start = block_end; 1388 bh = bh->b_this_page; 1389 } while (bh != head); 1390 } 1391 1392 static int ext4_journalled_write_end(struct file *file, 1393 struct address_space *mapping, 1394 loff_t pos, unsigned len, unsigned copied, 1395 struct folio *folio, void *fsdata) 1396 { 1397 handle_t *handle = ext4_journal_current_handle(); 1398 struct inode *inode = mapping->host; 1399 loff_t old_size = inode->i_size; 1400 int ret = 0, ret2; 1401 int partial = 0; 1402 unsigned from, to; 1403 int size_changed = 0; 1404 bool verity = ext4_verity_in_progress(inode); 1405 1406 trace_ext4_journalled_write_end(inode, pos, len, copied); 1407 from = pos & (PAGE_SIZE - 1); 1408 to = from + len; 1409 1410 BUG_ON(!ext4_handle_valid(handle)); 1411 1412 if (ext4_has_inline_data(inode)) 1413 return ext4_write_inline_data_end(inode, pos, len, copied, 1414 folio); 1415 1416 if (unlikely(copied < len) && !folio_test_uptodate(folio)) { 1417 copied = 0; 1418 ext4_journalled_zero_new_buffers(handle, inode, folio, 1419 from, to); 1420 } else { 1421 if (unlikely(copied < len)) 1422 ext4_journalled_zero_new_buffers(handle, inode, folio, 1423 from + copied, to); 1424 ret = ext4_walk_page_buffers(handle, inode, 1425 folio_buffers(folio), 1426 from, from + copied, &partial, 1427 write_end_fn); 1428 if (!partial) 1429 folio_mark_uptodate(folio); 1430 } 1431 if (!verity) 1432 size_changed = ext4_update_inode_size(inode, pos + copied); 1433 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1434 folio_unlock(folio); 1435 folio_put(folio); 1436 1437 if (old_size < pos && !verity) { 1438 pagecache_isize_extended(inode, old_size, pos); 1439 ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size); 1440 } 1441 1442 if (size_changed) { 1443 ret2 = ext4_mark_inode_dirty(handle, inode); 1444 if (!ret) 1445 ret = ret2; 1446 } 1447 1448 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1449 /* if we have allocated more blocks and copied 1450 * less. We will have blocks allocated outside 1451 * inode->i_size. So truncate them 1452 */ 1453 ext4_orphan_add(handle, inode); 1454 1455 ret2 = ext4_journal_stop(handle); 1456 if (!ret) 1457 ret = ret2; 1458 if (pos + len > inode->i_size && !verity) { 1459 ext4_truncate_failed_write(inode); 1460 /* 1461 * If truncate failed early the inode might still be 1462 * on the orphan list; we need to make sure the inode 1463 * is removed from the orphan list in that case. 1464 */ 1465 if (inode->i_nlink) 1466 ext4_orphan_del(NULL, inode); 1467 } 1468 1469 return ret ? ret : copied; 1470 } 1471 1472 /* 1473 * Reserve space for 'nr_resv' clusters 1474 */ 1475 static int ext4_da_reserve_space(struct inode *inode, int nr_resv) 1476 { 1477 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1478 struct ext4_inode_info *ei = EXT4_I(inode); 1479 int ret; 1480 1481 /* 1482 * We will charge metadata quota at writeout time; this saves 1483 * us from metadata over-estimation, though we may go over by 1484 * a small amount in the end. Here we just reserve for data. 1485 */ 1486 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv)); 1487 if (ret) 1488 return ret; 1489 1490 spin_lock(&ei->i_block_reservation_lock); 1491 if (ext4_claim_free_clusters(sbi, nr_resv, 0)) { 1492 spin_unlock(&ei->i_block_reservation_lock); 1493 dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv)); 1494 return -ENOSPC; 1495 } 1496 ei->i_reserved_data_blocks += nr_resv; 1497 trace_ext4_da_reserve_space(inode, nr_resv); 1498 spin_unlock(&ei->i_block_reservation_lock); 1499 1500 return 0; /* success */ 1501 } 1502 1503 void ext4_da_release_space(struct inode *inode, int to_free) 1504 { 1505 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1506 struct ext4_inode_info *ei = EXT4_I(inode); 1507 1508 if (!to_free) 1509 return; /* Nothing to release, exit */ 1510 1511 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1512 1513 trace_ext4_da_release_space(inode, to_free); 1514 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1515 /* 1516 * if there aren't enough reserved blocks, then the 1517 * counter is messed up somewhere. Since this 1518 * function is called from invalidate page, it's 1519 * harmless to return without any action. 1520 */ 1521 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1522 "ino %lu, to_free %d with only %d reserved " 1523 "data blocks", inode->i_ino, to_free, 1524 ei->i_reserved_data_blocks); 1525 WARN_ON(1); 1526 to_free = ei->i_reserved_data_blocks; 1527 } 1528 ei->i_reserved_data_blocks -= to_free; 1529 1530 /* update fs dirty data blocks counter */ 1531 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1532 1533 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1534 1535 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1536 } 1537 1538 /* 1539 * Delayed allocation stuff 1540 */ 1541 1542 struct mpage_da_data { 1543 /* These are input fields for ext4_do_writepages() */ 1544 struct inode *inode; 1545 struct writeback_control *wbc; 1546 unsigned int can_map:1; /* Can writepages call map blocks? */ 1547 1548 /* These are internal state of ext4_do_writepages() */ 1549 pgoff_t first_page; /* The first page to write */ 1550 pgoff_t next_page; /* Current page to examine */ 1551 pgoff_t last_page; /* Last page to examine */ 1552 /* 1553 * Extent to map - this can be after first_page because that can be 1554 * fully mapped. We somewhat abuse m_flags to store whether the extent 1555 * is delalloc or unwritten. 1556 */ 1557 struct ext4_map_blocks map; 1558 struct ext4_io_submit io_submit; /* IO submission data */ 1559 unsigned int do_map:1; 1560 unsigned int scanned_until_end:1; 1561 unsigned int journalled_more_data:1; 1562 }; 1563 1564 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1565 bool invalidate) 1566 { 1567 unsigned nr, i; 1568 pgoff_t index, end; 1569 struct folio_batch fbatch; 1570 struct inode *inode = mpd->inode; 1571 struct address_space *mapping = inode->i_mapping; 1572 1573 /* This is necessary when next_page == 0. */ 1574 if (mpd->first_page >= mpd->next_page) 1575 return; 1576 1577 mpd->scanned_until_end = 0; 1578 index = mpd->first_page; 1579 end = mpd->next_page - 1; 1580 if (invalidate) { 1581 ext4_lblk_t start, last; 1582 start = index << (PAGE_SHIFT - inode->i_blkbits); 1583 last = end << (PAGE_SHIFT - inode->i_blkbits); 1584 1585 /* 1586 * avoid racing with extent status tree scans made by 1587 * ext4_insert_delayed_block() 1588 */ 1589 down_write(&EXT4_I(inode)->i_data_sem); 1590 ext4_es_remove_extent(inode, start, last - start + 1); 1591 up_write(&EXT4_I(inode)->i_data_sem); 1592 } 1593 1594 folio_batch_init(&fbatch); 1595 while (index <= end) { 1596 nr = filemap_get_folios(mapping, &index, end, &fbatch); 1597 if (nr == 0) 1598 break; 1599 for (i = 0; i < nr; i++) { 1600 struct folio *folio = fbatch.folios[i]; 1601 1602 if (folio->index < mpd->first_page) 1603 continue; 1604 if (folio_next_index(folio) - 1 > end) 1605 continue; 1606 BUG_ON(!folio_test_locked(folio)); 1607 BUG_ON(folio_test_writeback(folio)); 1608 if (invalidate) { 1609 if (folio_mapped(folio)) 1610 folio_clear_dirty_for_io(folio); 1611 block_invalidate_folio(folio, 0, 1612 folio_size(folio)); 1613 folio_clear_uptodate(folio); 1614 } 1615 folio_unlock(folio); 1616 } 1617 folio_batch_release(&fbatch); 1618 } 1619 } 1620 1621 static void ext4_print_free_blocks(struct inode *inode) 1622 { 1623 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1624 struct super_block *sb = inode->i_sb; 1625 struct ext4_inode_info *ei = EXT4_I(inode); 1626 1627 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1628 EXT4_C2B(EXT4_SB(inode->i_sb), 1629 ext4_count_free_clusters(sb))); 1630 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1631 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1632 (long long) EXT4_C2B(EXT4_SB(sb), 1633 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1634 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1635 (long long) EXT4_C2B(EXT4_SB(sb), 1636 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1637 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1638 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1639 ei->i_reserved_data_blocks); 1640 return; 1641 } 1642 1643 /* 1644 * Check whether the cluster containing lblk has been allocated or has 1645 * delalloc reservation. 1646 * 1647 * Returns 0 if the cluster doesn't have either, 1 if it has delalloc 1648 * reservation, 2 if it's already been allocated, negative error code on 1649 * failure. 1650 */ 1651 static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk) 1652 { 1653 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1654 int ret; 1655 1656 /* Has delalloc reservation? */ 1657 if (ext4_es_scan_clu(inode, &ext4_es_is_delayed, lblk)) 1658 return 1; 1659 1660 /* Already been allocated? */ 1661 if (ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk)) 1662 return 2; 1663 ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk)); 1664 if (ret < 0) 1665 return ret; 1666 if (ret > 0) 1667 return 2; 1668 1669 return 0; 1670 } 1671 1672 /* 1673 * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents 1674 * status tree, incrementing the reserved 1675 * cluster/block count or making pending 1676 * reservations where needed 1677 * 1678 * @inode - file containing the newly added block 1679 * @lblk - start logical block to be added 1680 * @len - length of blocks to be added 1681 * 1682 * Returns 0 on success, negative error code on failure. 1683 */ 1684 static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk, 1685 ext4_lblk_t len) 1686 { 1687 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1688 int ret; 1689 bool lclu_allocated = false; 1690 bool end_allocated = false; 1691 ext4_lblk_t resv_clu; 1692 ext4_lblk_t end = lblk + len - 1; 1693 1694 /* 1695 * If the cluster containing lblk or end is shared with a delayed, 1696 * written, or unwritten extent in a bigalloc file system, it's 1697 * already been accounted for and does not need to be reserved. 1698 * A pending reservation must be made for the cluster if it's 1699 * shared with a written or unwritten extent and doesn't already 1700 * have one. Written and unwritten extents can be purged from the 1701 * extents status tree if the system is under memory pressure, so 1702 * it's necessary to examine the extent tree if a search of the 1703 * extents status tree doesn't get a match. 1704 */ 1705 if (sbi->s_cluster_ratio == 1) { 1706 ret = ext4_da_reserve_space(inode, len); 1707 if (ret != 0) /* ENOSPC */ 1708 return ret; 1709 } else { /* bigalloc */ 1710 resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1; 1711 1712 ret = ext4_clu_alloc_state(inode, lblk); 1713 if (ret < 0) 1714 return ret; 1715 if (ret > 0) { 1716 resv_clu--; 1717 lclu_allocated = (ret == 2); 1718 } 1719 1720 if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) { 1721 ret = ext4_clu_alloc_state(inode, end); 1722 if (ret < 0) 1723 return ret; 1724 if (ret > 0) { 1725 resv_clu--; 1726 end_allocated = (ret == 2); 1727 } 1728 } 1729 1730 if (resv_clu) { 1731 ret = ext4_da_reserve_space(inode, resv_clu); 1732 if (ret != 0) /* ENOSPC */ 1733 return ret; 1734 } 1735 } 1736 1737 ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated, 1738 end_allocated); 1739 return 0; 1740 } 1741 1742 /* 1743 * Looks up the requested blocks and sets the delalloc extent map. 1744 * First try to look up for the extent entry that contains the requested 1745 * blocks in the extent status tree without i_data_sem, then try to look 1746 * up for the ondisk extent mapping with i_data_sem in read mode, 1747 * finally hold i_data_sem in write mode, looks up again and add a 1748 * delalloc extent entry if it still couldn't find any extent. Pass out 1749 * the mapped extent through @map and return 0 on success. 1750 */ 1751 static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map) 1752 { 1753 struct extent_status es; 1754 int retval; 1755 #ifdef ES_AGGRESSIVE_TEST 1756 struct ext4_map_blocks orig_map; 1757 1758 memcpy(&orig_map, map, sizeof(*map)); 1759 #endif 1760 1761 map->m_flags = 0; 1762 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1763 (unsigned long) map->m_lblk); 1764 1765 /* Lookup extent status tree firstly */ 1766 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 1767 map->m_len = min_t(unsigned int, map->m_len, 1768 es.es_len - (map->m_lblk - es.es_lblk)); 1769 1770 if (ext4_es_is_hole(&es)) 1771 goto add_delayed; 1772 1773 found: 1774 /* 1775 * Delayed extent could be allocated by fallocate. 1776 * So we need to check it. 1777 */ 1778 if (ext4_es_is_delayed(&es)) { 1779 map->m_flags |= EXT4_MAP_DELAYED; 1780 return 0; 1781 } 1782 1783 map->m_pblk = ext4_es_pblock(&es) + map->m_lblk - es.es_lblk; 1784 if (ext4_es_is_written(&es)) 1785 map->m_flags |= EXT4_MAP_MAPPED; 1786 else if (ext4_es_is_unwritten(&es)) 1787 map->m_flags |= EXT4_MAP_UNWRITTEN; 1788 else 1789 BUG(); 1790 1791 #ifdef ES_AGGRESSIVE_TEST 1792 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1793 #endif 1794 return 0; 1795 } 1796 1797 /* 1798 * Try to see if we can get the block without requesting a new 1799 * file system block. 1800 */ 1801 down_read(&EXT4_I(inode)->i_data_sem); 1802 if (ext4_has_inline_data(inode)) 1803 retval = 0; 1804 else 1805 retval = ext4_map_query_blocks(NULL, inode, map); 1806 up_read(&EXT4_I(inode)->i_data_sem); 1807 if (retval) 1808 return retval < 0 ? retval : 0; 1809 1810 add_delayed: 1811 down_write(&EXT4_I(inode)->i_data_sem); 1812 /* 1813 * Page fault path (ext4_page_mkwrite does not take i_rwsem) 1814 * and fallocate path (no folio lock) can race. Make sure we 1815 * lookup the extent status tree here again while i_data_sem 1816 * is held in write mode, before inserting a new da entry in 1817 * the extent status tree. 1818 */ 1819 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 1820 map->m_len = min_t(unsigned int, map->m_len, 1821 es.es_len - (map->m_lblk - es.es_lblk)); 1822 1823 if (!ext4_es_is_hole(&es)) { 1824 up_write(&EXT4_I(inode)->i_data_sem); 1825 goto found; 1826 } 1827 } else if (!ext4_has_inline_data(inode)) { 1828 retval = ext4_map_query_blocks(NULL, inode, map); 1829 if (retval) { 1830 up_write(&EXT4_I(inode)->i_data_sem); 1831 return retval < 0 ? retval : 0; 1832 } 1833 } 1834 1835 map->m_flags |= EXT4_MAP_DELAYED; 1836 retval = ext4_insert_delayed_blocks(inode, map->m_lblk, map->m_len); 1837 up_write(&EXT4_I(inode)->i_data_sem); 1838 1839 return retval; 1840 } 1841 1842 /* 1843 * This is a special get_block_t callback which is used by 1844 * ext4_da_write_begin(). It will either return mapped block or 1845 * reserve space for a single block. 1846 * 1847 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1848 * We also have b_blocknr = -1 and b_bdev initialized properly 1849 * 1850 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1851 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1852 * initialized properly. 1853 */ 1854 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1855 struct buffer_head *bh, int create) 1856 { 1857 struct ext4_map_blocks map; 1858 sector_t invalid_block = ~((sector_t) 0xffff); 1859 int ret = 0; 1860 1861 BUG_ON(create == 0); 1862 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1863 1864 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1865 invalid_block = ~0; 1866 1867 map.m_lblk = iblock; 1868 map.m_len = 1; 1869 1870 /* 1871 * first, we need to know whether the block is allocated already 1872 * preallocated blocks are unmapped but should treated 1873 * the same as allocated blocks. 1874 */ 1875 ret = ext4_da_map_blocks(inode, &map); 1876 if (ret < 0) 1877 return ret; 1878 1879 if (map.m_flags & EXT4_MAP_DELAYED) { 1880 map_bh(bh, inode->i_sb, invalid_block); 1881 set_buffer_new(bh); 1882 set_buffer_delay(bh); 1883 return 0; 1884 } 1885 1886 map_bh(bh, inode->i_sb, map.m_pblk); 1887 ext4_update_bh_state(bh, map.m_flags); 1888 1889 if (buffer_unwritten(bh)) { 1890 /* A delayed write to unwritten bh should be marked 1891 * new and mapped. Mapped ensures that we don't do 1892 * get_block multiple times when we write to the same 1893 * offset and new ensures that we do proper zero out 1894 * for partial write. 1895 */ 1896 set_buffer_new(bh); 1897 set_buffer_mapped(bh); 1898 } 1899 return 0; 1900 } 1901 1902 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio) 1903 { 1904 mpd->first_page += folio_nr_pages(folio); 1905 folio_unlock(folio); 1906 } 1907 1908 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio) 1909 { 1910 size_t len; 1911 loff_t size; 1912 int err; 1913 1914 BUG_ON(folio->index != mpd->first_page); 1915 folio_clear_dirty_for_io(folio); 1916 /* 1917 * We have to be very careful here! Nothing protects writeback path 1918 * against i_size changes and the page can be writeably mapped into 1919 * page tables. So an application can be growing i_size and writing 1920 * data through mmap while writeback runs. folio_clear_dirty_for_io() 1921 * write-protects our page in page tables and the page cannot get 1922 * written to again until we release folio lock. So only after 1923 * folio_clear_dirty_for_io() we are safe to sample i_size for 1924 * ext4_bio_write_folio() to zero-out tail of the written page. We rely 1925 * on the barrier provided by folio_test_clear_dirty() in 1926 * folio_clear_dirty_for_io() to make sure i_size is really sampled only 1927 * after page tables are updated. 1928 */ 1929 size = i_size_read(mpd->inode); 1930 len = folio_size(folio); 1931 if (folio_pos(folio) + len > size && 1932 !ext4_verity_in_progress(mpd->inode)) 1933 len = size & (len - 1); 1934 err = ext4_bio_write_folio(&mpd->io_submit, folio, len); 1935 if (!err) 1936 mpd->wbc->nr_to_write--; 1937 1938 return err; 1939 } 1940 1941 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 1942 1943 /* 1944 * mballoc gives us at most this number of blocks... 1945 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1946 * The rest of mballoc seems to handle chunks up to full group size. 1947 */ 1948 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1949 1950 /* 1951 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1952 * 1953 * @mpd - extent of blocks 1954 * @lblk - logical number of the block in the file 1955 * @bh - buffer head we want to add to the extent 1956 * 1957 * The function is used to collect contig. blocks in the same state. If the 1958 * buffer doesn't require mapping for writeback and we haven't started the 1959 * extent of buffers to map yet, the function returns 'true' immediately - the 1960 * caller can write the buffer right away. Otherwise the function returns true 1961 * if the block has been added to the extent, false if the block couldn't be 1962 * added. 1963 */ 1964 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1965 struct buffer_head *bh) 1966 { 1967 struct ext4_map_blocks *map = &mpd->map; 1968 1969 /* Buffer that doesn't need mapping for writeback? */ 1970 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1971 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1972 /* So far no extent to map => we write the buffer right away */ 1973 if (map->m_len == 0) 1974 return true; 1975 return false; 1976 } 1977 1978 /* First block in the extent? */ 1979 if (map->m_len == 0) { 1980 /* We cannot map unless handle is started... */ 1981 if (!mpd->do_map) 1982 return false; 1983 map->m_lblk = lblk; 1984 map->m_len = 1; 1985 map->m_flags = bh->b_state & BH_FLAGS; 1986 return true; 1987 } 1988 1989 /* Don't go larger than mballoc is willing to allocate */ 1990 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1991 return false; 1992 1993 /* Can we merge the block to our big extent? */ 1994 if (lblk == map->m_lblk + map->m_len && 1995 (bh->b_state & BH_FLAGS) == map->m_flags) { 1996 map->m_len++; 1997 return true; 1998 } 1999 return false; 2000 } 2001 2002 /* 2003 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2004 * 2005 * @mpd - extent of blocks for mapping 2006 * @head - the first buffer in the page 2007 * @bh - buffer we should start processing from 2008 * @lblk - logical number of the block in the file corresponding to @bh 2009 * 2010 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2011 * the page for IO if all buffers in this page were mapped and there's no 2012 * accumulated extent of buffers to map or add buffers in the page to the 2013 * extent of buffers to map. The function returns 1 if the caller can continue 2014 * by processing the next page, 0 if it should stop adding buffers to the 2015 * extent to map because we cannot extend it anymore. It can also return value 2016 * < 0 in case of error during IO submission. 2017 */ 2018 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2019 struct buffer_head *head, 2020 struct buffer_head *bh, 2021 ext4_lblk_t lblk) 2022 { 2023 struct inode *inode = mpd->inode; 2024 int err; 2025 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2026 >> inode->i_blkbits; 2027 2028 if (ext4_verity_in_progress(inode)) 2029 blocks = EXT_MAX_BLOCKS; 2030 2031 do { 2032 BUG_ON(buffer_locked(bh)); 2033 2034 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2035 /* Found extent to map? */ 2036 if (mpd->map.m_len) 2037 return 0; 2038 /* Buffer needs mapping and handle is not started? */ 2039 if (!mpd->do_map) 2040 return 0; 2041 /* Everything mapped so far and we hit EOF */ 2042 break; 2043 } 2044 } while (lblk++, (bh = bh->b_this_page) != head); 2045 /* So far everything mapped? Submit the page for IO. */ 2046 if (mpd->map.m_len == 0) { 2047 err = mpage_submit_folio(mpd, head->b_folio); 2048 if (err < 0) 2049 return err; 2050 mpage_folio_done(mpd, head->b_folio); 2051 } 2052 if (lblk >= blocks) { 2053 mpd->scanned_until_end = 1; 2054 return 0; 2055 } 2056 return 1; 2057 } 2058 2059 /* 2060 * mpage_process_folio - update folio buffers corresponding to changed extent 2061 * and may submit fully mapped page for IO 2062 * @mpd: description of extent to map, on return next extent to map 2063 * @folio: Contains these buffers. 2064 * @m_lblk: logical block mapping. 2065 * @m_pblk: corresponding physical mapping. 2066 * @map_bh: determines on return whether this page requires any further 2067 * mapping or not. 2068 * 2069 * Scan given folio buffers corresponding to changed extent and update buffer 2070 * state according to new extent state. 2071 * We map delalloc buffers to their physical location, clear unwritten bits. 2072 * If the given folio is not fully mapped, we update @mpd to the next extent in 2073 * the given folio that needs mapping & return @map_bh as true. 2074 */ 2075 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio, 2076 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2077 bool *map_bh) 2078 { 2079 struct buffer_head *head, *bh; 2080 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2081 ext4_lblk_t lblk = *m_lblk; 2082 ext4_fsblk_t pblock = *m_pblk; 2083 int err = 0; 2084 int blkbits = mpd->inode->i_blkbits; 2085 ssize_t io_end_size = 0; 2086 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2087 2088 bh = head = folio_buffers(folio); 2089 do { 2090 if (lblk < mpd->map.m_lblk) 2091 continue; 2092 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2093 /* 2094 * Buffer after end of mapped extent. 2095 * Find next buffer in the folio to map. 2096 */ 2097 mpd->map.m_len = 0; 2098 mpd->map.m_flags = 0; 2099 io_end_vec->size += io_end_size; 2100 2101 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2102 if (err > 0) 2103 err = 0; 2104 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2105 io_end_vec = ext4_alloc_io_end_vec(io_end); 2106 if (IS_ERR(io_end_vec)) { 2107 err = PTR_ERR(io_end_vec); 2108 goto out; 2109 } 2110 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2111 } 2112 *map_bh = true; 2113 goto out; 2114 } 2115 if (buffer_delay(bh)) { 2116 clear_buffer_delay(bh); 2117 bh->b_blocknr = pblock++; 2118 } 2119 clear_buffer_unwritten(bh); 2120 io_end_size += (1 << blkbits); 2121 } while (lblk++, (bh = bh->b_this_page) != head); 2122 2123 io_end_vec->size += io_end_size; 2124 *map_bh = false; 2125 out: 2126 *m_lblk = lblk; 2127 *m_pblk = pblock; 2128 return err; 2129 } 2130 2131 /* 2132 * mpage_map_buffers - update buffers corresponding to changed extent and 2133 * submit fully mapped pages for IO 2134 * 2135 * @mpd - description of extent to map, on return next extent to map 2136 * 2137 * Scan buffers corresponding to changed extent (we expect corresponding pages 2138 * to be already locked) and update buffer state according to new extent state. 2139 * We map delalloc buffers to their physical location, clear unwritten bits, 2140 * and mark buffers as uninit when we perform writes to unwritten extents 2141 * and do extent conversion after IO is finished. If the last page is not fully 2142 * mapped, we update @map to the next extent in the last page that needs 2143 * mapping. Otherwise we submit the page for IO. 2144 */ 2145 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2146 { 2147 struct folio_batch fbatch; 2148 unsigned nr, i; 2149 struct inode *inode = mpd->inode; 2150 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2151 pgoff_t start, end; 2152 ext4_lblk_t lblk; 2153 ext4_fsblk_t pblock; 2154 int err; 2155 bool map_bh = false; 2156 2157 start = mpd->map.m_lblk >> bpp_bits; 2158 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2159 lblk = start << bpp_bits; 2160 pblock = mpd->map.m_pblk; 2161 2162 folio_batch_init(&fbatch); 2163 while (start <= end) { 2164 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch); 2165 if (nr == 0) 2166 break; 2167 for (i = 0; i < nr; i++) { 2168 struct folio *folio = fbatch.folios[i]; 2169 2170 err = mpage_process_folio(mpd, folio, &lblk, &pblock, 2171 &map_bh); 2172 /* 2173 * If map_bh is true, means page may require further bh 2174 * mapping, or maybe the page was submitted for IO. 2175 * So we return to call further extent mapping. 2176 */ 2177 if (err < 0 || map_bh) 2178 goto out; 2179 /* Page fully mapped - let IO run! */ 2180 err = mpage_submit_folio(mpd, folio); 2181 if (err < 0) 2182 goto out; 2183 mpage_folio_done(mpd, folio); 2184 } 2185 folio_batch_release(&fbatch); 2186 } 2187 /* Extent fully mapped and matches with page boundary. We are done. */ 2188 mpd->map.m_len = 0; 2189 mpd->map.m_flags = 0; 2190 return 0; 2191 out: 2192 folio_batch_release(&fbatch); 2193 return err; 2194 } 2195 2196 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2197 { 2198 struct inode *inode = mpd->inode; 2199 struct ext4_map_blocks *map = &mpd->map; 2200 int get_blocks_flags; 2201 int err, dioread_nolock; 2202 2203 trace_ext4_da_write_pages_extent(inode, map); 2204 /* 2205 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2206 * to convert an unwritten extent to be initialized (in the case 2207 * where we have written into one or more preallocated blocks). It is 2208 * possible that we're going to need more metadata blocks than 2209 * previously reserved. However we must not fail because we're in 2210 * writeback and there is nothing we can do about it so it might result 2211 * in data loss. So use reserved blocks to allocate metadata if 2212 * possible. 2213 */ 2214 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2215 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2216 EXT4_GET_BLOCKS_IO_SUBMIT; 2217 dioread_nolock = ext4_should_dioread_nolock(inode); 2218 if (dioread_nolock) 2219 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2220 2221 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2222 if (err < 0) 2223 return err; 2224 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2225 if (!mpd->io_submit.io_end->handle && 2226 ext4_handle_valid(handle)) { 2227 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2228 handle->h_rsv_handle = NULL; 2229 } 2230 ext4_set_io_unwritten_flag(mpd->io_submit.io_end); 2231 } 2232 2233 BUG_ON(map->m_len == 0); 2234 return 0; 2235 } 2236 2237 /* 2238 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2239 * mpd->len and submit pages underlying it for IO 2240 * 2241 * @handle - handle for journal operations 2242 * @mpd - extent to map 2243 * @give_up_on_write - we set this to true iff there is a fatal error and there 2244 * is no hope of writing the data. The caller should discard 2245 * dirty pages to avoid infinite loops. 2246 * 2247 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2248 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2249 * them to initialized or split the described range from larger unwritten 2250 * extent. Note that we need not map all the described range since allocation 2251 * can return less blocks or the range is covered by more unwritten extents. We 2252 * cannot map more because we are limited by reserved transaction credits. On 2253 * the other hand we always make sure that the last touched page is fully 2254 * mapped so that it can be written out (and thus forward progress is 2255 * guaranteed). After mapping we submit all mapped pages for IO. 2256 */ 2257 static int mpage_map_and_submit_extent(handle_t *handle, 2258 struct mpage_da_data *mpd, 2259 bool *give_up_on_write) 2260 { 2261 struct inode *inode = mpd->inode; 2262 struct ext4_map_blocks *map = &mpd->map; 2263 int err; 2264 loff_t disksize; 2265 int progress = 0; 2266 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2267 struct ext4_io_end_vec *io_end_vec; 2268 2269 io_end_vec = ext4_alloc_io_end_vec(io_end); 2270 if (IS_ERR(io_end_vec)) 2271 return PTR_ERR(io_end_vec); 2272 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2273 do { 2274 err = mpage_map_one_extent(handle, mpd); 2275 if (err < 0) { 2276 struct super_block *sb = inode->i_sb; 2277 2278 if (ext4_emergency_state(sb)) 2279 goto invalidate_dirty_pages; 2280 /* 2281 * Let the uper layers retry transient errors. 2282 * In the case of ENOSPC, if ext4_count_free_blocks() 2283 * is non-zero, a commit should free up blocks. 2284 */ 2285 if ((err == -ENOMEM) || 2286 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2287 if (progress) 2288 goto update_disksize; 2289 return err; 2290 } 2291 ext4_msg(sb, KERN_CRIT, 2292 "Delayed block allocation failed for " 2293 "inode %lu at logical offset %llu with" 2294 " max blocks %u with error %d", 2295 inode->i_ino, 2296 (unsigned long long)map->m_lblk, 2297 (unsigned)map->m_len, -err); 2298 ext4_msg(sb, KERN_CRIT, 2299 "This should not happen!! Data will " 2300 "be lost\n"); 2301 if (err == -ENOSPC) 2302 ext4_print_free_blocks(inode); 2303 invalidate_dirty_pages: 2304 *give_up_on_write = true; 2305 return err; 2306 } 2307 progress = 1; 2308 /* 2309 * Update buffer state, submit mapped pages, and get us new 2310 * extent to map 2311 */ 2312 err = mpage_map_and_submit_buffers(mpd); 2313 if (err < 0) 2314 goto update_disksize; 2315 } while (map->m_len); 2316 2317 update_disksize: 2318 /* 2319 * Update on-disk size after IO is submitted. Races with 2320 * truncate are avoided by checking i_size under i_data_sem. 2321 */ 2322 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2323 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2324 int err2; 2325 loff_t i_size; 2326 2327 down_write(&EXT4_I(inode)->i_data_sem); 2328 i_size = i_size_read(inode); 2329 if (disksize > i_size) 2330 disksize = i_size; 2331 if (disksize > EXT4_I(inode)->i_disksize) 2332 EXT4_I(inode)->i_disksize = disksize; 2333 up_write(&EXT4_I(inode)->i_data_sem); 2334 err2 = ext4_mark_inode_dirty(handle, inode); 2335 if (err2) { 2336 ext4_error_err(inode->i_sb, -err2, 2337 "Failed to mark inode %lu dirty", 2338 inode->i_ino); 2339 } 2340 if (!err) 2341 err = err2; 2342 } 2343 return err; 2344 } 2345 2346 /* 2347 * Calculate the total number of credits to reserve for one writepages 2348 * iteration. This is called from ext4_writepages(). We map an extent of 2349 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2350 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2351 * bpp - 1 blocks in bpp different extents. 2352 */ 2353 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2354 { 2355 int bpp = ext4_journal_blocks_per_page(inode); 2356 2357 return ext4_meta_trans_blocks(inode, 2358 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2359 } 2360 2361 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio, 2362 size_t len) 2363 { 2364 struct buffer_head *page_bufs = folio_buffers(folio); 2365 struct inode *inode = folio->mapping->host; 2366 int ret, err; 2367 2368 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2369 NULL, do_journal_get_write_access); 2370 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2371 NULL, write_end_fn); 2372 if (ret == 0) 2373 ret = err; 2374 err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len); 2375 if (ret == 0) 2376 ret = err; 2377 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2378 2379 return ret; 2380 } 2381 2382 static int mpage_journal_page_buffers(handle_t *handle, 2383 struct mpage_da_data *mpd, 2384 struct folio *folio) 2385 { 2386 struct inode *inode = mpd->inode; 2387 loff_t size = i_size_read(inode); 2388 size_t len = folio_size(folio); 2389 2390 folio_clear_checked(folio); 2391 mpd->wbc->nr_to_write--; 2392 2393 if (folio_pos(folio) + len > size && 2394 !ext4_verity_in_progress(inode)) 2395 len = size & (len - 1); 2396 2397 return ext4_journal_folio_buffers(handle, folio, len); 2398 } 2399 2400 /* 2401 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2402 * needing mapping, submit mapped pages 2403 * 2404 * @mpd - where to look for pages 2405 * 2406 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2407 * IO immediately. If we cannot map blocks, we submit just already mapped 2408 * buffers in the page for IO and keep page dirty. When we can map blocks and 2409 * we find a page which isn't mapped we start accumulating extent of buffers 2410 * underlying these pages that needs mapping (formed by either delayed or 2411 * unwritten buffers). We also lock the pages containing these buffers. The 2412 * extent found is returned in @mpd structure (starting at mpd->lblk with 2413 * length mpd->len blocks). 2414 * 2415 * Note that this function can attach bios to one io_end structure which are 2416 * neither logically nor physically contiguous. Although it may seem as an 2417 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2418 * case as we need to track IO to all buffers underlying a page in one io_end. 2419 */ 2420 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2421 { 2422 struct address_space *mapping = mpd->inode->i_mapping; 2423 struct folio_batch fbatch; 2424 unsigned int nr_folios; 2425 pgoff_t index = mpd->first_page; 2426 pgoff_t end = mpd->last_page; 2427 xa_mark_t tag; 2428 int i, err = 0; 2429 int blkbits = mpd->inode->i_blkbits; 2430 ext4_lblk_t lblk; 2431 struct buffer_head *head; 2432 handle_t *handle = NULL; 2433 int bpp = ext4_journal_blocks_per_page(mpd->inode); 2434 2435 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2436 tag = PAGECACHE_TAG_TOWRITE; 2437 else 2438 tag = PAGECACHE_TAG_DIRTY; 2439 2440 mpd->map.m_len = 0; 2441 mpd->next_page = index; 2442 if (ext4_should_journal_data(mpd->inode)) { 2443 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE, 2444 bpp); 2445 if (IS_ERR(handle)) 2446 return PTR_ERR(handle); 2447 } 2448 folio_batch_init(&fbatch); 2449 while (index <= end) { 2450 nr_folios = filemap_get_folios_tag(mapping, &index, end, 2451 tag, &fbatch); 2452 if (nr_folios == 0) 2453 break; 2454 2455 for (i = 0; i < nr_folios; i++) { 2456 struct folio *folio = fbatch.folios[i]; 2457 2458 /* 2459 * Accumulated enough dirty pages? This doesn't apply 2460 * to WB_SYNC_ALL mode. For integrity sync we have to 2461 * keep going because someone may be concurrently 2462 * dirtying pages, and we might have synced a lot of 2463 * newly appeared dirty pages, but have not synced all 2464 * of the old dirty pages. 2465 */ 2466 if (mpd->wbc->sync_mode == WB_SYNC_NONE && 2467 mpd->wbc->nr_to_write <= 2468 mpd->map.m_len >> (PAGE_SHIFT - blkbits)) 2469 goto out; 2470 2471 /* If we can't merge this page, we are done. */ 2472 if (mpd->map.m_len > 0 && mpd->next_page != folio->index) 2473 goto out; 2474 2475 if (handle) { 2476 err = ext4_journal_ensure_credits(handle, bpp, 2477 0); 2478 if (err < 0) 2479 goto out; 2480 } 2481 2482 folio_lock(folio); 2483 /* 2484 * If the page is no longer dirty, or its mapping no 2485 * longer corresponds to inode we are writing (which 2486 * means it has been truncated or invalidated), or the 2487 * page is already under writeback and we are not doing 2488 * a data integrity writeback, skip the page 2489 */ 2490 if (!folio_test_dirty(folio) || 2491 (folio_test_writeback(folio) && 2492 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2493 unlikely(folio->mapping != mapping)) { 2494 folio_unlock(folio); 2495 continue; 2496 } 2497 2498 folio_wait_writeback(folio); 2499 BUG_ON(folio_test_writeback(folio)); 2500 2501 /* 2502 * Should never happen but for buggy code in 2503 * other subsystems that call 2504 * set_page_dirty() without properly warning 2505 * the file system first. See [1] for more 2506 * information. 2507 * 2508 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz 2509 */ 2510 if (!folio_buffers(folio)) { 2511 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index); 2512 folio_clear_dirty(folio); 2513 folio_unlock(folio); 2514 continue; 2515 } 2516 2517 if (mpd->map.m_len == 0) 2518 mpd->first_page = folio->index; 2519 mpd->next_page = folio_next_index(folio); 2520 /* 2521 * Writeout when we cannot modify metadata is simple. 2522 * Just submit the page. For data=journal mode we 2523 * first handle writeout of the page for checkpoint and 2524 * only after that handle delayed page dirtying. This 2525 * makes sure current data is checkpointed to the final 2526 * location before possibly journalling it again which 2527 * is desirable when the page is frequently dirtied 2528 * through a pin. 2529 */ 2530 if (!mpd->can_map) { 2531 err = mpage_submit_folio(mpd, folio); 2532 if (err < 0) 2533 goto out; 2534 /* Pending dirtying of journalled data? */ 2535 if (folio_test_checked(folio)) { 2536 err = mpage_journal_page_buffers(handle, 2537 mpd, folio); 2538 if (err < 0) 2539 goto out; 2540 mpd->journalled_more_data = 1; 2541 } 2542 mpage_folio_done(mpd, folio); 2543 } else { 2544 /* Add all dirty buffers to mpd */ 2545 lblk = ((ext4_lblk_t)folio->index) << 2546 (PAGE_SHIFT - blkbits); 2547 head = folio_buffers(folio); 2548 err = mpage_process_page_bufs(mpd, head, head, 2549 lblk); 2550 if (err <= 0) 2551 goto out; 2552 err = 0; 2553 } 2554 } 2555 folio_batch_release(&fbatch); 2556 cond_resched(); 2557 } 2558 mpd->scanned_until_end = 1; 2559 if (handle) 2560 ext4_journal_stop(handle); 2561 return 0; 2562 out: 2563 folio_batch_release(&fbatch); 2564 if (handle) 2565 ext4_journal_stop(handle); 2566 return err; 2567 } 2568 2569 static int ext4_do_writepages(struct mpage_da_data *mpd) 2570 { 2571 struct writeback_control *wbc = mpd->wbc; 2572 pgoff_t writeback_index = 0; 2573 long nr_to_write = wbc->nr_to_write; 2574 int range_whole = 0; 2575 int cycled = 1; 2576 handle_t *handle = NULL; 2577 struct inode *inode = mpd->inode; 2578 struct address_space *mapping = inode->i_mapping; 2579 int needed_blocks, rsv_blocks = 0, ret = 0; 2580 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2581 struct blk_plug plug; 2582 bool give_up_on_write = false; 2583 2584 trace_ext4_writepages(inode, wbc); 2585 2586 /* 2587 * No pages to write? This is mainly a kludge to avoid starting 2588 * a transaction for special inodes like journal inode on last iput() 2589 * because that could violate lock ordering on umount 2590 */ 2591 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2592 goto out_writepages; 2593 2594 /* 2595 * If the filesystem has aborted, it is read-only, so return 2596 * right away instead of dumping stack traces later on that 2597 * will obscure the real source of the problem. We test 2598 * fs shutdown state instead of sb->s_flag's SB_RDONLY because 2599 * the latter could be true if the filesystem is mounted 2600 * read-only, and in that case, ext4_writepages should 2601 * *never* be called, so if that ever happens, we would want 2602 * the stack trace. 2603 */ 2604 ret = ext4_emergency_state(mapping->host->i_sb); 2605 if (unlikely(ret)) 2606 goto out_writepages; 2607 2608 /* 2609 * If we have inline data and arrive here, it means that 2610 * we will soon create the block for the 1st page, so 2611 * we'd better clear the inline data here. 2612 */ 2613 if (ext4_has_inline_data(inode)) { 2614 /* Just inode will be modified... */ 2615 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2616 if (IS_ERR(handle)) { 2617 ret = PTR_ERR(handle); 2618 goto out_writepages; 2619 } 2620 BUG_ON(ext4_test_inode_state(inode, 2621 EXT4_STATE_MAY_INLINE_DATA)); 2622 ext4_destroy_inline_data(handle, inode); 2623 ext4_journal_stop(handle); 2624 } 2625 2626 /* 2627 * data=journal mode does not do delalloc so we just need to writeout / 2628 * journal already mapped buffers. On the other hand we need to commit 2629 * transaction to make data stable. We expect all the data to be 2630 * already in the journal (the only exception are DMA pinned pages 2631 * dirtied behind our back) so we commit transaction here and run the 2632 * writeback loop to checkpoint them. The checkpointing is not actually 2633 * necessary to make data persistent *but* quite a few places (extent 2634 * shifting operations, fsverity, ...) depend on being able to drop 2635 * pagecache pages after calling filemap_write_and_wait() and for that 2636 * checkpointing needs to happen. 2637 */ 2638 if (ext4_should_journal_data(inode)) { 2639 mpd->can_map = 0; 2640 if (wbc->sync_mode == WB_SYNC_ALL) 2641 ext4_fc_commit(sbi->s_journal, 2642 EXT4_I(inode)->i_datasync_tid); 2643 } 2644 mpd->journalled_more_data = 0; 2645 2646 if (ext4_should_dioread_nolock(inode)) { 2647 /* 2648 * We may need to convert up to one extent per block in 2649 * the page and we may dirty the inode. 2650 */ 2651 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2652 PAGE_SIZE >> inode->i_blkbits); 2653 } 2654 2655 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2656 range_whole = 1; 2657 2658 if (wbc->range_cyclic) { 2659 writeback_index = mapping->writeback_index; 2660 if (writeback_index) 2661 cycled = 0; 2662 mpd->first_page = writeback_index; 2663 mpd->last_page = -1; 2664 } else { 2665 mpd->first_page = wbc->range_start >> PAGE_SHIFT; 2666 mpd->last_page = wbc->range_end >> PAGE_SHIFT; 2667 } 2668 2669 ext4_io_submit_init(&mpd->io_submit, wbc); 2670 retry: 2671 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2672 tag_pages_for_writeback(mapping, mpd->first_page, 2673 mpd->last_page); 2674 blk_start_plug(&plug); 2675 2676 /* 2677 * First writeback pages that don't need mapping - we can avoid 2678 * starting a transaction unnecessarily and also avoid being blocked 2679 * in the block layer on device congestion while having transaction 2680 * started. 2681 */ 2682 mpd->do_map = 0; 2683 mpd->scanned_until_end = 0; 2684 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2685 if (!mpd->io_submit.io_end) { 2686 ret = -ENOMEM; 2687 goto unplug; 2688 } 2689 ret = mpage_prepare_extent_to_map(mpd); 2690 /* Unlock pages we didn't use */ 2691 mpage_release_unused_pages(mpd, false); 2692 /* Submit prepared bio */ 2693 ext4_io_submit(&mpd->io_submit); 2694 ext4_put_io_end_defer(mpd->io_submit.io_end); 2695 mpd->io_submit.io_end = NULL; 2696 if (ret < 0) 2697 goto unplug; 2698 2699 while (!mpd->scanned_until_end && wbc->nr_to_write > 0) { 2700 /* For each extent of pages we use new io_end */ 2701 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2702 if (!mpd->io_submit.io_end) { 2703 ret = -ENOMEM; 2704 break; 2705 } 2706 2707 WARN_ON_ONCE(!mpd->can_map); 2708 /* 2709 * We have two constraints: We find one extent to map and we 2710 * must always write out whole page (makes a difference when 2711 * blocksize < pagesize) so that we don't block on IO when we 2712 * try to write out the rest of the page. Journalled mode is 2713 * not supported by delalloc. 2714 */ 2715 BUG_ON(ext4_should_journal_data(inode)); 2716 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2717 2718 /* start a new transaction */ 2719 handle = ext4_journal_start_with_reserve(inode, 2720 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2721 if (IS_ERR(handle)) { 2722 ret = PTR_ERR(handle); 2723 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2724 "%ld pages, ino %lu; err %d", __func__, 2725 wbc->nr_to_write, inode->i_ino, ret); 2726 /* Release allocated io_end */ 2727 ext4_put_io_end(mpd->io_submit.io_end); 2728 mpd->io_submit.io_end = NULL; 2729 break; 2730 } 2731 mpd->do_map = 1; 2732 2733 trace_ext4_da_write_pages(inode, mpd->first_page, wbc); 2734 ret = mpage_prepare_extent_to_map(mpd); 2735 if (!ret && mpd->map.m_len) 2736 ret = mpage_map_and_submit_extent(handle, mpd, 2737 &give_up_on_write); 2738 /* 2739 * Caution: If the handle is synchronous, 2740 * ext4_journal_stop() can wait for transaction commit 2741 * to finish which may depend on writeback of pages to 2742 * complete or on page lock to be released. In that 2743 * case, we have to wait until after we have 2744 * submitted all the IO, released page locks we hold, 2745 * and dropped io_end reference (for extent conversion 2746 * to be able to complete) before stopping the handle. 2747 */ 2748 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2749 ext4_journal_stop(handle); 2750 handle = NULL; 2751 mpd->do_map = 0; 2752 } 2753 /* Unlock pages we didn't use */ 2754 mpage_release_unused_pages(mpd, give_up_on_write); 2755 /* Submit prepared bio */ 2756 ext4_io_submit(&mpd->io_submit); 2757 2758 /* 2759 * Drop our io_end reference we got from init. We have 2760 * to be careful and use deferred io_end finishing if 2761 * we are still holding the transaction as we can 2762 * release the last reference to io_end which may end 2763 * up doing unwritten extent conversion. 2764 */ 2765 if (handle) { 2766 ext4_put_io_end_defer(mpd->io_submit.io_end); 2767 ext4_journal_stop(handle); 2768 } else 2769 ext4_put_io_end(mpd->io_submit.io_end); 2770 mpd->io_submit.io_end = NULL; 2771 2772 if (ret == -ENOSPC && sbi->s_journal) { 2773 /* 2774 * Commit the transaction which would 2775 * free blocks released in the transaction 2776 * and try again 2777 */ 2778 jbd2_journal_force_commit_nested(sbi->s_journal); 2779 ret = 0; 2780 continue; 2781 } 2782 /* Fatal error - ENOMEM, EIO... */ 2783 if (ret) 2784 break; 2785 } 2786 unplug: 2787 blk_finish_plug(&plug); 2788 if (!ret && !cycled && wbc->nr_to_write > 0) { 2789 cycled = 1; 2790 mpd->last_page = writeback_index - 1; 2791 mpd->first_page = 0; 2792 goto retry; 2793 } 2794 2795 /* Update index */ 2796 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2797 /* 2798 * Set the writeback_index so that range_cyclic 2799 * mode will write it back later 2800 */ 2801 mapping->writeback_index = mpd->first_page; 2802 2803 out_writepages: 2804 trace_ext4_writepages_result(inode, wbc, ret, 2805 nr_to_write - wbc->nr_to_write); 2806 return ret; 2807 } 2808 2809 static int ext4_writepages(struct address_space *mapping, 2810 struct writeback_control *wbc) 2811 { 2812 struct super_block *sb = mapping->host->i_sb; 2813 struct mpage_da_data mpd = { 2814 .inode = mapping->host, 2815 .wbc = wbc, 2816 .can_map = 1, 2817 }; 2818 int ret; 2819 int alloc_ctx; 2820 2821 ret = ext4_emergency_state(sb); 2822 if (unlikely(ret)) 2823 return ret; 2824 2825 alloc_ctx = ext4_writepages_down_read(sb); 2826 ret = ext4_do_writepages(&mpd); 2827 /* 2828 * For data=journal writeback we could have come across pages marked 2829 * for delayed dirtying (PageChecked) which were just added to the 2830 * running transaction. Try once more to get them to stable storage. 2831 */ 2832 if (!ret && mpd.journalled_more_data) 2833 ret = ext4_do_writepages(&mpd); 2834 ext4_writepages_up_read(sb, alloc_ctx); 2835 2836 return ret; 2837 } 2838 2839 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode) 2840 { 2841 struct writeback_control wbc = { 2842 .sync_mode = WB_SYNC_ALL, 2843 .nr_to_write = LONG_MAX, 2844 .range_start = jinode->i_dirty_start, 2845 .range_end = jinode->i_dirty_end, 2846 }; 2847 struct mpage_da_data mpd = { 2848 .inode = jinode->i_vfs_inode, 2849 .wbc = &wbc, 2850 .can_map = 0, 2851 }; 2852 return ext4_do_writepages(&mpd); 2853 } 2854 2855 static int ext4_dax_writepages(struct address_space *mapping, 2856 struct writeback_control *wbc) 2857 { 2858 int ret; 2859 long nr_to_write = wbc->nr_to_write; 2860 struct inode *inode = mapping->host; 2861 int alloc_ctx; 2862 2863 ret = ext4_emergency_state(inode->i_sb); 2864 if (unlikely(ret)) 2865 return ret; 2866 2867 alloc_ctx = ext4_writepages_down_read(inode->i_sb); 2868 trace_ext4_writepages(inode, wbc); 2869 2870 ret = dax_writeback_mapping_range(mapping, 2871 EXT4_SB(inode->i_sb)->s_daxdev, wbc); 2872 trace_ext4_writepages_result(inode, wbc, ret, 2873 nr_to_write - wbc->nr_to_write); 2874 ext4_writepages_up_read(inode->i_sb, alloc_ctx); 2875 return ret; 2876 } 2877 2878 static int ext4_nonda_switch(struct super_block *sb) 2879 { 2880 s64 free_clusters, dirty_clusters; 2881 struct ext4_sb_info *sbi = EXT4_SB(sb); 2882 2883 /* 2884 * switch to non delalloc mode if we are running low 2885 * on free block. The free block accounting via percpu 2886 * counters can get slightly wrong with percpu_counter_batch getting 2887 * accumulated on each CPU without updating global counters 2888 * Delalloc need an accurate free block accounting. So switch 2889 * to non delalloc when we are near to error range. 2890 */ 2891 free_clusters = 2892 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2893 dirty_clusters = 2894 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2895 /* 2896 * Start pushing delalloc when 1/2 of free blocks are dirty. 2897 */ 2898 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2899 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2900 2901 if (2 * free_clusters < 3 * dirty_clusters || 2902 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2903 /* 2904 * free block count is less than 150% of dirty blocks 2905 * or free blocks is less than watermark 2906 */ 2907 return 1; 2908 } 2909 return 0; 2910 } 2911 2912 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2913 loff_t pos, unsigned len, 2914 struct folio **foliop, void **fsdata) 2915 { 2916 int ret, retries = 0; 2917 struct folio *folio; 2918 pgoff_t index; 2919 struct inode *inode = mapping->host; 2920 2921 ret = ext4_emergency_state(inode->i_sb); 2922 if (unlikely(ret)) 2923 return ret; 2924 2925 index = pos >> PAGE_SHIFT; 2926 2927 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) { 2928 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2929 return ext4_write_begin(file, mapping, pos, 2930 len, foliop, fsdata); 2931 } 2932 *fsdata = (void *)0; 2933 trace_ext4_da_write_begin(inode, pos, len); 2934 2935 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2936 ret = ext4_generic_write_inline_data(mapping, inode, pos, len, 2937 foliop, fsdata, true); 2938 if (ret < 0) 2939 return ret; 2940 if (ret == 1) 2941 return 0; 2942 } 2943 2944 retry: 2945 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 2946 mapping_gfp_mask(mapping)); 2947 if (IS_ERR(folio)) 2948 return PTR_ERR(folio); 2949 2950 ret = ext4_block_write_begin(NULL, folio, pos, len, 2951 ext4_da_get_block_prep); 2952 if (ret < 0) { 2953 folio_unlock(folio); 2954 folio_put(folio); 2955 /* 2956 * block_write_begin may have instantiated a few blocks 2957 * outside i_size. Trim these off again. Don't need 2958 * i_size_read because we hold inode lock. 2959 */ 2960 if (pos + len > inode->i_size) 2961 ext4_truncate_failed_write(inode); 2962 2963 if (ret == -ENOSPC && 2964 ext4_should_retry_alloc(inode->i_sb, &retries)) 2965 goto retry; 2966 return ret; 2967 } 2968 2969 *foliop = folio; 2970 return ret; 2971 } 2972 2973 /* 2974 * Check if we should update i_disksize 2975 * when write to the end of file but not require block allocation 2976 */ 2977 static int ext4_da_should_update_i_disksize(struct folio *folio, 2978 unsigned long offset) 2979 { 2980 struct buffer_head *bh; 2981 struct inode *inode = folio->mapping->host; 2982 unsigned int idx; 2983 int i; 2984 2985 bh = folio_buffers(folio); 2986 idx = offset >> inode->i_blkbits; 2987 2988 for (i = 0; i < idx; i++) 2989 bh = bh->b_this_page; 2990 2991 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2992 return 0; 2993 return 1; 2994 } 2995 2996 static int ext4_da_do_write_end(struct address_space *mapping, 2997 loff_t pos, unsigned len, unsigned copied, 2998 struct folio *folio) 2999 { 3000 struct inode *inode = mapping->host; 3001 loff_t old_size = inode->i_size; 3002 bool disksize_changed = false; 3003 loff_t new_i_size, zero_len = 0; 3004 handle_t *handle; 3005 3006 if (unlikely(!folio_buffers(folio))) { 3007 folio_unlock(folio); 3008 folio_put(folio); 3009 return -EIO; 3010 } 3011 /* 3012 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES 3013 * flag, which all that's needed to trigger page writeback. 3014 */ 3015 copied = block_write_end(NULL, mapping, pos, len, copied, 3016 folio, NULL); 3017 new_i_size = pos + copied; 3018 3019 /* 3020 * It's important to update i_size while still holding folio lock, 3021 * because folio writeout could otherwise come in and zero beyond 3022 * i_size. 3023 * 3024 * Since we are holding inode lock, we are sure i_disksize <= 3025 * i_size. We also know that if i_disksize < i_size, there are 3026 * delalloc writes pending in the range up to i_size. If the end of 3027 * the current write is <= i_size, there's no need to touch 3028 * i_disksize since writeback will push i_disksize up to i_size 3029 * eventually. If the end of the current write is > i_size and 3030 * inside an allocated block which ext4_da_should_update_i_disksize() 3031 * checked, we need to update i_disksize here as certain 3032 * ext4_writepages() paths not allocating blocks and update i_disksize. 3033 */ 3034 if (new_i_size > inode->i_size) { 3035 unsigned long end; 3036 3037 i_size_write(inode, new_i_size); 3038 end = (new_i_size - 1) & (PAGE_SIZE - 1); 3039 if (copied && ext4_da_should_update_i_disksize(folio, end)) { 3040 ext4_update_i_disksize(inode, new_i_size); 3041 disksize_changed = true; 3042 } 3043 } 3044 3045 folio_unlock(folio); 3046 folio_put(folio); 3047 3048 if (pos > old_size) { 3049 pagecache_isize_extended(inode, old_size, pos); 3050 zero_len = pos - old_size; 3051 } 3052 3053 if (!disksize_changed && !zero_len) 3054 return copied; 3055 3056 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3057 if (IS_ERR(handle)) 3058 return PTR_ERR(handle); 3059 if (zero_len) 3060 ext4_zero_partial_blocks(handle, inode, old_size, zero_len); 3061 ext4_mark_inode_dirty(handle, inode); 3062 ext4_journal_stop(handle); 3063 3064 return copied; 3065 } 3066 3067 static int ext4_da_write_end(struct file *file, 3068 struct address_space *mapping, 3069 loff_t pos, unsigned len, unsigned copied, 3070 struct folio *folio, void *fsdata) 3071 { 3072 struct inode *inode = mapping->host; 3073 int write_mode = (int)(unsigned long)fsdata; 3074 3075 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3076 return ext4_write_end(file, mapping, pos, 3077 len, copied, folio, fsdata); 3078 3079 trace_ext4_da_write_end(inode, pos, len, copied); 3080 3081 if (write_mode != CONVERT_INLINE_DATA && 3082 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3083 ext4_has_inline_data(inode)) 3084 return ext4_write_inline_data_end(inode, pos, len, copied, 3085 folio); 3086 3087 if (unlikely(copied < len) && !folio_test_uptodate(folio)) 3088 copied = 0; 3089 3090 return ext4_da_do_write_end(mapping, pos, len, copied, folio); 3091 } 3092 3093 /* 3094 * Force all delayed allocation blocks to be allocated for a given inode. 3095 */ 3096 int ext4_alloc_da_blocks(struct inode *inode) 3097 { 3098 trace_ext4_alloc_da_blocks(inode); 3099 3100 if (!EXT4_I(inode)->i_reserved_data_blocks) 3101 return 0; 3102 3103 /* 3104 * We do something simple for now. The filemap_flush() will 3105 * also start triggering a write of the data blocks, which is 3106 * not strictly speaking necessary (and for users of 3107 * laptop_mode, not even desirable). However, to do otherwise 3108 * would require replicating code paths in: 3109 * 3110 * ext4_writepages() -> 3111 * write_cache_pages() ---> (via passed in callback function) 3112 * __mpage_da_writepage() --> 3113 * mpage_add_bh_to_extent() 3114 * mpage_da_map_blocks() 3115 * 3116 * The problem is that write_cache_pages(), located in 3117 * mm/page-writeback.c, marks pages clean in preparation for 3118 * doing I/O, which is not desirable if we're not planning on 3119 * doing I/O at all. 3120 * 3121 * We could call write_cache_pages(), and then redirty all of 3122 * the pages by calling redirty_page_for_writepage() but that 3123 * would be ugly in the extreme. So instead we would need to 3124 * replicate parts of the code in the above functions, 3125 * simplifying them because we wouldn't actually intend to 3126 * write out the pages, but rather only collect contiguous 3127 * logical block extents, call the multi-block allocator, and 3128 * then update the buffer heads with the block allocations. 3129 * 3130 * For now, though, we'll cheat by calling filemap_flush(), 3131 * which will map the blocks, and start the I/O, but not 3132 * actually wait for the I/O to complete. 3133 */ 3134 return filemap_flush(inode->i_mapping); 3135 } 3136 3137 /* 3138 * bmap() is special. It gets used by applications such as lilo and by 3139 * the swapper to find the on-disk block of a specific piece of data. 3140 * 3141 * Naturally, this is dangerous if the block concerned is still in the 3142 * journal. If somebody makes a swapfile on an ext4 data-journaling 3143 * filesystem and enables swap, then they may get a nasty shock when the 3144 * data getting swapped to that swapfile suddenly gets overwritten by 3145 * the original zero's written out previously to the journal and 3146 * awaiting writeback in the kernel's buffer cache. 3147 * 3148 * So, if we see any bmap calls here on a modified, data-journaled file, 3149 * take extra steps to flush any blocks which might be in the cache. 3150 */ 3151 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3152 { 3153 struct inode *inode = mapping->host; 3154 sector_t ret = 0; 3155 3156 inode_lock_shared(inode); 3157 /* 3158 * We can get here for an inline file via the FIBMAP ioctl 3159 */ 3160 if (ext4_has_inline_data(inode)) 3161 goto out; 3162 3163 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3164 (test_opt(inode->i_sb, DELALLOC) || 3165 ext4_should_journal_data(inode))) { 3166 /* 3167 * With delalloc or journalled data we want to sync the file so 3168 * that we can make sure we allocate blocks for file and data 3169 * is in place for the user to see it 3170 */ 3171 filemap_write_and_wait(mapping); 3172 } 3173 3174 ret = iomap_bmap(mapping, block, &ext4_iomap_ops); 3175 3176 out: 3177 inode_unlock_shared(inode); 3178 return ret; 3179 } 3180 3181 static int ext4_read_folio(struct file *file, struct folio *folio) 3182 { 3183 int ret = -EAGAIN; 3184 struct inode *inode = folio->mapping->host; 3185 3186 trace_ext4_read_folio(inode, folio); 3187 3188 if (ext4_has_inline_data(inode)) 3189 ret = ext4_readpage_inline(inode, folio); 3190 3191 if (ret == -EAGAIN) 3192 return ext4_mpage_readpages(inode, NULL, folio); 3193 3194 return ret; 3195 } 3196 3197 static void ext4_readahead(struct readahead_control *rac) 3198 { 3199 struct inode *inode = rac->mapping->host; 3200 3201 /* If the file has inline data, no need to do readahead. */ 3202 if (ext4_has_inline_data(inode)) 3203 return; 3204 3205 ext4_mpage_readpages(inode, rac, NULL); 3206 } 3207 3208 static void ext4_invalidate_folio(struct folio *folio, size_t offset, 3209 size_t length) 3210 { 3211 trace_ext4_invalidate_folio(folio, offset, length); 3212 3213 /* No journalling happens on data buffers when this function is used */ 3214 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio))); 3215 3216 block_invalidate_folio(folio, offset, length); 3217 } 3218 3219 static int __ext4_journalled_invalidate_folio(struct folio *folio, 3220 size_t offset, size_t length) 3221 { 3222 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3223 3224 trace_ext4_journalled_invalidate_folio(folio, offset, length); 3225 3226 /* 3227 * If it's a full truncate we just forget about the pending dirtying 3228 */ 3229 if (offset == 0 && length == folio_size(folio)) 3230 folio_clear_checked(folio); 3231 3232 return jbd2_journal_invalidate_folio(journal, folio, offset, length); 3233 } 3234 3235 /* Wrapper for aops... */ 3236 static void ext4_journalled_invalidate_folio(struct folio *folio, 3237 size_t offset, 3238 size_t length) 3239 { 3240 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0); 3241 } 3242 3243 static bool ext4_release_folio(struct folio *folio, gfp_t wait) 3244 { 3245 struct inode *inode = folio->mapping->host; 3246 journal_t *journal = EXT4_JOURNAL(inode); 3247 3248 trace_ext4_release_folio(inode, folio); 3249 3250 /* Page has dirty journalled data -> cannot release */ 3251 if (folio_test_checked(folio)) 3252 return false; 3253 if (journal) 3254 return jbd2_journal_try_to_free_buffers(journal, folio); 3255 else 3256 return try_to_free_buffers(folio); 3257 } 3258 3259 static bool ext4_inode_datasync_dirty(struct inode *inode) 3260 { 3261 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3262 3263 if (journal) { 3264 if (jbd2_transaction_committed(journal, 3265 EXT4_I(inode)->i_datasync_tid)) 3266 return false; 3267 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3268 return !list_empty(&EXT4_I(inode)->i_fc_list); 3269 return true; 3270 } 3271 3272 /* Any metadata buffers to write? */ 3273 if (!list_empty(&inode->i_mapping->i_private_list)) 3274 return true; 3275 return inode->i_state & I_DIRTY_DATASYNC; 3276 } 3277 3278 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3279 struct ext4_map_blocks *map, loff_t offset, 3280 loff_t length, unsigned int flags) 3281 { 3282 u8 blkbits = inode->i_blkbits; 3283 3284 /* 3285 * Writes that span EOF might trigger an I/O size update on completion, 3286 * so consider them to be dirty for the purpose of O_DSYNC, even if 3287 * there is no other metadata changes being made or are pending. 3288 */ 3289 iomap->flags = 0; 3290 if (ext4_inode_datasync_dirty(inode) || 3291 offset + length > i_size_read(inode)) 3292 iomap->flags |= IOMAP_F_DIRTY; 3293 3294 if (map->m_flags & EXT4_MAP_NEW) 3295 iomap->flags |= IOMAP_F_NEW; 3296 3297 /* HW-offload atomics are always used */ 3298 if (flags & IOMAP_ATOMIC) 3299 iomap->flags |= IOMAP_F_ATOMIC_BIO; 3300 3301 if (flags & IOMAP_DAX) 3302 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3303 else 3304 iomap->bdev = inode->i_sb->s_bdev; 3305 iomap->offset = (u64) map->m_lblk << blkbits; 3306 iomap->length = (u64) map->m_len << blkbits; 3307 3308 if ((map->m_flags & EXT4_MAP_MAPPED) && 3309 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3310 iomap->flags |= IOMAP_F_MERGED; 3311 3312 /* 3313 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3314 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3315 * set. In order for any allocated unwritten extents to be converted 3316 * into written extents correctly within the ->end_io() handler, we 3317 * need to ensure that the iomap->type is set appropriately. Hence, the 3318 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3319 * been set first. 3320 */ 3321 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3322 iomap->type = IOMAP_UNWRITTEN; 3323 iomap->addr = (u64) map->m_pblk << blkbits; 3324 if (flags & IOMAP_DAX) 3325 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3326 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3327 iomap->type = IOMAP_MAPPED; 3328 iomap->addr = (u64) map->m_pblk << blkbits; 3329 if (flags & IOMAP_DAX) 3330 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3331 } else if (map->m_flags & EXT4_MAP_DELAYED) { 3332 iomap->type = IOMAP_DELALLOC; 3333 iomap->addr = IOMAP_NULL_ADDR; 3334 } else { 3335 iomap->type = IOMAP_HOLE; 3336 iomap->addr = IOMAP_NULL_ADDR; 3337 } 3338 } 3339 3340 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3341 unsigned int flags) 3342 { 3343 handle_t *handle; 3344 u8 blkbits = inode->i_blkbits; 3345 int ret, dio_credits, m_flags = 0, retries = 0; 3346 3347 /* 3348 * Trim the mapping request to the maximum value that we can map at 3349 * once for direct I/O. 3350 */ 3351 if (map->m_len > DIO_MAX_BLOCKS) 3352 map->m_len = DIO_MAX_BLOCKS; 3353 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3354 3355 retry: 3356 /* 3357 * Either we allocate blocks and then don't get an unwritten extent, so 3358 * in that case we have reserved enough credits. Or, the blocks are 3359 * already allocated and unwritten. In that case, the extent conversion 3360 * fits into the credits as well. 3361 */ 3362 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3363 if (IS_ERR(handle)) 3364 return PTR_ERR(handle); 3365 3366 /* 3367 * DAX and direct I/O are the only two operations that are currently 3368 * supported with IOMAP_WRITE. 3369 */ 3370 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT))); 3371 if (flags & IOMAP_DAX) 3372 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3373 /* 3374 * We use i_size instead of i_disksize here because delalloc writeback 3375 * can complete at any point during the I/O and subsequently push the 3376 * i_disksize out to i_size. This could be beyond where direct I/O is 3377 * happening and thus expose allocated blocks to direct I/O reads. 3378 */ 3379 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode)) 3380 m_flags = EXT4_GET_BLOCKS_CREATE; 3381 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3382 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3383 3384 ret = ext4_map_blocks(handle, inode, map, m_flags); 3385 3386 /* 3387 * We cannot fill holes in indirect tree based inodes as that could 3388 * expose stale data in the case of a crash. Use the magic error code 3389 * to fallback to buffered I/O. 3390 */ 3391 if (!m_flags && !ret) 3392 ret = -ENOTBLK; 3393 3394 ext4_journal_stop(handle); 3395 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3396 goto retry; 3397 3398 return ret; 3399 } 3400 3401 3402 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3403 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3404 { 3405 int ret; 3406 struct ext4_map_blocks map; 3407 u8 blkbits = inode->i_blkbits; 3408 3409 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3410 return -EINVAL; 3411 3412 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3413 return -ERANGE; 3414 3415 /* 3416 * Calculate the first and last logical blocks respectively. 3417 */ 3418 map.m_lblk = offset >> blkbits; 3419 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3420 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3421 3422 if (flags & IOMAP_WRITE) { 3423 /* 3424 * We check here if the blocks are already allocated, then we 3425 * don't need to start a journal txn and we can directly return 3426 * the mapping information. This could boost performance 3427 * especially in multi-threaded overwrite requests. 3428 */ 3429 if (offset + length <= i_size_read(inode)) { 3430 ret = ext4_map_blocks(NULL, inode, &map, 0); 3431 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED)) 3432 goto out; 3433 } 3434 ret = ext4_iomap_alloc(inode, &map, flags); 3435 } else { 3436 ret = ext4_map_blocks(NULL, inode, &map, 0); 3437 } 3438 3439 if (ret < 0) 3440 return ret; 3441 out: 3442 /* 3443 * When inline encryption is enabled, sometimes I/O to an encrypted file 3444 * has to be broken up to guarantee DUN contiguity. Handle this by 3445 * limiting the length of the mapping returned. 3446 */ 3447 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 3448 3449 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3450 3451 return 0; 3452 } 3453 3454 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3455 loff_t length, unsigned flags, struct iomap *iomap, 3456 struct iomap *srcmap) 3457 { 3458 int ret; 3459 3460 /* 3461 * Even for writes we don't need to allocate blocks, so just pretend 3462 * we are reading to save overhead of starting a transaction. 3463 */ 3464 flags &= ~IOMAP_WRITE; 3465 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3466 WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED); 3467 return ret; 3468 } 3469 3470 static inline bool ext4_want_directio_fallback(unsigned flags, ssize_t written) 3471 { 3472 /* must be a directio to fall back to buffered */ 3473 if ((flags & (IOMAP_WRITE | IOMAP_DIRECT)) != 3474 (IOMAP_WRITE | IOMAP_DIRECT)) 3475 return false; 3476 3477 /* atomic writes are all-or-nothing */ 3478 if (flags & IOMAP_ATOMIC) 3479 return false; 3480 3481 /* can only try again if we wrote nothing */ 3482 return written == 0; 3483 } 3484 3485 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3486 ssize_t written, unsigned flags, struct iomap *iomap) 3487 { 3488 /* 3489 * Check to see whether an error occurred while writing out the data to 3490 * the allocated blocks. If so, return the magic error code for 3491 * non-atomic write so that we fallback to buffered I/O and attempt to 3492 * complete the remainder of the I/O. 3493 * For non-atomic writes, any blocks that may have been 3494 * allocated in preparation for the direct I/O will be reused during 3495 * buffered I/O. For atomic write, we never fallback to buffered-io. 3496 */ 3497 if (ext4_want_directio_fallback(flags, written)) 3498 return -ENOTBLK; 3499 3500 return 0; 3501 } 3502 3503 const struct iomap_ops ext4_iomap_ops = { 3504 .iomap_begin = ext4_iomap_begin, 3505 .iomap_end = ext4_iomap_end, 3506 }; 3507 3508 const struct iomap_ops ext4_iomap_overwrite_ops = { 3509 .iomap_begin = ext4_iomap_overwrite_begin, 3510 .iomap_end = ext4_iomap_end, 3511 }; 3512 3513 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3514 loff_t length, unsigned int flags, 3515 struct iomap *iomap, struct iomap *srcmap) 3516 { 3517 int ret; 3518 struct ext4_map_blocks map; 3519 u8 blkbits = inode->i_blkbits; 3520 3521 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3522 return -EINVAL; 3523 3524 if (ext4_has_inline_data(inode)) { 3525 ret = ext4_inline_data_iomap(inode, iomap); 3526 if (ret != -EAGAIN) { 3527 if (ret == 0 && offset >= iomap->length) 3528 ret = -ENOENT; 3529 return ret; 3530 } 3531 } 3532 3533 /* 3534 * Calculate the first and last logical block respectively. 3535 */ 3536 map.m_lblk = offset >> blkbits; 3537 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3538 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3539 3540 /* 3541 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3542 * So handle it here itself instead of querying ext4_map_blocks(). 3543 * Since ext4_map_blocks() will warn about it and will return 3544 * -EIO error. 3545 */ 3546 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3547 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3548 3549 if (offset >= sbi->s_bitmap_maxbytes) { 3550 map.m_flags = 0; 3551 goto set_iomap; 3552 } 3553 } 3554 3555 ret = ext4_map_blocks(NULL, inode, &map, 0); 3556 if (ret < 0) 3557 return ret; 3558 set_iomap: 3559 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3560 3561 return 0; 3562 } 3563 3564 const struct iomap_ops ext4_iomap_report_ops = { 3565 .iomap_begin = ext4_iomap_begin_report, 3566 }; 3567 3568 /* 3569 * For data=journal mode, folio should be marked dirty only when it was 3570 * writeably mapped. When that happens, it was already attached to the 3571 * transaction and marked as jbddirty (we take care of this in 3572 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings 3573 * so we should have nothing to do here, except for the case when someone 3574 * had the page pinned and dirtied the page through this pin (e.g. by doing 3575 * direct IO to it). In that case we'd need to attach buffers here to the 3576 * transaction but we cannot due to lock ordering. We cannot just dirty the 3577 * folio and leave attached buffers clean, because the buffers' dirty state is 3578 * "definitive". We cannot just set the buffers dirty or jbddirty because all 3579 * the journalling code will explode. So what we do is to mark the folio 3580 * "pending dirty" and next time ext4_writepages() is called, attach buffers 3581 * to the transaction appropriately. 3582 */ 3583 static bool ext4_journalled_dirty_folio(struct address_space *mapping, 3584 struct folio *folio) 3585 { 3586 WARN_ON_ONCE(!folio_buffers(folio)); 3587 if (folio_maybe_dma_pinned(folio)) 3588 folio_set_checked(folio); 3589 return filemap_dirty_folio(mapping, folio); 3590 } 3591 3592 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio) 3593 { 3594 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio)); 3595 WARN_ON_ONCE(!folio_buffers(folio)); 3596 return block_dirty_folio(mapping, folio); 3597 } 3598 3599 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3600 struct file *file, sector_t *span) 3601 { 3602 return iomap_swapfile_activate(sis, file, span, 3603 &ext4_iomap_report_ops); 3604 } 3605 3606 static const struct address_space_operations ext4_aops = { 3607 .read_folio = ext4_read_folio, 3608 .readahead = ext4_readahead, 3609 .writepages = ext4_writepages, 3610 .write_begin = ext4_write_begin, 3611 .write_end = ext4_write_end, 3612 .dirty_folio = ext4_dirty_folio, 3613 .bmap = ext4_bmap, 3614 .invalidate_folio = ext4_invalidate_folio, 3615 .release_folio = ext4_release_folio, 3616 .migrate_folio = buffer_migrate_folio, 3617 .is_partially_uptodate = block_is_partially_uptodate, 3618 .error_remove_folio = generic_error_remove_folio, 3619 .swap_activate = ext4_iomap_swap_activate, 3620 }; 3621 3622 static const struct address_space_operations ext4_journalled_aops = { 3623 .read_folio = ext4_read_folio, 3624 .readahead = ext4_readahead, 3625 .writepages = ext4_writepages, 3626 .write_begin = ext4_write_begin, 3627 .write_end = ext4_journalled_write_end, 3628 .dirty_folio = ext4_journalled_dirty_folio, 3629 .bmap = ext4_bmap, 3630 .invalidate_folio = ext4_journalled_invalidate_folio, 3631 .release_folio = ext4_release_folio, 3632 .migrate_folio = buffer_migrate_folio_norefs, 3633 .is_partially_uptodate = block_is_partially_uptodate, 3634 .error_remove_folio = generic_error_remove_folio, 3635 .swap_activate = ext4_iomap_swap_activate, 3636 }; 3637 3638 static const struct address_space_operations ext4_da_aops = { 3639 .read_folio = ext4_read_folio, 3640 .readahead = ext4_readahead, 3641 .writepages = ext4_writepages, 3642 .write_begin = ext4_da_write_begin, 3643 .write_end = ext4_da_write_end, 3644 .dirty_folio = ext4_dirty_folio, 3645 .bmap = ext4_bmap, 3646 .invalidate_folio = ext4_invalidate_folio, 3647 .release_folio = ext4_release_folio, 3648 .migrate_folio = buffer_migrate_folio, 3649 .is_partially_uptodate = block_is_partially_uptodate, 3650 .error_remove_folio = generic_error_remove_folio, 3651 .swap_activate = ext4_iomap_swap_activate, 3652 }; 3653 3654 static const struct address_space_operations ext4_dax_aops = { 3655 .writepages = ext4_dax_writepages, 3656 .dirty_folio = noop_dirty_folio, 3657 .bmap = ext4_bmap, 3658 .swap_activate = ext4_iomap_swap_activate, 3659 }; 3660 3661 void ext4_set_aops(struct inode *inode) 3662 { 3663 switch (ext4_inode_journal_mode(inode)) { 3664 case EXT4_INODE_ORDERED_DATA_MODE: 3665 case EXT4_INODE_WRITEBACK_DATA_MODE: 3666 break; 3667 case EXT4_INODE_JOURNAL_DATA_MODE: 3668 inode->i_mapping->a_ops = &ext4_journalled_aops; 3669 return; 3670 default: 3671 BUG(); 3672 } 3673 if (IS_DAX(inode)) 3674 inode->i_mapping->a_ops = &ext4_dax_aops; 3675 else if (test_opt(inode->i_sb, DELALLOC)) 3676 inode->i_mapping->a_ops = &ext4_da_aops; 3677 else 3678 inode->i_mapping->a_ops = &ext4_aops; 3679 } 3680 3681 /* 3682 * Here we can't skip an unwritten buffer even though it usually reads zero 3683 * because it might have data in pagecache (eg, if called from ext4_zero_range, 3684 * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a 3685 * racing writeback can come later and flush the stale pagecache to disk. 3686 */ 3687 static int __ext4_block_zero_page_range(handle_t *handle, 3688 struct address_space *mapping, loff_t from, loff_t length) 3689 { 3690 ext4_fsblk_t index = from >> PAGE_SHIFT; 3691 unsigned offset = from & (PAGE_SIZE-1); 3692 unsigned blocksize, pos; 3693 ext4_lblk_t iblock; 3694 struct inode *inode = mapping->host; 3695 struct buffer_head *bh; 3696 struct folio *folio; 3697 int err = 0; 3698 3699 folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT, 3700 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 3701 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3702 if (IS_ERR(folio)) 3703 return PTR_ERR(folio); 3704 3705 blocksize = inode->i_sb->s_blocksize; 3706 3707 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3708 3709 bh = folio_buffers(folio); 3710 if (!bh) 3711 bh = create_empty_buffers(folio, blocksize, 0); 3712 3713 /* Find the buffer that contains "offset" */ 3714 pos = blocksize; 3715 while (offset >= pos) { 3716 bh = bh->b_this_page; 3717 iblock++; 3718 pos += blocksize; 3719 } 3720 if (buffer_freed(bh)) { 3721 BUFFER_TRACE(bh, "freed: skip"); 3722 goto unlock; 3723 } 3724 if (!buffer_mapped(bh)) { 3725 BUFFER_TRACE(bh, "unmapped"); 3726 ext4_get_block(inode, iblock, bh, 0); 3727 /* unmapped? It's a hole - nothing to do */ 3728 if (!buffer_mapped(bh)) { 3729 BUFFER_TRACE(bh, "still unmapped"); 3730 goto unlock; 3731 } 3732 } 3733 3734 /* Ok, it's mapped. Make sure it's up-to-date */ 3735 if (folio_test_uptodate(folio)) 3736 set_buffer_uptodate(bh); 3737 3738 if (!buffer_uptodate(bh)) { 3739 err = ext4_read_bh_lock(bh, 0, true); 3740 if (err) 3741 goto unlock; 3742 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 3743 /* We expect the key to be set. */ 3744 BUG_ON(!fscrypt_has_encryption_key(inode)); 3745 err = fscrypt_decrypt_pagecache_blocks(folio, 3746 blocksize, 3747 bh_offset(bh)); 3748 if (err) { 3749 clear_buffer_uptodate(bh); 3750 goto unlock; 3751 } 3752 } 3753 } 3754 if (ext4_should_journal_data(inode)) { 3755 BUFFER_TRACE(bh, "get write access"); 3756 err = ext4_journal_get_write_access(handle, inode->i_sb, bh, 3757 EXT4_JTR_NONE); 3758 if (err) 3759 goto unlock; 3760 } 3761 folio_zero_range(folio, offset, length); 3762 BUFFER_TRACE(bh, "zeroed end of block"); 3763 3764 if (ext4_should_journal_data(inode)) { 3765 err = ext4_dirty_journalled_data(handle, bh); 3766 } else { 3767 err = 0; 3768 mark_buffer_dirty(bh); 3769 if (ext4_should_order_data(inode)) 3770 err = ext4_jbd2_inode_add_write(handle, inode, from, 3771 length); 3772 } 3773 3774 unlock: 3775 folio_unlock(folio); 3776 folio_put(folio); 3777 return err; 3778 } 3779 3780 /* 3781 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3782 * starting from file offset 'from'. The range to be zero'd must 3783 * be contained with in one block. If the specified range exceeds 3784 * the end of the block it will be shortened to end of the block 3785 * that corresponds to 'from' 3786 */ 3787 static int ext4_block_zero_page_range(handle_t *handle, 3788 struct address_space *mapping, loff_t from, loff_t length) 3789 { 3790 struct inode *inode = mapping->host; 3791 unsigned offset = from & (PAGE_SIZE-1); 3792 unsigned blocksize = inode->i_sb->s_blocksize; 3793 unsigned max = blocksize - (offset & (blocksize - 1)); 3794 3795 /* 3796 * correct length if it does not fall between 3797 * 'from' and the end of the block 3798 */ 3799 if (length > max || length < 0) 3800 length = max; 3801 3802 if (IS_DAX(inode)) { 3803 return dax_zero_range(inode, from, length, NULL, 3804 &ext4_iomap_ops); 3805 } 3806 return __ext4_block_zero_page_range(handle, mapping, from, length); 3807 } 3808 3809 /* 3810 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3811 * up to the end of the block which corresponds to `from'. 3812 * This required during truncate. We need to physically zero the tail end 3813 * of that block so it doesn't yield old data if the file is later grown. 3814 */ 3815 static int ext4_block_truncate_page(handle_t *handle, 3816 struct address_space *mapping, loff_t from) 3817 { 3818 unsigned offset = from & (PAGE_SIZE-1); 3819 unsigned length; 3820 unsigned blocksize; 3821 struct inode *inode = mapping->host; 3822 3823 /* If we are processing an encrypted inode during orphan list handling */ 3824 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3825 return 0; 3826 3827 blocksize = inode->i_sb->s_blocksize; 3828 length = blocksize - (offset & (blocksize - 1)); 3829 3830 return ext4_block_zero_page_range(handle, mapping, from, length); 3831 } 3832 3833 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3834 loff_t lstart, loff_t length) 3835 { 3836 struct super_block *sb = inode->i_sb; 3837 struct address_space *mapping = inode->i_mapping; 3838 unsigned partial_start, partial_end; 3839 ext4_fsblk_t start, end; 3840 loff_t byte_end = (lstart + length - 1); 3841 int err = 0; 3842 3843 partial_start = lstart & (sb->s_blocksize - 1); 3844 partial_end = byte_end & (sb->s_blocksize - 1); 3845 3846 start = lstart >> sb->s_blocksize_bits; 3847 end = byte_end >> sb->s_blocksize_bits; 3848 3849 /* Handle partial zero within the single block */ 3850 if (start == end && 3851 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3852 err = ext4_block_zero_page_range(handle, mapping, 3853 lstart, length); 3854 return err; 3855 } 3856 /* Handle partial zero out on the start of the range */ 3857 if (partial_start) { 3858 err = ext4_block_zero_page_range(handle, mapping, 3859 lstart, sb->s_blocksize); 3860 if (err) 3861 return err; 3862 } 3863 /* Handle partial zero out on the end of the range */ 3864 if (partial_end != sb->s_blocksize - 1) 3865 err = ext4_block_zero_page_range(handle, mapping, 3866 byte_end - partial_end, 3867 partial_end + 1); 3868 return err; 3869 } 3870 3871 int ext4_can_truncate(struct inode *inode) 3872 { 3873 if (S_ISREG(inode->i_mode)) 3874 return 1; 3875 if (S_ISDIR(inode->i_mode)) 3876 return 1; 3877 if (S_ISLNK(inode->i_mode)) 3878 return !ext4_inode_is_fast_symlink(inode); 3879 return 0; 3880 } 3881 3882 /* 3883 * We have to make sure i_disksize gets properly updated before we truncate 3884 * page cache due to hole punching or zero range. Otherwise i_disksize update 3885 * can get lost as it may have been postponed to submission of writeback but 3886 * that will never happen after we truncate page cache. 3887 */ 3888 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3889 loff_t len) 3890 { 3891 handle_t *handle; 3892 int ret; 3893 3894 loff_t size = i_size_read(inode); 3895 3896 WARN_ON(!inode_is_locked(inode)); 3897 if (offset > size || offset + len < size) 3898 return 0; 3899 3900 if (EXT4_I(inode)->i_disksize >= size) 3901 return 0; 3902 3903 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3904 if (IS_ERR(handle)) 3905 return PTR_ERR(handle); 3906 ext4_update_i_disksize(inode, size); 3907 ret = ext4_mark_inode_dirty(handle, inode); 3908 ext4_journal_stop(handle); 3909 3910 return ret; 3911 } 3912 3913 static inline void ext4_truncate_folio(struct inode *inode, 3914 loff_t start, loff_t end) 3915 { 3916 unsigned long blocksize = i_blocksize(inode); 3917 struct folio *folio; 3918 3919 /* Nothing to be done if no complete block needs to be truncated. */ 3920 if (round_up(start, blocksize) >= round_down(end, blocksize)) 3921 return; 3922 3923 folio = filemap_lock_folio(inode->i_mapping, start >> PAGE_SHIFT); 3924 if (IS_ERR(folio)) 3925 return; 3926 3927 if (folio_mkclean(folio)) 3928 folio_mark_dirty(folio); 3929 folio_unlock(folio); 3930 folio_put(folio); 3931 } 3932 3933 int ext4_truncate_page_cache_block_range(struct inode *inode, 3934 loff_t start, loff_t end) 3935 { 3936 unsigned long blocksize = i_blocksize(inode); 3937 int ret; 3938 3939 /* 3940 * For journalled data we need to write (and checkpoint) pages 3941 * before discarding page cache to avoid inconsitent data on disk 3942 * in case of crash before freeing or unwritten converting trans 3943 * is committed. 3944 */ 3945 if (ext4_should_journal_data(inode)) { 3946 ret = filemap_write_and_wait_range(inode->i_mapping, start, 3947 end - 1); 3948 if (ret) 3949 return ret; 3950 goto truncate_pagecache; 3951 } 3952 3953 /* 3954 * If the block size is less than the page size, the file's mapped 3955 * blocks within one page could be freed or converted to unwritten. 3956 * So it's necessary to remove writable userspace mappings, and then 3957 * ext4_page_mkwrite() can be called during subsequent write access 3958 * to these partial folios. 3959 */ 3960 if (!IS_ALIGNED(start | end, PAGE_SIZE) && 3961 blocksize < PAGE_SIZE && start < inode->i_size) { 3962 loff_t page_boundary = round_up(start, PAGE_SIZE); 3963 3964 ext4_truncate_folio(inode, start, min(page_boundary, end)); 3965 if (end > page_boundary) 3966 ext4_truncate_folio(inode, 3967 round_down(end, PAGE_SIZE), end); 3968 } 3969 3970 truncate_pagecache: 3971 truncate_pagecache_range(inode, start, end - 1); 3972 return 0; 3973 } 3974 3975 static void ext4_wait_dax_page(struct inode *inode) 3976 { 3977 filemap_invalidate_unlock(inode->i_mapping); 3978 schedule(); 3979 filemap_invalidate_lock(inode->i_mapping); 3980 } 3981 3982 int ext4_break_layouts(struct inode *inode) 3983 { 3984 struct page *page; 3985 int error; 3986 3987 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock))) 3988 return -EINVAL; 3989 3990 do { 3991 page = dax_layout_busy_page(inode->i_mapping); 3992 if (!page) 3993 return 0; 3994 3995 error = ___wait_var_event(&page->_refcount, 3996 atomic_read(&page->_refcount) == 1, 3997 TASK_INTERRUPTIBLE, 0, 0, 3998 ext4_wait_dax_page(inode)); 3999 } while (error == 0); 4000 4001 return error; 4002 } 4003 4004 /* 4005 * ext4_punch_hole: punches a hole in a file by releasing the blocks 4006 * associated with the given offset and length 4007 * 4008 * @inode: File inode 4009 * @offset: The offset where the hole will begin 4010 * @len: The length of the hole 4011 * 4012 * Returns: 0 on success or negative on failure 4013 */ 4014 4015 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 4016 { 4017 struct inode *inode = file_inode(file); 4018 struct super_block *sb = inode->i_sb; 4019 ext4_lblk_t start_lblk, end_lblk; 4020 loff_t max_end = EXT4_SB(sb)->s_bitmap_maxbytes - sb->s_blocksize; 4021 loff_t end = offset + length; 4022 handle_t *handle; 4023 unsigned int credits; 4024 int ret; 4025 4026 trace_ext4_punch_hole(inode, offset, length, 0); 4027 WARN_ON_ONCE(!inode_is_locked(inode)); 4028 4029 /* No need to punch hole beyond i_size */ 4030 if (offset >= inode->i_size) 4031 return 0; 4032 4033 /* 4034 * If the hole extends beyond i_size, set the hole to end after 4035 * the page that contains i_size, and also make sure that the hole 4036 * within one block before last range. 4037 */ 4038 if (end > inode->i_size) 4039 end = round_up(inode->i_size, PAGE_SIZE); 4040 if (end > max_end) 4041 end = max_end; 4042 length = end - offset; 4043 4044 /* 4045 * Attach jinode to inode for jbd2 if we do any zeroing of partial 4046 * block. 4047 */ 4048 if (!IS_ALIGNED(offset | end, sb->s_blocksize)) { 4049 ret = ext4_inode_attach_jinode(inode); 4050 if (ret < 0) 4051 return ret; 4052 } 4053 4054 4055 ret = ext4_update_disksize_before_punch(inode, offset, length); 4056 if (ret) 4057 return ret; 4058 4059 /* Now release the pages and zero block aligned part of pages*/ 4060 ret = ext4_truncate_page_cache_block_range(inode, offset, end); 4061 if (ret) 4062 return ret; 4063 4064 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4065 credits = ext4_writepage_trans_blocks(inode); 4066 else 4067 credits = ext4_blocks_for_truncate(inode); 4068 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4069 if (IS_ERR(handle)) { 4070 ret = PTR_ERR(handle); 4071 ext4_std_error(sb, ret); 4072 return ret; 4073 } 4074 4075 ret = ext4_zero_partial_blocks(handle, inode, offset, length); 4076 if (ret) 4077 goto out_handle; 4078 4079 /* If there are blocks to remove, do it */ 4080 start_lblk = EXT4_B_TO_LBLK(inode, offset); 4081 end_lblk = end >> inode->i_blkbits; 4082 4083 if (end_lblk > start_lblk) { 4084 ext4_lblk_t hole_len = end_lblk - start_lblk; 4085 4086 down_write(&EXT4_I(inode)->i_data_sem); 4087 ext4_discard_preallocations(inode); 4088 4089 ext4_es_remove_extent(inode, start_lblk, hole_len); 4090 4091 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4092 ret = ext4_ext_remove_space(inode, start_lblk, 4093 end_lblk - 1); 4094 else 4095 ret = ext4_ind_remove_space(handle, inode, start_lblk, 4096 end_lblk); 4097 if (ret) { 4098 up_write(&EXT4_I(inode)->i_data_sem); 4099 goto out_handle; 4100 } 4101 4102 ext4_es_insert_extent(inode, start_lblk, hole_len, ~0, 4103 EXTENT_STATUS_HOLE, 0); 4104 up_write(&EXT4_I(inode)->i_data_sem); 4105 } 4106 ext4_fc_track_range(handle, inode, start_lblk, end_lblk); 4107 4108 ret = ext4_mark_inode_dirty(handle, inode); 4109 if (unlikely(ret)) 4110 goto out_handle; 4111 4112 ext4_update_inode_fsync_trans(handle, inode, 1); 4113 if (IS_SYNC(inode)) 4114 ext4_handle_sync(handle); 4115 out_handle: 4116 ext4_journal_stop(handle); 4117 return ret; 4118 } 4119 4120 int ext4_inode_attach_jinode(struct inode *inode) 4121 { 4122 struct ext4_inode_info *ei = EXT4_I(inode); 4123 struct jbd2_inode *jinode; 4124 4125 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4126 return 0; 4127 4128 jinode = jbd2_alloc_inode(GFP_KERNEL); 4129 spin_lock(&inode->i_lock); 4130 if (!ei->jinode) { 4131 if (!jinode) { 4132 spin_unlock(&inode->i_lock); 4133 return -ENOMEM; 4134 } 4135 ei->jinode = jinode; 4136 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4137 jinode = NULL; 4138 } 4139 spin_unlock(&inode->i_lock); 4140 if (unlikely(jinode != NULL)) 4141 jbd2_free_inode(jinode); 4142 return 0; 4143 } 4144 4145 /* 4146 * ext4_truncate() 4147 * 4148 * We block out ext4_get_block() block instantiations across the entire 4149 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4150 * simultaneously on behalf of the same inode. 4151 * 4152 * As we work through the truncate and commit bits of it to the journal there 4153 * is one core, guiding principle: the file's tree must always be consistent on 4154 * disk. We must be able to restart the truncate after a crash. 4155 * 4156 * The file's tree may be transiently inconsistent in memory (although it 4157 * probably isn't), but whenever we close off and commit a journal transaction, 4158 * the contents of (the filesystem + the journal) must be consistent and 4159 * restartable. It's pretty simple, really: bottom up, right to left (although 4160 * left-to-right works OK too). 4161 * 4162 * Note that at recovery time, journal replay occurs *before* the restart of 4163 * truncate against the orphan inode list. 4164 * 4165 * The committed inode has the new, desired i_size (which is the same as 4166 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4167 * that this inode's truncate did not complete and it will again call 4168 * ext4_truncate() to have another go. So there will be instantiated blocks 4169 * to the right of the truncation point in a crashed ext4 filesystem. But 4170 * that's fine - as long as they are linked from the inode, the post-crash 4171 * ext4_truncate() run will find them and release them. 4172 */ 4173 int ext4_truncate(struct inode *inode) 4174 { 4175 struct ext4_inode_info *ei = EXT4_I(inode); 4176 unsigned int credits; 4177 int err = 0, err2; 4178 handle_t *handle; 4179 struct address_space *mapping = inode->i_mapping; 4180 4181 /* 4182 * There is a possibility that we're either freeing the inode 4183 * or it's a completely new inode. In those cases we might not 4184 * have i_rwsem locked because it's not necessary. 4185 */ 4186 if (!(inode->i_state & (I_NEW|I_FREEING))) 4187 WARN_ON(!inode_is_locked(inode)); 4188 trace_ext4_truncate_enter(inode); 4189 4190 if (!ext4_can_truncate(inode)) 4191 goto out_trace; 4192 4193 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4194 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4195 4196 if (ext4_has_inline_data(inode)) { 4197 int has_inline = 1; 4198 4199 err = ext4_inline_data_truncate(inode, &has_inline); 4200 if (err || has_inline) 4201 goto out_trace; 4202 } 4203 4204 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4205 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4206 err = ext4_inode_attach_jinode(inode); 4207 if (err) 4208 goto out_trace; 4209 } 4210 4211 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4212 credits = ext4_writepage_trans_blocks(inode); 4213 else 4214 credits = ext4_blocks_for_truncate(inode); 4215 4216 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4217 if (IS_ERR(handle)) { 4218 err = PTR_ERR(handle); 4219 goto out_trace; 4220 } 4221 4222 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4223 ext4_block_truncate_page(handle, mapping, inode->i_size); 4224 4225 /* 4226 * We add the inode to the orphan list, so that if this 4227 * truncate spans multiple transactions, and we crash, we will 4228 * resume the truncate when the filesystem recovers. It also 4229 * marks the inode dirty, to catch the new size. 4230 * 4231 * Implication: the file must always be in a sane, consistent 4232 * truncatable state while each transaction commits. 4233 */ 4234 err = ext4_orphan_add(handle, inode); 4235 if (err) 4236 goto out_stop; 4237 4238 down_write(&EXT4_I(inode)->i_data_sem); 4239 4240 ext4_discard_preallocations(inode); 4241 4242 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4243 err = ext4_ext_truncate(handle, inode); 4244 else 4245 ext4_ind_truncate(handle, inode); 4246 4247 up_write(&ei->i_data_sem); 4248 if (err) 4249 goto out_stop; 4250 4251 if (IS_SYNC(inode)) 4252 ext4_handle_sync(handle); 4253 4254 out_stop: 4255 /* 4256 * If this was a simple ftruncate() and the file will remain alive, 4257 * then we need to clear up the orphan record which we created above. 4258 * However, if this was a real unlink then we were called by 4259 * ext4_evict_inode(), and we allow that function to clean up the 4260 * orphan info for us. 4261 */ 4262 if (inode->i_nlink) 4263 ext4_orphan_del(handle, inode); 4264 4265 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 4266 err2 = ext4_mark_inode_dirty(handle, inode); 4267 if (unlikely(err2 && !err)) 4268 err = err2; 4269 ext4_journal_stop(handle); 4270 4271 out_trace: 4272 trace_ext4_truncate_exit(inode); 4273 return err; 4274 } 4275 4276 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4277 { 4278 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4279 return inode_peek_iversion_raw(inode); 4280 else 4281 return inode_peek_iversion(inode); 4282 } 4283 4284 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode, 4285 struct ext4_inode_info *ei) 4286 { 4287 struct inode *inode = &(ei->vfs_inode); 4288 u64 i_blocks = READ_ONCE(inode->i_blocks); 4289 struct super_block *sb = inode->i_sb; 4290 4291 if (i_blocks <= ~0U) { 4292 /* 4293 * i_blocks can be represented in a 32 bit variable 4294 * as multiple of 512 bytes 4295 */ 4296 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4297 raw_inode->i_blocks_high = 0; 4298 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4299 return 0; 4300 } 4301 4302 /* 4303 * This should never happen since sb->s_maxbytes should not have 4304 * allowed this, sb->s_maxbytes was set according to the huge_file 4305 * feature in ext4_fill_super(). 4306 */ 4307 if (!ext4_has_feature_huge_file(sb)) 4308 return -EFSCORRUPTED; 4309 4310 if (i_blocks <= 0xffffffffffffULL) { 4311 /* 4312 * i_blocks can be represented in a 48 bit variable 4313 * as multiple of 512 bytes 4314 */ 4315 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4316 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4317 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4318 } else { 4319 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4320 /* i_block is stored in file system block size */ 4321 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4322 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4323 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4324 } 4325 return 0; 4326 } 4327 4328 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode) 4329 { 4330 struct ext4_inode_info *ei = EXT4_I(inode); 4331 uid_t i_uid; 4332 gid_t i_gid; 4333 projid_t i_projid; 4334 int block; 4335 int err; 4336 4337 err = ext4_inode_blocks_set(raw_inode, ei); 4338 4339 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4340 i_uid = i_uid_read(inode); 4341 i_gid = i_gid_read(inode); 4342 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4343 if (!(test_opt(inode->i_sb, NO_UID32))) { 4344 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4345 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4346 /* 4347 * Fix up interoperability with old kernels. Otherwise, 4348 * old inodes get re-used with the upper 16 bits of the 4349 * uid/gid intact. 4350 */ 4351 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 4352 raw_inode->i_uid_high = 0; 4353 raw_inode->i_gid_high = 0; 4354 } else { 4355 raw_inode->i_uid_high = 4356 cpu_to_le16(high_16_bits(i_uid)); 4357 raw_inode->i_gid_high = 4358 cpu_to_le16(high_16_bits(i_gid)); 4359 } 4360 } else { 4361 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4362 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4363 raw_inode->i_uid_high = 0; 4364 raw_inode->i_gid_high = 0; 4365 } 4366 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4367 4368 EXT4_INODE_SET_CTIME(inode, raw_inode); 4369 EXT4_INODE_SET_MTIME(inode, raw_inode); 4370 EXT4_INODE_SET_ATIME(inode, raw_inode); 4371 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4372 4373 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4374 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4375 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4376 raw_inode->i_file_acl_high = 4377 cpu_to_le16(ei->i_file_acl >> 32); 4378 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4379 ext4_isize_set(raw_inode, ei->i_disksize); 4380 4381 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4382 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4383 if (old_valid_dev(inode->i_rdev)) { 4384 raw_inode->i_block[0] = 4385 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4386 raw_inode->i_block[1] = 0; 4387 } else { 4388 raw_inode->i_block[0] = 0; 4389 raw_inode->i_block[1] = 4390 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4391 raw_inode->i_block[2] = 0; 4392 } 4393 } else if (!ext4_has_inline_data(inode)) { 4394 for (block = 0; block < EXT4_N_BLOCKS; block++) 4395 raw_inode->i_block[block] = ei->i_data[block]; 4396 } 4397 4398 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4399 u64 ivers = ext4_inode_peek_iversion(inode); 4400 4401 raw_inode->i_disk_version = cpu_to_le32(ivers); 4402 if (ei->i_extra_isize) { 4403 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4404 raw_inode->i_version_hi = 4405 cpu_to_le32(ivers >> 32); 4406 raw_inode->i_extra_isize = 4407 cpu_to_le16(ei->i_extra_isize); 4408 } 4409 } 4410 4411 if (i_projid != EXT4_DEF_PROJID && 4412 !ext4_has_feature_project(inode->i_sb)) 4413 err = err ?: -EFSCORRUPTED; 4414 4415 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4416 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4417 raw_inode->i_projid = cpu_to_le32(i_projid); 4418 4419 ext4_inode_csum_set(inode, raw_inode, ei); 4420 return err; 4421 } 4422 4423 /* 4424 * ext4_get_inode_loc returns with an extra refcount against the inode's 4425 * underlying buffer_head on success. If we pass 'inode' and it does not 4426 * have in-inode xattr, we have all inode data in memory that is needed 4427 * to recreate the on-disk version of this inode. 4428 */ 4429 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4430 struct inode *inode, struct ext4_iloc *iloc, 4431 ext4_fsblk_t *ret_block) 4432 { 4433 struct ext4_group_desc *gdp; 4434 struct buffer_head *bh; 4435 ext4_fsblk_t block; 4436 struct blk_plug plug; 4437 int inodes_per_block, inode_offset; 4438 4439 iloc->bh = NULL; 4440 if (ino < EXT4_ROOT_INO || 4441 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4442 return -EFSCORRUPTED; 4443 4444 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4445 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4446 if (!gdp) 4447 return -EIO; 4448 4449 /* 4450 * Figure out the offset within the block group inode table 4451 */ 4452 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4453 inode_offset = ((ino - 1) % 4454 EXT4_INODES_PER_GROUP(sb)); 4455 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4456 4457 block = ext4_inode_table(sb, gdp); 4458 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) || 4459 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) { 4460 ext4_error(sb, "Invalid inode table block %llu in " 4461 "block_group %u", block, iloc->block_group); 4462 return -EFSCORRUPTED; 4463 } 4464 block += (inode_offset / inodes_per_block); 4465 4466 bh = sb_getblk(sb, block); 4467 if (unlikely(!bh)) 4468 return -ENOMEM; 4469 if (ext4_buffer_uptodate(bh)) 4470 goto has_buffer; 4471 4472 lock_buffer(bh); 4473 if (ext4_buffer_uptodate(bh)) { 4474 /* Someone brought it uptodate while we waited */ 4475 unlock_buffer(bh); 4476 goto has_buffer; 4477 } 4478 4479 /* 4480 * If we have all information of the inode in memory and this 4481 * is the only valid inode in the block, we need not read the 4482 * block. 4483 */ 4484 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4485 struct buffer_head *bitmap_bh; 4486 int i, start; 4487 4488 start = inode_offset & ~(inodes_per_block - 1); 4489 4490 /* Is the inode bitmap in cache? */ 4491 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4492 if (unlikely(!bitmap_bh)) 4493 goto make_io; 4494 4495 /* 4496 * If the inode bitmap isn't in cache then the 4497 * optimisation may end up performing two reads instead 4498 * of one, so skip it. 4499 */ 4500 if (!buffer_uptodate(bitmap_bh)) { 4501 brelse(bitmap_bh); 4502 goto make_io; 4503 } 4504 for (i = start; i < start + inodes_per_block; i++) { 4505 if (i == inode_offset) 4506 continue; 4507 if (ext4_test_bit(i, bitmap_bh->b_data)) 4508 break; 4509 } 4510 brelse(bitmap_bh); 4511 if (i == start + inodes_per_block) { 4512 struct ext4_inode *raw_inode = 4513 (struct ext4_inode *) (bh->b_data + iloc->offset); 4514 4515 /* all other inodes are free, so skip I/O */ 4516 memset(bh->b_data, 0, bh->b_size); 4517 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4518 ext4_fill_raw_inode(inode, raw_inode); 4519 set_buffer_uptodate(bh); 4520 unlock_buffer(bh); 4521 goto has_buffer; 4522 } 4523 } 4524 4525 make_io: 4526 /* 4527 * If we need to do any I/O, try to pre-readahead extra 4528 * blocks from the inode table. 4529 */ 4530 blk_start_plug(&plug); 4531 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4532 ext4_fsblk_t b, end, table; 4533 unsigned num; 4534 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4535 4536 table = ext4_inode_table(sb, gdp); 4537 /* s_inode_readahead_blks is always a power of 2 */ 4538 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4539 if (table > b) 4540 b = table; 4541 end = b + ra_blks; 4542 num = EXT4_INODES_PER_GROUP(sb); 4543 if (ext4_has_group_desc_csum(sb)) 4544 num -= ext4_itable_unused_count(sb, gdp); 4545 table += num / inodes_per_block; 4546 if (end > table) 4547 end = table; 4548 while (b <= end) 4549 ext4_sb_breadahead_unmovable(sb, b++); 4550 } 4551 4552 /* 4553 * There are other valid inodes in the buffer, this inode 4554 * has in-inode xattrs, or we don't have this inode in memory. 4555 * Read the block from disk. 4556 */ 4557 trace_ext4_load_inode(sb, ino); 4558 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL, 4559 ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO)); 4560 blk_finish_plug(&plug); 4561 wait_on_buffer(bh); 4562 if (!buffer_uptodate(bh)) { 4563 if (ret_block) 4564 *ret_block = block; 4565 brelse(bh); 4566 return -EIO; 4567 } 4568 has_buffer: 4569 iloc->bh = bh; 4570 return 0; 4571 } 4572 4573 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4574 struct ext4_iloc *iloc) 4575 { 4576 ext4_fsblk_t err_blk = 0; 4577 int ret; 4578 4579 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc, 4580 &err_blk); 4581 4582 if (ret == -EIO) 4583 ext4_error_inode_block(inode, err_blk, EIO, 4584 "unable to read itable block"); 4585 4586 return ret; 4587 } 4588 4589 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4590 { 4591 ext4_fsblk_t err_blk = 0; 4592 int ret; 4593 4594 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc, 4595 &err_blk); 4596 4597 if (ret == -EIO) 4598 ext4_error_inode_block(inode, err_blk, EIO, 4599 "unable to read itable block"); 4600 4601 return ret; 4602 } 4603 4604 4605 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4606 struct ext4_iloc *iloc) 4607 { 4608 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL); 4609 } 4610 4611 static bool ext4_should_enable_dax(struct inode *inode) 4612 { 4613 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4614 4615 if (test_opt2(inode->i_sb, DAX_NEVER)) 4616 return false; 4617 if (!S_ISREG(inode->i_mode)) 4618 return false; 4619 if (ext4_should_journal_data(inode)) 4620 return false; 4621 if (ext4_has_inline_data(inode)) 4622 return false; 4623 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4624 return false; 4625 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4626 return false; 4627 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4628 return false; 4629 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4630 return true; 4631 4632 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4633 } 4634 4635 void ext4_set_inode_flags(struct inode *inode, bool init) 4636 { 4637 unsigned int flags = EXT4_I(inode)->i_flags; 4638 unsigned int new_fl = 0; 4639 4640 WARN_ON_ONCE(IS_DAX(inode) && init); 4641 4642 if (flags & EXT4_SYNC_FL) 4643 new_fl |= S_SYNC; 4644 if (flags & EXT4_APPEND_FL) 4645 new_fl |= S_APPEND; 4646 if (flags & EXT4_IMMUTABLE_FL) 4647 new_fl |= S_IMMUTABLE; 4648 if (flags & EXT4_NOATIME_FL) 4649 new_fl |= S_NOATIME; 4650 if (flags & EXT4_DIRSYNC_FL) 4651 new_fl |= S_DIRSYNC; 4652 4653 /* Because of the way inode_set_flags() works we must preserve S_DAX 4654 * here if already set. */ 4655 new_fl |= (inode->i_flags & S_DAX); 4656 if (init && ext4_should_enable_dax(inode)) 4657 new_fl |= S_DAX; 4658 4659 if (flags & EXT4_ENCRYPT_FL) 4660 new_fl |= S_ENCRYPTED; 4661 if (flags & EXT4_CASEFOLD_FL) 4662 new_fl |= S_CASEFOLD; 4663 if (flags & EXT4_VERITY_FL) 4664 new_fl |= S_VERITY; 4665 inode_set_flags(inode, new_fl, 4666 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4667 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4668 } 4669 4670 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4671 struct ext4_inode_info *ei) 4672 { 4673 blkcnt_t i_blocks ; 4674 struct inode *inode = &(ei->vfs_inode); 4675 struct super_block *sb = inode->i_sb; 4676 4677 if (ext4_has_feature_huge_file(sb)) { 4678 /* we are using combined 48 bit field */ 4679 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4680 le32_to_cpu(raw_inode->i_blocks_lo); 4681 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4682 /* i_blocks represent file system block size */ 4683 return i_blocks << (inode->i_blkbits - 9); 4684 } else { 4685 return i_blocks; 4686 } 4687 } else { 4688 return le32_to_cpu(raw_inode->i_blocks_lo); 4689 } 4690 } 4691 4692 static inline int ext4_iget_extra_inode(struct inode *inode, 4693 struct ext4_inode *raw_inode, 4694 struct ext4_inode_info *ei) 4695 { 4696 __le32 *magic = (void *)raw_inode + 4697 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4698 4699 if (EXT4_INODE_HAS_XATTR_SPACE(inode) && 4700 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4701 int err; 4702 4703 err = xattr_check_inode(inode, IHDR(inode, raw_inode), 4704 ITAIL(inode, raw_inode)); 4705 if (err) 4706 return err; 4707 4708 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4709 err = ext4_find_inline_data_nolock(inode); 4710 if (!err && ext4_has_inline_data(inode)) 4711 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 4712 return err; 4713 } else 4714 EXT4_I(inode)->i_inline_off = 0; 4715 return 0; 4716 } 4717 4718 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4719 { 4720 if (!ext4_has_feature_project(inode->i_sb)) 4721 return -EOPNOTSUPP; 4722 *projid = EXT4_I(inode)->i_projid; 4723 return 0; 4724 } 4725 4726 /* 4727 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4728 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4729 * set. 4730 */ 4731 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4732 { 4733 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4734 inode_set_iversion_raw(inode, val); 4735 else 4736 inode_set_iversion_queried(inode, val); 4737 } 4738 4739 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags) 4740 4741 { 4742 if (flags & EXT4_IGET_EA_INODE) { 4743 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4744 return "missing EA_INODE flag"; 4745 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4746 EXT4_I(inode)->i_file_acl) 4747 return "ea_inode with extended attributes"; 4748 } else { 4749 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4750 return "unexpected EA_INODE flag"; 4751 } 4752 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) 4753 return "unexpected bad inode w/o EXT4_IGET_BAD"; 4754 return NULL; 4755 } 4756 4757 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4758 ext4_iget_flags flags, const char *function, 4759 unsigned int line) 4760 { 4761 struct ext4_iloc iloc; 4762 struct ext4_inode *raw_inode; 4763 struct ext4_inode_info *ei; 4764 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4765 struct inode *inode; 4766 const char *err_str; 4767 journal_t *journal = EXT4_SB(sb)->s_journal; 4768 long ret; 4769 loff_t size; 4770 int block; 4771 uid_t i_uid; 4772 gid_t i_gid; 4773 projid_t i_projid; 4774 4775 if ((!(flags & EXT4_IGET_SPECIAL) && 4776 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) || 4777 ino == le32_to_cpu(es->s_usr_quota_inum) || 4778 ino == le32_to_cpu(es->s_grp_quota_inum) || 4779 ino == le32_to_cpu(es->s_prj_quota_inum) || 4780 ino == le32_to_cpu(es->s_orphan_file_inum))) || 4781 (ino < EXT4_ROOT_INO) || 4782 (ino > le32_to_cpu(es->s_inodes_count))) { 4783 if (flags & EXT4_IGET_HANDLE) 4784 return ERR_PTR(-ESTALE); 4785 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 4786 "inode #%lu: comm %s: iget: illegal inode #", 4787 ino, current->comm); 4788 return ERR_PTR(-EFSCORRUPTED); 4789 } 4790 4791 inode = iget_locked(sb, ino); 4792 if (!inode) 4793 return ERR_PTR(-ENOMEM); 4794 if (!(inode->i_state & I_NEW)) { 4795 if ((err_str = check_igot_inode(inode, flags)) != NULL) { 4796 ext4_error_inode(inode, function, line, 0, err_str); 4797 iput(inode); 4798 return ERR_PTR(-EFSCORRUPTED); 4799 } 4800 return inode; 4801 } 4802 4803 ei = EXT4_I(inode); 4804 iloc.bh = NULL; 4805 4806 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 4807 if (ret < 0) 4808 goto bad_inode; 4809 raw_inode = ext4_raw_inode(&iloc); 4810 4811 if ((flags & EXT4_IGET_HANDLE) && 4812 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4813 ret = -ESTALE; 4814 goto bad_inode; 4815 } 4816 4817 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4818 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4819 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4820 EXT4_INODE_SIZE(inode->i_sb) || 4821 (ei->i_extra_isize & 3)) { 4822 ext4_error_inode(inode, function, line, 0, 4823 "iget: bad extra_isize %u " 4824 "(inode size %u)", 4825 ei->i_extra_isize, 4826 EXT4_INODE_SIZE(inode->i_sb)); 4827 ret = -EFSCORRUPTED; 4828 goto bad_inode; 4829 } 4830 } else 4831 ei->i_extra_isize = 0; 4832 4833 /* Precompute checksum seed for inode metadata */ 4834 if (ext4_has_feature_metadata_csum(sb)) { 4835 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4836 __u32 csum; 4837 __le32 inum = cpu_to_le32(inode->i_ino); 4838 __le32 gen = raw_inode->i_generation; 4839 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4840 sizeof(inum)); 4841 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4842 sizeof(gen)); 4843 } 4844 4845 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 4846 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 4847 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 4848 ext4_error_inode_err(inode, function, line, 0, 4849 EFSBADCRC, "iget: checksum invalid"); 4850 ret = -EFSBADCRC; 4851 goto bad_inode; 4852 } 4853 4854 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4855 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4856 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4857 if (ext4_has_feature_project(sb) && 4858 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4859 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4860 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4861 else 4862 i_projid = EXT4_DEF_PROJID; 4863 4864 if (!(test_opt(inode->i_sb, NO_UID32))) { 4865 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4866 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4867 } 4868 i_uid_write(inode, i_uid); 4869 i_gid_write(inode, i_gid); 4870 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4871 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4872 4873 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4874 ei->i_inline_off = 0; 4875 ei->i_dir_start_lookup = 0; 4876 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4877 /* We now have enough fields to check if the inode was active or not. 4878 * This is needed because nfsd might try to access dead inodes 4879 * the test is that same one that e2fsck uses 4880 * NeilBrown 1999oct15 4881 */ 4882 if (inode->i_nlink == 0) { 4883 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL || 4884 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4885 ino != EXT4_BOOT_LOADER_INO) { 4886 /* this inode is deleted or unallocated */ 4887 if (flags & EXT4_IGET_SPECIAL) { 4888 ext4_error_inode(inode, function, line, 0, 4889 "iget: special inode unallocated"); 4890 ret = -EFSCORRUPTED; 4891 } else 4892 ret = -ESTALE; 4893 goto bad_inode; 4894 } 4895 /* The only unlinked inodes we let through here have 4896 * valid i_mode and are being read by the orphan 4897 * recovery code: that's fine, we're about to complete 4898 * the process of deleting those. 4899 * OR it is the EXT4_BOOT_LOADER_INO which is 4900 * not initialized on a new filesystem. */ 4901 } 4902 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4903 ext4_set_inode_flags(inode, true); 4904 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4905 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4906 if (ext4_has_feature_64bit(sb)) 4907 ei->i_file_acl |= 4908 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4909 inode->i_size = ext4_isize(sb, raw_inode); 4910 if ((size = i_size_read(inode)) < 0) { 4911 ext4_error_inode(inode, function, line, 0, 4912 "iget: bad i_size value: %lld", size); 4913 ret = -EFSCORRUPTED; 4914 goto bad_inode; 4915 } 4916 /* 4917 * If dir_index is not enabled but there's dir with INDEX flag set, 4918 * we'd normally treat htree data as empty space. But with metadata 4919 * checksumming that corrupts checksums so forbid that. 4920 */ 4921 if (!ext4_has_feature_dir_index(sb) && 4922 ext4_has_feature_metadata_csum(sb) && 4923 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4924 ext4_error_inode(inode, function, line, 0, 4925 "iget: Dir with htree data on filesystem without dir_index feature."); 4926 ret = -EFSCORRUPTED; 4927 goto bad_inode; 4928 } 4929 ei->i_disksize = inode->i_size; 4930 #ifdef CONFIG_QUOTA 4931 ei->i_reserved_quota = 0; 4932 #endif 4933 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4934 ei->i_block_group = iloc.block_group; 4935 ei->i_last_alloc_group = ~0; 4936 /* 4937 * NOTE! The in-memory inode i_data array is in little-endian order 4938 * even on big-endian machines: we do NOT byteswap the block numbers! 4939 */ 4940 for (block = 0; block < EXT4_N_BLOCKS; block++) 4941 ei->i_data[block] = raw_inode->i_block[block]; 4942 INIT_LIST_HEAD(&ei->i_orphan); 4943 ext4_fc_init_inode(&ei->vfs_inode); 4944 4945 /* 4946 * Set transaction id's of transactions that have to be committed 4947 * to finish f[data]sync. We set them to currently running transaction 4948 * as we cannot be sure that the inode or some of its metadata isn't 4949 * part of the transaction - the inode could have been reclaimed and 4950 * now it is reread from disk. 4951 */ 4952 if (journal) { 4953 transaction_t *transaction; 4954 tid_t tid; 4955 4956 read_lock(&journal->j_state_lock); 4957 if (journal->j_running_transaction) 4958 transaction = journal->j_running_transaction; 4959 else 4960 transaction = journal->j_committing_transaction; 4961 if (transaction) 4962 tid = transaction->t_tid; 4963 else 4964 tid = journal->j_commit_sequence; 4965 read_unlock(&journal->j_state_lock); 4966 ei->i_sync_tid = tid; 4967 ei->i_datasync_tid = tid; 4968 } 4969 4970 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4971 if (ei->i_extra_isize == 0) { 4972 /* The extra space is currently unused. Use it. */ 4973 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4974 ei->i_extra_isize = sizeof(struct ext4_inode) - 4975 EXT4_GOOD_OLD_INODE_SIZE; 4976 } else { 4977 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4978 if (ret) 4979 goto bad_inode; 4980 } 4981 } 4982 4983 EXT4_INODE_GET_CTIME(inode, raw_inode); 4984 EXT4_INODE_GET_ATIME(inode, raw_inode); 4985 EXT4_INODE_GET_MTIME(inode, raw_inode); 4986 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4987 4988 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4989 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4990 4991 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4992 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4993 ivers |= 4994 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4995 } 4996 ext4_inode_set_iversion_queried(inode, ivers); 4997 } 4998 4999 ret = 0; 5000 if (ei->i_file_acl && 5001 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 5002 ext4_error_inode(inode, function, line, 0, 5003 "iget: bad extended attribute block %llu", 5004 ei->i_file_acl); 5005 ret = -EFSCORRUPTED; 5006 goto bad_inode; 5007 } else if (!ext4_has_inline_data(inode)) { 5008 /* validate the block references in the inode */ 5009 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 5010 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 5011 (S_ISLNK(inode->i_mode) && 5012 !ext4_inode_is_fast_symlink(inode)))) { 5013 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5014 ret = ext4_ext_check_inode(inode); 5015 else 5016 ret = ext4_ind_check_inode(inode); 5017 } 5018 } 5019 if (ret) 5020 goto bad_inode; 5021 5022 if (S_ISREG(inode->i_mode)) { 5023 inode->i_op = &ext4_file_inode_operations; 5024 inode->i_fop = &ext4_file_operations; 5025 ext4_set_aops(inode); 5026 } else if (S_ISDIR(inode->i_mode)) { 5027 inode->i_op = &ext4_dir_inode_operations; 5028 inode->i_fop = &ext4_dir_operations; 5029 } else if (S_ISLNK(inode->i_mode)) { 5030 /* VFS does not allow setting these so must be corruption */ 5031 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 5032 ext4_error_inode(inode, function, line, 0, 5033 "iget: immutable or append flags " 5034 "not allowed on symlinks"); 5035 ret = -EFSCORRUPTED; 5036 goto bad_inode; 5037 } 5038 if (IS_ENCRYPTED(inode)) { 5039 inode->i_op = &ext4_encrypted_symlink_inode_operations; 5040 } else if (ext4_inode_is_fast_symlink(inode)) { 5041 inode->i_op = &ext4_fast_symlink_inode_operations; 5042 if (inode->i_size == 0 || 5043 inode->i_size >= sizeof(ei->i_data) || 5044 strnlen((char *)ei->i_data, inode->i_size + 1) != 5045 inode->i_size) { 5046 ext4_error_inode(inode, function, line, 0, 5047 "invalid fast symlink length %llu", 5048 (unsigned long long)inode->i_size); 5049 ret = -EFSCORRUPTED; 5050 goto bad_inode; 5051 } 5052 inode_set_cached_link(inode, (char *)ei->i_data, 5053 inode->i_size); 5054 } else { 5055 inode->i_op = &ext4_symlink_inode_operations; 5056 } 5057 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 5058 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 5059 inode->i_op = &ext4_special_inode_operations; 5060 if (raw_inode->i_block[0]) 5061 init_special_inode(inode, inode->i_mode, 5062 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 5063 else 5064 init_special_inode(inode, inode->i_mode, 5065 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 5066 } else if (ino == EXT4_BOOT_LOADER_INO) { 5067 make_bad_inode(inode); 5068 } else { 5069 ret = -EFSCORRUPTED; 5070 ext4_error_inode(inode, function, line, 0, 5071 "iget: bogus i_mode (%o)", inode->i_mode); 5072 goto bad_inode; 5073 } 5074 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) { 5075 ext4_error_inode(inode, function, line, 0, 5076 "casefold flag without casefold feature"); 5077 ret = -EFSCORRUPTED; 5078 goto bad_inode; 5079 } 5080 if ((err_str = check_igot_inode(inode, flags)) != NULL) { 5081 ext4_error_inode(inode, function, line, 0, err_str); 5082 ret = -EFSCORRUPTED; 5083 goto bad_inode; 5084 } 5085 5086 brelse(iloc.bh); 5087 unlock_new_inode(inode); 5088 return inode; 5089 5090 bad_inode: 5091 brelse(iloc.bh); 5092 iget_failed(inode); 5093 return ERR_PTR(ret); 5094 } 5095 5096 static void __ext4_update_other_inode_time(struct super_block *sb, 5097 unsigned long orig_ino, 5098 unsigned long ino, 5099 struct ext4_inode *raw_inode) 5100 { 5101 struct inode *inode; 5102 5103 inode = find_inode_by_ino_rcu(sb, ino); 5104 if (!inode) 5105 return; 5106 5107 if (!inode_is_dirtytime_only(inode)) 5108 return; 5109 5110 spin_lock(&inode->i_lock); 5111 if (inode_is_dirtytime_only(inode)) { 5112 struct ext4_inode_info *ei = EXT4_I(inode); 5113 5114 inode->i_state &= ~I_DIRTY_TIME; 5115 spin_unlock(&inode->i_lock); 5116 5117 spin_lock(&ei->i_raw_lock); 5118 EXT4_INODE_SET_CTIME(inode, raw_inode); 5119 EXT4_INODE_SET_MTIME(inode, raw_inode); 5120 EXT4_INODE_SET_ATIME(inode, raw_inode); 5121 ext4_inode_csum_set(inode, raw_inode, ei); 5122 spin_unlock(&ei->i_raw_lock); 5123 trace_ext4_other_inode_update_time(inode, orig_ino); 5124 return; 5125 } 5126 spin_unlock(&inode->i_lock); 5127 } 5128 5129 /* 5130 * Opportunistically update the other time fields for other inodes in 5131 * the same inode table block. 5132 */ 5133 static void ext4_update_other_inodes_time(struct super_block *sb, 5134 unsigned long orig_ino, char *buf) 5135 { 5136 unsigned long ino; 5137 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5138 int inode_size = EXT4_INODE_SIZE(sb); 5139 5140 /* 5141 * Calculate the first inode in the inode table block. Inode 5142 * numbers are one-based. That is, the first inode in a block 5143 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5144 */ 5145 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5146 rcu_read_lock(); 5147 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5148 if (ino == orig_ino) 5149 continue; 5150 __ext4_update_other_inode_time(sb, orig_ino, ino, 5151 (struct ext4_inode *)buf); 5152 } 5153 rcu_read_unlock(); 5154 } 5155 5156 /* 5157 * Post the struct inode info into an on-disk inode location in the 5158 * buffer-cache. This gobbles the caller's reference to the 5159 * buffer_head in the inode location struct. 5160 * 5161 * The caller must have write access to iloc->bh. 5162 */ 5163 static int ext4_do_update_inode(handle_t *handle, 5164 struct inode *inode, 5165 struct ext4_iloc *iloc) 5166 { 5167 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5168 struct ext4_inode_info *ei = EXT4_I(inode); 5169 struct buffer_head *bh = iloc->bh; 5170 struct super_block *sb = inode->i_sb; 5171 int err; 5172 int need_datasync = 0, set_large_file = 0; 5173 5174 spin_lock(&ei->i_raw_lock); 5175 5176 /* 5177 * For fields not tracked in the in-memory inode, initialise them 5178 * to zero for new inodes. 5179 */ 5180 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5181 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5182 5183 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) 5184 need_datasync = 1; 5185 if (ei->i_disksize > 0x7fffffffULL) { 5186 if (!ext4_has_feature_large_file(sb) || 5187 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV)) 5188 set_large_file = 1; 5189 } 5190 5191 err = ext4_fill_raw_inode(inode, raw_inode); 5192 spin_unlock(&ei->i_raw_lock); 5193 if (err) { 5194 EXT4_ERROR_INODE(inode, "corrupted inode contents"); 5195 goto out_brelse; 5196 } 5197 5198 if (inode->i_sb->s_flags & SB_LAZYTIME) 5199 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5200 bh->b_data); 5201 5202 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5203 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5204 if (err) 5205 goto out_error; 5206 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5207 if (set_large_file) { 5208 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5209 err = ext4_journal_get_write_access(handle, sb, 5210 EXT4_SB(sb)->s_sbh, 5211 EXT4_JTR_NONE); 5212 if (err) 5213 goto out_error; 5214 lock_buffer(EXT4_SB(sb)->s_sbh); 5215 ext4_set_feature_large_file(sb); 5216 ext4_superblock_csum_set(sb); 5217 unlock_buffer(EXT4_SB(sb)->s_sbh); 5218 ext4_handle_sync(handle); 5219 err = ext4_handle_dirty_metadata(handle, NULL, 5220 EXT4_SB(sb)->s_sbh); 5221 } 5222 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5223 out_error: 5224 ext4_std_error(inode->i_sb, err); 5225 out_brelse: 5226 brelse(bh); 5227 return err; 5228 } 5229 5230 /* 5231 * ext4_write_inode() 5232 * 5233 * We are called from a few places: 5234 * 5235 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5236 * Here, there will be no transaction running. We wait for any running 5237 * transaction to commit. 5238 * 5239 * - Within flush work (sys_sync(), kupdate and such). 5240 * We wait on commit, if told to. 5241 * 5242 * - Within iput_final() -> write_inode_now() 5243 * We wait on commit, if told to. 5244 * 5245 * In all cases it is actually safe for us to return without doing anything, 5246 * because the inode has been copied into a raw inode buffer in 5247 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5248 * writeback. 5249 * 5250 * Note that we are absolutely dependent upon all inode dirtiers doing the 5251 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5252 * which we are interested. 5253 * 5254 * It would be a bug for them to not do this. The code: 5255 * 5256 * mark_inode_dirty(inode) 5257 * stuff(); 5258 * inode->i_size = expr; 5259 * 5260 * is in error because write_inode() could occur while `stuff()' is running, 5261 * and the new i_size will be lost. Plus the inode will no longer be on the 5262 * superblock's dirty inode list. 5263 */ 5264 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5265 { 5266 int err; 5267 5268 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 5269 return 0; 5270 5271 err = ext4_emergency_state(inode->i_sb); 5272 if (unlikely(err)) 5273 return err; 5274 5275 if (EXT4_SB(inode->i_sb)->s_journal) { 5276 if (ext4_journal_current_handle()) { 5277 ext4_debug("called recursively, non-PF_MEMALLOC!\n"); 5278 dump_stack(); 5279 return -EIO; 5280 } 5281 5282 /* 5283 * No need to force transaction in WB_SYNC_NONE mode. Also 5284 * ext4_sync_fs() will force the commit after everything is 5285 * written. 5286 */ 5287 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5288 return 0; 5289 5290 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5291 EXT4_I(inode)->i_sync_tid); 5292 } else { 5293 struct ext4_iloc iloc; 5294 5295 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5296 if (err) 5297 return err; 5298 /* 5299 * sync(2) will flush the whole buffer cache. No need to do 5300 * it here separately for each inode. 5301 */ 5302 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5303 sync_dirty_buffer(iloc.bh); 5304 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5305 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5306 "IO error syncing inode"); 5307 err = -EIO; 5308 } 5309 brelse(iloc.bh); 5310 } 5311 return err; 5312 } 5313 5314 /* 5315 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate 5316 * buffers that are attached to a folio straddling i_size and are undergoing 5317 * commit. In that case we have to wait for commit to finish and try again. 5318 */ 5319 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5320 { 5321 unsigned offset; 5322 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5323 tid_t commit_tid; 5324 int ret; 5325 bool has_transaction; 5326 5327 offset = inode->i_size & (PAGE_SIZE - 1); 5328 /* 5329 * If the folio is fully truncated, we don't need to wait for any commit 5330 * (and we even should not as __ext4_journalled_invalidate_folio() may 5331 * strip all buffers from the folio but keep the folio dirty which can then 5332 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without 5333 * buffers). Also we don't need to wait for any commit if all buffers in 5334 * the folio remain valid. This is most beneficial for the common case of 5335 * blocksize == PAGESIZE. 5336 */ 5337 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5338 return; 5339 while (1) { 5340 struct folio *folio = filemap_lock_folio(inode->i_mapping, 5341 inode->i_size >> PAGE_SHIFT); 5342 if (IS_ERR(folio)) 5343 return; 5344 ret = __ext4_journalled_invalidate_folio(folio, offset, 5345 folio_size(folio) - offset); 5346 folio_unlock(folio); 5347 folio_put(folio); 5348 if (ret != -EBUSY) 5349 return; 5350 has_transaction = false; 5351 read_lock(&journal->j_state_lock); 5352 if (journal->j_committing_transaction) { 5353 commit_tid = journal->j_committing_transaction->t_tid; 5354 has_transaction = true; 5355 } 5356 read_unlock(&journal->j_state_lock); 5357 if (has_transaction) 5358 jbd2_log_wait_commit(journal, commit_tid); 5359 } 5360 } 5361 5362 /* 5363 * ext4_setattr() 5364 * 5365 * Called from notify_change. 5366 * 5367 * We want to trap VFS attempts to truncate the file as soon as 5368 * possible. In particular, we want to make sure that when the VFS 5369 * shrinks i_size, we put the inode on the orphan list and modify 5370 * i_disksize immediately, so that during the subsequent flushing of 5371 * dirty pages and freeing of disk blocks, we can guarantee that any 5372 * commit will leave the blocks being flushed in an unused state on 5373 * disk. (On recovery, the inode will get truncated and the blocks will 5374 * be freed, so we have a strong guarantee that no future commit will 5375 * leave these blocks visible to the user.) 5376 * 5377 * Another thing we have to assure is that if we are in ordered mode 5378 * and inode is still attached to the committing transaction, we must 5379 * we start writeout of all the dirty pages which are being truncated. 5380 * This way we are sure that all the data written in the previous 5381 * transaction are already on disk (truncate waits for pages under 5382 * writeback). 5383 * 5384 * Called with inode->i_rwsem down. 5385 */ 5386 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5387 struct iattr *attr) 5388 { 5389 struct inode *inode = d_inode(dentry); 5390 int error, rc = 0; 5391 int orphan = 0; 5392 const unsigned int ia_valid = attr->ia_valid; 5393 bool inc_ivers = true; 5394 5395 error = ext4_emergency_state(inode->i_sb); 5396 if (unlikely(error)) 5397 return error; 5398 5399 if (unlikely(IS_IMMUTABLE(inode))) 5400 return -EPERM; 5401 5402 if (unlikely(IS_APPEND(inode) && 5403 (ia_valid & (ATTR_MODE | ATTR_UID | 5404 ATTR_GID | ATTR_TIMES_SET)))) 5405 return -EPERM; 5406 5407 error = setattr_prepare(idmap, dentry, attr); 5408 if (error) 5409 return error; 5410 5411 error = fscrypt_prepare_setattr(dentry, attr); 5412 if (error) 5413 return error; 5414 5415 error = fsverity_prepare_setattr(dentry, attr); 5416 if (error) 5417 return error; 5418 5419 if (is_quota_modification(idmap, inode, attr)) { 5420 error = dquot_initialize(inode); 5421 if (error) 5422 return error; 5423 } 5424 5425 if (i_uid_needs_update(idmap, attr, inode) || 5426 i_gid_needs_update(idmap, attr, inode)) { 5427 handle_t *handle; 5428 5429 /* (user+group)*(old+new) structure, inode write (sb, 5430 * inode block, ? - but truncate inode update has it) */ 5431 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5432 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5433 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5434 if (IS_ERR(handle)) { 5435 error = PTR_ERR(handle); 5436 goto err_out; 5437 } 5438 5439 /* dquot_transfer() calls back ext4_get_inode_usage() which 5440 * counts xattr inode references. 5441 */ 5442 down_read(&EXT4_I(inode)->xattr_sem); 5443 error = dquot_transfer(idmap, inode, attr); 5444 up_read(&EXT4_I(inode)->xattr_sem); 5445 5446 if (error) { 5447 ext4_journal_stop(handle); 5448 return error; 5449 } 5450 /* Update corresponding info in inode so that everything is in 5451 * one transaction */ 5452 i_uid_update(idmap, attr, inode); 5453 i_gid_update(idmap, attr, inode); 5454 error = ext4_mark_inode_dirty(handle, inode); 5455 ext4_journal_stop(handle); 5456 if (unlikely(error)) { 5457 return error; 5458 } 5459 } 5460 5461 if (attr->ia_valid & ATTR_SIZE) { 5462 handle_t *handle; 5463 loff_t oldsize = inode->i_size; 5464 loff_t old_disksize; 5465 int shrink = (attr->ia_size < inode->i_size); 5466 5467 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5468 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5469 5470 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5471 return -EFBIG; 5472 } 5473 } 5474 if (!S_ISREG(inode->i_mode)) { 5475 return -EINVAL; 5476 } 5477 5478 if (attr->ia_size == inode->i_size) 5479 inc_ivers = false; 5480 5481 if (shrink) { 5482 if (ext4_should_order_data(inode)) { 5483 error = ext4_begin_ordered_truncate(inode, 5484 attr->ia_size); 5485 if (error) 5486 goto err_out; 5487 } 5488 /* 5489 * Blocks are going to be removed from the inode. Wait 5490 * for dio in flight. 5491 */ 5492 inode_dio_wait(inode); 5493 } 5494 5495 filemap_invalidate_lock(inode->i_mapping); 5496 5497 rc = ext4_break_layouts(inode); 5498 if (rc) { 5499 filemap_invalidate_unlock(inode->i_mapping); 5500 goto err_out; 5501 } 5502 5503 if (attr->ia_size != inode->i_size) { 5504 /* attach jbd2 jinode for EOF folio tail zeroing */ 5505 if (attr->ia_size & (inode->i_sb->s_blocksize - 1) || 5506 oldsize & (inode->i_sb->s_blocksize - 1)) { 5507 error = ext4_inode_attach_jinode(inode); 5508 if (error) 5509 goto out_mmap_sem; 5510 } 5511 5512 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5513 if (IS_ERR(handle)) { 5514 error = PTR_ERR(handle); 5515 goto out_mmap_sem; 5516 } 5517 if (ext4_handle_valid(handle) && shrink) { 5518 error = ext4_orphan_add(handle, inode); 5519 orphan = 1; 5520 } 5521 /* 5522 * Update c/mtime and tail zero the EOF folio on 5523 * truncate up. ext4_truncate() handles the shrink case 5524 * below. 5525 */ 5526 if (!shrink) { 5527 inode_set_mtime_to_ts(inode, 5528 inode_set_ctime_current(inode)); 5529 if (oldsize & (inode->i_sb->s_blocksize - 1)) 5530 ext4_block_truncate_page(handle, 5531 inode->i_mapping, oldsize); 5532 } 5533 5534 if (shrink) 5535 ext4_fc_track_range(handle, inode, 5536 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5537 inode->i_sb->s_blocksize_bits, 5538 EXT_MAX_BLOCKS - 1); 5539 else 5540 ext4_fc_track_range( 5541 handle, inode, 5542 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5543 inode->i_sb->s_blocksize_bits, 5544 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5545 inode->i_sb->s_blocksize_bits); 5546 5547 down_write(&EXT4_I(inode)->i_data_sem); 5548 old_disksize = EXT4_I(inode)->i_disksize; 5549 EXT4_I(inode)->i_disksize = attr->ia_size; 5550 rc = ext4_mark_inode_dirty(handle, inode); 5551 if (!error) 5552 error = rc; 5553 /* 5554 * We have to update i_size under i_data_sem together 5555 * with i_disksize to avoid races with writeback code 5556 * running ext4_wb_update_i_disksize(). 5557 */ 5558 if (!error) 5559 i_size_write(inode, attr->ia_size); 5560 else 5561 EXT4_I(inode)->i_disksize = old_disksize; 5562 up_write(&EXT4_I(inode)->i_data_sem); 5563 ext4_journal_stop(handle); 5564 if (error) 5565 goto out_mmap_sem; 5566 if (!shrink) { 5567 pagecache_isize_extended(inode, oldsize, 5568 inode->i_size); 5569 } else if (ext4_should_journal_data(inode)) { 5570 ext4_wait_for_tail_page_commit(inode); 5571 } 5572 } 5573 5574 /* 5575 * Truncate pagecache after we've waited for commit 5576 * in data=journal mode to make pages freeable. 5577 */ 5578 truncate_pagecache(inode, inode->i_size); 5579 /* 5580 * Call ext4_truncate() even if i_size didn't change to 5581 * truncate possible preallocated blocks. 5582 */ 5583 if (attr->ia_size <= oldsize) { 5584 rc = ext4_truncate(inode); 5585 if (rc) 5586 error = rc; 5587 } 5588 out_mmap_sem: 5589 filemap_invalidate_unlock(inode->i_mapping); 5590 } 5591 5592 if (!error) { 5593 if (inc_ivers) 5594 inode_inc_iversion(inode); 5595 setattr_copy(idmap, inode, attr); 5596 mark_inode_dirty(inode); 5597 } 5598 5599 /* 5600 * If the call to ext4_truncate failed to get a transaction handle at 5601 * all, we need to clean up the in-core orphan list manually. 5602 */ 5603 if (orphan && inode->i_nlink) 5604 ext4_orphan_del(NULL, inode); 5605 5606 if (!error && (ia_valid & ATTR_MODE)) 5607 rc = posix_acl_chmod(idmap, dentry, inode->i_mode); 5608 5609 err_out: 5610 if (error) 5611 ext4_std_error(inode->i_sb, error); 5612 if (!error) 5613 error = rc; 5614 return error; 5615 } 5616 5617 u32 ext4_dio_alignment(struct inode *inode) 5618 { 5619 if (fsverity_active(inode)) 5620 return 0; 5621 if (ext4_should_journal_data(inode)) 5622 return 0; 5623 if (ext4_has_inline_data(inode)) 5624 return 0; 5625 if (IS_ENCRYPTED(inode)) { 5626 if (!fscrypt_dio_supported(inode)) 5627 return 0; 5628 return i_blocksize(inode); 5629 } 5630 return 1; /* use the iomap defaults */ 5631 } 5632 5633 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path, 5634 struct kstat *stat, u32 request_mask, unsigned int query_flags) 5635 { 5636 struct inode *inode = d_inode(path->dentry); 5637 struct ext4_inode *raw_inode; 5638 struct ext4_inode_info *ei = EXT4_I(inode); 5639 unsigned int flags; 5640 5641 if ((request_mask & STATX_BTIME) && 5642 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5643 stat->result_mask |= STATX_BTIME; 5644 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5645 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5646 } 5647 5648 /* 5649 * Return the DIO alignment restrictions if requested. We only return 5650 * this information when requested, since on encrypted files it might 5651 * take a fair bit of work to get if the file wasn't opened recently. 5652 */ 5653 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 5654 u32 dio_align = ext4_dio_alignment(inode); 5655 5656 stat->result_mask |= STATX_DIOALIGN; 5657 if (dio_align == 1) { 5658 struct block_device *bdev = inode->i_sb->s_bdev; 5659 5660 /* iomap defaults */ 5661 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1; 5662 stat->dio_offset_align = bdev_logical_block_size(bdev); 5663 } else { 5664 stat->dio_mem_align = dio_align; 5665 stat->dio_offset_align = dio_align; 5666 } 5667 } 5668 5669 if ((request_mask & STATX_WRITE_ATOMIC) && S_ISREG(inode->i_mode)) { 5670 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5671 unsigned int awu_min = 0, awu_max = 0; 5672 5673 if (ext4_inode_can_atomic_write(inode)) { 5674 awu_min = sbi->s_awu_min; 5675 awu_max = sbi->s_awu_max; 5676 } 5677 5678 generic_fill_statx_atomic_writes(stat, awu_min, awu_max); 5679 } 5680 5681 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5682 if (flags & EXT4_APPEND_FL) 5683 stat->attributes |= STATX_ATTR_APPEND; 5684 if (flags & EXT4_COMPR_FL) 5685 stat->attributes |= STATX_ATTR_COMPRESSED; 5686 if (flags & EXT4_ENCRYPT_FL) 5687 stat->attributes |= STATX_ATTR_ENCRYPTED; 5688 if (flags & EXT4_IMMUTABLE_FL) 5689 stat->attributes |= STATX_ATTR_IMMUTABLE; 5690 if (flags & EXT4_NODUMP_FL) 5691 stat->attributes |= STATX_ATTR_NODUMP; 5692 if (flags & EXT4_VERITY_FL) 5693 stat->attributes |= STATX_ATTR_VERITY; 5694 5695 stat->attributes_mask |= (STATX_ATTR_APPEND | 5696 STATX_ATTR_COMPRESSED | 5697 STATX_ATTR_ENCRYPTED | 5698 STATX_ATTR_IMMUTABLE | 5699 STATX_ATTR_NODUMP | 5700 STATX_ATTR_VERITY); 5701 5702 generic_fillattr(idmap, request_mask, inode, stat); 5703 return 0; 5704 } 5705 5706 int ext4_file_getattr(struct mnt_idmap *idmap, 5707 const struct path *path, struct kstat *stat, 5708 u32 request_mask, unsigned int query_flags) 5709 { 5710 struct inode *inode = d_inode(path->dentry); 5711 u64 delalloc_blocks; 5712 5713 ext4_getattr(idmap, path, stat, request_mask, query_flags); 5714 5715 /* 5716 * If there is inline data in the inode, the inode will normally not 5717 * have data blocks allocated (it may have an external xattr block). 5718 * Report at least one sector for such files, so tools like tar, rsync, 5719 * others don't incorrectly think the file is completely sparse. 5720 */ 5721 if (unlikely(ext4_has_inline_data(inode))) 5722 stat->blocks += (stat->size + 511) >> 9; 5723 5724 /* 5725 * We can't update i_blocks if the block allocation is delayed 5726 * otherwise in the case of system crash before the real block 5727 * allocation is done, we will have i_blocks inconsistent with 5728 * on-disk file blocks. 5729 * We always keep i_blocks updated together with real 5730 * allocation. But to not confuse with user, stat 5731 * will return the blocks that include the delayed allocation 5732 * blocks for this file. 5733 */ 5734 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5735 EXT4_I(inode)->i_reserved_data_blocks); 5736 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5737 return 0; 5738 } 5739 5740 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5741 int pextents) 5742 { 5743 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5744 return ext4_ind_trans_blocks(inode, lblocks); 5745 return ext4_ext_index_trans_blocks(inode, pextents); 5746 } 5747 5748 /* 5749 * Account for index blocks, block groups bitmaps and block group 5750 * descriptor blocks if modify datablocks and index blocks 5751 * worse case, the indexs blocks spread over different block groups 5752 * 5753 * If datablocks are discontiguous, they are possible to spread over 5754 * different block groups too. If they are contiguous, with flexbg, 5755 * they could still across block group boundary. 5756 * 5757 * Also account for superblock, inode, quota and xattr blocks 5758 */ 5759 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5760 int pextents) 5761 { 5762 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5763 int gdpblocks; 5764 int idxblocks; 5765 int ret; 5766 5767 /* 5768 * How many index blocks need to touch to map @lblocks logical blocks 5769 * to @pextents physical extents? 5770 */ 5771 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5772 5773 ret = idxblocks; 5774 5775 /* 5776 * Now let's see how many group bitmaps and group descriptors need 5777 * to account 5778 */ 5779 groups = idxblocks + pextents; 5780 gdpblocks = groups; 5781 if (groups > ngroups) 5782 groups = ngroups; 5783 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5784 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5785 5786 /* bitmaps and block group descriptor blocks */ 5787 ret += groups + gdpblocks; 5788 5789 /* Blocks for super block, inode, quota and xattr blocks */ 5790 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5791 5792 return ret; 5793 } 5794 5795 /* 5796 * Calculate the total number of credits to reserve to fit 5797 * the modification of a single pages into a single transaction, 5798 * which may include multiple chunks of block allocations. 5799 * 5800 * This could be called via ext4_write_begin() 5801 * 5802 * We need to consider the worse case, when 5803 * one new block per extent. 5804 */ 5805 int ext4_writepage_trans_blocks(struct inode *inode) 5806 { 5807 int bpp = ext4_journal_blocks_per_page(inode); 5808 int ret; 5809 5810 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5811 5812 /* Account for data blocks for journalled mode */ 5813 if (ext4_should_journal_data(inode)) 5814 ret += bpp; 5815 return ret; 5816 } 5817 5818 /* 5819 * Calculate the journal credits for a chunk of data modification. 5820 * 5821 * This is called from DIO, fallocate or whoever calling 5822 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5823 * 5824 * journal buffers for data blocks are not included here, as DIO 5825 * and fallocate do no need to journal data buffers. 5826 */ 5827 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5828 { 5829 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5830 } 5831 5832 /* 5833 * The caller must have previously called ext4_reserve_inode_write(). 5834 * Give this, we know that the caller already has write access to iloc->bh. 5835 */ 5836 int ext4_mark_iloc_dirty(handle_t *handle, 5837 struct inode *inode, struct ext4_iloc *iloc) 5838 { 5839 int err = 0; 5840 5841 err = ext4_emergency_state(inode->i_sb); 5842 if (unlikely(err)) { 5843 put_bh(iloc->bh); 5844 return err; 5845 } 5846 ext4_fc_track_inode(handle, inode); 5847 5848 /* the do_update_inode consumes one bh->b_count */ 5849 get_bh(iloc->bh); 5850 5851 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5852 err = ext4_do_update_inode(handle, inode, iloc); 5853 put_bh(iloc->bh); 5854 return err; 5855 } 5856 5857 /* 5858 * On success, We end up with an outstanding reference count against 5859 * iloc->bh. This _must_ be cleaned up later. 5860 */ 5861 5862 int 5863 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5864 struct ext4_iloc *iloc) 5865 { 5866 int err; 5867 5868 err = ext4_emergency_state(inode->i_sb); 5869 if (unlikely(err)) 5870 return err; 5871 5872 err = ext4_get_inode_loc(inode, iloc); 5873 if (!err) { 5874 BUFFER_TRACE(iloc->bh, "get_write_access"); 5875 err = ext4_journal_get_write_access(handle, inode->i_sb, 5876 iloc->bh, EXT4_JTR_NONE); 5877 if (err) { 5878 brelse(iloc->bh); 5879 iloc->bh = NULL; 5880 } 5881 } 5882 ext4_std_error(inode->i_sb, err); 5883 return err; 5884 } 5885 5886 static int __ext4_expand_extra_isize(struct inode *inode, 5887 unsigned int new_extra_isize, 5888 struct ext4_iloc *iloc, 5889 handle_t *handle, int *no_expand) 5890 { 5891 struct ext4_inode *raw_inode; 5892 struct ext4_xattr_ibody_header *header; 5893 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5894 struct ext4_inode_info *ei = EXT4_I(inode); 5895 int error; 5896 5897 /* this was checked at iget time, but double check for good measure */ 5898 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5899 (ei->i_extra_isize & 3)) { 5900 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5901 ei->i_extra_isize, 5902 EXT4_INODE_SIZE(inode->i_sb)); 5903 return -EFSCORRUPTED; 5904 } 5905 if ((new_extra_isize < ei->i_extra_isize) || 5906 (new_extra_isize < 4) || 5907 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5908 return -EINVAL; /* Should never happen */ 5909 5910 raw_inode = ext4_raw_inode(iloc); 5911 5912 header = IHDR(inode, raw_inode); 5913 5914 /* No extended attributes present */ 5915 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5916 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5917 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5918 EXT4_I(inode)->i_extra_isize, 0, 5919 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5920 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5921 return 0; 5922 } 5923 5924 /* 5925 * We may need to allocate external xattr block so we need quotas 5926 * initialized. Here we can be called with various locks held so we 5927 * cannot affort to initialize quotas ourselves. So just bail. 5928 */ 5929 if (dquot_initialize_needed(inode)) 5930 return -EAGAIN; 5931 5932 /* try to expand with EAs present */ 5933 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5934 raw_inode, handle); 5935 if (error) { 5936 /* 5937 * Inode size expansion failed; don't try again 5938 */ 5939 *no_expand = 1; 5940 } 5941 5942 return error; 5943 } 5944 5945 /* 5946 * Expand an inode by new_extra_isize bytes. 5947 * Returns 0 on success or negative error number on failure. 5948 */ 5949 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5950 unsigned int new_extra_isize, 5951 struct ext4_iloc iloc, 5952 handle_t *handle) 5953 { 5954 int no_expand; 5955 int error; 5956 5957 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5958 return -EOVERFLOW; 5959 5960 /* 5961 * In nojournal mode, we can immediately attempt to expand 5962 * the inode. When journaled, we first need to obtain extra 5963 * buffer credits since we may write into the EA block 5964 * with this same handle. If journal_extend fails, then it will 5965 * only result in a minor loss of functionality for that inode. 5966 * If this is felt to be critical, then e2fsck should be run to 5967 * force a large enough s_min_extra_isize. 5968 */ 5969 if (ext4_journal_extend(handle, 5970 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5971 return -ENOSPC; 5972 5973 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5974 return -EBUSY; 5975 5976 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5977 handle, &no_expand); 5978 ext4_write_unlock_xattr(inode, &no_expand); 5979 5980 return error; 5981 } 5982 5983 int ext4_expand_extra_isize(struct inode *inode, 5984 unsigned int new_extra_isize, 5985 struct ext4_iloc *iloc) 5986 { 5987 handle_t *handle; 5988 int no_expand; 5989 int error, rc; 5990 5991 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5992 brelse(iloc->bh); 5993 return -EOVERFLOW; 5994 } 5995 5996 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5997 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5998 if (IS_ERR(handle)) { 5999 error = PTR_ERR(handle); 6000 brelse(iloc->bh); 6001 return error; 6002 } 6003 6004 ext4_write_lock_xattr(inode, &no_expand); 6005 6006 BUFFER_TRACE(iloc->bh, "get_write_access"); 6007 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh, 6008 EXT4_JTR_NONE); 6009 if (error) { 6010 brelse(iloc->bh); 6011 goto out_unlock; 6012 } 6013 6014 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 6015 handle, &no_expand); 6016 6017 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 6018 if (!error) 6019 error = rc; 6020 6021 out_unlock: 6022 ext4_write_unlock_xattr(inode, &no_expand); 6023 ext4_journal_stop(handle); 6024 return error; 6025 } 6026 6027 /* 6028 * What we do here is to mark the in-core inode as clean with respect to inode 6029 * dirtiness (it may still be data-dirty). 6030 * This means that the in-core inode may be reaped by prune_icache 6031 * without having to perform any I/O. This is a very good thing, 6032 * because *any* task may call prune_icache - even ones which 6033 * have a transaction open against a different journal. 6034 * 6035 * Is this cheating? Not really. Sure, we haven't written the 6036 * inode out, but prune_icache isn't a user-visible syncing function. 6037 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 6038 * we start and wait on commits. 6039 */ 6040 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 6041 const char *func, unsigned int line) 6042 { 6043 struct ext4_iloc iloc; 6044 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 6045 int err; 6046 6047 might_sleep(); 6048 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 6049 err = ext4_reserve_inode_write(handle, inode, &iloc); 6050 if (err) 6051 goto out; 6052 6053 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 6054 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 6055 iloc, handle); 6056 6057 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 6058 out: 6059 if (unlikely(err)) 6060 ext4_error_inode_err(inode, func, line, 0, err, 6061 "mark_inode_dirty error"); 6062 return err; 6063 } 6064 6065 /* 6066 * ext4_dirty_inode() is called from __mark_inode_dirty() 6067 * 6068 * We're really interested in the case where a file is being extended. 6069 * i_size has been changed by generic_commit_write() and we thus need 6070 * to include the updated inode in the current transaction. 6071 * 6072 * Also, dquot_alloc_block() will always dirty the inode when blocks 6073 * are allocated to the file. 6074 * 6075 * If the inode is marked synchronous, we don't honour that here - doing 6076 * so would cause a commit on atime updates, which we don't bother doing. 6077 * We handle synchronous inodes at the highest possible level. 6078 */ 6079 void ext4_dirty_inode(struct inode *inode, int flags) 6080 { 6081 handle_t *handle; 6082 6083 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 6084 if (IS_ERR(handle)) 6085 return; 6086 ext4_mark_inode_dirty(handle, inode); 6087 ext4_journal_stop(handle); 6088 } 6089 6090 int ext4_change_inode_journal_flag(struct inode *inode, int val) 6091 { 6092 journal_t *journal; 6093 handle_t *handle; 6094 int err; 6095 int alloc_ctx; 6096 6097 /* 6098 * We have to be very careful here: changing a data block's 6099 * journaling status dynamically is dangerous. If we write a 6100 * data block to the journal, change the status and then delete 6101 * that block, we risk forgetting to revoke the old log record 6102 * from the journal and so a subsequent replay can corrupt data. 6103 * So, first we make sure that the journal is empty and that 6104 * nobody is changing anything. 6105 */ 6106 6107 journal = EXT4_JOURNAL(inode); 6108 if (!journal) 6109 return 0; 6110 if (is_journal_aborted(journal)) 6111 return -EROFS; 6112 6113 /* Wait for all existing dio workers */ 6114 inode_dio_wait(inode); 6115 6116 /* 6117 * Before flushing the journal and switching inode's aops, we have 6118 * to flush all dirty data the inode has. There can be outstanding 6119 * delayed allocations, there can be unwritten extents created by 6120 * fallocate or buffered writes in dioread_nolock mode covered by 6121 * dirty data which can be converted only after flushing the dirty 6122 * data (and journalled aops don't know how to handle these cases). 6123 */ 6124 if (val) { 6125 filemap_invalidate_lock(inode->i_mapping); 6126 err = filemap_write_and_wait(inode->i_mapping); 6127 if (err < 0) { 6128 filemap_invalidate_unlock(inode->i_mapping); 6129 return err; 6130 } 6131 } 6132 6133 alloc_ctx = ext4_writepages_down_write(inode->i_sb); 6134 jbd2_journal_lock_updates(journal); 6135 6136 /* 6137 * OK, there are no updates running now, and all cached data is 6138 * synced to disk. We are now in a completely consistent state 6139 * which doesn't have anything in the journal, and we know that 6140 * no filesystem updates are running, so it is safe to modify 6141 * the inode's in-core data-journaling state flag now. 6142 */ 6143 6144 if (val) 6145 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6146 else { 6147 err = jbd2_journal_flush(journal, 0); 6148 if (err < 0) { 6149 jbd2_journal_unlock_updates(journal); 6150 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6151 return err; 6152 } 6153 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6154 } 6155 ext4_set_aops(inode); 6156 6157 jbd2_journal_unlock_updates(journal); 6158 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6159 6160 if (val) 6161 filemap_invalidate_unlock(inode->i_mapping); 6162 6163 /* Finally we can mark the inode as dirty. */ 6164 6165 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6166 if (IS_ERR(handle)) 6167 return PTR_ERR(handle); 6168 6169 ext4_fc_mark_ineligible(inode->i_sb, 6170 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle); 6171 err = ext4_mark_inode_dirty(handle, inode); 6172 ext4_handle_sync(handle); 6173 ext4_journal_stop(handle); 6174 ext4_std_error(inode->i_sb, err); 6175 6176 return err; 6177 } 6178 6179 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode, 6180 struct buffer_head *bh) 6181 { 6182 return !buffer_mapped(bh); 6183 } 6184 6185 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6186 { 6187 struct vm_area_struct *vma = vmf->vma; 6188 struct folio *folio = page_folio(vmf->page); 6189 loff_t size; 6190 unsigned long len; 6191 int err; 6192 vm_fault_t ret; 6193 struct file *file = vma->vm_file; 6194 struct inode *inode = file_inode(file); 6195 struct address_space *mapping = inode->i_mapping; 6196 handle_t *handle; 6197 get_block_t *get_block; 6198 int retries = 0; 6199 6200 if (unlikely(IS_IMMUTABLE(inode))) 6201 return VM_FAULT_SIGBUS; 6202 6203 sb_start_pagefault(inode->i_sb); 6204 file_update_time(vma->vm_file); 6205 6206 filemap_invalidate_lock_shared(mapping); 6207 6208 err = ext4_convert_inline_data(inode); 6209 if (err) 6210 goto out_ret; 6211 6212 /* 6213 * On data journalling we skip straight to the transaction handle: 6214 * there's no delalloc; page truncated will be checked later; the 6215 * early return w/ all buffers mapped (calculates size/len) can't 6216 * be used; and there's no dioread_nolock, so only ext4_get_block. 6217 */ 6218 if (ext4_should_journal_data(inode)) 6219 goto retry_alloc; 6220 6221 /* Delalloc case is easy... */ 6222 if (test_opt(inode->i_sb, DELALLOC) && 6223 !ext4_nonda_switch(inode->i_sb)) { 6224 do { 6225 err = block_page_mkwrite(vma, vmf, 6226 ext4_da_get_block_prep); 6227 } while (err == -ENOSPC && 6228 ext4_should_retry_alloc(inode->i_sb, &retries)); 6229 goto out_ret; 6230 } 6231 6232 folio_lock(folio); 6233 size = i_size_read(inode); 6234 /* Page got truncated from under us? */ 6235 if (folio->mapping != mapping || folio_pos(folio) > size) { 6236 folio_unlock(folio); 6237 ret = VM_FAULT_NOPAGE; 6238 goto out; 6239 } 6240 6241 len = folio_size(folio); 6242 if (folio_pos(folio) + len > size) 6243 len = size - folio_pos(folio); 6244 /* 6245 * Return if we have all the buffers mapped. This avoids the need to do 6246 * journal_start/journal_stop which can block and take a long time 6247 * 6248 * This cannot be done for data journalling, as we have to add the 6249 * inode to the transaction's list to writeprotect pages on commit. 6250 */ 6251 if (folio_buffers(folio)) { 6252 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio), 6253 0, len, NULL, 6254 ext4_bh_unmapped)) { 6255 /* Wait so that we don't change page under IO */ 6256 folio_wait_stable(folio); 6257 ret = VM_FAULT_LOCKED; 6258 goto out; 6259 } 6260 } 6261 folio_unlock(folio); 6262 /* OK, we need to fill the hole... */ 6263 if (ext4_should_dioread_nolock(inode)) 6264 get_block = ext4_get_block_unwritten; 6265 else 6266 get_block = ext4_get_block; 6267 retry_alloc: 6268 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6269 ext4_writepage_trans_blocks(inode)); 6270 if (IS_ERR(handle)) { 6271 ret = VM_FAULT_SIGBUS; 6272 goto out; 6273 } 6274 /* 6275 * Data journalling can't use block_page_mkwrite() because it 6276 * will set_buffer_dirty() before do_journal_get_write_access() 6277 * thus might hit warning messages for dirty metadata buffers. 6278 */ 6279 if (!ext4_should_journal_data(inode)) { 6280 err = block_page_mkwrite(vma, vmf, get_block); 6281 } else { 6282 folio_lock(folio); 6283 size = i_size_read(inode); 6284 /* Page got truncated from under us? */ 6285 if (folio->mapping != mapping || folio_pos(folio) > size) { 6286 ret = VM_FAULT_NOPAGE; 6287 goto out_error; 6288 } 6289 6290 len = folio_size(folio); 6291 if (folio_pos(folio) + len > size) 6292 len = size - folio_pos(folio); 6293 6294 err = ext4_block_write_begin(handle, folio, 0, len, 6295 ext4_get_block); 6296 if (!err) { 6297 ret = VM_FAULT_SIGBUS; 6298 if (ext4_journal_folio_buffers(handle, folio, len)) 6299 goto out_error; 6300 } else { 6301 folio_unlock(folio); 6302 } 6303 } 6304 ext4_journal_stop(handle); 6305 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6306 goto retry_alloc; 6307 out_ret: 6308 ret = vmf_fs_error(err); 6309 out: 6310 filemap_invalidate_unlock_shared(mapping); 6311 sb_end_pagefault(inode->i_sb); 6312 return ret; 6313 out_error: 6314 folio_unlock(folio); 6315 ext4_journal_stop(handle); 6316 goto out; 6317 } 6318