1 /* 2 * linux/fs/ext4/indirect.c 3 * 4 * from 5 * 6 * linux/fs/ext4/inode.c 7 * 8 * Copyright (C) 1992, 1993, 1994, 1995 9 * Remy Card (card@masi.ibp.fr) 10 * Laboratoire MASI - Institut Blaise Pascal 11 * Universite Pierre et Marie Curie (Paris VI) 12 * 13 * from 14 * 15 * linux/fs/minix/inode.c 16 * 17 * Copyright (C) 1991, 1992 Linus Torvalds 18 * 19 * Goal-directed block allocation by Stephen Tweedie 20 * (sct@redhat.com), 1993, 1998 21 */ 22 23 #include <linux/module.h> 24 #include "ext4_jbd2.h" 25 #include "truncate.h" 26 27 #include <trace/events/ext4.h> 28 29 typedef struct { 30 __le32 *p; 31 __le32 key; 32 struct buffer_head *bh; 33 } Indirect; 34 35 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 36 { 37 p->key = *(p->p = v); 38 p->bh = bh; 39 } 40 41 /** 42 * ext4_block_to_path - parse the block number into array of offsets 43 * @inode: inode in question (we are only interested in its superblock) 44 * @i_block: block number to be parsed 45 * @offsets: array to store the offsets in 46 * @boundary: set this non-zero if the referred-to block is likely to be 47 * followed (on disk) by an indirect block. 48 * 49 * To store the locations of file's data ext4 uses a data structure common 50 * for UNIX filesystems - tree of pointers anchored in the inode, with 51 * data blocks at leaves and indirect blocks in intermediate nodes. 52 * This function translates the block number into path in that tree - 53 * return value is the path length and @offsets[n] is the offset of 54 * pointer to (n+1)th node in the nth one. If @block is out of range 55 * (negative or too large) warning is printed and zero returned. 56 * 57 * Note: function doesn't find node addresses, so no IO is needed. All 58 * we need to know is the capacity of indirect blocks (taken from the 59 * inode->i_sb). 60 */ 61 62 /* 63 * Portability note: the last comparison (check that we fit into triple 64 * indirect block) is spelled differently, because otherwise on an 65 * architecture with 32-bit longs and 8Kb pages we might get into trouble 66 * if our filesystem had 8Kb blocks. We might use long long, but that would 67 * kill us on x86. Oh, well, at least the sign propagation does not matter - 68 * i_block would have to be negative in the very beginning, so we would not 69 * get there at all. 70 */ 71 72 static int ext4_block_to_path(struct inode *inode, 73 ext4_lblk_t i_block, 74 ext4_lblk_t offsets[4], int *boundary) 75 { 76 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 77 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 78 const long direct_blocks = EXT4_NDIR_BLOCKS, 79 indirect_blocks = ptrs, 80 double_blocks = (1 << (ptrs_bits * 2)); 81 int n = 0; 82 int final = 0; 83 84 if (i_block < direct_blocks) { 85 offsets[n++] = i_block; 86 final = direct_blocks; 87 } else if ((i_block -= direct_blocks) < indirect_blocks) { 88 offsets[n++] = EXT4_IND_BLOCK; 89 offsets[n++] = i_block; 90 final = ptrs; 91 } else if ((i_block -= indirect_blocks) < double_blocks) { 92 offsets[n++] = EXT4_DIND_BLOCK; 93 offsets[n++] = i_block >> ptrs_bits; 94 offsets[n++] = i_block & (ptrs - 1); 95 final = ptrs; 96 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 97 offsets[n++] = EXT4_TIND_BLOCK; 98 offsets[n++] = i_block >> (ptrs_bits * 2); 99 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 100 offsets[n++] = i_block & (ptrs - 1); 101 final = ptrs; 102 } else { 103 ext4_warning(inode->i_sb, "block %lu > max in inode %lu", 104 i_block + direct_blocks + 105 indirect_blocks + double_blocks, inode->i_ino); 106 } 107 if (boundary) 108 *boundary = final - 1 - (i_block & (ptrs - 1)); 109 return n; 110 } 111 112 /** 113 * ext4_get_branch - read the chain of indirect blocks leading to data 114 * @inode: inode in question 115 * @depth: depth of the chain (1 - direct pointer, etc.) 116 * @offsets: offsets of pointers in inode/indirect blocks 117 * @chain: place to store the result 118 * @err: here we store the error value 119 * 120 * Function fills the array of triples <key, p, bh> and returns %NULL 121 * if everything went OK or the pointer to the last filled triple 122 * (incomplete one) otherwise. Upon the return chain[i].key contains 123 * the number of (i+1)-th block in the chain (as it is stored in memory, 124 * i.e. little-endian 32-bit), chain[i].p contains the address of that 125 * number (it points into struct inode for i==0 and into the bh->b_data 126 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 127 * block for i>0 and NULL for i==0. In other words, it holds the block 128 * numbers of the chain, addresses they were taken from (and where we can 129 * verify that chain did not change) and buffer_heads hosting these 130 * numbers. 131 * 132 * Function stops when it stumbles upon zero pointer (absent block) 133 * (pointer to last triple returned, *@err == 0) 134 * or when it gets an IO error reading an indirect block 135 * (ditto, *@err == -EIO) 136 * or when it reads all @depth-1 indirect blocks successfully and finds 137 * the whole chain, all way to the data (returns %NULL, *err == 0). 138 * 139 * Need to be called with 140 * down_read(&EXT4_I(inode)->i_data_sem) 141 */ 142 static Indirect *ext4_get_branch(struct inode *inode, int depth, 143 ext4_lblk_t *offsets, 144 Indirect chain[4], int *err) 145 { 146 struct super_block *sb = inode->i_sb; 147 Indirect *p = chain; 148 struct buffer_head *bh; 149 150 *err = 0; 151 /* i_data is not going away, no lock needed */ 152 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 153 if (!p->key) 154 goto no_block; 155 while (--depth) { 156 bh = sb_getblk(sb, le32_to_cpu(p->key)); 157 if (unlikely(!bh)) 158 goto failure; 159 160 if (!bh_uptodate_or_lock(bh)) { 161 if (bh_submit_read(bh) < 0) { 162 put_bh(bh); 163 goto failure; 164 } 165 /* validate block references */ 166 if (ext4_check_indirect_blockref(inode, bh)) { 167 put_bh(bh); 168 goto failure; 169 } 170 } 171 172 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 173 /* Reader: end */ 174 if (!p->key) 175 goto no_block; 176 } 177 return NULL; 178 179 failure: 180 *err = -EIO; 181 no_block: 182 return p; 183 } 184 185 /** 186 * ext4_find_near - find a place for allocation with sufficient locality 187 * @inode: owner 188 * @ind: descriptor of indirect block. 189 * 190 * This function returns the preferred place for block allocation. 191 * It is used when heuristic for sequential allocation fails. 192 * Rules are: 193 * + if there is a block to the left of our position - allocate near it. 194 * + if pointer will live in indirect block - allocate near that block. 195 * + if pointer will live in inode - allocate in the same 196 * cylinder group. 197 * 198 * In the latter case we colour the starting block by the callers PID to 199 * prevent it from clashing with concurrent allocations for a different inode 200 * in the same block group. The PID is used here so that functionally related 201 * files will be close-by on-disk. 202 * 203 * Caller must make sure that @ind is valid and will stay that way. 204 */ 205 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 206 { 207 struct ext4_inode_info *ei = EXT4_I(inode); 208 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 209 __le32 *p; 210 211 /* Try to find previous block */ 212 for (p = ind->p - 1; p >= start; p--) { 213 if (*p) 214 return le32_to_cpu(*p); 215 } 216 217 /* No such thing, so let's try location of indirect block */ 218 if (ind->bh) 219 return ind->bh->b_blocknr; 220 221 /* 222 * It is going to be referred to from the inode itself? OK, just put it 223 * into the same cylinder group then. 224 */ 225 return ext4_inode_to_goal_block(inode); 226 } 227 228 /** 229 * ext4_find_goal - find a preferred place for allocation. 230 * @inode: owner 231 * @block: block we want 232 * @partial: pointer to the last triple within a chain 233 * 234 * Normally this function find the preferred place for block allocation, 235 * returns it. 236 * Because this is only used for non-extent files, we limit the block nr 237 * to 32 bits. 238 */ 239 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 240 Indirect *partial) 241 { 242 ext4_fsblk_t goal; 243 244 /* 245 * XXX need to get goal block from mballoc's data structures 246 */ 247 248 goal = ext4_find_near(inode, partial); 249 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS; 250 return goal; 251 } 252 253 /** 254 * ext4_blks_to_allocate - Look up the block map and count the number 255 * of direct blocks need to be allocated for the given branch. 256 * 257 * @branch: chain of indirect blocks 258 * @k: number of blocks need for indirect blocks 259 * @blks: number of data blocks to be mapped. 260 * @blocks_to_boundary: the offset in the indirect block 261 * 262 * return the total number of blocks to be allocate, including the 263 * direct and indirect blocks. 264 */ 265 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks, 266 int blocks_to_boundary) 267 { 268 unsigned int count = 0; 269 270 /* 271 * Simple case, [t,d]Indirect block(s) has not allocated yet 272 * then it's clear blocks on that path have not allocated 273 */ 274 if (k > 0) { 275 /* right now we don't handle cross boundary allocation */ 276 if (blks < blocks_to_boundary + 1) 277 count += blks; 278 else 279 count += blocks_to_boundary + 1; 280 return count; 281 } 282 283 count++; 284 while (count < blks && count <= blocks_to_boundary && 285 le32_to_cpu(*(branch[0].p + count)) == 0) { 286 count++; 287 } 288 return count; 289 } 290 291 /** 292 * ext4_alloc_blocks: multiple allocate blocks needed for a branch 293 * @handle: handle for this transaction 294 * @inode: inode which needs allocated blocks 295 * @iblock: the logical block to start allocated at 296 * @goal: preferred physical block of allocation 297 * @indirect_blks: the number of blocks need to allocate for indirect 298 * blocks 299 * @blks: number of desired blocks 300 * @new_blocks: on return it will store the new block numbers for 301 * the indirect blocks(if needed) and the first direct block, 302 * @err: on return it will store the error code 303 * 304 * This function will return the number of blocks allocated as 305 * requested by the passed-in parameters. 306 */ 307 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, 308 ext4_lblk_t iblock, ext4_fsblk_t goal, 309 int indirect_blks, int blks, 310 ext4_fsblk_t new_blocks[4], int *err) 311 { 312 struct ext4_allocation_request ar; 313 int target, i; 314 unsigned long count = 0, blk_allocated = 0; 315 int index = 0; 316 ext4_fsblk_t current_block = 0; 317 int ret = 0; 318 319 /* 320 * Here we try to allocate the requested multiple blocks at once, 321 * on a best-effort basis. 322 * To build a branch, we should allocate blocks for 323 * the indirect blocks(if not allocated yet), and at least 324 * the first direct block of this branch. That's the 325 * minimum number of blocks need to allocate(required) 326 */ 327 /* first we try to allocate the indirect blocks */ 328 target = indirect_blks; 329 while (target > 0) { 330 count = target; 331 /* allocating blocks for indirect blocks and direct blocks */ 332 current_block = ext4_new_meta_blocks(handle, inode, goal, 333 0, &count, err); 334 if (*err) 335 goto failed_out; 336 337 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) { 338 EXT4_ERROR_INODE(inode, 339 "current_block %llu + count %lu > %d!", 340 current_block, count, 341 EXT4_MAX_BLOCK_FILE_PHYS); 342 *err = -EIO; 343 goto failed_out; 344 } 345 346 target -= count; 347 /* allocate blocks for indirect blocks */ 348 while (index < indirect_blks && count) { 349 new_blocks[index++] = current_block++; 350 count--; 351 } 352 if (count > 0) { 353 /* 354 * save the new block number 355 * for the first direct block 356 */ 357 new_blocks[index] = current_block; 358 printk(KERN_INFO "%s returned more blocks than " 359 "requested\n", __func__); 360 WARN_ON(1); 361 break; 362 } 363 } 364 365 target = blks - count ; 366 blk_allocated = count; 367 if (!target) 368 goto allocated; 369 /* Now allocate data blocks */ 370 memset(&ar, 0, sizeof(ar)); 371 ar.inode = inode; 372 ar.goal = goal; 373 ar.len = target; 374 ar.logical = iblock; 375 if (S_ISREG(inode->i_mode)) 376 /* enable in-core preallocation only for regular files */ 377 ar.flags = EXT4_MB_HINT_DATA; 378 379 current_block = ext4_mb_new_blocks(handle, &ar, err); 380 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) { 381 EXT4_ERROR_INODE(inode, 382 "current_block %llu + ar.len %d > %d!", 383 current_block, ar.len, 384 EXT4_MAX_BLOCK_FILE_PHYS); 385 *err = -EIO; 386 goto failed_out; 387 } 388 389 if (*err && (target == blks)) { 390 /* 391 * if the allocation failed and we didn't allocate 392 * any blocks before 393 */ 394 goto failed_out; 395 } 396 if (!*err) { 397 if (target == blks) { 398 /* 399 * save the new block number 400 * for the first direct block 401 */ 402 new_blocks[index] = current_block; 403 } 404 blk_allocated += ar.len; 405 } 406 allocated: 407 /* total number of blocks allocated for direct blocks */ 408 ret = blk_allocated; 409 *err = 0; 410 return ret; 411 failed_out: 412 for (i = 0; i < index; i++) 413 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0); 414 return ret; 415 } 416 417 /** 418 * ext4_alloc_branch - allocate and set up a chain of blocks. 419 * @handle: handle for this transaction 420 * @inode: owner 421 * @indirect_blks: number of allocated indirect blocks 422 * @blks: number of allocated direct blocks 423 * @goal: preferred place for allocation 424 * @offsets: offsets (in the blocks) to store the pointers to next. 425 * @branch: place to store the chain in. 426 * 427 * This function allocates blocks, zeroes out all but the last one, 428 * links them into chain and (if we are synchronous) writes them to disk. 429 * In other words, it prepares a branch that can be spliced onto the 430 * inode. It stores the information about that chain in the branch[], in 431 * the same format as ext4_get_branch() would do. We are calling it after 432 * we had read the existing part of chain and partial points to the last 433 * triple of that (one with zero ->key). Upon the exit we have the same 434 * picture as after the successful ext4_get_block(), except that in one 435 * place chain is disconnected - *branch->p is still zero (we did not 436 * set the last link), but branch->key contains the number that should 437 * be placed into *branch->p to fill that gap. 438 * 439 * If allocation fails we free all blocks we've allocated (and forget 440 * their buffer_heads) and return the error value the from failed 441 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 442 * as described above and return 0. 443 */ 444 static int ext4_alloc_branch(handle_t *handle, struct inode *inode, 445 ext4_lblk_t iblock, int indirect_blks, 446 int *blks, ext4_fsblk_t goal, 447 ext4_lblk_t *offsets, Indirect *branch) 448 { 449 int blocksize = inode->i_sb->s_blocksize; 450 int i, n = 0; 451 int err = 0; 452 struct buffer_head *bh; 453 int num; 454 ext4_fsblk_t new_blocks[4]; 455 ext4_fsblk_t current_block; 456 457 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks, 458 *blks, new_blocks, &err); 459 if (err) 460 return err; 461 462 branch[0].key = cpu_to_le32(new_blocks[0]); 463 /* 464 * metadata blocks and data blocks are allocated. 465 */ 466 for (n = 1; n <= indirect_blks; n++) { 467 /* 468 * Get buffer_head for parent block, zero it out 469 * and set the pointer to new one, then send 470 * parent to disk. 471 */ 472 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 473 if (unlikely(!bh)) { 474 err = -EIO; 475 goto failed; 476 } 477 478 branch[n].bh = bh; 479 lock_buffer(bh); 480 BUFFER_TRACE(bh, "call get_create_access"); 481 err = ext4_journal_get_create_access(handle, bh); 482 if (err) { 483 /* Don't brelse(bh) here; it's done in 484 * ext4_journal_forget() below */ 485 unlock_buffer(bh); 486 goto failed; 487 } 488 489 memset(bh->b_data, 0, blocksize); 490 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 491 branch[n].key = cpu_to_le32(new_blocks[n]); 492 *branch[n].p = branch[n].key; 493 if (n == indirect_blks) { 494 current_block = new_blocks[n]; 495 /* 496 * End of chain, update the last new metablock of 497 * the chain to point to the new allocated 498 * data blocks numbers 499 */ 500 for (i = 1; i < num; i++) 501 *(branch[n].p + i) = cpu_to_le32(++current_block); 502 } 503 BUFFER_TRACE(bh, "marking uptodate"); 504 set_buffer_uptodate(bh); 505 unlock_buffer(bh); 506 507 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 508 err = ext4_handle_dirty_metadata(handle, inode, bh); 509 if (err) 510 goto failed; 511 } 512 *blks = num; 513 return err; 514 failed: 515 /* Allocation failed, free what we already allocated */ 516 ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0); 517 for (i = 1; i <= n ; i++) { 518 /* 519 * branch[i].bh is newly allocated, so there is no 520 * need to revoke the block, which is why we don't 521 * need to set EXT4_FREE_BLOCKS_METADATA. 522 */ 523 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 524 EXT4_FREE_BLOCKS_FORGET); 525 } 526 for (i = n+1; i < indirect_blks; i++) 527 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0); 528 529 ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0); 530 531 return err; 532 } 533 534 /** 535 * ext4_splice_branch - splice the allocated branch onto inode. 536 * @handle: handle for this transaction 537 * @inode: owner 538 * @block: (logical) number of block we are adding 539 * @chain: chain of indirect blocks (with a missing link - see 540 * ext4_alloc_branch) 541 * @where: location of missing link 542 * @num: number of indirect blocks we are adding 543 * @blks: number of direct blocks we are adding 544 * 545 * This function fills the missing link and does all housekeeping needed in 546 * inode (->i_blocks, etc.). In case of success we end up with the full 547 * chain to new block and return 0. 548 */ 549 static int ext4_splice_branch(handle_t *handle, struct inode *inode, 550 ext4_lblk_t block, Indirect *where, int num, 551 int blks) 552 { 553 int i; 554 int err = 0; 555 ext4_fsblk_t current_block; 556 557 /* 558 * If we're splicing into a [td]indirect block (as opposed to the 559 * inode) then we need to get write access to the [td]indirect block 560 * before the splice. 561 */ 562 if (where->bh) { 563 BUFFER_TRACE(where->bh, "get_write_access"); 564 err = ext4_journal_get_write_access(handle, where->bh); 565 if (err) 566 goto err_out; 567 } 568 /* That's it */ 569 570 *where->p = where->key; 571 572 /* 573 * Update the host buffer_head or inode to point to more just allocated 574 * direct blocks blocks 575 */ 576 if (num == 0 && blks > 1) { 577 current_block = le32_to_cpu(where->key) + 1; 578 for (i = 1; i < blks; i++) 579 *(where->p + i) = cpu_to_le32(current_block++); 580 } 581 582 /* We are done with atomic stuff, now do the rest of housekeeping */ 583 /* had we spliced it onto indirect block? */ 584 if (where->bh) { 585 /* 586 * If we spliced it onto an indirect block, we haven't 587 * altered the inode. Note however that if it is being spliced 588 * onto an indirect block at the very end of the file (the 589 * file is growing) then we *will* alter the inode to reflect 590 * the new i_size. But that is not done here - it is done in 591 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 592 */ 593 jbd_debug(5, "splicing indirect only\n"); 594 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata"); 595 err = ext4_handle_dirty_metadata(handle, inode, where->bh); 596 if (err) 597 goto err_out; 598 } else { 599 /* 600 * OK, we spliced it into the inode itself on a direct block. 601 */ 602 ext4_mark_inode_dirty(handle, inode); 603 jbd_debug(5, "splicing direct\n"); 604 } 605 return err; 606 607 err_out: 608 for (i = 1; i <= num; i++) { 609 /* 610 * branch[i].bh is newly allocated, so there is no 611 * need to revoke the block, which is why we don't 612 * need to set EXT4_FREE_BLOCKS_METADATA. 613 */ 614 ext4_free_blocks(handle, inode, where[i].bh, 0, 1, 615 EXT4_FREE_BLOCKS_FORGET); 616 } 617 ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key), 618 blks, 0); 619 620 return err; 621 } 622 623 /* 624 * The ext4_ind_map_blocks() function handles non-extents inodes 625 * (i.e., using the traditional indirect/double-indirect i_blocks 626 * scheme) for ext4_map_blocks(). 627 * 628 * Allocation strategy is simple: if we have to allocate something, we will 629 * have to go the whole way to leaf. So let's do it before attaching anything 630 * to tree, set linkage between the newborn blocks, write them if sync is 631 * required, recheck the path, free and repeat if check fails, otherwise 632 * set the last missing link (that will protect us from any truncate-generated 633 * removals - all blocks on the path are immune now) and possibly force the 634 * write on the parent block. 635 * That has a nice additional property: no special recovery from the failed 636 * allocations is needed - we simply release blocks and do not touch anything 637 * reachable from inode. 638 * 639 * `handle' can be NULL if create == 0. 640 * 641 * return > 0, # of blocks mapped or allocated. 642 * return = 0, if plain lookup failed. 643 * return < 0, error case. 644 * 645 * The ext4_ind_get_blocks() function should be called with 646 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem 647 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or 648 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system 649 * blocks. 650 */ 651 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode, 652 struct ext4_map_blocks *map, 653 int flags) 654 { 655 int err = -EIO; 656 ext4_lblk_t offsets[4]; 657 Indirect chain[4]; 658 Indirect *partial; 659 ext4_fsblk_t goal; 660 int indirect_blks; 661 int blocks_to_boundary = 0; 662 int depth; 663 int count = 0; 664 ext4_fsblk_t first_block = 0; 665 666 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 667 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))); 668 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0); 669 depth = ext4_block_to_path(inode, map->m_lblk, offsets, 670 &blocks_to_boundary); 671 672 if (depth == 0) 673 goto out; 674 675 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 676 677 /* Simplest case - block found, no allocation needed */ 678 if (!partial) { 679 first_block = le32_to_cpu(chain[depth - 1].key); 680 count++; 681 /*map more blocks*/ 682 while (count < map->m_len && count <= blocks_to_boundary) { 683 ext4_fsblk_t blk; 684 685 blk = le32_to_cpu(*(chain[depth-1].p + count)); 686 687 if (blk == first_block + count) 688 count++; 689 else 690 break; 691 } 692 goto got_it; 693 } 694 695 /* Next simple case - plain lookup or failed read of indirect block */ 696 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO) 697 goto cleanup; 698 699 /* 700 * Okay, we need to do block allocation. 701 */ 702 if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 703 EXT4_FEATURE_RO_COMPAT_BIGALLOC)) { 704 EXT4_ERROR_INODE(inode, "Can't allocate blocks for " 705 "non-extent mapped inodes with bigalloc"); 706 return -ENOSPC; 707 } 708 709 goal = ext4_find_goal(inode, map->m_lblk, partial); 710 711 /* the number of blocks need to allocate for [d,t]indirect blocks */ 712 indirect_blks = (chain + depth) - partial - 1; 713 714 /* 715 * Next look up the indirect map to count the totoal number of 716 * direct blocks to allocate for this branch. 717 */ 718 count = ext4_blks_to_allocate(partial, indirect_blks, 719 map->m_len, blocks_to_boundary); 720 /* 721 * Block out ext4_truncate while we alter the tree 722 */ 723 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks, 724 &count, goal, 725 offsets + (partial - chain), partial); 726 727 /* 728 * The ext4_splice_branch call will free and forget any buffers 729 * on the new chain if there is a failure, but that risks using 730 * up transaction credits, especially for bitmaps where the 731 * credits cannot be returned. Can we handle this somehow? We 732 * may need to return -EAGAIN upwards in the worst case. --sct 733 */ 734 if (!err) 735 err = ext4_splice_branch(handle, inode, map->m_lblk, 736 partial, indirect_blks, count); 737 if (err) 738 goto cleanup; 739 740 map->m_flags |= EXT4_MAP_NEW; 741 742 ext4_update_inode_fsync_trans(handle, inode, 1); 743 got_it: 744 map->m_flags |= EXT4_MAP_MAPPED; 745 map->m_pblk = le32_to_cpu(chain[depth-1].key); 746 map->m_len = count; 747 if (count > blocks_to_boundary) 748 map->m_flags |= EXT4_MAP_BOUNDARY; 749 err = count; 750 /* Clean up and exit */ 751 partial = chain + depth - 1; /* the whole chain */ 752 cleanup: 753 while (partial > chain) { 754 BUFFER_TRACE(partial->bh, "call brelse"); 755 brelse(partial->bh); 756 partial--; 757 } 758 out: 759 trace_ext4_ind_map_blocks_exit(inode, map->m_lblk, 760 map->m_pblk, map->m_len, err); 761 return err; 762 } 763 764 /* 765 * O_DIRECT for ext3 (or indirect map) based files 766 * 767 * If the O_DIRECT write will extend the file then add this inode to the 768 * orphan list. So recovery will truncate it back to the original size 769 * if the machine crashes during the write. 770 * 771 * If the O_DIRECT write is intantiating holes inside i_size and the machine 772 * crashes then stale disk data _may_ be exposed inside the file. But current 773 * VFS code falls back into buffered path in that case so we are safe. 774 */ 775 ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb, 776 const struct iovec *iov, loff_t offset, 777 unsigned long nr_segs) 778 { 779 struct file *file = iocb->ki_filp; 780 struct inode *inode = file->f_mapping->host; 781 struct ext4_inode_info *ei = EXT4_I(inode); 782 handle_t *handle; 783 ssize_t ret; 784 int orphan = 0; 785 size_t count = iov_length(iov, nr_segs); 786 int retries = 0; 787 788 if (rw == WRITE) { 789 loff_t final_size = offset + count; 790 791 if (final_size > inode->i_size) { 792 /* Credits for sb + inode write */ 793 handle = ext4_journal_start(inode, 2); 794 if (IS_ERR(handle)) { 795 ret = PTR_ERR(handle); 796 goto out; 797 } 798 ret = ext4_orphan_add(handle, inode); 799 if (ret) { 800 ext4_journal_stop(handle); 801 goto out; 802 } 803 orphan = 1; 804 ei->i_disksize = inode->i_size; 805 ext4_journal_stop(handle); 806 } 807 } 808 809 retry: 810 if (rw == READ && ext4_should_dioread_nolock(inode)) { 811 if (unlikely(!list_empty(&ei->i_completed_io_list))) { 812 mutex_lock(&inode->i_mutex); 813 ext4_flush_completed_IO(inode); 814 mutex_unlock(&inode->i_mutex); 815 } 816 ret = __blockdev_direct_IO(rw, iocb, inode, 817 inode->i_sb->s_bdev, iov, 818 offset, nr_segs, 819 ext4_get_block, NULL, NULL, 0); 820 } else { 821 ret = blockdev_direct_IO(rw, iocb, inode, iov, 822 offset, nr_segs, ext4_get_block); 823 824 if (unlikely((rw & WRITE) && ret < 0)) { 825 loff_t isize = i_size_read(inode); 826 loff_t end = offset + iov_length(iov, nr_segs); 827 828 if (end > isize) 829 ext4_truncate_failed_write(inode); 830 } 831 } 832 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 833 goto retry; 834 835 if (orphan) { 836 int err; 837 838 /* Credits for sb + inode write */ 839 handle = ext4_journal_start(inode, 2); 840 if (IS_ERR(handle)) { 841 /* This is really bad luck. We've written the data 842 * but cannot extend i_size. Bail out and pretend 843 * the write failed... */ 844 ret = PTR_ERR(handle); 845 if (inode->i_nlink) 846 ext4_orphan_del(NULL, inode); 847 848 goto out; 849 } 850 if (inode->i_nlink) 851 ext4_orphan_del(handle, inode); 852 if (ret > 0) { 853 loff_t end = offset + ret; 854 if (end > inode->i_size) { 855 ei->i_disksize = end; 856 i_size_write(inode, end); 857 /* 858 * We're going to return a positive `ret' 859 * here due to non-zero-length I/O, so there's 860 * no way of reporting error returns from 861 * ext4_mark_inode_dirty() to userspace. So 862 * ignore it. 863 */ 864 ext4_mark_inode_dirty(handle, inode); 865 } 866 } 867 err = ext4_journal_stop(handle); 868 if (ret == 0) 869 ret = err; 870 } 871 out: 872 return ret; 873 } 874 875 /* 876 * Calculate the number of metadata blocks need to reserve 877 * to allocate a new block at @lblocks for non extent file based file 878 */ 879 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock) 880 { 881 struct ext4_inode_info *ei = EXT4_I(inode); 882 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1); 883 int blk_bits; 884 885 if (lblock < EXT4_NDIR_BLOCKS) 886 return 0; 887 888 lblock -= EXT4_NDIR_BLOCKS; 889 890 if (ei->i_da_metadata_calc_len && 891 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) { 892 ei->i_da_metadata_calc_len++; 893 return 0; 894 } 895 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask; 896 ei->i_da_metadata_calc_len = 1; 897 blk_bits = order_base_2(lblock); 898 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1; 899 } 900 901 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks, int chunk) 902 { 903 int indirects; 904 905 /* if nrblocks are contiguous */ 906 if (chunk) { 907 /* 908 * With N contiguous data blocks, we need at most 909 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks, 910 * 2 dindirect blocks, and 1 tindirect block 911 */ 912 return DIV_ROUND_UP(nrblocks, 913 EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4; 914 } 915 /* 916 * if nrblocks are not contiguous, worse case, each block touch 917 * a indirect block, and each indirect block touch a double indirect 918 * block, plus a triple indirect block 919 */ 920 indirects = nrblocks * 2 + 1; 921 return indirects; 922 } 923 924 /* 925 * Truncate transactions can be complex and absolutely huge. So we need to 926 * be able to restart the transaction at a conventient checkpoint to make 927 * sure we don't overflow the journal. 928 * 929 * start_transaction gets us a new handle for a truncate transaction, 930 * and extend_transaction tries to extend the existing one a bit. If 931 * extend fails, we need to propagate the failure up and restart the 932 * transaction in the top-level truncate loop. --sct 933 */ 934 static handle_t *start_transaction(struct inode *inode) 935 { 936 handle_t *result; 937 938 result = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)); 939 if (!IS_ERR(result)) 940 return result; 941 942 ext4_std_error(inode->i_sb, PTR_ERR(result)); 943 return result; 944 } 945 946 /* 947 * Try to extend this transaction for the purposes of truncation. 948 * 949 * Returns 0 if we managed to create more room. If we can't create more 950 * room, and the transaction must be restarted we return 1. 951 */ 952 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 953 { 954 if (!ext4_handle_valid(handle)) 955 return 0; 956 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1)) 957 return 0; 958 if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode))) 959 return 0; 960 return 1; 961 } 962 963 /* 964 * Probably it should be a library function... search for first non-zero word 965 * or memcmp with zero_page, whatever is better for particular architecture. 966 * Linus? 967 */ 968 static inline int all_zeroes(__le32 *p, __le32 *q) 969 { 970 while (p < q) 971 if (*p++) 972 return 0; 973 return 1; 974 } 975 976 /** 977 * ext4_find_shared - find the indirect blocks for partial truncation. 978 * @inode: inode in question 979 * @depth: depth of the affected branch 980 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 981 * @chain: place to store the pointers to partial indirect blocks 982 * @top: place to the (detached) top of branch 983 * 984 * This is a helper function used by ext4_truncate(). 985 * 986 * When we do truncate() we may have to clean the ends of several 987 * indirect blocks but leave the blocks themselves alive. Block is 988 * partially truncated if some data below the new i_size is referred 989 * from it (and it is on the path to the first completely truncated 990 * data block, indeed). We have to free the top of that path along 991 * with everything to the right of the path. Since no allocation 992 * past the truncation point is possible until ext4_truncate() 993 * finishes, we may safely do the latter, but top of branch may 994 * require special attention - pageout below the truncation point 995 * might try to populate it. 996 * 997 * We atomically detach the top of branch from the tree, store the 998 * block number of its root in *@top, pointers to buffer_heads of 999 * partially truncated blocks - in @chain[].bh and pointers to 1000 * their last elements that should not be removed - in 1001 * @chain[].p. Return value is the pointer to last filled element 1002 * of @chain. 1003 * 1004 * The work left to caller to do the actual freeing of subtrees: 1005 * a) free the subtree starting from *@top 1006 * b) free the subtrees whose roots are stored in 1007 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 1008 * c) free the subtrees growing from the inode past the @chain[0]. 1009 * (no partially truncated stuff there). */ 1010 1011 static Indirect *ext4_find_shared(struct inode *inode, int depth, 1012 ext4_lblk_t offsets[4], Indirect chain[4], 1013 __le32 *top) 1014 { 1015 Indirect *partial, *p; 1016 int k, err; 1017 1018 *top = 0; 1019 /* Make k index the deepest non-null offset + 1 */ 1020 for (k = depth; k > 1 && !offsets[k-1]; k--) 1021 ; 1022 partial = ext4_get_branch(inode, k, offsets, chain, &err); 1023 /* Writer: pointers */ 1024 if (!partial) 1025 partial = chain + k-1; 1026 /* 1027 * If the branch acquired continuation since we've looked at it - 1028 * fine, it should all survive and (new) top doesn't belong to us. 1029 */ 1030 if (!partial->key && *partial->p) 1031 /* Writer: end */ 1032 goto no_top; 1033 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 1034 ; 1035 /* 1036 * OK, we've found the last block that must survive. The rest of our 1037 * branch should be detached before unlocking. However, if that rest 1038 * of branch is all ours and does not grow immediately from the inode 1039 * it's easier to cheat and just decrement partial->p. 1040 */ 1041 if (p == chain + k - 1 && p > chain) { 1042 p->p--; 1043 } else { 1044 *top = *p->p; 1045 /* Nope, don't do this in ext4. Must leave the tree intact */ 1046 #if 0 1047 *p->p = 0; 1048 #endif 1049 } 1050 /* Writer: end */ 1051 1052 while (partial > p) { 1053 brelse(partial->bh); 1054 partial--; 1055 } 1056 no_top: 1057 return partial; 1058 } 1059 1060 /* 1061 * Zero a number of block pointers in either an inode or an indirect block. 1062 * If we restart the transaction we must again get write access to the 1063 * indirect block for further modification. 1064 * 1065 * We release `count' blocks on disk, but (last - first) may be greater 1066 * than `count' because there can be holes in there. 1067 * 1068 * Return 0 on success, 1 on invalid block range 1069 * and < 0 on fatal error. 1070 */ 1071 static int ext4_clear_blocks(handle_t *handle, struct inode *inode, 1072 struct buffer_head *bh, 1073 ext4_fsblk_t block_to_free, 1074 unsigned long count, __le32 *first, 1075 __le32 *last) 1076 { 1077 __le32 *p; 1078 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED; 1079 int err; 1080 1081 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 1082 flags |= EXT4_FREE_BLOCKS_METADATA; 1083 1084 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free, 1085 count)) { 1086 EXT4_ERROR_INODE(inode, "attempt to clear invalid " 1087 "blocks %llu len %lu", 1088 (unsigned long long) block_to_free, count); 1089 return 1; 1090 } 1091 1092 if (try_to_extend_transaction(handle, inode)) { 1093 if (bh) { 1094 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 1095 err = ext4_handle_dirty_metadata(handle, inode, bh); 1096 if (unlikely(err)) 1097 goto out_err; 1098 } 1099 err = ext4_mark_inode_dirty(handle, inode); 1100 if (unlikely(err)) 1101 goto out_err; 1102 err = ext4_truncate_restart_trans(handle, inode, 1103 ext4_blocks_for_truncate(inode)); 1104 if (unlikely(err)) 1105 goto out_err; 1106 if (bh) { 1107 BUFFER_TRACE(bh, "retaking write access"); 1108 err = ext4_journal_get_write_access(handle, bh); 1109 if (unlikely(err)) 1110 goto out_err; 1111 } 1112 } 1113 1114 for (p = first; p < last; p++) 1115 *p = 0; 1116 1117 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags); 1118 return 0; 1119 out_err: 1120 ext4_std_error(inode->i_sb, err); 1121 return err; 1122 } 1123 1124 /** 1125 * ext4_free_data - free a list of data blocks 1126 * @handle: handle for this transaction 1127 * @inode: inode we are dealing with 1128 * @this_bh: indirect buffer_head which contains *@first and *@last 1129 * @first: array of block numbers 1130 * @last: points immediately past the end of array 1131 * 1132 * We are freeing all blocks referred from that array (numbers are stored as 1133 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 1134 * 1135 * We accumulate contiguous runs of blocks to free. Conveniently, if these 1136 * blocks are contiguous then releasing them at one time will only affect one 1137 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 1138 * actually use a lot of journal space. 1139 * 1140 * @this_bh will be %NULL if @first and @last point into the inode's direct 1141 * block pointers. 1142 */ 1143 static void ext4_free_data(handle_t *handle, struct inode *inode, 1144 struct buffer_head *this_bh, 1145 __le32 *first, __le32 *last) 1146 { 1147 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 1148 unsigned long count = 0; /* Number of blocks in the run */ 1149 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 1150 corresponding to 1151 block_to_free */ 1152 ext4_fsblk_t nr; /* Current block # */ 1153 __le32 *p; /* Pointer into inode/ind 1154 for current block */ 1155 int err = 0; 1156 1157 if (this_bh) { /* For indirect block */ 1158 BUFFER_TRACE(this_bh, "get_write_access"); 1159 err = ext4_journal_get_write_access(handle, this_bh); 1160 /* Important: if we can't update the indirect pointers 1161 * to the blocks, we can't free them. */ 1162 if (err) 1163 return; 1164 } 1165 1166 for (p = first; p < last; p++) { 1167 nr = le32_to_cpu(*p); 1168 if (nr) { 1169 /* accumulate blocks to free if they're contiguous */ 1170 if (count == 0) { 1171 block_to_free = nr; 1172 block_to_free_p = p; 1173 count = 1; 1174 } else if (nr == block_to_free + count) { 1175 count++; 1176 } else { 1177 err = ext4_clear_blocks(handle, inode, this_bh, 1178 block_to_free, count, 1179 block_to_free_p, p); 1180 if (err) 1181 break; 1182 block_to_free = nr; 1183 block_to_free_p = p; 1184 count = 1; 1185 } 1186 } 1187 } 1188 1189 if (!err && count > 0) 1190 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free, 1191 count, block_to_free_p, p); 1192 if (err < 0) 1193 /* fatal error */ 1194 return; 1195 1196 if (this_bh) { 1197 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata"); 1198 1199 /* 1200 * The buffer head should have an attached journal head at this 1201 * point. However, if the data is corrupted and an indirect 1202 * block pointed to itself, it would have been detached when 1203 * the block was cleared. Check for this instead of OOPSing. 1204 */ 1205 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh)) 1206 ext4_handle_dirty_metadata(handle, inode, this_bh); 1207 else 1208 EXT4_ERROR_INODE(inode, 1209 "circular indirect block detected at " 1210 "block %llu", 1211 (unsigned long long) this_bh->b_blocknr); 1212 } 1213 } 1214 1215 /** 1216 * ext4_free_branches - free an array of branches 1217 * @handle: JBD handle for this transaction 1218 * @inode: inode we are dealing with 1219 * @parent_bh: the buffer_head which contains *@first and *@last 1220 * @first: array of block numbers 1221 * @last: pointer immediately past the end of array 1222 * @depth: depth of the branches to free 1223 * 1224 * We are freeing all blocks referred from these branches (numbers are 1225 * stored as little-endian 32-bit) and updating @inode->i_blocks 1226 * appropriately. 1227 */ 1228 static void ext4_free_branches(handle_t *handle, struct inode *inode, 1229 struct buffer_head *parent_bh, 1230 __le32 *first, __le32 *last, int depth) 1231 { 1232 ext4_fsblk_t nr; 1233 __le32 *p; 1234 1235 if (ext4_handle_is_aborted(handle)) 1236 return; 1237 1238 if (depth--) { 1239 struct buffer_head *bh; 1240 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1241 p = last; 1242 while (--p >= first) { 1243 nr = le32_to_cpu(*p); 1244 if (!nr) 1245 continue; /* A hole */ 1246 1247 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), 1248 nr, 1)) { 1249 EXT4_ERROR_INODE(inode, 1250 "invalid indirect mapped " 1251 "block %lu (level %d)", 1252 (unsigned long) nr, depth); 1253 break; 1254 } 1255 1256 /* Go read the buffer for the next level down */ 1257 bh = sb_bread(inode->i_sb, nr); 1258 1259 /* 1260 * A read failure? Report error and clear slot 1261 * (should be rare). 1262 */ 1263 if (!bh) { 1264 EXT4_ERROR_INODE_BLOCK(inode, nr, 1265 "Read failure"); 1266 continue; 1267 } 1268 1269 /* This zaps the entire block. Bottom up. */ 1270 BUFFER_TRACE(bh, "free child branches"); 1271 ext4_free_branches(handle, inode, bh, 1272 (__le32 *) bh->b_data, 1273 (__le32 *) bh->b_data + addr_per_block, 1274 depth); 1275 brelse(bh); 1276 1277 /* 1278 * Everything below this this pointer has been 1279 * released. Now let this top-of-subtree go. 1280 * 1281 * We want the freeing of this indirect block to be 1282 * atomic in the journal with the updating of the 1283 * bitmap block which owns it. So make some room in 1284 * the journal. 1285 * 1286 * We zero the parent pointer *after* freeing its 1287 * pointee in the bitmaps, so if extend_transaction() 1288 * for some reason fails to put the bitmap changes and 1289 * the release into the same transaction, recovery 1290 * will merely complain about releasing a free block, 1291 * rather than leaking blocks. 1292 */ 1293 if (ext4_handle_is_aborted(handle)) 1294 return; 1295 if (try_to_extend_transaction(handle, inode)) { 1296 ext4_mark_inode_dirty(handle, inode); 1297 ext4_truncate_restart_trans(handle, inode, 1298 ext4_blocks_for_truncate(inode)); 1299 } 1300 1301 /* 1302 * The forget flag here is critical because if 1303 * we are journaling (and not doing data 1304 * journaling), we have to make sure a revoke 1305 * record is written to prevent the journal 1306 * replay from overwriting the (former) 1307 * indirect block if it gets reallocated as a 1308 * data block. This must happen in the same 1309 * transaction where the data blocks are 1310 * actually freed. 1311 */ 1312 ext4_free_blocks(handle, inode, NULL, nr, 1, 1313 EXT4_FREE_BLOCKS_METADATA| 1314 EXT4_FREE_BLOCKS_FORGET); 1315 1316 if (parent_bh) { 1317 /* 1318 * The block which we have just freed is 1319 * pointed to by an indirect block: journal it 1320 */ 1321 BUFFER_TRACE(parent_bh, "get_write_access"); 1322 if (!ext4_journal_get_write_access(handle, 1323 parent_bh)){ 1324 *p = 0; 1325 BUFFER_TRACE(parent_bh, 1326 "call ext4_handle_dirty_metadata"); 1327 ext4_handle_dirty_metadata(handle, 1328 inode, 1329 parent_bh); 1330 } 1331 } 1332 } 1333 } else { 1334 /* We have reached the bottom of the tree. */ 1335 BUFFER_TRACE(parent_bh, "free data blocks"); 1336 ext4_free_data(handle, inode, parent_bh, first, last); 1337 } 1338 } 1339 1340 void ext4_ind_truncate(struct inode *inode) 1341 { 1342 handle_t *handle; 1343 struct ext4_inode_info *ei = EXT4_I(inode); 1344 __le32 *i_data = ei->i_data; 1345 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1346 struct address_space *mapping = inode->i_mapping; 1347 ext4_lblk_t offsets[4]; 1348 Indirect chain[4]; 1349 Indirect *partial; 1350 __le32 nr = 0; 1351 int n = 0; 1352 ext4_lblk_t last_block, max_block; 1353 loff_t page_len; 1354 unsigned blocksize = inode->i_sb->s_blocksize; 1355 int err; 1356 1357 handle = start_transaction(inode); 1358 if (IS_ERR(handle)) 1359 return; /* AKPM: return what? */ 1360 1361 last_block = (inode->i_size + blocksize-1) 1362 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1363 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1) 1364 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1365 1366 if (inode->i_size % PAGE_CACHE_SIZE != 0) { 1367 page_len = PAGE_CACHE_SIZE - 1368 (inode->i_size & (PAGE_CACHE_SIZE - 1)); 1369 1370 err = ext4_discard_partial_page_buffers(handle, 1371 mapping, inode->i_size, page_len, 0); 1372 1373 if (err) 1374 goto out_stop; 1375 } 1376 1377 if (last_block != max_block) { 1378 n = ext4_block_to_path(inode, last_block, offsets, NULL); 1379 if (n == 0) 1380 goto out_stop; /* error */ 1381 } 1382 1383 /* 1384 * OK. This truncate is going to happen. We add the inode to the 1385 * orphan list, so that if this truncate spans multiple transactions, 1386 * and we crash, we will resume the truncate when the filesystem 1387 * recovers. It also marks the inode dirty, to catch the new size. 1388 * 1389 * Implication: the file must always be in a sane, consistent 1390 * truncatable state while each transaction commits. 1391 */ 1392 if (ext4_orphan_add(handle, inode)) 1393 goto out_stop; 1394 1395 /* 1396 * From here we block out all ext4_get_block() callers who want to 1397 * modify the block allocation tree. 1398 */ 1399 down_write(&ei->i_data_sem); 1400 1401 ext4_discard_preallocations(inode); 1402 1403 /* 1404 * The orphan list entry will now protect us from any crash which 1405 * occurs before the truncate completes, so it is now safe to propagate 1406 * the new, shorter inode size (held for now in i_size) into the 1407 * on-disk inode. We do this via i_disksize, which is the value which 1408 * ext4 *really* writes onto the disk inode. 1409 */ 1410 ei->i_disksize = inode->i_size; 1411 1412 if (last_block == max_block) { 1413 /* 1414 * It is unnecessary to free any data blocks if last_block is 1415 * equal to the indirect block limit. 1416 */ 1417 goto out_unlock; 1418 } else if (n == 1) { /* direct blocks */ 1419 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 1420 i_data + EXT4_NDIR_BLOCKS); 1421 goto do_indirects; 1422 } 1423 1424 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 1425 /* Kill the top of shared branch (not detached) */ 1426 if (nr) { 1427 if (partial == chain) { 1428 /* Shared branch grows from the inode */ 1429 ext4_free_branches(handle, inode, NULL, 1430 &nr, &nr+1, (chain+n-1) - partial); 1431 *partial->p = 0; 1432 /* 1433 * We mark the inode dirty prior to restart, 1434 * and prior to stop. No need for it here. 1435 */ 1436 } else { 1437 /* Shared branch grows from an indirect block */ 1438 BUFFER_TRACE(partial->bh, "get_write_access"); 1439 ext4_free_branches(handle, inode, partial->bh, 1440 partial->p, 1441 partial->p+1, (chain+n-1) - partial); 1442 } 1443 } 1444 /* Clear the ends of indirect blocks on the shared branch */ 1445 while (partial > chain) { 1446 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 1447 (__le32*)partial->bh->b_data+addr_per_block, 1448 (chain+n-1) - partial); 1449 BUFFER_TRACE(partial->bh, "call brelse"); 1450 brelse(partial->bh); 1451 partial--; 1452 } 1453 do_indirects: 1454 /* Kill the remaining (whole) subtrees */ 1455 switch (offsets[0]) { 1456 default: 1457 nr = i_data[EXT4_IND_BLOCK]; 1458 if (nr) { 1459 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 1460 i_data[EXT4_IND_BLOCK] = 0; 1461 } 1462 case EXT4_IND_BLOCK: 1463 nr = i_data[EXT4_DIND_BLOCK]; 1464 if (nr) { 1465 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 1466 i_data[EXT4_DIND_BLOCK] = 0; 1467 } 1468 case EXT4_DIND_BLOCK: 1469 nr = i_data[EXT4_TIND_BLOCK]; 1470 if (nr) { 1471 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 1472 i_data[EXT4_TIND_BLOCK] = 0; 1473 } 1474 case EXT4_TIND_BLOCK: 1475 ; 1476 } 1477 1478 out_unlock: 1479 up_write(&ei->i_data_sem); 1480 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 1481 ext4_mark_inode_dirty(handle, inode); 1482 1483 /* 1484 * In a multi-transaction truncate, we only make the final transaction 1485 * synchronous 1486 */ 1487 if (IS_SYNC(inode)) 1488 ext4_handle_sync(handle); 1489 out_stop: 1490 /* 1491 * If this was a simple ftruncate(), and the file will remain alive 1492 * then we need to clear up the orphan record which we created above. 1493 * However, if this was a real unlink then we were called by 1494 * ext4_delete_inode(), and we allow that function to clean up the 1495 * orphan info for us. 1496 */ 1497 if (inode->i_nlink) 1498 ext4_orphan_del(handle, inode); 1499 1500 ext4_journal_stop(handle); 1501 trace_ext4_truncate_exit(inode); 1502 } 1503 1504