xref: /linux/fs/ext4/indirect.c (revision df561f6688fef775baa341a0f5d960becd248b11)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/indirect.c
4  *
5  *  from
6  *
7  *  linux/fs/ext4/inode.c
8  *
9  * Copyright (C) 1992, 1993, 1994, 1995
10  * Remy Card (card@masi.ibp.fr)
11  * Laboratoire MASI - Institut Blaise Pascal
12  * Universite Pierre et Marie Curie (Paris VI)
13  *
14  *  from
15  *
16  *  linux/fs/minix/inode.c
17  *
18  *  Copyright (C) 1991, 1992  Linus Torvalds
19  *
20  *  Goal-directed block allocation by Stephen Tweedie
21  *	(sct@redhat.com), 1993, 1998
22  */
23 
24 #include "ext4_jbd2.h"
25 #include "truncate.h"
26 #include <linux/dax.h>
27 #include <linux/uio.h>
28 
29 #include <trace/events/ext4.h>
30 
31 typedef struct {
32 	__le32	*p;
33 	__le32	key;
34 	struct buffer_head *bh;
35 } Indirect;
36 
37 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
38 {
39 	p->key = *(p->p = v);
40 	p->bh = bh;
41 }
42 
43 /**
44  *	ext4_block_to_path - parse the block number into array of offsets
45  *	@inode: inode in question (we are only interested in its superblock)
46  *	@i_block: block number to be parsed
47  *	@offsets: array to store the offsets in
48  *	@boundary: set this non-zero if the referred-to block is likely to be
49  *	       followed (on disk) by an indirect block.
50  *
51  *	To store the locations of file's data ext4 uses a data structure common
52  *	for UNIX filesystems - tree of pointers anchored in the inode, with
53  *	data blocks at leaves and indirect blocks in intermediate nodes.
54  *	This function translates the block number into path in that tree -
55  *	return value is the path length and @offsets[n] is the offset of
56  *	pointer to (n+1)th node in the nth one. If @block is out of range
57  *	(negative or too large) warning is printed and zero returned.
58  *
59  *	Note: function doesn't find node addresses, so no IO is needed. All
60  *	we need to know is the capacity of indirect blocks (taken from the
61  *	inode->i_sb).
62  */
63 
64 /*
65  * Portability note: the last comparison (check that we fit into triple
66  * indirect block) is spelled differently, because otherwise on an
67  * architecture with 32-bit longs and 8Kb pages we might get into trouble
68  * if our filesystem had 8Kb blocks. We might use long long, but that would
69  * kill us on x86. Oh, well, at least the sign propagation does not matter -
70  * i_block would have to be negative in the very beginning, so we would not
71  * get there at all.
72  */
73 
74 static int ext4_block_to_path(struct inode *inode,
75 			      ext4_lblk_t i_block,
76 			      ext4_lblk_t offsets[4], int *boundary)
77 {
78 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
79 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
80 	const long direct_blocks = EXT4_NDIR_BLOCKS,
81 		indirect_blocks = ptrs,
82 		double_blocks = (1 << (ptrs_bits * 2));
83 	int n = 0;
84 	int final = 0;
85 
86 	if (i_block < direct_blocks) {
87 		offsets[n++] = i_block;
88 		final = direct_blocks;
89 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
90 		offsets[n++] = EXT4_IND_BLOCK;
91 		offsets[n++] = i_block;
92 		final = ptrs;
93 	} else if ((i_block -= indirect_blocks) < double_blocks) {
94 		offsets[n++] = EXT4_DIND_BLOCK;
95 		offsets[n++] = i_block >> ptrs_bits;
96 		offsets[n++] = i_block & (ptrs - 1);
97 		final = ptrs;
98 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
99 		offsets[n++] = EXT4_TIND_BLOCK;
100 		offsets[n++] = i_block >> (ptrs_bits * 2);
101 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
102 		offsets[n++] = i_block & (ptrs - 1);
103 		final = ptrs;
104 	} else {
105 		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
106 			     i_block + direct_blocks +
107 			     indirect_blocks + double_blocks, inode->i_ino);
108 	}
109 	if (boundary)
110 		*boundary = final - 1 - (i_block & (ptrs - 1));
111 	return n;
112 }
113 
114 /**
115  *	ext4_get_branch - read the chain of indirect blocks leading to data
116  *	@inode: inode in question
117  *	@depth: depth of the chain (1 - direct pointer, etc.)
118  *	@offsets: offsets of pointers in inode/indirect blocks
119  *	@chain: place to store the result
120  *	@err: here we store the error value
121  *
122  *	Function fills the array of triples <key, p, bh> and returns %NULL
123  *	if everything went OK or the pointer to the last filled triple
124  *	(incomplete one) otherwise. Upon the return chain[i].key contains
125  *	the number of (i+1)-th block in the chain (as it is stored in memory,
126  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
127  *	number (it points into struct inode for i==0 and into the bh->b_data
128  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
129  *	block for i>0 and NULL for i==0. In other words, it holds the block
130  *	numbers of the chain, addresses they were taken from (and where we can
131  *	verify that chain did not change) and buffer_heads hosting these
132  *	numbers.
133  *
134  *	Function stops when it stumbles upon zero pointer (absent block)
135  *		(pointer to last triple returned, *@err == 0)
136  *	or when it gets an IO error reading an indirect block
137  *		(ditto, *@err == -EIO)
138  *	or when it reads all @depth-1 indirect blocks successfully and finds
139  *	the whole chain, all way to the data (returns %NULL, *err == 0).
140  *
141  *      Need to be called with
142  *      down_read(&EXT4_I(inode)->i_data_sem)
143  */
144 static Indirect *ext4_get_branch(struct inode *inode, int depth,
145 				 ext4_lblk_t  *offsets,
146 				 Indirect chain[4], int *err)
147 {
148 	struct super_block *sb = inode->i_sb;
149 	Indirect *p = chain;
150 	struct buffer_head *bh;
151 	int ret = -EIO;
152 
153 	*err = 0;
154 	/* i_data is not going away, no lock needed */
155 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
156 	if (!p->key)
157 		goto no_block;
158 	while (--depth) {
159 		bh = sb_getblk(sb, le32_to_cpu(p->key));
160 		if (unlikely(!bh)) {
161 			ret = -ENOMEM;
162 			goto failure;
163 		}
164 
165 		if (!bh_uptodate_or_lock(bh)) {
166 			if (bh_submit_read(bh) < 0) {
167 				put_bh(bh);
168 				goto failure;
169 			}
170 			/* validate block references */
171 			if (ext4_check_indirect_blockref(inode, bh)) {
172 				put_bh(bh);
173 				goto failure;
174 			}
175 		}
176 
177 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
178 		/* Reader: end */
179 		if (!p->key)
180 			goto no_block;
181 	}
182 	return NULL;
183 
184 failure:
185 	*err = ret;
186 no_block:
187 	return p;
188 }
189 
190 /**
191  *	ext4_find_near - find a place for allocation with sufficient locality
192  *	@inode: owner
193  *	@ind: descriptor of indirect block.
194  *
195  *	This function returns the preferred place for block allocation.
196  *	It is used when heuristic for sequential allocation fails.
197  *	Rules are:
198  *	  + if there is a block to the left of our position - allocate near it.
199  *	  + if pointer will live in indirect block - allocate near that block.
200  *	  + if pointer will live in inode - allocate in the same
201  *	    cylinder group.
202  *
203  * In the latter case we colour the starting block by the callers PID to
204  * prevent it from clashing with concurrent allocations for a different inode
205  * in the same block group.   The PID is used here so that functionally related
206  * files will be close-by on-disk.
207  *
208  *	Caller must make sure that @ind is valid and will stay that way.
209  */
210 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
211 {
212 	struct ext4_inode_info *ei = EXT4_I(inode);
213 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
214 	__le32 *p;
215 
216 	/* Try to find previous block */
217 	for (p = ind->p - 1; p >= start; p--) {
218 		if (*p)
219 			return le32_to_cpu(*p);
220 	}
221 
222 	/* No such thing, so let's try location of indirect block */
223 	if (ind->bh)
224 		return ind->bh->b_blocknr;
225 
226 	/*
227 	 * It is going to be referred to from the inode itself? OK, just put it
228 	 * into the same cylinder group then.
229 	 */
230 	return ext4_inode_to_goal_block(inode);
231 }
232 
233 /**
234  *	ext4_find_goal - find a preferred place for allocation.
235  *	@inode: owner
236  *	@block:  block we want
237  *	@partial: pointer to the last triple within a chain
238  *
239  *	Normally this function find the preferred place for block allocation,
240  *	returns it.
241  *	Because this is only used for non-extent files, we limit the block nr
242  *	to 32 bits.
243  */
244 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
245 				   Indirect *partial)
246 {
247 	ext4_fsblk_t goal;
248 
249 	/*
250 	 * XXX need to get goal block from mballoc's data structures
251 	 */
252 
253 	goal = ext4_find_near(inode, partial);
254 	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
255 	return goal;
256 }
257 
258 /**
259  *	ext4_blks_to_allocate - Look up the block map and count the number
260  *	of direct blocks need to be allocated for the given branch.
261  *
262  *	@branch: chain of indirect blocks
263  *	@k: number of blocks need for indirect blocks
264  *	@blks: number of data blocks to be mapped.
265  *	@blocks_to_boundary:  the offset in the indirect block
266  *
267  *	return the total number of blocks to be allocate, including the
268  *	direct and indirect blocks.
269  */
270 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
271 				 int blocks_to_boundary)
272 {
273 	unsigned int count = 0;
274 
275 	/*
276 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
277 	 * then it's clear blocks on that path have not allocated
278 	 */
279 	if (k > 0) {
280 		/* right now we don't handle cross boundary allocation */
281 		if (blks < blocks_to_boundary + 1)
282 			count += blks;
283 		else
284 			count += blocks_to_boundary + 1;
285 		return count;
286 	}
287 
288 	count++;
289 	while (count < blks && count <= blocks_to_boundary &&
290 		le32_to_cpu(*(branch[0].p + count)) == 0) {
291 		count++;
292 	}
293 	return count;
294 }
295 
296 /**
297  * ext4_alloc_branch() - allocate and set up a chain of blocks
298  * @handle: handle for this transaction
299  * @ar: structure describing the allocation request
300  * @indirect_blks: number of allocated indirect blocks
301  * @offsets: offsets (in the blocks) to store the pointers to next.
302  * @branch: place to store the chain in.
303  *
304  *	This function allocates blocks, zeroes out all but the last one,
305  *	links them into chain and (if we are synchronous) writes them to disk.
306  *	In other words, it prepares a branch that can be spliced onto the
307  *	inode. It stores the information about that chain in the branch[], in
308  *	the same format as ext4_get_branch() would do. We are calling it after
309  *	we had read the existing part of chain and partial points to the last
310  *	triple of that (one with zero ->key). Upon the exit we have the same
311  *	picture as after the successful ext4_get_block(), except that in one
312  *	place chain is disconnected - *branch->p is still zero (we did not
313  *	set the last link), but branch->key contains the number that should
314  *	be placed into *branch->p to fill that gap.
315  *
316  *	If allocation fails we free all blocks we've allocated (and forget
317  *	their buffer_heads) and return the error value the from failed
318  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
319  *	as described above and return 0.
320  */
321 static int ext4_alloc_branch(handle_t *handle,
322 			     struct ext4_allocation_request *ar,
323 			     int indirect_blks, ext4_lblk_t *offsets,
324 			     Indirect *branch)
325 {
326 	struct buffer_head *		bh;
327 	ext4_fsblk_t			b, new_blocks[4];
328 	__le32				*p;
329 	int				i, j, err, len = 1;
330 
331 	for (i = 0; i <= indirect_blks; i++) {
332 		if (i == indirect_blks) {
333 			new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err);
334 		} else {
335 			ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle,
336 					ar->inode, ar->goal,
337 					ar->flags & EXT4_MB_DELALLOC_RESERVED,
338 					NULL, &err);
339 			/* Simplify error cleanup... */
340 			branch[i+1].bh = NULL;
341 		}
342 		if (err) {
343 			i--;
344 			goto failed;
345 		}
346 		branch[i].key = cpu_to_le32(new_blocks[i]);
347 		if (i == 0)
348 			continue;
349 
350 		bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]);
351 		if (unlikely(!bh)) {
352 			err = -ENOMEM;
353 			goto failed;
354 		}
355 		lock_buffer(bh);
356 		BUFFER_TRACE(bh, "call get_create_access");
357 		err = ext4_journal_get_create_access(handle, bh);
358 		if (err) {
359 			unlock_buffer(bh);
360 			goto failed;
361 		}
362 
363 		memset(bh->b_data, 0, bh->b_size);
364 		p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
365 		b = new_blocks[i];
366 
367 		if (i == indirect_blks)
368 			len = ar->len;
369 		for (j = 0; j < len; j++)
370 			*p++ = cpu_to_le32(b++);
371 
372 		BUFFER_TRACE(bh, "marking uptodate");
373 		set_buffer_uptodate(bh);
374 		unlock_buffer(bh);
375 
376 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
377 		err = ext4_handle_dirty_metadata(handle, ar->inode, bh);
378 		if (err)
379 			goto failed;
380 	}
381 	return 0;
382 failed:
383 	if (i == indirect_blks) {
384 		/* Free data blocks */
385 		ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i],
386 				 ar->len, 0);
387 		i--;
388 	}
389 	for (; i >= 0; i--) {
390 		/*
391 		 * We want to ext4_forget() only freshly allocated indirect
392 		 * blocks. Buffer for new_blocks[i] is at branch[i+1].bh
393 		 * (buffer at branch[0].bh is indirect block / inode already
394 		 * existing before ext4_alloc_branch() was called). Also
395 		 * because blocks are freshly allocated, we don't need to
396 		 * revoke them which is why we don't set
397 		 * EXT4_FREE_BLOCKS_METADATA.
398 		 */
399 		ext4_free_blocks(handle, ar->inode, branch[i+1].bh,
400 				 new_blocks[i], 1,
401 				 branch[i+1].bh ? EXT4_FREE_BLOCKS_FORGET : 0);
402 	}
403 	return err;
404 }
405 
406 /**
407  * ext4_splice_branch() - splice the allocated branch onto inode.
408  * @handle: handle for this transaction
409  * @ar: structure describing the allocation request
410  * @where: location of missing link
411  * @num:   number of indirect blocks we are adding
412  *
413  * This function fills the missing link and does all housekeeping needed in
414  * inode (->i_blocks, etc.). In case of success we end up with the full
415  * chain to new block and return 0.
416  */
417 static int ext4_splice_branch(handle_t *handle,
418 			      struct ext4_allocation_request *ar,
419 			      Indirect *where, int num)
420 {
421 	int i;
422 	int err = 0;
423 	ext4_fsblk_t current_block;
424 
425 	/*
426 	 * If we're splicing into a [td]indirect block (as opposed to the
427 	 * inode) then we need to get write access to the [td]indirect block
428 	 * before the splice.
429 	 */
430 	if (where->bh) {
431 		BUFFER_TRACE(where->bh, "get_write_access");
432 		err = ext4_journal_get_write_access(handle, where->bh);
433 		if (err)
434 			goto err_out;
435 	}
436 	/* That's it */
437 
438 	*where->p = where->key;
439 
440 	/*
441 	 * Update the host buffer_head or inode to point to more just allocated
442 	 * direct blocks blocks
443 	 */
444 	if (num == 0 && ar->len > 1) {
445 		current_block = le32_to_cpu(where->key) + 1;
446 		for (i = 1; i < ar->len; i++)
447 			*(where->p + i) = cpu_to_le32(current_block++);
448 	}
449 
450 	/* We are done with atomic stuff, now do the rest of housekeeping */
451 	/* had we spliced it onto indirect block? */
452 	if (where->bh) {
453 		/*
454 		 * If we spliced it onto an indirect block, we haven't
455 		 * altered the inode.  Note however that if it is being spliced
456 		 * onto an indirect block at the very end of the file (the
457 		 * file is growing) then we *will* alter the inode to reflect
458 		 * the new i_size.  But that is not done here - it is done in
459 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
460 		 */
461 		jbd_debug(5, "splicing indirect only\n");
462 		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
463 		err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh);
464 		if (err)
465 			goto err_out;
466 	} else {
467 		/*
468 		 * OK, we spliced it into the inode itself on a direct block.
469 		 */
470 		err = ext4_mark_inode_dirty(handle, ar->inode);
471 		if (unlikely(err))
472 			goto err_out;
473 		jbd_debug(5, "splicing direct\n");
474 	}
475 	return err;
476 
477 err_out:
478 	for (i = 1; i <= num; i++) {
479 		/*
480 		 * branch[i].bh is newly allocated, so there is no
481 		 * need to revoke the block, which is why we don't
482 		 * need to set EXT4_FREE_BLOCKS_METADATA.
483 		 */
484 		ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1,
485 				 EXT4_FREE_BLOCKS_FORGET);
486 	}
487 	ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key),
488 			 ar->len, 0);
489 
490 	return err;
491 }
492 
493 /*
494  * The ext4_ind_map_blocks() function handles non-extents inodes
495  * (i.e., using the traditional indirect/double-indirect i_blocks
496  * scheme) for ext4_map_blocks().
497  *
498  * Allocation strategy is simple: if we have to allocate something, we will
499  * have to go the whole way to leaf. So let's do it before attaching anything
500  * to tree, set linkage between the newborn blocks, write them if sync is
501  * required, recheck the path, free and repeat if check fails, otherwise
502  * set the last missing link (that will protect us from any truncate-generated
503  * removals - all blocks on the path are immune now) and possibly force the
504  * write on the parent block.
505  * That has a nice additional property: no special recovery from the failed
506  * allocations is needed - we simply release blocks and do not touch anything
507  * reachable from inode.
508  *
509  * `handle' can be NULL if create == 0.
510  *
511  * return > 0, # of blocks mapped or allocated.
512  * return = 0, if plain lookup failed.
513  * return < 0, error case.
514  *
515  * The ext4_ind_get_blocks() function should be called with
516  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
517  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
518  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
519  * blocks.
520  */
521 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
522 			struct ext4_map_blocks *map,
523 			int flags)
524 {
525 	struct ext4_allocation_request ar;
526 	int err = -EIO;
527 	ext4_lblk_t offsets[4];
528 	Indirect chain[4];
529 	Indirect *partial;
530 	int indirect_blks;
531 	int blocks_to_boundary = 0;
532 	int depth;
533 	int count = 0;
534 	ext4_fsblk_t first_block = 0;
535 
536 	trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
537 	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
538 	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
539 	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
540 				   &blocks_to_boundary);
541 
542 	if (depth == 0)
543 		goto out;
544 
545 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
546 
547 	/* Simplest case - block found, no allocation needed */
548 	if (!partial) {
549 		first_block = le32_to_cpu(chain[depth - 1].key);
550 		count++;
551 		/*map more blocks*/
552 		while (count < map->m_len && count <= blocks_to_boundary) {
553 			ext4_fsblk_t blk;
554 
555 			blk = le32_to_cpu(*(chain[depth-1].p + count));
556 
557 			if (blk == first_block + count)
558 				count++;
559 			else
560 				break;
561 		}
562 		goto got_it;
563 	}
564 
565 	/* Next simple case - plain lookup failed */
566 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
567 		unsigned epb = inode->i_sb->s_blocksize / sizeof(u32);
568 		int i;
569 
570 		/*
571 		 * Count number blocks in a subtree under 'partial'. At each
572 		 * level we count number of complete empty subtrees beyond
573 		 * current offset and then descend into the subtree only
574 		 * partially beyond current offset.
575 		 */
576 		count = 0;
577 		for (i = partial - chain + 1; i < depth; i++)
578 			count = count * epb + (epb - offsets[i] - 1);
579 		count++;
580 		/* Fill in size of a hole we found */
581 		map->m_pblk = 0;
582 		map->m_len = min_t(unsigned int, map->m_len, count);
583 		goto cleanup;
584 	}
585 
586 	/* Failed read of indirect block */
587 	if (err == -EIO)
588 		goto cleanup;
589 
590 	/*
591 	 * Okay, we need to do block allocation.
592 	*/
593 	if (ext4_has_feature_bigalloc(inode->i_sb)) {
594 		EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
595 				 "non-extent mapped inodes with bigalloc");
596 		return -EFSCORRUPTED;
597 	}
598 
599 	/* Set up for the direct block allocation */
600 	memset(&ar, 0, sizeof(ar));
601 	ar.inode = inode;
602 	ar.logical = map->m_lblk;
603 	if (S_ISREG(inode->i_mode))
604 		ar.flags = EXT4_MB_HINT_DATA;
605 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
606 		ar.flags |= EXT4_MB_DELALLOC_RESERVED;
607 	if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
608 		ar.flags |= EXT4_MB_USE_RESERVED;
609 
610 	ar.goal = ext4_find_goal(inode, map->m_lblk, partial);
611 
612 	/* the number of blocks need to allocate for [d,t]indirect blocks */
613 	indirect_blks = (chain + depth) - partial - 1;
614 
615 	/*
616 	 * Next look up the indirect map to count the totoal number of
617 	 * direct blocks to allocate for this branch.
618 	 */
619 	ar.len = ext4_blks_to_allocate(partial, indirect_blks,
620 				       map->m_len, blocks_to_boundary);
621 
622 	/*
623 	 * Block out ext4_truncate while we alter the tree
624 	 */
625 	err = ext4_alloc_branch(handle, &ar, indirect_blks,
626 				offsets + (partial - chain), partial);
627 
628 	/*
629 	 * The ext4_splice_branch call will free and forget any buffers
630 	 * on the new chain if there is a failure, but that risks using
631 	 * up transaction credits, especially for bitmaps where the
632 	 * credits cannot be returned.  Can we handle this somehow?  We
633 	 * may need to return -EAGAIN upwards in the worst case.  --sct
634 	 */
635 	if (!err)
636 		err = ext4_splice_branch(handle, &ar, partial, indirect_blks);
637 	if (err)
638 		goto cleanup;
639 
640 	map->m_flags |= EXT4_MAP_NEW;
641 
642 	ext4_update_inode_fsync_trans(handle, inode, 1);
643 	count = ar.len;
644 got_it:
645 	map->m_flags |= EXT4_MAP_MAPPED;
646 	map->m_pblk = le32_to_cpu(chain[depth-1].key);
647 	map->m_len = count;
648 	if (count > blocks_to_boundary)
649 		map->m_flags |= EXT4_MAP_BOUNDARY;
650 	err = count;
651 	/* Clean up and exit */
652 	partial = chain + depth - 1;	/* the whole chain */
653 cleanup:
654 	while (partial > chain) {
655 		BUFFER_TRACE(partial->bh, "call brelse");
656 		brelse(partial->bh);
657 		partial--;
658 	}
659 out:
660 	trace_ext4_ind_map_blocks_exit(inode, flags, map, err);
661 	return err;
662 }
663 
664 /*
665  * Calculate number of indirect blocks touched by mapping @nrblocks logically
666  * contiguous blocks
667  */
668 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks)
669 {
670 	/*
671 	 * With N contiguous data blocks, we need at most
672 	 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
673 	 * 2 dindirect blocks, and 1 tindirect block
674 	 */
675 	return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
676 }
677 
678 static int ext4_ind_trunc_restart_fn(handle_t *handle, struct inode *inode,
679 				     struct buffer_head *bh, int *dropped)
680 {
681 	int err;
682 
683 	if (bh) {
684 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
685 		err = ext4_handle_dirty_metadata(handle, inode, bh);
686 		if (unlikely(err))
687 			return err;
688 	}
689 	err = ext4_mark_inode_dirty(handle, inode);
690 	if (unlikely(err))
691 		return err;
692 	/*
693 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
694 	 * moment, get_block can be called only for blocks inside i_size since
695 	 * page cache has been already dropped and writes are blocked by
696 	 * i_mutex. So we can safely drop the i_data_sem here.
697 	 */
698 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
699 	ext4_discard_preallocations(inode, 0);
700 	up_write(&EXT4_I(inode)->i_data_sem);
701 	*dropped = 1;
702 	return 0;
703 }
704 
705 /*
706  * Truncate transactions can be complex and absolutely huge.  So we need to
707  * be able to restart the transaction at a conventient checkpoint to make
708  * sure we don't overflow the journal.
709  *
710  * Try to extend this transaction for the purposes of truncation.  If
711  * extend fails, we restart transaction.
712  */
713 static int ext4_ind_truncate_ensure_credits(handle_t *handle,
714 					    struct inode *inode,
715 					    struct buffer_head *bh,
716 					    int revoke_creds)
717 {
718 	int ret;
719 	int dropped = 0;
720 
721 	ret = ext4_journal_ensure_credits_fn(handle, EXT4_RESERVE_TRANS_BLOCKS,
722 			ext4_blocks_for_truncate(inode), revoke_creds,
723 			ext4_ind_trunc_restart_fn(handle, inode, bh, &dropped));
724 	if (dropped)
725 		down_write(&EXT4_I(inode)->i_data_sem);
726 	if (ret <= 0)
727 		return ret;
728 	if (bh) {
729 		BUFFER_TRACE(bh, "retaking write access");
730 		ret = ext4_journal_get_write_access(handle, bh);
731 		if (unlikely(ret))
732 			return ret;
733 	}
734 	return 0;
735 }
736 
737 /*
738  * Probably it should be a library function... search for first non-zero word
739  * or memcmp with zero_page, whatever is better for particular architecture.
740  * Linus?
741  */
742 static inline int all_zeroes(__le32 *p, __le32 *q)
743 {
744 	while (p < q)
745 		if (*p++)
746 			return 0;
747 	return 1;
748 }
749 
750 /**
751  *	ext4_find_shared - find the indirect blocks for partial truncation.
752  *	@inode:	  inode in question
753  *	@depth:	  depth of the affected branch
754  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
755  *	@chain:	  place to store the pointers to partial indirect blocks
756  *	@top:	  place to the (detached) top of branch
757  *
758  *	This is a helper function used by ext4_truncate().
759  *
760  *	When we do truncate() we may have to clean the ends of several
761  *	indirect blocks but leave the blocks themselves alive. Block is
762  *	partially truncated if some data below the new i_size is referred
763  *	from it (and it is on the path to the first completely truncated
764  *	data block, indeed).  We have to free the top of that path along
765  *	with everything to the right of the path. Since no allocation
766  *	past the truncation point is possible until ext4_truncate()
767  *	finishes, we may safely do the latter, but top of branch may
768  *	require special attention - pageout below the truncation point
769  *	might try to populate it.
770  *
771  *	We atomically detach the top of branch from the tree, store the
772  *	block number of its root in *@top, pointers to buffer_heads of
773  *	partially truncated blocks - in @chain[].bh and pointers to
774  *	their last elements that should not be removed - in
775  *	@chain[].p. Return value is the pointer to last filled element
776  *	of @chain.
777  *
778  *	The work left to caller to do the actual freeing of subtrees:
779  *		a) free the subtree starting from *@top
780  *		b) free the subtrees whose roots are stored in
781  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
782  *		c) free the subtrees growing from the inode past the @chain[0].
783  *			(no partially truncated stuff there).  */
784 
785 static Indirect *ext4_find_shared(struct inode *inode, int depth,
786 				  ext4_lblk_t offsets[4], Indirect chain[4],
787 				  __le32 *top)
788 {
789 	Indirect *partial, *p;
790 	int k, err;
791 
792 	*top = 0;
793 	/* Make k index the deepest non-null offset + 1 */
794 	for (k = depth; k > 1 && !offsets[k-1]; k--)
795 		;
796 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
797 	/* Writer: pointers */
798 	if (!partial)
799 		partial = chain + k-1;
800 	/*
801 	 * If the branch acquired continuation since we've looked at it -
802 	 * fine, it should all survive and (new) top doesn't belong to us.
803 	 */
804 	if (!partial->key && *partial->p)
805 		/* Writer: end */
806 		goto no_top;
807 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
808 		;
809 	/*
810 	 * OK, we've found the last block that must survive. The rest of our
811 	 * branch should be detached before unlocking. However, if that rest
812 	 * of branch is all ours and does not grow immediately from the inode
813 	 * it's easier to cheat and just decrement partial->p.
814 	 */
815 	if (p == chain + k - 1 && p > chain) {
816 		p->p--;
817 	} else {
818 		*top = *p->p;
819 		/* Nope, don't do this in ext4.  Must leave the tree intact */
820 #if 0
821 		*p->p = 0;
822 #endif
823 	}
824 	/* Writer: end */
825 
826 	while (partial > p) {
827 		brelse(partial->bh);
828 		partial--;
829 	}
830 no_top:
831 	return partial;
832 }
833 
834 /*
835  * Zero a number of block pointers in either an inode or an indirect block.
836  * If we restart the transaction we must again get write access to the
837  * indirect block for further modification.
838  *
839  * We release `count' blocks on disk, but (last - first) may be greater
840  * than `count' because there can be holes in there.
841  *
842  * Return 0 on success, 1 on invalid block range
843  * and < 0 on fatal error.
844  */
845 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
846 			     struct buffer_head *bh,
847 			     ext4_fsblk_t block_to_free,
848 			     unsigned long count, __le32 *first,
849 			     __le32 *last)
850 {
851 	__le32 *p;
852 	int	flags = EXT4_FREE_BLOCKS_VALIDATED;
853 	int	err;
854 
855 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) ||
856 	    ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE))
857 		flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA;
858 	else if (ext4_should_journal_data(inode))
859 		flags |= EXT4_FREE_BLOCKS_FORGET;
860 
861 	if (!ext4_inode_block_valid(inode, block_to_free, count)) {
862 		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
863 				 "blocks %llu len %lu",
864 				 (unsigned long long) block_to_free, count);
865 		return 1;
866 	}
867 
868 	err = ext4_ind_truncate_ensure_credits(handle, inode, bh,
869 				ext4_free_data_revoke_credits(inode, count));
870 	if (err < 0)
871 		goto out_err;
872 
873 	for (p = first; p < last; p++)
874 		*p = 0;
875 
876 	ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
877 	return 0;
878 out_err:
879 	ext4_std_error(inode->i_sb, err);
880 	return err;
881 }
882 
883 /**
884  * ext4_free_data - free a list of data blocks
885  * @handle:	handle for this transaction
886  * @inode:	inode we are dealing with
887  * @this_bh:	indirect buffer_head which contains *@first and *@last
888  * @first:	array of block numbers
889  * @last:	points immediately past the end of array
890  *
891  * We are freeing all blocks referred from that array (numbers are stored as
892  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
893  *
894  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
895  * blocks are contiguous then releasing them at one time will only affect one
896  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
897  * actually use a lot of journal space.
898  *
899  * @this_bh will be %NULL if @first and @last point into the inode's direct
900  * block pointers.
901  */
902 static void ext4_free_data(handle_t *handle, struct inode *inode,
903 			   struct buffer_head *this_bh,
904 			   __le32 *first, __le32 *last)
905 {
906 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
907 	unsigned long count = 0;	    /* Number of blocks in the run */
908 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
909 					       corresponding to
910 					       block_to_free */
911 	ext4_fsblk_t nr;		    /* Current block # */
912 	__le32 *p;			    /* Pointer into inode/ind
913 					       for current block */
914 	int err = 0;
915 
916 	if (this_bh) {				/* For indirect block */
917 		BUFFER_TRACE(this_bh, "get_write_access");
918 		err = ext4_journal_get_write_access(handle, this_bh);
919 		/* Important: if we can't update the indirect pointers
920 		 * to the blocks, we can't free them. */
921 		if (err)
922 			return;
923 	}
924 
925 	for (p = first; p < last; p++) {
926 		nr = le32_to_cpu(*p);
927 		if (nr) {
928 			/* accumulate blocks to free if they're contiguous */
929 			if (count == 0) {
930 				block_to_free = nr;
931 				block_to_free_p = p;
932 				count = 1;
933 			} else if (nr == block_to_free + count) {
934 				count++;
935 			} else {
936 				err = ext4_clear_blocks(handle, inode, this_bh,
937 						        block_to_free, count,
938 						        block_to_free_p, p);
939 				if (err)
940 					break;
941 				block_to_free = nr;
942 				block_to_free_p = p;
943 				count = 1;
944 			}
945 		}
946 	}
947 
948 	if (!err && count > 0)
949 		err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
950 					count, block_to_free_p, p);
951 	if (err < 0)
952 		/* fatal error */
953 		return;
954 
955 	if (this_bh) {
956 		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
957 
958 		/*
959 		 * The buffer head should have an attached journal head at this
960 		 * point. However, if the data is corrupted and an indirect
961 		 * block pointed to itself, it would have been detached when
962 		 * the block was cleared. Check for this instead of OOPSing.
963 		 */
964 		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
965 			ext4_handle_dirty_metadata(handle, inode, this_bh);
966 		else
967 			EXT4_ERROR_INODE(inode,
968 					 "circular indirect block detected at "
969 					 "block %llu",
970 				(unsigned long long) this_bh->b_blocknr);
971 	}
972 }
973 
974 /**
975  *	ext4_free_branches - free an array of branches
976  *	@handle: JBD handle for this transaction
977  *	@inode:	inode we are dealing with
978  *	@parent_bh: the buffer_head which contains *@first and *@last
979  *	@first:	array of block numbers
980  *	@last:	pointer immediately past the end of array
981  *	@depth:	depth of the branches to free
982  *
983  *	We are freeing all blocks referred from these branches (numbers are
984  *	stored as little-endian 32-bit) and updating @inode->i_blocks
985  *	appropriately.
986  */
987 static void ext4_free_branches(handle_t *handle, struct inode *inode,
988 			       struct buffer_head *parent_bh,
989 			       __le32 *first, __le32 *last, int depth)
990 {
991 	ext4_fsblk_t nr;
992 	__le32 *p;
993 
994 	if (ext4_handle_is_aborted(handle))
995 		return;
996 
997 	if (depth--) {
998 		struct buffer_head *bh;
999 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1000 		p = last;
1001 		while (--p >= first) {
1002 			nr = le32_to_cpu(*p);
1003 			if (!nr)
1004 				continue;		/* A hole */
1005 
1006 			if (!ext4_inode_block_valid(inode, nr, 1)) {
1007 				EXT4_ERROR_INODE(inode,
1008 						 "invalid indirect mapped "
1009 						 "block %lu (level %d)",
1010 						 (unsigned long) nr, depth);
1011 				break;
1012 			}
1013 
1014 			/* Go read the buffer for the next level down */
1015 			bh = sb_bread(inode->i_sb, nr);
1016 
1017 			/*
1018 			 * A read failure? Report error and clear slot
1019 			 * (should be rare).
1020 			 */
1021 			if (!bh) {
1022 				ext4_error_inode_block(inode, nr, EIO,
1023 						       "Read failure");
1024 				continue;
1025 			}
1026 
1027 			/* This zaps the entire block.  Bottom up. */
1028 			BUFFER_TRACE(bh, "free child branches");
1029 			ext4_free_branches(handle, inode, bh,
1030 					(__le32 *) bh->b_data,
1031 					(__le32 *) bh->b_data + addr_per_block,
1032 					depth);
1033 			brelse(bh);
1034 
1035 			/*
1036 			 * Everything below this this pointer has been
1037 			 * released.  Now let this top-of-subtree go.
1038 			 *
1039 			 * We want the freeing of this indirect block to be
1040 			 * atomic in the journal with the updating of the
1041 			 * bitmap block which owns it.  So make some room in
1042 			 * the journal.
1043 			 *
1044 			 * We zero the parent pointer *after* freeing its
1045 			 * pointee in the bitmaps, so if extend_transaction()
1046 			 * for some reason fails to put the bitmap changes and
1047 			 * the release into the same transaction, recovery
1048 			 * will merely complain about releasing a free block,
1049 			 * rather than leaking blocks.
1050 			 */
1051 			if (ext4_handle_is_aborted(handle))
1052 				return;
1053 			if (ext4_ind_truncate_ensure_credits(handle, inode,
1054 					NULL,
1055 					ext4_free_metadata_revoke_credits(
1056 							inode->i_sb, 1)) < 0)
1057 				return;
1058 
1059 			/*
1060 			 * The forget flag here is critical because if
1061 			 * we are journaling (and not doing data
1062 			 * journaling), we have to make sure a revoke
1063 			 * record is written to prevent the journal
1064 			 * replay from overwriting the (former)
1065 			 * indirect block if it gets reallocated as a
1066 			 * data block.  This must happen in the same
1067 			 * transaction where the data blocks are
1068 			 * actually freed.
1069 			 */
1070 			ext4_free_blocks(handle, inode, NULL, nr, 1,
1071 					 EXT4_FREE_BLOCKS_METADATA|
1072 					 EXT4_FREE_BLOCKS_FORGET);
1073 
1074 			if (parent_bh) {
1075 				/*
1076 				 * The block which we have just freed is
1077 				 * pointed to by an indirect block: journal it
1078 				 */
1079 				BUFFER_TRACE(parent_bh, "get_write_access");
1080 				if (!ext4_journal_get_write_access(handle,
1081 								   parent_bh)){
1082 					*p = 0;
1083 					BUFFER_TRACE(parent_bh,
1084 					"call ext4_handle_dirty_metadata");
1085 					ext4_handle_dirty_metadata(handle,
1086 								   inode,
1087 								   parent_bh);
1088 				}
1089 			}
1090 		}
1091 	} else {
1092 		/* We have reached the bottom of the tree. */
1093 		BUFFER_TRACE(parent_bh, "free data blocks");
1094 		ext4_free_data(handle, inode, parent_bh, first, last);
1095 	}
1096 }
1097 
1098 void ext4_ind_truncate(handle_t *handle, struct inode *inode)
1099 {
1100 	struct ext4_inode_info *ei = EXT4_I(inode);
1101 	__le32 *i_data = ei->i_data;
1102 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1103 	ext4_lblk_t offsets[4];
1104 	Indirect chain[4];
1105 	Indirect *partial;
1106 	__le32 nr = 0;
1107 	int n = 0;
1108 	ext4_lblk_t last_block, max_block;
1109 	unsigned blocksize = inode->i_sb->s_blocksize;
1110 
1111 	last_block = (inode->i_size + blocksize-1)
1112 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1113 	max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1114 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1115 
1116 	if (last_block != max_block) {
1117 		n = ext4_block_to_path(inode, last_block, offsets, NULL);
1118 		if (n == 0)
1119 			return;
1120 	}
1121 
1122 	ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1123 
1124 	/*
1125 	 * The orphan list entry will now protect us from any crash which
1126 	 * occurs before the truncate completes, so it is now safe to propagate
1127 	 * the new, shorter inode size (held for now in i_size) into the
1128 	 * on-disk inode. We do this via i_disksize, which is the value which
1129 	 * ext4 *really* writes onto the disk inode.
1130 	 */
1131 	ei->i_disksize = inode->i_size;
1132 
1133 	if (last_block == max_block) {
1134 		/*
1135 		 * It is unnecessary to free any data blocks if last_block is
1136 		 * equal to the indirect block limit.
1137 		 */
1138 		return;
1139 	} else if (n == 1) {		/* direct blocks */
1140 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1141 			       i_data + EXT4_NDIR_BLOCKS);
1142 		goto do_indirects;
1143 	}
1144 
1145 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1146 	/* Kill the top of shared branch (not detached) */
1147 	if (nr) {
1148 		if (partial == chain) {
1149 			/* Shared branch grows from the inode */
1150 			ext4_free_branches(handle, inode, NULL,
1151 					   &nr, &nr+1, (chain+n-1) - partial);
1152 			*partial->p = 0;
1153 			/*
1154 			 * We mark the inode dirty prior to restart,
1155 			 * and prior to stop.  No need for it here.
1156 			 */
1157 		} else {
1158 			/* Shared branch grows from an indirect block */
1159 			BUFFER_TRACE(partial->bh, "get_write_access");
1160 			ext4_free_branches(handle, inode, partial->bh,
1161 					partial->p,
1162 					partial->p+1, (chain+n-1) - partial);
1163 		}
1164 	}
1165 	/* Clear the ends of indirect blocks on the shared branch */
1166 	while (partial > chain) {
1167 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1168 				   (__le32*)partial->bh->b_data+addr_per_block,
1169 				   (chain+n-1) - partial);
1170 		BUFFER_TRACE(partial->bh, "call brelse");
1171 		brelse(partial->bh);
1172 		partial--;
1173 	}
1174 do_indirects:
1175 	/* Kill the remaining (whole) subtrees */
1176 	switch (offsets[0]) {
1177 	default:
1178 		nr = i_data[EXT4_IND_BLOCK];
1179 		if (nr) {
1180 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1181 			i_data[EXT4_IND_BLOCK] = 0;
1182 		}
1183 		fallthrough;
1184 	case EXT4_IND_BLOCK:
1185 		nr = i_data[EXT4_DIND_BLOCK];
1186 		if (nr) {
1187 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1188 			i_data[EXT4_DIND_BLOCK] = 0;
1189 		}
1190 		fallthrough;
1191 	case EXT4_DIND_BLOCK:
1192 		nr = i_data[EXT4_TIND_BLOCK];
1193 		if (nr) {
1194 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1195 			i_data[EXT4_TIND_BLOCK] = 0;
1196 		}
1197 		fallthrough;
1198 	case EXT4_TIND_BLOCK:
1199 		;
1200 	}
1201 }
1202 
1203 /**
1204  *	ext4_ind_remove_space - remove space from the range
1205  *	@handle: JBD handle for this transaction
1206  *	@inode:	inode we are dealing with
1207  *	@start:	First block to remove
1208  *	@end:	One block after the last block to remove (exclusive)
1209  *
1210  *	Free the blocks in the defined range (end is exclusive endpoint of
1211  *	range). This is used by ext4_punch_hole().
1212  */
1213 int ext4_ind_remove_space(handle_t *handle, struct inode *inode,
1214 			  ext4_lblk_t start, ext4_lblk_t end)
1215 {
1216 	struct ext4_inode_info *ei = EXT4_I(inode);
1217 	__le32 *i_data = ei->i_data;
1218 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1219 	ext4_lblk_t offsets[4], offsets2[4];
1220 	Indirect chain[4], chain2[4];
1221 	Indirect *partial, *partial2;
1222 	Indirect *p = NULL, *p2 = NULL;
1223 	ext4_lblk_t max_block;
1224 	__le32 nr = 0, nr2 = 0;
1225 	int n = 0, n2 = 0;
1226 	unsigned blocksize = inode->i_sb->s_blocksize;
1227 
1228 	max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1229 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1230 	if (end >= max_block)
1231 		end = max_block;
1232 	if ((start >= end) || (start > max_block))
1233 		return 0;
1234 
1235 	n = ext4_block_to_path(inode, start, offsets, NULL);
1236 	n2 = ext4_block_to_path(inode, end, offsets2, NULL);
1237 
1238 	BUG_ON(n > n2);
1239 
1240 	if ((n == 1) && (n == n2)) {
1241 		/* We're punching only within direct block range */
1242 		ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1243 			       i_data + offsets2[0]);
1244 		return 0;
1245 	} else if (n2 > n) {
1246 		/*
1247 		 * Start and end are on a different levels so we're going to
1248 		 * free partial block at start, and partial block at end of
1249 		 * the range. If there are some levels in between then
1250 		 * do_indirects label will take care of that.
1251 		 */
1252 
1253 		if (n == 1) {
1254 			/*
1255 			 * Start is at the direct block level, free
1256 			 * everything to the end of the level.
1257 			 */
1258 			ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1259 				       i_data + EXT4_NDIR_BLOCKS);
1260 			goto end_range;
1261 		}
1262 
1263 
1264 		partial = p = ext4_find_shared(inode, n, offsets, chain, &nr);
1265 		if (nr) {
1266 			if (partial == chain) {
1267 				/* Shared branch grows from the inode */
1268 				ext4_free_branches(handle, inode, NULL,
1269 					   &nr, &nr+1, (chain+n-1) - partial);
1270 				*partial->p = 0;
1271 			} else {
1272 				/* Shared branch grows from an indirect block */
1273 				BUFFER_TRACE(partial->bh, "get_write_access");
1274 				ext4_free_branches(handle, inode, partial->bh,
1275 					partial->p,
1276 					partial->p+1, (chain+n-1) - partial);
1277 			}
1278 		}
1279 
1280 		/*
1281 		 * Clear the ends of indirect blocks on the shared branch
1282 		 * at the start of the range
1283 		 */
1284 		while (partial > chain) {
1285 			ext4_free_branches(handle, inode, partial->bh,
1286 				partial->p + 1,
1287 				(__le32 *)partial->bh->b_data+addr_per_block,
1288 				(chain+n-1) - partial);
1289 			partial--;
1290 		}
1291 
1292 end_range:
1293 		partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1294 		if (nr2) {
1295 			if (partial2 == chain2) {
1296 				/*
1297 				 * Remember, end is exclusive so here we're at
1298 				 * the start of the next level we're not going
1299 				 * to free. Everything was covered by the start
1300 				 * of the range.
1301 				 */
1302 				goto do_indirects;
1303 			}
1304 		} else {
1305 			/*
1306 			 * ext4_find_shared returns Indirect structure which
1307 			 * points to the last element which should not be
1308 			 * removed by truncate. But this is end of the range
1309 			 * in punch_hole so we need to point to the next element
1310 			 */
1311 			partial2->p++;
1312 		}
1313 
1314 		/*
1315 		 * Clear the ends of indirect blocks on the shared branch
1316 		 * at the end of the range
1317 		 */
1318 		while (partial2 > chain2) {
1319 			ext4_free_branches(handle, inode, partial2->bh,
1320 					   (__le32 *)partial2->bh->b_data,
1321 					   partial2->p,
1322 					   (chain2+n2-1) - partial2);
1323 			partial2--;
1324 		}
1325 		goto do_indirects;
1326 	}
1327 
1328 	/* Punch happened within the same level (n == n2) */
1329 	partial = p = ext4_find_shared(inode, n, offsets, chain, &nr);
1330 	partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1331 
1332 	/* Free top, but only if partial2 isn't its subtree. */
1333 	if (nr) {
1334 		int level = min(partial - chain, partial2 - chain2);
1335 		int i;
1336 		int subtree = 1;
1337 
1338 		for (i = 0; i <= level; i++) {
1339 			if (offsets[i] != offsets2[i]) {
1340 				subtree = 0;
1341 				break;
1342 			}
1343 		}
1344 
1345 		if (!subtree) {
1346 			if (partial == chain) {
1347 				/* Shared branch grows from the inode */
1348 				ext4_free_branches(handle, inode, NULL,
1349 						   &nr, &nr+1,
1350 						   (chain+n-1) - partial);
1351 				*partial->p = 0;
1352 			} else {
1353 				/* Shared branch grows from an indirect block */
1354 				BUFFER_TRACE(partial->bh, "get_write_access");
1355 				ext4_free_branches(handle, inode, partial->bh,
1356 						   partial->p,
1357 						   partial->p+1,
1358 						   (chain+n-1) - partial);
1359 			}
1360 		}
1361 	}
1362 
1363 	if (!nr2) {
1364 		/*
1365 		 * ext4_find_shared returns Indirect structure which
1366 		 * points to the last element which should not be
1367 		 * removed by truncate. But this is end of the range
1368 		 * in punch_hole so we need to point to the next element
1369 		 */
1370 		partial2->p++;
1371 	}
1372 
1373 	while (partial > chain || partial2 > chain2) {
1374 		int depth = (chain+n-1) - partial;
1375 		int depth2 = (chain2+n2-1) - partial2;
1376 
1377 		if (partial > chain && partial2 > chain2 &&
1378 		    partial->bh->b_blocknr == partial2->bh->b_blocknr) {
1379 			/*
1380 			 * We've converged on the same block. Clear the range,
1381 			 * then we're done.
1382 			 */
1383 			ext4_free_branches(handle, inode, partial->bh,
1384 					   partial->p + 1,
1385 					   partial2->p,
1386 					   (chain+n-1) - partial);
1387 			goto cleanup;
1388 		}
1389 
1390 		/*
1391 		 * The start and end partial branches may not be at the same
1392 		 * level even though the punch happened within one level. So, we
1393 		 * give them a chance to arrive at the same level, then walk
1394 		 * them in step with each other until we converge on the same
1395 		 * block.
1396 		 */
1397 		if (partial > chain && depth <= depth2) {
1398 			ext4_free_branches(handle, inode, partial->bh,
1399 					   partial->p + 1,
1400 					   (__le32 *)partial->bh->b_data+addr_per_block,
1401 					   (chain+n-1) - partial);
1402 			partial--;
1403 		}
1404 		if (partial2 > chain2 && depth2 <= depth) {
1405 			ext4_free_branches(handle, inode, partial2->bh,
1406 					   (__le32 *)partial2->bh->b_data,
1407 					   partial2->p,
1408 					   (chain2+n2-1) - partial2);
1409 			partial2--;
1410 		}
1411 	}
1412 
1413 cleanup:
1414 	while (p && p > chain) {
1415 		BUFFER_TRACE(p->bh, "call brelse");
1416 		brelse(p->bh);
1417 		p--;
1418 	}
1419 	while (p2 && p2 > chain2) {
1420 		BUFFER_TRACE(p2->bh, "call brelse");
1421 		brelse(p2->bh);
1422 		p2--;
1423 	}
1424 	return 0;
1425 
1426 do_indirects:
1427 	/* Kill the remaining (whole) subtrees */
1428 	switch (offsets[0]) {
1429 	default:
1430 		if (++n >= n2)
1431 			break;
1432 		nr = i_data[EXT4_IND_BLOCK];
1433 		if (nr) {
1434 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1435 			i_data[EXT4_IND_BLOCK] = 0;
1436 		}
1437 		fallthrough;
1438 	case EXT4_IND_BLOCK:
1439 		if (++n >= n2)
1440 			break;
1441 		nr = i_data[EXT4_DIND_BLOCK];
1442 		if (nr) {
1443 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1444 			i_data[EXT4_DIND_BLOCK] = 0;
1445 		}
1446 		fallthrough;
1447 	case EXT4_DIND_BLOCK:
1448 		if (++n >= n2)
1449 			break;
1450 		nr = i_data[EXT4_TIND_BLOCK];
1451 		if (nr) {
1452 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1453 			i_data[EXT4_TIND_BLOCK] = 0;
1454 		}
1455 		fallthrough;
1456 	case EXT4_TIND_BLOCK:
1457 		;
1458 	}
1459 	goto cleanup;
1460 }
1461