1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/indirect.c 4 * 5 * from 6 * 7 * linux/fs/ext4/inode.c 8 * 9 * Copyright (C) 1992, 1993, 1994, 1995 10 * Remy Card (card@masi.ibp.fr) 11 * Laboratoire MASI - Institut Blaise Pascal 12 * Universite Pierre et Marie Curie (Paris VI) 13 * 14 * from 15 * 16 * linux/fs/minix/inode.c 17 * 18 * Copyright (C) 1991, 1992 Linus Torvalds 19 * 20 * Goal-directed block allocation by Stephen Tweedie 21 * (sct@redhat.com), 1993, 1998 22 */ 23 24 #include "ext4_jbd2.h" 25 #include "truncate.h" 26 #include <linux/dax.h> 27 #include <linux/uio.h> 28 29 #include <trace/events/ext4.h> 30 31 typedef struct { 32 __le32 *p; 33 __le32 key; 34 struct buffer_head *bh; 35 } Indirect; 36 37 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 38 { 39 p->key = *(p->p = v); 40 p->bh = bh; 41 } 42 43 /** 44 * ext4_block_to_path - parse the block number into array of offsets 45 * @inode: inode in question (we are only interested in its superblock) 46 * @i_block: block number to be parsed 47 * @offsets: array to store the offsets in 48 * @boundary: set this non-zero if the referred-to block is likely to be 49 * followed (on disk) by an indirect block. 50 * 51 * To store the locations of file's data ext4 uses a data structure common 52 * for UNIX filesystems - tree of pointers anchored in the inode, with 53 * data blocks at leaves and indirect blocks in intermediate nodes. 54 * This function translates the block number into path in that tree - 55 * return value is the path length and @offsets[n] is the offset of 56 * pointer to (n+1)th node in the nth one. If @block is out of range 57 * (negative or too large) warning is printed and zero returned. 58 * 59 * Note: function doesn't find node addresses, so no IO is needed. All 60 * we need to know is the capacity of indirect blocks (taken from the 61 * inode->i_sb). 62 */ 63 64 /* 65 * Portability note: the last comparison (check that we fit into triple 66 * indirect block) is spelled differently, because otherwise on an 67 * architecture with 32-bit longs and 8Kb pages we might get into trouble 68 * if our filesystem had 8Kb blocks. We might use long long, but that would 69 * kill us on x86. Oh, well, at least the sign propagation does not matter - 70 * i_block would have to be negative in the very beginning, so we would not 71 * get there at all. 72 */ 73 74 static int ext4_block_to_path(struct inode *inode, 75 ext4_lblk_t i_block, 76 ext4_lblk_t offsets[4], int *boundary) 77 { 78 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 79 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 80 const long direct_blocks = EXT4_NDIR_BLOCKS, 81 indirect_blocks = ptrs, 82 double_blocks = (1 << (ptrs_bits * 2)); 83 int n = 0; 84 int final = 0; 85 86 if (i_block < direct_blocks) { 87 offsets[n++] = i_block; 88 final = direct_blocks; 89 } else if ((i_block -= direct_blocks) < indirect_blocks) { 90 offsets[n++] = EXT4_IND_BLOCK; 91 offsets[n++] = i_block; 92 final = ptrs; 93 } else if ((i_block -= indirect_blocks) < double_blocks) { 94 offsets[n++] = EXT4_DIND_BLOCK; 95 offsets[n++] = i_block >> ptrs_bits; 96 offsets[n++] = i_block & (ptrs - 1); 97 final = ptrs; 98 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 99 offsets[n++] = EXT4_TIND_BLOCK; 100 offsets[n++] = i_block >> (ptrs_bits * 2); 101 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 102 offsets[n++] = i_block & (ptrs - 1); 103 final = ptrs; 104 } else { 105 ext4_warning(inode->i_sb, "block %lu > max in inode %lu", 106 i_block + direct_blocks + 107 indirect_blocks + double_blocks, inode->i_ino); 108 } 109 if (boundary) 110 *boundary = final - 1 - (i_block & (ptrs - 1)); 111 return n; 112 } 113 114 /** 115 * ext4_get_branch - read the chain of indirect blocks leading to data 116 * @inode: inode in question 117 * @depth: depth of the chain (1 - direct pointer, etc.) 118 * @offsets: offsets of pointers in inode/indirect blocks 119 * @chain: place to store the result 120 * @err: here we store the error value 121 * 122 * Function fills the array of triples <key, p, bh> and returns %NULL 123 * if everything went OK or the pointer to the last filled triple 124 * (incomplete one) otherwise. Upon the return chain[i].key contains 125 * the number of (i+1)-th block in the chain (as it is stored in memory, 126 * i.e. little-endian 32-bit), chain[i].p contains the address of that 127 * number (it points into struct inode for i==0 and into the bh->b_data 128 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 129 * block for i>0 and NULL for i==0. In other words, it holds the block 130 * numbers of the chain, addresses they were taken from (and where we can 131 * verify that chain did not change) and buffer_heads hosting these 132 * numbers. 133 * 134 * Function stops when it stumbles upon zero pointer (absent block) 135 * (pointer to last triple returned, *@err == 0) 136 * or when it gets an IO error reading an indirect block 137 * (ditto, *@err == -EIO) 138 * or when it reads all @depth-1 indirect blocks successfully and finds 139 * the whole chain, all way to the data (returns %NULL, *err == 0). 140 * 141 * Need to be called with 142 * down_read(&EXT4_I(inode)->i_data_sem) 143 */ 144 static Indirect *ext4_get_branch(struct inode *inode, int depth, 145 ext4_lblk_t *offsets, 146 Indirect chain[4], int *err) 147 { 148 struct super_block *sb = inode->i_sb; 149 Indirect *p = chain; 150 struct buffer_head *bh; 151 int ret = -EIO; 152 153 *err = 0; 154 /* i_data is not going away, no lock needed */ 155 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 156 if (!p->key) 157 goto no_block; 158 while (--depth) { 159 bh = sb_getblk(sb, le32_to_cpu(p->key)); 160 if (unlikely(!bh)) { 161 ret = -ENOMEM; 162 goto failure; 163 } 164 165 if (!bh_uptodate_or_lock(bh)) { 166 if (bh_submit_read(bh) < 0) { 167 put_bh(bh); 168 goto failure; 169 } 170 /* validate block references */ 171 if (ext4_check_indirect_blockref(inode, bh)) { 172 put_bh(bh); 173 goto failure; 174 } 175 } 176 177 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 178 /* Reader: end */ 179 if (!p->key) 180 goto no_block; 181 } 182 return NULL; 183 184 failure: 185 *err = ret; 186 no_block: 187 return p; 188 } 189 190 /** 191 * ext4_find_near - find a place for allocation with sufficient locality 192 * @inode: owner 193 * @ind: descriptor of indirect block. 194 * 195 * This function returns the preferred place for block allocation. 196 * It is used when heuristic for sequential allocation fails. 197 * Rules are: 198 * + if there is a block to the left of our position - allocate near it. 199 * + if pointer will live in indirect block - allocate near that block. 200 * + if pointer will live in inode - allocate in the same 201 * cylinder group. 202 * 203 * In the latter case we colour the starting block by the callers PID to 204 * prevent it from clashing with concurrent allocations for a different inode 205 * in the same block group. The PID is used here so that functionally related 206 * files will be close-by on-disk. 207 * 208 * Caller must make sure that @ind is valid and will stay that way. 209 */ 210 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 211 { 212 struct ext4_inode_info *ei = EXT4_I(inode); 213 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 214 __le32 *p; 215 216 /* Try to find previous block */ 217 for (p = ind->p - 1; p >= start; p--) { 218 if (*p) 219 return le32_to_cpu(*p); 220 } 221 222 /* No such thing, so let's try location of indirect block */ 223 if (ind->bh) 224 return ind->bh->b_blocknr; 225 226 /* 227 * It is going to be referred to from the inode itself? OK, just put it 228 * into the same cylinder group then. 229 */ 230 return ext4_inode_to_goal_block(inode); 231 } 232 233 /** 234 * ext4_find_goal - find a preferred place for allocation. 235 * @inode: owner 236 * @block: block we want 237 * @partial: pointer to the last triple within a chain 238 * 239 * Normally this function find the preferred place for block allocation, 240 * returns it. 241 * Because this is only used for non-extent files, we limit the block nr 242 * to 32 bits. 243 */ 244 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 245 Indirect *partial) 246 { 247 ext4_fsblk_t goal; 248 249 /* 250 * XXX need to get goal block from mballoc's data structures 251 */ 252 253 goal = ext4_find_near(inode, partial); 254 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS; 255 return goal; 256 } 257 258 /** 259 * ext4_blks_to_allocate - Look up the block map and count the number 260 * of direct blocks need to be allocated for the given branch. 261 * 262 * @branch: chain of indirect blocks 263 * @k: number of blocks need for indirect blocks 264 * @blks: number of data blocks to be mapped. 265 * @blocks_to_boundary: the offset in the indirect block 266 * 267 * return the total number of blocks to be allocate, including the 268 * direct and indirect blocks. 269 */ 270 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks, 271 int blocks_to_boundary) 272 { 273 unsigned int count = 0; 274 275 /* 276 * Simple case, [t,d]Indirect block(s) has not allocated yet 277 * then it's clear blocks on that path have not allocated 278 */ 279 if (k > 0) { 280 /* right now we don't handle cross boundary allocation */ 281 if (blks < blocks_to_boundary + 1) 282 count += blks; 283 else 284 count += blocks_to_boundary + 1; 285 return count; 286 } 287 288 count++; 289 while (count < blks && count <= blocks_to_boundary && 290 le32_to_cpu(*(branch[0].p + count)) == 0) { 291 count++; 292 } 293 return count; 294 } 295 296 /** 297 * ext4_alloc_branch() - allocate and set up a chain of blocks 298 * @handle: handle for this transaction 299 * @ar: structure describing the allocation request 300 * @indirect_blks: number of allocated indirect blocks 301 * @offsets: offsets (in the blocks) to store the pointers to next. 302 * @branch: place to store the chain in. 303 * 304 * This function allocates blocks, zeroes out all but the last one, 305 * links them into chain and (if we are synchronous) writes them to disk. 306 * In other words, it prepares a branch that can be spliced onto the 307 * inode. It stores the information about that chain in the branch[], in 308 * the same format as ext4_get_branch() would do. We are calling it after 309 * we had read the existing part of chain and partial points to the last 310 * triple of that (one with zero ->key). Upon the exit we have the same 311 * picture as after the successful ext4_get_block(), except that in one 312 * place chain is disconnected - *branch->p is still zero (we did not 313 * set the last link), but branch->key contains the number that should 314 * be placed into *branch->p to fill that gap. 315 * 316 * If allocation fails we free all blocks we've allocated (and forget 317 * their buffer_heads) and return the error value the from failed 318 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 319 * as described above and return 0. 320 */ 321 static int ext4_alloc_branch(handle_t *handle, 322 struct ext4_allocation_request *ar, 323 int indirect_blks, ext4_lblk_t *offsets, 324 Indirect *branch) 325 { 326 struct buffer_head * bh; 327 ext4_fsblk_t b, new_blocks[4]; 328 __le32 *p; 329 int i, j, err, len = 1; 330 331 for (i = 0; i <= indirect_blks; i++) { 332 if (i == indirect_blks) { 333 new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err); 334 } else { 335 ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle, 336 ar->inode, ar->goal, 337 ar->flags & EXT4_MB_DELALLOC_RESERVED, 338 NULL, &err); 339 /* Simplify error cleanup... */ 340 branch[i+1].bh = NULL; 341 } 342 if (err) { 343 i--; 344 goto failed; 345 } 346 branch[i].key = cpu_to_le32(new_blocks[i]); 347 if (i == 0) 348 continue; 349 350 bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]); 351 if (unlikely(!bh)) { 352 err = -ENOMEM; 353 goto failed; 354 } 355 lock_buffer(bh); 356 BUFFER_TRACE(bh, "call get_create_access"); 357 err = ext4_journal_get_create_access(handle, bh); 358 if (err) { 359 unlock_buffer(bh); 360 goto failed; 361 } 362 363 memset(bh->b_data, 0, bh->b_size); 364 p = branch[i].p = (__le32 *) bh->b_data + offsets[i]; 365 b = new_blocks[i]; 366 367 if (i == indirect_blks) 368 len = ar->len; 369 for (j = 0; j < len; j++) 370 *p++ = cpu_to_le32(b++); 371 372 BUFFER_TRACE(bh, "marking uptodate"); 373 set_buffer_uptodate(bh); 374 unlock_buffer(bh); 375 376 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 377 err = ext4_handle_dirty_metadata(handle, ar->inode, bh); 378 if (err) 379 goto failed; 380 } 381 return 0; 382 failed: 383 if (i == indirect_blks) { 384 /* Free data blocks */ 385 ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i], 386 ar->len, 0); 387 i--; 388 } 389 for (; i >= 0; i--) { 390 /* 391 * We want to ext4_forget() only freshly allocated indirect 392 * blocks. Buffer for new_blocks[i] is at branch[i+1].bh 393 * (buffer at branch[0].bh is indirect block / inode already 394 * existing before ext4_alloc_branch() was called). Also 395 * because blocks are freshly allocated, we don't need to 396 * revoke them which is why we don't set 397 * EXT4_FREE_BLOCKS_METADATA. 398 */ 399 ext4_free_blocks(handle, ar->inode, branch[i+1].bh, 400 new_blocks[i], 1, 401 branch[i+1].bh ? EXT4_FREE_BLOCKS_FORGET : 0); 402 } 403 return err; 404 } 405 406 /** 407 * ext4_splice_branch() - splice the allocated branch onto inode. 408 * @handle: handle for this transaction 409 * @ar: structure describing the allocation request 410 * @where: location of missing link 411 * @num: number of indirect blocks we are adding 412 * 413 * This function fills the missing link and does all housekeeping needed in 414 * inode (->i_blocks, etc.). In case of success we end up with the full 415 * chain to new block and return 0. 416 */ 417 static int ext4_splice_branch(handle_t *handle, 418 struct ext4_allocation_request *ar, 419 Indirect *where, int num) 420 { 421 int i; 422 int err = 0; 423 ext4_fsblk_t current_block; 424 425 /* 426 * If we're splicing into a [td]indirect block (as opposed to the 427 * inode) then we need to get write access to the [td]indirect block 428 * before the splice. 429 */ 430 if (where->bh) { 431 BUFFER_TRACE(where->bh, "get_write_access"); 432 err = ext4_journal_get_write_access(handle, where->bh); 433 if (err) 434 goto err_out; 435 } 436 /* That's it */ 437 438 *where->p = where->key; 439 440 /* 441 * Update the host buffer_head or inode to point to more just allocated 442 * direct blocks blocks 443 */ 444 if (num == 0 && ar->len > 1) { 445 current_block = le32_to_cpu(where->key) + 1; 446 for (i = 1; i < ar->len; i++) 447 *(where->p + i) = cpu_to_le32(current_block++); 448 } 449 450 /* We are done with atomic stuff, now do the rest of housekeeping */ 451 /* had we spliced it onto indirect block? */ 452 if (where->bh) { 453 /* 454 * If we spliced it onto an indirect block, we haven't 455 * altered the inode. Note however that if it is being spliced 456 * onto an indirect block at the very end of the file (the 457 * file is growing) then we *will* alter the inode to reflect 458 * the new i_size. But that is not done here - it is done in 459 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 460 */ 461 jbd_debug(5, "splicing indirect only\n"); 462 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata"); 463 err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh); 464 if (err) 465 goto err_out; 466 } else { 467 /* 468 * OK, we spliced it into the inode itself on a direct block. 469 */ 470 ext4_mark_inode_dirty(handle, ar->inode); 471 jbd_debug(5, "splicing direct\n"); 472 } 473 return err; 474 475 err_out: 476 for (i = 1; i <= num; i++) { 477 /* 478 * branch[i].bh is newly allocated, so there is no 479 * need to revoke the block, which is why we don't 480 * need to set EXT4_FREE_BLOCKS_METADATA. 481 */ 482 ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1, 483 EXT4_FREE_BLOCKS_FORGET); 484 } 485 ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key), 486 ar->len, 0); 487 488 return err; 489 } 490 491 /* 492 * The ext4_ind_map_blocks() function handles non-extents inodes 493 * (i.e., using the traditional indirect/double-indirect i_blocks 494 * scheme) for ext4_map_blocks(). 495 * 496 * Allocation strategy is simple: if we have to allocate something, we will 497 * have to go the whole way to leaf. So let's do it before attaching anything 498 * to tree, set linkage between the newborn blocks, write them if sync is 499 * required, recheck the path, free and repeat if check fails, otherwise 500 * set the last missing link (that will protect us from any truncate-generated 501 * removals - all blocks on the path are immune now) and possibly force the 502 * write on the parent block. 503 * That has a nice additional property: no special recovery from the failed 504 * allocations is needed - we simply release blocks and do not touch anything 505 * reachable from inode. 506 * 507 * `handle' can be NULL if create == 0. 508 * 509 * return > 0, # of blocks mapped or allocated. 510 * return = 0, if plain lookup failed. 511 * return < 0, error case. 512 * 513 * The ext4_ind_get_blocks() function should be called with 514 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem 515 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or 516 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system 517 * blocks. 518 */ 519 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode, 520 struct ext4_map_blocks *map, 521 int flags) 522 { 523 struct ext4_allocation_request ar; 524 int err = -EIO; 525 ext4_lblk_t offsets[4]; 526 Indirect chain[4]; 527 Indirect *partial; 528 int indirect_blks; 529 int blocks_to_boundary = 0; 530 int depth; 531 int count = 0; 532 ext4_fsblk_t first_block = 0; 533 534 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 535 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))); 536 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0); 537 depth = ext4_block_to_path(inode, map->m_lblk, offsets, 538 &blocks_to_boundary); 539 540 if (depth == 0) 541 goto out; 542 543 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 544 545 /* Simplest case - block found, no allocation needed */ 546 if (!partial) { 547 first_block = le32_to_cpu(chain[depth - 1].key); 548 count++; 549 /*map more blocks*/ 550 while (count < map->m_len && count <= blocks_to_boundary) { 551 ext4_fsblk_t blk; 552 553 blk = le32_to_cpu(*(chain[depth-1].p + count)); 554 555 if (blk == first_block + count) 556 count++; 557 else 558 break; 559 } 560 goto got_it; 561 } 562 563 /* Next simple case - plain lookup failed */ 564 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 565 unsigned epb = inode->i_sb->s_blocksize / sizeof(u32); 566 int i; 567 568 /* 569 * Count number blocks in a subtree under 'partial'. At each 570 * level we count number of complete empty subtrees beyond 571 * current offset and then descend into the subtree only 572 * partially beyond current offset. 573 */ 574 count = 0; 575 for (i = partial - chain + 1; i < depth; i++) 576 count = count * epb + (epb - offsets[i] - 1); 577 count++; 578 /* Fill in size of a hole we found */ 579 map->m_pblk = 0; 580 map->m_len = min_t(unsigned int, map->m_len, count); 581 goto cleanup; 582 } 583 584 /* Failed read of indirect block */ 585 if (err == -EIO) 586 goto cleanup; 587 588 /* 589 * Okay, we need to do block allocation. 590 */ 591 if (ext4_has_feature_bigalloc(inode->i_sb)) { 592 EXT4_ERROR_INODE(inode, "Can't allocate blocks for " 593 "non-extent mapped inodes with bigalloc"); 594 return -EFSCORRUPTED; 595 } 596 597 /* Set up for the direct block allocation */ 598 memset(&ar, 0, sizeof(ar)); 599 ar.inode = inode; 600 ar.logical = map->m_lblk; 601 if (S_ISREG(inode->i_mode)) 602 ar.flags = EXT4_MB_HINT_DATA; 603 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 604 ar.flags |= EXT4_MB_DELALLOC_RESERVED; 605 if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 606 ar.flags |= EXT4_MB_USE_RESERVED; 607 608 ar.goal = ext4_find_goal(inode, map->m_lblk, partial); 609 610 /* the number of blocks need to allocate for [d,t]indirect blocks */ 611 indirect_blks = (chain + depth) - partial - 1; 612 613 /* 614 * Next look up the indirect map to count the totoal number of 615 * direct blocks to allocate for this branch. 616 */ 617 ar.len = ext4_blks_to_allocate(partial, indirect_blks, 618 map->m_len, blocks_to_boundary); 619 620 /* 621 * Block out ext4_truncate while we alter the tree 622 */ 623 err = ext4_alloc_branch(handle, &ar, indirect_blks, 624 offsets + (partial - chain), partial); 625 626 /* 627 * The ext4_splice_branch call will free and forget any buffers 628 * on the new chain if there is a failure, but that risks using 629 * up transaction credits, especially for bitmaps where the 630 * credits cannot be returned. Can we handle this somehow? We 631 * may need to return -EAGAIN upwards in the worst case. --sct 632 */ 633 if (!err) 634 err = ext4_splice_branch(handle, &ar, partial, indirect_blks); 635 if (err) 636 goto cleanup; 637 638 map->m_flags |= EXT4_MAP_NEW; 639 640 ext4_update_inode_fsync_trans(handle, inode, 1); 641 count = ar.len; 642 got_it: 643 map->m_flags |= EXT4_MAP_MAPPED; 644 map->m_pblk = le32_to_cpu(chain[depth-1].key); 645 map->m_len = count; 646 if (count > blocks_to_boundary) 647 map->m_flags |= EXT4_MAP_BOUNDARY; 648 err = count; 649 /* Clean up and exit */ 650 partial = chain + depth - 1; /* the whole chain */ 651 cleanup: 652 while (partial > chain) { 653 BUFFER_TRACE(partial->bh, "call brelse"); 654 brelse(partial->bh); 655 partial--; 656 } 657 out: 658 trace_ext4_ind_map_blocks_exit(inode, flags, map, err); 659 return err; 660 } 661 662 /* 663 * Calculate number of indirect blocks touched by mapping @nrblocks logically 664 * contiguous blocks 665 */ 666 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks) 667 { 668 /* 669 * With N contiguous data blocks, we need at most 670 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks, 671 * 2 dindirect blocks, and 1 tindirect block 672 */ 673 return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4; 674 } 675 676 static int ext4_ind_trunc_restart_fn(handle_t *handle, struct inode *inode, 677 struct buffer_head *bh, int *dropped) 678 { 679 int err; 680 681 if (bh) { 682 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 683 err = ext4_handle_dirty_metadata(handle, inode, bh); 684 if (unlikely(err)) 685 return err; 686 } 687 err = ext4_mark_inode_dirty(handle, inode); 688 if (unlikely(err)) 689 return err; 690 /* 691 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 692 * moment, get_block can be called only for blocks inside i_size since 693 * page cache has been already dropped and writes are blocked by 694 * i_mutex. So we can safely drop the i_data_sem here. 695 */ 696 BUG_ON(EXT4_JOURNAL(inode) == NULL); 697 ext4_discard_preallocations(inode); 698 up_write(&EXT4_I(inode)->i_data_sem); 699 *dropped = 1; 700 return 0; 701 } 702 703 /* 704 * Truncate transactions can be complex and absolutely huge. So we need to 705 * be able to restart the transaction at a conventient checkpoint to make 706 * sure we don't overflow the journal. 707 * 708 * Try to extend this transaction for the purposes of truncation. If 709 * extend fails, we restart transaction. 710 */ 711 static int ext4_ind_truncate_ensure_credits(handle_t *handle, 712 struct inode *inode, 713 struct buffer_head *bh, 714 int revoke_creds) 715 { 716 int ret; 717 int dropped = 0; 718 719 ret = ext4_journal_ensure_credits_fn(handle, EXT4_RESERVE_TRANS_BLOCKS, 720 ext4_blocks_for_truncate(inode), revoke_creds, 721 ext4_ind_trunc_restart_fn(handle, inode, bh, &dropped)); 722 if (dropped) 723 down_write(&EXT4_I(inode)->i_data_sem); 724 if (ret <= 0) 725 return ret; 726 if (bh) { 727 BUFFER_TRACE(bh, "retaking write access"); 728 ret = ext4_journal_get_write_access(handle, bh); 729 if (unlikely(ret)) 730 return ret; 731 } 732 return 0; 733 } 734 735 /* 736 * Probably it should be a library function... search for first non-zero word 737 * or memcmp with zero_page, whatever is better for particular architecture. 738 * Linus? 739 */ 740 static inline int all_zeroes(__le32 *p, __le32 *q) 741 { 742 while (p < q) 743 if (*p++) 744 return 0; 745 return 1; 746 } 747 748 /** 749 * ext4_find_shared - find the indirect blocks for partial truncation. 750 * @inode: inode in question 751 * @depth: depth of the affected branch 752 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 753 * @chain: place to store the pointers to partial indirect blocks 754 * @top: place to the (detached) top of branch 755 * 756 * This is a helper function used by ext4_truncate(). 757 * 758 * When we do truncate() we may have to clean the ends of several 759 * indirect blocks but leave the blocks themselves alive. Block is 760 * partially truncated if some data below the new i_size is referred 761 * from it (and it is on the path to the first completely truncated 762 * data block, indeed). We have to free the top of that path along 763 * with everything to the right of the path. Since no allocation 764 * past the truncation point is possible until ext4_truncate() 765 * finishes, we may safely do the latter, but top of branch may 766 * require special attention - pageout below the truncation point 767 * might try to populate it. 768 * 769 * We atomically detach the top of branch from the tree, store the 770 * block number of its root in *@top, pointers to buffer_heads of 771 * partially truncated blocks - in @chain[].bh and pointers to 772 * their last elements that should not be removed - in 773 * @chain[].p. Return value is the pointer to last filled element 774 * of @chain. 775 * 776 * The work left to caller to do the actual freeing of subtrees: 777 * a) free the subtree starting from *@top 778 * b) free the subtrees whose roots are stored in 779 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 780 * c) free the subtrees growing from the inode past the @chain[0]. 781 * (no partially truncated stuff there). */ 782 783 static Indirect *ext4_find_shared(struct inode *inode, int depth, 784 ext4_lblk_t offsets[4], Indirect chain[4], 785 __le32 *top) 786 { 787 Indirect *partial, *p; 788 int k, err; 789 790 *top = 0; 791 /* Make k index the deepest non-null offset + 1 */ 792 for (k = depth; k > 1 && !offsets[k-1]; k--) 793 ; 794 partial = ext4_get_branch(inode, k, offsets, chain, &err); 795 /* Writer: pointers */ 796 if (!partial) 797 partial = chain + k-1; 798 /* 799 * If the branch acquired continuation since we've looked at it - 800 * fine, it should all survive and (new) top doesn't belong to us. 801 */ 802 if (!partial->key && *partial->p) 803 /* Writer: end */ 804 goto no_top; 805 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 806 ; 807 /* 808 * OK, we've found the last block that must survive. The rest of our 809 * branch should be detached before unlocking. However, if that rest 810 * of branch is all ours and does not grow immediately from the inode 811 * it's easier to cheat and just decrement partial->p. 812 */ 813 if (p == chain + k - 1 && p > chain) { 814 p->p--; 815 } else { 816 *top = *p->p; 817 /* Nope, don't do this in ext4. Must leave the tree intact */ 818 #if 0 819 *p->p = 0; 820 #endif 821 } 822 /* Writer: end */ 823 824 while (partial > p) { 825 brelse(partial->bh); 826 partial--; 827 } 828 no_top: 829 return partial; 830 } 831 832 /* 833 * Zero a number of block pointers in either an inode or an indirect block. 834 * If we restart the transaction we must again get write access to the 835 * indirect block for further modification. 836 * 837 * We release `count' blocks on disk, but (last - first) may be greater 838 * than `count' because there can be holes in there. 839 * 840 * Return 0 on success, 1 on invalid block range 841 * and < 0 on fatal error. 842 */ 843 static int ext4_clear_blocks(handle_t *handle, struct inode *inode, 844 struct buffer_head *bh, 845 ext4_fsblk_t block_to_free, 846 unsigned long count, __le32 *first, 847 __le32 *last) 848 { 849 __le32 *p; 850 int flags = EXT4_FREE_BLOCKS_VALIDATED; 851 int err; 852 853 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) || 854 ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE)) 855 flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA; 856 else if (ext4_should_journal_data(inode)) 857 flags |= EXT4_FREE_BLOCKS_FORGET; 858 859 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free, 860 count)) { 861 EXT4_ERROR_INODE(inode, "attempt to clear invalid " 862 "blocks %llu len %lu", 863 (unsigned long long) block_to_free, count); 864 return 1; 865 } 866 867 err = ext4_ind_truncate_ensure_credits(handle, inode, bh, 868 ext4_free_data_revoke_credits(inode, count)); 869 if (err < 0) 870 goto out_err; 871 872 for (p = first; p < last; p++) 873 *p = 0; 874 875 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags); 876 return 0; 877 out_err: 878 ext4_std_error(inode->i_sb, err); 879 return err; 880 } 881 882 /** 883 * ext4_free_data - free a list of data blocks 884 * @handle: handle for this transaction 885 * @inode: inode we are dealing with 886 * @this_bh: indirect buffer_head which contains *@first and *@last 887 * @first: array of block numbers 888 * @last: points immediately past the end of array 889 * 890 * We are freeing all blocks referred from that array (numbers are stored as 891 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 892 * 893 * We accumulate contiguous runs of blocks to free. Conveniently, if these 894 * blocks are contiguous then releasing them at one time will only affect one 895 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 896 * actually use a lot of journal space. 897 * 898 * @this_bh will be %NULL if @first and @last point into the inode's direct 899 * block pointers. 900 */ 901 static void ext4_free_data(handle_t *handle, struct inode *inode, 902 struct buffer_head *this_bh, 903 __le32 *first, __le32 *last) 904 { 905 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 906 unsigned long count = 0; /* Number of blocks in the run */ 907 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 908 corresponding to 909 block_to_free */ 910 ext4_fsblk_t nr; /* Current block # */ 911 __le32 *p; /* Pointer into inode/ind 912 for current block */ 913 int err = 0; 914 915 if (this_bh) { /* For indirect block */ 916 BUFFER_TRACE(this_bh, "get_write_access"); 917 err = ext4_journal_get_write_access(handle, this_bh); 918 /* Important: if we can't update the indirect pointers 919 * to the blocks, we can't free them. */ 920 if (err) 921 return; 922 } 923 924 for (p = first; p < last; p++) { 925 nr = le32_to_cpu(*p); 926 if (nr) { 927 /* accumulate blocks to free if they're contiguous */ 928 if (count == 0) { 929 block_to_free = nr; 930 block_to_free_p = p; 931 count = 1; 932 } else if (nr == block_to_free + count) { 933 count++; 934 } else { 935 err = ext4_clear_blocks(handle, inode, this_bh, 936 block_to_free, count, 937 block_to_free_p, p); 938 if (err) 939 break; 940 block_to_free = nr; 941 block_to_free_p = p; 942 count = 1; 943 } 944 } 945 } 946 947 if (!err && count > 0) 948 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free, 949 count, block_to_free_p, p); 950 if (err < 0) 951 /* fatal error */ 952 return; 953 954 if (this_bh) { 955 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata"); 956 957 /* 958 * The buffer head should have an attached journal head at this 959 * point. However, if the data is corrupted and an indirect 960 * block pointed to itself, it would have been detached when 961 * the block was cleared. Check for this instead of OOPSing. 962 */ 963 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh)) 964 ext4_handle_dirty_metadata(handle, inode, this_bh); 965 else 966 EXT4_ERROR_INODE(inode, 967 "circular indirect block detected at " 968 "block %llu", 969 (unsigned long long) this_bh->b_blocknr); 970 } 971 } 972 973 /** 974 * ext4_free_branches - free an array of branches 975 * @handle: JBD handle for this transaction 976 * @inode: inode we are dealing with 977 * @parent_bh: the buffer_head which contains *@first and *@last 978 * @first: array of block numbers 979 * @last: pointer immediately past the end of array 980 * @depth: depth of the branches to free 981 * 982 * We are freeing all blocks referred from these branches (numbers are 983 * stored as little-endian 32-bit) and updating @inode->i_blocks 984 * appropriately. 985 */ 986 static void ext4_free_branches(handle_t *handle, struct inode *inode, 987 struct buffer_head *parent_bh, 988 __le32 *first, __le32 *last, int depth) 989 { 990 ext4_fsblk_t nr; 991 __le32 *p; 992 993 if (ext4_handle_is_aborted(handle)) 994 return; 995 996 if (depth--) { 997 struct buffer_head *bh; 998 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 999 p = last; 1000 while (--p >= first) { 1001 nr = le32_to_cpu(*p); 1002 if (!nr) 1003 continue; /* A hole */ 1004 1005 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), 1006 nr, 1)) { 1007 EXT4_ERROR_INODE(inode, 1008 "invalid indirect mapped " 1009 "block %lu (level %d)", 1010 (unsigned long) nr, depth); 1011 break; 1012 } 1013 1014 /* Go read the buffer for the next level down */ 1015 bh = sb_bread(inode->i_sb, nr); 1016 1017 /* 1018 * A read failure? Report error and clear slot 1019 * (should be rare). 1020 */ 1021 if (!bh) { 1022 ext4_error_inode_block(inode, nr, EIO, 1023 "Read failure"); 1024 continue; 1025 } 1026 1027 /* This zaps the entire block. Bottom up. */ 1028 BUFFER_TRACE(bh, "free child branches"); 1029 ext4_free_branches(handle, inode, bh, 1030 (__le32 *) bh->b_data, 1031 (__le32 *) bh->b_data + addr_per_block, 1032 depth); 1033 brelse(bh); 1034 1035 /* 1036 * Everything below this this pointer has been 1037 * released. Now let this top-of-subtree go. 1038 * 1039 * We want the freeing of this indirect block to be 1040 * atomic in the journal with the updating of the 1041 * bitmap block which owns it. So make some room in 1042 * the journal. 1043 * 1044 * We zero the parent pointer *after* freeing its 1045 * pointee in the bitmaps, so if extend_transaction() 1046 * for some reason fails to put the bitmap changes and 1047 * the release into the same transaction, recovery 1048 * will merely complain about releasing a free block, 1049 * rather than leaking blocks. 1050 */ 1051 if (ext4_handle_is_aborted(handle)) 1052 return; 1053 if (ext4_ind_truncate_ensure_credits(handle, inode, 1054 NULL, 1055 ext4_free_metadata_revoke_credits( 1056 inode->i_sb, 1)) < 0) 1057 return; 1058 1059 /* 1060 * The forget flag here is critical because if 1061 * we are journaling (and not doing data 1062 * journaling), we have to make sure a revoke 1063 * record is written to prevent the journal 1064 * replay from overwriting the (former) 1065 * indirect block if it gets reallocated as a 1066 * data block. This must happen in the same 1067 * transaction where the data blocks are 1068 * actually freed. 1069 */ 1070 ext4_free_blocks(handle, inode, NULL, nr, 1, 1071 EXT4_FREE_BLOCKS_METADATA| 1072 EXT4_FREE_BLOCKS_FORGET); 1073 1074 if (parent_bh) { 1075 /* 1076 * The block which we have just freed is 1077 * pointed to by an indirect block: journal it 1078 */ 1079 BUFFER_TRACE(parent_bh, "get_write_access"); 1080 if (!ext4_journal_get_write_access(handle, 1081 parent_bh)){ 1082 *p = 0; 1083 BUFFER_TRACE(parent_bh, 1084 "call ext4_handle_dirty_metadata"); 1085 ext4_handle_dirty_metadata(handle, 1086 inode, 1087 parent_bh); 1088 } 1089 } 1090 } 1091 } else { 1092 /* We have reached the bottom of the tree. */ 1093 BUFFER_TRACE(parent_bh, "free data blocks"); 1094 ext4_free_data(handle, inode, parent_bh, first, last); 1095 } 1096 } 1097 1098 void ext4_ind_truncate(handle_t *handle, struct inode *inode) 1099 { 1100 struct ext4_inode_info *ei = EXT4_I(inode); 1101 __le32 *i_data = ei->i_data; 1102 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1103 ext4_lblk_t offsets[4]; 1104 Indirect chain[4]; 1105 Indirect *partial; 1106 __le32 nr = 0; 1107 int n = 0; 1108 ext4_lblk_t last_block, max_block; 1109 unsigned blocksize = inode->i_sb->s_blocksize; 1110 1111 last_block = (inode->i_size + blocksize-1) 1112 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1113 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1) 1114 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1115 1116 if (last_block != max_block) { 1117 n = ext4_block_to_path(inode, last_block, offsets, NULL); 1118 if (n == 0) 1119 return; 1120 } 1121 1122 ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block); 1123 1124 /* 1125 * The orphan list entry will now protect us from any crash which 1126 * occurs before the truncate completes, so it is now safe to propagate 1127 * the new, shorter inode size (held for now in i_size) into the 1128 * on-disk inode. We do this via i_disksize, which is the value which 1129 * ext4 *really* writes onto the disk inode. 1130 */ 1131 ei->i_disksize = inode->i_size; 1132 1133 if (last_block == max_block) { 1134 /* 1135 * It is unnecessary to free any data blocks if last_block is 1136 * equal to the indirect block limit. 1137 */ 1138 return; 1139 } else if (n == 1) { /* direct blocks */ 1140 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 1141 i_data + EXT4_NDIR_BLOCKS); 1142 goto do_indirects; 1143 } 1144 1145 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 1146 /* Kill the top of shared branch (not detached) */ 1147 if (nr) { 1148 if (partial == chain) { 1149 /* Shared branch grows from the inode */ 1150 ext4_free_branches(handle, inode, NULL, 1151 &nr, &nr+1, (chain+n-1) - partial); 1152 *partial->p = 0; 1153 /* 1154 * We mark the inode dirty prior to restart, 1155 * and prior to stop. No need for it here. 1156 */ 1157 } else { 1158 /* Shared branch grows from an indirect block */ 1159 BUFFER_TRACE(partial->bh, "get_write_access"); 1160 ext4_free_branches(handle, inode, partial->bh, 1161 partial->p, 1162 partial->p+1, (chain+n-1) - partial); 1163 } 1164 } 1165 /* Clear the ends of indirect blocks on the shared branch */ 1166 while (partial > chain) { 1167 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 1168 (__le32*)partial->bh->b_data+addr_per_block, 1169 (chain+n-1) - partial); 1170 BUFFER_TRACE(partial->bh, "call brelse"); 1171 brelse(partial->bh); 1172 partial--; 1173 } 1174 do_indirects: 1175 /* Kill the remaining (whole) subtrees */ 1176 switch (offsets[0]) { 1177 default: 1178 nr = i_data[EXT4_IND_BLOCK]; 1179 if (nr) { 1180 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 1181 i_data[EXT4_IND_BLOCK] = 0; 1182 } 1183 /* fall through */ 1184 case EXT4_IND_BLOCK: 1185 nr = i_data[EXT4_DIND_BLOCK]; 1186 if (nr) { 1187 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 1188 i_data[EXT4_DIND_BLOCK] = 0; 1189 } 1190 /* fall through */ 1191 case EXT4_DIND_BLOCK: 1192 nr = i_data[EXT4_TIND_BLOCK]; 1193 if (nr) { 1194 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 1195 i_data[EXT4_TIND_BLOCK] = 0; 1196 } 1197 /* fall through */ 1198 case EXT4_TIND_BLOCK: 1199 ; 1200 } 1201 } 1202 1203 /** 1204 * ext4_ind_remove_space - remove space from the range 1205 * @handle: JBD handle for this transaction 1206 * @inode: inode we are dealing with 1207 * @start: First block to remove 1208 * @end: One block after the last block to remove (exclusive) 1209 * 1210 * Free the blocks in the defined range (end is exclusive endpoint of 1211 * range). This is used by ext4_punch_hole(). 1212 */ 1213 int ext4_ind_remove_space(handle_t *handle, struct inode *inode, 1214 ext4_lblk_t start, ext4_lblk_t end) 1215 { 1216 struct ext4_inode_info *ei = EXT4_I(inode); 1217 __le32 *i_data = ei->i_data; 1218 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1219 ext4_lblk_t offsets[4], offsets2[4]; 1220 Indirect chain[4], chain2[4]; 1221 Indirect *partial, *partial2; 1222 Indirect *p = NULL, *p2 = NULL; 1223 ext4_lblk_t max_block; 1224 __le32 nr = 0, nr2 = 0; 1225 int n = 0, n2 = 0; 1226 unsigned blocksize = inode->i_sb->s_blocksize; 1227 1228 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1) 1229 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1230 if (end >= max_block) 1231 end = max_block; 1232 if ((start >= end) || (start > max_block)) 1233 return 0; 1234 1235 n = ext4_block_to_path(inode, start, offsets, NULL); 1236 n2 = ext4_block_to_path(inode, end, offsets2, NULL); 1237 1238 BUG_ON(n > n2); 1239 1240 if ((n == 1) && (n == n2)) { 1241 /* We're punching only within direct block range */ 1242 ext4_free_data(handle, inode, NULL, i_data + offsets[0], 1243 i_data + offsets2[0]); 1244 return 0; 1245 } else if (n2 > n) { 1246 /* 1247 * Start and end are on a different levels so we're going to 1248 * free partial block at start, and partial block at end of 1249 * the range. If there are some levels in between then 1250 * do_indirects label will take care of that. 1251 */ 1252 1253 if (n == 1) { 1254 /* 1255 * Start is at the direct block level, free 1256 * everything to the end of the level. 1257 */ 1258 ext4_free_data(handle, inode, NULL, i_data + offsets[0], 1259 i_data + EXT4_NDIR_BLOCKS); 1260 goto end_range; 1261 } 1262 1263 1264 partial = p = ext4_find_shared(inode, n, offsets, chain, &nr); 1265 if (nr) { 1266 if (partial == chain) { 1267 /* Shared branch grows from the inode */ 1268 ext4_free_branches(handle, inode, NULL, 1269 &nr, &nr+1, (chain+n-1) - partial); 1270 *partial->p = 0; 1271 } else { 1272 /* Shared branch grows from an indirect block */ 1273 BUFFER_TRACE(partial->bh, "get_write_access"); 1274 ext4_free_branches(handle, inode, partial->bh, 1275 partial->p, 1276 partial->p+1, (chain+n-1) - partial); 1277 } 1278 } 1279 1280 /* 1281 * Clear the ends of indirect blocks on the shared branch 1282 * at the start of the range 1283 */ 1284 while (partial > chain) { 1285 ext4_free_branches(handle, inode, partial->bh, 1286 partial->p + 1, 1287 (__le32 *)partial->bh->b_data+addr_per_block, 1288 (chain+n-1) - partial); 1289 partial--; 1290 } 1291 1292 end_range: 1293 partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2); 1294 if (nr2) { 1295 if (partial2 == chain2) { 1296 /* 1297 * Remember, end is exclusive so here we're at 1298 * the start of the next level we're not going 1299 * to free. Everything was covered by the start 1300 * of the range. 1301 */ 1302 goto do_indirects; 1303 } 1304 } else { 1305 /* 1306 * ext4_find_shared returns Indirect structure which 1307 * points to the last element which should not be 1308 * removed by truncate. But this is end of the range 1309 * in punch_hole so we need to point to the next element 1310 */ 1311 partial2->p++; 1312 } 1313 1314 /* 1315 * Clear the ends of indirect blocks on the shared branch 1316 * at the end of the range 1317 */ 1318 while (partial2 > chain2) { 1319 ext4_free_branches(handle, inode, partial2->bh, 1320 (__le32 *)partial2->bh->b_data, 1321 partial2->p, 1322 (chain2+n2-1) - partial2); 1323 partial2--; 1324 } 1325 goto do_indirects; 1326 } 1327 1328 /* Punch happened within the same level (n == n2) */ 1329 partial = p = ext4_find_shared(inode, n, offsets, chain, &nr); 1330 partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2); 1331 1332 /* Free top, but only if partial2 isn't its subtree. */ 1333 if (nr) { 1334 int level = min(partial - chain, partial2 - chain2); 1335 int i; 1336 int subtree = 1; 1337 1338 for (i = 0; i <= level; i++) { 1339 if (offsets[i] != offsets2[i]) { 1340 subtree = 0; 1341 break; 1342 } 1343 } 1344 1345 if (!subtree) { 1346 if (partial == chain) { 1347 /* Shared branch grows from the inode */ 1348 ext4_free_branches(handle, inode, NULL, 1349 &nr, &nr+1, 1350 (chain+n-1) - partial); 1351 *partial->p = 0; 1352 } else { 1353 /* Shared branch grows from an indirect block */ 1354 BUFFER_TRACE(partial->bh, "get_write_access"); 1355 ext4_free_branches(handle, inode, partial->bh, 1356 partial->p, 1357 partial->p+1, 1358 (chain+n-1) - partial); 1359 } 1360 } 1361 } 1362 1363 if (!nr2) { 1364 /* 1365 * ext4_find_shared returns Indirect structure which 1366 * points to the last element which should not be 1367 * removed by truncate. But this is end of the range 1368 * in punch_hole so we need to point to the next element 1369 */ 1370 partial2->p++; 1371 } 1372 1373 while (partial > chain || partial2 > chain2) { 1374 int depth = (chain+n-1) - partial; 1375 int depth2 = (chain2+n2-1) - partial2; 1376 1377 if (partial > chain && partial2 > chain2 && 1378 partial->bh->b_blocknr == partial2->bh->b_blocknr) { 1379 /* 1380 * We've converged on the same block. Clear the range, 1381 * then we're done. 1382 */ 1383 ext4_free_branches(handle, inode, partial->bh, 1384 partial->p + 1, 1385 partial2->p, 1386 (chain+n-1) - partial); 1387 goto cleanup; 1388 } 1389 1390 /* 1391 * The start and end partial branches may not be at the same 1392 * level even though the punch happened within one level. So, we 1393 * give them a chance to arrive at the same level, then walk 1394 * them in step with each other until we converge on the same 1395 * block. 1396 */ 1397 if (partial > chain && depth <= depth2) { 1398 ext4_free_branches(handle, inode, partial->bh, 1399 partial->p + 1, 1400 (__le32 *)partial->bh->b_data+addr_per_block, 1401 (chain+n-1) - partial); 1402 partial--; 1403 } 1404 if (partial2 > chain2 && depth2 <= depth) { 1405 ext4_free_branches(handle, inode, partial2->bh, 1406 (__le32 *)partial2->bh->b_data, 1407 partial2->p, 1408 (chain2+n2-1) - partial2); 1409 partial2--; 1410 } 1411 } 1412 1413 cleanup: 1414 while (p && p > chain) { 1415 BUFFER_TRACE(p->bh, "call brelse"); 1416 brelse(p->bh); 1417 p--; 1418 } 1419 while (p2 && p2 > chain2) { 1420 BUFFER_TRACE(p2->bh, "call brelse"); 1421 brelse(p2->bh); 1422 p2--; 1423 } 1424 return 0; 1425 1426 do_indirects: 1427 /* Kill the remaining (whole) subtrees */ 1428 switch (offsets[0]) { 1429 default: 1430 if (++n >= n2) 1431 break; 1432 nr = i_data[EXT4_IND_BLOCK]; 1433 if (nr) { 1434 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 1435 i_data[EXT4_IND_BLOCK] = 0; 1436 } 1437 /* fall through */ 1438 case EXT4_IND_BLOCK: 1439 if (++n >= n2) 1440 break; 1441 nr = i_data[EXT4_DIND_BLOCK]; 1442 if (nr) { 1443 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 1444 i_data[EXT4_DIND_BLOCK] = 0; 1445 } 1446 /* fall through */ 1447 case EXT4_DIND_BLOCK: 1448 if (++n >= n2) 1449 break; 1450 nr = i_data[EXT4_TIND_BLOCK]; 1451 if (nr) { 1452 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 1453 i_data[EXT4_TIND_BLOCK] = 0; 1454 } 1455 /* fall through */ 1456 case EXT4_TIND_BLOCK: 1457 ; 1458 } 1459 goto cleanup; 1460 } 1461