1 /* 2 * linux/fs/ext4/indirect.c 3 * 4 * from 5 * 6 * linux/fs/ext4/inode.c 7 * 8 * Copyright (C) 1992, 1993, 1994, 1995 9 * Remy Card (card@masi.ibp.fr) 10 * Laboratoire MASI - Institut Blaise Pascal 11 * Universite Pierre et Marie Curie (Paris VI) 12 * 13 * from 14 * 15 * linux/fs/minix/inode.c 16 * 17 * Copyright (C) 1991, 1992 Linus Torvalds 18 * 19 * Goal-directed block allocation by Stephen Tweedie 20 * (sct@redhat.com), 1993, 1998 21 */ 22 23 #include "ext4_jbd2.h" 24 #include "truncate.h" 25 #include "ext4_extents.h" /* Needed for EXT_MAX_BLOCKS */ 26 27 #include <trace/events/ext4.h> 28 29 typedef struct { 30 __le32 *p; 31 __le32 key; 32 struct buffer_head *bh; 33 } Indirect; 34 35 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 36 { 37 p->key = *(p->p = v); 38 p->bh = bh; 39 } 40 41 /** 42 * ext4_block_to_path - parse the block number into array of offsets 43 * @inode: inode in question (we are only interested in its superblock) 44 * @i_block: block number to be parsed 45 * @offsets: array to store the offsets in 46 * @boundary: set this non-zero if the referred-to block is likely to be 47 * followed (on disk) by an indirect block. 48 * 49 * To store the locations of file's data ext4 uses a data structure common 50 * for UNIX filesystems - tree of pointers anchored in the inode, with 51 * data blocks at leaves and indirect blocks in intermediate nodes. 52 * This function translates the block number into path in that tree - 53 * return value is the path length and @offsets[n] is the offset of 54 * pointer to (n+1)th node in the nth one. If @block is out of range 55 * (negative or too large) warning is printed and zero returned. 56 * 57 * Note: function doesn't find node addresses, so no IO is needed. All 58 * we need to know is the capacity of indirect blocks (taken from the 59 * inode->i_sb). 60 */ 61 62 /* 63 * Portability note: the last comparison (check that we fit into triple 64 * indirect block) is spelled differently, because otherwise on an 65 * architecture with 32-bit longs and 8Kb pages we might get into trouble 66 * if our filesystem had 8Kb blocks. We might use long long, but that would 67 * kill us on x86. Oh, well, at least the sign propagation does not matter - 68 * i_block would have to be negative in the very beginning, so we would not 69 * get there at all. 70 */ 71 72 static int ext4_block_to_path(struct inode *inode, 73 ext4_lblk_t i_block, 74 ext4_lblk_t offsets[4], int *boundary) 75 { 76 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 77 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 78 const long direct_blocks = EXT4_NDIR_BLOCKS, 79 indirect_blocks = ptrs, 80 double_blocks = (1 << (ptrs_bits * 2)); 81 int n = 0; 82 int final = 0; 83 84 if (i_block < direct_blocks) { 85 offsets[n++] = i_block; 86 final = direct_blocks; 87 } else if ((i_block -= direct_blocks) < indirect_blocks) { 88 offsets[n++] = EXT4_IND_BLOCK; 89 offsets[n++] = i_block; 90 final = ptrs; 91 } else if ((i_block -= indirect_blocks) < double_blocks) { 92 offsets[n++] = EXT4_DIND_BLOCK; 93 offsets[n++] = i_block >> ptrs_bits; 94 offsets[n++] = i_block & (ptrs - 1); 95 final = ptrs; 96 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 97 offsets[n++] = EXT4_TIND_BLOCK; 98 offsets[n++] = i_block >> (ptrs_bits * 2); 99 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 100 offsets[n++] = i_block & (ptrs - 1); 101 final = ptrs; 102 } else { 103 ext4_warning(inode->i_sb, "block %lu > max in inode %lu", 104 i_block + direct_blocks + 105 indirect_blocks + double_blocks, inode->i_ino); 106 } 107 if (boundary) 108 *boundary = final - 1 - (i_block & (ptrs - 1)); 109 return n; 110 } 111 112 /** 113 * ext4_get_branch - read the chain of indirect blocks leading to data 114 * @inode: inode in question 115 * @depth: depth of the chain (1 - direct pointer, etc.) 116 * @offsets: offsets of pointers in inode/indirect blocks 117 * @chain: place to store the result 118 * @err: here we store the error value 119 * 120 * Function fills the array of triples <key, p, bh> and returns %NULL 121 * if everything went OK or the pointer to the last filled triple 122 * (incomplete one) otherwise. Upon the return chain[i].key contains 123 * the number of (i+1)-th block in the chain (as it is stored in memory, 124 * i.e. little-endian 32-bit), chain[i].p contains the address of that 125 * number (it points into struct inode for i==0 and into the bh->b_data 126 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 127 * block for i>0 and NULL for i==0. In other words, it holds the block 128 * numbers of the chain, addresses they were taken from (and where we can 129 * verify that chain did not change) and buffer_heads hosting these 130 * numbers. 131 * 132 * Function stops when it stumbles upon zero pointer (absent block) 133 * (pointer to last triple returned, *@err == 0) 134 * or when it gets an IO error reading an indirect block 135 * (ditto, *@err == -EIO) 136 * or when it reads all @depth-1 indirect blocks successfully and finds 137 * the whole chain, all way to the data (returns %NULL, *err == 0). 138 * 139 * Need to be called with 140 * down_read(&EXT4_I(inode)->i_data_sem) 141 */ 142 static Indirect *ext4_get_branch(struct inode *inode, int depth, 143 ext4_lblk_t *offsets, 144 Indirect chain[4], int *err) 145 { 146 struct super_block *sb = inode->i_sb; 147 Indirect *p = chain; 148 struct buffer_head *bh; 149 int ret = -EIO; 150 151 *err = 0; 152 /* i_data is not going away, no lock needed */ 153 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 154 if (!p->key) 155 goto no_block; 156 while (--depth) { 157 bh = sb_getblk(sb, le32_to_cpu(p->key)); 158 if (unlikely(!bh)) { 159 ret = -ENOMEM; 160 goto failure; 161 } 162 163 if (!bh_uptodate_or_lock(bh)) { 164 if (bh_submit_read(bh) < 0) { 165 put_bh(bh); 166 goto failure; 167 } 168 /* validate block references */ 169 if (ext4_check_indirect_blockref(inode, bh)) { 170 put_bh(bh); 171 goto failure; 172 } 173 } 174 175 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 176 /* Reader: end */ 177 if (!p->key) 178 goto no_block; 179 } 180 return NULL; 181 182 failure: 183 *err = ret; 184 no_block: 185 return p; 186 } 187 188 /** 189 * ext4_find_near - find a place for allocation with sufficient locality 190 * @inode: owner 191 * @ind: descriptor of indirect block. 192 * 193 * This function returns the preferred place for block allocation. 194 * It is used when heuristic for sequential allocation fails. 195 * Rules are: 196 * + if there is a block to the left of our position - allocate near it. 197 * + if pointer will live in indirect block - allocate near that block. 198 * + if pointer will live in inode - allocate in the same 199 * cylinder group. 200 * 201 * In the latter case we colour the starting block by the callers PID to 202 * prevent it from clashing with concurrent allocations for a different inode 203 * in the same block group. The PID is used here so that functionally related 204 * files will be close-by on-disk. 205 * 206 * Caller must make sure that @ind is valid and will stay that way. 207 */ 208 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 209 { 210 struct ext4_inode_info *ei = EXT4_I(inode); 211 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 212 __le32 *p; 213 214 /* Try to find previous block */ 215 for (p = ind->p - 1; p >= start; p--) { 216 if (*p) 217 return le32_to_cpu(*p); 218 } 219 220 /* No such thing, so let's try location of indirect block */ 221 if (ind->bh) 222 return ind->bh->b_blocknr; 223 224 /* 225 * It is going to be referred to from the inode itself? OK, just put it 226 * into the same cylinder group then. 227 */ 228 return ext4_inode_to_goal_block(inode); 229 } 230 231 /** 232 * ext4_find_goal - find a preferred place for allocation. 233 * @inode: owner 234 * @block: block we want 235 * @partial: pointer to the last triple within a chain 236 * 237 * Normally this function find the preferred place for block allocation, 238 * returns it. 239 * Because this is only used for non-extent files, we limit the block nr 240 * to 32 bits. 241 */ 242 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 243 Indirect *partial) 244 { 245 ext4_fsblk_t goal; 246 247 /* 248 * XXX need to get goal block from mballoc's data structures 249 */ 250 251 goal = ext4_find_near(inode, partial); 252 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS; 253 return goal; 254 } 255 256 /** 257 * ext4_blks_to_allocate - Look up the block map and count the number 258 * of direct blocks need to be allocated for the given branch. 259 * 260 * @branch: chain of indirect blocks 261 * @k: number of blocks need for indirect blocks 262 * @blks: number of data blocks to be mapped. 263 * @blocks_to_boundary: the offset in the indirect block 264 * 265 * return the total number of blocks to be allocate, including the 266 * direct and indirect blocks. 267 */ 268 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks, 269 int blocks_to_boundary) 270 { 271 unsigned int count = 0; 272 273 /* 274 * Simple case, [t,d]Indirect block(s) has not allocated yet 275 * then it's clear blocks on that path have not allocated 276 */ 277 if (k > 0) { 278 /* right now we don't handle cross boundary allocation */ 279 if (blks < blocks_to_boundary + 1) 280 count += blks; 281 else 282 count += blocks_to_boundary + 1; 283 return count; 284 } 285 286 count++; 287 while (count < blks && count <= blocks_to_boundary && 288 le32_to_cpu(*(branch[0].p + count)) == 0) { 289 count++; 290 } 291 return count; 292 } 293 294 /** 295 * ext4_alloc_branch - allocate and set up a chain of blocks. 296 * @handle: handle for this transaction 297 * @inode: owner 298 * @indirect_blks: number of allocated indirect blocks 299 * @blks: number of allocated direct blocks 300 * @goal: preferred place for allocation 301 * @offsets: offsets (in the blocks) to store the pointers to next. 302 * @branch: place to store the chain in. 303 * 304 * This function allocates blocks, zeroes out all but the last one, 305 * links them into chain and (if we are synchronous) writes them to disk. 306 * In other words, it prepares a branch that can be spliced onto the 307 * inode. It stores the information about that chain in the branch[], in 308 * the same format as ext4_get_branch() would do. We are calling it after 309 * we had read the existing part of chain and partial points to the last 310 * triple of that (one with zero ->key). Upon the exit we have the same 311 * picture as after the successful ext4_get_block(), except that in one 312 * place chain is disconnected - *branch->p is still zero (we did not 313 * set the last link), but branch->key contains the number that should 314 * be placed into *branch->p to fill that gap. 315 * 316 * If allocation fails we free all blocks we've allocated (and forget 317 * their buffer_heads) and return the error value the from failed 318 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 319 * as described above and return 0. 320 */ 321 static int ext4_alloc_branch(handle_t *handle, struct inode *inode, 322 ext4_lblk_t iblock, int indirect_blks, 323 int *blks, ext4_fsblk_t goal, 324 ext4_lblk_t *offsets, Indirect *branch) 325 { 326 struct ext4_allocation_request ar; 327 struct buffer_head * bh; 328 ext4_fsblk_t b, new_blocks[4]; 329 __le32 *p; 330 int i, j, err, len = 1; 331 332 /* 333 * Set up for the direct block allocation 334 */ 335 memset(&ar, 0, sizeof(ar)); 336 ar.inode = inode; 337 ar.len = *blks; 338 ar.logical = iblock; 339 if (S_ISREG(inode->i_mode)) 340 ar.flags = EXT4_MB_HINT_DATA; 341 342 for (i = 0; i <= indirect_blks; i++) { 343 if (i == indirect_blks) { 344 ar.goal = goal; 345 new_blocks[i] = ext4_mb_new_blocks(handle, &ar, &err); 346 } else 347 goal = new_blocks[i] = ext4_new_meta_blocks(handle, inode, 348 goal, 0, NULL, &err); 349 if (err) { 350 i--; 351 goto failed; 352 } 353 branch[i].key = cpu_to_le32(new_blocks[i]); 354 if (i == 0) 355 continue; 356 357 bh = branch[i].bh = sb_getblk(inode->i_sb, new_blocks[i-1]); 358 if (unlikely(!bh)) { 359 err = -ENOMEM; 360 goto failed; 361 } 362 lock_buffer(bh); 363 BUFFER_TRACE(bh, "call get_create_access"); 364 err = ext4_journal_get_create_access(handle, bh); 365 if (err) { 366 unlock_buffer(bh); 367 goto failed; 368 } 369 370 memset(bh->b_data, 0, bh->b_size); 371 p = branch[i].p = (__le32 *) bh->b_data + offsets[i]; 372 b = new_blocks[i]; 373 374 if (i == indirect_blks) 375 len = ar.len; 376 for (j = 0; j < len; j++) 377 *p++ = cpu_to_le32(b++); 378 379 BUFFER_TRACE(bh, "marking uptodate"); 380 set_buffer_uptodate(bh); 381 unlock_buffer(bh); 382 383 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 384 err = ext4_handle_dirty_metadata(handle, inode, bh); 385 if (err) 386 goto failed; 387 } 388 *blks = ar.len; 389 return 0; 390 failed: 391 for (; i >= 0; i--) { 392 if (i != indirect_blks && branch[i].bh) 393 ext4_forget(handle, 1, inode, branch[i].bh, 394 branch[i].bh->b_blocknr); 395 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 396 (i == indirect_blks) ? ar.len : 1, 0); 397 } 398 return err; 399 } 400 401 /** 402 * ext4_splice_branch - splice the allocated branch onto inode. 403 * @handle: handle for this transaction 404 * @inode: owner 405 * @block: (logical) number of block we are adding 406 * @chain: chain of indirect blocks (with a missing link - see 407 * ext4_alloc_branch) 408 * @where: location of missing link 409 * @num: number of indirect blocks we are adding 410 * @blks: number of direct blocks we are adding 411 * 412 * This function fills the missing link and does all housekeeping needed in 413 * inode (->i_blocks, etc.). In case of success we end up with the full 414 * chain to new block and return 0. 415 */ 416 static int ext4_splice_branch(handle_t *handle, struct inode *inode, 417 ext4_lblk_t block, Indirect *where, int num, 418 int blks) 419 { 420 int i; 421 int err = 0; 422 ext4_fsblk_t current_block; 423 424 /* 425 * If we're splicing into a [td]indirect block (as opposed to the 426 * inode) then we need to get write access to the [td]indirect block 427 * before the splice. 428 */ 429 if (where->bh) { 430 BUFFER_TRACE(where->bh, "get_write_access"); 431 err = ext4_journal_get_write_access(handle, where->bh); 432 if (err) 433 goto err_out; 434 } 435 /* That's it */ 436 437 *where->p = where->key; 438 439 /* 440 * Update the host buffer_head or inode to point to more just allocated 441 * direct blocks blocks 442 */ 443 if (num == 0 && blks > 1) { 444 current_block = le32_to_cpu(where->key) + 1; 445 for (i = 1; i < blks; i++) 446 *(where->p + i) = cpu_to_le32(current_block++); 447 } 448 449 /* We are done with atomic stuff, now do the rest of housekeeping */ 450 /* had we spliced it onto indirect block? */ 451 if (where->bh) { 452 /* 453 * If we spliced it onto an indirect block, we haven't 454 * altered the inode. Note however that if it is being spliced 455 * onto an indirect block at the very end of the file (the 456 * file is growing) then we *will* alter the inode to reflect 457 * the new i_size. But that is not done here - it is done in 458 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 459 */ 460 jbd_debug(5, "splicing indirect only\n"); 461 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata"); 462 err = ext4_handle_dirty_metadata(handle, inode, where->bh); 463 if (err) 464 goto err_out; 465 } else { 466 /* 467 * OK, we spliced it into the inode itself on a direct block. 468 */ 469 ext4_mark_inode_dirty(handle, inode); 470 jbd_debug(5, "splicing direct\n"); 471 } 472 return err; 473 474 err_out: 475 for (i = 1; i <= num; i++) { 476 /* 477 * branch[i].bh is newly allocated, so there is no 478 * need to revoke the block, which is why we don't 479 * need to set EXT4_FREE_BLOCKS_METADATA. 480 */ 481 ext4_free_blocks(handle, inode, where[i].bh, 0, 1, 482 EXT4_FREE_BLOCKS_FORGET); 483 } 484 ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key), 485 blks, 0); 486 487 return err; 488 } 489 490 /* 491 * The ext4_ind_map_blocks() function handles non-extents inodes 492 * (i.e., using the traditional indirect/double-indirect i_blocks 493 * scheme) for ext4_map_blocks(). 494 * 495 * Allocation strategy is simple: if we have to allocate something, we will 496 * have to go the whole way to leaf. So let's do it before attaching anything 497 * to tree, set linkage between the newborn blocks, write them if sync is 498 * required, recheck the path, free and repeat if check fails, otherwise 499 * set the last missing link (that will protect us from any truncate-generated 500 * removals - all blocks on the path are immune now) and possibly force the 501 * write on the parent block. 502 * That has a nice additional property: no special recovery from the failed 503 * allocations is needed - we simply release blocks and do not touch anything 504 * reachable from inode. 505 * 506 * `handle' can be NULL if create == 0. 507 * 508 * return > 0, # of blocks mapped or allocated. 509 * return = 0, if plain lookup failed. 510 * return < 0, error case. 511 * 512 * The ext4_ind_get_blocks() function should be called with 513 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem 514 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or 515 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system 516 * blocks. 517 */ 518 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode, 519 struct ext4_map_blocks *map, 520 int flags) 521 { 522 int err = -EIO; 523 ext4_lblk_t offsets[4]; 524 Indirect chain[4]; 525 Indirect *partial; 526 ext4_fsblk_t goal; 527 int indirect_blks; 528 int blocks_to_boundary = 0; 529 int depth; 530 int count = 0; 531 ext4_fsblk_t first_block = 0; 532 533 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 534 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))); 535 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0); 536 depth = ext4_block_to_path(inode, map->m_lblk, offsets, 537 &blocks_to_boundary); 538 539 if (depth == 0) 540 goto out; 541 542 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 543 544 /* Simplest case - block found, no allocation needed */ 545 if (!partial) { 546 first_block = le32_to_cpu(chain[depth - 1].key); 547 count++; 548 /*map more blocks*/ 549 while (count < map->m_len && count <= blocks_to_boundary) { 550 ext4_fsblk_t blk; 551 552 blk = le32_to_cpu(*(chain[depth-1].p + count)); 553 554 if (blk == first_block + count) 555 count++; 556 else 557 break; 558 } 559 goto got_it; 560 } 561 562 /* Next simple case - plain lookup or failed read of indirect block */ 563 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO) 564 goto cleanup; 565 566 /* 567 * Okay, we need to do block allocation. 568 */ 569 if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 570 EXT4_FEATURE_RO_COMPAT_BIGALLOC)) { 571 EXT4_ERROR_INODE(inode, "Can't allocate blocks for " 572 "non-extent mapped inodes with bigalloc"); 573 return -ENOSPC; 574 } 575 576 goal = ext4_find_goal(inode, map->m_lblk, partial); 577 578 /* the number of blocks need to allocate for [d,t]indirect blocks */ 579 indirect_blks = (chain + depth) - partial - 1; 580 581 /* 582 * Next look up the indirect map to count the totoal number of 583 * direct blocks to allocate for this branch. 584 */ 585 count = ext4_blks_to_allocate(partial, indirect_blks, 586 map->m_len, blocks_to_boundary); 587 /* 588 * Block out ext4_truncate while we alter the tree 589 */ 590 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks, 591 &count, goal, 592 offsets + (partial - chain), partial); 593 594 /* 595 * The ext4_splice_branch call will free and forget any buffers 596 * on the new chain if there is a failure, but that risks using 597 * up transaction credits, especially for bitmaps where the 598 * credits cannot be returned. Can we handle this somehow? We 599 * may need to return -EAGAIN upwards in the worst case. --sct 600 */ 601 if (!err) 602 err = ext4_splice_branch(handle, inode, map->m_lblk, 603 partial, indirect_blks, count); 604 if (err) 605 goto cleanup; 606 607 map->m_flags |= EXT4_MAP_NEW; 608 609 ext4_update_inode_fsync_trans(handle, inode, 1); 610 got_it: 611 map->m_flags |= EXT4_MAP_MAPPED; 612 map->m_pblk = le32_to_cpu(chain[depth-1].key); 613 map->m_len = count; 614 if (count > blocks_to_boundary) 615 map->m_flags |= EXT4_MAP_BOUNDARY; 616 err = count; 617 /* Clean up and exit */ 618 partial = chain + depth - 1; /* the whole chain */ 619 cleanup: 620 while (partial > chain) { 621 BUFFER_TRACE(partial->bh, "call brelse"); 622 brelse(partial->bh); 623 partial--; 624 } 625 out: 626 trace_ext4_ind_map_blocks_exit(inode, map, err); 627 return err; 628 } 629 630 /* 631 * O_DIRECT for ext3 (or indirect map) based files 632 * 633 * If the O_DIRECT write will extend the file then add this inode to the 634 * orphan list. So recovery will truncate it back to the original size 635 * if the machine crashes during the write. 636 * 637 * If the O_DIRECT write is intantiating holes inside i_size and the machine 638 * crashes then stale disk data _may_ be exposed inside the file. But current 639 * VFS code falls back into buffered path in that case so we are safe. 640 */ 641 ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb, 642 const struct iovec *iov, loff_t offset, 643 unsigned long nr_segs) 644 { 645 struct file *file = iocb->ki_filp; 646 struct inode *inode = file->f_mapping->host; 647 struct ext4_inode_info *ei = EXT4_I(inode); 648 handle_t *handle; 649 ssize_t ret; 650 int orphan = 0; 651 size_t count = iov_length(iov, nr_segs); 652 int retries = 0; 653 654 if (rw == WRITE) { 655 loff_t final_size = offset + count; 656 657 if (final_size > inode->i_size) { 658 /* Credits for sb + inode write */ 659 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 660 if (IS_ERR(handle)) { 661 ret = PTR_ERR(handle); 662 goto out; 663 } 664 ret = ext4_orphan_add(handle, inode); 665 if (ret) { 666 ext4_journal_stop(handle); 667 goto out; 668 } 669 orphan = 1; 670 ei->i_disksize = inode->i_size; 671 ext4_journal_stop(handle); 672 } 673 } 674 675 retry: 676 if (rw == READ && ext4_should_dioread_nolock(inode)) { 677 if (unlikely(atomic_read(&EXT4_I(inode)->i_unwritten))) { 678 mutex_lock(&inode->i_mutex); 679 ext4_flush_unwritten_io(inode); 680 mutex_unlock(&inode->i_mutex); 681 } 682 /* 683 * Nolock dioread optimization may be dynamically disabled 684 * via ext4_inode_block_unlocked_dio(). Check inode's state 685 * while holding extra i_dio_count ref. 686 */ 687 atomic_inc(&inode->i_dio_count); 688 smp_mb(); 689 if (unlikely(ext4_test_inode_state(inode, 690 EXT4_STATE_DIOREAD_LOCK))) { 691 inode_dio_done(inode); 692 goto locked; 693 } 694 ret = __blockdev_direct_IO(rw, iocb, inode, 695 inode->i_sb->s_bdev, iov, 696 offset, nr_segs, 697 ext4_get_block, NULL, NULL, 0); 698 inode_dio_done(inode); 699 } else { 700 locked: 701 ret = blockdev_direct_IO(rw, iocb, inode, iov, 702 offset, nr_segs, ext4_get_block); 703 704 if (unlikely((rw & WRITE) && ret < 0)) { 705 loff_t isize = i_size_read(inode); 706 loff_t end = offset + iov_length(iov, nr_segs); 707 708 if (end > isize) 709 ext4_truncate_failed_write(inode); 710 } 711 } 712 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 713 goto retry; 714 715 if (orphan) { 716 int err; 717 718 /* Credits for sb + inode write */ 719 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 720 if (IS_ERR(handle)) { 721 /* This is really bad luck. We've written the data 722 * but cannot extend i_size. Bail out and pretend 723 * the write failed... */ 724 ret = PTR_ERR(handle); 725 if (inode->i_nlink) 726 ext4_orphan_del(NULL, inode); 727 728 goto out; 729 } 730 if (inode->i_nlink) 731 ext4_orphan_del(handle, inode); 732 if (ret > 0) { 733 loff_t end = offset + ret; 734 if (end > inode->i_size) { 735 ei->i_disksize = end; 736 i_size_write(inode, end); 737 /* 738 * We're going to return a positive `ret' 739 * here due to non-zero-length I/O, so there's 740 * no way of reporting error returns from 741 * ext4_mark_inode_dirty() to userspace. So 742 * ignore it. 743 */ 744 ext4_mark_inode_dirty(handle, inode); 745 } 746 } 747 err = ext4_journal_stop(handle); 748 if (ret == 0) 749 ret = err; 750 } 751 out: 752 return ret; 753 } 754 755 /* 756 * Calculate the number of metadata blocks need to reserve 757 * to allocate a new block at @lblocks for non extent file based file 758 */ 759 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock) 760 { 761 struct ext4_inode_info *ei = EXT4_I(inode); 762 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1); 763 int blk_bits; 764 765 if (lblock < EXT4_NDIR_BLOCKS) 766 return 0; 767 768 lblock -= EXT4_NDIR_BLOCKS; 769 770 if (ei->i_da_metadata_calc_len && 771 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) { 772 ei->i_da_metadata_calc_len++; 773 return 0; 774 } 775 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask; 776 ei->i_da_metadata_calc_len = 1; 777 blk_bits = order_base_2(lblock); 778 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1; 779 } 780 781 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks, int chunk) 782 { 783 int indirects; 784 785 /* if nrblocks are contiguous */ 786 if (chunk) { 787 /* 788 * With N contiguous data blocks, we need at most 789 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks, 790 * 2 dindirect blocks, and 1 tindirect block 791 */ 792 return DIV_ROUND_UP(nrblocks, 793 EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4; 794 } 795 /* 796 * if nrblocks are not contiguous, worse case, each block touch 797 * a indirect block, and each indirect block touch a double indirect 798 * block, plus a triple indirect block 799 */ 800 indirects = nrblocks * 2 + 1; 801 return indirects; 802 } 803 804 /* 805 * Truncate transactions can be complex and absolutely huge. So we need to 806 * be able to restart the transaction at a conventient checkpoint to make 807 * sure we don't overflow the journal. 808 * 809 * Try to extend this transaction for the purposes of truncation. If 810 * extend fails, we need to propagate the failure up and restart the 811 * transaction in the top-level truncate loop. --sct 812 * 813 * Returns 0 if we managed to create more room. If we can't create more 814 * room, and the transaction must be restarted we return 1. 815 */ 816 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 817 { 818 if (!ext4_handle_valid(handle)) 819 return 0; 820 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1)) 821 return 0; 822 if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode))) 823 return 0; 824 return 1; 825 } 826 827 /* 828 * Probably it should be a library function... search for first non-zero word 829 * or memcmp with zero_page, whatever is better for particular architecture. 830 * Linus? 831 */ 832 static inline int all_zeroes(__le32 *p, __le32 *q) 833 { 834 while (p < q) 835 if (*p++) 836 return 0; 837 return 1; 838 } 839 840 /** 841 * ext4_find_shared - find the indirect blocks for partial truncation. 842 * @inode: inode in question 843 * @depth: depth of the affected branch 844 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 845 * @chain: place to store the pointers to partial indirect blocks 846 * @top: place to the (detached) top of branch 847 * 848 * This is a helper function used by ext4_truncate(). 849 * 850 * When we do truncate() we may have to clean the ends of several 851 * indirect blocks but leave the blocks themselves alive. Block is 852 * partially truncated if some data below the new i_size is referred 853 * from it (and it is on the path to the first completely truncated 854 * data block, indeed). We have to free the top of that path along 855 * with everything to the right of the path. Since no allocation 856 * past the truncation point is possible until ext4_truncate() 857 * finishes, we may safely do the latter, but top of branch may 858 * require special attention - pageout below the truncation point 859 * might try to populate it. 860 * 861 * We atomically detach the top of branch from the tree, store the 862 * block number of its root in *@top, pointers to buffer_heads of 863 * partially truncated blocks - in @chain[].bh and pointers to 864 * their last elements that should not be removed - in 865 * @chain[].p. Return value is the pointer to last filled element 866 * of @chain. 867 * 868 * The work left to caller to do the actual freeing of subtrees: 869 * a) free the subtree starting from *@top 870 * b) free the subtrees whose roots are stored in 871 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 872 * c) free the subtrees growing from the inode past the @chain[0]. 873 * (no partially truncated stuff there). */ 874 875 static Indirect *ext4_find_shared(struct inode *inode, int depth, 876 ext4_lblk_t offsets[4], Indirect chain[4], 877 __le32 *top) 878 { 879 Indirect *partial, *p; 880 int k, err; 881 882 *top = 0; 883 /* Make k index the deepest non-null offset + 1 */ 884 for (k = depth; k > 1 && !offsets[k-1]; k--) 885 ; 886 partial = ext4_get_branch(inode, k, offsets, chain, &err); 887 /* Writer: pointers */ 888 if (!partial) 889 partial = chain + k-1; 890 /* 891 * If the branch acquired continuation since we've looked at it - 892 * fine, it should all survive and (new) top doesn't belong to us. 893 */ 894 if (!partial->key && *partial->p) 895 /* Writer: end */ 896 goto no_top; 897 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 898 ; 899 /* 900 * OK, we've found the last block that must survive. The rest of our 901 * branch should be detached before unlocking. However, if that rest 902 * of branch is all ours and does not grow immediately from the inode 903 * it's easier to cheat and just decrement partial->p. 904 */ 905 if (p == chain + k - 1 && p > chain) { 906 p->p--; 907 } else { 908 *top = *p->p; 909 /* Nope, don't do this in ext4. Must leave the tree intact */ 910 #if 0 911 *p->p = 0; 912 #endif 913 } 914 /* Writer: end */ 915 916 while (partial > p) { 917 brelse(partial->bh); 918 partial--; 919 } 920 no_top: 921 return partial; 922 } 923 924 /* 925 * Zero a number of block pointers in either an inode or an indirect block. 926 * If we restart the transaction we must again get write access to the 927 * indirect block for further modification. 928 * 929 * We release `count' blocks on disk, but (last - first) may be greater 930 * than `count' because there can be holes in there. 931 * 932 * Return 0 on success, 1 on invalid block range 933 * and < 0 on fatal error. 934 */ 935 static int ext4_clear_blocks(handle_t *handle, struct inode *inode, 936 struct buffer_head *bh, 937 ext4_fsblk_t block_to_free, 938 unsigned long count, __le32 *first, 939 __le32 *last) 940 { 941 __le32 *p; 942 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED; 943 int err; 944 945 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 946 flags |= EXT4_FREE_BLOCKS_METADATA; 947 948 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free, 949 count)) { 950 EXT4_ERROR_INODE(inode, "attempt to clear invalid " 951 "blocks %llu len %lu", 952 (unsigned long long) block_to_free, count); 953 return 1; 954 } 955 956 if (try_to_extend_transaction(handle, inode)) { 957 if (bh) { 958 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 959 err = ext4_handle_dirty_metadata(handle, inode, bh); 960 if (unlikely(err)) 961 goto out_err; 962 } 963 err = ext4_mark_inode_dirty(handle, inode); 964 if (unlikely(err)) 965 goto out_err; 966 err = ext4_truncate_restart_trans(handle, inode, 967 ext4_blocks_for_truncate(inode)); 968 if (unlikely(err)) 969 goto out_err; 970 if (bh) { 971 BUFFER_TRACE(bh, "retaking write access"); 972 err = ext4_journal_get_write_access(handle, bh); 973 if (unlikely(err)) 974 goto out_err; 975 } 976 } 977 978 for (p = first; p < last; p++) 979 *p = 0; 980 981 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags); 982 return 0; 983 out_err: 984 ext4_std_error(inode->i_sb, err); 985 return err; 986 } 987 988 /** 989 * ext4_free_data - free a list of data blocks 990 * @handle: handle for this transaction 991 * @inode: inode we are dealing with 992 * @this_bh: indirect buffer_head which contains *@first and *@last 993 * @first: array of block numbers 994 * @last: points immediately past the end of array 995 * 996 * We are freeing all blocks referred from that array (numbers are stored as 997 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 998 * 999 * We accumulate contiguous runs of blocks to free. Conveniently, if these 1000 * blocks are contiguous then releasing them at one time will only affect one 1001 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 1002 * actually use a lot of journal space. 1003 * 1004 * @this_bh will be %NULL if @first and @last point into the inode's direct 1005 * block pointers. 1006 */ 1007 static void ext4_free_data(handle_t *handle, struct inode *inode, 1008 struct buffer_head *this_bh, 1009 __le32 *first, __le32 *last) 1010 { 1011 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 1012 unsigned long count = 0; /* Number of blocks in the run */ 1013 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 1014 corresponding to 1015 block_to_free */ 1016 ext4_fsblk_t nr; /* Current block # */ 1017 __le32 *p; /* Pointer into inode/ind 1018 for current block */ 1019 int err = 0; 1020 1021 if (this_bh) { /* For indirect block */ 1022 BUFFER_TRACE(this_bh, "get_write_access"); 1023 err = ext4_journal_get_write_access(handle, this_bh); 1024 /* Important: if we can't update the indirect pointers 1025 * to the blocks, we can't free them. */ 1026 if (err) 1027 return; 1028 } 1029 1030 for (p = first; p < last; p++) { 1031 nr = le32_to_cpu(*p); 1032 if (nr) { 1033 /* accumulate blocks to free if they're contiguous */ 1034 if (count == 0) { 1035 block_to_free = nr; 1036 block_to_free_p = p; 1037 count = 1; 1038 } else if (nr == block_to_free + count) { 1039 count++; 1040 } else { 1041 err = ext4_clear_blocks(handle, inode, this_bh, 1042 block_to_free, count, 1043 block_to_free_p, p); 1044 if (err) 1045 break; 1046 block_to_free = nr; 1047 block_to_free_p = p; 1048 count = 1; 1049 } 1050 } 1051 } 1052 1053 if (!err && count > 0) 1054 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free, 1055 count, block_to_free_p, p); 1056 if (err < 0) 1057 /* fatal error */ 1058 return; 1059 1060 if (this_bh) { 1061 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata"); 1062 1063 /* 1064 * The buffer head should have an attached journal head at this 1065 * point. However, if the data is corrupted and an indirect 1066 * block pointed to itself, it would have been detached when 1067 * the block was cleared. Check for this instead of OOPSing. 1068 */ 1069 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh)) 1070 ext4_handle_dirty_metadata(handle, inode, this_bh); 1071 else 1072 EXT4_ERROR_INODE(inode, 1073 "circular indirect block detected at " 1074 "block %llu", 1075 (unsigned long long) this_bh->b_blocknr); 1076 } 1077 } 1078 1079 /** 1080 * ext4_free_branches - free an array of branches 1081 * @handle: JBD handle for this transaction 1082 * @inode: inode we are dealing with 1083 * @parent_bh: the buffer_head which contains *@first and *@last 1084 * @first: array of block numbers 1085 * @last: pointer immediately past the end of array 1086 * @depth: depth of the branches to free 1087 * 1088 * We are freeing all blocks referred from these branches (numbers are 1089 * stored as little-endian 32-bit) and updating @inode->i_blocks 1090 * appropriately. 1091 */ 1092 static void ext4_free_branches(handle_t *handle, struct inode *inode, 1093 struct buffer_head *parent_bh, 1094 __le32 *first, __le32 *last, int depth) 1095 { 1096 ext4_fsblk_t nr; 1097 __le32 *p; 1098 1099 if (ext4_handle_is_aborted(handle)) 1100 return; 1101 1102 if (depth--) { 1103 struct buffer_head *bh; 1104 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1105 p = last; 1106 while (--p >= first) { 1107 nr = le32_to_cpu(*p); 1108 if (!nr) 1109 continue; /* A hole */ 1110 1111 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), 1112 nr, 1)) { 1113 EXT4_ERROR_INODE(inode, 1114 "invalid indirect mapped " 1115 "block %lu (level %d)", 1116 (unsigned long) nr, depth); 1117 break; 1118 } 1119 1120 /* Go read the buffer for the next level down */ 1121 bh = sb_bread(inode->i_sb, nr); 1122 1123 /* 1124 * A read failure? Report error and clear slot 1125 * (should be rare). 1126 */ 1127 if (!bh) { 1128 EXT4_ERROR_INODE_BLOCK(inode, nr, 1129 "Read failure"); 1130 continue; 1131 } 1132 1133 /* This zaps the entire block. Bottom up. */ 1134 BUFFER_TRACE(bh, "free child branches"); 1135 ext4_free_branches(handle, inode, bh, 1136 (__le32 *) bh->b_data, 1137 (__le32 *) bh->b_data + addr_per_block, 1138 depth); 1139 brelse(bh); 1140 1141 /* 1142 * Everything below this this pointer has been 1143 * released. Now let this top-of-subtree go. 1144 * 1145 * We want the freeing of this indirect block to be 1146 * atomic in the journal with the updating of the 1147 * bitmap block which owns it. So make some room in 1148 * the journal. 1149 * 1150 * We zero the parent pointer *after* freeing its 1151 * pointee in the bitmaps, so if extend_transaction() 1152 * for some reason fails to put the bitmap changes and 1153 * the release into the same transaction, recovery 1154 * will merely complain about releasing a free block, 1155 * rather than leaking blocks. 1156 */ 1157 if (ext4_handle_is_aborted(handle)) 1158 return; 1159 if (try_to_extend_transaction(handle, inode)) { 1160 ext4_mark_inode_dirty(handle, inode); 1161 ext4_truncate_restart_trans(handle, inode, 1162 ext4_blocks_for_truncate(inode)); 1163 } 1164 1165 /* 1166 * The forget flag here is critical because if 1167 * we are journaling (and not doing data 1168 * journaling), we have to make sure a revoke 1169 * record is written to prevent the journal 1170 * replay from overwriting the (former) 1171 * indirect block if it gets reallocated as a 1172 * data block. This must happen in the same 1173 * transaction where the data blocks are 1174 * actually freed. 1175 */ 1176 ext4_free_blocks(handle, inode, NULL, nr, 1, 1177 EXT4_FREE_BLOCKS_METADATA| 1178 EXT4_FREE_BLOCKS_FORGET); 1179 1180 if (parent_bh) { 1181 /* 1182 * The block which we have just freed is 1183 * pointed to by an indirect block: journal it 1184 */ 1185 BUFFER_TRACE(parent_bh, "get_write_access"); 1186 if (!ext4_journal_get_write_access(handle, 1187 parent_bh)){ 1188 *p = 0; 1189 BUFFER_TRACE(parent_bh, 1190 "call ext4_handle_dirty_metadata"); 1191 ext4_handle_dirty_metadata(handle, 1192 inode, 1193 parent_bh); 1194 } 1195 } 1196 } 1197 } else { 1198 /* We have reached the bottom of the tree. */ 1199 BUFFER_TRACE(parent_bh, "free data blocks"); 1200 ext4_free_data(handle, inode, parent_bh, first, last); 1201 } 1202 } 1203 1204 void ext4_ind_truncate(handle_t *handle, struct inode *inode) 1205 { 1206 struct ext4_inode_info *ei = EXT4_I(inode); 1207 __le32 *i_data = ei->i_data; 1208 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1209 ext4_lblk_t offsets[4]; 1210 Indirect chain[4]; 1211 Indirect *partial; 1212 __le32 nr = 0; 1213 int n = 0; 1214 ext4_lblk_t last_block, max_block; 1215 unsigned blocksize = inode->i_sb->s_blocksize; 1216 1217 last_block = (inode->i_size + blocksize-1) 1218 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1219 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1) 1220 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1221 1222 if (last_block != max_block) { 1223 n = ext4_block_to_path(inode, last_block, offsets, NULL); 1224 if (n == 0) 1225 return; 1226 } 1227 1228 ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block); 1229 1230 /* 1231 * The orphan list entry will now protect us from any crash which 1232 * occurs before the truncate completes, so it is now safe to propagate 1233 * the new, shorter inode size (held for now in i_size) into the 1234 * on-disk inode. We do this via i_disksize, which is the value which 1235 * ext4 *really* writes onto the disk inode. 1236 */ 1237 ei->i_disksize = inode->i_size; 1238 1239 if (last_block == max_block) { 1240 /* 1241 * It is unnecessary to free any data blocks if last_block is 1242 * equal to the indirect block limit. 1243 */ 1244 return; 1245 } else if (n == 1) { /* direct blocks */ 1246 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 1247 i_data + EXT4_NDIR_BLOCKS); 1248 goto do_indirects; 1249 } 1250 1251 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 1252 /* Kill the top of shared branch (not detached) */ 1253 if (nr) { 1254 if (partial == chain) { 1255 /* Shared branch grows from the inode */ 1256 ext4_free_branches(handle, inode, NULL, 1257 &nr, &nr+1, (chain+n-1) - partial); 1258 *partial->p = 0; 1259 /* 1260 * We mark the inode dirty prior to restart, 1261 * and prior to stop. No need for it here. 1262 */ 1263 } else { 1264 /* Shared branch grows from an indirect block */ 1265 BUFFER_TRACE(partial->bh, "get_write_access"); 1266 ext4_free_branches(handle, inode, partial->bh, 1267 partial->p, 1268 partial->p+1, (chain+n-1) - partial); 1269 } 1270 } 1271 /* Clear the ends of indirect blocks on the shared branch */ 1272 while (partial > chain) { 1273 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 1274 (__le32*)partial->bh->b_data+addr_per_block, 1275 (chain+n-1) - partial); 1276 BUFFER_TRACE(partial->bh, "call brelse"); 1277 brelse(partial->bh); 1278 partial--; 1279 } 1280 do_indirects: 1281 /* Kill the remaining (whole) subtrees */ 1282 switch (offsets[0]) { 1283 default: 1284 nr = i_data[EXT4_IND_BLOCK]; 1285 if (nr) { 1286 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 1287 i_data[EXT4_IND_BLOCK] = 0; 1288 } 1289 case EXT4_IND_BLOCK: 1290 nr = i_data[EXT4_DIND_BLOCK]; 1291 if (nr) { 1292 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 1293 i_data[EXT4_DIND_BLOCK] = 0; 1294 } 1295 case EXT4_DIND_BLOCK: 1296 nr = i_data[EXT4_TIND_BLOCK]; 1297 if (nr) { 1298 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 1299 i_data[EXT4_TIND_BLOCK] = 0; 1300 } 1301 case EXT4_TIND_BLOCK: 1302 ; 1303 } 1304 } 1305 1306 static int free_hole_blocks(handle_t *handle, struct inode *inode, 1307 struct buffer_head *parent_bh, __le32 *i_data, 1308 int level, ext4_lblk_t first, 1309 ext4_lblk_t count, int max) 1310 { 1311 struct buffer_head *bh = NULL; 1312 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1313 int ret = 0; 1314 int i, inc; 1315 ext4_lblk_t offset; 1316 __le32 blk; 1317 1318 inc = 1 << ((EXT4_BLOCK_SIZE_BITS(inode->i_sb) - 2) * level); 1319 for (i = 0, offset = 0; i < max; i++, i_data++, offset += inc) { 1320 if (offset >= count + first) 1321 break; 1322 if (*i_data == 0 || (offset + inc) <= first) 1323 continue; 1324 blk = *i_data; 1325 if (level > 0) { 1326 ext4_lblk_t first2; 1327 bh = sb_bread(inode->i_sb, le32_to_cpu(blk)); 1328 if (!bh) { 1329 EXT4_ERROR_INODE_BLOCK(inode, le32_to_cpu(blk), 1330 "Read failure"); 1331 return -EIO; 1332 } 1333 first2 = (first > offset) ? first - offset : 0; 1334 ret = free_hole_blocks(handle, inode, bh, 1335 (__le32 *)bh->b_data, level - 1, 1336 first2, count - offset, 1337 inode->i_sb->s_blocksize >> 2); 1338 if (ret) { 1339 brelse(bh); 1340 goto err; 1341 } 1342 } 1343 if (level == 0 || 1344 (bh && all_zeroes((__le32 *)bh->b_data, 1345 (__le32 *)bh->b_data + addr_per_block))) { 1346 ext4_free_data(handle, inode, parent_bh, &blk, &blk+1); 1347 *i_data = 0; 1348 } 1349 brelse(bh); 1350 bh = NULL; 1351 } 1352 1353 err: 1354 return ret; 1355 } 1356 1357 int ext4_free_hole_blocks(handle_t *handle, struct inode *inode, 1358 ext4_lblk_t first, ext4_lblk_t stop) 1359 { 1360 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1361 int level, ret = 0; 1362 int num = EXT4_NDIR_BLOCKS; 1363 ext4_lblk_t count, max = EXT4_NDIR_BLOCKS; 1364 __le32 *i_data = EXT4_I(inode)->i_data; 1365 1366 count = stop - first; 1367 for (level = 0; level < 4; level++, max *= addr_per_block) { 1368 if (first < max) { 1369 ret = free_hole_blocks(handle, inode, NULL, i_data, 1370 level, first, count, num); 1371 if (ret) 1372 goto err; 1373 if (count > max - first) 1374 count -= max - first; 1375 else 1376 break; 1377 first = 0; 1378 } else { 1379 first -= max; 1380 } 1381 i_data += num; 1382 if (level == 0) { 1383 num = 1; 1384 max = 1; 1385 } 1386 } 1387 1388 err: 1389 return ret; 1390 } 1391 1392