1 /* 2 * linux/fs/ext4/indirect.c 3 * 4 * from 5 * 6 * linux/fs/ext4/inode.c 7 * 8 * Copyright (C) 1992, 1993, 1994, 1995 9 * Remy Card (card@masi.ibp.fr) 10 * Laboratoire MASI - Institut Blaise Pascal 11 * Universite Pierre et Marie Curie (Paris VI) 12 * 13 * from 14 * 15 * linux/fs/minix/inode.c 16 * 17 * Copyright (C) 1991, 1992 Linus Torvalds 18 * 19 * Goal-directed block allocation by Stephen Tweedie 20 * (sct@redhat.com), 1993, 1998 21 */ 22 23 #include "ext4_jbd2.h" 24 #include "truncate.h" 25 #include <linux/dax.h> 26 #include <linux/uio.h> 27 28 #include <trace/events/ext4.h> 29 30 typedef struct { 31 __le32 *p; 32 __le32 key; 33 struct buffer_head *bh; 34 } Indirect; 35 36 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 37 { 38 p->key = *(p->p = v); 39 p->bh = bh; 40 } 41 42 /** 43 * ext4_block_to_path - parse the block number into array of offsets 44 * @inode: inode in question (we are only interested in its superblock) 45 * @i_block: block number to be parsed 46 * @offsets: array to store the offsets in 47 * @boundary: set this non-zero if the referred-to block is likely to be 48 * followed (on disk) by an indirect block. 49 * 50 * To store the locations of file's data ext4 uses a data structure common 51 * for UNIX filesystems - tree of pointers anchored in the inode, with 52 * data blocks at leaves and indirect blocks in intermediate nodes. 53 * This function translates the block number into path in that tree - 54 * return value is the path length and @offsets[n] is the offset of 55 * pointer to (n+1)th node in the nth one. If @block is out of range 56 * (negative or too large) warning is printed and zero returned. 57 * 58 * Note: function doesn't find node addresses, so no IO is needed. All 59 * we need to know is the capacity of indirect blocks (taken from the 60 * inode->i_sb). 61 */ 62 63 /* 64 * Portability note: the last comparison (check that we fit into triple 65 * indirect block) is spelled differently, because otherwise on an 66 * architecture with 32-bit longs and 8Kb pages we might get into trouble 67 * if our filesystem had 8Kb blocks. We might use long long, but that would 68 * kill us on x86. Oh, well, at least the sign propagation does not matter - 69 * i_block would have to be negative in the very beginning, so we would not 70 * get there at all. 71 */ 72 73 static int ext4_block_to_path(struct inode *inode, 74 ext4_lblk_t i_block, 75 ext4_lblk_t offsets[4], int *boundary) 76 { 77 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 78 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 79 const long direct_blocks = EXT4_NDIR_BLOCKS, 80 indirect_blocks = ptrs, 81 double_blocks = (1 << (ptrs_bits * 2)); 82 int n = 0; 83 int final = 0; 84 85 if (i_block < direct_blocks) { 86 offsets[n++] = i_block; 87 final = direct_blocks; 88 } else if ((i_block -= direct_blocks) < indirect_blocks) { 89 offsets[n++] = EXT4_IND_BLOCK; 90 offsets[n++] = i_block; 91 final = ptrs; 92 } else if ((i_block -= indirect_blocks) < double_blocks) { 93 offsets[n++] = EXT4_DIND_BLOCK; 94 offsets[n++] = i_block >> ptrs_bits; 95 offsets[n++] = i_block & (ptrs - 1); 96 final = ptrs; 97 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 98 offsets[n++] = EXT4_TIND_BLOCK; 99 offsets[n++] = i_block >> (ptrs_bits * 2); 100 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 101 offsets[n++] = i_block & (ptrs - 1); 102 final = ptrs; 103 } else { 104 ext4_warning(inode->i_sb, "block %lu > max in inode %lu", 105 i_block + direct_blocks + 106 indirect_blocks + double_blocks, inode->i_ino); 107 } 108 if (boundary) 109 *boundary = final - 1 - (i_block & (ptrs - 1)); 110 return n; 111 } 112 113 /** 114 * ext4_get_branch - read the chain of indirect blocks leading to data 115 * @inode: inode in question 116 * @depth: depth of the chain (1 - direct pointer, etc.) 117 * @offsets: offsets of pointers in inode/indirect blocks 118 * @chain: place to store the result 119 * @err: here we store the error value 120 * 121 * Function fills the array of triples <key, p, bh> and returns %NULL 122 * if everything went OK or the pointer to the last filled triple 123 * (incomplete one) otherwise. Upon the return chain[i].key contains 124 * the number of (i+1)-th block in the chain (as it is stored in memory, 125 * i.e. little-endian 32-bit), chain[i].p contains the address of that 126 * number (it points into struct inode for i==0 and into the bh->b_data 127 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 128 * block for i>0 and NULL for i==0. In other words, it holds the block 129 * numbers of the chain, addresses they were taken from (and where we can 130 * verify that chain did not change) and buffer_heads hosting these 131 * numbers. 132 * 133 * Function stops when it stumbles upon zero pointer (absent block) 134 * (pointer to last triple returned, *@err == 0) 135 * or when it gets an IO error reading an indirect block 136 * (ditto, *@err == -EIO) 137 * or when it reads all @depth-1 indirect blocks successfully and finds 138 * the whole chain, all way to the data (returns %NULL, *err == 0). 139 * 140 * Need to be called with 141 * down_read(&EXT4_I(inode)->i_data_sem) 142 */ 143 static Indirect *ext4_get_branch(struct inode *inode, int depth, 144 ext4_lblk_t *offsets, 145 Indirect chain[4], int *err) 146 { 147 struct super_block *sb = inode->i_sb; 148 Indirect *p = chain; 149 struct buffer_head *bh; 150 int ret = -EIO; 151 152 *err = 0; 153 /* i_data is not going away, no lock needed */ 154 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 155 if (!p->key) 156 goto no_block; 157 while (--depth) { 158 bh = sb_getblk(sb, le32_to_cpu(p->key)); 159 if (unlikely(!bh)) { 160 ret = -ENOMEM; 161 goto failure; 162 } 163 164 if (!bh_uptodate_or_lock(bh)) { 165 if (bh_submit_read(bh) < 0) { 166 put_bh(bh); 167 goto failure; 168 } 169 /* validate block references */ 170 if (ext4_check_indirect_blockref(inode, bh)) { 171 put_bh(bh); 172 goto failure; 173 } 174 } 175 176 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 177 /* Reader: end */ 178 if (!p->key) 179 goto no_block; 180 } 181 return NULL; 182 183 failure: 184 *err = ret; 185 no_block: 186 return p; 187 } 188 189 /** 190 * ext4_find_near - find a place for allocation with sufficient locality 191 * @inode: owner 192 * @ind: descriptor of indirect block. 193 * 194 * This function returns the preferred place for block allocation. 195 * It is used when heuristic for sequential allocation fails. 196 * Rules are: 197 * + if there is a block to the left of our position - allocate near it. 198 * + if pointer will live in indirect block - allocate near that block. 199 * + if pointer will live in inode - allocate in the same 200 * cylinder group. 201 * 202 * In the latter case we colour the starting block by the callers PID to 203 * prevent it from clashing with concurrent allocations for a different inode 204 * in the same block group. The PID is used here so that functionally related 205 * files will be close-by on-disk. 206 * 207 * Caller must make sure that @ind is valid and will stay that way. 208 */ 209 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 210 { 211 struct ext4_inode_info *ei = EXT4_I(inode); 212 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 213 __le32 *p; 214 215 /* Try to find previous block */ 216 for (p = ind->p - 1; p >= start; p--) { 217 if (*p) 218 return le32_to_cpu(*p); 219 } 220 221 /* No such thing, so let's try location of indirect block */ 222 if (ind->bh) 223 return ind->bh->b_blocknr; 224 225 /* 226 * It is going to be referred to from the inode itself? OK, just put it 227 * into the same cylinder group then. 228 */ 229 return ext4_inode_to_goal_block(inode); 230 } 231 232 /** 233 * ext4_find_goal - find a preferred place for allocation. 234 * @inode: owner 235 * @block: block we want 236 * @partial: pointer to the last triple within a chain 237 * 238 * Normally this function find the preferred place for block allocation, 239 * returns it. 240 * Because this is only used for non-extent files, we limit the block nr 241 * to 32 bits. 242 */ 243 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 244 Indirect *partial) 245 { 246 ext4_fsblk_t goal; 247 248 /* 249 * XXX need to get goal block from mballoc's data structures 250 */ 251 252 goal = ext4_find_near(inode, partial); 253 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS; 254 return goal; 255 } 256 257 /** 258 * ext4_blks_to_allocate - Look up the block map and count the number 259 * of direct blocks need to be allocated for the given branch. 260 * 261 * @branch: chain of indirect blocks 262 * @k: number of blocks need for indirect blocks 263 * @blks: number of data blocks to be mapped. 264 * @blocks_to_boundary: the offset in the indirect block 265 * 266 * return the total number of blocks to be allocate, including the 267 * direct and indirect blocks. 268 */ 269 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks, 270 int blocks_to_boundary) 271 { 272 unsigned int count = 0; 273 274 /* 275 * Simple case, [t,d]Indirect block(s) has not allocated yet 276 * then it's clear blocks on that path have not allocated 277 */ 278 if (k > 0) { 279 /* right now we don't handle cross boundary allocation */ 280 if (blks < blocks_to_boundary + 1) 281 count += blks; 282 else 283 count += blocks_to_boundary + 1; 284 return count; 285 } 286 287 count++; 288 while (count < blks && count <= blocks_to_boundary && 289 le32_to_cpu(*(branch[0].p + count)) == 0) { 290 count++; 291 } 292 return count; 293 } 294 295 /** 296 * ext4_alloc_branch - allocate and set up a chain of blocks. 297 * @handle: handle for this transaction 298 * @inode: owner 299 * @indirect_blks: number of allocated indirect blocks 300 * @blks: number of allocated direct blocks 301 * @goal: preferred place for allocation 302 * @offsets: offsets (in the blocks) to store the pointers to next. 303 * @branch: place to store the chain in. 304 * 305 * This function allocates blocks, zeroes out all but the last one, 306 * links them into chain and (if we are synchronous) writes them to disk. 307 * In other words, it prepares a branch that can be spliced onto the 308 * inode. It stores the information about that chain in the branch[], in 309 * the same format as ext4_get_branch() would do. We are calling it after 310 * we had read the existing part of chain and partial points to the last 311 * triple of that (one with zero ->key). Upon the exit we have the same 312 * picture as after the successful ext4_get_block(), except that in one 313 * place chain is disconnected - *branch->p is still zero (we did not 314 * set the last link), but branch->key contains the number that should 315 * be placed into *branch->p to fill that gap. 316 * 317 * If allocation fails we free all blocks we've allocated (and forget 318 * their buffer_heads) and return the error value the from failed 319 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 320 * as described above and return 0. 321 */ 322 static int ext4_alloc_branch(handle_t *handle, 323 struct ext4_allocation_request *ar, 324 int indirect_blks, ext4_lblk_t *offsets, 325 Indirect *branch) 326 { 327 struct buffer_head * bh; 328 ext4_fsblk_t b, new_blocks[4]; 329 __le32 *p; 330 int i, j, err, len = 1; 331 332 for (i = 0; i <= indirect_blks; i++) { 333 if (i == indirect_blks) { 334 new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err); 335 } else 336 ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle, 337 ar->inode, ar->goal, 338 ar->flags & EXT4_MB_DELALLOC_RESERVED, 339 NULL, &err); 340 if (err) { 341 i--; 342 goto failed; 343 } 344 branch[i].key = cpu_to_le32(new_blocks[i]); 345 if (i == 0) 346 continue; 347 348 bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]); 349 if (unlikely(!bh)) { 350 err = -ENOMEM; 351 goto failed; 352 } 353 lock_buffer(bh); 354 BUFFER_TRACE(bh, "call get_create_access"); 355 err = ext4_journal_get_create_access(handle, bh); 356 if (err) { 357 unlock_buffer(bh); 358 goto failed; 359 } 360 361 memset(bh->b_data, 0, bh->b_size); 362 p = branch[i].p = (__le32 *) bh->b_data + offsets[i]; 363 b = new_blocks[i]; 364 365 if (i == indirect_blks) 366 len = ar->len; 367 for (j = 0; j < len; j++) 368 *p++ = cpu_to_le32(b++); 369 370 BUFFER_TRACE(bh, "marking uptodate"); 371 set_buffer_uptodate(bh); 372 unlock_buffer(bh); 373 374 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 375 err = ext4_handle_dirty_metadata(handle, ar->inode, bh); 376 if (err) 377 goto failed; 378 } 379 return 0; 380 failed: 381 for (; i >= 0; i--) { 382 /* 383 * We want to ext4_forget() only freshly allocated indirect 384 * blocks. Buffer for new_blocks[i-1] is at branch[i].bh and 385 * buffer at branch[0].bh is indirect block / inode already 386 * existing before ext4_alloc_branch() was called. 387 */ 388 if (i > 0 && i != indirect_blks && branch[i].bh) 389 ext4_forget(handle, 1, ar->inode, branch[i].bh, 390 branch[i].bh->b_blocknr); 391 ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i], 392 (i == indirect_blks) ? ar->len : 1, 0); 393 } 394 return err; 395 } 396 397 /** 398 * ext4_splice_branch - splice the allocated branch onto inode. 399 * @handle: handle for this transaction 400 * @inode: owner 401 * @block: (logical) number of block we are adding 402 * @chain: chain of indirect blocks (with a missing link - see 403 * ext4_alloc_branch) 404 * @where: location of missing link 405 * @num: number of indirect blocks we are adding 406 * @blks: number of direct blocks we are adding 407 * 408 * This function fills the missing link and does all housekeeping needed in 409 * inode (->i_blocks, etc.). In case of success we end up with the full 410 * chain to new block and return 0. 411 */ 412 static int ext4_splice_branch(handle_t *handle, 413 struct ext4_allocation_request *ar, 414 Indirect *where, int num) 415 { 416 int i; 417 int err = 0; 418 ext4_fsblk_t current_block; 419 420 /* 421 * If we're splicing into a [td]indirect block (as opposed to the 422 * inode) then we need to get write access to the [td]indirect block 423 * before the splice. 424 */ 425 if (where->bh) { 426 BUFFER_TRACE(where->bh, "get_write_access"); 427 err = ext4_journal_get_write_access(handle, where->bh); 428 if (err) 429 goto err_out; 430 } 431 /* That's it */ 432 433 *where->p = where->key; 434 435 /* 436 * Update the host buffer_head or inode to point to more just allocated 437 * direct blocks blocks 438 */ 439 if (num == 0 && ar->len > 1) { 440 current_block = le32_to_cpu(where->key) + 1; 441 for (i = 1; i < ar->len; i++) 442 *(where->p + i) = cpu_to_le32(current_block++); 443 } 444 445 /* We are done with atomic stuff, now do the rest of housekeeping */ 446 /* had we spliced it onto indirect block? */ 447 if (where->bh) { 448 /* 449 * If we spliced it onto an indirect block, we haven't 450 * altered the inode. Note however that if it is being spliced 451 * onto an indirect block at the very end of the file (the 452 * file is growing) then we *will* alter the inode to reflect 453 * the new i_size. But that is not done here - it is done in 454 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 455 */ 456 jbd_debug(5, "splicing indirect only\n"); 457 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata"); 458 err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh); 459 if (err) 460 goto err_out; 461 } else { 462 /* 463 * OK, we spliced it into the inode itself on a direct block. 464 */ 465 ext4_mark_inode_dirty(handle, ar->inode); 466 jbd_debug(5, "splicing direct\n"); 467 } 468 return err; 469 470 err_out: 471 for (i = 1; i <= num; i++) { 472 /* 473 * branch[i].bh is newly allocated, so there is no 474 * need to revoke the block, which is why we don't 475 * need to set EXT4_FREE_BLOCKS_METADATA. 476 */ 477 ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1, 478 EXT4_FREE_BLOCKS_FORGET); 479 } 480 ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key), 481 ar->len, 0); 482 483 return err; 484 } 485 486 /* 487 * The ext4_ind_map_blocks() function handles non-extents inodes 488 * (i.e., using the traditional indirect/double-indirect i_blocks 489 * scheme) for ext4_map_blocks(). 490 * 491 * Allocation strategy is simple: if we have to allocate something, we will 492 * have to go the whole way to leaf. So let's do it before attaching anything 493 * to tree, set linkage between the newborn blocks, write them if sync is 494 * required, recheck the path, free and repeat if check fails, otherwise 495 * set the last missing link (that will protect us from any truncate-generated 496 * removals - all blocks on the path are immune now) and possibly force the 497 * write on the parent block. 498 * That has a nice additional property: no special recovery from the failed 499 * allocations is needed - we simply release blocks and do not touch anything 500 * reachable from inode. 501 * 502 * `handle' can be NULL if create == 0. 503 * 504 * return > 0, # of blocks mapped or allocated. 505 * return = 0, if plain lookup failed. 506 * return < 0, error case. 507 * 508 * The ext4_ind_get_blocks() function should be called with 509 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem 510 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or 511 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system 512 * blocks. 513 */ 514 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode, 515 struct ext4_map_blocks *map, 516 int flags) 517 { 518 struct ext4_allocation_request ar; 519 int err = -EIO; 520 ext4_lblk_t offsets[4]; 521 Indirect chain[4]; 522 Indirect *partial; 523 int indirect_blks; 524 int blocks_to_boundary = 0; 525 int depth; 526 int count = 0; 527 ext4_fsblk_t first_block = 0; 528 529 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 530 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))); 531 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0); 532 depth = ext4_block_to_path(inode, map->m_lblk, offsets, 533 &blocks_to_boundary); 534 535 if (depth == 0) 536 goto out; 537 538 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 539 540 /* Simplest case - block found, no allocation needed */ 541 if (!partial) { 542 first_block = le32_to_cpu(chain[depth - 1].key); 543 count++; 544 /*map more blocks*/ 545 while (count < map->m_len && count <= blocks_to_boundary) { 546 ext4_fsblk_t blk; 547 548 blk = le32_to_cpu(*(chain[depth-1].p + count)); 549 550 if (blk == first_block + count) 551 count++; 552 else 553 break; 554 } 555 goto got_it; 556 } 557 558 /* Next simple case - plain lookup or failed read of indirect block */ 559 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO) 560 goto cleanup; 561 562 /* 563 * Okay, we need to do block allocation. 564 */ 565 if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 566 EXT4_FEATURE_RO_COMPAT_BIGALLOC)) { 567 EXT4_ERROR_INODE(inode, "Can't allocate blocks for " 568 "non-extent mapped inodes with bigalloc"); 569 return -EUCLEAN; 570 } 571 572 /* Set up for the direct block allocation */ 573 memset(&ar, 0, sizeof(ar)); 574 ar.inode = inode; 575 ar.logical = map->m_lblk; 576 if (S_ISREG(inode->i_mode)) 577 ar.flags = EXT4_MB_HINT_DATA; 578 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 579 ar.flags |= EXT4_MB_DELALLOC_RESERVED; 580 if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 581 ar.flags |= EXT4_MB_USE_RESERVED; 582 583 ar.goal = ext4_find_goal(inode, map->m_lblk, partial); 584 585 /* the number of blocks need to allocate for [d,t]indirect blocks */ 586 indirect_blks = (chain + depth) - partial - 1; 587 588 /* 589 * Next look up the indirect map to count the totoal number of 590 * direct blocks to allocate for this branch. 591 */ 592 ar.len = ext4_blks_to_allocate(partial, indirect_blks, 593 map->m_len, blocks_to_boundary); 594 595 /* 596 * Block out ext4_truncate while we alter the tree 597 */ 598 err = ext4_alloc_branch(handle, &ar, indirect_blks, 599 offsets + (partial - chain), partial); 600 601 /* 602 * The ext4_splice_branch call will free and forget any buffers 603 * on the new chain if there is a failure, but that risks using 604 * up transaction credits, especially for bitmaps where the 605 * credits cannot be returned. Can we handle this somehow? We 606 * may need to return -EAGAIN upwards in the worst case. --sct 607 */ 608 if (!err) 609 err = ext4_splice_branch(handle, &ar, partial, indirect_blks); 610 if (err) 611 goto cleanup; 612 613 map->m_flags |= EXT4_MAP_NEW; 614 615 ext4_update_inode_fsync_trans(handle, inode, 1); 616 count = ar.len; 617 got_it: 618 map->m_flags |= EXT4_MAP_MAPPED; 619 map->m_pblk = le32_to_cpu(chain[depth-1].key); 620 map->m_len = count; 621 if (count > blocks_to_boundary) 622 map->m_flags |= EXT4_MAP_BOUNDARY; 623 err = count; 624 /* Clean up and exit */ 625 partial = chain + depth - 1; /* the whole chain */ 626 cleanup: 627 while (partial > chain) { 628 BUFFER_TRACE(partial->bh, "call brelse"); 629 brelse(partial->bh); 630 partial--; 631 } 632 out: 633 trace_ext4_ind_map_blocks_exit(inode, flags, map, err); 634 return err; 635 } 636 637 /* 638 * O_DIRECT for ext3 (or indirect map) based files 639 * 640 * If the O_DIRECT write will extend the file then add this inode to the 641 * orphan list. So recovery will truncate it back to the original size 642 * if the machine crashes during the write. 643 * 644 * If the O_DIRECT write is intantiating holes inside i_size and the machine 645 * crashes then stale disk data _may_ be exposed inside the file. But current 646 * VFS code falls back into buffered path in that case so we are safe. 647 */ 648 ssize_t ext4_ind_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 649 loff_t offset) 650 { 651 struct file *file = iocb->ki_filp; 652 struct inode *inode = file->f_mapping->host; 653 struct ext4_inode_info *ei = EXT4_I(inode); 654 handle_t *handle; 655 ssize_t ret; 656 int orphan = 0; 657 size_t count = iov_iter_count(iter); 658 int retries = 0; 659 660 if (iov_iter_rw(iter) == WRITE) { 661 loff_t final_size = offset + count; 662 663 if (final_size > inode->i_size) { 664 /* Credits for sb + inode write */ 665 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 666 if (IS_ERR(handle)) { 667 ret = PTR_ERR(handle); 668 goto out; 669 } 670 ret = ext4_orphan_add(handle, inode); 671 if (ret) { 672 ext4_journal_stop(handle); 673 goto out; 674 } 675 orphan = 1; 676 ei->i_disksize = inode->i_size; 677 ext4_journal_stop(handle); 678 } 679 } 680 681 retry: 682 if (iov_iter_rw(iter) == READ && ext4_should_dioread_nolock(inode)) { 683 /* 684 * Nolock dioread optimization may be dynamically disabled 685 * via ext4_inode_block_unlocked_dio(). Check inode's state 686 * while holding extra i_dio_count ref. 687 */ 688 inode_dio_begin(inode); 689 smp_mb(); 690 if (unlikely(ext4_test_inode_state(inode, 691 EXT4_STATE_DIOREAD_LOCK))) { 692 inode_dio_end(inode); 693 goto locked; 694 } 695 if (IS_DAX(inode)) 696 ret = dax_do_io(iocb, inode, iter, offset, 697 ext4_get_block, NULL, 0); 698 else 699 ret = __blockdev_direct_IO(iocb, inode, 700 inode->i_sb->s_bdev, iter, 701 offset, ext4_get_block, NULL, 702 NULL, 0); 703 inode_dio_end(inode); 704 } else { 705 locked: 706 if (IS_DAX(inode)) 707 ret = dax_do_io(iocb, inode, iter, offset, 708 ext4_get_block, NULL, DIO_LOCKING); 709 else 710 ret = blockdev_direct_IO(iocb, inode, iter, offset, 711 ext4_get_block); 712 713 if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) { 714 loff_t isize = i_size_read(inode); 715 loff_t end = offset + count; 716 717 if (end > isize) 718 ext4_truncate_failed_write(inode); 719 } 720 } 721 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 722 goto retry; 723 724 if (orphan) { 725 int err; 726 727 /* Credits for sb + inode write */ 728 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 729 if (IS_ERR(handle)) { 730 /* This is really bad luck. We've written the data 731 * but cannot extend i_size. Bail out and pretend 732 * the write failed... */ 733 ret = PTR_ERR(handle); 734 if (inode->i_nlink) 735 ext4_orphan_del(NULL, inode); 736 737 goto out; 738 } 739 if (inode->i_nlink) 740 ext4_orphan_del(handle, inode); 741 if (ret > 0) { 742 loff_t end = offset + ret; 743 if (end > inode->i_size) { 744 ei->i_disksize = end; 745 i_size_write(inode, end); 746 /* 747 * We're going to return a positive `ret' 748 * here due to non-zero-length I/O, so there's 749 * no way of reporting error returns from 750 * ext4_mark_inode_dirty() to userspace. So 751 * ignore it. 752 */ 753 ext4_mark_inode_dirty(handle, inode); 754 } 755 } 756 err = ext4_journal_stop(handle); 757 if (ret == 0) 758 ret = err; 759 } 760 out: 761 return ret; 762 } 763 764 /* 765 * Calculate the number of metadata blocks need to reserve 766 * to allocate a new block at @lblocks for non extent file based file 767 */ 768 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock) 769 { 770 struct ext4_inode_info *ei = EXT4_I(inode); 771 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1); 772 int blk_bits; 773 774 if (lblock < EXT4_NDIR_BLOCKS) 775 return 0; 776 777 lblock -= EXT4_NDIR_BLOCKS; 778 779 if (ei->i_da_metadata_calc_len && 780 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) { 781 ei->i_da_metadata_calc_len++; 782 return 0; 783 } 784 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask; 785 ei->i_da_metadata_calc_len = 1; 786 blk_bits = order_base_2(lblock); 787 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1; 788 } 789 790 /* 791 * Calculate number of indirect blocks touched by mapping @nrblocks logically 792 * contiguous blocks 793 */ 794 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks) 795 { 796 /* 797 * With N contiguous data blocks, we need at most 798 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks, 799 * 2 dindirect blocks, and 1 tindirect block 800 */ 801 return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4; 802 } 803 804 /* 805 * Truncate transactions can be complex and absolutely huge. So we need to 806 * be able to restart the transaction at a conventient checkpoint to make 807 * sure we don't overflow the journal. 808 * 809 * Try to extend this transaction for the purposes of truncation. If 810 * extend fails, we need to propagate the failure up and restart the 811 * transaction in the top-level truncate loop. --sct 812 * 813 * Returns 0 if we managed to create more room. If we can't create more 814 * room, and the transaction must be restarted we return 1. 815 */ 816 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 817 { 818 if (!ext4_handle_valid(handle)) 819 return 0; 820 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1)) 821 return 0; 822 if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode))) 823 return 0; 824 return 1; 825 } 826 827 /* 828 * Probably it should be a library function... search for first non-zero word 829 * or memcmp with zero_page, whatever is better for particular architecture. 830 * Linus? 831 */ 832 static inline int all_zeroes(__le32 *p, __le32 *q) 833 { 834 while (p < q) 835 if (*p++) 836 return 0; 837 return 1; 838 } 839 840 /** 841 * ext4_find_shared - find the indirect blocks for partial truncation. 842 * @inode: inode in question 843 * @depth: depth of the affected branch 844 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 845 * @chain: place to store the pointers to partial indirect blocks 846 * @top: place to the (detached) top of branch 847 * 848 * This is a helper function used by ext4_truncate(). 849 * 850 * When we do truncate() we may have to clean the ends of several 851 * indirect blocks but leave the blocks themselves alive. Block is 852 * partially truncated if some data below the new i_size is referred 853 * from it (and it is on the path to the first completely truncated 854 * data block, indeed). We have to free the top of that path along 855 * with everything to the right of the path. Since no allocation 856 * past the truncation point is possible until ext4_truncate() 857 * finishes, we may safely do the latter, but top of branch may 858 * require special attention - pageout below the truncation point 859 * might try to populate it. 860 * 861 * We atomically detach the top of branch from the tree, store the 862 * block number of its root in *@top, pointers to buffer_heads of 863 * partially truncated blocks - in @chain[].bh and pointers to 864 * their last elements that should not be removed - in 865 * @chain[].p. Return value is the pointer to last filled element 866 * of @chain. 867 * 868 * The work left to caller to do the actual freeing of subtrees: 869 * a) free the subtree starting from *@top 870 * b) free the subtrees whose roots are stored in 871 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 872 * c) free the subtrees growing from the inode past the @chain[0]. 873 * (no partially truncated stuff there). */ 874 875 static Indirect *ext4_find_shared(struct inode *inode, int depth, 876 ext4_lblk_t offsets[4], Indirect chain[4], 877 __le32 *top) 878 { 879 Indirect *partial, *p; 880 int k, err; 881 882 *top = 0; 883 /* Make k index the deepest non-null offset + 1 */ 884 for (k = depth; k > 1 && !offsets[k-1]; k--) 885 ; 886 partial = ext4_get_branch(inode, k, offsets, chain, &err); 887 /* Writer: pointers */ 888 if (!partial) 889 partial = chain + k-1; 890 /* 891 * If the branch acquired continuation since we've looked at it - 892 * fine, it should all survive and (new) top doesn't belong to us. 893 */ 894 if (!partial->key && *partial->p) 895 /* Writer: end */ 896 goto no_top; 897 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 898 ; 899 /* 900 * OK, we've found the last block that must survive. The rest of our 901 * branch should be detached before unlocking. However, if that rest 902 * of branch is all ours and does not grow immediately from the inode 903 * it's easier to cheat and just decrement partial->p. 904 */ 905 if (p == chain + k - 1 && p > chain) { 906 p->p--; 907 } else { 908 *top = *p->p; 909 /* Nope, don't do this in ext4. Must leave the tree intact */ 910 #if 0 911 *p->p = 0; 912 #endif 913 } 914 /* Writer: end */ 915 916 while (partial > p) { 917 brelse(partial->bh); 918 partial--; 919 } 920 no_top: 921 return partial; 922 } 923 924 /* 925 * Zero a number of block pointers in either an inode or an indirect block. 926 * If we restart the transaction we must again get write access to the 927 * indirect block for further modification. 928 * 929 * We release `count' blocks on disk, but (last - first) may be greater 930 * than `count' because there can be holes in there. 931 * 932 * Return 0 on success, 1 on invalid block range 933 * and < 0 on fatal error. 934 */ 935 static int ext4_clear_blocks(handle_t *handle, struct inode *inode, 936 struct buffer_head *bh, 937 ext4_fsblk_t block_to_free, 938 unsigned long count, __le32 *first, 939 __le32 *last) 940 { 941 __le32 *p; 942 int flags = EXT4_FREE_BLOCKS_VALIDATED; 943 int err; 944 945 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 946 flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA; 947 else if (ext4_should_journal_data(inode)) 948 flags |= EXT4_FREE_BLOCKS_FORGET; 949 950 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free, 951 count)) { 952 EXT4_ERROR_INODE(inode, "attempt to clear invalid " 953 "blocks %llu len %lu", 954 (unsigned long long) block_to_free, count); 955 return 1; 956 } 957 958 if (try_to_extend_transaction(handle, inode)) { 959 if (bh) { 960 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 961 err = ext4_handle_dirty_metadata(handle, inode, bh); 962 if (unlikely(err)) 963 goto out_err; 964 } 965 err = ext4_mark_inode_dirty(handle, inode); 966 if (unlikely(err)) 967 goto out_err; 968 err = ext4_truncate_restart_trans(handle, inode, 969 ext4_blocks_for_truncate(inode)); 970 if (unlikely(err)) 971 goto out_err; 972 if (bh) { 973 BUFFER_TRACE(bh, "retaking write access"); 974 err = ext4_journal_get_write_access(handle, bh); 975 if (unlikely(err)) 976 goto out_err; 977 } 978 } 979 980 for (p = first; p < last; p++) 981 *p = 0; 982 983 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags); 984 return 0; 985 out_err: 986 ext4_std_error(inode->i_sb, err); 987 return err; 988 } 989 990 /** 991 * ext4_free_data - free a list of data blocks 992 * @handle: handle for this transaction 993 * @inode: inode we are dealing with 994 * @this_bh: indirect buffer_head which contains *@first and *@last 995 * @first: array of block numbers 996 * @last: points immediately past the end of array 997 * 998 * We are freeing all blocks referred from that array (numbers are stored as 999 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 1000 * 1001 * We accumulate contiguous runs of blocks to free. Conveniently, if these 1002 * blocks are contiguous then releasing them at one time will only affect one 1003 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 1004 * actually use a lot of journal space. 1005 * 1006 * @this_bh will be %NULL if @first and @last point into the inode's direct 1007 * block pointers. 1008 */ 1009 static void ext4_free_data(handle_t *handle, struct inode *inode, 1010 struct buffer_head *this_bh, 1011 __le32 *first, __le32 *last) 1012 { 1013 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 1014 unsigned long count = 0; /* Number of blocks in the run */ 1015 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 1016 corresponding to 1017 block_to_free */ 1018 ext4_fsblk_t nr; /* Current block # */ 1019 __le32 *p; /* Pointer into inode/ind 1020 for current block */ 1021 int err = 0; 1022 1023 if (this_bh) { /* For indirect block */ 1024 BUFFER_TRACE(this_bh, "get_write_access"); 1025 err = ext4_journal_get_write_access(handle, this_bh); 1026 /* Important: if we can't update the indirect pointers 1027 * to the blocks, we can't free them. */ 1028 if (err) 1029 return; 1030 } 1031 1032 for (p = first; p < last; p++) { 1033 nr = le32_to_cpu(*p); 1034 if (nr) { 1035 /* accumulate blocks to free if they're contiguous */ 1036 if (count == 0) { 1037 block_to_free = nr; 1038 block_to_free_p = p; 1039 count = 1; 1040 } else if (nr == block_to_free + count) { 1041 count++; 1042 } else { 1043 err = ext4_clear_blocks(handle, inode, this_bh, 1044 block_to_free, count, 1045 block_to_free_p, p); 1046 if (err) 1047 break; 1048 block_to_free = nr; 1049 block_to_free_p = p; 1050 count = 1; 1051 } 1052 } 1053 } 1054 1055 if (!err && count > 0) 1056 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free, 1057 count, block_to_free_p, p); 1058 if (err < 0) 1059 /* fatal error */ 1060 return; 1061 1062 if (this_bh) { 1063 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata"); 1064 1065 /* 1066 * The buffer head should have an attached journal head at this 1067 * point. However, if the data is corrupted and an indirect 1068 * block pointed to itself, it would have been detached when 1069 * the block was cleared. Check for this instead of OOPSing. 1070 */ 1071 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh)) 1072 ext4_handle_dirty_metadata(handle, inode, this_bh); 1073 else 1074 EXT4_ERROR_INODE(inode, 1075 "circular indirect block detected at " 1076 "block %llu", 1077 (unsigned long long) this_bh->b_blocknr); 1078 } 1079 } 1080 1081 /** 1082 * ext4_free_branches - free an array of branches 1083 * @handle: JBD handle for this transaction 1084 * @inode: inode we are dealing with 1085 * @parent_bh: the buffer_head which contains *@first and *@last 1086 * @first: array of block numbers 1087 * @last: pointer immediately past the end of array 1088 * @depth: depth of the branches to free 1089 * 1090 * We are freeing all blocks referred from these branches (numbers are 1091 * stored as little-endian 32-bit) and updating @inode->i_blocks 1092 * appropriately. 1093 */ 1094 static void ext4_free_branches(handle_t *handle, struct inode *inode, 1095 struct buffer_head *parent_bh, 1096 __le32 *first, __le32 *last, int depth) 1097 { 1098 ext4_fsblk_t nr; 1099 __le32 *p; 1100 1101 if (ext4_handle_is_aborted(handle)) 1102 return; 1103 1104 if (depth--) { 1105 struct buffer_head *bh; 1106 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1107 p = last; 1108 while (--p >= first) { 1109 nr = le32_to_cpu(*p); 1110 if (!nr) 1111 continue; /* A hole */ 1112 1113 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), 1114 nr, 1)) { 1115 EXT4_ERROR_INODE(inode, 1116 "invalid indirect mapped " 1117 "block %lu (level %d)", 1118 (unsigned long) nr, depth); 1119 break; 1120 } 1121 1122 /* Go read the buffer for the next level down */ 1123 bh = sb_bread(inode->i_sb, nr); 1124 1125 /* 1126 * A read failure? Report error and clear slot 1127 * (should be rare). 1128 */ 1129 if (!bh) { 1130 EXT4_ERROR_INODE_BLOCK(inode, nr, 1131 "Read failure"); 1132 continue; 1133 } 1134 1135 /* This zaps the entire block. Bottom up. */ 1136 BUFFER_TRACE(bh, "free child branches"); 1137 ext4_free_branches(handle, inode, bh, 1138 (__le32 *) bh->b_data, 1139 (__le32 *) bh->b_data + addr_per_block, 1140 depth); 1141 brelse(bh); 1142 1143 /* 1144 * Everything below this this pointer has been 1145 * released. Now let this top-of-subtree go. 1146 * 1147 * We want the freeing of this indirect block to be 1148 * atomic in the journal with the updating of the 1149 * bitmap block which owns it. So make some room in 1150 * the journal. 1151 * 1152 * We zero the parent pointer *after* freeing its 1153 * pointee in the bitmaps, so if extend_transaction() 1154 * for some reason fails to put the bitmap changes and 1155 * the release into the same transaction, recovery 1156 * will merely complain about releasing a free block, 1157 * rather than leaking blocks. 1158 */ 1159 if (ext4_handle_is_aborted(handle)) 1160 return; 1161 if (try_to_extend_transaction(handle, inode)) { 1162 ext4_mark_inode_dirty(handle, inode); 1163 ext4_truncate_restart_trans(handle, inode, 1164 ext4_blocks_for_truncate(inode)); 1165 } 1166 1167 /* 1168 * The forget flag here is critical because if 1169 * we are journaling (and not doing data 1170 * journaling), we have to make sure a revoke 1171 * record is written to prevent the journal 1172 * replay from overwriting the (former) 1173 * indirect block if it gets reallocated as a 1174 * data block. This must happen in the same 1175 * transaction where the data blocks are 1176 * actually freed. 1177 */ 1178 ext4_free_blocks(handle, inode, NULL, nr, 1, 1179 EXT4_FREE_BLOCKS_METADATA| 1180 EXT4_FREE_BLOCKS_FORGET); 1181 1182 if (parent_bh) { 1183 /* 1184 * The block which we have just freed is 1185 * pointed to by an indirect block: journal it 1186 */ 1187 BUFFER_TRACE(parent_bh, "get_write_access"); 1188 if (!ext4_journal_get_write_access(handle, 1189 parent_bh)){ 1190 *p = 0; 1191 BUFFER_TRACE(parent_bh, 1192 "call ext4_handle_dirty_metadata"); 1193 ext4_handle_dirty_metadata(handle, 1194 inode, 1195 parent_bh); 1196 } 1197 } 1198 } 1199 } else { 1200 /* We have reached the bottom of the tree. */ 1201 BUFFER_TRACE(parent_bh, "free data blocks"); 1202 ext4_free_data(handle, inode, parent_bh, first, last); 1203 } 1204 } 1205 1206 void ext4_ind_truncate(handle_t *handle, struct inode *inode) 1207 { 1208 struct ext4_inode_info *ei = EXT4_I(inode); 1209 __le32 *i_data = ei->i_data; 1210 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1211 ext4_lblk_t offsets[4]; 1212 Indirect chain[4]; 1213 Indirect *partial; 1214 __le32 nr = 0; 1215 int n = 0; 1216 ext4_lblk_t last_block, max_block; 1217 unsigned blocksize = inode->i_sb->s_blocksize; 1218 1219 last_block = (inode->i_size + blocksize-1) 1220 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1221 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1) 1222 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1223 1224 if (last_block != max_block) { 1225 n = ext4_block_to_path(inode, last_block, offsets, NULL); 1226 if (n == 0) 1227 return; 1228 } 1229 1230 ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block); 1231 1232 /* 1233 * The orphan list entry will now protect us from any crash which 1234 * occurs before the truncate completes, so it is now safe to propagate 1235 * the new, shorter inode size (held for now in i_size) into the 1236 * on-disk inode. We do this via i_disksize, which is the value which 1237 * ext4 *really* writes onto the disk inode. 1238 */ 1239 ei->i_disksize = inode->i_size; 1240 1241 if (last_block == max_block) { 1242 /* 1243 * It is unnecessary to free any data blocks if last_block is 1244 * equal to the indirect block limit. 1245 */ 1246 return; 1247 } else if (n == 1) { /* direct blocks */ 1248 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 1249 i_data + EXT4_NDIR_BLOCKS); 1250 goto do_indirects; 1251 } 1252 1253 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 1254 /* Kill the top of shared branch (not detached) */ 1255 if (nr) { 1256 if (partial == chain) { 1257 /* Shared branch grows from the inode */ 1258 ext4_free_branches(handle, inode, NULL, 1259 &nr, &nr+1, (chain+n-1) - partial); 1260 *partial->p = 0; 1261 /* 1262 * We mark the inode dirty prior to restart, 1263 * and prior to stop. No need for it here. 1264 */ 1265 } else { 1266 /* Shared branch grows from an indirect block */ 1267 BUFFER_TRACE(partial->bh, "get_write_access"); 1268 ext4_free_branches(handle, inode, partial->bh, 1269 partial->p, 1270 partial->p+1, (chain+n-1) - partial); 1271 } 1272 } 1273 /* Clear the ends of indirect blocks on the shared branch */ 1274 while (partial > chain) { 1275 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 1276 (__le32*)partial->bh->b_data+addr_per_block, 1277 (chain+n-1) - partial); 1278 BUFFER_TRACE(partial->bh, "call brelse"); 1279 brelse(partial->bh); 1280 partial--; 1281 } 1282 do_indirects: 1283 /* Kill the remaining (whole) subtrees */ 1284 switch (offsets[0]) { 1285 default: 1286 nr = i_data[EXT4_IND_BLOCK]; 1287 if (nr) { 1288 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 1289 i_data[EXT4_IND_BLOCK] = 0; 1290 } 1291 case EXT4_IND_BLOCK: 1292 nr = i_data[EXT4_DIND_BLOCK]; 1293 if (nr) { 1294 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 1295 i_data[EXT4_DIND_BLOCK] = 0; 1296 } 1297 case EXT4_DIND_BLOCK: 1298 nr = i_data[EXT4_TIND_BLOCK]; 1299 if (nr) { 1300 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 1301 i_data[EXT4_TIND_BLOCK] = 0; 1302 } 1303 case EXT4_TIND_BLOCK: 1304 ; 1305 } 1306 } 1307 1308 /** 1309 * ext4_ind_remove_space - remove space from the range 1310 * @handle: JBD handle for this transaction 1311 * @inode: inode we are dealing with 1312 * @start: First block to remove 1313 * @end: One block after the last block to remove (exclusive) 1314 * 1315 * Free the blocks in the defined range (end is exclusive endpoint of 1316 * range). This is used by ext4_punch_hole(). 1317 */ 1318 int ext4_ind_remove_space(handle_t *handle, struct inode *inode, 1319 ext4_lblk_t start, ext4_lblk_t end) 1320 { 1321 struct ext4_inode_info *ei = EXT4_I(inode); 1322 __le32 *i_data = ei->i_data; 1323 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1324 ext4_lblk_t offsets[4], offsets2[4]; 1325 Indirect chain[4], chain2[4]; 1326 Indirect *partial, *partial2; 1327 ext4_lblk_t max_block; 1328 __le32 nr = 0, nr2 = 0; 1329 int n = 0, n2 = 0; 1330 unsigned blocksize = inode->i_sb->s_blocksize; 1331 1332 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1) 1333 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1334 if (end >= max_block) 1335 end = max_block; 1336 if ((start >= end) || (start > max_block)) 1337 return 0; 1338 1339 n = ext4_block_to_path(inode, start, offsets, NULL); 1340 n2 = ext4_block_to_path(inode, end, offsets2, NULL); 1341 1342 BUG_ON(n > n2); 1343 1344 if ((n == 1) && (n == n2)) { 1345 /* We're punching only within direct block range */ 1346 ext4_free_data(handle, inode, NULL, i_data + offsets[0], 1347 i_data + offsets2[0]); 1348 return 0; 1349 } else if (n2 > n) { 1350 /* 1351 * Start and end are on a different levels so we're going to 1352 * free partial block at start, and partial block at end of 1353 * the range. If there are some levels in between then 1354 * do_indirects label will take care of that. 1355 */ 1356 1357 if (n == 1) { 1358 /* 1359 * Start is at the direct block level, free 1360 * everything to the end of the level. 1361 */ 1362 ext4_free_data(handle, inode, NULL, i_data + offsets[0], 1363 i_data + EXT4_NDIR_BLOCKS); 1364 goto end_range; 1365 } 1366 1367 1368 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 1369 if (nr) { 1370 if (partial == chain) { 1371 /* Shared branch grows from the inode */ 1372 ext4_free_branches(handle, inode, NULL, 1373 &nr, &nr+1, (chain+n-1) - partial); 1374 *partial->p = 0; 1375 } else { 1376 /* Shared branch grows from an indirect block */ 1377 BUFFER_TRACE(partial->bh, "get_write_access"); 1378 ext4_free_branches(handle, inode, partial->bh, 1379 partial->p, 1380 partial->p+1, (chain+n-1) - partial); 1381 } 1382 } 1383 1384 /* 1385 * Clear the ends of indirect blocks on the shared branch 1386 * at the start of the range 1387 */ 1388 while (partial > chain) { 1389 ext4_free_branches(handle, inode, partial->bh, 1390 partial->p + 1, 1391 (__le32 *)partial->bh->b_data+addr_per_block, 1392 (chain+n-1) - partial); 1393 BUFFER_TRACE(partial->bh, "call brelse"); 1394 brelse(partial->bh); 1395 partial--; 1396 } 1397 1398 end_range: 1399 partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2); 1400 if (nr2) { 1401 if (partial2 == chain2) { 1402 /* 1403 * Remember, end is exclusive so here we're at 1404 * the start of the next level we're not going 1405 * to free. Everything was covered by the start 1406 * of the range. 1407 */ 1408 goto do_indirects; 1409 } 1410 } else { 1411 /* 1412 * ext4_find_shared returns Indirect structure which 1413 * points to the last element which should not be 1414 * removed by truncate. But this is end of the range 1415 * in punch_hole so we need to point to the next element 1416 */ 1417 partial2->p++; 1418 } 1419 1420 /* 1421 * Clear the ends of indirect blocks on the shared branch 1422 * at the end of the range 1423 */ 1424 while (partial2 > chain2) { 1425 ext4_free_branches(handle, inode, partial2->bh, 1426 (__le32 *)partial2->bh->b_data, 1427 partial2->p, 1428 (chain2+n2-1) - partial2); 1429 BUFFER_TRACE(partial2->bh, "call brelse"); 1430 brelse(partial2->bh); 1431 partial2--; 1432 } 1433 goto do_indirects; 1434 } 1435 1436 /* Punch happened within the same level (n == n2) */ 1437 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 1438 partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2); 1439 1440 /* Free top, but only if partial2 isn't its subtree. */ 1441 if (nr) { 1442 int level = min(partial - chain, partial2 - chain2); 1443 int i; 1444 int subtree = 1; 1445 1446 for (i = 0; i <= level; i++) { 1447 if (offsets[i] != offsets2[i]) { 1448 subtree = 0; 1449 break; 1450 } 1451 } 1452 1453 if (!subtree) { 1454 if (partial == chain) { 1455 /* Shared branch grows from the inode */ 1456 ext4_free_branches(handle, inode, NULL, 1457 &nr, &nr+1, 1458 (chain+n-1) - partial); 1459 *partial->p = 0; 1460 } else { 1461 /* Shared branch grows from an indirect block */ 1462 BUFFER_TRACE(partial->bh, "get_write_access"); 1463 ext4_free_branches(handle, inode, partial->bh, 1464 partial->p, 1465 partial->p+1, 1466 (chain+n-1) - partial); 1467 } 1468 } 1469 } 1470 1471 if (!nr2) { 1472 /* 1473 * ext4_find_shared returns Indirect structure which 1474 * points to the last element which should not be 1475 * removed by truncate. But this is end of the range 1476 * in punch_hole so we need to point to the next element 1477 */ 1478 partial2->p++; 1479 } 1480 1481 while (partial > chain || partial2 > chain2) { 1482 int depth = (chain+n-1) - partial; 1483 int depth2 = (chain2+n2-1) - partial2; 1484 1485 if (partial > chain && partial2 > chain2 && 1486 partial->bh->b_blocknr == partial2->bh->b_blocknr) { 1487 /* 1488 * We've converged on the same block. Clear the range, 1489 * then we're done. 1490 */ 1491 ext4_free_branches(handle, inode, partial->bh, 1492 partial->p + 1, 1493 partial2->p, 1494 (chain+n-1) - partial); 1495 BUFFER_TRACE(partial->bh, "call brelse"); 1496 brelse(partial->bh); 1497 BUFFER_TRACE(partial2->bh, "call brelse"); 1498 brelse(partial2->bh); 1499 return 0; 1500 } 1501 1502 /* 1503 * The start and end partial branches may not be at the same 1504 * level even though the punch happened within one level. So, we 1505 * give them a chance to arrive at the same level, then walk 1506 * them in step with each other until we converge on the same 1507 * block. 1508 */ 1509 if (partial > chain && depth <= depth2) { 1510 ext4_free_branches(handle, inode, partial->bh, 1511 partial->p + 1, 1512 (__le32 *)partial->bh->b_data+addr_per_block, 1513 (chain+n-1) - partial); 1514 BUFFER_TRACE(partial->bh, "call brelse"); 1515 brelse(partial->bh); 1516 partial--; 1517 } 1518 if (partial2 > chain2 && depth2 <= depth) { 1519 ext4_free_branches(handle, inode, partial2->bh, 1520 (__le32 *)partial2->bh->b_data, 1521 partial2->p, 1522 (chain2+n2-1) - partial2); 1523 BUFFER_TRACE(partial2->bh, "call brelse"); 1524 brelse(partial2->bh); 1525 partial2--; 1526 } 1527 } 1528 return 0; 1529 1530 do_indirects: 1531 /* Kill the remaining (whole) subtrees */ 1532 switch (offsets[0]) { 1533 default: 1534 if (++n >= n2) 1535 return 0; 1536 nr = i_data[EXT4_IND_BLOCK]; 1537 if (nr) { 1538 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 1539 i_data[EXT4_IND_BLOCK] = 0; 1540 } 1541 case EXT4_IND_BLOCK: 1542 if (++n >= n2) 1543 return 0; 1544 nr = i_data[EXT4_DIND_BLOCK]; 1545 if (nr) { 1546 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 1547 i_data[EXT4_DIND_BLOCK] = 0; 1548 } 1549 case EXT4_DIND_BLOCK: 1550 if (++n >= n2) 1551 return 0; 1552 nr = i_data[EXT4_TIND_BLOCK]; 1553 if (nr) { 1554 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 1555 i_data[EXT4_TIND_BLOCK] = 0; 1556 } 1557 case EXT4_TIND_BLOCK: 1558 ; 1559 } 1560 return 0; 1561 } 1562