xref: /linux/fs/ext4/indirect.c (revision 8f8d5745bb520c76b81abef4a2cb3023d0313bfd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/indirect.c
4  *
5  *  from
6  *
7  *  linux/fs/ext4/inode.c
8  *
9  * Copyright (C) 1992, 1993, 1994, 1995
10  * Remy Card (card@masi.ibp.fr)
11  * Laboratoire MASI - Institut Blaise Pascal
12  * Universite Pierre et Marie Curie (Paris VI)
13  *
14  *  from
15  *
16  *  linux/fs/minix/inode.c
17  *
18  *  Copyright (C) 1991, 1992  Linus Torvalds
19  *
20  *  Goal-directed block allocation by Stephen Tweedie
21  *	(sct@redhat.com), 1993, 1998
22  */
23 
24 #include "ext4_jbd2.h"
25 #include "truncate.h"
26 #include <linux/dax.h>
27 #include <linux/uio.h>
28 
29 #include <trace/events/ext4.h>
30 
31 typedef struct {
32 	__le32	*p;
33 	__le32	key;
34 	struct buffer_head *bh;
35 } Indirect;
36 
37 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
38 {
39 	p->key = *(p->p = v);
40 	p->bh = bh;
41 }
42 
43 /**
44  *	ext4_block_to_path - parse the block number into array of offsets
45  *	@inode: inode in question (we are only interested in its superblock)
46  *	@i_block: block number to be parsed
47  *	@offsets: array to store the offsets in
48  *	@boundary: set this non-zero if the referred-to block is likely to be
49  *	       followed (on disk) by an indirect block.
50  *
51  *	To store the locations of file's data ext4 uses a data structure common
52  *	for UNIX filesystems - tree of pointers anchored in the inode, with
53  *	data blocks at leaves and indirect blocks in intermediate nodes.
54  *	This function translates the block number into path in that tree -
55  *	return value is the path length and @offsets[n] is the offset of
56  *	pointer to (n+1)th node in the nth one. If @block is out of range
57  *	(negative or too large) warning is printed and zero returned.
58  *
59  *	Note: function doesn't find node addresses, so no IO is needed. All
60  *	we need to know is the capacity of indirect blocks (taken from the
61  *	inode->i_sb).
62  */
63 
64 /*
65  * Portability note: the last comparison (check that we fit into triple
66  * indirect block) is spelled differently, because otherwise on an
67  * architecture with 32-bit longs and 8Kb pages we might get into trouble
68  * if our filesystem had 8Kb blocks. We might use long long, but that would
69  * kill us on x86. Oh, well, at least the sign propagation does not matter -
70  * i_block would have to be negative in the very beginning, so we would not
71  * get there at all.
72  */
73 
74 static int ext4_block_to_path(struct inode *inode,
75 			      ext4_lblk_t i_block,
76 			      ext4_lblk_t offsets[4], int *boundary)
77 {
78 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
79 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
80 	const long direct_blocks = EXT4_NDIR_BLOCKS,
81 		indirect_blocks = ptrs,
82 		double_blocks = (1 << (ptrs_bits * 2));
83 	int n = 0;
84 	int final = 0;
85 
86 	if (i_block < direct_blocks) {
87 		offsets[n++] = i_block;
88 		final = direct_blocks;
89 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
90 		offsets[n++] = EXT4_IND_BLOCK;
91 		offsets[n++] = i_block;
92 		final = ptrs;
93 	} else if ((i_block -= indirect_blocks) < double_blocks) {
94 		offsets[n++] = EXT4_DIND_BLOCK;
95 		offsets[n++] = i_block >> ptrs_bits;
96 		offsets[n++] = i_block & (ptrs - 1);
97 		final = ptrs;
98 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
99 		offsets[n++] = EXT4_TIND_BLOCK;
100 		offsets[n++] = i_block >> (ptrs_bits * 2);
101 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
102 		offsets[n++] = i_block & (ptrs - 1);
103 		final = ptrs;
104 	} else {
105 		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
106 			     i_block + direct_blocks +
107 			     indirect_blocks + double_blocks, inode->i_ino);
108 	}
109 	if (boundary)
110 		*boundary = final - 1 - (i_block & (ptrs - 1));
111 	return n;
112 }
113 
114 /**
115  *	ext4_get_branch - read the chain of indirect blocks leading to data
116  *	@inode: inode in question
117  *	@depth: depth of the chain (1 - direct pointer, etc.)
118  *	@offsets: offsets of pointers in inode/indirect blocks
119  *	@chain: place to store the result
120  *	@err: here we store the error value
121  *
122  *	Function fills the array of triples <key, p, bh> and returns %NULL
123  *	if everything went OK or the pointer to the last filled triple
124  *	(incomplete one) otherwise. Upon the return chain[i].key contains
125  *	the number of (i+1)-th block in the chain (as it is stored in memory,
126  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
127  *	number (it points into struct inode for i==0 and into the bh->b_data
128  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
129  *	block for i>0 and NULL for i==0. In other words, it holds the block
130  *	numbers of the chain, addresses they were taken from (and where we can
131  *	verify that chain did not change) and buffer_heads hosting these
132  *	numbers.
133  *
134  *	Function stops when it stumbles upon zero pointer (absent block)
135  *		(pointer to last triple returned, *@err == 0)
136  *	or when it gets an IO error reading an indirect block
137  *		(ditto, *@err == -EIO)
138  *	or when it reads all @depth-1 indirect blocks successfully and finds
139  *	the whole chain, all way to the data (returns %NULL, *err == 0).
140  *
141  *      Need to be called with
142  *      down_read(&EXT4_I(inode)->i_data_sem)
143  */
144 static Indirect *ext4_get_branch(struct inode *inode, int depth,
145 				 ext4_lblk_t  *offsets,
146 				 Indirect chain[4], int *err)
147 {
148 	struct super_block *sb = inode->i_sb;
149 	Indirect *p = chain;
150 	struct buffer_head *bh;
151 	int ret = -EIO;
152 
153 	*err = 0;
154 	/* i_data is not going away, no lock needed */
155 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
156 	if (!p->key)
157 		goto no_block;
158 	while (--depth) {
159 		bh = sb_getblk(sb, le32_to_cpu(p->key));
160 		if (unlikely(!bh)) {
161 			ret = -ENOMEM;
162 			goto failure;
163 		}
164 
165 		if (!bh_uptodate_or_lock(bh)) {
166 			if (bh_submit_read(bh) < 0) {
167 				put_bh(bh);
168 				goto failure;
169 			}
170 			/* validate block references */
171 			if (ext4_check_indirect_blockref(inode, bh)) {
172 				put_bh(bh);
173 				goto failure;
174 			}
175 		}
176 
177 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
178 		/* Reader: end */
179 		if (!p->key)
180 			goto no_block;
181 	}
182 	return NULL;
183 
184 failure:
185 	*err = ret;
186 no_block:
187 	return p;
188 }
189 
190 /**
191  *	ext4_find_near - find a place for allocation with sufficient locality
192  *	@inode: owner
193  *	@ind: descriptor of indirect block.
194  *
195  *	This function returns the preferred place for block allocation.
196  *	It is used when heuristic for sequential allocation fails.
197  *	Rules are:
198  *	  + if there is a block to the left of our position - allocate near it.
199  *	  + if pointer will live in indirect block - allocate near that block.
200  *	  + if pointer will live in inode - allocate in the same
201  *	    cylinder group.
202  *
203  * In the latter case we colour the starting block by the callers PID to
204  * prevent it from clashing with concurrent allocations for a different inode
205  * in the same block group.   The PID is used here so that functionally related
206  * files will be close-by on-disk.
207  *
208  *	Caller must make sure that @ind is valid and will stay that way.
209  */
210 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
211 {
212 	struct ext4_inode_info *ei = EXT4_I(inode);
213 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
214 	__le32 *p;
215 
216 	/* Try to find previous block */
217 	for (p = ind->p - 1; p >= start; p--) {
218 		if (*p)
219 			return le32_to_cpu(*p);
220 	}
221 
222 	/* No such thing, so let's try location of indirect block */
223 	if (ind->bh)
224 		return ind->bh->b_blocknr;
225 
226 	/*
227 	 * It is going to be referred to from the inode itself? OK, just put it
228 	 * into the same cylinder group then.
229 	 */
230 	return ext4_inode_to_goal_block(inode);
231 }
232 
233 /**
234  *	ext4_find_goal - find a preferred place for allocation.
235  *	@inode: owner
236  *	@block:  block we want
237  *	@partial: pointer to the last triple within a chain
238  *
239  *	Normally this function find the preferred place for block allocation,
240  *	returns it.
241  *	Because this is only used for non-extent files, we limit the block nr
242  *	to 32 bits.
243  */
244 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
245 				   Indirect *partial)
246 {
247 	ext4_fsblk_t goal;
248 
249 	/*
250 	 * XXX need to get goal block from mballoc's data structures
251 	 */
252 
253 	goal = ext4_find_near(inode, partial);
254 	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
255 	return goal;
256 }
257 
258 /**
259  *	ext4_blks_to_allocate - Look up the block map and count the number
260  *	of direct blocks need to be allocated for the given branch.
261  *
262  *	@branch: chain of indirect blocks
263  *	@k: number of blocks need for indirect blocks
264  *	@blks: number of data blocks to be mapped.
265  *	@blocks_to_boundary:  the offset in the indirect block
266  *
267  *	return the total number of blocks to be allocate, including the
268  *	direct and indirect blocks.
269  */
270 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
271 				 int blocks_to_boundary)
272 {
273 	unsigned int count = 0;
274 
275 	/*
276 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
277 	 * then it's clear blocks on that path have not allocated
278 	 */
279 	if (k > 0) {
280 		/* right now we don't handle cross boundary allocation */
281 		if (blks < blocks_to_boundary + 1)
282 			count += blks;
283 		else
284 			count += blocks_to_boundary + 1;
285 		return count;
286 	}
287 
288 	count++;
289 	while (count < blks && count <= blocks_to_boundary &&
290 		le32_to_cpu(*(branch[0].p + count)) == 0) {
291 		count++;
292 	}
293 	return count;
294 }
295 
296 /**
297  *	ext4_alloc_branch - allocate and set up a chain of blocks.
298  *	@handle: handle for this transaction
299  *	@inode: owner
300  *	@indirect_blks: number of allocated indirect blocks
301  *	@blks: number of allocated direct blocks
302  *	@goal: preferred place for allocation
303  *	@offsets: offsets (in the blocks) to store the pointers to next.
304  *	@branch: place to store the chain in.
305  *
306  *	This function allocates blocks, zeroes out all but the last one,
307  *	links them into chain and (if we are synchronous) writes them to disk.
308  *	In other words, it prepares a branch that can be spliced onto the
309  *	inode. It stores the information about that chain in the branch[], in
310  *	the same format as ext4_get_branch() would do. We are calling it after
311  *	we had read the existing part of chain and partial points to the last
312  *	triple of that (one with zero ->key). Upon the exit we have the same
313  *	picture as after the successful ext4_get_block(), except that in one
314  *	place chain is disconnected - *branch->p is still zero (we did not
315  *	set the last link), but branch->key contains the number that should
316  *	be placed into *branch->p to fill that gap.
317  *
318  *	If allocation fails we free all blocks we've allocated (and forget
319  *	their buffer_heads) and return the error value the from failed
320  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
321  *	as described above and return 0.
322  */
323 static int ext4_alloc_branch(handle_t *handle,
324 			     struct ext4_allocation_request *ar,
325 			     int indirect_blks, ext4_lblk_t *offsets,
326 			     Indirect *branch)
327 {
328 	struct buffer_head *		bh;
329 	ext4_fsblk_t			b, new_blocks[4];
330 	__le32				*p;
331 	int				i, j, err, len = 1;
332 
333 	for (i = 0; i <= indirect_blks; i++) {
334 		if (i == indirect_blks) {
335 			new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err);
336 		} else
337 			ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle,
338 					ar->inode, ar->goal,
339 					ar->flags & EXT4_MB_DELALLOC_RESERVED,
340 					NULL, &err);
341 		if (err) {
342 			i--;
343 			goto failed;
344 		}
345 		branch[i].key = cpu_to_le32(new_blocks[i]);
346 		if (i == 0)
347 			continue;
348 
349 		bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]);
350 		if (unlikely(!bh)) {
351 			err = -ENOMEM;
352 			goto failed;
353 		}
354 		lock_buffer(bh);
355 		BUFFER_TRACE(bh, "call get_create_access");
356 		err = ext4_journal_get_create_access(handle, bh);
357 		if (err) {
358 			unlock_buffer(bh);
359 			goto failed;
360 		}
361 
362 		memset(bh->b_data, 0, bh->b_size);
363 		p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
364 		b = new_blocks[i];
365 
366 		if (i == indirect_blks)
367 			len = ar->len;
368 		for (j = 0; j < len; j++)
369 			*p++ = cpu_to_le32(b++);
370 
371 		BUFFER_TRACE(bh, "marking uptodate");
372 		set_buffer_uptodate(bh);
373 		unlock_buffer(bh);
374 
375 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
376 		err = ext4_handle_dirty_metadata(handle, ar->inode, bh);
377 		if (err)
378 			goto failed;
379 	}
380 	return 0;
381 failed:
382 	for (; i >= 0; i--) {
383 		/*
384 		 * We want to ext4_forget() only freshly allocated indirect
385 		 * blocks.  Buffer for new_blocks[i-1] is at branch[i].bh and
386 		 * buffer at branch[0].bh is indirect block / inode already
387 		 * existing before ext4_alloc_branch() was called.
388 		 */
389 		if (i > 0 && i != indirect_blks && branch[i].bh)
390 			ext4_forget(handle, 1, ar->inode, branch[i].bh,
391 				    branch[i].bh->b_blocknr);
392 		ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i],
393 				 (i == indirect_blks) ? ar->len : 1, 0);
394 	}
395 	return err;
396 }
397 
398 /**
399  * ext4_splice_branch - splice the allocated branch onto inode.
400  * @handle: handle for this transaction
401  * @inode: owner
402  * @block: (logical) number of block we are adding
403  * @chain: chain of indirect blocks (with a missing link - see
404  *	ext4_alloc_branch)
405  * @where: location of missing link
406  * @num:   number of indirect blocks we are adding
407  * @blks:  number of direct blocks we are adding
408  *
409  * This function fills the missing link and does all housekeeping needed in
410  * inode (->i_blocks, etc.). In case of success we end up with the full
411  * chain to new block and return 0.
412  */
413 static int ext4_splice_branch(handle_t *handle,
414 			      struct ext4_allocation_request *ar,
415 			      Indirect *where, int num)
416 {
417 	int i;
418 	int err = 0;
419 	ext4_fsblk_t current_block;
420 
421 	/*
422 	 * If we're splicing into a [td]indirect block (as opposed to the
423 	 * inode) then we need to get write access to the [td]indirect block
424 	 * before the splice.
425 	 */
426 	if (where->bh) {
427 		BUFFER_TRACE(where->bh, "get_write_access");
428 		err = ext4_journal_get_write_access(handle, where->bh);
429 		if (err)
430 			goto err_out;
431 	}
432 	/* That's it */
433 
434 	*where->p = where->key;
435 
436 	/*
437 	 * Update the host buffer_head or inode to point to more just allocated
438 	 * direct blocks blocks
439 	 */
440 	if (num == 0 && ar->len > 1) {
441 		current_block = le32_to_cpu(where->key) + 1;
442 		for (i = 1; i < ar->len; i++)
443 			*(where->p + i) = cpu_to_le32(current_block++);
444 	}
445 
446 	/* We are done with atomic stuff, now do the rest of housekeeping */
447 	/* had we spliced it onto indirect block? */
448 	if (where->bh) {
449 		/*
450 		 * If we spliced it onto an indirect block, we haven't
451 		 * altered the inode.  Note however that if it is being spliced
452 		 * onto an indirect block at the very end of the file (the
453 		 * file is growing) then we *will* alter the inode to reflect
454 		 * the new i_size.  But that is not done here - it is done in
455 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
456 		 */
457 		jbd_debug(5, "splicing indirect only\n");
458 		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
459 		err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh);
460 		if (err)
461 			goto err_out;
462 	} else {
463 		/*
464 		 * OK, we spliced it into the inode itself on a direct block.
465 		 */
466 		ext4_mark_inode_dirty(handle, ar->inode);
467 		jbd_debug(5, "splicing direct\n");
468 	}
469 	return err;
470 
471 err_out:
472 	for (i = 1; i <= num; i++) {
473 		/*
474 		 * branch[i].bh is newly allocated, so there is no
475 		 * need to revoke the block, which is why we don't
476 		 * need to set EXT4_FREE_BLOCKS_METADATA.
477 		 */
478 		ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1,
479 				 EXT4_FREE_BLOCKS_FORGET);
480 	}
481 	ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key),
482 			 ar->len, 0);
483 
484 	return err;
485 }
486 
487 /*
488  * The ext4_ind_map_blocks() function handles non-extents inodes
489  * (i.e., using the traditional indirect/double-indirect i_blocks
490  * scheme) for ext4_map_blocks().
491  *
492  * Allocation strategy is simple: if we have to allocate something, we will
493  * have to go the whole way to leaf. So let's do it before attaching anything
494  * to tree, set linkage between the newborn blocks, write them if sync is
495  * required, recheck the path, free and repeat if check fails, otherwise
496  * set the last missing link (that will protect us from any truncate-generated
497  * removals - all blocks on the path are immune now) and possibly force the
498  * write on the parent block.
499  * That has a nice additional property: no special recovery from the failed
500  * allocations is needed - we simply release blocks and do not touch anything
501  * reachable from inode.
502  *
503  * `handle' can be NULL if create == 0.
504  *
505  * return > 0, # of blocks mapped or allocated.
506  * return = 0, if plain lookup failed.
507  * return < 0, error case.
508  *
509  * The ext4_ind_get_blocks() function should be called with
510  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
511  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
512  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
513  * blocks.
514  */
515 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
516 			struct ext4_map_blocks *map,
517 			int flags)
518 {
519 	struct ext4_allocation_request ar;
520 	int err = -EIO;
521 	ext4_lblk_t offsets[4];
522 	Indirect chain[4];
523 	Indirect *partial;
524 	int indirect_blks;
525 	int blocks_to_boundary = 0;
526 	int depth;
527 	int count = 0;
528 	ext4_fsblk_t first_block = 0;
529 
530 	trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
531 	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
532 	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
533 	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
534 				   &blocks_to_boundary);
535 
536 	if (depth == 0)
537 		goto out;
538 
539 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
540 
541 	/* Simplest case - block found, no allocation needed */
542 	if (!partial) {
543 		first_block = le32_to_cpu(chain[depth - 1].key);
544 		count++;
545 		/*map more blocks*/
546 		while (count < map->m_len && count <= blocks_to_boundary) {
547 			ext4_fsblk_t blk;
548 
549 			blk = le32_to_cpu(*(chain[depth-1].p + count));
550 
551 			if (blk == first_block + count)
552 				count++;
553 			else
554 				break;
555 		}
556 		goto got_it;
557 	}
558 
559 	/* Next simple case - plain lookup failed */
560 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
561 		unsigned epb = inode->i_sb->s_blocksize / sizeof(u32);
562 		int i;
563 
564 		/*
565 		 * Count number blocks in a subtree under 'partial'. At each
566 		 * level we count number of complete empty subtrees beyond
567 		 * current offset and then descend into the subtree only
568 		 * partially beyond current offset.
569 		 */
570 		count = 0;
571 		for (i = partial - chain + 1; i < depth; i++)
572 			count = count * epb + (epb - offsets[i] - 1);
573 		count++;
574 		/* Fill in size of a hole we found */
575 		map->m_pblk = 0;
576 		map->m_len = min_t(unsigned int, map->m_len, count);
577 		goto cleanup;
578 	}
579 
580 	/* Failed read of indirect block */
581 	if (err == -EIO)
582 		goto cleanup;
583 
584 	/*
585 	 * Okay, we need to do block allocation.
586 	*/
587 	if (ext4_has_feature_bigalloc(inode->i_sb)) {
588 		EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
589 				 "non-extent mapped inodes with bigalloc");
590 		return -EFSCORRUPTED;
591 	}
592 
593 	/* Set up for the direct block allocation */
594 	memset(&ar, 0, sizeof(ar));
595 	ar.inode = inode;
596 	ar.logical = map->m_lblk;
597 	if (S_ISREG(inode->i_mode))
598 		ar.flags = EXT4_MB_HINT_DATA;
599 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
600 		ar.flags |= EXT4_MB_DELALLOC_RESERVED;
601 	if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
602 		ar.flags |= EXT4_MB_USE_RESERVED;
603 
604 	ar.goal = ext4_find_goal(inode, map->m_lblk, partial);
605 
606 	/* the number of blocks need to allocate for [d,t]indirect blocks */
607 	indirect_blks = (chain + depth) - partial - 1;
608 
609 	/*
610 	 * Next look up the indirect map to count the totoal number of
611 	 * direct blocks to allocate for this branch.
612 	 */
613 	ar.len = ext4_blks_to_allocate(partial, indirect_blks,
614 				       map->m_len, blocks_to_boundary);
615 
616 	/*
617 	 * Block out ext4_truncate while we alter the tree
618 	 */
619 	err = ext4_alloc_branch(handle, &ar, indirect_blks,
620 				offsets + (partial - chain), partial);
621 
622 	/*
623 	 * The ext4_splice_branch call will free and forget any buffers
624 	 * on the new chain if there is a failure, but that risks using
625 	 * up transaction credits, especially for bitmaps where the
626 	 * credits cannot be returned.  Can we handle this somehow?  We
627 	 * may need to return -EAGAIN upwards in the worst case.  --sct
628 	 */
629 	if (!err)
630 		err = ext4_splice_branch(handle, &ar, partial, indirect_blks);
631 	if (err)
632 		goto cleanup;
633 
634 	map->m_flags |= EXT4_MAP_NEW;
635 
636 	ext4_update_inode_fsync_trans(handle, inode, 1);
637 	count = ar.len;
638 got_it:
639 	map->m_flags |= EXT4_MAP_MAPPED;
640 	map->m_pblk = le32_to_cpu(chain[depth-1].key);
641 	map->m_len = count;
642 	if (count > blocks_to_boundary)
643 		map->m_flags |= EXT4_MAP_BOUNDARY;
644 	err = count;
645 	/* Clean up and exit */
646 	partial = chain + depth - 1;	/* the whole chain */
647 cleanup:
648 	while (partial > chain) {
649 		BUFFER_TRACE(partial->bh, "call brelse");
650 		brelse(partial->bh);
651 		partial--;
652 	}
653 out:
654 	trace_ext4_ind_map_blocks_exit(inode, flags, map, err);
655 	return err;
656 }
657 
658 /*
659  * Calculate the number of metadata blocks need to reserve
660  * to allocate a new block at @lblocks for non extent file based file
661  */
662 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
663 {
664 	struct ext4_inode_info *ei = EXT4_I(inode);
665 	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
666 	int blk_bits;
667 
668 	if (lblock < EXT4_NDIR_BLOCKS)
669 		return 0;
670 
671 	lblock -= EXT4_NDIR_BLOCKS;
672 
673 	if (ei->i_da_metadata_calc_len &&
674 	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
675 		ei->i_da_metadata_calc_len++;
676 		return 0;
677 	}
678 	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
679 	ei->i_da_metadata_calc_len = 1;
680 	blk_bits = order_base_2(lblock);
681 	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
682 }
683 
684 /*
685  * Calculate number of indirect blocks touched by mapping @nrblocks logically
686  * contiguous blocks
687  */
688 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks)
689 {
690 	/*
691 	 * With N contiguous data blocks, we need at most
692 	 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
693 	 * 2 dindirect blocks, and 1 tindirect block
694 	 */
695 	return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
696 }
697 
698 /*
699  * Truncate transactions can be complex and absolutely huge.  So we need to
700  * be able to restart the transaction at a conventient checkpoint to make
701  * sure we don't overflow the journal.
702  *
703  * Try to extend this transaction for the purposes of truncation.  If
704  * extend fails, we need to propagate the failure up and restart the
705  * transaction in the top-level truncate loop. --sct
706  *
707  * Returns 0 if we managed to create more room.  If we can't create more
708  * room, and the transaction must be restarted we return 1.
709  */
710 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
711 {
712 	if (!ext4_handle_valid(handle))
713 		return 0;
714 	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
715 		return 0;
716 	if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
717 		return 0;
718 	return 1;
719 }
720 
721 /*
722  * Probably it should be a library function... search for first non-zero word
723  * or memcmp with zero_page, whatever is better for particular architecture.
724  * Linus?
725  */
726 static inline int all_zeroes(__le32 *p, __le32 *q)
727 {
728 	while (p < q)
729 		if (*p++)
730 			return 0;
731 	return 1;
732 }
733 
734 /**
735  *	ext4_find_shared - find the indirect blocks for partial truncation.
736  *	@inode:	  inode in question
737  *	@depth:	  depth of the affected branch
738  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
739  *	@chain:	  place to store the pointers to partial indirect blocks
740  *	@top:	  place to the (detached) top of branch
741  *
742  *	This is a helper function used by ext4_truncate().
743  *
744  *	When we do truncate() we may have to clean the ends of several
745  *	indirect blocks but leave the blocks themselves alive. Block is
746  *	partially truncated if some data below the new i_size is referred
747  *	from it (and it is on the path to the first completely truncated
748  *	data block, indeed).  We have to free the top of that path along
749  *	with everything to the right of the path. Since no allocation
750  *	past the truncation point is possible until ext4_truncate()
751  *	finishes, we may safely do the latter, but top of branch may
752  *	require special attention - pageout below the truncation point
753  *	might try to populate it.
754  *
755  *	We atomically detach the top of branch from the tree, store the
756  *	block number of its root in *@top, pointers to buffer_heads of
757  *	partially truncated blocks - in @chain[].bh and pointers to
758  *	their last elements that should not be removed - in
759  *	@chain[].p. Return value is the pointer to last filled element
760  *	of @chain.
761  *
762  *	The work left to caller to do the actual freeing of subtrees:
763  *		a) free the subtree starting from *@top
764  *		b) free the subtrees whose roots are stored in
765  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
766  *		c) free the subtrees growing from the inode past the @chain[0].
767  *			(no partially truncated stuff there).  */
768 
769 static Indirect *ext4_find_shared(struct inode *inode, int depth,
770 				  ext4_lblk_t offsets[4], Indirect chain[4],
771 				  __le32 *top)
772 {
773 	Indirect *partial, *p;
774 	int k, err;
775 
776 	*top = 0;
777 	/* Make k index the deepest non-null offset + 1 */
778 	for (k = depth; k > 1 && !offsets[k-1]; k--)
779 		;
780 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
781 	/* Writer: pointers */
782 	if (!partial)
783 		partial = chain + k-1;
784 	/*
785 	 * If the branch acquired continuation since we've looked at it -
786 	 * fine, it should all survive and (new) top doesn't belong to us.
787 	 */
788 	if (!partial->key && *partial->p)
789 		/* Writer: end */
790 		goto no_top;
791 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
792 		;
793 	/*
794 	 * OK, we've found the last block that must survive. The rest of our
795 	 * branch should be detached before unlocking. However, if that rest
796 	 * of branch is all ours and does not grow immediately from the inode
797 	 * it's easier to cheat and just decrement partial->p.
798 	 */
799 	if (p == chain + k - 1 && p > chain) {
800 		p->p--;
801 	} else {
802 		*top = *p->p;
803 		/* Nope, don't do this in ext4.  Must leave the tree intact */
804 #if 0
805 		*p->p = 0;
806 #endif
807 	}
808 	/* Writer: end */
809 
810 	while (partial > p) {
811 		brelse(partial->bh);
812 		partial--;
813 	}
814 no_top:
815 	return partial;
816 }
817 
818 /*
819  * Zero a number of block pointers in either an inode or an indirect block.
820  * If we restart the transaction we must again get write access to the
821  * indirect block for further modification.
822  *
823  * We release `count' blocks on disk, but (last - first) may be greater
824  * than `count' because there can be holes in there.
825  *
826  * Return 0 on success, 1 on invalid block range
827  * and < 0 on fatal error.
828  */
829 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
830 			     struct buffer_head *bh,
831 			     ext4_fsblk_t block_to_free,
832 			     unsigned long count, __le32 *first,
833 			     __le32 *last)
834 {
835 	__le32 *p;
836 	int	flags = EXT4_FREE_BLOCKS_VALIDATED;
837 	int	err;
838 
839 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) ||
840 	    ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE))
841 		flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA;
842 	else if (ext4_should_journal_data(inode))
843 		flags |= EXT4_FREE_BLOCKS_FORGET;
844 
845 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
846 				   count)) {
847 		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
848 				 "blocks %llu len %lu",
849 				 (unsigned long long) block_to_free, count);
850 		return 1;
851 	}
852 
853 	if (try_to_extend_transaction(handle, inode)) {
854 		if (bh) {
855 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
856 			err = ext4_handle_dirty_metadata(handle, inode, bh);
857 			if (unlikely(err))
858 				goto out_err;
859 		}
860 		err = ext4_mark_inode_dirty(handle, inode);
861 		if (unlikely(err))
862 			goto out_err;
863 		err = ext4_truncate_restart_trans(handle, inode,
864 					ext4_blocks_for_truncate(inode));
865 		if (unlikely(err))
866 			goto out_err;
867 		if (bh) {
868 			BUFFER_TRACE(bh, "retaking write access");
869 			err = ext4_journal_get_write_access(handle, bh);
870 			if (unlikely(err))
871 				goto out_err;
872 		}
873 	}
874 
875 	for (p = first; p < last; p++)
876 		*p = 0;
877 
878 	ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
879 	return 0;
880 out_err:
881 	ext4_std_error(inode->i_sb, err);
882 	return err;
883 }
884 
885 /**
886  * ext4_free_data - free a list of data blocks
887  * @handle:	handle for this transaction
888  * @inode:	inode we are dealing with
889  * @this_bh:	indirect buffer_head which contains *@first and *@last
890  * @first:	array of block numbers
891  * @last:	points immediately past the end of array
892  *
893  * We are freeing all blocks referred from that array (numbers are stored as
894  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
895  *
896  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
897  * blocks are contiguous then releasing them at one time will only affect one
898  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
899  * actually use a lot of journal space.
900  *
901  * @this_bh will be %NULL if @first and @last point into the inode's direct
902  * block pointers.
903  */
904 static void ext4_free_data(handle_t *handle, struct inode *inode,
905 			   struct buffer_head *this_bh,
906 			   __le32 *first, __le32 *last)
907 {
908 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
909 	unsigned long count = 0;	    /* Number of blocks in the run */
910 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
911 					       corresponding to
912 					       block_to_free */
913 	ext4_fsblk_t nr;		    /* Current block # */
914 	__le32 *p;			    /* Pointer into inode/ind
915 					       for current block */
916 	int err = 0;
917 
918 	if (this_bh) {				/* For indirect block */
919 		BUFFER_TRACE(this_bh, "get_write_access");
920 		err = ext4_journal_get_write_access(handle, this_bh);
921 		/* Important: if we can't update the indirect pointers
922 		 * to the blocks, we can't free them. */
923 		if (err)
924 			return;
925 	}
926 
927 	for (p = first; p < last; p++) {
928 		nr = le32_to_cpu(*p);
929 		if (nr) {
930 			/* accumulate blocks to free if they're contiguous */
931 			if (count == 0) {
932 				block_to_free = nr;
933 				block_to_free_p = p;
934 				count = 1;
935 			} else if (nr == block_to_free + count) {
936 				count++;
937 			} else {
938 				err = ext4_clear_blocks(handle, inode, this_bh,
939 						        block_to_free, count,
940 						        block_to_free_p, p);
941 				if (err)
942 					break;
943 				block_to_free = nr;
944 				block_to_free_p = p;
945 				count = 1;
946 			}
947 		}
948 	}
949 
950 	if (!err && count > 0)
951 		err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
952 					count, block_to_free_p, p);
953 	if (err < 0)
954 		/* fatal error */
955 		return;
956 
957 	if (this_bh) {
958 		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
959 
960 		/*
961 		 * The buffer head should have an attached journal head at this
962 		 * point. However, if the data is corrupted and an indirect
963 		 * block pointed to itself, it would have been detached when
964 		 * the block was cleared. Check for this instead of OOPSing.
965 		 */
966 		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
967 			ext4_handle_dirty_metadata(handle, inode, this_bh);
968 		else
969 			EXT4_ERROR_INODE(inode,
970 					 "circular indirect block detected at "
971 					 "block %llu",
972 				(unsigned long long) this_bh->b_blocknr);
973 	}
974 }
975 
976 /**
977  *	ext4_free_branches - free an array of branches
978  *	@handle: JBD handle for this transaction
979  *	@inode:	inode we are dealing with
980  *	@parent_bh: the buffer_head which contains *@first and *@last
981  *	@first:	array of block numbers
982  *	@last:	pointer immediately past the end of array
983  *	@depth:	depth of the branches to free
984  *
985  *	We are freeing all blocks referred from these branches (numbers are
986  *	stored as little-endian 32-bit) and updating @inode->i_blocks
987  *	appropriately.
988  */
989 static void ext4_free_branches(handle_t *handle, struct inode *inode,
990 			       struct buffer_head *parent_bh,
991 			       __le32 *first, __le32 *last, int depth)
992 {
993 	ext4_fsblk_t nr;
994 	__le32 *p;
995 
996 	if (ext4_handle_is_aborted(handle))
997 		return;
998 
999 	if (depth--) {
1000 		struct buffer_head *bh;
1001 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1002 		p = last;
1003 		while (--p >= first) {
1004 			nr = le32_to_cpu(*p);
1005 			if (!nr)
1006 				continue;		/* A hole */
1007 
1008 			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
1009 						   nr, 1)) {
1010 				EXT4_ERROR_INODE(inode,
1011 						 "invalid indirect mapped "
1012 						 "block %lu (level %d)",
1013 						 (unsigned long) nr, depth);
1014 				break;
1015 			}
1016 
1017 			/* Go read the buffer for the next level down */
1018 			bh = sb_bread(inode->i_sb, nr);
1019 
1020 			/*
1021 			 * A read failure? Report error and clear slot
1022 			 * (should be rare).
1023 			 */
1024 			if (!bh) {
1025 				EXT4_ERROR_INODE_BLOCK(inode, nr,
1026 						       "Read failure");
1027 				continue;
1028 			}
1029 
1030 			/* This zaps the entire block.  Bottom up. */
1031 			BUFFER_TRACE(bh, "free child branches");
1032 			ext4_free_branches(handle, inode, bh,
1033 					(__le32 *) bh->b_data,
1034 					(__le32 *) bh->b_data + addr_per_block,
1035 					depth);
1036 			brelse(bh);
1037 
1038 			/*
1039 			 * Everything below this this pointer has been
1040 			 * released.  Now let this top-of-subtree go.
1041 			 *
1042 			 * We want the freeing of this indirect block to be
1043 			 * atomic in the journal with the updating of the
1044 			 * bitmap block which owns it.  So make some room in
1045 			 * the journal.
1046 			 *
1047 			 * We zero the parent pointer *after* freeing its
1048 			 * pointee in the bitmaps, so if extend_transaction()
1049 			 * for some reason fails to put the bitmap changes and
1050 			 * the release into the same transaction, recovery
1051 			 * will merely complain about releasing a free block,
1052 			 * rather than leaking blocks.
1053 			 */
1054 			if (ext4_handle_is_aborted(handle))
1055 				return;
1056 			if (try_to_extend_transaction(handle, inode)) {
1057 				ext4_mark_inode_dirty(handle, inode);
1058 				ext4_truncate_restart_trans(handle, inode,
1059 					    ext4_blocks_for_truncate(inode));
1060 			}
1061 
1062 			/*
1063 			 * The forget flag here is critical because if
1064 			 * we are journaling (and not doing data
1065 			 * journaling), we have to make sure a revoke
1066 			 * record is written to prevent the journal
1067 			 * replay from overwriting the (former)
1068 			 * indirect block if it gets reallocated as a
1069 			 * data block.  This must happen in the same
1070 			 * transaction where the data blocks are
1071 			 * actually freed.
1072 			 */
1073 			ext4_free_blocks(handle, inode, NULL, nr, 1,
1074 					 EXT4_FREE_BLOCKS_METADATA|
1075 					 EXT4_FREE_BLOCKS_FORGET);
1076 
1077 			if (parent_bh) {
1078 				/*
1079 				 * The block which we have just freed is
1080 				 * pointed to by an indirect block: journal it
1081 				 */
1082 				BUFFER_TRACE(parent_bh, "get_write_access");
1083 				if (!ext4_journal_get_write_access(handle,
1084 								   parent_bh)){
1085 					*p = 0;
1086 					BUFFER_TRACE(parent_bh,
1087 					"call ext4_handle_dirty_metadata");
1088 					ext4_handle_dirty_metadata(handle,
1089 								   inode,
1090 								   parent_bh);
1091 				}
1092 			}
1093 		}
1094 	} else {
1095 		/* We have reached the bottom of the tree. */
1096 		BUFFER_TRACE(parent_bh, "free data blocks");
1097 		ext4_free_data(handle, inode, parent_bh, first, last);
1098 	}
1099 }
1100 
1101 void ext4_ind_truncate(handle_t *handle, struct inode *inode)
1102 {
1103 	struct ext4_inode_info *ei = EXT4_I(inode);
1104 	__le32 *i_data = ei->i_data;
1105 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1106 	ext4_lblk_t offsets[4];
1107 	Indirect chain[4];
1108 	Indirect *partial;
1109 	__le32 nr = 0;
1110 	int n = 0;
1111 	ext4_lblk_t last_block, max_block;
1112 	unsigned blocksize = inode->i_sb->s_blocksize;
1113 
1114 	last_block = (inode->i_size + blocksize-1)
1115 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1116 	max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1117 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1118 
1119 	if (last_block != max_block) {
1120 		n = ext4_block_to_path(inode, last_block, offsets, NULL);
1121 		if (n == 0)
1122 			return;
1123 	}
1124 
1125 	ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1126 
1127 	/*
1128 	 * The orphan list entry will now protect us from any crash which
1129 	 * occurs before the truncate completes, so it is now safe to propagate
1130 	 * the new, shorter inode size (held for now in i_size) into the
1131 	 * on-disk inode. We do this via i_disksize, which is the value which
1132 	 * ext4 *really* writes onto the disk inode.
1133 	 */
1134 	ei->i_disksize = inode->i_size;
1135 
1136 	if (last_block == max_block) {
1137 		/*
1138 		 * It is unnecessary to free any data blocks if last_block is
1139 		 * equal to the indirect block limit.
1140 		 */
1141 		return;
1142 	} else if (n == 1) {		/* direct blocks */
1143 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1144 			       i_data + EXT4_NDIR_BLOCKS);
1145 		goto do_indirects;
1146 	}
1147 
1148 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1149 	/* Kill the top of shared branch (not detached) */
1150 	if (nr) {
1151 		if (partial == chain) {
1152 			/* Shared branch grows from the inode */
1153 			ext4_free_branches(handle, inode, NULL,
1154 					   &nr, &nr+1, (chain+n-1) - partial);
1155 			*partial->p = 0;
1156 			/*
1157 			 * We mark the inode dirty prior to restart,
1158 			 * and prior to stop.  No need for it here.
1159 			 */
1160 		} else {
1161 			/* Shared branch grows from an indirect block */
1162 			BUFFER_TRACE(partial->bh, "get_write_access");
1163 			ext4_free_branches(handle, inode, partial->bh,
1164 					partial->p,
1165 					partial->p+1, (chain+n-1) - partial);
1166 		}
1167 	}
1168 	/* Clear the ends of indirect blocks on the shared branch */
1169 	while (partial > chain) {
1170 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1171 				   (__le32*)partial->bh->b_data+addr_per_block,
1172 				   (chain+n-1) - partial);
1173 		BUFFER_TRACE(partial->bh, "call brelse");
1174 		brelse(partial->bh);
1175 		partial--;
1176 	}
1177 do_indirects:
1178 	/* Kill the remaining (whole) subtrees */
1179 	switch (offsets[0]) {
1180 	default:
1181 		nr = i_data[EXT4_IND_BLOCK];
1182 		if (nr) {
1183 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1184 			i_data[EXT4_IND_BLOCK] = 0;
1185 		}
1186 		/* fall through */
1187 	case EXT4_IND_BLOCK:
1188 		nr = i_data[EXT4_DIND_BLOCK];
1189 		if (nr) {
1190 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1191 			i_data[EXT4_DIND_BLOCK] = 0;
1192 		}
1193 		/* fall through */
1194 	case EXT4_DIND_BLOCK:
1195 		nr = i_data[EXT4_TIND_BLOCK];
1196 		if (nr) {
1197 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1198 			i_data[EXT4_TIND_BLOCK] = 0;
1199 		}
1200 		/* fall through */
1201 	case EXT4_TIND_BLOCK:
1202 		;
1203 	}
1204 }
1205 
1206 /**
1207  *	ext4_ind_remove_space - remove space from the range
1208  *	@handle: JBD handle for this transaction
1209  *	@inode:	inode we are dealing with
1210  *	@start:	First block to remove
1211  *	@end:	One block after the last block to remove (exclusive)
1212  *
1213  *	Free the blocks in the defined range (end is exclusive endpoint of
1214  *	range). This is used by ext4_punch_hole().
1215  */
1216 int ext4_ind_remove_space(handle_t *handle, struct inode *inode,
1217 			  ext4_lblk_t start, ext4_lblk_t end)
1218 {
1219 	struct ext4_inode_info *ei = EXT4_I(inode);
1220 	__le32 *i_data = ei->i_data;
1221 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1222 	ext4_lblk_t offsets[4], offsets2[4];
1223 	Indirect chain[4], chain2[4];
1224 	Indirect *partial, *partial2;
1225 	Indirect *p = NULL, *p2 = NULL;
1226 	ext4_lblk_t max_block;
1227 	__le32 nr = 0, nr2 = 0;
1228 	int n = 0, n2 = 0;
1229 	unsigned blocksize = inode->i_sb->s_blocksize;
1230 
1231 	max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1232 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1233 	if (end >= max_block)
1234 		end = max_block;
1235 	if ((start >= end) || (start > max_block))
1236 		return 0;
1237 
1238 	n = ext4_block_to_path(inode, start, offsets, NULL);
1239 	n2 = ext4_block_to_path(inode, end, offsets2, NULL);
1240 
1241 	BUG_ON(n > n2);
1242 
1243 	if ((n == 1) && (n == n2)) {
1244 		/* We're punching only within direct block range */
1245 		ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1246 			       i_data + offsets2[0]);
1247 		return 0;
1248 	} else if (n2 > n) {
1249 		/*
1250 		 * Start and end are on a different levels so we're going to
1251 		 * free partial block at start, and partial block at end of
1252 		 * the range. If there are some levels in between then
1253 		 * do_indirects label will take care of that.
1254 		 */
1255 
1256 		if (n == 1) {
1257 			/*
1258 			 * Start is at the direct block level, free
1259 			 * everything to the end of the level.
1260 			 */
1261 			ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1262 				       i_data + EXT4_NDIR_BLOCKS);
1263 			goto end_range;
1264 		}
1265 
1266 
1267 		partial = p = ext4_find_shared(inode, n, offsets, chain, &nr);
1268 		if (nr) {
1269 			if (partial == chain) {
1270 				/* Shared branch grows from the inode */
1271 				ext4_free_branches(handle, inode, NULL,
1272 					   &nr, &nr+1, (chain+n-1) - partial);
1273 				*partial->p = 0;
1274 			} else {
1275 				/* Shared branch grows from an indirect block */
1276 				BUFFER_TRACE(partial->bh, "get_write_access");
1277 				ext4_free_branches(handle, inode, partial->bh,
1278 					partial->p,
1279 					partial->p+1, (chain+n-1) - partial);
1280 			}
1281 		}
1282 
1283 		/*
1284 		 * Clear the ends of indirect blocks on the shared branch
1285 		 * at the start of the range
1286 		 */
1287 		while (partial > chain) {
1288 			ext4_free_branches(handle, inode, partial->bh,
1289 				partial->p + 1,
1290 				(__le32 *)partial->bh->b_data+addr_per_block,
1291 				(chain+n-1) - partial);
1292 			partial--;
1293 		}
1294 
1295 end_range:
1296 		partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1297 		if (nr2) {
1298 			if (partial2 == chain2) {
1299 				/*
1300 				 * Remember, end is exclusive so here we're at
1301 				 * the start of the next level we're not going
1302 				 * to free. Everything was covered by the start
1303 				 * of the range.
1304 				 */
1305 				goto do_indirects;
1306 			}
1307 		} else {
1308 			/*
1309 			 * ext4_find_shared returns Indirect structure which
1310 			 * points to the last element which should not be
1311 			 * removed by truncate. But this is end of the range
1312 			 * in punch_hole so we need to point to the next element
1313 			 */
1314 			partial2->p++;
1315 		}
1316 
1317 		/*
1318 		 * Clear the ends of indirect blocks on the shared branch
1319 		 * at the end of the range
1320 		 */
1321 		while (partial2 > chain2) {
1322 			ext4_free_branches(handle, inode, partial2->bh,
1323 					   (__le32 *)partial2->bh->b_data,
1324 					   partial2->p,
1325 					   (chain2+n2-1) - partial2);
1326 			partial2--;
1327 		}
1328 		goto do_indirects;
1329 	}
1330 
1331 	/* Punch happened within the same level (n == n2) */
1332 	partial = p = ext4_find_shared(inode, n, offsets, chain, &nr);
1333 	partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1334 
1335 	/* Free top, but only if partial2 isn't its subtree. */
1336 	if (nr) {
1337 		int level = min(partial - chain, partial2 - chain2);
1338 		int i;
1339 		int subtree = 1;
1340 
1341 		for (i = 0; i <= level; i++) {
1342 			if (offsets[i] != offsets2[i]) {
1343 				subtree = 0;
1344 				break;
1345 			}
1346 		}
1347 
1348 		if (!subtree) {
1349 			if (partial == chain) {
1350 				/* Shared branch grows from the inode */
1351 				ext4_free_branches(handle, inode, NULL,
1352 						   &nr, &nr+1,
1353 						   (chain+n-1) - partial);
1354 				*partial->p = 0;
1355 			} else {
1356 				/* Shared branch grows from an indirect block */
1357 				BUFFER_TRACE(partial->bh, "get_write_access");
1358 				ext4_free_branches(handle, inode, partial->bh,
1359 						   partial->p,
1360 						   partial->p+1,
1361 						   (chain+n-1) - partial);
1362 			}
1363 		}
1364 	}
1365 
1366 	if (!nr2) {
1367 		/*
1368 		 * ext4_find_shared returns Indirect structure which
1369 		 * points to the last element which should not be
1370 		 * removed by truncate. But this is end of the range
1371 		 * in punch_hole so we need to point to the next element
1372 		 */
1373 		partial2->p++;
1374 	}
1375 
1376 	while (partial > chain || partial2 > chain2) {
1377 		int depth = (chain+n-1) - partial;
1378 		int depth2 = (chain2+n2-1) - partial2;
1379 
1380 		if (partial > chain && partial2 > chain2 &&
1381 		    partial->bh->b_blocknr == partial2->bh->b_blocknr) {
1382 			/*
1383 			 * We've converged on the same block. Clear the range,
1384 			 * then we're done.
1385 			 */
1386 			ext4_free_branches(handle, inode, partial->bh,
1387 					   partial->p + 1,
1388 					   partial2->p,
1389 					   (chain+n-1) - partial);
1390 			goto cleanup;
1391 		}
1392 
1393 		/*
1394 		 * The start and end partial branches may not be at the same
1395 		 * level even though the punch happened within one level. So, we
1396 		 * give them a chance to arrive at the same level, then walk
1397 		 * them in step with each other until we converge on the same
1398 		 * block.
1399 		 */
1400 		if (partial > chain && depth <= depth2) {
1401 			ext4_free_branches(handle, inode, partial->bh,
1402 					   partial->p + 1,
1403 					   (__le32 *)partial->bh->b_data+addr_per_block,
1404 					   (chain+n-1) - partial);
1405 			partial--;
1406 		}
1407 		if (partial2 > chain2 && depth2 <= depth) {
1408 			ext4_free_branches(handle, inode, partial2->bh,
1409 					   (__le32 *)partial2->bh->b_data,
1410 					   partial2->p,
1411 					   (chain2+n2-1) - partial2);
1412 			partial2--;
1413 		}
1414 	}
1415 
1416 cleanup:
1417 	while (p && p > chain) {
1418 		BUFFER_TRACE(p->bh, "call brelse");
1419 		brelse(p->bh);
1420 		p--;
1421 	}
1422 	while (p2 && p2 > chain2) {
1423 		BUFFER_TRACE(p2->bh, "call brelse");
1424 		brelse(p2->bh);
1425 		p2--;
1426 	}
1427 	return 0;
1428 
1429 do_indirects:
1430 	/* Kill the remaining (whole) subtrees */
1431 	switch (offsets[0]) {
1432 	default:
1433 		if (++n >= n2)
1434 			break;
1435 		nr = i_data[EXT4_IND_BLOCK];
1436 		if (nr) {
1437 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1438 			i_data[EXT4_IND_BLOCK] = 0;
1439 		}
1440 		/* fall through */
1441 	case EXT4_IND_BLOCK:
1442 		if (++n >= n2)
1443 			break;
1444 		nr = i_data[EXT4_DIND_BLOCK];
1445 		if (nr) {
1446 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1447 			i_data[EXT4_DIND_BLOCK] = 0;
1448 		}
1449 		/* fall through */
1450 	case EXT4_DIND_BLOCK:
1451 		if (++n >= n2)
1452 			break;
1453 		nr = i_data[EXT4_TIND_BLOCK];
1454 		if (nr) {
1455 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1456 			i_data[EXT4_TIND_BLOCK] = 0;
1457 		}
1458 		/* fall through */
1459 	case EXT4_TIND_BLOCK:
1460 		;
1461 	}
1462 	goto cleanup;
1463 }
1464