1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/indirect.c 4 * 5 * from 6 * 7 * linux/fs/ext4/inode.c 8 * 9 * Copyright (C) 1992, 1993, 1994, 1995 10 * Remy Card (card@masi.ibp.fr) 11 * Laboratoire MASI - Institut Blaise Pascal 12 * Universite Pierre et Marie Curie (Paris VI) 13 * 14 * from 15 * 16 * linux/fs/minix/inode.c 17 * 18 * Copyright (C) 1991, 1992 Linus Torvalds 19 * 20 * Goal-directed block allocation by Stephen Tweedie 21 * (sct@redhat.com), 1993, 1998 22 */ 23 24 #include "ext4_jbd2.h" 25 #include "truncate.h" 26 #include <linux/dax.h> 27 #include <linux/uio.h> 28 29 #include <trace/events/ext4.h> 30 31 typedef struct { 32 __le32 *p; 33 __le32 key; 34 struct buffer_head *bh; 35 } Indirect; 36 37 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 38 { 39 p->key = *(p->p = v); 40 p->bh = bh; 41 } 42 43 /** 44 * ext4_block_to_path - parse the block number into array of offsets 45 * @inode: inode in question (we are only interested in its superblock) 46 * @i_block: block number to be parsed 47 * @offsets: array to store the offsets in 48 * @boundary: set this non-zero if the referred-to block is likely to be 49 * followed (on disk) by an indirect block. 50 * 51 * To store the locations of file's data ext4 uses a data structure common 52 * for UNIX filesystems - tree of pointers anchored in the inode, with 53 * data blocks at leaves and indirect blocks in intermediate nodes. 54 * This function translates the block number into path in that tree - 55 * return value is the path length and @offsets[n] is the offset of 56 * pointer to (n+1)th node in the nth one. If @block is out of range 57 * (negative or too large) warning is printed and zero returned. 58 * 59 * Note: function doesn't find node addresses, so no IO is needed. All 60 * we need to know is the capacity of indirect blocks (taken from the 61 * inode->i_sb). 62 */ 63 64 /* 65 * Portability note: the last comparison (check that we fit into triple 66 * indirect block) is spelled differently, because otherwise on an 67 * architecture with 32-bit longs and 8Kb pages we might get into trouble 68 * if our filesystem had 8Kb blocks. We might use long long, but that would 69 * kill us on x86. Oh, well, at least the sign propagation does not matter - 70 * i_block would have to be negative in the very beginning, so we would not 71 * get there at all. 72 */ 73 74 static int ext4_block_to_path(struct inode *inode, 75 ext4_lblk_t i_block, 76 ext4_lblk_t offsets[4], int *boundary) 77 { 78 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 79 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 80 const long direct_blocks = EXT4_NDIR_BLOCKS, 81 indirect_blocks = ptrs, 82 double_blocks = (1 << (ptrs_bits * 2)); 83 int n = 0; 84 int final = 0; 85 86 if (i_block < direct_blocks) { 87 offsets[n++] = i_block; 88 final = direct_blocks; 89 } else if ((i_block -= direct_blocks) < indirect_blocks) { 90 offsets[n++] = EXT4_IND_BLOCK; 91 offsets[n++] = i_block; 92 final = ptrs; 93 } else if ((i_block -= indirect_blocks) < double_blocks) { 94 offsets[n++] = EXT4_DIND_BLOCK; 95 offsets[n++] = i_block >> ptrs_bits; 96 offsets[n++] = i_block & (ptrs - 1); 97 final = ptrs; 98 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 99 offsets[n++] = EXT4_TIND_BLOCK; 100 offsets[n++] = i_block >> (ptrs_bits * 2); 101 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 102 offsets[n++] = i_block & (ptrs - 1); 103 final = ptrs; 104 } else { 105 ext4_warning(inode->i_sb, "block %lu > max in inode %lu", 106 i_block + direct_blocks + 107 indirect_blocks + double_blocks, inode->i_ino); 108 } 109 if (boundary) 110 *boundary = final - 1 - (i_block & (ptrs - 1)); 111 return n; 112 } 113 114 /** 115 * ext4_get_branch - read the chain of indirect blocks leading to data 116 * @inode: inode in question 117 * @depth: depth of the chain (1 - direct pointer, etc.) 118 * @offsets: offsets of pointers in inode/indirect blocks 119 * @chain: place to store the result 120 * @err: here we store the error value 121 * 122 * Function fills the array of triples <key, p, bh> and returns %NULL 123 * if everything went OK or the pointer to the last filled triple 124 * (incomplete one) otherwise. Upon the return chain[i].key contains 125 * the number of (i+1)-th block in the chain (as it is stored in memory, 126 * i.e. little-endian 32-bit), chain[i].p contains the address of that 127 * number (it points into struct inode for i==0 and into the bh->b_data 128 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 129 * block for i>0 and NULL for i==0. In other words, it holds the block 130 * numbers of the chain, addresses they were taken from (and where we can 131 * verify that chain did not change) and buffer_heads hosting these 132 * numbers. 133 * 134 * Function stops when it stumbles upon zero pointer (absent block) 135 * (pointer to last triple returned, *@err == 0) 136 * or when it gets an IO error reading an indirect block 137 * (ditto, *@err == -EIO) 138 * or when it reads all @depth-1 indirect blocks successfully and finds 139 * the whole chain, all way to the data (returns %NULL, *err == 0). 140 * 141 * Need to be called with 142 * down_read(&EXT4_I(inode)->i_data_sem) 143 */ 144 static Indirect *ext4_get_branch(struct inode *inode, int depth, 145 ext4_lblk_t *offsets, 146 Indirect chain[4], int *err) 147 { 148 struct super_block *sb = inode->i_sb; 149 Indirect *p = chain; 150 struct buffer_head *bh; 151 int ret = -EIO; 152 153 *err = 0; 154 /* i_data is not going away, no lock needed */ 155 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 156 if (!p->key) 157 goto no_block; 158 while (--depth) { 159 bh = sb_getblk(sb, le32_to_cpu(p->key)); 160 if (unlikely(!bh)) { 161 ret = -ENOMEM; 162 goto failure; 163 } 164 165 if (!bh_uptodate_or_lock(bh)) { 166 if (ext4_read_bh(bh, 0, NULL) < 0) { 167 put_bh(bh); 168 goto failure; 169 } 170 /* validate block references */ 171 if (ext4_check_indirect_blockref(inode, bh)) { 172 put_bh(bh); 173 goto failure; 174 } 175 } 176 177 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 178 /* Reader: end */ 179 if (!p->key) 180 goto no_block; 181 } 182 return NULL; 183 184 failure: 185 *err = ret; 186 no_block: 187 return p; 188 } 189 190 /** 191 * ext4_find_near - find a place for allocation with sufficient locality 192 * @inode: owner 193 * @ind: descriptor of indirect block. 194 * 195 * This function returns the preferred place for block allocation. 196 * It is used when heuristic for sequential allocation fails. 197 * Rules are: 198 * + if there is a block to the left of our position - allocate near it. 199 * + if pointer will live in indirect block - allocate near that block. 200 * + if pointer will live in inode - allocate in the same 201 * cylinder group. 202 * 203 * In the latter case we colour the starting block by the callers PID to 204 * prevent it from clashing with concurrent allocations for a different inode 205 * in the same block group. The PID is used here so that functionally related 206 * files will be close-by on-disk. 207 * 208 * Caller must make sure that @ind is valid and will stay that way. 209 */ 210 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 211 { 212 struct ext4_inode_info *ei = EXT4_I(inode); 213 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 214 __le32 *p; 215 216 /* Try to find previous block */ 217 for (p = ind->p - 1; p >= start; p--) { 218 if (*p) 219 return le32_to_cpu(*p); 220 } 221 222 /* No such thing, so let's try location of indirect block */ 223 if (ind->bh) 224 return ind->bh->b_blocknr; 225 226 /* 227 * It is going to be referred to from the inode itself? OK, just put it 228 * into the same cylinder group then. 229 */ 230 return ext4_inode_to_goal_block(inode); 231 } 232 233 /** 234 * ext4_find_goal - find a preferred place for allocation. 235 * @inode: owner 236 * @block: block we want 237 * @partial: pointer to the last triple within a chain 238 * 239 * Normally this function find the preferred place for block allocation, 240 * returns it. 241 * Because this is only used for non-extent files, we limit the block nr 242 * to 32 bits. 243 */ 244 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 245 Indirect *partial) 246 { 247 ext4_fsblk_t goal; 248 249 /* 250 * XXX need to get goal block from mballoc's data structures 251 */ 252 253 goal = ext4_find_near(inode, partial); 254 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS; 255 return goal; 256 } 257 258 /** 259 * ext4_blks_to_allocate - Look up the block map and count the number 260 * of direct blocks need to be allocated for the given branch. 261 * 262 * @branch: chain of indirect blocks 263 * @k: number of blocks need for indirect blocks 264 * @blks: number of data blocks to be mapped. 265 * @blocks_to_boundary: the offset in the indirect block 266 * 267 * return the total number of blocks to be allocate, including the 268 * direct and indirect blocks. 269 */ 270 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks, 271 int blocks_to_boundary) 272 { 273 unsigned int count = 0; 274 275 /* 276 * Simple case, [t,d]Indirect block(s) has not allocated yet 277 * then it's clear blocks on that path have not allocated 278 */ 279 if (k > 0) { 280 /* right now we don't handle cross boundary allocation */ 281 if (blks < blocks_to_boundary + 1) 282 count += blks; 283 else 284 count += blocks_to_boundary + 1; 285 return count; 286 } 287 288 count++; 289 while (count < blks && count <= blocks_to_boundary && 290 le32_to_cpu(*(branch[0].p + count)) == 0) { 291 count++; 292 } 293 return count; 294 } 295 296 /** 297 * ext4_alloc_branch() - allocate and set up a chain of blocks 298 * @handle: handle for this transaction 299 * @ar: structure describing the allocation request 300 * @indirect_blks: number of allocated indirect blocks 301 * @offsets: offsets (in the blocks) to store the pointers to next. 302 * @branch: place to store the chain in. 303 * 304 * This function allocates blocks, zeroes out all but the last one, 305 * links them into chain and (if we are synchronous) writes them to disk. 306 * In other words, it prepares a branch that can be spliced onto the 307 * inode. It stores the information about that chain in the branch[], in 308 * the same format as ext4_get_branch() would do. We are calling it after 309 * we had read the existing part of chain and partial points to the last 310 * triple of that (one with zero ->key). Upon the exit we have the same 311 * picture as after the successful ext4_get_block(), except that in one 312 * place chain is disconnected - *branch->p is still zero (we did not 313 * set the last link), but branch->key contains the number that should 314 * be placed into *branch->p to fill that gap. 315 * 316 * If allocation fails we free all blocks we've allocated (and forget 317 * their buffer_heads) and return the error value the from failed 318 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 319 * as described above and return 0. 320 */ 321 static int ext4_alloc_branch(handle_t *handle, 322 struct ext4_allocation_request *ar, 323 int indirect_blks, ext4_lblk_t *offsets, 324 Indirect *branch) 325 { 326 struct buffer_head * bh; 327 ext4_fsblk_t b, new_blocks[4]; 328 __le32 *p; 329 int i, j, err, len = 1; 330 331 for (i = 0; i <= indirect_blks; i++) { 332 if (i == indirect_blks) { 333 new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err); 334 } else { 335 ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle, 336 ar->inode, ar->goal, 337 ar->flags & EXT4_MB_DELALLOC_RESERVED, 338 NULL, &err); 339 /* Simplify error cleanup... */ 340 branch[i+1].bh = NULL; 341 } 342 if (err) { 343 i--; 344 goto failed; 345 } 346 branch[i].key = cpu_to_le32(new_blocks[i]); 347 if (i == 0) 348 continue; 349 350 bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]); 351 if (unlikely(!bh)) { 352 err = -ENOMEM; 353 goto failed; 354 } 355 lock_buffer(bh); 356 BUFFER_TRACE(bh, "call get_create_access"); 357 err = ext4_journal_get_create_access(handle, bh); 358 if (err) { 359 unlock_buffer(bh); 360 goto failed; 361 } 362 363 memset(bh->b_data, 0, bh->b_size); 364 p = branch[i].p = (__le32 *) bh->b_data + offsets[i]; 365 b = new_blocks[i]; 366 367 if (i == indirect_blks) 368 len = ar->len; 369 for (j = 0; j < len; j++) 370 *p++ = cpu_to_le32(b++); 371 372 BUFFER_TRACE(bh, "marking uptodate"); 373 set_buffer_uptodate(bh); 374 unlock_buffer(bh); 375 376 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 377 err = ext4_handle_dirty_metadata(handle, ar->inode, bh); 378 if (err) 379 goto failed; 380 } 381 return 0; 382 failed: 383 if (i == indirect_blks) { 384 /* Free data blocks */ 385 ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i], 386 ar->len, 0); 387 i--; 388 } 389 for (; i >= 0; i--) { 390 /* 391 * We want to ext4_forget() only freshly allocated indirect 392 * blocks. Buffer for new_blocks[i] is at branch[i+1].bh 393 * (buffer at branch[0].bh is indirect block / inode already 394 * existing before ext4_alloc_branch() was called). Also 395 * because blocks are freshly allocated, we don't need to 396 * revoke them which is why we don't set 397 * EXT4_FREE_BLOCKS_METADATA. 398 */ 399 ext4_free_blocks(handle, ar->inode, branch[i+1].bh, 400 new_blocks[i], 1, 401 branch[i+1].bh ? EXT4_FREE_BLOCKS_FORGET : 0); 402 } 403 return err; 404 } 405 406 /** 407 * ext4_splice_branch() - splice the allocated branch onto inode. 408 * @handle: handle for this transaction 409 * @ar: structure describing the allocation request 410 * @where: location of missing link 411 * @num: number of indirect blocks we are adding 412 * 413 * This function fills the missing link and does all housekeeping needed in 414 * inode (->i_blocks, etc.). In case of success we end up with the full 415 * chain to new block and return 0. 416 */ 417 static int ext4_splice_branch(handle_t *handle, 418 struct ext4_allocation_request *ar, 419 Indirect *where, int num) 420 { 421 int i; 422 int err = 0; 423 ext4_fsblk_t current_block; 424 425 /* 426 * If we're splicing into a [td]indirect block (as opposed to the 427 * inode) then we need to get write access to the [td]indirect block 428 * before the splice. 429 */ 430 if (where->bh) { 431 BUFFER_TRACE(where->bh, "get_write_access"); 432 err = ext4_journal_get_write_access(handle, where->bh); 433 if (err) 434 goto err_out; 435 } 436 /* That's it */ 437 438 *where->p = where->key; 439 440 /* 441 * Update the host buffer_head or inode to point to more just allocated 442 * direct blocks blocks 443 */ 444 if (num == 0 && ar->len > 1) { 445 current_block = le32_to_cpu(where->key) + 1; 446 for (i = 1; i < ar->len; i++) 447 *(where->p + i) = cpu_to_le32(current_block++); 448 } 449 450 /* We are done with atomic stuff, now do the rest of housekeeping */ 451 /* had we spliced it onto indirect block? */ 452 if (where->bh) { 453 /* 454 * If we spliced it onto an indirect block, we haven't 455 * altered the inode. Note however that if it is being spliced 456 * onto an indirect block at the very end of the file (the 457 * file is growing) then we *will* alter the inode to reflect 458 * the new i_size. But that is not done here - it is done in 459 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 460 */ 461 jbd_debug(5, "splicing indirect only\n"); 462 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata"); 463 err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh); 464 if (err) 465 goto err_out; 466 } else { 467 /* 468 * OK, we spliced it into the inode itself on a direct block. 469 */ 470 err = ext4_mark_inode_dirty(handle, ar->inode); 471 if (unlikely(err)) 472 goto err_out; 473 jbd_debug(5, "splicing direct\n"); 474 } 475 return err; 476 477 err_out: 478 for (i = 1; i <= num; i++) { 479 /* 480 * branch[i].bh is newly allocated, so there is no 481 * need to revoke the block, which is why we don't 482 * need to set EXT4_FREE_BLOCKS_METADATA. 483 */ 484 ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1, 485 EXT4_FREE_BLOCKS_FORGET); 486 } 487 ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key), 488 ar->len, 0); 489 490 return err; 491 } 492 493 /* 494 * The ext4_ind_map_blocks() function handles non-extents inodes 495 * (i.e., using the traditional indirect/double-indirect i_blocks 496 * scheme) for ext4_map_blocks(). 497 * 498 * Allocation strategy is simple: if we have to allocate something, we will 499 * have to go the whole way to leaf. So let's do it before attaching anything 500 * to tree, set linkage between the newborn blocks, write them if sync is 501 * required, recheck the path, free and repeat if check fails, otherwise 502 * set the last missing link (that will protect us from any truncate-generated 503 * removals - all blocks on the path are immune now) and possibly force the 504 * write on the parent block. 505 * That has a nice additional property: no special recovery from the failed 506 * allocations is needed - we simply release blocks and do not touch anything 507 * reachable from inode. 508 * 509 * `handle' can be NULL if create == 0. 510 * 511 * return > 0, # of blocks mapped or allocated. 512 * return = 0, if plain lookup failed. 513 * return < 0, error case. 514 * 515 * The ext4_ind_get_blocks() function should be called with 516 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem 517 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or 518 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system 519 * blocks. 520 */ 521 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode, 522 struct ext4_map_blocks *map, 523 int flags) 524 { 525 struct ext4_allocation_request ar; 526 int err = -EIO; 527 ext4_lblk_t offsets[4]; 528 Indirect chain[4]; 529 Indirect *partial; 530 int indirect_blks; 531 int blocks_to_boundary = 0; 532 int depth; 533 int count = 0; 534 ext4_fsblk_t first_block = 0; 535 536 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 537 ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))); 538 ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0); 539 depth = ext4_block_to_path(inode, map->m_lblk, offsets, 540 &blocks_to_boundary); 541 542 if (depth == 0) 543 goto out; 544 545 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 546 547 /* Simplest case - block found, no allocation needed */ 548 if (!partial) { 549 first_block = le32_to_cpu(chain[depth - 1].key); 550 count++; 551 /*map more blocks*/ 552 while (count < map->m_len && count <= blocks_to_boundary) { 553 ext4_fsblk_t blk; 554 555 blk = le32_to_cpu(*(chain[depth-1].p + count)); 556 557 if (blk == first_block + count) 558 count++; 559 else 560 break; 561 } 562 goto got_it; 563 } 564 565 /* Next simple case - plain lookup failed */ 566 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 567 unsigned epb = inode->i_sb->s_blocksize / sizeof(u32); 568 int i; 569 570 /* 571 * Count number blocks in a subtree under 'partial'. At each 572 * level we count number of complete empty subtrees beyond 573 * current offset and then descend into the subtree only 574 * partially beyond current offset. 575 */ 576 count = 0; 577 for (i = partial - chain + 1; i < depth; i++) 578 count = count * epb + (epb - offsets[i] - 1); 579 count++; 580 /* Fill in size of a hole we found */ 581 map->m_pblk = 0; 582 map->m_len = min_t(unsigned int, map->m_len, count); 583 goto cleanup; 584 } 585 586 /* Failed read of indirect block */ 587 if (err == -EIO) 588 goto cleanup; 589 590 /* 591 * Okay, we need to do block allocation. 592 */ 593 if (ext4_has_feature_bigalloc(inode->i_sb)) { 594 EXT4_ERROR_INODE(inode, "Can't allocate blocks for " 595 "non-extent mapped inodes with bigalloc"); 596 err = -EFSCORRUPTED; 597 goto out; 598 } 599 600 /* Set up for the direct block allocation */ 601 memset(&ar, 0, sizeof(ar)); 602 ar.inode = inode; 603 ar.logical = map->m_lblk; 604 if (S_ISREG(inode->i_mode)) 605 ar.flags = EXT4_MB_HINT_DATA; 606 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 607 ar.flags |= EXT4_MB_DELALLOC_RESERVED; 608 if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 609 ar.flags |= EXT4_MB_USE_RESERVED; 610 611 ar.goal = ext4_find_goal(inode, map->m_lblk, partial); 612 613 /* the number of blocks need to allocate for [d,t]indirect blocks */ 614 indirect_blks = (chain + depth) - partial - 1; 615 616 /* 617 * Next look up the indirect map to count the totoal number of 618 * direct blocks to allocate for this branch. 619 */ 620 ar.len = ext4_blks_to_allocate(partial, indirect_blks, 621 map->m_len, blocks_to_boundary); 622 623 /* 624 * Block out ext4_truncate while we alter the tree 625 */ 626 err = ext4_alloc_branch(handle, &ar, indirect_blks, 627 offsets + (partial - chain), partial); 628 629 /* 630 * The ext4_splice_branch call will free and forget any buffers 631 * on the new chain if there is a failure, but that risks using 632 * up transaction credits, especially for bitmaps where the 633 * credits cannot be returned. Can we handle this somehow? We 634 * may need to return -EAGAIN upwards in the worst case. --sct 635 */ 636 if (!err) 637 err = ext4_splice_branch(handle, &ar, partial, indirect_blks); 638 if (err) 639 goto cleanup; 640 641 map->m_flags |= EXT4_MAP_NEW; 642 643 ext4_update_inode_fsync_trans(handle, inode, 1); 644 count = ar.len; 645 got_it: 646 map->m_flags |= EXT4_MAP_MAPPED; 647 map->m_pblk = le32_to_cpu(chain[depth-1].key); 648 map->m_len = count; 649 if (count > blocks_to_boundary) 650 map->m_flags |= EXT4_MAP_BOUNDARY; 651 err = count; 652 /* Clean up and exit */ 653 partial = chain + depth - 1; /* the whole chain */ 654 cleanup: 655 while (partial > chain) { 656 BUFFER_TRACE(partial->bh, "call brelse"); 657 brelse(partial->bh); 658 partial--; 659 } 660 out: 661 trace_ext4_ind_map_blocks_exit(inode, flags, map, err); 662 return err; 663 } 664 665 /* 666 * Calculate number of indirect blocks touched by mapping @nrblocks logically 667 * contiguous blocks 668 */ 669 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks) 670 { 671 /* 672 * With N contiguous data blocks, we need at most 673 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks, 674 * 2 dindirect blocks, and 1 tindirect block 675 */ 676 return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4; 677 } 678 679 static int ext4_ind_trunc_restart_fn(handle_t *handle, struct inode *inode, 680 struct buffer_head *bh, int *dropped) 681 { 682 int err; 683 684 if (bh) { 685 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 686 err = ext4_handle_dirty_metadata(handle, inode, bh); 687 if (unlikely(err)) 688 return err; 689 } 690 err = ext4_mark_inode_dirty(handle, inode); 691 if (unlikely(err)) 692 return err; 693 /* 694 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 695 * moment, get_block can be called only for blocks inside i_size since 696 * page cache has been already dropped and writes are blocked by 697 * i_mutex. So we can safely drop the i_data_sem here. 698 */ 699 BUG_ON(EXT4_JOURNAL(inode) == NULL); 700 ext4_discard_preallocations(inode, 0); 701 up_write(&EXT4_I(inode)->i_data_sem); 702 *dropped = 1; 703 return 0; 704 } 705 706 /* 707 * Truncate transactions can be complex and absolutely huge. So we need to 708 * be able to restart the transaction at a convenient checkpoint to make 709 * sure we don't overflow the journal. 710 * 711 * Try to extend this transaction for the purposes of truncation. If 712 * extend fails, we restart transaction. 713 */ 714 static int ext4_ind_truncate_ensure_credits(handle_t *handle, 715 struct inode *inode, 716 struct buffer_head *bh, 717 int revoke_creds) 718 { 719 int ret; 720 int dropped = 0; 721 722 ret = ext4_journal_ensure_credits_fn(handle, EXT4_RESERVE_TRANS_BLOCKS, 723 ext4_blocks_for_truncate(inode), revoke_creds, 724 ext4_ind_trunc_restart_fn(handle, inode, bh, &dropped)); 725 if (dropped) 726 down_write(&EXT4_I(inode)->i_data_sem); 727 if (ret <= 0) 728 return ret; 729 if (bh) { 730 BUFFER_TRACE(bh, "retaking write access"); 731 ret = ext4_journal_get_write_access(handle, bh); 732 if (unlikely(ret)) 733 return ret; 734 } 735 return 0; 736 } 737 738 /* 739 * Probably it should be a library function... search for first non-zero word 740 * or memcmp with zero_page, whatever is better for particular architecture. 741 * Linus? 742 */ 743 static inline int all_zeroes(__le32 *p, __le32 *q) 744 { 745 while (p < q) 746 if (*p++) 747 return 0; 748 return 1; 749 } 750 751 /** 752 * ext4_find_shared - find the indirect blocks for partial truncation. 753 * @inode: inode in question 754 * @depth: depth of the affected branch 755 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 756 * @chain: place to store the pointers to partial indirect blocks 757 * @top: place to the (detached) top of branch 758 * 759 * This is a helper function used by ext4_truncate(). 760 * 761 * When we do truncate() we may have to clean the ends of several 762 * indirect blocks but leave the blocks themselves alive. Block is 763 * partially truncated if some data below the new i_size is referred 764 * from it (and it is on the path to the first completely truncated 765 * data block, indeed). We have to free the top of that path along 766 * with everything to the right of the path. Since no allocation 767 * past the truncation point is possible until ext4_truncate() 768 * finishes, we may safely do the latter, but top of branch may 769 * require special attention - pageout below the truncation point 770 * might try to populate it. 771 * 772 * We atomically detach the top of branch from the tree, store the 773 * block number of its root in *@top, pointers to buffer_heads of 774 * partially truncated blocks - in @chain[].bh and pointers to 775 * their last elements that should not be removed - in 776 * @chain[].p. Return value is the pointer to last filled element 777 * of @chain. 778 * 779 * The work left to caller to do the actual freeing of subtrees: 780 * a) free the subtree starting from *@top 781 * b) free the subtrees whose roots are stored in 782 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 783 * c) free the subtrees growing from the inode past the @chain[0]. 784 * (no partially truncated stuff there). */ 785 786 static Indirect *ext4_find_shared(struct inode *inode, int depth, 787 ext4_lblk_t offsets[4], Indirect chain[4], 788 __le32 *top) 789 { 790 Indirect *partial, *p; 791 int k, err; 792 793 *top = 0; 794 /* Make k index the deepest non-null offset + 1 */ 795 for (k = depth; k > 1 && !offsets[k-1]; k--) 796 ; 797 partial = ext4_get_branch(inode, k, offsets, chain, &err); 798 /* Writer: pointers */ 799 if (!partial) 800 partial = chain + k-1; 801 /* 802 * If the branch acquired continuation since we've looked at it - 803 * fine, it should all survive and (new) top doesn't belong to us. 804 */ 805 if (!partial->key && *partial->p) 806 /* Writer: end */ 807 goto no_top; 808 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 809 ; 810 /* 811 * OK, we've found the last block that must survive. The rest of our 812 * branch should be detached before unlocking. However, if that rest 813 * of branch is all ours and does not grow immediately from the inode 814 * it's easier to cheat and just decrement partial->p. 815 */ 816 if (p == chain + k - 1 && p > chain) { 817 p->p--; 818 } else { 819 *top = *p->p; 820 /* Nope, don't do this in ext4. Must leave the tree intact */ 821 #if 0 822 *p->p = 0; 823 #endif 824 } 825 /* Writer: end */ 826 827 while (partial > p) { 828 brelse(partial->bh); 829 partial--; 830 } 831 no_top: 832 return partial; 833 } 834 835 /* 836 * Zero a number of block pointers in either an inode or an indirect block. 837 * If we restart the transaction we must again get write access to the 838 * indirect block for further modification. 839 * 840 * We release `count' blocks on disk, but (last - first) may be greater 841 * than `count' because there can be holes in there. 842 * 843 * Return 0 on success, 1 on invalid block range 844 * and < 0 on fatal error. 845 */ 846 static int ext4_clear_blocks(handle_t *handle, struct inode *inode, 847 struct buffer_head *bh, 848 ext4_fsblk_t block_to_free, 849 unsigned long count, __le32 *first, 850 __le32 *last) 851 { 852 __le32 *p; 853 int flags = EXT4_FREE_BLOCKS_VALIDATED; 854 int err; 855 856 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) || 857 ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE)) 858 flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA; 859 else if (ext4_should_journal_data(inode)) 860 flags |= EXT4_FREE_BLOCKS_FORGET; 861 862 if (!ext4_inode_block_valid(inode, block_to_free, count)) { 863 EXT4_ERROR_INODE(inode, "attempt to clear invalid " 864 "blocks %llu len %lu", 865 (unsigned long long) block_to_free, count); 866 return 1; 867 } 868 869 err = ext4_ind_truncate_ensure_credits(handle, inode, bh, 870 ext4_free_data_revoke_credits(inode, count)); 871 if (err < 0) 872 goto out_err; 873 874 for (p = first; p < last; p++) 875 *p = 0; 876 877 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags); 878 return 0; 879 out_err: 880 ext4_std_error(inode->i_sb, err); 881 return err; 882 } 883 884 /** 885 * ext4_free_data - free a list of data blocks 886 * @handle: handle for this transaction 887 * @inode: inode we are dealing with 888 * @this_bh: indirect buffer_head which contains *@first and *@last 889 * @first: array of block numbers 890 * @last: points immediately past the end of array 891 * 892 * We are freeing all blocks referred from that array (numbers are stored as 893 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 894 * 895 * We accumulate contiguous runs of blocks to free. Conveniently, if these 896 * blocks are contiguous then releasing them at one time will only affect one 897 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 898 * actually use a lot of journal space. 899 * 900 * @this_bh will be %NULL if @first and @last point into the inode's direct 901 * block pointers. 902 */ 903 static void ext4_free_data(handle_t *handle, struct inode *inode, 904 struct buffer_head *this_bh, 905 __le32 *first, __le32 *last) 906 { 907 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 908 unsigned long count = 0; /* Number of blocks in the run */ 909 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 910 corresponding to 911 block_to_free */ 912 ext4_fsblk_t nr; /* Current block # */ 913 __le32 *p; /* Pointer into inode/ind 914 for current block */ 915 int err = 0; 916 917 if (this_bh) { /* For indirect block */ 918 BUFFER_TRACE(this_bh, "get_write_access"); 919 err = ext4_journal_get_write_access(handle, this_bh); 920 /* Important: if we can't update the indirect pointers 921 * to the blocks, we can't free them. */ 922 if (err) 923 return; 924 } 925 926 for (p = first; p < last; p++) { 927 nr = le32_to_cpu(*p); 928 if (nr) { 929 /* accumulate blocks to free if they're contiguous */ 930 if (count == 0) { 931 block_to_free = nr; 932 block_to_free_p = p; 933 count = 1; 934 } else if (nr == block_to_free + count) { 935 count++; 936 } else { 937 err = ext4_clear_blocks(handle, inode, this_bh, 938 block_to_free, count, 939 block_to_free_p, p); 940 if (err) 941 break; 942 block_to_free = nr; 943 block_to_free_p = p; 944 count = 1; 945 } 946 } 947 } 948 949 if (!err && count > 0) 950 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free, 951 count, block_to_free_p, p); 952 if (err < 0) 953 /* fatal error */ 954 return; 955 956 if (this_bh) { 957 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata"); 958 959 /* 960 * The buffer head should have an attached journal head at this 961 * point. However, if the data is corrupted and an indirect 962 * block pointed to itself, it would have been detached when 963 * the block was cleared. Check for this instead of OOPSing. 964 */ 965 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh)) 966 ext4_handle_dirty_metadata(handle, inode, this_bh); 967 else 968 EXT4_ERROR_INODE(inode, 969 "circular indirect block detected at " 970 "block %llu", 971 (unsigned long long) this_bh->b_blocknr); 972 } 973 } 974 975 /** 976 * ext4_free_branches - free an array of branches 977 * @handle: JBD handle for this transaction 978 * @inode: inode we are dealing with 979 * @parent_bh: the buffer_head which contains *@first and *@last 980 * @first: array of block numbers 981 * @last: pointer immediately past the end of array 982 * @depth: depth of the branches to free 983 * 984 * We are freeing all blocks referred from these branches (numbers are 985 * stored as little-endian 32-bit) and updating @inode->i_blocks 986 * appropriately. 987 */ 988 static void ext4_free_branches(handle_t *handle, struct inode *inode, 989 struct buffer_head *parent_bh, 990 __le32 *first, __le32 *last, int depth) 991 { 992 ext4_fsblk_t nr; 993 __le32 *p; 994 995 if (ext4_handle_is_aborted(handle)) 996 return; 997 998 if (depth--) { 999 struct buffer_head *bh; 1000 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1001 p = last; 1002 while (--p >= first) { 1003 nr = le32_to_cpu(*p); 1004 if (!nr) 1005 continue; /* A hole */ 1006 1007 if (!ext4_inode_block_valid(inode, nr, 1)) { 1008 EXT4_ERROR_INODE(inode, 1009 "invalid indirect mapped " 1010 "block %lu (level %d)", 1011 (unsigned long) nr, depth); 1012 break; 1013 } 1014 1015 /* Go read the buffer for the next level down */ 1016 bh = ext4_sb_bread(inode->i_sb, nr, 0); 1017 1018 /* 1019 * A read failure? Report error and clear slot 1020 * (should be rare). 1021 */ 1022 if (IS_ERR(bh)) { 1023 ext4_error_inode_block(inode, nr, -PTR_ERR(bh), 1024 "Read failure"); 1025 continue; 1026 } 1027 1028 /* This zaps the entire block. Bottom up. */ 1029 BUFFER_TRACE(bh, "free child branches"); 1030 ext4_free_branches(handle, inode, bh, 1031 (__le32 *) bh->b_data, 1032 (__le32 *) bh->b_data + addr_per_block, 1033 depth); 1034 brelse(bh); 1035 1036 /* 1037 * Everything below this pointer has been 1038 * released. Now let this top-of-subtree go. 1039 * 1040 * We want the freeing of this indirect block to be 1041 * atomic in the journal with the updating of the 1042 * bitmap block which owns it. So make some room in 1043 * the journal. 1044 * 1045 * We zero the parent pointer *after* freeing its 1046 * pointee in the bitmaps, so if extend_transaction() 1047 * for some reason fails to put the bitmap changes and 1048 * the release into the same transaction, recovery 1049 * will merely complain about releasing a free block, 1050 * rather than leaking blocks. 1051 */ 1052 if (ext4_handle_is_aborted(handle)) 1053 return; 1054 if (ext4_ind_truncate_ensure_credits(handle, inode, 1055 NULL, 1056 ext4_free_metadata_revoke_credits( 1057 inode->i_sb, 1)) < 0) 1058 return; 1059 1060 /* 1061 * The forget flag here is critical because if 1062 * we are journaling (and not doing data 1063 * journaling), we have to make sure a revoke 1064 * record is written to prevent the journal 1065 * replay from overwriting the (former) 1066 * indirect block if it gets reallocated as a 1067 * data block. This must happen in the same 1068 * transaction where the data blocks are 1069 * actually freed. 1070 */ 1071 ext4_free_blocks(handle, inode, NULL, nr, 1, 1072 EXT4_FREE_BLOCKS_METADATA| 1073 EXT4_FREE_BLOCKS_FORGET); 1074 1075 if (parent_bh) { 1076 /* 1077 * The block which we have just freed is 1078 * pointed to by an indirect block: journal it 1079 */ 1080 BUFFER_TRACE(parent_bh, "get_write_access"); 1081 if (!ext4_journal_get_write_access(handle, 1082 parent_bh)){ 1083 *p = 0; 1084 BUFFER_TRACE(parent_bh, 1085 "call ext4_handle_dirty_metadata"); 1086 ext4_handle_dirty_metadata(handle, 1087 inode, 1088 parent_bh); 1089 } 1090 } 1091 } 1092 } else { 1093 /* We have reached the bottom of the tree. */ 1094 BUFFER_TRACE(parent_bh, "free data blocks"); 1095 ext4_free_data(handle, inode, parent_bh, first, last); 1096 } 1097 } 1098 1099 void ext4_ind_truncate(handle_t *handle, struct inode *inode) 1100 { 1101 struct ext4_inode_info *ei = EXT4_I(inode); 1102 __le32 *i_data = ei->i_data; 1103 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1104 ext4_lblk_t offsets[4]; 1105 Indirect chain[4]; 1106 Indirect *partial; 1107 __le32 nr = 0; 1108 int n = 0; 1109 ext4_lblk_t last_block, max_block; 1110 unsigned blocksize = inode->i_sb->s_blocksize; 1111 1112 last_block = (inode->i_size + blocksize-1) 1113 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1114 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1) 1115 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1116 1117 if (last_block != max_block) { 1118 n = ext4_block_to_path(inode, last_block, offsets, NULL); 1119 if (n == 0) 1120 return; 1121 } 1122 1123 ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block); 1124 1125 /* 1126 * The orphan list entry will now protect us from any crash which 1127 * occurs before the truncate completes, so it is now safe to propagate 1128 * the new, shorter inode size (held for now in i_size) into the 1129 * on-disk inode. We do this via i_disksize, which is the value which 1130 * ext4 *really* writes onto the disk inode. 1131 */ 1132 ei->i_disksize = inode->i_size; 1133 1134 if (last_block == max_block) { 1135 /* 1136 * It is unnecessary to free any data blocks if last_block is 1137 * equal to the indirect block limit. 1138 */ 1139 return; 1140 } else if (n == 1) { /* direct blocks */ 1141 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 1142 i_data + EXT4_NDIR_BLOCKS); 1143 goto do_indirects; 1144 } 1145 1146 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 1147 /* Kill the top of shared branch (not detached) */ 1148 if (nr) { 1149 if (partial == chain) { 1150 /* Shared branch grows from the inode */ 1151 ext4_free_branches(handle, inode, NULL, 1152 &nr, &nr+1, (chain+n-1) - partial); 1153 *partial->p = 0; 1154 /* 1155 * We mark the inode dirty prior to restart, 1156 * and prior to stop. No need for it here. 1157 */ 1158 } else { 1159 /* Shared branch grows from an indirect block */ 1160 BUFFER_TRACE(partial->bh, "get_write_access"); 1161 ext4_free_branches(handle, inode, partial->bh, 1162 partial->p, 1163 partial->p+1, (chain+n-1) - partial); 1164 } 1165 } 1166 /* Clear the ends of indirect blocks on the shared branch */ 1167 while (partial > chain) { 1168 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 1169 (__le32*)partial->bh->b_data+addr_per_block, 1170 (chain+n-1) - partial); 1171 BUFFER_TRACE(partial->bh, "call brelse"); 1172 brelse(partial->bh); 1173 partial--; 1174 } 1175 do_indirects: 1176 /* Kill the remaining (whole) subtrees */ 1177 switch (offsets[0]) { 1178 default: 1179 nr = i_data[EXT4_IND_BLOCK]; 1180 if (nr) { 1181 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 1182 i_data[EXT4_IND_BLOCK] = 0; 1183 } 1184 fallthrough; 1185 case EXT4_IND_BLOCK: 1186 nr = i_data[EXT4_DIND_BLOCK]; 1187 if (nr) { 1188 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 1189 i_data[EXT4_DIND_BLOCK] = 0; 1190 } 1191 fallthrough; 1192 case EXT4_DIND_BLOCK: 1193 nr = i_data[EXT4_TIND_BLOCK]; 1194 if (nr) { 1195 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 1196 i_data[EXT4_TIND_BLOCK] = 0; 1197 } 1198 fallthrough; 1199 case EXT4_TIND_BLOCK: 1200 ; 1201 } 1202 } 1203 1204 /** 1205 * ext4_ind_remove_space - remove space from the range 1206 * @handle: JBD handle for this transaction 1207 * @inode: inode we are dealing with 1208 * @start: First block to remove 1209 * @end: One block after the last block to remove (exclusive) 1210 * 1211 * Free the blocks in the defined range (end is exclusive endpoint of 1212 * range). This is used by ext4_punch_hole(). 1213 */ 1214 int ext4_ind_remove_space(handle_t *handle, struct inode *inode, 1215 ext4_lblk_t start, ext4_lblk_t end) 1216 { 1217 struct ext4_inode_info *ei = EXT4_I(inode); 1218 __le32 *i_data = ei->i_data; 1219 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1220 ext4_lblk_t offsets[4], offsets2[4]; 1221 Indirect chain[4], chain2[4]; 1222 Indirect *partial, *partial2; 1223 Indirect *p = NULL, *p2 = NULL; 1224 ext4_lblk_t max_block; 1225 __le32 nr = 0, nr2 = 0; 1226 int n = 0, n2 = 0; 1227 unsigned blocksize = inode->i_sb->s_blocksize; 1228 1229 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1) 1230 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1231 if (end >= max_block) 1232 end = max_block; 1233 if ((start >= end) || (start > max_block)) 1234 return 0; 1235 1236 n = ext4_block_to_path(inode, start, offsets, NULL); 1237 n2 = ext4_block_to_path(inode, end, offsets2, NULL); 1238 1239 BUG_ON(n > n2); 1240 1241 if ((n == 1) && (n == n2)) { 1242 /* We're punching only within direct block range */ 1243 ext4_free_data(handle, inode, NULL, i_data + offsets[0], 1244 i_data + offsets2[0]); 1245 return 0; 1246 } else if (n2 > n) { 1247 /* 1248 * Start and end are on a different levels so we're going to 1249 * free partial block at start, and partial block at end of 1250 * the range. If there are some levels in between then 1251 * do_indirects label will take care of that. 1252 */ 1253 1254 if (n == 1) { 1255 /* 1256 * Start is at the direct block level, free 1257 * everything to the end of the level. 1258 */ 1259 ext4_free_data(handle, inode, NULL, i_data + offsets[0], 1260 i_data + EXT4_NDIR_BLOCKS); 1261 goto end_range; 1262 } 1263 1264 1265 partial = p = ext4_find_shared(inode, n, offsets, chain, &nr); 1266 if (nr) { 1267 if (partial == chain) { 1268 /* Shared branch grows from the inode */ 1269 ext4_free_branches(handle, inode, NULL, 1270 &nr, &nr+1, (chain+n-1) - partial); 1271 *partial->p = 0; 1272 } else { 1273 /* Shared branch grows from an indirect block */ 1274 BUFFER_TRACE(partial->bh, "get_write_access"); 1275 ext4_free_branches(handle, inode, partial->bh, 1276 partial->p, 1277 partial->p+1, (chain+n-1) - partial); 1278 } 1279 } 1280 1281 /* 1282 * Clear the ends of indirect blocks on the shared branch 1283 * at the start of the range 1284 */ 1285 while (partial > chain) { 1286 ext4_free_branches(handle, inode, partial->bh, 1287 partial->p + 1, 1288 (__le32 *)partial->bh->b_data+addr_per_block, 1289 (chain+n-1) - partial); 1290 partial--; 1291 } 1292 1293 end_range: 1294 partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2); 1295 if (nr2) { 1296 if (partial2 == chain2) { 1297 /* 1298 * Remember, end is exclusive so here we're at 1299 * the start of the next level we're not going 1300 * to free. Everything was covered by the start 1301 * of the range. 1302 */ 1303 goto do_indirects; 1304 } 1305 } else { 1306 /* 1307 * ext4_find_shared returns Indirect structure which 1308 * points to the last element which should not be 1309 * removed by truncate. But this is end of the range 1310 * in punch_hole so we need to point to the next element 1311 */ 1312 partial2->p++; 1313 } 1314 1315 /* 1316 * Clear the ends of indirect blocks on the shared branch 1317 * at the end of the range 1318 */ 1319 while (partial2 > chain2) { 1320 ext4_free_branches(handle, inode, partial2->bh, 1321 (__le32 *)partial2->bh->b_data, 1322 partial2->p, 1323 (chain2+n2-1) - partial2); 1324 partial2--; 1325 } 1326 goto do_indirects; 1327 } 1328 1329 /* Punch happened within the same level (n == n2) */ 1330 partial = p = ext4_find_shared(inode, n, offsets, chain, &nr); 1331 partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2); 1332 1333 /* Free top, but only if partial2 isn't its subtree. */ 1334 if (nr) { 1335 int level = min(partial - chain, partial2 - chain2); 1336 int i; 1337 int subtree = 1; 1338 1339 for (i = 0; i <= level; i++) { 1340 if (offsets[i] != offsets2[i]) { 1341 subtree = 0; 1342 break; 1343 } 1344 } 1345 1346 if (!subtree) { 1347 if (partial == chain) { 1348 /* Shared branch grows from the inode */ 1349 ext4_free_branches(handle, inode, NULL, 1350 &nr, &nr+1, 1351 (chain+n-1) - partial); 1352 *partial->p = 0; 1353 } else { 1354 /* Shared branch grows from an indirect block */ 1355 BUFFER_TRACE(partial->bh, "get_write_access"); 1356 ext4_free_branches(handle, inode, partial->bh, 1357 partial->p, 1358 partial->p+1, 1359 (chain+n-1) - partial); 1360 } 1361 } 1362 } 1363 1364 if (!nr2) { 1365 /* 1366 * ext4_find_shared returns Indirect structure which 1367 * points to the last element which should not be 1368 * removed by truncate. But this is end of the range 1369 * in punch_hole so we need to point to the next element 1370 */ 1371 partial2->p++; 1372 } 1373 1374 while (partial > chain || partial2 > chain2) { 1375 int depth = (chain+n-1) - partial; 1376 int depth2 = (chain2+n2-1) - partial2; 1377 1378 if (partial > chain && partial2 > chain2 && 1379 partial->bh->b_blocknr == partial2->bh->b_blocknr) { 1380 /* 1381 * We've converged on the same block. Clear the range, 1382 * then we're done. 1383 */ 1384 ext4_free_branches(handle, inode, partial->bh, 1385 partial->p + 1, 1386 partial2->p, 1387 (chain+n-1) - partial); 1388 goto cleanup; 1389 } 1390 1391 /* 1392 * The start and end partial branches may not be at the same 1393 * level even though the punch happened within one level. So, we 1394 * give them a chance to arrive at the same level, then walk 1395 * them in step with each other until we converge on the same 1396 * block. 1397 */ 1398 if (partial > chain && depth <= depth2) { 1399 ext4_free_branches(handle, inode, partial->bh, 1400 partial->p + 1, 1401 (__le32 *)partial->bh->b_data+addr_per_block, 1402 (chain+n-1) - partial); 1403 partial--; 1404 } 1405 if (partial2 > chain2 && depth2 <= depth) { 1406 ext4_free_branches(handle, inode, partial2->bh, 1407 (__le32 *)partial2->bh->b_data, 1408 partial2->p, 1409 (chain2+n2-1) - partial2); 1410 partial2--; 1411 } 1412 } 1413 1414 cleanup: 1415 while (p && p > chain) { 1416 BUFFER_TRACE(p->bh, "call brelse"); 1417 brelse(p->bh); 1418 p--; 1419 } 1420 while (p2 && p2 > chain2) { 1421 BUFFER_TRACE(p2->bh, "call brelse"); 1422 brelse(p2->bh); 1423 p2--; 1424 } 1425 return 0; 1426 1427 do_indirects: 1428 /* Kill the remaining (whole) subtrees */ 1429 switch (offsets[0]) { 1430 default: 1431 if (++n >= n2) 1432 break; 1433 nr = i_data[EXT4_IND_BLOCK]; 1434 if (nr) { 1435 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 1436 i_data[EXT4_IND_BLOCK] = 0; 1437 } 1438 fallthrough; 1439 case EXT4_IND_BLOCK: 1440 if (++n >= n2) 1441 break; 1442 nr = i_data[EXT4_DIND_BLOCK]; 1443 if (nr) { 1444 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 1445 i_data[EXT4_DIND_BLOCK] = 0; 1446 } 1447 fallthrough; 1448 case EXT4_DIND_BLOCK: 1449 if (++n >= n2) 1450 break; 1451 nr = i_data[EXT4_TIND_BLOCK]; 1452 if (nr) { 1453 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 1454 i_data[EXT4_TIND_BLOCK] = 0; 1455 } 1456 fallthrough; 1457 case EXT4_TIND_BLOCK: 1458 ; 1459 } 1460 goto cleanup; 1461 } 1462