xref: /linux/fs/ext4/indirect.c (revision 6fdcba32711044c35c0e1b094cbd8f3f0b4472c9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/indirect.c
4  *
5  *  from
6  *
7  *  linux/fs/ext4/inode.c
8  *
9  * Copyright (C) 1992, 1993, 1994, 1995
10  * Remy Card (card@masi.ibp.fr)
11  * Laboratoire MASI - Institut Blaise Pascal
12  * Universite Pierre et Marie Curie (Paris VI)
13  *
14  *  from
15  *
16  *  linux/fs/minix/inode.c
17  *
18  *  Copyright (C) 1991, 1992  Linus Torvalds
19  *
20  *  Goal-directed block allocation by Stephen Tweedie
21  *	(sct@redhat.com), 1993, 1998
22  */
23 
24 #include "ext4_jbd2.h"
25 #include "truncate.h"
26 #include <linux/dax.h>
27 #include <linux/uio.h>
28 
29 #include <trace/events/ext4.h>
30 
31 typedef struct {
32 	__le32	*p;
33 	__le32	key;
34 	struct buffer_head *bh;
35 } Indirect;
36 
37 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
38 {
39 	p->key = *(p->p = v);
40 	p->bh = bh;
41 }
42 
43 /**
44  *	ext4_block_to_path - parse the block number into array of offsets
45  *	@inode: inode in question (we are only interested in its superblock)
46  *	@i_block: block number to be parsed
47  *	@offsets: array to store the offsets in
48  *	@boundary: set this non-zero if the referred-to block is likely to be
49  *	       followed (on disk) by an indirect block.
50  *
51  *	To store the locations of file's data ext4 uses a data structure common
52  *	for UNIX filesystems - tree of pointers anchored in the inode, with
53  *	data blocks at leaves and indirect blocks in intermediate nodes.
54  *	This function translates the block number into path in that tree -
55  *	return value is the path length and @offsets[n] is the offset of
56  *	pointer to (n+1)th node in the nth one. If @block is out of range
57  *	(negative or too large) warning is printed and zero returned.
58  *
59  *	Note: function doesn't find node addresses, so no IO is needed. All
60  *	we need to know is the capacity of indirect blocks (taken from the
61  *	inode->i_sb).
62  */
63 
64 /*
65  * Portability note: the last comparison (check that we fit into triple
66  * indirect block) is spelled differently, because otherwise on an
67  * architecture with 32-bit longs and 8Kb pages we might get into trouble
68  * if our filesystem had 8Kb blocks. We might use long long, but that would
69  * kill us on x86. Oh, well, at least the sign propagation does not matter -
70  * i_block would have to be negative in the very beginning, so we would not
71  * get there at all.
72  */
73 
74 static int ext4_block_to_path(struct inode *inode,
75 			      ext4_lblk_t i_block,
76 			      ext4_lblk_t offsets[4], int *boundary)
77 {
78 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
79 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
80 	const long direct_blocks = EXT4_NDIR_BLOCKS,
81 		indirect_blocks = ptrs,
82 		double_blocks = (1 << (ptrs_bits * 2));
83 	int n = 0;
84 	int final = 0;
85 
86 	if (i_block < direct_blocks) {
87 		offsets[n++] = i_block;
88 		final = direct_blocks;
89 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
90 		offsets[n++] = EXT4_IND_BLOCK;
91 		offsets[n++] = i_block;
92 		final = ptrs;
93 	} else if ((i_block -= indirect_blocks) < double_blocks) {
94 		offsets[n++] = EXT4_DIND_BLOCK;
95 		offsets[n++] = i_block >> ptrs_bits;
96 		offsets[n++] = i_block & (ptrs - 1);
97 		final = ptrs;
98 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
99 		offsets[n++] = EXT4_TIND_BLOCK;
100 		offsets[n++] = i_block >> (ptrs_bits * 2);
101 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
102 		offsets[n++] = i_block & (ptrs - 1);
103 		final = ptrs;
104 	} else {
105 		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
106 			     i_block + direct_blocks +
107 			     indirect_blocks + double_blocks, inode->i_ino);
108 	}
109 	if (boundary)
110 		*boundary = final - 1 - (i_block & (ptrs - 1));
111 	return n;
112 }
113 
114 /**
115  *	ext4_get_branch - read the chain of indirect blocks leading to data
116  *	@inode: inode in question
117  *	@depth: depth of the chain (1 - direct pointer, etc.)
118  *	@offsets: offsets of pointers in inode/indirect blocks
119  *	@chain: place to store the result
120  *	@err: here we store the error value
121  *
122  *	Function fills the array of triples <key, p, bh> and returns %NULL
123  *	if everything went OK or the pointer to the last filled triple
124  *	(incomplete one) otherwise. Upon the return chain[i].key contains
125  *	the number of (i+1)-th block in the chain (as it is stored in memory,
126  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
127  *	number (it points into struct inode for i==0 and into the bh->b_data
128  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
129  *	block for i>0 and NULL for i==0. In other words, it holds the block
130  *	numbers of the chain, addresses they were taken from (and where we can
131  *	verify that chain did not change) and buffer_heads hosting these
132  *	numbers.
133  *
134  *	Function stops when it stumbles upon zero pointer (absent block)
135  *		(pointer to last triple returned, *@err == 0)
136  *	or when it gets an IO error reading an indirect block
137  *		(ditto, *@err == -EIO)
138  *	or when it reads all @depth-1 indirect blocks successfully and finds
139  *	the whole chain, all way to the data (returns %NULL, *err == 0).
140  *
141  *      Need to be called with
142  *      down_read(&EXT4_I(inode)->i_data_sem)
143  */
144 static Indirect *ext4_get_branch(struct inode *inode, int depth,
145 				 ext4_lblk_t  *offsets,
146 				 Indirect chain[4], int *err)
147 {
148 	struct super_block *sb = inode->i_sb;
149 	Indirect *p = chain;
150 	struct buffer_head *bh;
151 	int ret = -EIO;
152 
153 	*err = 0;
154 	/* i_data is not going away, no lock needed */
155 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
156 	if (!p->key)
157 		goto no_block;
158 	while (--depth) {
159 		bh = sb_getblk(sb, le32_to_cpu(p->key));
160 		if (unlikely(!bh)) {
161 			ret = -ENOMEM;
162 			goto failure;
163 		}
164 
165 		if (!bh_uptodate_or_lock(bh)) {
166 			if (bh_submit_read(bh) < 0) {
167 				put_bh(bh);
168 				goto failure;
169 			}
170 			/* validate block references */
171 			if (ext4_check_indirect_blockref(inode, bh)) {
172 				put_bh(bh);
173 				goto failure;
174 			}
175 		}
176 
177 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
178 		/* Reader: end */
179 		if (!p->key)
180 			goto no_block;
181 	}
182 	return NULL;
183 
184 failure:
185 	*err = ret;
186 no_block:
187 	return p;
188 }
189 
190 /**
191  *	ext4_find_near - find a place for allocation with sufficient locality
192  *	@inode: owner
193  *	@ind: descriptor of indirect block.
194  *
195  *	This function returns the preferred place for block allocation.
196  *	It is used when heuristic for sequential allocation fails.
197  *	Rules are:
198  *	  + if there is a block to the left of our position - allocate near it.
199  *	  + if pointer will live in indirect block - allocate near that block.
200  *	  + if pointer will live in inode - allocate in the same
201  *	    cylinder group.
202  *
203  * In the latter case we colour the starting block by the callers PID to
204  * prevent it from clashing with concurrent allocations for a different inode
205  * in the same block group.   The PID is used here so that functionally related
206  * files will be close-by on-disk.
207  *
208  *	Caller must make sure that @ind is valid and will stay that way.
209  */
210 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
211 {
212 	struct ext4_inode_info *ei = EXT4_I(inode);
213 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
214 	__le32 *p;
215 
216 	/* Try to find previous block */
217 	for (p = ind->p - 1; p >= start; p--) {
218 		if (*p)
219 			return le32_to_cpu(*p);
220 	}
221 
222 	/* No such thing, so let's try location of indirect block */
223 	if (ind->bh)
224 		return ind->bh->b_blocknr;
225 
226 	/*
227 	 * It is going to be referred to from the inode itself? OK, just put it
228 	 * into the same cylinder group then.
229 	 */
230 	return ext4_inode_to_goal_block(inode);
231 }
232 
233 /**
234  *	ext4_find_goal - find a preferred place for allocation.
235  *	@inode: owner
236  *	@block:  block we want
237  *	@partial: pointer to the last triple within a chain
238  *
239  *	Normally this function find the preferred place for block allocation,
240  *	returns it.
241  *	Because this is only used for non-extent files, we limit the block nr
242  *	to 32 bits.
243  */
244 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
245 				   Indirect *partial)
246 {
247 	ext4_fsblk_t goal;
248 
249 	/*
250 	 * XXX need to get goal block from mballoc's data structures
251 	 */
252 
253 	goal = ext4_find_near(inode, partial);
254 	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
255 	return goal;
256 }
257 
258 /**
259  *	ext4_blks_to_allocate - Look up the block map and count the number
260  *	of direct blocks need to be allocated for the given branch.
261  *
262  *	@branch: chain of indirect blocks
263  *	@k: number of blocks need for indirect blocks
264  *	@blks: number of data blocks to be mapped.
265  *	@blocks_to_boundary:  the offset in the indirect block
266  *
267  *	return the total number of blocks to be allocate, including the
268  *	direct and indirect blocks.
269  */
270 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
271 				 int blocks_to_boundary)
272 {
273 	unsigned int count = 0;
274 
275 	/*
276 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
277 	 * then it's clear blocks on that path have not allocated
278 	 */
279 	if (k > 0) {
280 		/* right now we don't handle cross boundary allocation */
281 		if (blks < blocks_to_boundary + 1)
282 			count += blks;
283 		else
284 			count += blocks_to_boundary + 1;
285 		return count;
286 	}
287 
288 	count++;
289 	while (count < blks && count <= blocks_to_boundary &&
290 		le32_to_cpu(*(branch[0].p + count)) == 0) {
291 		count++;
292 	}
293 	return count;
294 }
295 
296 /**
297  * ext4_alloc_branch() - allocate and set up a chain of blocks
298  * @handle: handle for this transaction
299  * @ar: structure describing the allocation request
300  * @indirect_blks: number of allocated indirect blocks
301  * @offsets: offsets (in the blocks) to store the pointers to next.
302  * @branch: place to store the chain in.
303  *
304  *	This function allocates blocks, zeroes out all but the last one,
305  *	links them into chain and (if we are synchronous) writes them to disk.
306  *	In other words, it prepares a branch that can be spliced onto the
307  *	inode. It stores the information about that chain in the branch[], in
308  *	the same format as ext4_get_branch() would do. We are calling it after
309  *	we had read the existing part of chain and partial points to the last
310  *	triple of that (one with zero ->key). Upon the exit we have the same
311  *	picture as after the successful ext4_get_block(), except that in one
312  *	place chain is disconnected - *branch->p is still zero (we did not
313  *	set the last link), but branch->key contains the number that should
314  *	be placed into *branch->p to fill that gap.
315  *
316  *	If allocation fails we free all blocks we've allocated (and forget
317  *	their buffer_heads) and return the error value the from failed
318  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
319  *	as described above and return 0.
320  */
321 static int ext4_alloc_branch(handle_t *handle,
322 			     struct ext4_allocation_request *ar,
323 			     int indirect_blks, ext4_lblk_t *offsets,
324 			     Indirect *branch)
325 {
326 	struct buffer_head *		bh;
327 	ext4_fsblk_t			b, new_blocks[4];
328 	__le32				*p;
329 	int				i, j, err, len = 1;
330 
331 	for (i = 0; i <= indirect_blks; i++) {
332 		if (i == indirect_blks) {
333 			new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err);
334 		} else {
335 			ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle,
336 					ar->inode, ar->goal,
337 					ar->flags & EXT4_MB_DELALLOC_RESERVED,
338 					NULL, &err);
339 			/* Simplify error cleanup... */
340 			branch[i+1].bh = NULL;
341 		}
342 		if (err) {
343 			i--;
344 			goto failed;
345 		}
346 		branch[i].key = cpu_to_le32(new_blocks[i]);
347 		if (i == 0)
348 			continue;
349 
350 		bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]);
351 		if (unlikely(!bh)) {
352 			err = -ENOMEM;
353 			goto failed;
354 		}
355 		lock_buffer(bh);
356 		BUFFER_TRACE(bh, "call get_create_access");
357 		err = ext4_journal_get_create_access(handle, bh);
358 		if (err) {
359 			unlock_buffer(bh);
360 			goto failed;
361 		}
362 
363 		memset(bh->b_data, 0, bh->b_size);
364 		p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
365 		b = new_blocks[i];
366 
367 		if (i == indirect_blks)
368 			len = ar->len;
369 		for (j = 0; j < len; j++)
370 			*p++ = cpu_to_le32(b++);
371 
372 		BUFFER_TRACE(bh, "marking uptodate");
373 		set_buffer_uptodate(bh);
374 		unlock_buffer(bh);
375 
376 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
377 		err = ext4_handle_dirty_metadata(handle, ar->inode, bh);
378 		if (err)
379 			goto failed;
380 	}
381 	return 0;
382 failed:
383 	if (i == indirect_blks) {
384 		/* Free data blocks */
385 		ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i],
386 				 ar->len, 0);
387 		i--;
388 	}
389 	for (; i >= 0; i--) {
390 		/*
391 		 * We want to ext4_forget() only freshly allocated indirect
392 		 * blocks. Buffer for new_blocks[i] is at branch[i+1].bh
393 		 * (buffer at branch[0].bh is indirect block / inode already
394 		 * existing before ext4_alloc_branch() was called). Also
395 		 * because blocks are freshly allocated, we don't need to
396 		 * revoke them which is why we don't set
397 		 * EXT4_FREE_BLOCKS_METADATA.
398 		 */
399 		ext4_free_blocks(handle, ar->inode, branch[i+1].bh,
400 				 new_blocks[i], 1,
401 				 branch[i+1].bh ? EXT4_FREE_BLOCKS_FORGET : 0);
402 	}
403 	return err;
404 }
405 
406 /**
407  * ext4_splice_branch() - splice the allocated branch onto inode.
408  * @handle: handle for this transaction
409  * @ar: structure describing the allocation request
410  * @where: location of missing link
411  * @num:   number of indirect blocks we are adding
412  *
413  * This function fills the missing link and does all housekeeping needed in
414  * inode (->i_blocks, etc.). In case of success we end up with the full
415  * chain to new block and return 0.
416  */
417 static int ext4_splice_branch(handle_t *handle,
418 			      struct ext4_allocation_request *ar,
419 			      Indirect *where, int num)
420 {
421 	int i;
422 	int err = 0;
423 	ext4_fsblk_t current_block;
424 
425 	/*
426 	 * If we're splicing into a [td]indirect block (as opposed to the
427 	 * inode) then we need to get write access to the [td]indirect block
428 	 * before the splice.
429 	 */
430 	if (where->bh) {
431 		BUFFER_TRACE(where->bh, "get_write_access");
432 		err = ext4_journal_get_write_access(handle, where->bh);
433 		if (err)
434 			goto err_out;
435 	}
436 	/* That's it */
437 
438 	*where->p = where->key;
439 
440 	/*
441 	 * Update the host buffer_head or inode to point to more just allocated
442 	 * direct blocks blocks
443 	 */
444 	if (num == 0 && ar->len > 1) {
445 		current_block = le32_to_cpu(where->key) + 1;
446 		for (i = 1; i < ar->len; i++)
447 			*(where->p + i) = cpu_to_le32(current_block++);
448 	}
449 
450 	/* We are done with atomic stuff, now do the rest of housekeeping */
451 	/* had we spliced it onto indirect block? */
452 	if (where->bh) {
453 		/*
454 		 * If we spliced it onto an indirect block, we haven't
455 		 * altered the inode.  Note however that if it is being spliced
456 		 * onto an indirect block at the very end of the file (the
457 		 * file is growing) then we *will* alter the inode to reflect
458 		 * the new i_size.  But that is not done here - it is done in
459 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
460 		 */
461 		jbd_debug(5, "splicing indirect only\n");
462 		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
463 		err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh);
464 		if (err)
465 			goto err_out;
466 	} else {
467 		/*
468 		 * OK, we spliced it into the inode itself on a direct block.
469 		 */
470 		ext4_mark_inode_dirty(handle, ar->inode);
471 		jbd_debug(5, "splicing direct\n");
472 	}
473 	return err;
474 
475 err_out:
476 	for (i = 1; i <= num; i++) {
477 		/*
478 		 * branch[i].bh is newly allocated, so there is no
479 		 * need to revoke the block, which is why we don't
480 		 * need to set EXT4_FREE_BLOCKS_METADATA.
481 		 */
482 		ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1,
483 				 EXT4_FREE_BLOCKS_FORGET);
484 	}
485 	ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key),
486 			 ar->len, 0);
487 
488 	return err;
489 }
490 
491 /*
492  * The ext4_ind_map_blocks() function handles non-extents inodes
493  * (i.e., using the traditional indirect/double-indirect i_blocks
494  * scheme) for ext4_map_blocks().
495  *
496  * Allocation strategy is simple: if we have to allocate something, we will
497  * have to go the whole way to leaf. So let's do it before attaching anything
498  * to tree, set linkage between the newborn blocks, write them if sync is
499  * required, recheck the path, free and repeat if check fails, otherwise
500  * set the last missing link (that will protect us from any truncate-generated
501  * removals - all blocks on the path are immune now) and possibly force the
502  * write on the parent block.
503  * That has a nice additional property: no special recovery from the failed
504  * allocations is needed - we simply release blocks and do not touch anything
505  * reachable from inode.
506  *
507  * `handle' can be NULL if create == 0.
508  *
509  * return > 0, # of blocks mapped or allocated.
510  * return = 0, if plain lookup failed.
511  * return < 0, error case.
512  *
513  * The ext4_ind_get_blocks() function should be called with
514  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
515  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
516  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
517  * blocks.
518  */
519 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
520 			struct ext4_map_blocks *map,
521 			int flags)
522 {
523 	struct ext4_allocation_request ar;
524 	int err = -EIO;
525 	ext4_lblk_t offsets[4];
526 	Indirect chain[4];
527 	Indirect *partial;
528 	int indirect_blks;
529 	int blocks_to_boundary = 0;
530 	int depth;
531 	int count = 0;
532 	ext4_fsblk_t first_block = 0;
533 
534 	trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
535 	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
536 	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
537 	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
538 				   &blocks_to_boundary);
539 
540 	if (depth == 0)
541 		goto out;
542 
543 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
544 
545 	/* Simplest case - block found, no allocation needed */
546 	if (!partial) {
547 		first_block = le32_to_cpu(chain[depth - 1].key);
548 		count++;
549 		/*map more blocks*/
550 		while (count < map->m_len && count <= blocks_to_boundary) {
551 			ext4_fsblk_t blk;
552 
553 			blk = le32_to_cpu(*(chain[depth-1].p + count));
554 
555 			if (blk == first_block + count)
556 				count++;
557 			else
558 				break;
559 		}
560 		goto got_it;
561 	}
562 
563 	/* Next simple case - plain lookup failed */
564 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
565 		unsigned epb = inode->i_sb->s_blocksize / sizeof(u32);
566 		int i;
567 
568 		/*
569 		 * Count number blocks in a subtree under 'partial'. At each
570 		 * level we count number of complete empty subtrees beyond
571 		 * current offset and then descend into the subtree only
572 		 * partially beyond current offset.
573 		 */
574 		count = 0;
575 		for (i = partial - chain + 1; i < depth; i++)
576 			count = count * epb + (epb - offsets[i] - 1);
577 		count++;
578 		/* Fill in size of a hole we found */
579 		map->m_pblk = 0;
580 		map->m_len = min_t(unsigned int, map->m_len, count);
581 		goto cleanup;
582 	}
583 
584 	/* Failed read of indirect block */
585 	if (err == -EIO)
586 		goto cleanup;
587 
588 	/*
589 	 * Okay, we need to do block allocation.
590 	*/
591 	if (ext4_has_feature_bigalloc(inode->i_sb)) {
592 		EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
593 				 "non-extent mapped inodes with bigalloc");
594 		return -EFSCORRUPTED;
595 	}
596 
597 	/* Set up for the direct block allocation */
598 	memset(&ar, 0, sizeof(ar));
599 	ar.inode = inode;
600 	ar.logical = map->m_lblk;
601 	if (S_ISREG(inode->i_mode))
602 		ar.flags = EXT4_MB_HINT_DATA;
603 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
604 		ar.flags |= EXT4_MB_DELALLOC_RESERVED;
605 	if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
606 		ar.flags |= EXT4_MB_USE_RESERVED;
607 
608 	ar.goal = ext4_find_goal(inode, map->m_lblk, partial);
609 
610 	/* the number of blocks need to allocate for [d,t]indirect blocks */
611 	indirect_blks = (chain + depth) - partial - 1;
612 
613 	/*
614 	 * Next look up the indirect map to count the totoal number of
615 	 * direct blocks to allocate for this branch.
616 	 */
617 	ar.len = ext4_blks_to_allocate(partial, indirect_blks,
618 				       map->m_len, blocks_to_boundary);
619 
620 	/*
621 	 * Block out ext4_truncate while we alter the tree
622 	 */
623 	err = ext4_alloc_branch(handle, &ar, indirect_blks,
624 				offsets + (partial - chain), partial);
625 
626 	/*
627 	 * The ext4_splice_branch call will free and forget any buffers
628 	 * on the new chain if there is a failure, but that risks using
629 	 * up transaction credits, especially for bitmaps where the
630 	 * credits cannot be returned.  Can we handle this somehow?  We
631 	 * may need to return -EAGAIN upwards in the worst case.  --sct
632 	 */
633 	if (!err)
634 		err = ext4_splice_branch(handle, &ar, partial, indirect_blks);
635 	if (err)
636 		goto cleanup;
637 
638 	map->m_flags |= EXT4_MAP_NEW;
639 
640 	ext4_update_inode_fsync_trans(handle, inode, 1);
641 	count = ar.len;
642 got_it:
643 	map->m_flags |= EXT4_MAP_MAPPED;
644 	map->m_pblk = le32_to_cpu(chain[depth-1].key);
645 	map->m_len = count;
646 	if (count > blocks_to_boundary)
647 		map->m_flags |= EXT4_MAP_BOUNDARY;
648 	err = count;
649 	/* Clean up and exit */
650 	partial = chain + depth - 1;	/* the whole chain */
651 cleanup:
652 	while (partial > chain) {
653 		BUFFER_TRACE(partial->bh, "call brelse");
654 		brelse(partial->bh);
655 		partial--;
656 	}
657 out:
658 	trace_ext4_ind_map_blocks_exit(inode, flags, map, err);
659 	return err;
660 }
661 
662 /*
663  * Calculate the number of metadata blocks need to reserve
664  * to allocate a new block at @lblocks for non extent file based file
665  */
666 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
667 {
668 	struct ext4_inode_info *ei = EXT4_I(inode);
669 	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
670 	int blk_bits;
671 
672 	if (lblock < EXT4_NDIR_BLOCKS)
673 		return 0;
674 
675 	lblock -= EXT4_NDIR_BLOCKS;
676 
677 	if (ei->i_da_metadata_calc_len &&
678 	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
679 		ei->i_da_metadata_calc_len++;
680 		return 0;
681 	}
682 	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
683 	ei->i_da_metadata_calc_len = 1;
684 	blk_bits = order_base_2(lblock);
685 	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
686 }
687 
688 /*
689  * Calculate number of indirect blocks touched by mapping @nrblocks logically
690  * contiguous blocks
691  */
692 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks)
693 {
694 	/*
695 	 * With N contiguous data blocks, we need at most
696 	 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
697 	 * 2 dindirect blocks, and 1 tindirect block
698 	 */
699 	return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
700 }
701 
702 static int ext4_ind_trunc_restart_fn(handle_t *handle, struct inode *inode,
703 				     struct buffer_head *bh, int *dropped)
704 {
705 	int err;
706 
707 	if (bh) {
708 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
709 		err = ext4_handle_dirty_metadata(handle, inode, bh);
710 		if (unlikely(err))
711 			return err;
712 	}
713 	err = ext4_mark_inode_dirty(handle, inode);
714 	if (unlikely(err))
715 		return err;
716 	/*
717 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
718 	 * moment, get_block can be called only for blocks inside i_size since
719 	 * page cache has been already dropped and writes are blocked by
720 	 * i_mutex. So we can safely drop the i_data_sem here.
721 	 */
722 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
723 	ext4_discard_preallocations(inode);
724 	up_write(&EXT4_I(inode)->i_data_sem);
725 	*dropped = 1;
726 	return 0;
727 }
728 
729 /*
730  * Truncate transactions can be complex and absolutely huge.  So we need to
731  * be able to restart the transaction at a conventient checkpoint to make
732  * sure we don't overflow the journal.
733  *
734  * Try to extend this transaction for the purposes of truncation.  If
735  * extend fails, we restart transaction.
736  */
737 static int ext4_ind_truncate_ensure_credits(handle_t *handle,
738 					    struct inode *inode,
739 					    struct buffer_head *bh,
740 					    int revoke_creds)
741 {
742 	int ret;
743 	int dropped = 0;
744 
745 	ret = ext4_journal_ensure_credits_fn(handle, EXT4_RESERVE_TRANS_BLOCKS,
746 			ext4_blocks_for_truncate(inode), revoke_creds,
747 			ext4_ind_trunc_restart_fn(handle, inode, bh, &dropped));
748 	if (dropped)
749 		down_write(&EXT4_I(inode)->i_data_sem);
750 	if (ret <= 0)
751 		return ret;
752 	if (bh) {
753 		BUFFER_TRACE(bh, "retaking write access");
754 		ret = ext4_journal_get_write_access(handle, bh);
755 		if (unlikely(ret))
756 			return ret;
757 	}
758 	return 0;
759 }
760 
761 /*
762  * Probably it should be a library function... search for first non-zero word
763  * or memcmp with zero_page, whatever is better for particular architecture.
764  * Linus?
765  */
766 static inline int all_zeroes(__le32 *p, __le32 *q)
767 {
768 	while (p < q)
769 		if (*p++)
770 			return 0;
771 	return 1;
772 }
773 
774 /**
775  *	ext4_find_shared - find the indirect blocks for partial truncation.
776  *	@inode:	  inode in question
777  *	@depth:	  depth of the affected branch
778  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
779  *	@chain:	  place to store the pointers to partial indirect blocks
780  *	@top:	  place to the (detached) top of branch
781  *
782  *	This is a helper function used by ext4_truncate().
783  *
784  *	When we do truncate() we may have to clean the ends of several
785  *	indirect blocks but leave the blocks themselves alive. Block is
786  *	partially truncated if some data below the new i_size is referred
787  *	from it (and it is on the path to the first completely truncated
788  *	data block, indeed).  We have to free the top of that path along
789  *	with everything to the right of the path. Since no allocation
790  *	past the truncation point is possible until ext4_truncate()
791  *	finishes, we may safely do the latter, but top of branch may
792  *	require special attention - pageout below the truncation point
793  *	might try to populate it.
794  *
795  *	We atomically detach the top of branch from the tree, store the
796  *	block number of its root in *@top, pointers to buffer_heads of
797  *	partially truncated blocks - in @chain[].bh and pointers to
798  *	their last elements that should not be removed - in
799  *	@chain[].p. Return value is the pointer to last filled element
800  *	of @chain.
801  *
802  *	The work left to caller to do the actual freeing of subtrees:
803  *		a) free the subtree starting from *@top
804  *		b) free the subtrees whose roots are stored in
805  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
806  *		c) free the subtrees growing from the inode past the @chain[0].
807  *			(no partially truncated stuff there).  */
808 
809 static Indirect *ext4_find_shared(struct inode *inode, int depth,
810 				  ext4_lblk_t offsets[4], Indirect chain[4],
811 				  __le32 *top)
812 {
813 	Indirect *partial, *p;
814 	int k, err;
815 
816 	*top = 0;
817 	/* Make k index the deepest non-null offset + 1 */
818 	for (k = depth; k > 1 && !offsets[k-1]; k--)
819 		;
820 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
821 	/* Writer: pointers */
822 	if (!partial)
823 		partial = chain + k-1;
824 	/*
825 	 * If the branch acquired continuation since we've looked at it -
826 	 * fine, it should all survive and (new) top doesn't belong to us.
827 	 */
828 	if (!partial->key && *partial->p)
829 		/* Writer: end */
830 		goto no_top;
831 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
832 		;
833 	/*
834 	 * OK, we've found the last block that must survive. The rest of our
835 	 * branch should be detached before unlocking. However, if that rest
836 	 * of branch is all ours and does not grow immediately from the inode
837 	 * it's easier to cheat and just decrement partial->p.
838 	 */
839 	if (p == chain + k - 1 && p > chain) {
840 		p->p--;
841 	} else {
842 		*top = *p->p;
843 		/* Nope, don't do this in ext4.  Must leave the tree intact */
844 #if 0
845 		*p->p = 0;
846 #endif
847 	}
848 	/* Writer: end */
849 
850 	while (partial > p) {
851 		brelse(partial->bh);
852 		partial--;
853 	}
854 no_top:
855 	return partial;
856 }
857 
858 /*
859  * Zero a number of block pointers in either an inode or an indirect block.
860  * If we restart the transaction we must again get write access to the
861  * indirect block for further modification.
862  *
863  * We release `count' blocks on disk, but (last - first) may be greater
864  * than `count' because there can be holes in there.
865  *
866  * Return 0 on success, 1 on invalid block range
867  * and < 0 on fatal error.
868  */
869 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
870 			     struct buffer_head *bh,
871 			     ext4_fsblk_t block_to_free,
872 			     unsigned long count, __le32 *first,
873 			     __le32 *last)
874 {
875 	__le32 *p;
876 	int	flags = EXT4_FREE_BLOCKS_VALIDATED;
877 	int	err;
878 
879 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) ||
880 	    ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE))
881 		flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA;
882 	else if (ext4_should_journal_data(inode))
883 		flags |= EXT4_FREE_BLOCKS_FORGET;
884 
885 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
886 				   count)) {
887 		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
888 				 "blocks %llu len %lu",
889 				 (unsigned long long) block_to_free, count);
890 		return 1;
891 	}
892 
893 	err = ext4_ind_truncate_ensure_credits(handle, inode, bh,
894 				ext4_free_data_revoke_credits(inode, count));
895 	if (err < 0)
896 		goto out_err;
897 
898 	for (p = first; p < last; p++)
899 		*p = 0;
900 
901 	ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
902 	return 0;
903 out_err:
904 	ext4_std_error(inode->i_sb, err);
905 	return err;
906 }
907 
908 /**
909  * ext4_free_data - free a list of data blocks
910  * @handle:	handle for this transaction
911  * @inode:	inode we are dealing with
912  * @this_bh:	indirect buffer_head which contains *@first and *@last
913  * @first:	array of block numbers
914  * @last:	points immediately past the end of array
915  *
916  * We are freeing all blocks referred from that array (numbers are stored as
917  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
918  *
919  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
920  * blocks are contiguous then releasing them at one time will only affect one
921  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
922  * actually use a lot of journal space.
923  *
924  * @this_bh will be %NULL if @first and @last point into the inode's direct
925  * block pointers.
926  */
927 static void ext4_free_data(handle_t *handle, struct inode *inode,
928 			   struct buffer_head *this_bh,
929 			   __le32 *first, __le32 *last)
930 {
931 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
932 	unsigned long count = 0;	    /* Number of blocks in the run */
933 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
934 					       corresponding to
935 					       block_to_free */
936 	ext4_fsblk_t nr;		    /* Current block # */
937 	__le32 *p;			    /* Pointer into inode/ind
938 					       for current block */
939 	int err = 0;
940 
941 	if (this_bh) {				/* For indirect block */
942 		BUFFER_TRACE(this_bh, "get_write_access");
943 		err = ext4_journal_get_write_access(handle, this_bh);
944 		/* Important: if we can't update the indirect pointers
945 		 * to the blocks, we can't free them. */
946 		if (err)
947 			return;
948 	}
949 
950 	for (p = first; p < last; p++) {
951 		nr = le32_to_cpu(*p);
952 		if (nr) {
953 			/* accumulate blocks to free if they're contiguous */
954 			if (count == 0) {
955 				block_to_free = nr;
956 				block_to_free_p = p;
957 				count = 1;
958 			} else if (nr == block_to_free + count) {
959 				count++;
960 			} else {
961 				err = ext4_clear_blocks(handle, inode, this_bh,
962 						        block_to_free, count,
963 						        block_to_free_p, p);
964 				if (err)
965 					break;
966 				block_to_free = nr;
967 				block_to_free_p = p;
968 				count = 1;
969 			}
970 		}
971 	}
972 
973 	if (!err && count > 0)
974 		err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
975 					count, block_to_free_p, p);
976 	if (err < 0)
977 		/* fatal error */
978 		return;
979 
980 	if (this_bh) {
981 		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
982 
983 		/*
984 		 * The buffer head should have an attached journal head at this
985 		 * point. However, if the data is corrupted and an indirect
986 		 * block pointed to itself, it would have been detached when
987 		 * the block was cleared. Check for this instead of OOPSing.
988 		 */
989 		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
990 			ext4_handle_dirty_metadata(handle, inode, this_bh);
991 		else
992 			EXT4_ERROR_INODE(inode,
993 					 "circular indirect block detected at "
994 					 "block %llu",
995 				(unsigned long long) this_bh->b_blocknr);
996 	}
997 }
998 
999 /**
1000  *	ext4_free_branches - free an array of branches
1001  *	@handle: JBD handle for this transaction
1002  *	@inode:	inode we are dealing with
1003  *	@parent_bh: the buffer_head which contains *@first and *@last
1004  *	@first:	array of block numbers
1005  *	@last:	pointer immediately past the end of array
1006  *	@depth:	depth of the branches to free
1007  *
1008  *	We are freeing all blocks referred from these branches (numbers are
1009  *	stored as little-endian 32-bit) and updating @inode->i_blocks
1010  *	appropriately.
1011  */
1012 static void ext4_free_branches(handle_t *handle, struct inode *inode,
1013 			       struct buffer_head *parent_bh,
1014 			       __le32 *first, __le32 *last, int depth)
1015 {
1016 	ext4_fsblk_t nr;
1017 	__le32 *p;
1018 
1019 	if (ext4_handle_is_aborted(handle))
1020 		return;
1021 
1022 	if (depth--) {
1023 		struct buffer_head *bh;
1024 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1025 		p = last;
1026 		while (--p >= first) {
1027 			nr = le32_to_cpu(*p);
1028 			if (!nr)
1029 				continue;		/* A hole */
1030 
1031 			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
1032 						   nr, 1)) {
1033 				EXT4_ERROR_INODE(inode,
1034 						 "invalid indirect mapped "
1035 						 "block %lu (level %d)",
1036 						 (unsigned long) nr, depth);
1037 				break;
1038 			}
1039 
1040 			/* Go read the buffer for the next level down */
1041 			bh = sb_bread(inode->i_sb, nr);
1042 
1043 			/*
1044 			 * A read failure? Report error and clear slot
1045 			 * (should be rare).
1046 			 */
1047 			if (!bh) {
1048 				EXT4_ERROR_INODE_BLOCK(inode, nr,
1049 						       "Read failure");
1050 				continue;
1051 			}
1052 
1053 			/* This zaps the entire block.  Bottom up. */
1054 			BUFFER_TRACE(bh, "free child branches");
1055 			ext4_free_branches(handle, inode, bh,
1056 					(__le32 *) bh->b_data,
1057 					(__le32 *) bh->b_data + addr_per_block,
1058 					depth);
1059 			brelse(bh);
1060 
1061 			/*
1062 			 * Everything below this this pointer has been
1063 			 * released.  Now let this top-of-subtree go.
1064 			 *
1065 			 * We want the freeing of this indirect block to be
1066 			 * atomic in the journal with the updating of the
1067 			 * bitmap block which owns it.  So make some room in
1068 			 * the journal.
1069 			 *
1070 			 * We zero the parent pointer *after* freeing its
1071 			 * pointee in the bitmaps, so if extend_transaction()
1072 			 * for some reason fails to put the bitmap changes and
1073 			 * the release into the same transaction, recovery
1074 			 * will merely complain about releasing a free block,
1075 			 * rather than leaking blocks.
1076 			 */
1077 			if (ext4_handle_is_aborted(handle))
1078 				return;
1079 			if (ext4_ind_truncate_ensure_credits(handle, inode,
1080 					NULL,
1081 					ext4_free_metadata_revoke_credits(
1082 							inode->i_sb, 1)) < 0)
1083 				return;
1084 
1085 			/*
1086 			 * The forget flag here is critical because if
1087 			 * we are journaling (and not doing data
1088 			 * journaling), we have to make sure a revoke
1089 			 * record is written to prevent the journal
1090 			 * replay from overwriting the (former)
1091 			 * indirect block if it gets reallocated as a
1092 			 * data block.  This must happen in the same
1093 			 * transaction where the data blocks are
1094 			 * actually freed.
1095 			 */
1096 			ext4_free_blocks(handle, inode, NULL, nr, 1,
1097 					 EXT4_FREE_BLOCKS_METADATA|
1098 					 EXT4_FREE_BLOCKS_FORGET);
1099 
1100 			if (parent_bh) {
1101 				/*
1102 				 * The block which we have just freed is
1103 				 * pointed to by an indirect block: journal it
1104 				 */
1105 				BUFFER_TRACE(parent_bh, "get_write_access");
1106 				if (!ext4_journal_get_write_access(handle,
1107 								   parent_bh)){
1108 					*p = 0;
1109 					BUFFER_TRACE(parent_bh,
1110 					"call ext4_handle_dirty_metadata");
1111 					ext4_handle_dirty_metadata(handle,
1112 								   inode,
1113 								   parent_bh);
1114 				}
1115 			}
1116 		}
1117 	} else {
1118 		/* We have reached the bottom of the tree. */
1119 		BUFFER_TRACE(parent_bh, "free data blocks");
1120 		ext4_free_data(handle, inode, parent_bh, first, last);
1121 	}
1122 }
1123 
1124 void ext4_ind_truncate(handle_t *handle, struct inode *inode)
1125 {
1126 	struct ext4_inode_info *ei = EXT4_I(inode);
1127 	__le32 *i_data = ei->i_data;
1128 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1129 	ext4_lblk_t offsets[4];
1130 	Indirect chain[4];
1131 	Indirect *partial;
1132 	__le32 nr = 0;
1133 	int n = 0;
1134 	ext4_lblk_t last_block, max_block;
1135 	unsigned blocksize = inode->i_sb->s_blocksize;
1136 
1137 	last_block = (inode->i_size + blocksize-1)
1138 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1139 	max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1140 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1141 
1142 	if (last_block != max_block) {
1143 		n = ext4_block_to_path(inode, last_block, offsets, NULL);
1144 		if (n == 0)
1145 			return;
1146 	}
1147 
1148 	ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1149 
1150 	/*
1151 	 * The orphan list entry will now protect us from any crash which
1152 	 * occurs before the truncate completes, so it is now safe to propagate
1153 	 * the new, shorter inode size (held for now in i_size) into the
1154 	 * on-disk inode. We do this via i_disksize, which is the value which
1155 	 * ext4 *really* writes onto the disk inode.
1156 	 */
1157 	ei->i_disksize = inode->i_size;
1158 
1159 	if (last_block == max_block) {
1160 		/*
1161 		 * It is unnecessary to free any data blocks if last_block is
1162 		 * equal to the indirect block limit.
1163 		 */
1164 		return;
1165 	} else if (n == 1) {		/* direct blocks */
1166 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1167 			       i_data + EXT4_NDIR_BLOCKS);
1168 		goto do_indirects;
1169 	}
1170 
1171 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1172 	/* Kill the top of shared branch (not detached) */
1173 	if (nr) {
1174 		if (partial == chain) {
1175 			/* Shared branch grows from the inode */
1176 			ext4_free_branches(handle, inode, NULL,
1177 					   &nr, &nr+1, (chain+n-1) - partial);
1178 			*partial->p = 0;
1179 			/*
1180 			 * We mark the inode dirty prior to restart,
1181 			 * and prior to stop.  No need for it here.
1182 			 */
1183 		} else {
1184 			/* Shared branch grows from an indirect block */
1185 			BUFFER_TRACE(partial->bh, "get_write_access");
1186 			ext4_free_branches(handle, inode, partial->bh,
1187 					partial->p,
1188 					partial->p+1, (chain+n-1) - partial);
1189 		}
1190 	}
1191 	/* Clear the ends of indirect blocks on the shared branch */
1192 	while (partial > chain) {
1193 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1194 				   (__le32*)partial->bh->b_data+addr_per_block,
1195 				   (chain+n-1) - partial);
1196 		BUFFER_TRACE(partial->bh, "call brelse");
1197 		brelse(partial->bh);
1198 		partial--;
1199 	}
1200 do_indirects:
1201 	/* Kill the remaining (whole) subtrees */
1202 	switch (offsets[0]) {
1203 	default:
1204 		nr = i_data[EXT4_IND_BLOCK];
1205 		if (nr) {
1206 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1207 			i_data[EXT4_IND_BLOCK] = 0;
1208 		}
1209 		/* fall through */
1210 	case EXT4_IND_BLOCK:
1211 		nr = i_data[EXT4_DIND_BLOCK];
1212 		if (nr) {
1213 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1214 			i_data[EXT4_DIND_BLOCK] = 0;
1215 		}
1216 		/* fall through */
1217 	case EXT4_DIND_BLOCK:
1218 		nr = i_data[EXT4_TIND_BLOCK];
1219 		if (nr) {
1220 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1221 			i_data[EXT4_TIND_BLOCK] = 0;
1222 		}
1223 		/* fall through */
1224 	case EXT4_TIND_BLOCK:
1225 		;
1226 	}
1227 }
1228 
1229 /**
1230  *	ext4_ind_remove_space - remove space from the range
1231  *	@handle: JBD handle for this transaction
1232  *	@inode:	inode we are dealing with
1233  *	@start:	First block to remove
1234  *	@end:	One block after the last block to remove (exclusive)
1235  *
1236  *	Free the blocks in the defined range (end is exclusive endpoint of
1237  *	range). This is used by ext4_punch_hole().
1238  */
1239 int ext4_ind_remove_space(handle_t *handle, struct inode *inode,
1240 			  ext4_lblk_t start, ext4_lblk_t end)
1241 {
1242 	struct ext4_inode_info *ei = EXT4_I(inode);
1243 	__le32 *i_data = ei->i_data;
1244 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1245 	ext4_lblk_t offsets[4], offsets2[4];
1246 	Indirect chain[4], chain2[4];
1247 	Indirect *partial, *partial2;
1248 	Indirect *p = NULL, *p2 = NULL;
1249 	ext4_lblk_t max_block;
1250 	__le32 nr = 0, nr2 = 0;
1251 	int n = 0, n2 = 0;
1252 	unsigned blocksize = inode->i_sb->s_blocksize;
1253 
1254 	max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1255 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1256 	if (end >= max_block)
1257 		end = max_block;
1258 	if ((start >= end) || (start > max_block))
1259 		return 0;
1260 
1261 	n = ext4_block_to_path(inode, start, offsets, NULL);
1262 	n2 = ext4_block_to_path(inode, end, offsets2, NULL);
1263 
1264 	BUG_ON(n > n2);
1265 
1266 	if ((n == 1) && (n == n2)) {
1267 		/* We're punching only within direct block range */
1268 		ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1269 			       i_data + offsets2[0]);
1270 		return 0;
1271 	} else if (n2 > n) {
1272 		/*
1273 		 * Start and end are on a different levels so we're going to
1274 		 * free partial block at start, and partial block at end of
1275 		 * the range. If there are some levels in between then
1276 		 * do_indirects label will take care of that.
1277 		 */
1278 
1279 		if (n == 1) {
1280 			/*
1281 			 * Start is at the direct block level, free
1282 			 * everything to the end of the level.
1283 			 */
1284 			ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1285 				       i_data + EXT4_NDIR_BLOCKS);
1286 			goto end_range;
1287 		}
1288 
1289 
1290 		partial = p = ext4_find_shared(inode, n, offsets, chain, &nr);
1291 		if (nr) {
1292 			if (partial == chain) {
1293 				/* Shared branch grows from the inode */
1294 				ext4_free_branches(handle, inode, NULL,
1295 					   &nr, &nr+1, (chain+n-1) - partial);
1296 				*partial->p = 0;
1297 			} else {
1298 				/* Shared branch grows from an indirect block */
1299 				BUFFER_TRACE(partial->bh, "get_write_access");
1300 				ext4_free_branches(handle, inode, partial->bh,
1301 					partial->p,
1302 					partial->p+1, (chain+n-1) - partial);
1303 			}
1304 		}
1305 
1306 		/*
1307 		 * Clear the ends of indirect blocks on the shared branch
1308 		 * at the start of the range
1309 		 */
1310 		while (partial > chain) {
1311 			ext4_free_branches(handle, inode, partial->bh,
1312 				partial->p + 1,
1313 				(__le32 *)partial->bh->b_data+addr_per_block,
1314 				(chain+n-1) - partial);
1315 			partial--;
1316 		}
1317 
1318 end_range:
1319 		partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1320 		if (nr2) {
1321 			if (partial2 == chain2) {
1322 				/*
1323 				 * Remember, end is exclusive so here we're at
1324 				 * the start of the next level we're not going
1325 				 * to free. Everything was covered by the start
1326 				 * of the range.
1327 				 */
1328 				goto do_indirects;
1329 			}
1330 		} else {
1331 			/*
1332 			 * ext4_find_shared returns Indirect structure which
1333 			 * points to the last element which should not be
1334 			 * removed by truncate. But this is end of the range
1335 			 * in punch_hole so we need to point to the next element
1336 			 */
1337 			partial2->p++;
1338 		}
1339 
1340 		/*
1341 		 * Clear the ends of indirect blocks on the shared branch
1342 		 * at the end of the range
1343 		 */
1344 		while (partial2 > chain2) {
1345 			ext4_free_branches(handle, inode, partial2->bh,
1346 					   (__le32 *)partial2->bh->b_data,
1347 					   partial2->p,
1348 					   (chain2+n2-1) - partial2);
1349 			partial2--;
1350 		}
1351 		goto do_indirects;
1352 	}
1353 
1354 	/* Punch happened within the same level (n == n2) */
1355 	partial = p = ext4_find_shared(inode, n, offsets, chain, &nr);
1356 	partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1357 
1358 	/* Free top, but only if partial2 isn't its subtree. */
1359 	if (nr) {
1360 		int level = min(partial - chain, partial2 - chain2);
1361 		int i;
1362 		int subtree = 1;
1363 
1364 		for (i = 0; i <= level; i++) {
1365 			if (offsets[i] != offsets2[i]) {
1366 				subtree = 0;
1367 				break;
1368 			}
1369 		}
1370 
1371 		if (!subtree) {
1372 			if (partial == chain) {
1373 				/* Shared branch grows from the inode */
1374 				ext4_free_branches(handle, inode, NULL,
1375 						   &nr, &nr+1,
1376 						   (chain+n-1) - partial);
1377 				*partial->p = 0;
1378 			} else {
1379 				/* Shared branch grows from an indirect block */
1380 				BUFFER_TRACE(partial->bh, "get_write_access");
1381 				ext4_free_branches(handle, inode, partial->bh,
1382 						   partial->p,
1383 						   partial->p+1,
1384 						   (chain+n-1) - partial);
1385 			}
1386 		}
1387 	}
1388 
1389 	if (!nr2) {
1390 		/*
1391 		 * ext4_find_shared returns Indirect structure which
1392 		 * points to the last element which should not be
1393 		 * removed by truncate. But this is end of the range
1394 		 * in punch_hole so we need to point to the next element
1395 		 */
1396 		partial2->p++;
1397 	}
1398 
1399 	while (partial > chain || partial2 > chain2) {
1400 		int depth = (chain+n-1) - partial;
1401 		int depth2 = (chain2+n2-1) - partial2;
1402 
1403 		if (partial > chain && partial2 > chain2 &&
1404 		    partial->bh->b_blocknr == partial2->bh->b_blocknr) {
1405 			/*
1406 			 * We've converged on the same block. Clear the range,
1407 			 * then we're done.
1408 			 */
1409 			ext4_free_branches(handle, inode, partial->bh,
1410 					   partial->p + 1,
1411 					   partial2->p,
1412 					   (chain+n-1) - partial);
1413 			goto cleanup;
1414 		}
1415 
1416 		/*
1417 		 * The start and end partial branches may not be at the same
1418 		 * level even though the punch happened within one level. So, we
1419 		 * give them a chance to arrive at the same level, then walk
1420 		 * them in step with each other until we converge on the same
1421 		 * block.
1422 		 */
1423 		if (partial > chain && depth <= depth2) {
1424 			ext4_free_branches(handle, inode, partial->bh,
1425 					   partial->p + 1,
1426 					   (__le32 *)partial->bh->b_data+addr_per_block,
1427 					   (chain+n-1) - partial);
1428 			partial--;
1429 		}
1430 		if (partial2 > chain2 && depth2 <= depth) {
1431 			ext4_free_branches(handle, inode, partial2->bh,
1432 					   (__le32 *)partial2->bh->b_data,
1433 					   partial2->p,
1434 					   (chain2+n2-1) - partial2);
1435 			partial2--;
1436 		}
1437 	}
1438 
1439 cleanup:
1440 	while (p && p > chain) {
1441 		BUFFER_TRACE(p->bh, "call brelse");
1442 		brelse(p->bh);
1443 		p--;
1444 	}
1445 	while (p2 && p2 > chain2) {
1446 		BUFFER_TRACE(p2->bh, "call brelse");
1447 		brelse(p2->bh);
1448 		p2--;
1449 	}
1450 	return 0;
1451 
1452 do_indirects:
1453 	/* Kill the remaining (whole) subtrees */
1454 	switch (offsets[0]) {
1455 	default:
1456 		if (++n >= n2)
1457 			break;
1458 		nr = i_data[EXT4_IND_BLOCK];
1459 		if (nr) {
1460 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1461 			i_data[EXT4_IND_BLOCK] = 0;
1462 		}
1463 		/* fall through */
1464 	case EXT4_IND_BLOCK:
1465 		if (++n >= n2)
1466 			break;
1467 		nr = i_data[EXT4_DIND_BLOCK];
1468 		if (nr) {
1469 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1470 			i_data[EXT4_DIND_BLOCK] = 0;
1471 		}
1472 		/* fall through */
1473 	case EXT4_DIND_BLOCK:
1474 		if (++n >= n2)
1475 			break;
1476 		nr = i_data[EXT4_TIND_BLOCK];
1477 		if (nr) {
1478 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1479 			i_data[EXT4_TIND_BLOCK] = 0;
1480 		}
1481 		/* fall through */
1482 	case EXT4_TIND_BLOCK:
1483 		;
1484 	}
1485 	goto cleanup;
1486 }
1487