1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/ialloc.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * BSD ufs-inspired inode and directory allocation by 11 * Stephen Tweedie (sct@redhat.com), 1993 12 * Big-endian to little-endian byte-swapping/bitmaps by 13 * David S. Miller (davem@caip.rutgers.edu), 1995 14 */ 15 16 #include <linux/time.h> 17 #include <linux/fs.h> 18 #include <linux/stat.h> 19 #include <linux/string.h> 20 #include <linux/quotaops.h> 21 #include <linux/buffer_head.h> 22 #include <linux/random.h> 23 #include <linux/bitops.h> 24 #include <linux/blkdev.h> 25 #include <linux/cred.h> 26 27 #include <asm/byteorder.h> 28 29 #include "ext4.h" 30 #include "ext4_jbd2.h" 31 #include "xattr.h" 32 #include "acl.h" 33 34 #include <trace/events/ext4.h> 35 36 /* 37 * ialloc.c contains the inodes allocation and deallocation routines 38 */ 39 40 /* 41 * The free inodes are managed by bitmaps. A file system contains several 42 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap 43 * block for inodes, N blocks for the inode table and data blocks. 44 * 45 * The file system contains group descriptors which are located after the 46 * super block. Each descriptor contains the number of the bitmap block and 47 * the free blocks count in the block. 48 */ 49 50 /* 51 * To avoid calling the atomic setbit hundreds or thousands of times, we only 52 * need to use it within a single byte (to ensure we get endianness right). 53 * We can use memset for the rest of the bitmap as there are no other users. 54 */ 55 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap) 56 { 57 int i; 58 59 if (start_bit >= end_bit) 60 return; 61 62 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit); 63 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++) 64 ext4_set_bit(i, bitmap); 65 if (i < end_bit) 66 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3); 67 } 68 69 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate) 70 { 71 if (uptodate) { 72 set_buffer_uptodate(bh); 73 set_bitmap_uptodate(bh); 74 } 75 unlock_buffer(bh); 76 put_bh(bh); 77 } 78 79 static int ext4_validate_inode_bitmap(struct super_block *sb, 80 struct ext4_group_desc *desc, 81 ext4_group_t block_group, 82 struct buffer_head *bh) 83 { 84 ext4_fsblk_t blk; 85 struct ext4_group_info *grp = ext4_get_group_info(sb, block_group); 86 87 if (buffer_verified(bh)) 88 return 0; 89 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 90 return -EFSCORRUPTED; 91 92 ext4_lock_group(sb, block_group); 93 if (buffer_verified(bh)) 94 goto verified; 95 blk = ext4_inode_bitmap(sb, desc); 96 if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh, 97 EXT4_INODES_PER_GROUP(sb) / 8)) { 98 ext4_unlock_group(sb, block_group); 99 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, " 100 "inode_bitmap = %llu", block_group, blk); 101 ext4_mark_group_bitmap_corrupted(sb, block_group, 102 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 103 return -EFSBADCRC; 104 } 105 set_buffer_verified(bh); 106 verified: 107 ext4_unlock_group(sb, block_group); 108 return 0; 109 } 110 111 /* 112 * Read the inode allocation bitmap for a given block_group, reading 113 * into the specified slot in the superblock's bitmap cache. 114 * 115 * Return buffer_head of bitmap on success or NULL. 116 */ 117 static struct buffer_head * 118 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group) 119 { 120 struct ext4_group_desc *desc; 121 struct ext4_sb_info *sbi = EXT4_SB(sb); 122 struct buffer_head *bh = NULL; 123 ext4_fsblk_t bitmap_blk; 124 int err; 125 126 desc = ext4_get_group_desc(sb, block_group, NULL); 127 if (!desc) 128 return ERR_PTR(-EFSCORRUPTED); 129 130 bitmap_blk = ext4_inode_bitmap(sb, desc); 131 if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) || 132 (bitmap_blk >= ext4_blocks_count(sbi->s_es))) { 133 ext4_error(sb, "Invalid inode bitmap blk %llu in " 134 "block_group %u", bitmap_blk, block_group); 135 ext4_mark_group_bitmap_corrupted(sb, block_group, 136 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 137 return ERR_PTR(-EFSCORRUPTED); 138 } 139 bh = sb_getblk(sb, bitmap_blk); 140 if (unlikely(!bh)) { 141 ext4_error(sb, "Cannot read inode bitmap - " 142 "block_group = %u, inode_bitmap = %llu", 143 block_group, bitmap_blk); 144 return ERR_PTR(-ENOMEM); 145 } 146 if (bitmap_uptodate(bh)) 147 goto verify; 148 149 lock_buffer(bh); 150 if (bitmap_uptodate(bh)) { 151 unlock_buffer(bh); 152 goto verify; 153 } 154 155 ext4_lock_group(sb, block_group); 156 if (ext4_has_group_desc_csum(sb) && 157 (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) { 158 if (block_group == 0) { 159 ext4_unlock_group(sb, block_group); 160 unlock_buffer(bh); 161 ext4_error(sb, "Inode bitmap for bg 0 marked " 162 "uninitialized"); 163 err = -EFSCORRUPTED; 164 goto out; 165 } 166 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8); 167 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), 168 sb->s_blocksize * 8, bh->b_data); 169 set_bitmap_uptodate(bh); 170 set_buffer_uptodate(bh); 171 set_buffer_verified(bh); 172 ext4_unlock_group(sb, block_group); 173 unlock_buffer(bh); 174 return bh; 175 } 176 ext4_unlock_group(sb, block_group); 177 178 if (buffer_uptodate(bh)) { 179 /* 180 * if not uninit if bh is uptodate, 181 * bitmap is also uptodate 182 */ 183 set_bitmap_uptodate(bh); 184 unlock_buffer(bh); 185 goto verify; 186 } 187 /* 188 * submit the buffer_head for reading 189 */ 190 trace_ext4_load_inode_bitmap(sb, block_group); 191 bh->b_end_io = ext4_end_bitmap_read; 192 get_bh(bh); 193 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 194 wait_on_buffer(bh); 195 if (!buffer_uptodate(bh)) { 196 put_bh(bh); 197 ext4_error(sb, "Cannot read inode bitmap - " 198 "block_group = %u, inode_bitmap = %llu", 199 block_group, bitmap_blk); 200 ext4_mark_group_bitmap_corrupted(sb, block_group, 201 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 202 return ERR_PTR(-EIO); 203 } 204 205 verify: 206 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh); 207 if (err) 208 goto out; 209 return bh; 210 out: 211 put_bh(bh); 212 return ERR_PTR(err); 213 } 214 215 /* 216 * NOTE! When we get the inode, we're the only people 217 * that have access to it, and as such there are no 218 * race conditions we have to worry about. The inode 219 * is not on the hash-lists, and it cannot be reached 220 * through the filesystem because the directory entry 221 * has been deleted earlier. 222 * 223 * HOWEVER: we must make sure that we get no aliases, 224 * which means that we have to call "clear_inode()" 225 * _before_ we mark the inode not in use in the inode 226 * bitmaps. Otherwise a newly created file might use 227 * the same inode number (not actually the same pointer 228 * though), and then we'd have two inodes sharing the 229 * same inode number and space on the harddisk. 230 */ 231 void ext4_free_inode(handle_t *handle, struct inode *inode) 232 { 233 struct super_block *sb = inode->i_sb; 234 int is_directory; 235 unsigned long ino; 236 struct buffer_head *bitmap_bh = NULL; 237 struct buffer_head *bh2; 238 ext4_group_t block_group; 239 unsigned long bit; 240 struct ext4_group_desc *gdp; 241 struct ext4_super_block *es; 242 struct ext4_sb_info *sbi; 243 int fatal = 0, err, count, cleared; 244 struct ext4_group_info *grp; 245 246 if (!sb) { 247 printk(KERN_ERR "EXT4-fs: %s:%d: inode on " 248 "nonexistent device\n", __func__, __LINE__); 249 return; 250 } 251 if (atomic_read(&inode->i_count) > 1) { 252 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d", 253 __func__, __LINE__, inode->i_ino, 254 atomic_read(&inode->i_count)); 255 return; 256 } 257 if (inode->i_nlink) { 258 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n", 259 __func__, __LINE__, inode->i_ino, inode->i_nlink); 260 return; 261 } 262 sbi = EXT4_SB(sb); 263 264 ino = inode->i_ino; 265 ext4_debug("freeing inode %lu\n", ino); 266 trace_ext4_free_inode(inode); 267 268 /* 269 * Note: we must free any quota before locking the superblock, 270 * as writing the quota to disk may need the lock as well. 271 */ 272 dquot_initialize(inode); 273 dquot_free_inode(inode); 274 dquot_drop(inode); 275 276 is_directory = S_ISDIR(inode->i_mode); 277 278 /* Do this BEFORE marking the inode not in use or returning an error */ 279 ext4_clear_inode(inode); 280 281 es = sbi->s_es; 282 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { 283 ext4_error(sb, "reserved or nonexistent inode %lu", ino); 284 goto error_return; 285 } 286 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 287 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 288 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 289 /* Don't bother if the inode bitmap is corrupt. */ 290 grp = ext4_get_group_info(sb, block_group); 291 if (IS_ERR(bitmap_bh)) { 292 fatal = PTR_ERR(bitmap_bh); 293 bitmap_bh = NULL; 294 goto error_return; 295 } 296 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) { 297 fatal = -EFSCORRUPTED; 298 goto error_return; 299 } 300 301 BUFFER_TRACE(bitmap_bh, "get_write_access"); 302 fatal = ext4_journal_get_write_access(handle, bitmap_bh); 303 if (fatal) 304 goto error_return; 305 306 fatal = -ESRCH; 307 gdp = ext4_get_group_desc(sb, block_group, &bh2); 308 if (gdp) { 309 BUFFER_TRACE(bh2, "get_write_access"); 310 fatal = ext4_journal_get_write_access(handle, bh2); 311 } 312 ext4_lock_group(sb, block_group); 313 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data); 314 if (fatal || !cleared) { 315 ext4_unlock_group(sb, block_group); 316 goto out; 317 } 318 319 count = ext4_free_inodes_count(sb, gdp) + 1; 320 ext4_free_inodes_set(sb, gdp, count); 321 if (is_directory) { 322 count = ext4_used_dirs_count(sb, gdp) - 1; 323 ext4_used_dirs_set(sb, gdp, count); 324 percpu_counter_dec(&sbi->s_dirs_counter); 325 } 326 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh, 327 EXT4_INODES_PER_GROUP(sb) / 8); 328 ext4_group_desc_csum_set(sb, block_group, gdp); 329 ext4_unlock_group(sb, block_group); 330 331 percpu_counter_inc(&sbi->s_freeinodes_counter); 332 if (sbi->s_log_groups_per_flex) { 333 ext4_group_t f = ext4_flex_group(sbi, block_group); 334 335 atomic_inc(&sbi->s_flex_groups[f].free_inodes); 336 if (is_directory) 337 atomic_dec(&sbi->s_flex_groups[f].used_dirs); 338 } 339 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata"); 340 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2); 341 out: 342 if (cleared) { 343 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata"); 344 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 345 if (!fatal) 346 fatal = err; 347 } else { 348 ext4_error(sb, "bit already cleared for inode %lu", ino); 349 ext4_mark_group_bitmap_corrupted(sb, block_group, 350 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 351 } 352 353 error_return: 354 brelse(bitmap_bh); 355 ext4_std_error(sb, fatal); 356 } 357 358 struct orlov_stats { 359 __u64 free_clusters; 360 __u32 free_inodes; 361 __u32 used_dirs; 362 }; 363 364 /* 365 * Helper function for Orlov's allocator; returns critical information 366 * for a particular block group or flex_bg. If flex_size is 1, then g 367 * is a block group number; otherwise it is flex_bg number. 368 */ 369 static void get_orlov_stats(struct super_block *sb, ext4_group_t g, 370 int flex_size, struct orlov_stats *stats) 371 { 372 struct ext4_group_desc *desc; 373 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups; 374 375 if (flex_size > 1) { 376 stats->free_inodes = atomic_read(&flex_group[g].free_inodes); 377 stats->free_clusters = atomic64_read(&flex_group[g].free_clusters); 378 stats->used_dirs = atomic_read(&flex_group[g].used_dirs); 379 return; 380 } 381 382 desc = ext4_get_group_desc(sb, g, NULL); 383 if (desc) { 384 stats->free_inodes = ext4_free_inodes_count(sb, desc); 385 stats->free_clusters = ext4_free_group_clusters(sb, desc); 386 stats->used_dirs = ext4_used_dirs_count(sb, desc); 387 } else { 388 stats->free_inodes = 0; 389 stats->free_clusters = 0; 390 stats->used_dirs = 0; 391 } 392 } 393 394 /* 395 * Orlov's allocator for directories. 396 * 397 * We always try to spread first-level directories. 398 * 399 * If there are blockgroups with both free inodes and free blocks counts 400 * not worse than average we return one with smallest directory count. 401 * Otherwise we simply return a random group. 402 * 403 * For the rest rules look so: 404 * 405 * It's OK to put directory into a group unless 406 * it has too many directories already (max_dirs) or 407 * it has too few free inodes left (min_inodes) or 408 * it has too few free blocks left (min_blocks) or 409 * Parent's group is preferred, if it doesn't satisfy these 410 * conditions we search cyclically through the rest. If none 411 * of the groups look good we just look for a group with more 412 * free inodes than average (starting at parent's group). 413 */ 414 415 static int find_group_orlov(struct super_block *sb, struct inode *parent, 416 ext4_group_t *group, umode_t mode, 417 const struct qstr *qstr) 418 { 419 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 420 struct ext4_sb_info *sbi = EXT4_SB(sb); 421 ext4_group_t real_ngroups = ext4_get_groups_count(sb); 422 int inodes_per_group = EXT4_INODES_PER_GROUP(sb); 423 unsigned int freei, avefreei, grp_free; 424 ext4_fsblk_t freeb, avefreec; 425 unsigned int ndirs; 426 int max_dirs, min_inodes; 427 ext4_grpblk_t min_clusters; 428 ext4_group_t i, grp, g, ngroups; 429 struct ext4_group_desc *desc; 430 struct orlov_stats stats; 431 int flex_size = ext4_flex_bg_size(sbi); 432 struct dx_hash_info hinfo; 433 434 ngroups = real_ngroups; 435 if (flex_size > 1) { 436 ngroups = (real_ngroups + flex_size - 1) >> 437 sbi->s_log_groups_per_flex; 438 parent_group >>= sbi->s_log_groups_per_flex; 439 } 440 441 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter); 442 avefreei = freei / ngroups; 443 freeb = EXT4_C2B(sbi, 444 percpu_counter_read_positive(&sbi->s_freeclusters_counter)); 445 avefreec = freeb; 446 do_div(avefreec, ngroups); 447 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter); 448 449 if (S_ISDIR(mode) && 450 ((parent == d_inode(sb->s_root)) || 451 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) { 452 int best_ndir = inodes_per_group; 453 int ret = -1; 454 455 if (qstr) { 456 hinfo.hash_version = DX_HASH_HALF_MD4; 457 hinfo.seed = sbi->s_hash_seed; 458 ext4fs_dirhash(qstr->name, qstr->len, &hinfo); 459 grp = hinfo.hash; 460 } else 461 grp = prandom_u32(); 462 parent_group = (unsigned)grp % ngroups; 463 for (i = 0; i < ngroups; i++) { 464 g = (parent_group + i) % ngroups; 465 get_orlov_stats(sb, g, flex_size, &stats); 466 if (!stats.free_inodes) 467 continue; 468 if (stats.used_dirs >= best_ndir) 469 continue; 470 if (stats.free_inodes < avefreei) 471 continue; 472 if (stats.free_clusters < avefreec) 473 continue; 474 grp = g; 475 ret = 0; 476 best_ndir = stats.used_dirs; 477 } 478 if (ret) 479 goto fallback; 480 found_flex_bg: 481 if (flex_size == 1) { 482 *group = grp; 483 return 0; 484 } 485 486 /* 487 * We pack inodes at the beginning of the flexgroup's 488 * inode tables. Block allocation decisions will do 489 * something similar, although regular files will 490 * start at 2nd block group of the flexgroup. See 491 * ext4_ext_find_goal() and ext4_find_near(). 492 */ 493 grp *= flex_size; 494 for (i = 0; i < flex_size; i++) { 495 if (grp+i >= real_ngroups) 496 break; 497 desc = ext4_get_group_desc(sb, grp+i, NULL); 498 if (desc && ext4_free_inodes_count(sb, desc)) { 499 *group = grp+i; 500 return 0; 501 } 502 } 503 goto fallback; 504 } 505 506 max_dirs = ndirs / ngroups + inodes_per_group / 16; 507 min_inodes = avefreei - inodes_per_group*flex_size / 4; 508 if (min_inodes < 1) 509 min_inodes = 1; 510 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4; 511 512 /* 513 * Start looking in the flex group where we last allocated an 514 * inode for this parent directory 515 */ 516 if (EXT4_I(parent)->i_last_alloc_group != ~0) { 517 parent_group = EXT4_I(parent)->i_last_alloc_group; 518 if (flex_size > 1) 519 parent_group >>= sbi->s_log_groups_per_flex; 520 } 521 522 for (i = 0; i < ngroups; i++) { 523 grp = (parent_group + i) % ngroups; 524 get_orlov_stats(sb, grp, flex_size, &stats); 525 if (stats.used_dirs >= max_dirs) 526 continue; 527 if (stats.free_inodes < min_inodes) 528 continue; 529 if (stats.free_clusters < min_clusters) 530 continue; 531 goto found_flex_bg; 532 } 533 534 fallback: 535 ngroups = real_ngroups; 536 avefreei = freei / ngroups; 537 fallback_retry: 538 parent_group = EXT4_I(parent)->i_block_group; 539 for (i = 0; i < ngroups; i++) { 540 grp = (parent_group + i) % ngroups; 541 desc = ext4_get_group_desc(sb, grp, NULL); 542 if (desc) { 543 grp_free = ext4_free_inodes_count(sb, desc); 544 if (grp_free && grp_free >= avefreei) { 545 *group = grp; 546 return 0; 547 } 548 } 549 } 550 551 if (avefreei) { 552 /* 553 * The free-inodes counter is approximate, and for really small 554 * filesystems the above test can fail to find any blockgroups 555 */ 556 avefreei = 0; 557 goto fallback_retry; 558 } 559 560 return -1; 561 } 562 563 static int find_group_other(struct super_block *sb, struct inode *parent, 564 ext4_group_t *group, umode_t mode) 565 { 566 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 567 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb); 568 struct ext4_group_desc *desc; 569 int flex_size = ext4_flex_bg_size(EXT4_SB(sb)); 570 571 /* 572 * Try to place the inode is the same flex group as its 573 * parent. If we can't find space, use the Orlov algorithm to 574 * find another flex group, and store that information in the 575 * parent directory's inode information so that use that flex 576 * group for future allocations. 577 */ 578 if (flex_size > 1) { 579 int retry = 0; 580 581 try_again: 582 parent_group &= ~(flex_size-1); 583 last = parent_group + flex_size; 584 if (last > ngroups) 585 last = ngroups; 586 for (i = parent_group; i < last; i++) { 587 desc = ext4_get_group_desc(sb, i, NULL); 588 if (desc && ext4_free_inodes_count(sb, desc)) { 589 *group = i; 590 return 0; 591 } 592 } 593 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) { 594 retry = 1; 595 parent_group = EXT4_I(parent)->i_last_alloc_group; 596 goto try_again; 597 } 598 /* 599 * If this didn't work, use the Orlov search algorithm 600 * to find a new flex group; we pass in the mode to 601 * avoid the topdir algorithms. 602 */ 603 *group = parent_group + flex_size; 604 if (*group > ngroups) 605 *group = 0; 606 return find_group_orlov(sb, parent, group, mode, NULL); 607 } 608 609 /* 610 * Try to place the inode in its parent directory 611 */ 612 *group = parent_group; 613 desc = ext4_get_group_desc(sb, *group, NULL); 614 if (desc && ext4_free_inodes_count(sb, desc) && 615 ext4_free_group_clusters(sb, desc)) 616 return 0; 617 618 /* 619 * We're going to place this inode in a different blockgroup from its 620 * parent. We want to cause files in a common directory to all land in 621 * the same blockgroup. But we want files which are in a different 622 * directory which shares a blockgroup with our parent to land in a 623 * different blockgroup. 624 * 625 * So add our directory's i_ino into the starting point for the hash. 626 */ 627 *group = (*group + parent->i_ino) % ngroups; 628 629 /* 630 * Use a quadratic hash to find a group with a free inode and some free 631 * blocks. 632 */ 633 for (i = 1; i < ngroups; i <<= 1) { 634 *group += i; 635 if (*group >= ngroups) 636 *group -= ngroups; 637 desc = ext4_get_group_desc(sb, *group, NULL); 638 if (desc && ext4_free_inodes_count(sb, desc) && 639 ext4_free_group_clusters(sb, desc)) 640 return 0; 641 } 642 643 /* 644 * That failed: try linear search for a free inode, even if that group 645 * has no free blocks. 646 */ 647 *group = parent_group; 648 for (i = 0; i < ngroups; i++) { 649 if (++*group >= ngroups) 650 *group = 0; 651 desc = ext4_get_group_desc(sb, *group, NULL); 652 if (desc && ext4_free_inodes_count(sb, desc)) 653 return 0; 654 } 655 656 return -1; 657 } 658 659 /* 660 * In no journal mode, if an inode has recently been deleted, we want 661 * to avoid reusing it until we're reasonably sure the inode table 662 * block has been written back to disk. (Yes, these values are 663 * somewhat arbitrary...) 664 */ 665 #define RECENTCY_MIN 5 666 #define RECENTCY_DIRTY 300 667 668 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino) 669 { 670 struct ext4_group_desc *gdp; 671 struct ext4_inode *raw_inode; 672 struct buffer_head *bh; 673 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 674 int offset, ret = 0; 675 int recentcy = RECENTCY_MIN; 676 u32 dtime, now; 677 678 gdp = ext4_get_group_desc(sb, group, NULL); 679 if (unlikely(!gdp)) 680 return 0; 681 682 bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) + 683 (ino / inodes_per_block)); 684 if (!bh || !buffer_uptodate(bh)) 685 /* 686 * If the block is not in the buffer cache, then it 687 * must have been written out. 688 */ 689 goto out; 690 691 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb); 692 raw_inode = (struct ext4_inode *) (bh->b_data + offset); 693 694 /* i_dtime is only 32 bits on disk, but we only care about relative 695 * times in the range of a few minutes (i.e. long enough to sync a 696 * recently-deleted inode to disk), so using the low 32 bits of the 697 * clock (a 68 year range) is enough, see time_before32() */ 698 dtime = le32_to_cpu(raw_inode->i_dtime); 699 now = ktime_get_real_seconds(); 700 if (buffer_dirty(bh)) 701 recentcy += RECENTCY_DIRTY; 702 703 if (dtime && time_before32(dtime, now) && 704 time_before32(now, dtime + recentcy)) 705 ret = 1; 706 out: 707 brelse(bh); 708 return ret; 709 } 710 711 static int find_inode_bit(struct super_block *sb, ext4_group_t group, 712 struct buffer_head *bitmap, unsigned long *ino) 713 { 714 next: 715 *ino = ext4_find_next_zero_bit((unsigned long *) 716 bitmap->b_data, 717 EXT4_INODES_PER_GROUP(sb), *ino); 718 if (*ino >= EXT4_INODES_PER_GROUP(sb)) 719 return 0; 720 721 if ((EXT4_SB(sb)->s_journal == NULL) && 722 recently_deleted(sb, group, *ino)) { 723 *ino = *ino + 1; 724 if (*ino < EXT4_INODES_PER_GROUP(sb)) 725 goto next; 726 return 0; 727 } 728 729 return 1; 730 } 731 732 /* 733 * There are two policies for allocating an inode. If the new inode is 734 * a directory, then a forward search is made for a block group with both 735 * free space and a low directory-to-inode ratio; if that fails, then of 736 * the groups with above-average free space, that group with the fewest 737 * directories already is chosen. 738 * 739 * For other inodes, search forward from the parent directory's block 740 * group to find a free inode. 741 */ 742 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir, 743 umode_t mode, const struct qstr *qstr, 744 __u32 goal, uid_t *owner, __u32 i_flags, 745 int handle_type, unsigned int line_no, 746 int nblocks) 747 { 748 struct super_block *sb; 749 struct buffer_head *inode_bitmap_bh = NULL; 750 struct buffer_head *group_desc_bh; 751 ext4_group_t ngroups, group = 0; 752 unsigned long ino = 0; 753 struct inode *inode; 754 struct ext4_group_desc *gdp = NULL; 755 struct ext4_inode_info *ei; 756 struct ext4_sb_info *sbi; 757 int ret2, err; 758 struct inode *ret; 759 ext4_group_t i; 760 ext4_group_t flex_group; 761 struct ext4_group_info *grp; 762 int encrypt = 0; 763 764 /* Cannot create files in a deleted directory */ 765 if (!dir || !dir->i_nlink) 766 return ERR_PTR(-EPERM); 767 768 sb = dir->i_sb; 769 sbi = EXT4_SB(sb); 770 771 if (unlikely(ext4_forced_shutdown(sbi))) 772 return ERR_PTR(-EIO); 773 774 if ((ext4_encrypted_inode(dir) || DUMMY_ENCRYPTION_ENABLED(sbi)) && 775 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) && 776 !(i_flags & EXT4_EA_INODE_FL)) { 777 err = fscrypt_get_encryption_info(dir); 778 if (err) 779 return ERR_PTR(err); 780 if (!fscrypt_has_encryption_key(dir)) 781 return ERR_PTR(-ENOKEY); 782 encrypt = 1; 783 } 784 785 if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) { 786 #ifdef CONFIG_EXT4_FS_POSIX_ACL 787 struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT); 788 789 if (IS_ERR(p)) 790 return ERR_CAST(p); 791 if (p) { 792 int acl_size = p->a_count * sizeof(ext4_acl_entry); 793 794 nblocks += (S_ISDIR(mode) ? 2 : 1) * 795 __ext4_xattr_set_credits(sb, NULL /* inode */, 796 NULL /* block_bh */, acl_size, 797 true /* is_create */); 798 posix_acl_release(p); 799 } 800 #endif 801 802 #ifdef CONFIG_SECURITY 803 { 804 int num_security_xattrs = 1; 805 806 #ifdef CONFIG_INTEGRITY 807 num_security_xattrs++; 808 #endif 809 /* 810 * We assume that security xattrs are never 811 * more than 1k. In practice they are under 812 * 128 bytes. 813 */ 814 nblocks += num_security_xattrs * 815 __ext4_xattr_set_credits(sb, NULL /* inode */, 816 NULL /* block_bh */, 1024, 817 true /* is_create */); 818 } 819 #endif 820 if (encrypt) 821 nblocks += __ext4_xattr_set_credits(sb, 822 NULL /* inode */, NULL /* block_bh */, 823 FSCRYPT_SET_CONTEXT_MAX_SIZE, 824 true /* is_create */); 825 } 826 827 ngroups = ext4_get_groups_count(sb); 828 trace_ext4_request_inode(dir, mode); 829 inode = new_inode(sb); 830 if (!inode) 831 return ERR_PTR(-ENOMEM); 832 ei = EXT4_I(inode); 833 834 /* 835 * Initialize owners and quota early so that we don't have to account 836 * for quota initialization worst case in standard inode creating 837 * transaction 838 */ 839 if (owner) { 840 inode->i_mode = mode; 841 i_uid_write(inode, owner[0]); 842 i_gid_write(inode, owner[1]); 843 } else if (test_opt(sb, GRPID)) { 844 inode->i_mode = mode; 845 inode->i_uid = current_fsuid(); 846 inode->i_gid = dir->i_gid; 847 } else 848 inode_init_owner(inode, dir, mode); 849 850 if (ext4_has_feature_project(sb) && 851 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT)) 852 ei->i_projid = EXT4_I(dir)->i_projid; 853 else 854 ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID); 855 856 err = dquot_initialize(inode); 857 if (err) 858 goto out; 859 860 if (!goal) 861 goal = sbi->s_inode_goal; 862 863 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) { 864 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb); 865 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb); 866 ret2 = 0; 867 goto got_group; 868 } 869 870 if (S_ISDIR(mode)) 871 ret2 = find_group_orlov(sb, dir, &group, mode, qstr); 872 else 873 ret2 = find_group_other(sb, dir, &group, mode); 874 875 got_group: 876 EXT4_I(dir)->i_last_alloc_group = group; 877 err = -ENOSPC; 878 if (ret2 == -1) 879 goto out; 880 881 /* 882 * Normally we will only go through one pass of this loop, 883 * unless we get unlucky and it turns out the group we selected 884 * had its last inode grabbed by someone else. 885 */ 886 for (i = 0; i < ngroups; i++, ino = 0) { 887 err = -EIO; 888 889 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 890 if (!gdp) 891 goto out; 892 893 /* 894 * Check free inodes count before loading bitmap. 895 */ 896 if (ext4_free_inodes_count(sb, gdp) == 0) 897 goto next_group; 898 899 grp = ext4_get_group_info(sb, group); 900 /* Skip groups with already-known suspicious inode tables */ 901 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 902 goto next_group; 903 904 brelse(inode_bitmap_bh); 905 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); 906 /* Skip groups with suspicious inode tables */ 907 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) || 908 IS_ERR(inode_bitmap_bh)) { 909 inode_bitmap_bh = NULL; 910 goto next_group; 911 } 912 913 repeat_in_this_group: 914 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino); 915 if (!ret2) 916 goto next_group; 917 918 if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) { 919 ext4_error(sb, "reserved inode found cleared - " 920 "inode=%lu", ino + 1); 921 ext4_mark_group_bitmap_corrupted(sb, group, 922 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 923 goto next_group; 924 } 925 926 if (!handle) { 927 BUG_ON(nblocks <= 0); 928 handle = __ext4_journal_start_sb(dir->i_sb, line_no, 929 handle_type, nblocks, 930 0); 931 if (IS_ERR(handle)) { 932 err = PTR_ERR(handle); 933 ext4_std_error(sb, err); 934 goto out; 935 } 936 } 937 BUFFER_TRACE(inode_bitmap_bh, "get_write_access"); 938 err = ext4_journal_get_write_access(handle, inode_bitmap_bh); 939 if (err) { 940 ext4_std_error(sb, err); 941 goto out; 942 } 943 ext4_lock_group(sb, group); 944 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data); 945 if (ret2) { 946 /* Someone already took the bit. Repeat the search 947 * with lock held. 948 */ 949 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino); 950 if (ret2) { 951 ext4_set_bit(ino, inode_bitmap_bh->b_data); 952 ret2 = 0; 953 } else { 954 ret2 = 1; /* we didn't grab the inode */ 955 } 956 } 957 ext4_unlock_group(sb, group); 958 ino++; /* the inode bitmap is zero-based */ 959 if (!ret2) 960 goto got; /* we grabbed the inode! */ 961 962 if (ino < EXT4_INODES_PER_GROUP(sb)) 963 goto repeat_in_this_group; 964 next_group: 965 if (++group == ngroups) 966 group = 0; 967 } 968 err = -ENOSPC; 969 goto out; 970 971 got: 972 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata"); 973 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh); 974 if (err) { 975 ext4_std_error(sb, err); 976 goto out; 977 } 978 979 BUFFER_TRACE(group_desc_bh, "get_write_access"); 980 err = ext4_journal_get_write_access(handle, group_desc_bh); 981 if (err) { 982 ext4_std_error(sb, err); 983 goto out; 984 } 985 986 /* We may have to initialize the block bitmap if it isn't already */ 987 if (ext4_has_group_desc_csum(sb) && 988 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 989 struct buffer_head *block_bitmap_bh; 990 991 block_bitmap_bh = ext4_read_block_bitmap(sb, group); 992 if (IS_ERR(block_bitmap_bh)) { 993 err = PTR_ERR(block_bitmap_bh); 994 goto out; 995 } 996 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access"); 997 err = ext4_journal_get_write_access(handle, block_bitmap_bh); 998 if (err) { 999 brelse(block_bitmap_bh); 1000 ext4_std_error(sb, err); 1001 goto out; 1002 } 1003 1004 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); 1005 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh); 1006 1007 /* recheck and clear flag under lock if we still need to */ 1008 ext4_lock_group(sb, group); 1009 if (ext4_has_group_desc_csum(sb) && 1010 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 1011 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 1012 ext4_free_group_clusters_set(sb, gdp, 1013 ext4_free_clusters_after_init(sb, group, gdp)); 1014 ext4_block_bitmap_csum_set(sb, group, gdp, 1015 block_bitmap_bh); 1016 ext4_group_desc_csum_set(sb, group, gdp); 1017 } 1018 ext4_unlock_group(sb, group); 1019 brelse(block_bitmap_bh); 1020 1021 if (err) { 1022 ext4_std_error(sb, err); 1023 goto out; 1024 } 1025 } 1026 1027 /* Update the relevant bg descriptor fields */ 1028 if (ext4_has_group_desc_csum(sb)) { 1029 int free; 1030 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1031 1032 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */ 1033 ext4_lock_group(sb, group); /* while we modify the bg desc */ 1034 free = EXT4_INODES_PER_GROUP(sb) - 1035 ext4_itable_unused_count(sb, gdp); 1036 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 1037 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); 1038 free = 0; 1039 } 1040 /* 1041 * Check the relative inode number against the last used 1042 * relative inode number in this group. if it is greater 1043 * we need to update the bg_itable_unused count 1044 */ 1045 if (ino > free) 1046 ext4_itable_unused_set(sb, gdp, 1047 (EXT4_INODES_PER_GROUP(sb) - ino)); 1048 up_read(&grp->alloc_sem); 1049 } else { 1050 ext4_lock_group(sb, group); 1051 } 1052 1053 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1); 1054 if (S_ISDIR(mode)) { 1055 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1); 1056 if (sbi->s_log_groups_per_flex) { 1057 ext4_group_t f = ext4_flex_group(sbi, group); 1058 1059 atomic_inc(&sbi->s_flex_groups[f].used_dirs); 1060 } 1061 } 1062 if (ext4_has_group_desc_csum(sb)) { 1063 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh, 1064 EXT4_INODES_PER_GROUP(sb) / 8); 1065 ext4_group_desc_csum_set(sb, group, gdp); 1066 } 1067 ext4_unlock_group(sb, group); 1068 1069 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata"); 1070 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh); 1071 if (err) { 1072 ext4_std_error(sb, err); 1073 goto out; 1074 } 1075 1076 percpu_counter_dec(&sbi->s_freeinodes_counter); 1077 if (S_ISDIR(mode)) 1078 percpu_counter_inc(&sbi->s_dirs_counter); 1079 1080 if (sbi->s_log_groups_per_flex) { 1081 flex_group = ext4_flex_group(sbi, group); 1082 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes); 1083 } 1084 1085 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb); 1086 /* This is the optimal IO size (for stat), not the fs block size */ 1087 inode->i_blocks = 0; 1088 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 1089 ei->i_crtime = timespec64_to_timespec(inode->i_mtime); 1090 1091 memset(ei->i_data, 0, sizeof(ei->i_data)); 1092 ei->i_dir_start_lookup = 0; 1093 ei->i_disksize = 0; 1094 1095 /* Don't inherit extent flag from directory, amongst others. */ 1096 ei->i_flags = 1097 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED); 1098 ei->i_flags |= i_flags; 1099 ei->i_file_acl = 0; 1100 ei->i_dtime = 0; 1101 ei->i_block_group = group; 1102 ei->i_last_alloc_group = ~0; 1103 1104 ext4_set_inode_flags(inode); 1105 if (IS_DIRSYNC(inode)) 1106 ext4_handle_sync(handle); 1107 if (insert_inode_locked(inode) < 0) { 1108 /* 1109 * Likely a bitmap corruption causing inode to be allocated 1110 * twice. 1111 */ 1112 err = -EIO; 1113 ext4_error(sb, "failed to insert inode %lu: doubly allocated?", 1114 inode->i_ino); 1115 ext4_mark_group_bitmap_corrupted(sb, group, 1116 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 1117 goto out; 1118 } 1119 inode->i_generation = prandom_u32(); 1120 1121 /* Precompute checksum seed for inode metadata */ 1122 if (ext4_has_metadata_csum(sb)) { 1123 __u32 csum; 1124 __le32 inum = cpu_to_le32(inode->i_ino); 1125 __le32 gen = cpu_to_le32(inode->i_generation); 1126 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 1127 sizeof(inum)); 1128 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 1129 sizeof(gen)); 1130 } 1131 1132 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 1133 ext4_set_inode_state(inode, EXT4_STATE_NEW); 1134 1135 ei->i_extra_isize = sbi->s_want_extra_isize; 1136 ei->i_inline_off = 0; 1137 if (ext4_has_feature_inline_data(sb)) 1138 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 1139 ret = inode; 1140 err = dquot_alloc_inode(inode); 1141 if (err) 1142 goto fail_drop; 1143 1144 /* 1145 * Since the encryption xattr will always be unique, create it first so 1146 * that it's less likely to end up in an external xattr block and 1147 * prevent its deduplication. 1148 */ 1149 if (encrypt) { 1150 err = fscrypt_inherit_context(dir, inode, handle, true); 1151 if (err) 1152 goto fail_free_drop; 1153 } 1154 1155 if (!(ei->i_flags & EXT4_EA_INODE_FL)) { 1156 err = ext4_init_acl(handle, inode, dir); 1157 if (err) 1158 goto fail_free_drop; 1159 1160 err = ext4_init_security(handle, inode, dir, qstr); 1161 if (err) 1162 goto fail_free_drop; 1163 } 1164 1165 if (ext4_has_feature_extents(sb)) { 1166 /* set extent flag only for directory, file and normal symlink*/ 1167 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) { 1168 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS); 1169 ext4_ext_tree_init(handle, inode); 1170 } 1171 } 1172 1173 if (ext4_handle_valid(handle)) { 1174 ei->i_sync_tid = handle->h_transaction->t_tid; 1175 ei->i_datasync_tid = handle->h_transaction->t_tid; 1176 } 1177 1178 err = ext4_mark_inode_dirty(handle, inode); 1179 if (err) { 1180 ext4_std_error(sb, err); 1181 goto fail_free_drop; 1182 } 1183 1184 ext4_debug("allocating inode %lu\n", inode->i_ino); 1185 trace_ext4_allocate_inode(inode, dir, mode); 1186 brelse(inode_bitmap_bh); 1187 return ret; 1188 1189 fail_free_drop: 1190 dquot_free_inode(inode); 1191 fail_drop: 1192 clear_nlink(inode); 1193 unlock_new_inode(inode); 1194 out: 1195 dquot_drop(inode); 1196 inode->i_flags |= S_NOQUOTA; 1197 iput(inode); 1198 brelse(inode_bitmap_bh); 1199 return ERR_PTR(err); 1200 } 1201 1202 /* Verify that we are loading a valid orphan from disk */ 1203 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino) 1204 { 1205 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); 1206 ext4_group_t block_group; 1207 int bit; 1208 struct buffer_head *bitmap_bh = NULL; 1209 struct inode *inode = NULL; 1210 int err = -EFSCORRUPTED; 1211 1212 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino) 1213 goto bad_orphan; 1214 1215 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 1216 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 1217 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 1218 if (IS_ERR(bitmap_bh)) 1219 return (struct inode *) bitmap_bh; 1220 1221 /* Having the inode bit set should be a 100% indicator that this 1222 * is a valid orphan (no e2fsck run on fs). Orphans also include 1223 * inodes that were being truncated, so we can't check i_nlink==0. 1224 */ 1225 if (!ext4_test_bit(bit, bitmap_bh->b_data)) 1226 goto bad_orphan; 1227 1228 inode = ext4_iget(sb, ino); 1229 if (IS_ERR(inode)) { 1230 err = PTR_ERR(inode); 1231 ext4_error(sb, "couldn't read orphan inode %lu (err %d)", 1232 ino, err); 1233 return inode; 1234 } 1235 1236 /* 1237 * If the orphans has i_nlinks > 0 then it should be able to 1238 * be truncated, otherwise it won't be removed from the orphan 1239 * list during processing and an infinite loop will result. 1240 * Similarly, it must not be a bad inode. 1241 */ 1242 if ((inode->i_nlink && !ext4_can_truncate(inode)) || 1243 is_bad_inode(inode)) 1244 goto bad_orphan; 1245 1246 if (NEXT_ORPHAN(inode) > max_ino) 1247 goto bad_orphan; 1248 brelse(bitmap_bh); 1249 return inode; 1250 1251 bad_orphan: 1252 ext4_error(sb, "bad orphan inode %lu", ino); 1253 if (bitmap_bh) 1254 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n", 1255 bit, (unsigned long long)bitmap_bh->b_blocknr, 1256 ext4_test_bit(bit, bitmap_bh->b_data)); 1257 if (inode) { 1258 printk(KERN_ERR "is_bad_inode(inode)=%d\n", 1259 is_bad_inode(inode)); 1260 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n", 1261 NEXT_ORPHAN(inode)); 1262 printk(KERN_ERR "max_ino=%lu\n", max_ino); 1263 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink); 1264 /* Avoid freeing blocks if we got a bad deleted inode */ 1265 if (inode->i_nlink == 0) 1266 inode->i_blocks = 0; 1267 iput(inode); 1268 } 1269 brelse(bitmap_bh); 1270 return ERR_PTR(err); 1271 } 1272 1273 unsigned long ext4_count_free_inodes(struct super_block *sb) 1274 { 1275 unsigned long desc_count; 1276 struct ext4_group_desc *gdp; 1277 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1278 #ifdef EXT4FS_DEBUG 1279 struct ext4_super_block *es; 1280 unsigned long bitmap_count, x; 1281 struct buffer_head *bitmap_bh = NULL; 1282 1283 es = EXT4_SB(sb)->s_es; 1284 desc_count = 0; 1285 bitmap_count = 0; 1286 gdp = NULL; 1287 for (i = 0; i < ngroups; i++) { 1288 gdp = ext4_get_group_desc(sb, i, NULL); 1289 if (!gdp) 1290 continue; 1291 desc_count += ext4_free_inodes_count(sb, gdp); 1292 brelse(bitmap_bh); 1293 bitmap_bh = ext4_read_inode_bitmap(sb, i); 1294 if (IS_ERR(bitmap_bh)) { 1295 bitmap_bh = NULL; 1296 continue; 1297 } 1298 1299 x = ext4_count_free(bitmap_bh->b_data, 1300 EXT4_INODES_PER_GROUP(sb) / 8); 1301 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n", 1302 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x); 1303 bitmap_count += x; 1304 } 1305 brelse(bitmap_bh); 1306 printk(KERN_DEBUG "ext4_count_free_inodes: " 1307 "stored = %u, computed = %lu, %lu\n", 1308 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count); 1309 return desc_count; 1310 #else 1311 desc_count = 0; 1312 for (i = 0; i < ngroups; i++) { 1313 gdp = ext4_get_group_desc(sb, i, NULL); 1314 if (!gdp) 1315 continue; 1316 desc_count += ext4_free_inodes_count(sb, gdp); 1317 cond_resched(); 1318 } 1319 return desc_count; 1320 #endif 1321 } 1322 1323 /* Called at mount-time, super-block is locked */ 1324 unsigned long ext4_count_dirs(struct super_block * sb) 1325 { 1326 unsigned long count = 0; 1327 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1328 1329 for (i = 0; i < ngroups; i++) { 1330 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1331 if (!gdp) 1332 continue; 1333 count += ext4_used_dirs_count(sb, gdp); 1334 } 1335 return count; 1336 } 1337 1338 /* 1339 * Zeroes not yet zeroed inode table - just write zeroes through the whole 1340 * inode table. Must be called without any spinlock held. The only place 1341 * where it is called from on active part of filesystem is ext4lazyinit 1342 * thread, so we do not need any special locks, however we have to prevent 1343 * inode allocation from the current group, so we take alloc_sem lock, to 1344 * block ext4_new_inode() until we are finished. 1345 */ 1346 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group, 1347 int barrier) 1348 { 1349 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1350 struct ext4_sb_info *sbi = EXT4_SB(sb); 1351 struct ext4_group_desc *gdp = NULL; 1352 struct buffer_head *group_desc_bh; 1353 handle_t *handle; 1354 ext4_fsblk_t blk; 1355 int num, ret = 0, used_blks = 0; 1356 1357 /* This should not happen, but just to be sure check this */ 1358 if (sb_rdonly(sb)) { 1359 ret = 1; 1360 goto out; 1361 } 1362 1363 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 1364 if (!gdp) 1365 goto out; 1366 1367 /* 1368 * We do not need to lock this, because we are the only one 1369 * handling this flag. 1370 */ 1371 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)) 1372 goto out; 1373 1374 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 1375 if (IS_ERR(handle)) { 1376 ret = PTR_ERR(handle); 1377 goto out; 1378 } 1379 1380 down_write(&grp->alloc_sem); 1381 /* 1382 * If inode bitmap was already initialized there may be some 1383 * used inodes so we need to skip blocks with used inodes in 1384 * inode table. 1385 */ 1386 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) 1387 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) - 1388 ext4_itable_unused_count(sb, gdp)), 1389 sbi->s_inodes_per_block); 1390 1391 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group) || 1392 ((group == 0) && ((EXT4_INODES_PER_GROUP(sb) - 1393 ext4_itable_unused_count(sb, gdp)) < 1394 EXT4_FIRST_INO(sb)))) { 1395 ext4_error(sb, "Something is wrong with group %u: " 1396 "used itable blocks: %d; " 1397 "itable unused count: %u", 1398 group, used_blks, 1399 ext4_itable_unused_count(sb, gdp)); 1400 ret = 1; 1401 goto err_out; 1402 } 1403 1404 blk = ext4_inode_table(sb, gdp) + used_blks; 1405 num = sbi->s_itb_per_group - used_blks; 1406 1407 BUFFER_TRACE(group_desc_bh, "get_write_access"); 1408 ret = ext4_journal_get_write_access(handle, 1409 group_desc_bh); 1410 if (ret) 1411 goto err_out; 1412 1413 /* 1414 * Skip zeroout if the inode table is full. But we set the ZEROED 1415 * flag anyway, because obviously, when it is full it does not need 1416 * further zeroing. 1417 */ 1418 if (unlikely(num == 0)) 1419 goto skip_zeroout; 1420 1421 ext4_debug("going to zero out inode table in group %d\n", 1422 group); 1423 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS); 1424 if (ret < 0) 1425 goto err_out; 1426 if (barrier) 1427 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL); 1428 1429 skip_zeroout: 1430 ext4_lock_group(sb, group); 1431 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED); 1432 ext4_group_desc_csum_set(sb, group, gdp); 1433 ext4_unlock_group(sb, group); 1434 1435 BUFFER_TRACE(group_desc_bh, 1436 "call ext4_handle_dirty_metadata"); 1437 ret = ext4_handle_dirty_metadata(handle, NULL, 1438 group_desc_bh); 1439 1440 err_out: 1441 up_write(&grp->alloc_sem); 1442 ext4_journal_stop(handle); 1443 out: 1444 return ret; 1445 } 1446