1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/ialloc.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * BSD ufs-inspired inode and directory allocation by 11 * Stephen Tweedie (sct@redhat.com), 1993 12 * Big-endian to little-endian byte-swapping/bitmaps by 13 * David S. Miller (davem@caip.rutgers.edu), 1995 14 */ 15 16 #include <linux/time.h> 17 #include <linux/fs.h> 18 #include <linux/stat.h> 19 #include <linux/string.h> 20 #include <linux/quotaops.h> 21 #include <linux/buffer_head.h> 22 #include <linux/random.h> 23 #include <linux/bitops.h> 24 #include <linux/blkdev.h> 25 #include <linux/cred.h> 26 27 #include <asm/byteorder.h> 28 29 #include "ext4.h" 30 #include "ext4_jbd2.h" 31 #include "xattr.h" 32 #include "acl.h" 33 34 #include <trace/events/ext4.h> 35 36 /* 37 * ialloc.c contains the inodes allocation and deallocation routines 38 */ 39 40 /* 41 * The free inodes are managed by bitmaps. A file system contains several 42 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap 43 * block for inodes, N blocks for the inode table and data blocks. 44 * 45 * The file system contains group descriptors which are located after the 46 * super block. Each descriptor contains the number of the bitmap block and 47 * the free blocks count in the block. 48 */ 49 50 /* 51 * To avoid calling the atomic setbit hundreds or thousands of times, we only 52 * need to use it within a single byte (to ensure we get endianness right). 53 * We can use memset for the rest of the bitmap as there are no other users. 54 */ 55 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap) 56 { 57 int i; 58 59 if (start_bit >= end_bit) 60 return; 61 62 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit); 63 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++) 64 ext4_set_bit(i, bitmap); 65 if (i < end_bit) 66 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3); 67 } 68 69 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate) 70 { 71 if (uptodate) { 72 set_buffer_uptodate(bh); 73 set_bitmap_uptodate(bh); 74 } 75 unlock_buffer(bh); 76 put_bh(bh); 77 } 78 79 static int ext4_validate_inode_bitmap(struct super_block *sb, 80 struct ext4_group_desc *desc, 81 ext4_group_t block_group, 82 struct buffer_head *bh) 83 { 84 ext4_fsblk_t blk; 85 struct ext4_group_info *grp = ext4_get_group_info(sb, block_group); 86 struct ext4_sb_info *sbi = EXT4_SB(sb); 87 88 if (buffer_verified(bh)) 89 return 0; 90 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 91 return -EFSCORRUPTED; 92 93 ext4_lock_group(sb, block_group); 94 blk = ext4_inode_bitmap(sb, desc); 95 if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh, 96 EXT4_INODES_PER_GROUP(sb) / 8)) { 97 ext4_unlock_group(sb, block_group); 98 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, " 99 "inode_bitmap = %llu", block_group, blk); 100 grp = ext4_get_group_info(sb, block_group); 101 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) { 102 int count; 103 count = ext4_free_inodes_count(sb, desc); 104 percpu_counter_sub(&sbi->s_freeinodes_counter, 105 count); 106 } 107 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state); 108 return -EFSBADCRC; 109 } 110 set_buffer_verified(bh); 111 ext4_unlock_group(sb, block_group); 112 return 0; 113 } 114 115 /* 116 * Read the inode allocation bitmap for a given block_group, reading 117 * into the specified slot in the superblock's bitmap cache. 118 * 119 * Return buffer_head of bitmap on success or NULL. 120 */ 121 static struct buffer_head * 122 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group) 123 { 124 struct ext4_group_desc *desc; 125 struct ext4_sb_info *sbi = EXT4_SB(sb); 126 struct buffer_head *bh = NULL; 127 ext4_fsblk_t bitmap_blk; 128 int err; 129 130 desc = ext4_get_group_desc(sb, block_group, NULL); 131 if (!desc) 132 return ERR_PTR(-EFSCORRUPTED); 133 134 bitmap_blk = ext4_inode_bitmap(sb, desc); 135 if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) || 136 (bitmap_blk >= ext4_blocks_count(sbi->s_es))) { 137 ext4_error(sb, "Invalid inode bitmap blk %llu in " 138 "block_group %u", bitmap_blk, block_group); 139 return ERR_PTR(-EFSCORRUPTED); 140 } 141 bh = sb_getblk(sb, bitmap_blk); 142 if (unlikely(!bh)) { 143 ext4_error(sb, "Cannot read inode bitmap - " 144 "block_group = %u, inode_bitmap = %llu", 145 block_group, bitmap_blk); 146 return ERR_PTR(-EIO); 147 } 148 if (bitmap_uptodate(bh)) 149 goto verify; 150 151 lock_buffer(bh); 152 if (bitmap_uptodate(bh)) { 153 unlock_buffer(bh); 154 goto verify; 155 } 156 157 ext4_lock_group(sb, block_group); 158 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 159 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8); 160 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), 161 sb->s_blocksize * 8, bh->b_data); 162 set_bitmap_uptodate(bh); 163 set_buffer_uptodate(bh); 164 set_buffer_verified(bh); 165 ext4_unlock_group(sb, block_group); 166 unlock_buffer(bh); 167 return bh; 168 } 169 ext4_unlock_group(sb, block_group); 170 171 if (buffer_uptodate(bh)) { 172 /* 173 * if not uninit if bh is uptodate, 174 * bitmap is also uptodate 175 */ 176 set_bitmap_uptodate(bh); 177 unlock_buffer(bh); 178 goto verify; 179 } 180 /* 181 * submit the buffer_head for reading 182 */ 183 trace_ext4_load_inode_bitmap(sb, block_group); 184 bh->b_end_io = ext4_end_bitmap_read; 185 get_bh(bh); 186 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 187 wait_on_buffer(bh); 188 if (!buffer_uptodate(bh)) { 189 put_bh(bh); 190 ext4_error(sb, "Cannot read inode bitmap - " 191 "block_group = %u, inode_bitmap = %llu", 192 block_group, bitmap_blk); 193 return ERR_PTR(-EIO); 194 } 195 196 verify: 197 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh); 198 if (err) 199 goto out; 200 return bh; 201 out: 202 put_bh(bh); 203 return ERR_PTR(err); 204 } 205 206 /* 207 * NOTE! When we get the inode, we're the only people 208 * that have access to it, and as such there are no 209 * race conditions we have to worry about. The inode 210 * is not on the hash-lists, and it cannot be reached 211 * through the filesystem because the directory entry 212 * has been deleted earlier. 213 * 214 * HOWEVER: we must make sure that we get no aliases, 215 * which means that we have to call "clear_inode()" 216 * _before_ we mark the inode not in use in the inode 217 * bitmaps. Otherwise a newly created file might use 218 * the same inode number (not actually the same pointer 219 * though), and then we'd have two inodes sharing the 220 * same inode number and space on the harddisk. 221 */ 222 void ext4_free_inode(handle_t *handle, struct inode *inode) 223 { 224 struct super_block *sb = inode->i_sb; 225 int is_directory; 226 unsigned long ino; 227 struct buffer_head *bitmap_bh = NULL; 228 struct buffer_head *bh2; 229 ext4_group_t block_group; 230 unsigned long bit; 231 struct ext4_group_desc *gdp; 232 struct ext4_super_block *es; 233 struct ext4_sb_info *sbi; 234 int fatal = 0, err, count, cleared; 235 struct ext4_group_info *grp; 236 237 if (!sb) { 238 printk(KERN_ERR "EXT4-fs: %s:%d: inode on " 239 "nonexistent device\n", __func__, __LINE__); 240 return; 241 } 242 if (atomic_read(&inode->i_count) > 1) { 243 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d", 244 __func__, __LINE__, inode->i_ino, 245 atomic_read(&inode->i_count)); 246 return; 247 } 248 if (inode->i_nlink) { 249 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n", 250 __func__, __LINE__, inode->i_ino, inode->i_nlink); 251 return; 252 } 253 sbi = EXT4_SB(sb); 254 255 ino = inode->i_ino; 256 ext4_debug("freeing inode %lu\n", ino); 257 trace_ext4_free_inode(inode); 258 259 /* 260 * Note: we must free any quota before locking the superblock, 261 * as writing the quota to disk may need the lock as well. 262 */ 263 dquot_initialize(inode); 264 dquot_free_inode(inode); 265 dquot_drop(inode); 266 267 is_directory = S_ISDIR(inode->i_mode); 268 269 /* Do this BEFORE marking the inode not in use or returning an error */ 270 ext4_clear_inode(inode); 271 272 es = sbi->s_es; 273 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { 274 ext4_error(sb, "reserved or nonexistent inode %lu", ino); 275 goto error_return; 276 } 277 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 278 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 279 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 280 /* Don't bother if the inode bitmap is corrupt. */ 281 grp = ext4_get_group_info(sb, block_group); 282 if (IS_ERR(bitmap_bh)) { 283 fatal = PTR_ERR(bitmap_bh); 284 bitmap_bh = NULL; 285 goto error_return; 286 } 287 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) { 288 fatal = -EFSCORRUPTED; 289 goto error_return; 290 } 291 292 BUFFER_TRACE(bitmap_bh, "get_write_access"); 293 fatal = ext4_journal_get_write_access(handle, bitmap_bh); 294 if (fatal) 295 goto error_return; 296 297 fatal = -ESRCH; 298 gdp = ext4_get_group_desc(sb, block_group, &bh2); 299 if (gdp) { 300 BUFFER_TRACE(bh2, "get_write_access"); 301 fatal = ext4_journal_get_write_access(handle, bh2); 302 } 303 ext4_lock_group(sb, block_group); 304 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data); 305 if (fatal || !cleared) { 306 ext4_unlock_group(sb, block_group); 307 goto out; 308 } 309 310 count = ext4_free_inodes_count(sb, gdp) + 1; 311 ext4_free_inodes_set(sb, gdp, count); 312 if (is_directory) { 313 count = ext4_used_dirs_count(sb, gdp) - 1; 314 ext4_used_dirs_set(sb, gdp, count); 315 percpu_counter_dec(&sbi->s_dirs_counter); 316 } 317 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh, 318 EXT4_INODES_PER_GROUP(sb) / 8); 319 ext4_group_desc_csum_set(sb, block_group, gdp); 320 ext4_unlock_group(sb, block_group); 321 322 percpu_counter_inc(&sbi->s_freeinodes_counter); 323 if (sbi->s_log_groups_per_flex) { 324 ext4_group_t f = ext4_flex_group(sbi, block_group); 325 326 atomic_inc(&sbi->s_flex_groups[f].free_inodes); 327 if (is_directory) 328 atomic_dec(&sbi->s_flex_groups[f].used_dirs); 329 } 330 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata"); 331 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2); 332 out: 333 if (cleared) { 334 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata"); 335 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 336 if (!fatal) 337 fatal = err; 338 } else { 339 ext4_error(sb, "bit already cleared for inode %lu", ino); 340 if (gdp && !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) { 341 int count; 342 count = ext4_free_inodes_count(sb, gdp); 343 percpu_counter_sub(&sbi->s_freeinodes_counter, 344 count); 345 } 346 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state); 347 } 348 349 error_return: 350 brelse(bitmap_bh); 351 ext4_std_error(sb, fatal); 352 } 353 354 struct orlov_stats { 355 __u64 free_clusters; 356 __u32 free_inodes; 357 __u32 used_dirs; 358 }; 359 360 /* 361 * Helper function for Orlov's allocator; returns critical information 362 * for a particular block group or flex_bg. If flex_size is 1, then g 363 * is a block group number; otherwise it is flex_bg number. 364 */ 365 static void get_orlov_stats(struct super_block *sb, ext4_group_t g, 366 int flex_size, struct orlov_stats *stats) 367 { 368 struct ext4_group_desc *desc; 369 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups; 370 371 if (flex_size > 1) { 372 stats->free_inodes = atomic_read(&flex_group[g].free_inodes); 373 stats->free_clusters = atomic64_read(&flex_group[g].free_clusters); 374 stats->used_dirs = atomic_read(&flex_group[g].used_dirs); 375 return; 376 } 377 378 desc = ext4_get_group_desc(sb, g, NULL); 379 if (desc) { 380 stats->free_inodes = ext4_free_inodes_count(sb, desc); 381 stats->free_clusters = ext4_free_group_clusters(sb, desc); 382 stats->used_dirs = ext4_used_dirs_count(sb, desc); 383 } else { 384 stats->free_inodes = 0; 385 stats->free_clusters = 0; 386 stats->used_dirs = 0; 387 } 388 } 389 390 /* 391 * Orlov's allocator for directories. 392 * 393 * We always try to spread first-level directories. 394 * 395 * If there are blockgroups with both free inodes and free blocks counts 396 * not worse than average we return one with smallest directory count. 397 * Otherwise we simply return a random group. 398 * 399 * For the rest rules look so: 400 * 401 * It's OK to put directory into a group unless 402 * it has too many directories already (max_dirs) or 403 * it has too few free inodes left (min_inodes) or 404 * it has too few free blocks left (min_blocks) or 405 * Parent's group is preferred, if it doesn't satisfy these 406 * conditions we search cyclically through the rest. If none 407 * of the groups look good we just look for a group with more 408 * free inodes than average (starting at parent's group). 409 */ 410 411 static int find_group_orlov(struct super_block *sb, struct inode *parent, 412 ext4_group_t *group, umode_t mode, 413 const struct qstr *qstr) 414 { 415 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 416 struct ext4_sb_info *sbi = EXT4_SB(sb); 417 ext4_group_t real_ngroups = ext4_get_groups_count(sb); 418 int inodes_per_group = EXT4_INODES_PER_GROUP(sb); 419 unsigned int freei, avefreei, grp_free; 420 ext4_fsblk_t freeb, avefreec; 421 unsigned int ndirs; 422 int max_dirs, min_inodes; 423 ext4_grpblk_t min_clusters; 424 ext4_group_t i, grp, g, ngroups; 425 struct ext4_group_desc *desc; 426 struct orlov_stats stats; 427 int flex_size = ext4_flex_bg_size(sbi); 428 struct dx_hash_info hinfo; 429 430 ngroups = real_ngroups; 431 if (flex_size > 1) { 432 ngroups = (real_ngroups + flex_size - 1) >> 433 sbi->s_log_groups_per_flex; 434 parent_group >>= sbi->s_log_groups_per_flex; 435 } 436 437 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter); 438 avefreei = freei / ngroups; 439 freeb = EXT4_C2B(sbi, 440 percpu_counter_read_positive(&sbi->s_freeclusters_counter)); 441 avefreec = freeb; 442 do_div(avefreec, ngroups); 443 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter); 444 445 if (S_ISDIR(mode) && 446 ((parent == d_inode(sb->s_root)) || 447 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) { 448 int best_ndir = inodes_per_group; 449 int ret = -1; 450 451 if (qstr) { 452 hinfo.hash_version = DX_HASH_HALF_MD4; 453 hinfo.seed = sbi->s_hash_seed; 454 ext4fs_dirhash(qstr->name, qstr->len, &hinfo); 455 grp = hinfo.hash; 456 } else 457 grp = prandom_u32(); 458 parent_group = (unsigned)grp % ngroups; 459 for (i = 0; i < ngroups; i++) { 460 g = (parent_group + i) % ngroups; 461 get_orlov_stats(sb, g, flex_size, &stats); 462 if (!stats.free_inodes) 463 continue; 464 if (stats.used_dirs >= best_ndir) 465 continue; 466 if (stats.free_inodes < avefreei) 467 continue; 468 if (stats.free_clusters < avefreec) 469 continue; 470 grp = g; 471 ret = 0; 472 best_ndir = stats.used_dirs; 473 } 474 if (ret) 475 goto fallback; 476 found_flex_bg: 477 if (flex_size == 1) { 478 *group = grp; 479 return 0; 480 } 481 482 /* 483 * We pack inodes at the beginning of the flexgroup's 484 * inode tables. Block allocation decisions will do 485 * something similar, although regular files will 486 * start at 2nd block group of the flexgroup. See 487 * ext4_ext_find_goal() and ext4_find_near(). 488 */ 489 grp *= flex_size; 490 for (i = 0; i < flex_size; i++) { 491 if (grp+i >= real_ngroups) 492 break; 493 desc = ext4_get_group_desc(sb, grp+i, NULL); 494 if (desc && ext4_free_inodes_count(sb, desc)) { 495 *group = grp+i; 496 return 0; 497 } 498 } 499 goto fallback; 500 } 501 502 max_dirs = ndirs / ngroups + inodes_per_group / 16; 503 min_inodes = avefreei - inodes_per_group*flex_size / 4; 504 if (min_inodes < 1) 505 min_inodes = 1; 506 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4; 507 508 /* 509 * Start looking in the flex group where we last allocated an 510 * inode for this parent directory 511 */ 512 if (EXT4_I(parent)->i_last_alloc_group != ~0) { 513 parent_group = EXT4_I(parent)->i_last_alloc_group; 514 if (flex_size > 1) 515 parent_group >>= sbi->s_log_groups_per_flex; 516 } 517 518 for (i = 0; i < ngroups; i++) { 519 grp = (parent_group + i) % ngroups; 520 get_orlov_stats(sb, grp, flex_size, &stats); 521 if (stats.used_dirs >= max_dirs) 522 continue; 523 if (stats.free_inodes < min_inodes) 524 continue; 525 if (stats.free_clusters < min_clusters) 526 continue; 527 goto found_flex_bg; 528 } 529 530 fallback: 531 ngroups = real_ngroups; 532 avefreei = freei / ngroups; 533 fallback_retry: 534 parent_group = EXT4_I(parent)->i_block_group; 535 for (i = 0; i < ngroups; i++) { 536 grp = (parent_group + i) % ngroups; 537 desc = ext4_get_group_desc(sb, grp, NULL); 538 if (desc) { 539 grp_free = ext4_free_inodes_count(sb, desc); 540 if (grp_free && grp_free >= avefreei) { 541 *group = grp; 542 return 0; 543 } 544 } 545 } 546 547 if (avefreei) { 548 /* 549 * The free-inodes counter is approximate, and for really small 550 * filesystems the above test can fail to find any blockgroups 551 */ 552 avefreei = 0; 553 goto fallback_retry; 554 } 555 556 return -1; 557 } 558 559 static int find_group_other(struct super_block *sb, struct inode *parent, 560 ext4_group_t *group, umode_t mode) 561 { 562 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 563 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb); 564 struct ext4_group_desc *desc; 565 int flex_size = ext4_flex_bg_size(EXT4_SB(sb)); 566 567 /* 568 * Try to place the inode is the same flex group as its 569 * parent. If we can't find space, use the Orlov algorithm to 570 * find another flex group, and store that information in the 571 * parent directory's inode information so that use that flex 572 * group for future allocations. 573 */ 574 if (flex_size > 1) { 575 int retry = 0; 576 577 try_again: 578 parent_group &= ~(flex_size-1); 579 last = parent_group + flex_size; 580 if (last > ngroups) 581 last = ngroups; 582 for (i = parent_group; i < last; i++) { 583 desc = ext4_get_group_desc(sb, i, NULL); 584 if (desc && ext4_free_inodes_count(sb, desc)) { 585 *group = i; 586 return 0; 587 } 588 } 589 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) { 590 retry = 1; 591 parent_group = EXT4_I(parent)->i_last_alloc_group; 592 goto try_again; 593 } 594 /* 595 * If this didn't work, use the Orlov search algorithm 596 * to find a new flex group; we pass in the mode to 597 * avoid the topdir algorithms. 598 */ 599 *group = parent_group + flex_size; 600 if (*group > ngroups) 601 *group = 0; 602 return find_group_orlov(sb, parent, group, mode, NULL); 603 } 604 605 /* 606 * Try to place the inode in its parent directory 607 */ 608 *group = parent_group; 609 desc = ext4_get_group_desc(sb, *group, NULL); 610 if (desc && ext4_free_inodes_count(sb, desc) && 611 ext4_free_group_clusters(sb, desc)) 612 return 0; 613 614 /* 615 * We're going to place this inode in a different blockgroup from its 616 * parent. We want to cause files in a common directory to all land in 617 * the same blockgroup. But we want files which are in a different 618 * directory which shares a blockgroup with our parent to land in a 619 * different blockgroup. 620 * 621 * So add our directory's i_ino into the starting point for the hash. 622 */ 623 *group = (*group + parent->i_ino) % ngroups; 624 625 /* 626 * Use a quadratic hash to find a group with a free inode and some free 627 * blocks. 628 */ 629 for (i = 1; i < ngroups; i <<= 1) { 630 *group += i; 631 if (*group >= ngroups) 632 *group -= ngroups; 633 desc = ext4_get_group_desc(sb, *group, NULL); 634 if (desc && ext4_free_inodes_count(sb, desc) && 635 ext4_free_group_clusters(sb, desc)) 636 return 0; 637 } 638 639 /* 640 * That failed: try linear search for a free inode, even if that group 641 * has no free blocks. 642 */ 643 *group = parent_group; 644 for (i = 0; i < ngroups; i++) { 645 if (++*group >= ngroups) 646 *group = 0; 647 desc = ext4_get_group_desc(sb, *group, NULL); 648 if (desc && ext4_free_inodes_count(sb, desc)) 649 return 0; 650 } 651 652 return -1; 653 } 654 655 /* 656 * In no journal mode, if an inode has recently been deleted, we want 657 * to avoid reusing it until we're reasonably sure the inode table 658 * block has been written back to disk. (Yes, these values are 659 * somewhat arbitrary...) 660 */ 661 #define RECENTCY_MIN 5 662 #define RECENTCY_DIRTY 300 663 664 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino) 665 { 666 struct ext4_group_desc *gdp; 667 struct ext4_inode *raw_inode; 668 struct buffer_head *bh; 669 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 670 int offset, ret = 0; 671 int recentcy = RECENTCY_MIN; 672 u32 dtime, now; 673 674 gdp = ext4_get_group_desc(sb, group, NULL); 675 if (unlikely(!gdp)) 676 return 0; 677 678 bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) + 679 (ino / inodes_per_block)); 680 if (!bh || !buffer_uptodate(bh)) 681 /* 682 * If the block is not in the buffer cache, then it 683 * must have been written out. 684 */ 685 goto out; 686 687 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb); 688 raw_inode = (struct ext4_inode *) (bh->b_data + offset); 689 690 /* i_dtime is only 32 bits on disk, but we only care about relative 691 * times in the range of a few minutes (i.e. long enough to sync a 692 * recently-deleted inode to disk), so using the low 32 bits of the 693 * clock (a 68 year range) is enough, see time_before32() */ 694 dtime = le32_to_cpu(raw_inode->i_dtime); 695 now = ktime_get_real_seconds(); 696 if (buffer_dirty(bh)) 697 recentcy += RECENTCY_DIRTY; 698 699 if (dtime && time_before32(dtime, now) && 700 time_before32(now, dtime + recentcy)) 701 ret = 1; 702 out: 703 brelse(bh); 704 return ret; 705 } 706 707 static int find_inode_bit(struct super_block *sb, ext4_group_t group, 708 struct buffer_head *bitmap, unsigned long *ino) 709 { 710 next: 711 *ino = ext4_find_next_zero_bit((unsigned long *) 712 bitmap->b_data, 713 EXT4_INODES_PER_GROUP(sb), *ino); 714 if (*ino >= EXT4_INODES_PER_GROUP(sb)) 715 return 0; 716 717 if ((EXT4_SB(sb)->s_journal == NULL) && 718 recently_deleted(sb, group, *ino)) { 719 *ino = *ino + 1; 720 if (*ino < EXT4_INODES_PER_GROUP(sb)) 721 goto next; 722 return 0; 723 } 724 725 return 1; 726 } 727 728 /* 729 * There are two policies for allocating an inode. If the new inode is 730 * a directory, then a forward search is made for a block group with both 731 * free space and a low directory-to-inode ratio; if that fails, then of 732 * the groups with above-average free space, that group with the fewest 733 * directories already is chosen. 734 * 735 * For other inodes, search forward from the parent directory's block 736 * group to find a free inode. 737 */ 738 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir, 739 umode_t mode, const struct qstr *qstr, 740 __u32 goal, uid_t *owner, __u32 i_flags, 741 int handle_type, unsigned int line_no, 742 int nblocks) 743 { 744 struct super_block *sb; 745 struct buffer_head *inode_bitmap_bh = NULL; 746 struct buffer_head *group_desc_bh; 747 ext4_group_t ngroups, group = 0; 748 unsigned long ino = 0; 749 struct inode *inode; 750 struct ext4_group_desc *gdp = NULL; 751 struct ext4_inode_info *ei; 752 struct ext4_sb_info *sbi; 753 int ret2, err; 754 struct inode *ret; 755 ext4_group_t i; 756 ext4_group_t flex_group; 757 struct ext4_group_info *grp; 758 int encrypt = 0; 759 760 /* Cannot create files in a deleted directory */ 761 if (!dir || !dir->i_nlink) 762 return ERR_PTR(-EPERM); 763 764 sb = dir->i_sb; 765 sbi = EXT4_SB(sb); 766 767 if (unlikely(ext4_forced_shutdown(sbi))) 768 return ERR_PTR(-EIO); 769 770 if ((ext4_encrypted_inode(dir) || DUMMY_ENCRYPTION_ENABLED(sbi)) && 771 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) && 772 !(i_flags & EXT4_EA_INODE_FL)) { 773 err = fscrypt_get_encryption_info(dir); 774 if (err) 775 return ERR_PTR(err); 776 if (!fscrypt_has_encryption_key(dir)) 777 return ERR_PTR(-ENOKEY); 778 encrypt = 1; 779 } 780 781 if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) { 782 #ifdef CONFIG_EXT4_FS_POSIX_ACL 783 struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT); 784 785 if (IS_ERR(p)) 786 return ERR_CAST(p); 787 if (p) { 788 int acl_size = p->a_count * sizeof(ext4_acl_entry); 789 790 nblocks += (S_ISDIR(mode) ? 2 : 1) * 791 __ext4_xattr_set_credits(sb, NULL /* inode */, 792 NULL /* block_bh */, acl_size, 793 true /* is_create */); 794 posix_acl_release(p); 795 } 796 #endif 797 798 #ifdef CONFIG_SECURITY 799 { 800 int num_security_xattrs = 1; 801 802 #ifdef CONFIG_INTEGRITY 803 num_security_xattrs++; 804 #endif 805 /* 806 * We assume that security xattrs are never 807 * more than 1k. In practice they are under 808 * 128 bytes. 809 */ 810 nblocks += num_security_xattrs * 811 __ext4_xattr_set_credits(sb, NULL /* inode */, 812 NULL /* block_bh */, 1024, 813 true /* is_create */); 814 } 815 #endif 816 if (encrypt) 817 nblocks += __ext4_xattr_set_credits(sb, 818 NULL /* inode */, NULL /* block_bh */, 819 FSCRYPT_SET_CONTEXT_MAX_SIZE, 820 true /* is_create */); 821 } 822 823 ngroups = ext4_get_groups_count(sb); 824 trace_ext4_request_inode(dir, mode); 825 inode = new_inode(sb); 826 if (!inode) 827 return ERR_PTR(-ENOMEM); 828 ei = EXT4_I(inode); 829 830 /* 831 * Initialize owners and quota early so that we don't have to account 832 * for quota initialization worst case in standard inode creating 833 * transaction 834 */ 835 if (owner) { 836 inode->i_mode = mode; 837 i_uid_write(inode, owner[0]); 838 i_gid_write(inode, owner[1]); 839 } else if (test_opt(sb, GRPID)) { 840 inode->i_mode = mode; 841 inode->i_uid = current_fsuid(); 842 inode->i_gid = dir->i_gid; 843 } else 844 inode_init_owner(inode, dir, mode); 845 846 if (ext4_has_feature_project(sb) && 847 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT)) 848 ei->i_projid = EXT4_I(dir)->i_projid; 849 else 850 ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID); 851 852 err = dquot_initialize(inode); 853 if (err) 854 goto out; 855 856 if (!goal) 857 goal = sbi->s_inode_goal; 858 859 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) { 860 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb); 861 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb); 862 ret2 = 0; 863 goto got_group; 864 } 865 866 if (S_ISDIR(mode)) 867 ret2 = find_group_orlov(sb, dir, &group, mode, qstr); 868 else 869 ret2 = find_group_other(sb, dir, &group, mode); 870 871 got_group: 872 EXT4_I(dir)->i_last_alloc_group = group; 873 err = -ENOSPC; 874 if (ret2 == -1) 875 goto out; 876 877 /* 878 * Normally we will only go through one pass of this loop, 879 * unless we get unlucky and it turns out the group we selected 880 * had its last inode grabbed by someone else. 881 */ 882 for (i = 0; i < ngroups; i++, ino = 0) { 883 err = -EIO; 884 885 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 886 if (!gdp) 887 goto out; 888 889 /* 890 * Check free inodes count before loading bitmap. 891 */ 892 if (ext4_free_inodes_count(sb, gdp) == 0) 893 goto next_group; 894 895 grp = ext4_get_group_info(sb, group); 896 /* Skip groups with already-known suspicious inode tables */ 897 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 898 goto next_group; 899 900 brelse(inode_bitmap_bh); 901 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); 902 /* Skip groups with suspicious inode tables */ 903 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) || 904 IS_ERR(inode_bitmap_bh)) { 905 inode_bitmap_bh = NULL; 906 goto next_group; 907 } 908 909 repeat_in_this_group: 910 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino); 911 if (!ret2) 912 goto next_group; 913 914 if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) { 915 ext4_error(sb, "reserved inode found cleared - " 916 "inode=%lu", ino + 1); 917 goto next_group; 918 } 919 920 if (!handle) { 921 BUG_ON(nblocks <= 0); 922 handle = __ext4_journal_start_sb(dir->i_sb, line_no, 923 handle_type, nblocks, 924 0); 925 if (IS_ERR(handle)) { 926 err = PTR_ERR(handle); 927 ext4_std_error(sb, err); 928 goto out; 929 } 930 } 931 BUFFER_TRACE(inode_bitmap_bh, "get_write_access"); 932 err = ext4_journal_get_write_access(handle, inode_bitmap_bh); 933 if (err) { 934 ext4_std_error(sb, err); 935 goto out; 936 } 937 ext4_lock_group(sb, group); 938 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data); 939 if (ret2) { 940 /* Someone already took the bit. Repeat the search 941 * with lock held. 942 */ 943 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino); 944 if (ret2) { 945 ext4_set_bit(ino, inode_bitmap_bh->b_data); 946 ret2 = 0; 947 } else { 948 ret2 = 1; /* we didn't grab the inode */ 949 } 950 } 951 ext4_unlock_group(sb, group); 952 ino++; /* the inode bitmap is zero-based */ 953 if (!ret2) 954 goto got; /* we grabbed the inode! */ 955 956 if (ino < EXT4_INODES_PER_GROUP(sb)) 957 goto repeat_in_this_group; 958 next_group: 959 if (++group == ngroups) 960 group = 0; 961 } 962 err = -ENOSPC; 963 goto out; 964 965 got: 966 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata"); 967 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh); 968 if (err) { 969 ext4_std_error(sb, err); 970 goto out; 971 } 972 973 BUFFER_TRACE(group_desc_bh, "get_write_access"); 974 err = ext4_journal_get_write_access(handle, group_desc_bh); 975 if (err) { 976 ext4_std_error(sb, err); 977 goto out; 978 } 979 980 /* We may have to initialize the block bitmap if it isn't already */ 981 if (ext4_has_group_desc_csum(sb) && 982 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 983 struct buffer_head *block_bitmap_bh; 984 985 block_bitmap_bh = ext4_read_block_bitmap(sb, group); 986 if (IS_ERR(block_bitmap_bh)) { 987 err = PTR_ERR(block_bitmap_bh); 988 goto out; 989 } 990 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access"); 991 err = ext4_journal_get_write_access(handle, block_bitmap_bh); 992 if (err) { 993 brelse(block_bitmap_bh); 994 ext4_std_error(sb, err); 995 goto out; 996 } 997 998 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); 999 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh); 1000 1001 /* recheck and clear flag under lock if we still need to */ 1002 ext4_lock_group(sb, group); 1003 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 1004 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 1005 ext4_free_group_clusters_set(sb, gdp, 1006 ext4_free_clusters_after_init(sb, group, gdp)); 1007 ext4_block_bitmap_csum_set(sb, group, gdp, 1008 block_bitmap_bh); 1009 ext4_group_desc_csum_set(sb, group, gdp); 1010 } 1011 ext4_unlock_group(sb, group); 1012 brelse(block_bitmap_bh); 1013 1014 if (err) { 1015 ext4_std_error(sb, err); 1016 goto out; 1017 } 1018 } 1019 1020 /* Update the relevant bg descriptor fields */ 1021 if (ext4_has_group_desc_csum(sb)) { 1022 int free; 1023 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1024 1025 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */ 1026 ext4_lock_group(sb, group); /* while we modify the bg desc */ 1027 free = EXT4_INODES_PER_GROUP(sb) - 1028 ext4_itable_unused_count(sb, gdp); 1029 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 1030 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); 1031 free = 0; 1032 } 1033 /* 1034 * Check the relative inode number against the last used 1035 * relative inode number in this group. if it is greater 1036 * we need to update the bg_itable_unused count 1037 */ 1038 if (ino > free) 1039 ext4_itable_unused_set(sb, gdp, 1040 (EXT4_INODES_PER_GROUP(sb) - ino)); 1041 up_read(&grp->alloc_sem); 1042 } else { 1043 ext4_lock_group(sb, group); 1044 } 1045 1046 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1); 1047 if (S_ISDIR(mode)) { 1048 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1); 1049 if (sbi->s_log_groups_per_flex) { 1050 ext4_group_t f = ext4_flex_group(sbi, group); 1051 1052 atomic_inc(&sbi->s_flex_groups[f].used_dirs); 1053 } 1054 } 1055 if (ext4_has_group_desc_csum(sb)) { 1056 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh, 1057 EXT4_INODES_PER_GROUP(sb) / 8); 1058 ext4_group_desc_csum_set(sb, group, gdp); 1059 } 1060 ext4_unlock_group(sb, group); 1061 1062 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata"); 1063 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh); 1064 if (err) { 1065 ext4_std_error(sb, err); 1066 goto out; 1067 } 1068 1069 percpu_counter_dec(&sbi->s_freeinodes_counter); 1070 if (S_ISDIR(mode)) 1071 percpu_counter_inc(&sbi->s_dirs_counter); 1072 1073 if (sbi->s_log_groups_per_flex) { 1074 flex_group = ext4_flex_group(sbi, group); 1075 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes); 1076 } 1077 1078 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb); 1079 /* This is the optimal IO size (for stat), not the fs block size */ 1080 inode->i_blocks = 0; 1081 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime = 1082 current_time(inode); 1083 1084 memset(ei->i_data, 0, sizeof(ei->i_data)); 1085 ei->i_dir_start_lookup = 0; 1086 ei->i_disksize = 0; 1087 1088 /* Don't inherit extent flag from directory, amongst others. */ 1089 ei->i_flags = 1090 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED); 1091 ei->i_flags |= i_flags; 1092 ei->i_file_acl = 0; 1093 ei->i_dtime = 0; 1094 ei->i_block_group = group; 1095 ei->i_last_alloc_group = ~0; 1096 1097 ext4_set_inode_flags(inode); 1098 if (IS_DIRSYNC(inode)) 1099 ext4_handle_sync(handle); 1100 if (insert_inode_locked(inode) < 0) { 1101 /* 1102 * Likely a bitmap corruption causing inode to be allocated 1103 * twice. 1104 */ 1105 err = -EIO; 1106 ext4_error(sb, "failed to insert inode %lu: doubly allocated?", 1107 inode->i_ino); 1108 goto out; 1109 } 1110 inode->i_generation = prandom_u32(); 1111 1112 /* Precompute checksum seed for inode metadata */ 1113 if (ext4_has_metadata_csum(sb)) { 1114 __u32 csum; 1115 __le32 inum = cpu_to_le32(inode->i_ino); 1116 __le32 gen = cpu_to_le32(inode->i_generation); 1117 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 1118 sizeof(inum)); 1119 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 1120 sizeof(gen)); 1121 } 1122 1123 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 1124 ext4_set_inode_state(inode, EXT4_STATE_NEW); 1125 1126 ei->i_extra_isize = sbi->s_want_extra_isize; 1127 ei->i_inline_off = 0; 1128 if (ext4_has_feature_inline_data(sb)) 1129 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 1130 ret = inode; 1131 err = dquot_alloc_inode(inode); 1132 if (err) 1133 goto fail_drop; 1134 1135 /* 1136 * Since the encryption xattr will always be unique, create it first so 1137 * that it's less likely to end up in an external xattr block and 1138 * prevent its deduplication. 1139 */ 1140 if (encrypt) { 1141 err = fscrypt_inherit_context(dir, inode, handle, true); 1142 if (err) 1143 goto fail_free_drop; 1144 } 1145 1146 if (!(ei->i_flags & EXT4_EA_INODE_FL)) { 1147 err = ext4_init_acl(handle, inode, dir); 1148 if (err) 1149 goto fail_free_drop; 1150 1151 err = ext4_init_security(handle, inode, dir, qstr); 1152 if (err) 1153 goto fail_free_drop; 1154 } 1155 1156 if (ext4_has_feature_extents(sb)) { 1157 /* set extent flag only for directory, file and normal symlink*/ 1158 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) { 1159 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS); 1160 ext4_ext_tree_init(handle, inode); 1161 } 1162 } 1163 1164 if (ext4_handle_valid(handle)) { 1165 ei->i_sync_tid = handle->h_transaction->t_tid; 1166 ei->i_datasync_tid = handle->h_transaction->t_tid; 1167 } 1168 1169 err = ext4_mark_inode_dirty(handle, inode); 1170 if (err) { 1171 ext4_std_error(sb, err); 1172 goto fail_free_drop; 1173 } 1174 1175 ext4_debug("allocating inode %lu\n", inode->i_ino); 1176 trace_ext4_allocate_inode(inode, dir, mode); 1177 brelse(inode_bitmap_bh); 1178 return ret; 1179 1180 fail_free_drop: 1181 dquot_free_inode(inode); 1182 fail_drop: 1183 clear_nlink(inode); 1184 unlock_new_inode(inode); 1185 out: 1186 dquot_drop(inode); 1187 inode->i_flags |= S_NOQUOTA; 1188 iput(inode); 1189 brelse(inode_bitmap_bh); 1190 return ERR_PTR(err); 1191 } 1192 1193 /* Verify that we are loading a valid orphan from disk */ 1194 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino) 1195 { 1196 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); 1197 ext4_group_t block_group; 1198 int bit; 1199 struct buffer_head *bitmap_bh = NULL; 1200 struct inode *inode = NULL; 1201 int err = -EFSCORRUPTED; 1202 1203 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino) 1204 goto bad_orphan; 1205 1206 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 1207 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 1208 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 1209 if (IS_ERR(bitmap_bh)) { 1210 ext4_error(sb, "inode bitmap error %ld for orphan %lu", 1211 ino, PTR_ERR(bitmap_bh)); 1212 return (struct inode *) bitmap_bh; 1213 } 1214 1215 /* Having the inode bit set should be a 100% indicator that this 1216 * is a valid orphan (no e2fsck run on fs). Orphans also include 1217 * inodes that were being truncated, so we can't check i_nlink==0. 1218 */ 1219 if (!ext4_test_bit(bit, bitmap_bh->b_data)) 1220 goto bad_orphan; 1221 1222 inode = ext4_iget(sb, ino); 1223 if (IS_ERR(inode)) { 1224 err = PTR_ERR(inode); 1225 ext4_error(sb, "couldn't read orphan inode %lu (err %d)", 1226 ino, err); 1227 return inode; 1228 } 1229 1230 /* 1231 * If the orphans has i_nlinks > 0 then it should be able to 1232 * be truncated, otherwise it won't be removed from the orphan 1233 * list during processing and an infinite loop will result. 1234 * Similarly, it must not be a bad inode. 1235 */ 1236 if ((inode->i_nlink && !ext4_can_truncate(inode)) || 1237 is_bad_inode(inode)) 1238 goto bad_orphan; 1239 1240 if (NEXT_ORPHAN(inode) > max_ino) 1241 goto bad_orphan; 1242 brelse(bitmap_bh); 1243 return inode; 1244 1245 bad_orphan: 1246 ext4_error(sb, "bad orphan inode %lu", ino); 1247 if (bitmap_bh) 1248 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n", 1249 bit, (unsigned long long)bitmap_bh->b_blocknr, 1250 ext4_test_bit(bit, bitmap_bh->b_data)); 1251 if (inode) { 1252 printk(KERN_ERR "is_bad_inode(inode)=%d\n", 1253 is_bad_inode(inode)); 1254 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n", 1255 NEXT_ORPHAN(inode)); 1256 printk(KERN_ERR "max_ino=%lu\n", max_ino); 1257 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink); 1258 /* Avoid freeing blocks if we got a bad deleted inode */ 1259 if (inode->i_nlink == 0) 1260 inode->i_blocks = 0; 1261 iput(inode); 1262 } 1263 brelse(bitmap_bh); 1264 return ERR_PTR(err); 1265 } 1266 1267 unsigned long ext4_count_free_inodes(struct super_block *sb) 1268 { 1269 unsigned long desc_count; 1270 struct ext4_group_desc *gdp; 1271 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1272 #ifdef EXT4FS_DEBUG 1273 struct ext4_super_block *es; 1274 unsigned long bitmap_count, x; 1275 struct buffer_head *bitmap_bh = NULL; 1276 1277 es = EXT4_SB(sb)->s_es; 1278 desc_count = 0; 1279 bitmap_count = 0; 1280 gdp = NULL; 1281 for (i = 0; i < ngroups; i++) { 1282 gdp = ext4_get_group_desc(sb, i, NULL); 1283 if (!gdp) 1284 continue; 1285 desc_count += ext4_free_inodes_count(sb, gdp); 1286 brelse(bitmap_bh); 1287 bitmap_bh = ext4_read_inode_bitmap(sb, i); 1288 if (IS_ERR(bitmap_bh)) { 1289 bitmap_bh = NULL; 1290 continue; 1291 } 1292 1293 x = ext4_count_free(bitmap_bh->b_data, 1294 EXT4_INODES_PER_GROUP(sb) / 8); 1295 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n", 1296 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x); 1297 bitmap_count += x; 1298 } 1299 brelse(bitmap_bh); 1300 printk(KERN_DEBUG "ext4_count_free_inodes: " 1301 "stored = %u, computed = %lu, %lu\n", 1302 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count); 1303 return desc_count; 1304 #else 1305 desc_count = 0; 1306 for (i = 0; i < ngroups; i++) { 1307 gdp = ext4_get_group_desc(sb, i, NULL); 1308 if (!gdp) 1309 continue; 1310 desc_count += ext4_free_inodes_count(sb, gdp); 1311 cond_resched(); 1312 } 1313 return desc_count; 1314 #endif 1315 } 1316 1317 /* Called at mount-time, super-block is locked */ 1318 unsigned long ext4_count_dirs(struct super_block * sb) 1319 { 1320 unsigned long count = 0; 1321 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1322 1323 for (i = 0; i < ngroups; i++) { 1324 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1325 if (!gdp) 1326 continue; 1327 count += ext4_used_dirs_count(sb, gdp); 1328 } 1329 return count; 1330 } 1331 1332 /* 1333 * Zeroes not yet zeroed inode table - just write zeroes through the whole 1334 * inode table. Must be called without any spinlock held. The only place 1335 * where it is called from on active part of filesystem is ext4lazyinit 1336 * thread, so we do not need any special locks, however we have to prevent 1337 * inode allocation from the current group, so we take alloc_sem lock, to 1338 * block ext4_new_inode() until we are finished. 1339 */ 1340 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group, 1341 int barrier) 1342 { 1343 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1344 struct ext4_sb_info *sbi = EXT4_SB(sb); 1345 struct ext4_group_desc *gdp = NULL; 1346 struct buffer_head *group_desc_bh; 1347 handle_t *handle; 1348 ext4_fsblk_t blk; 1349 int num, ret = 0, used_blks = 0; 1350 1351 /* This should not happen, but just to be sure check this */ 1352 if (sb_rdonly(sb)) { 1353 ret = 1; 1354 goto out; 1355 } 1356 1357 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 1358 if (!gdp) 1359 goto out; 1360 1361 /* 1362 * We do not need to lock this, because we are the only one 1363 * handling this flag. 1364 */ 1365 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)) 1366 goto out; 1367 1368 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 1369 if (IS_ERR(handle)) { 1370 ret = PTR_ERR(handle); 1371 goto out; 1372 } 1373 1374 down_write(&grp->alloc_sem); 1375 /* 1376 * If inode bitmap was already initialized there may be some 1377 * used inodes so we need to skip blocks with used inodes in 1378 * inode table. 1379 */ 1380 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) 1381 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) - 1382 ext4_itable_unused_count(sb, gdp)), 1383 sbi->s_inodes_per_block); 1384 1385 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) { 1386 ext4_error(sb, "Something is wrong with group %u: " 1387 "used itable blocks: %d; " 1388 "itable unused count: %u", 1389 group, used_blks, 1390 ext4_itable_unused_count(sb, gdp)); 1391 ret = 1; 1392 goto err_out; 1393 } 1394 1395 blk = ext4_inode_table(sb, gdp) + used_blks; 1396 num = sbi->s_itb_per_group - used_blks; 1397 1398 BUFFER_TRACE(group_desc_bh, "get_write_access"); 1399 ret = ext4_journal_get_write_access(handle, 1400 group_desc_bh); 1401 if (ret) 1402 goto err_out; 1403 1404 /* 1405 * Skip zeroout if the inode table is full. But we set the ZEROED 1406 * flag anyway, because obviously, when it is full it does not need 1407 * further zeroing. 1408 */ 1409 if (unlikely(num == 0)) 1410 goto skip_zeroout; 1411 1412 ext4_debug("going to zero out inode table in group %d\n", 1413 group); 1414 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS); 1415 if (ret < 0) 1416 goto err_out; 1417 if (barrier) 1418 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL); 1419 1420 skip_zeroout: 1421 ext4_lock_group(sb, group); 1422 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED); 1423 ext4_group_desc_csum_set(sb, group, gdp); 1424 ext4_unlock_group(sb, group); 1425 1426 BUFFER_TRACE(group_desc_bh, 1427 "call ext4_handle_dirty_metadata"); 1428 ret = ext4_handle_dirty_metadata(handle, NULL, 1429 group_desc_bh); 1430 1431 err_out: 1432 up_write(&grp->alloc_sem); 1433 ext4_journal_stop(handle); 1434 out: 1435 return ret; 1436 } 1437