1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/ialloc.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * BSD ufs-inspired inode and directory allocation by 11 * Stephen Tweedie (sct@redhat.com), 1993 12 * Big-endian to little-endian byte-swapping/bitmaps by 13 * David S. Miller (davem@caip.rutgers.edu), 1995 14 */ 15 16 #include <linux/time.h> 17 #include <linux/fs.h> 18 #include <linux/stat.h> 19 #include <linux/string.h> 20 #include <linux/quotaops.h> 21 #include <linux/buffer_head.h> 22 #include <linux/random.h> 23 #include <linux/bitops.h> 24 #include <linux/blkdev.h> 25 #include <linux/cred.h> 26 27 #include <asm/byteorder.h> 28 29 #include "ext4.h" 30 #include "ext4_jbd2.h" 31 #include "xattr.h" 32 #include "acl.h" 33 34 #include <trace/events/ext4.h> 35 36 /* 37 * ialloc.c contains the inodes allocation and deallocation routines 38 */ 39 40 /* 41 * The free inodes are managed by bitmaps. A file system contains several 42 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap 43 * block for inodes, N blocks for the inode table and data blocks. 44 * 45 * The file system contains group descriptors which are located after the 46 * super block. Each descriptor contains the number of the bitmap block and 47 * the free blocks count in the block. 48 */ 49 50 /* 51 * To avoid calling the atomic setbit hundreds or thousands of times, we only 52 * need to use it within a single byte (to ensure we get endianness right). 53 * We can use memset for the rest of the bitmap as there are no other users. 54 */ 55 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap) 56 { 57 int i; 58 59 if (start_bit >= end_bit) 60 return; 61 62 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit); 63 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++) 64 ext4_set_bit(i, bitmap); 65 if (i < end_bit) 66 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3); 67 } 68 69 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate) 70 { 71 if (uptodate) { 72 set_buffer_uptodate(bh); 73 set_bitmap_uptodate(bh); 74 } 75 unlock_buffer(bh); 76 put_bh(bh); 77 } 78 79 static int ext4_validate_inode_bitmap(struct super_block *sb, 80 struct ext4_group_desc *desc, 81 ext4_group_t block_group, 82 struct buffer_head *bh) 83 { 84 ext4_fsblk_t blk; 85 struct ext4_group_info *grp; 86 87 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) 88 return 0; 89 90 if (buffer_verified(bh)) 91 return 0; 92 93 grp = ext4_get_group_info(sb, block_group); 94 if (!grp || EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 95 return -EFSCORRUPTED; 96 97 ext4_lock_group(sb, block_group); 98 if (buffer_verified(bh)) 99 goto verified; 100 blk = ext4_inode_bitmap(sb, desc); 101 if (!ext4_inode_bitmap_csum_verify(sb, desc, bh) || 102 ext4_simulate_fail(sb, EXT4_SIM_IBITMAP_CRC)) { 103 ext4_unlock_group(sb, block_group); 104 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, " 105 "inode_bitmap = %llu", block_group, blk); 106 ext4_mark_group_bitmap_corrupted(sb, block_group, 107 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 108 return -EFSBADCRC; 109 } 110 set_buffer_verified(bh); 111 verified: 112 ext4_unlock_group(sb, block_group); 113 return 0; 114 } 115 116 /* 117 * Read the inode allocation bitmap for a given block_group, reading 118 * into the specified slot in the superblock's bitmap cache. 119 * 120 * Return buffer_head of bitmap on success, or an ERR_PTR on error. 121 */ 122 static struct buffer_head * 123 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group) 124 { 125 struct ext4_group_desc *desc; 126 struct ext4_sb_info *sbi = EXT4_SB(sb); 127 struct buffer_head *bh = NULL; 128 ext4_fsblk_t bitmap_blk; 129 int err; 130 131 desc = ext4_get_group_desc(sb, block_group, NULL); 132 if (!desc) 133 return ERR_PTR(-EFSCORRUPTED); 134 135 bitmap_blk = ext4_inode_bitmap(sb, desc); 136 if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) || 137 (bitmap_blk >= ext4_blocks_count(sbi->s_es))) { 138 ext4_error(sb, "Invalid inode bitmap blk %llu in " 139 "block_group %u", bitmap_blk, block_group); 140 ext4_mark_group_bitmap_corrupted(sb, block_group, 141 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 142 return ERR_PTR(-EFSCORRUPTED); 143 } 144 bh = sb_getblk(sb, bitmap_blk); 145 if (unlikely(!bh)) { 146 ext4_warning(sb, "Cannot read inode bitmap - " 147 "block_group = %u, inode_bitmap = %llu", 148 block_group, bitmap_blk); 149 return ERR_PTR(-ENOMEM); 150 } 151 if (bitmap_uptodate(bh)) 152 goto verify; 153 154 lock_buffer(bh); 155 if (bitmap_uptodate(bh)) { 156 unlock_buffer(bh); 157 goto verify; 158 } 159 160 ext4_lock_group(sb, block_group); 161 if (ext4_has_group_desc_csum(sb) && 162 (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) { 163 if (block_group == 0) { 164 ext4_unlock_group(sb, block_group); 165 unlock_buffer(bh); 166 ext4_error(sb, "Inode bitmap for bg 0 marked " 167 "uninitialized"); 168 err = -EFSCORRUPTED; 169 goto out; 170 } 171 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8); 172 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), 173 sb->s_blocksize * 8, bh->b_data); 174 set_bitmap_uptodate(bh); 175 set_buffer_uptodate(bh); 176 set_buffer_verified(bh); 177 ext4_unlock_group(sb, block_group); 178 unlock_buffer(bh); 179 return bh; 180 } 181 ext4_unlock_group(sb, block_group); 182 183 if (buffer_uptodate(bh)) { 184 /* 185 * if not uninit if bh is uptodate, 186 * bitmap is also uptodate 187 */ 188 set_bitmap_uptodate(bh); 189 unlock_buffer(bh); 190 goto verify; 191 } 192 /* 193 * submit the buffer_head for reading 194 */ 195 trace_ext4_load_inode_bitmap(sb, block_group); 196 ext4_read_bh(bh, REQ_META | REQ_PRIO, 197 ext4_end_bitmap_read, 198 ext4_simulate_fail(sb, EXT4_SIM_IBITMAP_EIO)); 199 if (!buffer_uptodate(bh)) { 200 put_bh(bh); 201 ext4_error_err(sb, EIO, "Cannot read inode bitmap - " 202 "block_group = %u, inode_bitmap = %llu", 203 block_group, bitmap_blk); 204 ext4_mark_group_bitmap_corrupted(sb, block_group, 205 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 206 return ERR_PTR(-EIO); 207 } 208 209 verify: 210 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh); 211 if (err) 212 goto out; 213 return bh; 214 out: 215 put_bh(bh); 216 return ERR_PTR(err); 217 } 218 219 /* 220 * NOTE! When we get the inode, we're the only people 221 * that have access to it, and as such there are no 222 * race conditions we have to worry about. The inode 223 * is not on the hash-lists, and it cannot be reached 224 * through the filesystem because the directory entry 225 * has been deleted earlier. 226 * 227 * HOWEVER: we must make sure that we get no aliases, 228 * which means that we have to call "clear_inode()" 229 * _before_ we mark the inode not in use in the inode 230 * bitmaps. Otherwise a newly created file might use 231 * the same inode number (not actually the same pointer 232 * though), and then we'd have two inodes sharing the 233 * same inode number and space on the harddisk. 234 */ 235 void ext4_free_inode(handle_t *handle, struct inode *inode) 236 { 237 struct super_block *sb = inode->i_sb; 238 int is_directory; 239 unsigned long ino; 240 struct buffer_head *bitmap_bh = NULL; 241 struct buffer_head *bh2; 242 ext4_group_t block_group; 243 unsigned long bit; 244 struct ext4_group_desc *gdp; 245 struct ext4_super_block *es; 246 struct ext4_sb_info *sbi; 247 int fatal = 0, err, count, cleared; 248 struct ext4_group_info *grp; 249 250 if (!sb) { 251 printk(KERN_ERR "EXT4-fs: %s:%d: inode on " 252 "nonexistent device\n", __func__, __LINE__); 253 return; 254 } 255 if (atomic_read(&inode->i_count) > 1) { 256 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d", 257 __func__, __LINE__, inode->i_ino, 258 atomic_read(&inode->i_count)); 259 return; 260 } 261 if (inode->i_nlink) { 262 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n", 263 __func__, __LINE__, inode->i_ino, inode->i_nlink); 264 return; 265 } 266 sbi = EXT4_SB(sb); 267 268 ino = inode->i_ino; 269 ext4_debug("freeing inode %lu\n", ino); 270 trace_ext4_free_inode(inode); 271 272 dquot_initialize(inode); 273 dquot_free_inode(inode); 274 275 is_directory = S_ISDIR(inode->i_mode); 276 277 /* Do this BEFORE marking the inode not in use or returning an error */ 278 ext4_clear_inode(inode); 279 280 es = sbi->s_es; 281 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { 282 ext4_error(sb, "reserved or nonexistent inode %lu", ino); 283 goto error_return; 284 } 285 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 286 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 287 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 288 /* Don't bother if the inode bitmap is corrupt. */ 289 if (IS_ERR(bitmap_bh)) { 290 fatal = PTR_ERR(bitmap_bh); 291 bitmap_bh = NULL; 292 goto error_return; 293 } 294 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) { 295 grp = ext4_get_group_info(sb, block_group); 296 if (!grp || unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) { 297 fatal = -EFSCORRUPTED; 298 goto error_return; 299 } 300 } 301 302 BUFFER_TRACE(bitmap_bh, "get_write_access"); 303 fatal = ext4_journal_get_write_access(handle, sb, bitmap_bh, 304 EXT4_JTR_NONE); 305 if (fatal) 306 goto error_return; 307 308 fatal = -ESRCH; 309 gdp = ext4_get_group_desc(sb, block_group, &bh2); 310 if (gdp) { 311 BUFFER_TRACE(bh2, "get_write_access"); 312 fatal = ext4_journal_get_write_access(handle, sb, bh2, 313 EXT4_JTR_NONE); 314 } 315 ext4_lock_group(sb, block_group); 316 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data); 317 if (fatal || !cleared) { 318 ext4_unlock_group(sb, block_group); 319 goto out; 320 } 321 322 count = ext4_free_inodes_count(sb, gdp) + 1; 323 ext4_free_inodes_set(sb, gdp, count); 324 if (is_directory) { 325 count = ext4_used_dirs_count(sb, gdp) - 1; 326 ext4_used_dirs_set(sb, gdp, count); 327 if (percpu_counter_initialized(&sbi->s_dirs_counter)) 328 percpu_counter_dec(&sbi->s_dirs_counter); 329 } 330 ext4_inode_bitmap_csum_set(sb, gdp, bitmap_bh); 331 ext4_group_desc_csum_set(sb, block_group, gdp); 332 ext4_unlock_group(sb, block_group); 333 334 if (percpu_counter_initialized(&sbi->s_freeinodes_counter)) 335 percpu_counter_inc(&sbi->s_freeinodes_counter); 336 if (sbi->s_log_groups_per_flex) { 337 struct flex_groups *fg; 338 339 fg = sbi_array_rcu_deref(sbi, s_flex_groups, 340 ext4_flex_group(sbi, block_group)); 341 atomic_inc(&fg->free_inodes); 342 if (is_directory) 343 atomic_dec(&fg->used_dirs); 344 } 345 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata"); 346 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2); 347 out: 348 if (cleared) { 349 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata"); 350 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 351 if (!fatal) 352 fatal = err; 353 } else { 354 ext4_error(sb, "bit already cleared for inode %lu", ino); 355 ext4_mark_group_bitmap_corrupted(sb, block_group, 356 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 357 } 358 359 error_return: 360 brelse(bitmap_bh); 361 ext4_std_error(sb, fatal); 362 } 363 364 struct orlov_stats { 365 __u64 free_clusters; 366 __u32 free_inodes; 367 __u32 used_dirs; 368 }; 369 370 /* 371 * Helper function for Orlov's allocator; returns critical information 372 * for a particular block group or flex_bg. If flex_size is 1, then g 373 * is a block group number; otherwise it is flex_bg number. 374 */ 375 static void get_orlov_stats(struct super_block *sb, ext4_group_t g, 376 int flex_size, struct orlov_stats *stats) 377 { 378 struct ext4_group_desc *desc; 379 380 if (flex_size > 1) { 381 struct flex_groups *fg = sbi_array_rcu_deref(EXT4_SB(sb), 382 s_flex_groups, g); 383 stats->free_inodes = atomic_read(&fg->free_inodes); 384 stats->free_clusters = atomic64_read(&fg->free_clusters); 385 stats->used_dirs = atomic_read(&fg->used_dirs); 386 return; 387 } 388 389 desc = ext4_get_group_desc(sb, g, NULL); 390 if (desc) { 391 stats->free_inodes = ext4_free_inodes_count(sb, desc); 392 stats->free_clusters = ext4_free_group_clusters(sb, desc); 393 stats->used_dirs = ext4_used_dirs_count(sb, desc); 394 } else { 395 stats->free_inodes = 0; 396 stats->free_clusters = 0; 397 stats->used_dirs = 0; 398 } 399 } 400 401 /* 402 * Orlov's allocator for directories. 403 * 404 * We always try to spread first-level directories. 405 * 406 * If there are blockgroups with both free inodes and free clusters counts 407 * not worse than average we return one with smallest directory count. 408 * Otherwise we simply return a random group. 409 * 410 * For the rest rules look so: 411 * 412 * It's OK to put directory into a group unless 413 * it has too many directories already (max_dirs) or 414 * it has too few free inodes left (min_inodes) or 415 * it has too few free clusters left (min_clusters) or 416 * Parent's group is preferred, if it doesn't satisfy these 417 * conditions we search cyclically through the rest. If none 418 * of the groups look good we just look for a group with more 419 * free inodes than average (starting at parent's group). 420 */ 421 422 static int find_group_orlov(struct super_block *sb, struct inode *parent, 423 ext4_group_t *group, umode_t mode, 424 const struct qstr *qstr) 425 { 426 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 427 struct ext4_sb_info *sbi = EXT4_SB(sb); 428 ext4_group_t real_ngroups = ext4_get_groups_count(sb); 429 int inodes_per_group = EXT4_INODES_PER_GROUP(sb); 430 unsigned int freei, avefreei, grp_free; 431 ext4_fsblk_t freec, avefreec; 432 unsigned int ndirs; 433 int max_dirs, min_inodes; 434 ext4_grpblk_t min_clusters; 435 ext4_group_t i, grp, g, ngroups; 436 struct ext4_group_desc *desc; 437 struct orlov_stats stats; 438 int flex_size = ext4_flex_bg_size(sbi); 439 struct dx_hash_info hinfo; 440 441 ngroups = real_ngroups; 442 if (flex_size > 1) { 443 ngroups = (real_ngroups + flex_size - 1) >> 444 sbi->s_log_groups_per_flex; 445 parent_group >>= sbi->s_log_groups_per_flex; 446 } 447 448 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter); 449 avefreei = freei / ngroups; 450 freec = percpu_counter_read_positive(&sbi->s_freeclusters_counter); 451 avefreec = freec; 452 do_div(avefreec, ngroups); 453 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter); 454 455 if (S_ISDIR(mode) && 456 ((parent == d_inode(sb->s_root)) || 457 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) { 458 int best_ndir = inodes_per_group; 459 int ret = -1; 460 461 if (qstr) { 462 hinfo.hash_version = DX_HASH_HALF_MD4; 463 hinfo.seed = sbi->s_hash_seed; 464 ext4fs_dirhash(parent, qstr->name, qstr->len, &hinfo); 465 parent_group = hinfo.hash % ngroups; 466 } else 467 parent_group = get_random_u32_below(ngroups); 468 for (i = 0; i < ngroups; i++) { 469 g = (parent_group + i) % ngroups; 470 get_orlov_stats(sb, g, flex_size, &stats); 471 if (!stats.free_inodes) 472 continue; 473 if (stats.used_dirs >= best_ndir) 474 continue; 475 if (stats.free_inodes < avefreei) 476 continue; 477 if (stats.free_clusters < avefreec) 478 continue; 479 grp = g; 480 ret = 0; 481 best_ndir = stats.used_dirs; 482 } 483 if (ret) 484 goto fallback; 485 found_flex_bg: 486 if (flex_size == 1) { 487 *group = grp; 488 return 0; 489 } 490 491 /* 492 * We pack inodes at the beginning of the flexgroup's 493 * inode tables. Block allocation decisions will do 494 * something similar, although regular files will 495 * start at 2nd block group of the flexgroup. See 496 * ext4_ext_find_goal() and ext4_find_near(). 497 */ 498 grp *= flex_size; 499 for (i = 0; i < flex_size; i++) { 500 if (grp+i >= real_ngroups) 501 break; 502 desc = ext4_get_group_desc(sb, grp+i, NULL); 503 if (desc && ext4_free_inodes_count(sb, desc)) { 504 *group = grp+i; 505 return 0; 506 } 507 } 508 goto fallback; 509 } 510 511 max_dirs = ndirs / ngroups + inodes_per_group*flex_size / 16; 512 min_inodes = avefreei - inodes_per_group*flex_size / 4; 513 if (min_inodes < 1) 514 min_inodes = 1; 515 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4; 516 if (min_clusters < 0) 517 min_clusters = 0; 518 519 /* 520 * Start looking in the flex group where we last allocated an 521 * inode for this parent directory 522 */ 523 if (EXT4_I(parent)->i_last_alloc_group != ~0) { 524 parent_group = EXT4_I(parent)->i_last_alloc_group; 525 if (flex_size > 1) 526 parent_group >>= sbi->s_log_groups_per_flex; 527 } 528 529 for (i = 0; i < ngroups; i++) { 530 grp = (parent_group + i) % ngroups; 531 get_orlov_stats(sb, grp, flex_size, &stats); 532 if (stats.used_dirs >= max_dirs) 533 continue; 534 if (stats.free_inodes < min_inodes) 535 continue; 536 if (stats.free_clusters < min_clusters) 537 continue; 538 goto found_flex_bg; 539 } 540 541 fallback: 542 ngroups = real_ngroups; 543 avefreei = freei / ngroups; 544 fallback_retry: 545 parent_group = EXT4_I(parent)->i_block_group; 546 for (i = 0; i < ngroups; i++) { 547 grp = (parent_group + i) % ngroups; 548 desc = ext4_get_group_desc(sb, grp, NULL); 549 if (desc) { 550 grp_free = ext4_free_inodes_count(sb, desc); 551 if (grp_free && grp_free >= avefreei) { 552 *group = grp; 553 return 0; 554 } 555 } 556 } 557 558 if (avefreei) { 559 /* 560 * The free-inodes counter is approximate, and for really small 561 * filesystems the above test can fail to find any blockgroups 562 */ 563 avefreei = 0; 564 goto fallback_retry; 565 } 566 567 return -1; 568 } 569 570 static int find_group_other(struct super_block *sb, struct inode *parent, 571 ext4_group_t *group, umode_t mode) 572 { 573 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 574 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb); 575 struct ext4_group_desc *desc; 576 int flex_size = ext4_flex_bg_size(EXT4_SB(sb)); 577 578 /* 579 * Try to place the inode is the same flex group as its 580 * parent. If we can't find space, use the Orlov algorithm to 581 * find another flex group, and store that information in the 582 * parent directory's inode information so that use that flex 583 * group for future allocations. 584 */ 585 if (flex_size > 1) { 586 int retry = 0; 587 588 try_again: 589 parent_group &= ~(flex_size-1); 590 last = parent_group + flex_size; 591 if (last > ngroups) 592 last = ngroups; 593 for (i = parent_group; i < last; i++) { 594 desc = ext4_get_group_desc(sb, i, NULL); 595 if (desc && ext4_free_inodes_count(sb, desc)) { 596 *group = i; 597 return 0; 598 } 599 } 600 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) { 601 retry = 1; 602 parent_group = EXT4_I(parent)->i_last_alloc_group; 603 goto try_again; 604 } 605 /* 606 * If this didn't work, use the Orlov search algorithm 607 * to find a new flex group; we pass in the mode to 608 * avoid the topdir algorithms. 609 */ 610 *group = parent_group + flex_size; 611 if (*group > ngroups) 612 *group = 0; 613 return find_group_orlov(sb, parent, group, mode, NULL); 614 } 615 616 /* 617 * Try to place the inode in its parent directory 618 */ 619 *group = parent_group; 620 desc = ext4_get_group_desc(sb, *group, NULL); 621 if (desc && ext4_free_inodes_count(sb, desc) && 622 ext4_free_group_clusters(sb, desc)) 623 return 0; 624 625 /* 626 * We're going to place this inode in a different blockgroup from its 627 * parent. We want to cause files in a common directory to all land in 628 * the same blockgroup. But we want files which are in a different 629 * directory which shares a blockgroup with our parent to land in a 630 * different blockgroup. 631 * 632 * So add our directory's i_ino into the starting point for the hash. 633 */ 634 *group = (*group + parent->i_ino) % ngroups; 635 636 /* 637 * Use a quadratic hash to find a group with a free inode and some free 638 * blocks. 639 */ 640 for (i = 1; i < ngroups; i <<= 1) { 641 *group += i; 642 if (*group >= ngroups) 643 *group -= ngroups; 644 desc = ext4_get_group_desc(sb, *group, NULL); 645 if (desc && ext4_free_inodes_count(sb, desc) && 646 ext4_free_group_clusters(sb, desc)) 647 return 0; 648 } 649 650 /* 651 * That failed: try linear search for a free inode, even if that group 652 * has no free blocks. 653 */ 654 *group = parent_group; 655 for (i = 0; i < ngroups; i++) { 656 if (++*group >= ngroups) 657 *group = 0; 658 desc = ext4_get_group_desc(sb, *group, NULL); 659 if (desc && ext4_free_inodes_count(sb, desc)) 660 return 0; 661 } 662 663 return -1; 664 } 665 666 /* 667 * In no journal mode, if an inode has recently been deleted, we want 668 * to avoid reusing it until we're reasonably sure the inode table 669 * block has been written back to disk. (Yes, these values are 670 * somewhat arbitrary...) 671 */ 672 #define RECENTCY_MIN 60 673 #define RECENTCY_DIRTY 300 674 675 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino) 676 { 677 struct ext4_group_desc *gdp; 678 struct ext4_inode *raw_inode; 679 struct buffer_head *bh; 680 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 681 int offset, ret = 0; 682 int recentcy = RECENTCY_MIN; 683 u32 dtime, now; 684 685 gdp = ext4_get_group_desc(sb, group, NULL); 686 if (unlikely(!gdp)) 687 return 0; 688 689 bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) + 690 (ino / inodes_per_block)); 691 if (!bh || !buffer_uptodate(bh)) 692 /* 693 * If the block is not in the buffer cache, then it 694 * must have been written out. 695 */ 696 goto out; 697 698 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb); 699 raw_inode = (struct ext4_inode *) (bh->b_data + offset); 700 701 /* i_dtime is only 32 bits on disk, but we only care about relative 702 * times in the range of a few minutes (i.e. long enough to sync a 703 * recently-deleted inode to disk), so using the low 32 bits of the 704 * clock (a 68 year range) is enough, see time_before32() */ 705 dtime = le32_to_cpu(raw_inode->i_dtime); 706 now = ktime_get_real_seconds(); 707 if (buffer_dirty(bh)) 708 recentcy += RECENTCY_DIRTY; 709 710 if (dtime && time_before32(dtime, now) && 711 time_before32(now, dtime + recentcy)) 712 ret = 1; 713 out: 714 brelse(bh); 715 return ret; 716 } 717 718 static int find_inode_bit(struct super_block *sb, ext4_group_t group, 719 struct buffer_head *bitmap, unsigned long *ino) 720 { 721 bool check_recently_deleted = EXT4_SB(sb)->s_journal == NULL; 722 unsigned long recently_deleted_ino = EXT4_INODES_PER_GROUP(sb); 723 724 next: 725 *ino = ext4_find_next_zero_bit((unsigned long *) 726 bitmap->b_data, 727 EXT4_INODES_PER_GROUP(sb), *ino); 728 if (*ino >= EXT4_INODES_PER_GROUP(sb)) 729 goto not_found; 730 731 if (check_recently_deleted && recently_deleted(sb, group, *ino)) { 732 recently_deleted_ino = *ino; 733 *ino = *ino + 1; 734 if (*ino < EXT4_INODES_PER_GROUP(sb)) 735 goto next; 736 goto not_found; 737 } 738 return 1; 739 not_found: 740 if (recently_deleted_ino >= EXT4_INODES_PER_GROUP(sb)) 741 return 0; 742 /* 743 * Not reusing recently deleted inodes is mostly a preference. We don't 744 * want to report ENOSPC or skew allocation patterns because of that. 745 * So return even recently deleted inode if we could find better in the 746 * given range. 747 */ 748 *ino = recently_deleted_ino; 749 return 1; 750 } 751 752 int ext4_mark_inode_used(struct super_block *sb, int ino) 753 { 754 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); 755 struct buffer_head *inode_bitmap_bh = NULL, *group_desc_bh = NULL; 756 struct ext4_group_desc *gdp; 757 ext4_group_t group; 758 int bit; 759 int err; 760 761 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino) 762 return -EFSCORRUPTED; 763 764 group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 765 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 766 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); 767 if (IS_ERR(inode_bitmap_bh)) 768 return PTR_ERR(inode_bitmap_bh); 769 770 if (ext4_test_bit(bit, inode_bitmap_bh->b_data)) { 771 err = 0; 772 goto out; 773 } 774 775 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 776 if (!gdp) { 777 err = -EINVAL; 778 goto out; 779 } 780 781 ext4_set_bit(bit, inode_bitmap_bh->b_data); 782 783 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata"); 784 err = ext4_handle_dirty_metadata(NULL, NULL, inode_bitmap_bh); 785 if (err) { 786 ext4_std_error(sb, err); 787 goto out; 788 } 789 err = sync_dirty_buffer(inode_bitmap_bh); 790 if (err) { 791 ext4_std_error(sb, err); 792 goto out; 793 } 794 795 /* We may have to initialize the block bitmap if it isn't already */ 796 if (ext4_has_group_desc_csum(sb) && 797 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 798 struct buffer_head *block_bitmap_bh; 799 800 block_bitmap_bh = ext4_read_block_bitmap(sb, group); 801 if (IS_ERR(block_bitmap_bh)) { 802 err = PTR_ERR(block_bitmap_bh); 803 goto out; 804 } 805 806 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); 807 err = ext4_handle_dirty_metadata(NULL, NULL, block_bitmap_bh); 808 sync_dirty_buffer(block_bitmap_bh); 809 810 /* recheck and clear flag under lock if we still need to */ 811 ext4_lock_group(sb, group); 812 if (ext4_has_group_desc_csum(sb) && 813 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 814 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 815 ext4_free_group_clusters_set(sb, gdp, 816 ext4_free_clusters_after_init(sb, group, gdp)); 817 ext4_block_bitmap_csum_set(sb, gdp, block_bitmap_bh); 818 ext4_group_desc_csum_set(sb, group, gdp); 819 } 820 ext4_unlock_group(sb, group); 821 brelse(block_bitmap_bh); 822 823 if (err) { 824 ext4_std_error(sb, err); 825 goto out; 826 } 827 } 828 829 /* Update the relevant bg descriptor fields */ 830 if (ext4_has_group_desc_csum(sb)) { 831 int free; 832 833 ext4_lock_group(sb, group); /* while we modify the bg desc */ 834 free = EXT4_INODES_PER_GROUP(sb) - 835 ext4_itable_unused_count(sb, gdp); 836 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 837 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); 838 free = 0; 839 } 840 841 /* 842 * Check the relative inode number against the last used 843 * relative inode number in this group. if it is greater 844 * we need to update the bg_itable_unused count 845 */ 846 if (bit >= free) 847 ext4_itable_unused_set(sb, gdp, 848 (EXT4_INODES_PER_GROUP(sb) - bit - 1)); 849 } else { 850 ext4_lock_group(sb, group); 851 } 852 853 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1); 854 if (ext4_has_group_desc_csum(sb)) { 855 ext4_inode_bitmap_csum_set(sb, gdp, inode_bitmap_bh); 856 ext4_group_desc_csum_set(sb, group, gdp); 857 } 858 859 ext4_unlock_group(sb, group); 860 err = ext4_handle_dirty_metadata(NULL, NULL, group_desc_bh); 861 sync_dirty_buffer(group_desc_bh); 862 out: 863 brelse(inode_bitmap_bh); 864 return err; 865 } 866 867 static int ext4_xattr_credits_for_new_inode(struct inode *dir, mode_t mode, 868 bool encrypt) 869 { 870 struct super_block *sb = dir->i_sb; 871 int nblocks = 0; 872 #ifdef CONFIG_EXT4_FS_POSIX_ACL 873 struct posix_acl *p = get_inode_acl(dir, ACL_TYPE_DEFAULT); 874 875 if (IS_ERR(p)) 876 return PTR_ERR(p); 877 if (p) { 878 int acl_size = p->a_count * sizeof(ext4_acl_entry); 879 880 nblocks += (S_ISDIR(mode) ? 2 : 1) * 881 __ext4_xattr_set_credits(sb, NULL /* inode */, 882 NULL /* block_bh */, acl_size, 883 true /* is_create */); 884 posix_acl_release(p); 885 } 886 #endif 887 888 #ifdef CONFIG_SECURITY 889 { 890 int num_security_xattrs = 1; 891 892 #ifdef CONFIG_INTEGRITY 893 num_security_xattrs++; 894 #endif 895 /* 896 * We assume that security xattrs are never more than 1k. 897 * In practice they are under 128 bytes. 898 */ 899 nblocks += num_security_xattrs * 900 __ext4_xattr_set_credits(sb, NULL /* inode */, 901 NULL /* block_bh */, 1024, 902 true /* is_create */); 903 } 904 #endif 905 if (encrypt) 906 nblocks += __ext4_xattr_set_credits(sb, 907 NULL /* inode */, 908 NULL /* block_bh */, 909 FSCRYPT_SET_CONTEXT_MAX_SIZE, 910 true /* is_create */); 911 return nblocks; 912 } 913 914 /* 915 * There are two policies for allocating an inode. If the new inode is 916 * a directory, then a forward search is made for a block group with both 917 * free space and a low directory-to-inode ratio; if that fails, then of 918 * the groups with above-average free space, that group with the fewest 919 * directories already is chosen. 920 * 921 * For other inodes, search forward from the parent directory's block 922 * group to find a free inode. 923 */ 924 struct inode *__ext4_new_inode(struct mnt_idmap *idmap, 925 handle_t *handle, struct inode *dir, 926 umode_t mode, const struct qstr *qstr, 927 __u32 goal, uid_t *owner, __u32 i_flags, 928 int handle_type, unsigned int line_no, 929 int nblocks) 930 { 931 struct super_block *sb; 932 struct buffer_head *inode_bitmap_bh = NULL; 933 struct buffer_head *group_desc_bh; 934 ext4_group_t ngroups, group = 0; 935 unsigned long ino = 0; 936 struct inode *inode; 937 struct ext4_group_desc *gdp = NULL; 938 struct ext4_inode_info *ei; 939 struct ext4_sb_info *sbi; 940 int ret2, err; 941 struct inode *ret; 942 ext4_group_t i; 943 ext4_group_t flex_group; 944 struct ext4_group_info *grp = NULL; 945 bool encrypt = false; 946 947 /* Cannot create files in a deleted directory */ 948 if (!dir || !dir->i_nlink) 949 return ERR_PTR(-EPERM); 950 951 sb = dir->i_sb; 952 sbi = EXT4_SB(sb); 953 954 if (unlikely(ext4_forced_shutdown(sb))) 955 return ERR_PTR(-EIO); 956 957 ngroups = ext4_get_groups_count(sb); 958 trace_ext4_request_inode(dir, mode); 959 inode = new_inode(sb); 960 if (!inode) 961 return ERR_PTR(-ENOMEM); 962 ei = EXT4_I(inode); 963 964 /* 965 * Initialize owners and quota early so that we don't have to account 966 * for quota initialization worst case in standard inode creating 967 * transaction 968 */ 969 if (owner) { 970 inode->i_mode = mode; 971 i_uid_write(inode, owner[0]); 972 i_gid_write(inode, owner[1]); 973 } else if (test_opt(sb, GRPID)) { 974 inode->i_mode = mode; 975 inode_fsuid_set(inode, idmap); 976 inode->i_gid = dir->i_gid; 977 } else 978 inode_init_owner(idmap, inode, dir, mode); 979 980 if (ext4_has_feature_project(sb) && 981 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT)) 982 ei->i_projid = EXT4_I(dir)->i_projid; 983 else 984 ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID); 985 986 if (!(i_flags & EXT4_EA_INODE_FL)) { 987 err = fscrypt_prepare_new_inode(dir, inode, &encrypt); 988 if (err) 989 goto out; 990 } 991 992 err = dquot_initialize(inode); 993 if (err) 994 goto out; 995 996 if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) { 997 ret2 = ext4_xattr_credits_for_new_inode(dir, mode, encrypt); 998 if (ret2 < 0) { 999 err = ret2; 1000 goto out; 1001 } 1002 nblocks += ret2; 1003 } 1004 1005 if (!goal) 1006 goal = sbi->s_inode_goal; 1007 1008 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) { 1009 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb); 1010 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb); 1011 ret2 = 0; 1012 goto got_group; 1013 } 1014 1015 if (S_ISDIR(mode)) 1016 ret2 = find_group_orlov(sb, dir, &group, mode, qstr); 1017 else 1018 ret2 = find_group_other(sb, dir, &group, mode); 1019 1020 got_group: 1021 EXT4_I(dir)->i_last_alloc_group = group; 1022 err = -ENOSPC; 1023 if (ret2 == -1) 1024 goto out; 1025 1026 /* 1027 * Normally we will only go through one pass of this loop, 1028 * unless we get unlucky and it turns out the group we selected 1029 * had its last inode grabbed by someone else. 1030 */ 1031 for (i = 0; i < ngroups; i++, ino = 0) { 1032 err = -EIO; 1033 1034 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 1035 if (!gdp) 1036 goto out; 1037 1038 /* 1039 * Check free inodes count before loading bitmap. 1040 */ 1041 if (ext4_free_inodes_count(sb, gdp) == 0) 1042 goto next_group; 1043 1044 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) { 1045 grp = ext4_get_group_info(sb, group); 1046 /* 1047 * Skip groups with already-known suspicious inode 1048 * tables 1049 */ 1050 if (!grp || EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 1051 goto next_group; 1052 } 1053 1054 brelse(inode_bitmap_bh); 1055 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); 1056 /* Skip groups with suspicious inode tables */ 1057 if (IS_ERR(inode_bitmap_bh)) { 1058 inode_bitmap_bh = NULL; 1059 goto next_group; 1060 } 1061 if (!(sbi->s_mount_state & EXT4_FC_REPLAY) && 1062 EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 1063 goto next_group; 1064 1065 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino); 1066 if (!ret2) 1067 goto next_group; 1068 1069 if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) { 1070 ext4_error(sb, "reserved inode found cleared - " 1071 "inode=%lu", ino + 1); 1072 ext4_mark_group_bitmap_corrupted(sb, group, 1073 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 1074 goto next_group; 1075 } 1076 1077 if ((!(sbi->s_mount_state & EXT4_FC_REPLAY)) && !handle) { 1078 BUG_ON(nblocks <= 0); 1079 handle = __ext4_journal_start_sb(NULL, dir->i_sb, 1080 line_no, handle_type, nblocks, 0, 1081 ext4_trans_default_revoke_credits(sb)); 1082 if (IS_ERR(handle)) { 1083 err = PTR_ERR(handle); 1084 ext4_std_error(sb, err); 1085 goto out; 1086 } 1087 } 1088 BUFFER_TRACE(inode_bitmap_bh, "get_write_access"); 1089 err = ext4_journal_get_write_access(handle, sb, inode_bitmap_bh, 1090 EXT4_JTR_NONE); 1091 if (err) { 1092 ext4_std_error(sb, err); 1093 goto out; 1094 } 1095 ext4_lock_group(sb, group); 1096 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data); 1097 if (ret2) { 1098 /* Someone already took the bit. Repeat the search 1099 * with lock held. 1100 */ 1101 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino); 1102 if (ret2) { 1103 ext4_set_bit(ino, inode_bitmap_bh->b_data); 1104 ret2 = 0; 1105 } else { 1106 ret2 = 1; /* we didn't grab the inode */ 1107 } 1108 } 1109 ext4_unlock_group(sb, group); 1110 ino++; /* the inode bitmap is zero-based */ 1111 if (!ret2) 1112 goto got; /* we grabbed the inode! */ 1113 1114 next_group: 1115 if (++group == ngroups) 1116 group = 0; 1117 } 1118 err = -ENOSPC; 1119 goto out; 1120 1121 got: 1122 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata"); 1123 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh); 1124 if (err) { 1125 ext4_std_error(sb, err); 1126 goto out; 1127 } 1128 1129 BUFFER_TRACE(group_desc_bh, "get_write_access"); 1130 err = ext4_journal_get_write_access(handle, sb, group_desc_bh, 1131 EXT4_JTR_NONE); 1132 if (err) { 1133 ext4_std_error(sb, err); 1134 goto out; 1135 } 1136 1137 /* We may have to initialize the block bitmap if it isn't already */ 1138 if (ext4_has_group_desc_csum(sb) && 1139 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 1140 struct buffer_head *block_bitmap_bh; 1141 1142 block_bitmap_bh = ext4_read_block_bitmap(sb, group); 1143 if (IS_ERR(block_bitmap_bh)) { 1144 err = PTR_ERR(block_bitmap_bh); 1145 goto out; 1146 } 1147 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access"); 1148 err = ext4_journal_get_write_access(handle, sb, block_bitmap_bh, 1149 EXT4_JTR_NONE); 1150 if (err) { 1151 brelse(block_bitmap_bh); 1152 ext4_std_error(sb, err); 1153 goto out; 1154 } 1155 1156 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); 1157 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh); 1158 1159 /* recheck and clear flag under lock if we still need to */ 1160 ext4_lock_group(sb, group); 1161 if (ext4_has_group_desc_csum(sb) && 1162 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 1163 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 1164 ext4_free_group_clusters_set(sb, gdp, 1165 ext4_free_clusters_after_init(sb, group, gdp)); 1166 ext4_block_bitmap_csum_set(sb, gdp, block_bitmap_bh); 1167 ext4_group_desc_csum_set(sb, group, gdp); 1168 } 1169 ext4_unlock_group(sb, group); 1170 brelse(block_bitmap_bh); 1171 1172 if (err) { 1173 ext4_std_error(sb, err); 1174 goto out; 1175 } 1176 } 1177 1178 /* Update the relevant bg descriptor fields */ 1179 if (ext4_has_group_desc_csum(sb)) { 1180 int free; 1181 struct ext4_group_info *grp = NULL; 1182 1183 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) { 1184 grp = ext4_get_group_info(sb, group); 1185 if (!grp) { 1186 err = -EFSCORRUPTED; 1187 goto out; 1188 } 1189 down_read(&grp->alloc_sem); /* 1190 * protect vs itable 1191 * lazyinit 1192 */ 1193 } 1194 ext4_lock_group(sb, group); /* while we modify the bg desc */ 1195 free = EXT4_INODES_PER_GROUP(sb) - 1196 ext4_itable_unused_count(sb, gdp); 1197 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 1198 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); 1199 free = 0; 1200 } 1201 /* 1202 * Check the relative inode number against the last used 1203 * relative inode number in this group. if it is greater 1204 * we need to update the bg_itable_unused count 1205 */ 1206 if (ino > free) 1207 ext4_itable_unused_set(sb, gdp, 1208 (EXT4_INODES_PER_GROUP(sb) - ino)); 1209 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) 1210 up_read(&grp->alloc_sem); 1211 } else { 1212 ext4_lock_group(sb, group); 1213 } 1214 1215 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1); 1216 if (S_ISDIR(mode)) { 1217 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1); 1218 if (sbi->s_log_groups_per_flex) { 1219 ext4_group_t f = ext4_flex_group(sbi, group); 1220 1221 atomic_inc(&sbi_array_rcu_deref(sbi, s_flex_groups, 1222 f)->used_dirs); 1223 } 1224 } 1225 if (ext4_has_group_desc_csum(sb)) { 1226 ext4_inode_bitmap_csum_set(sb, gdp, inode_bitmap_bh); 1227 ext4_group_desc_csum_set(sb, group, gdp); 1228 } 1229 ext4_unlock_group(sb, group); 1230 1231 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata"); 1232 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh); 1233 if (err) { 1234 ext4_std_error(sb, err); 1235 goto out; 1236 } 1237 1238 percpu_counter_dec(&sbi->s_freeinodes_counter); 1239 if (S_ISDIR(mode)) 1240 percpu_counter_inc(&sbi->s_dirs_counter); 1241 1242 if (sbi->s_log_groups_per_flex) { 1243 flex_group = ext4_flex_group(sbi, group); 1244 atomic_dec(&sbi_array_rcu_deref(sbi, s_flex_groups, 1245 flex_group)->free_inodes); 1246 } 1247 1248 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb); 1249 /* This is the optimal IO size (for stat), not the fs block size */ 1250 inode->i_blocks = 0; 1251 simple_inode_init_ts(inode); 1252 ei->i_crtime = inode_get_mtime(inode); 1253 1254 memset(ei->i_data, 0, sizeof(ei->i_data)); 1255 ei->i_dir_start_lookup = 0; 1256 ei->i_disksize = 0; 1257 1258 /* Don't inherit extent flag from directory, amongst others. */ 1259 ei->i_flags = 1260 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED); 1261 ei->i_flags |= i_flags; 1262 ei->i_file_acl = 0; 1263 ei->i_dtime = 0; 1264 ei->i_block_group = group; 1265 ei->i_last_alloc_group = ~0; 1266 1267 ext4_set_inode_flags(inode, true); 1268 if (IS_DIRSYNC(inode)) 1269 ext4_handle_sync(handle); 1270 if (insert_inode_locked(inode) < 0) { 1271 /* 1272 * Likely a bitmap corruption causing inode to be allocated 1273 * twice. 1274 */ 1275 err = -EIO; 1276 ext4_error(sb, "failed to insert inode %lu: doubly allocated?", 1277 inode->i_ino); 1278 ext4_mark_group_bitmap_corrupted(sb, group, 1279 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 1280 goto out; 1281 } 1282 inode->i_generation = get_random_u32(); 1283 1284 /* Precompute checksum seed for inode metadata */ 1285 if (ext4_has_metadata_csum(sb)) { 1286 __u32 csum; 1287 __le32 inum = cpu_to_le32(inode->i_ino); 1288 __le32 gen = cpu_to_le32(inode->i_generation); 1289 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 1290 sizeof(inum)); 1291 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 1292 sizeof(gen)); 1293 } 1294 1295 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 1296 ext4_set_inode_state(inode, EXT4_STATE_NEW); 1297 1298 ei->i_extra_isize = sbi->s_want_extra_isize; 1299 ei->i_inline_off = 0; 1300 if (ext4_has_feature_inline_data(sb) && 1301 (!(ei->i_flags & EXT4_DAX_FL) || S_ISDIR(mode))) 1302 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 1303 ret = inode; 1304 err = dquot_alloc_inode(inode); 1305 if (err) 1306 goto fail_drop; 1307 1308 /* 1309 * Since the encryption xattr will always be unique, create it first so 1310 * that it's less likely to end up in an external xattr block and 1311 * prevent its deduplication. 1312 */ 1313 if (encrypt) { 1314 err = fscrypt_set_context(inode, handle); 1315 if (err) 1316 goto fail_free_drop; 1317 } 1318 1319 if (!(ei->i_flags & EXT4_EA_INODE_FL)) { 1320 err = ext4_init_acl(handle, inode, dir); 1321 if (err) 1322 goto fail_free_drop; 1323 1324 err = ext4_init_security(handle, inode, dir, qstr); 1325 if (err) 1326 goto fail_free_drop; 1327 } 1328 1329 if (ext4_has_feature_extents(sb)) { 1330 /* set extent flag only for directory, file and normal symlink*/ 1331 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) { 1332 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS); 1333 ext4_ext_tree_init(handle, inode); 1334 } 1335 } 1336 1337 ext4_update_inode_fsync_trans(handle, inode, 1); 1338 1339 err = ext4_mark_inode_dirty(handle, inode); 1340 if (err) { 1341 ext4_std_error(sb, err); 1342 goto fail_free_drop; 1343 } 1344 1345 ext4_debug("allocating inode %lu\n", inode->i_ino); 1346 trace_ext4_allocate_inode(inode, dir, mode); 1347 brelse(inode_bitmap_bh); 1348 return ret; 1349 1350 fail_free_drop: 1351 dquot_free_inode(inode); 1352 fail_drop: 1353 clear_nlink(inode); 1354 unlock_new_inode(inode); 1355 out: 1356 dquot_drop(inode); 1357 inode->i_flags |= S_NOQUOTA; 1358 iput(inode); 1359 brelse(inode_bitmap_bh); 1360 return ERR_PTR(err); 1361 } 1362 1363 /* Verify that we are loading a valid orphan from disk */ 1364 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino) 1365 { 1366 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); 1367 ext4_group_t block_group; 1368 int bit; 1369 struct buffer_head *bitmap_bh = NULL; 1370 struct inode *inode = NULL; 1371 int err = -EFSCORRUPTED; 1372 1373 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino) 1374 goto bad_orphan; 1375 1376 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 1377 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 1378 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 1379 if (IS_ERR(bitmap_bh)) 1380 return ERR_CAST(bitmap_bh); 1381 1382 /* Having the inode bit set should be a 100% indicator that this 1383 * is a valid orphan (no e2fsck run on fs). Orphans also include 1384 * inodes that were being truncated, so we can't check i_nlink==0. 1385 */ 1386 if (!ext4_test_bit(bit, bitmap_bh->b_data)) 1387 goto bad_orphan; 1388 1389 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); 1390 if (IS_ERR(inode)) { 1391 err = PTR_ERR(inode); 1392 ext4_error_err(sb, -err, 1393 "couldn't read orphan inode %lu (err %d)", 1394 ino, err); 1395 brelse(bitmap_bh); 1396 return inode; 1397 } 1398 1399 /* 1400 * If the orphans has i_nlinks > 0 then it should be able to 1401 * be truncated, otherwise it won't be removed from the orphan 1402 * list during processing and an infinite loop will result. 1403 * Similarly, it must not be a bad inode. 1404 */ 1405 if ((inode->i_nlink && !ext4_can_truncate(inode)) || 1406 is_bad_inode(inode)) 1407 goto bad_orphan; 1408 1409 if (NEXT_ORPHAN(inode) > max_ino) 1410 goto bad_orphan; 1411 brelse(bitmap_bh); 1412 return inode; 1413 1414 bad_orphan: 1415 ext4_error(sb, "bad orphan inode %lu", ino); 1416 if (bitmap_bh) 1417 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n", 1418 bit, (unsigned long long)bitmap_bh->b_blocknr, 1419 ext4_test_bit(bit, bitmap_bh->b_data)); 1420 if (inode) { 1421 printk(KERN_ERR "is_bad_inode(inode)=%d\n", 1422 is_bad_inode(inode)); 1423 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n", 1424 NEXT_ORPHAN(inode)); 1425 printk(KERN_ERR "max_ino=%lu\n", max_ino); 1426 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink); 1427 /* Avoid freeing blocks if we got a bad deleted inode */ 1428 if (inode->i_nlink == 0) 1429 inode->i_blocks = 0; 1430 iput(inode); 1431 } 1432 brelse(bitmap_bh); 1433 return ERR_PTR(err); 1434 } 1435 1436 unsigned long ext4_count_free_inodes(struct super_block *sb) 1437 { 1438 unsigned long desc_count; 1439 struct ext4_group_desc *gdp; 1440 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1441 #ifdef EXT4FS_DEBUG 1442 struct ext4_super_block *es; 1443 unsigned long bitmap_count, x; 1444 struct buffer_head *bitmap_bh = NULL; 1445 1446 es = EXT4_SB(sb)->s_es; 1447 desc_count = 0; 1448 bitmap_count = 0; 1449 gdp = NULL; 1450 for (i = 0; i < ngroups; i++) { 1451 gdp = ext4_get_group_desc(sb, i, NULL); 1452 if (!gdp) 1453 continue; 1454 desc_count += ext4_free_inodes_count(sb, gdp); 1455 brelse(bitmap_bh); 1456 bitmap_bh = ext4_read_inode_bitmap(sb, i); 1457 if (IS_ERR(bitmap_bh)) { 1458 bitmap_bh = NULL; 1459 continue; 1460 } 1461 1462 x = ext4_count_free(bitmap_bh->b_data, 1463 EXT4_INODES_PER_GROUP(sb) / 8); 1464 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n", 1465 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x); 1466 bitmap_count += x; 1467 } 1468 brelse(bitmap_bh); 1469 printk(KERN_DEBUG "ext4_count_free_inodes: " 1470 "stored = %u, computed = %lu, %lu\n", 1471 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count); 1472 return desc_count; 1473 #else 1474 desc_count = 0; 1475 for (i = 0; i < ngroups; i++) { 1476 gdp = ext4_get_group_desc(sb, i, NULL); 1477 if (!gdp) 1478 continue; 1479 desc_count += ext4_free_inodes_count(sb, gdp); 1480 cond_resched(); 1481 } 1482 return desc_count; 1483 #endif 1484 } 1485 1486 /* Called at mount-time, super-block is locked */ 1487 unsigned long ext4_count_dirs(struct super_block * sb) 1488 { 1489 unsigned long count = 0; 1490 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1491 1492 for (i = 0; i < ngroups; i++) { 1493 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1494 if (!gdp) 1495 continue; 1496 count += ext4_used_dirs_count(sb, gdp); 1497 } 1498 return count; 1499 } 1500 1501 /* 1502 * Zeroes not yet zeroed inode table - just write zeroes through the whole 1503 * inode table. Must be called without any spinlock held. The only place 1504 * where it is called from on active part of filesystem is ext4lazyinit 1505 * thread, so we do not need any special locks, however we have to prevent 1506 * inode allocation from the current group, so we take alloc_sem lock, to 1507 * block ext4_new_inode() until we are finished. 1508 */ 1509 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group, 1510 int barrier) 1511 { 1512 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1513 struct ext4_sb_info *sbi = EXT4_SB(sb); 1514 struct ext4_group_desc *gdp = NULL; 1515 struct buffer_head *group_desc_bh; 1516 handle_t *handle; 1517 ext4_fsblk_t blk; 1518 int num, ret = 0, used_blks = 0; 1519 unsigned long used_inos = 0; 1520 1521 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 1522 if (!gdp || !grp) 1523 goto out; 1524 1525 /* 1526 * We do not need to lock this, because we are the only one 1527 * handling this flag. 1528 */ 1529 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)) 1530 goto out; 1531 1532 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 1533 if (IS_ERR(handle)) { 1534 ret = PTR_ERR(handle); 1535 goto out; 1536 } 1537 1538 down_write(&grp->alloc_sem); 1539 /* 1540 * If inode bitmap was already initialized there may be some 1541 * used inodes so we need to skip blocks with used inodes in 1542 * inode table. 1543 */ 1544 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) { 1545 used_inos = EXT4_INODES_PER_GROUP(sb) - 1546 ext4_itable_unused_count(sb, gdp); 1547 used_blks = DIV_ROUND_UP(used_inos, sbi->s_inodes_per_block); 1548 1549 /* Bogus inode unused count? */ 1550 if (used_blks < 0 || used_blks > sbi->s_itb_per_group) { 1551 ext4_error(sb, "Something is wrong with group %u: " 1552 "used itable blocks: %d; " 1553 "itable unused count: %u", 1554 group, used_blks, 1555 ext4_itable_unused_count(sb, gdp)); 1556 ret = 1; 1557 goto err_out; 1558 } 1559 1560 used_inos += group * EXT4_INODES_PER_GROUP(sb); 1561 /* 1562 * Are there some uninitialized inodes in the inode table 1563 * before the first normal inode? 1564 */ 1565 if ((used_blks != sbi->s_itb_per_group) && 1566 (used_inos < EXT4_FIRST_INO(sb))) { 1567 ext4_error(sb, "Something is wrong with group %u: " 1568 "itable unused count: %u; " 1569 "itables initialized count: %ld", 1570 group, ext4_itable_unused_count(sb, gdp), 1571 used_inos); 1572 ret = 1; 1573 goto err_out; 1574 } 1575 } 1576 1577 blk = ext4_inode_table(sb, gdp) + used_blks; 1578 num = sbi->s_itb_per_group - used_blks; 1579 1580 BUFFER_TRACE(group_desc_bh, "get_write_access"); 1581 ret = ext4_journal_get_write_access(handle, sb, group_desc_bh, 1582 EXT4_JTR_NONE); 1583 if (ret) 1584 goto err_out; 1585 1586 /* 1587 * Skip zeroout if the inode table is full. But we set the ZEROED 1588 * flag anyway, because obviously, when it is full it does not need 1589 * further zeroing. 1590 */ 1591 if (unlikely(num == 0)) 1592 goto skip_zeroout; 1593 1594 ext4_debug("going to zero out inode table in group %d\n", 1595 group); 1596 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS); 1597 if (ret < 0) 1598 goto err_out; 1599 if (barrier) 1600 blkdev_issue_flush(sb->s_bdev); 1601 1602 skip_zeroout: 1603 ext4_lock_group(sb, group); 1604 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED); 1605 ext4_group_desc_csum_set(sb, group, gdp); 1606 ext4_unlock_group(sb, group); 1607 1608 BUFFER_TRACE(group_desc_bh, 1609 "call ext4_handle_dirty_metadata"); 1610 ret = ext4_handle_dirty_metadata(handle, NULL, 1611 group_desc_bh); 1612 1613 err_out: 1614 up_write(&grp->alloc_sem); 1615 ext4_journal_stop(handle); 1616 out: 1617 return ret; 1618 } 1619