1 /* 2 * linux/fs/ext4/ialloc.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * BSD ufs-inspired inode and directory allocation by 10 * Stephen Tweedie (sct@redhat.com), 1993 11 * Big-endian to little-endian byte-swapping/bitmaps by 12 * David S. Miller (davem@caip.rutgers.edu), 1995 13 */ 14 15 #include <linux/time.h> 16 #include <linux/fs.h> 17 #include <linux/stat.h> 18 #include <linux/string.h> 19 #include <linux/quotaops.h> 20 #include <linux/buffer_head.h> 21 #include <linux/random.h> 22 #include <linux/bitops.h> 23 #include <linux/blkdev.h> 24 #include <linux/cred.h> 25 26 #include <asm/byteorder.h> 27 28 #include "ext4.h" 29 #include "ext4_jbd2.h" 30 #include "xattr.h" 31 #include "acl.h" 32 33 #include <trace/events/ext4.h> 34 35 /* 36 * ialloc.c contains the inodes allocation and deallocation routines 37 */ 38 39 /* 40 * The free inodes are managed by bitmaps. A file system contains several 41 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap 42 * block for inodes, N blocks for the inode table and data blocks. 43 * 44 * The file system contains group descriptors which are located after the 45 * super block. Each descriptor contains the number of the bitmap block and 46 * the free blocks count in the block. 47 */ 48 49 /* 50 * To avoid calling the atomic setbit hundreds or thousands of times, we only 51 * need to use it within a single byte (to ensure we get endianness right). 52 * We can use memset for the rest of the bitmap as there are no other users. 53 */ 54 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap) 55 { 56 int i; 57 58 if (start_bit >= end_bit) 59 return; 60 61 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit); 62 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++) 63 ext4_set_bit(i, bitmap); 64 if (i < end_bit) 65 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3); 66 } 67 68 /* Initializes an uninitialized inode bitmap */ 69 static int ext4_init_inode_bitmap(struct super_block *sb, 70 struct buffer_head *bh, 71 ext4_group_t block_group, 72 struct ext4_group_desc *gdp) 73 { 74 struct ext4_group_info *grp; 75 struct ext4_sb_info *sbi = EXT4_SB(sb); 76 J_ASSERT_BH(bh, buffer_locked(bh)); 77 78 /* If checksum is bad mark all blocks and inodes use to prevent 79 * allocation, essentially implementing a per-group read-only flag. */ 80 if (!ext4_group_desc_csum_verify(sb, block_group, gdp)) { 81 grp = ext4_get_group_info(sb, block_group); 82 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp)) 83 percpu_counter_sub(&sbi->s_freeclusters_counter, 84 grp->bb_free); 85 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state); 86 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) { 87 int count; 88 count = ext4_free_inodes_count(sb, gdp); 89 percpu_counter_sub(&sbi->s_freeinodes_counter, 90 count); 91 } 92 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state); 93 return -EFSBADCRC; 94 } 95 96 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8); 97 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8, 98 bh->b_data); 99 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh, 100 EXT4_INODES_PER_GROUP(sb) / 8); 101 ext4_group_desc_csum_set(sb, block_group, gdp); 102 103 return 0; 104 } 105 106 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate) 107 { 108 if (uptodate) { 109 set_buffer_uptodate(bh); 110 set_bitmap_uptodate(bh); 111 } 112 unlock_buffer(bh); 113 put_bh(bh); 114 } 115 116 static int ext4_validate_inode_bitmap(struct super_block *sb, 117 struct ext4_group_desc *desc, 118 ext4_group_t block_group, 119 struct buffer_head *bh) 120 { 121 ext4_fsblk_t blk; 122 struct ext4_group_info *grp = ext4_get_group_info(sb, block_group); 123 struct ext4_sb_info *sbi = EXT4_SB(sb); 124 125 if (buffer_verified(bh)) 126 return 0; 127 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 128 return -EFSCORRUPTED; 129 130 ext4_lock_group(sb, block_group); 131 blk = ext4_inode_bitmap(sb, desc); 132 if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh, 133 EXT4_INODES_PER_GROUP(sb) / 8)) { 134 ext4_unlock_group(sb, block_group); 135 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, " 136 "inode_bitmap = %llu", block_group, blk); 137 grp = ext4_get_group_info(sb, block_group); 138 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) { 139 int count; 140 count = ext4_free_inodes_count(sb, desc); 141 percpu_counter_sub(&sbi->s_freeinodes_counter, 142 count); 143 } 144 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state); 145 return -EFSBADCRC; 146 } 147 set_buffer_verified(bh); 148 ext4_unlock_group(sb, block_group); 149 return 0; 150 } 151 152 /* 153 * Read the inode allocation bitmap for a given block_group, reading 154 * into the specified slot in the superblock's bitmap cache. 155 * 156 * Return buffer_head of bitmap on success or NULL. 157 */ 158 static struct buffer_head * 159 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group) 160 { 161 struct ext4_group_desc *desc; 162 struct buffer_head *bh = NULL; 163 ext4_fsblk_t bitmap_blk; 164 int err; 165 166 desc = ext4_get_group_desc(sb, block_group, NULL); 167 if (!desc) 168 return ERR_PTR(-EFSCORRUPTED); 169 170 bitmap_blk = ext4_inode_bitmap(sb, desc); 171 bh = sb_getblk(sb, bitmap_blk); 172 if (unlikely(!bh)) { 173 ext4_error(sb, "Cannot read inode bitmap - " 174 "block_group = %u, inode_bitmap = %llu", 175 block_group, bitmap_blk); 176 return ERR_PTR(-EIO); 177 } 178 if (bitmap_uptodate(bh)) 179 goto verify; 180 181 lock_buffer(bh); 182 if (bitmap_uptodate(bh)) { 183 unlock_buffer(bh); 184 goto verify; 185 } 186 187 ext4_lock_group(sb, block_group); 188 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 189 err = ext4_init_inode_bitmap(sb, bh, block_group, desc); 190 set_bitmap_uptodate(bh); 191 set_buffer_uptodate(bh); 192 set_buffer_verified(bh); 193 ext4_unlock_group(sb, block_group); 194 unlock_buffer(bh); 195 if (err) { 196 ext4_error(sb, "Failed to init inode bitmap for group " 197 "%u: %d", block_group, err); 198 goto out; 199 } 200 return bh; 201 } 202 ext4_unlock_group(sb, block_group); 203 204 if (buffer_uptodate(bh)) { 205 /* 206 * if not uninit if bh is uptodate, 207 * bitmap is also uptodate 208 */ 209 set_bitmap_uptodate(bh); 210 unlock_buffer(bh); 211 goto verify; 212 } 213 /* 214 * submit the buffer_head for reading 215 */ 216 trace_ext4_load_inode_bitmap(sb, block_group); 217 bh->b_end_io = ext4_end_bitmap_read; 218 get_bh(bh); 219 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 220 wait_on_buffer(bh); 221 if (!buffer_uptodate(bh)) { 222 put_bh(bh); 223 ext4_error(sb, "Cannot read inode bitmap - " 224 "block_group = %u, inode_bitmap = %llu", 225 block_group, bitmap_blk); 226 return ERR_PTR(-EIO); 227 } 228 229 verify: 230 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh); 231 if (err) 232 goto out; 233 return bh; 234 out: 235 put_bh(bh); 236 return ERR_PTR(err); 237 } 238 239 /* 240 * NOTE! When we get the inode, we're the only people 241 * that have access to it, and as such there are no 242 * race conditions we have to worry about. The inode 243 * is not on the hash-lists, and it cannot be reached 244 * through the filesystem because the directory entry 245 * has been deleted earlier. 246 * 247 * HOWEVER: we must make sure that we get no aliases, 248 * which means that we have to call "clear_inode()" 249 * _before_ we mark the inode not in use in the inode 250 * bitmaps. Otherwise a newly created file might use 251 * the same inode number (not actually the same pointer 252 * though), and then we'd have two inodes sharing the 253 * same inode number and space on the harddisk. 254 */ 255 void ext4_free_inode(handle_t *handle, struct inode *inode) 256 { 257 struct super_block *sb = inode->i_sb; 258 int is_directory; 259 unsigned long ino; 260 struct buffer_head *bitmap_bh = NULL; 261 struct buffer_head *bh2; 262 ext4_group_t block_group; 263 unsigned long bit; 264 struct ext4_group_desc *gdp; 265 struct ext4_super_block *es; 266 struct ext4_sb_info *sbi; 267 int fatal = 0, err, count, cleared; 268 struct ext4_group_info *grp; 269 270 if (!sb) { 271 printk(KERN_ERR "EXT4-fs: %s:%d: inode on " 272 "nonexistent device\n", __func__, __LINE__); 273 return; 274 } 275 if (atomic_read(&inode->i_count) > 1) { 276 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d", 277 __func__, __LINE__, inode->i_ino, 278 atomic_read(&inode->i_count)); 279 return; 280 } 281 if (inode->i_nlink) { 282 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n", 283 __func__, __LINE__, inode->i_ino, inode->i_nlink); 284 return; 285 } 286 sbi = EXT4_SB(sb); 287 288 ino = inode->i_ino; 289 ext4_debug("freeing inode %lu\n", ino); 290 trace_ext4_free_inode(inode); 291 292 /* 293 * Note: we must free any quota before locking the superblock, 294 * as writing the quota to disk may need the lock as well. 295 */ 296 dquot_initialize(inode); 297 dquot_free_inode(inode); 298 dquot_drop(inode); 299 300 is_directory = S_ISDIR(inode->i_mode); 301 302 /* Do this BEFORE marking the inode not in use or returning an error */ 303 ext4_clear_inode(inode); 304 305 es = EXT4_SB(sb)->s_es; 306 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { 307 ext4_error(sb, "reserved or nonexistent inode %lu", ino); 308 goto error_return; 309 } 310 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 311 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 312 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 313 /* Don't bother if the inode bitmap is corrupt. */ 314 grp = ext4_get_group_info(sb, block_group); 315 if (IS_ERR(bitmap_bh)) { 316 fatal = PTR_ERR(bitmap_bh); 317 bitmap_bh = NULL; 318 goto error_return; 319 } 320 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) { 321 fatal = -EFSCORRUPTED; 322 goto error_return; 323 } 324 325 BUFFER_TRACE(bitmap_bh, "get_write_access"); 326 fatal = ext4_journal_get_write_access(handle, bitmap_bh); 327 if (fatal) 328 goto error_return; 329 330 fatal = -ESRCH; 331 gdp = ext4_get_group_desc(sb, block_group, &bh2); 332 if (gdp) { 333 BUFFER_TRACE(bh2, "get_write_access"); 334 fatal = ext4_journal_get_write_access(handle, bh2); 335 } 336 ext4_lock_group(sb, block_group); 337 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data); 338 if (fatal || !cleared) { 339 ext4_unlock_group(sb, block_group); 340 goto out; 341 } 342 343 count = ext4_free_inodes_count(sb, gdp) + 1; 344 ext4_free_inodes_set(sb, gdp, count); 345 if (is_directory) { 346 count = ext4_used_dirs_count(sb, gdp) - 1; 347 ext4_used_dirs_set(sb, gdp, count); 348 percpu_counter_dec(&sbi->s_dirs_counter); 349 } 350 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh, 351 EXT4_INODES_PER_GROUP(sb) / 8); 352 ext4_group_desc_csum_set(sb, block_group, gdp); 353 ext4_unlock_group(sb, block_group); 354 355 percpu_counter_inc(&sbi->s_freeinodes_counter); 356 if (sbi->s_log_groups_per_flex) { 357 ext4_group_t f = ext4_flex_group(sbi, block_group); 358 359 atomic_inc(&sbi->s_flex_groups[f].free_inodes); 360 if (is_directory) 361 atomic_dec(&sbi->s_flex_groups[f].used_dirs); 362 } 363 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata"); 364 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2); 365 out: 366 if (cleared) { 367 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata"); 368 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 369 if (!fatal) 370 fatal = err; 371 } else { 372 ext4_error(sb, "bit already cleared for inode %lu", ino); 373 if (gdp && !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) { 374 int count; 375 count = ext4_free_inodes_count(sb, gdp); 376 percpu_counter_sub(&sbi->s_freeinodes_counter, 377 count); 378 } 379 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state); 380 } 381 382 error_return: 383 brelse(bitmap_bh); 384 ext4_std_error(sb, fatal); 385 } 386 387 struct orlov_stats { 388 __u64 free_clusters; 389 __u32 free_inodes; 390 __u32 used_dirs; 391 }; 392 393 /* 394 * Helper function for Orlov's allocator; returns critical information 395 * for a particular block group or flex_bg. If flex_size is 1, then g 396 * is a block group number; otherwise it is flex_bg number. 397 */ 398 static void get_orlov_stats(struct super_block *sb, ext4_group_t g, 399 int flex_size, struct orlov_stats *stats) 400 { 401 struct ext4_group_desc *desc; 402 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups; 403 404 if (flex_size > 1) { 405 stats->free_inodes = atomic_read(&flex_group[g].free_inodes); 406 stats->free_clusters = atomic64_read(&flex_group[g].free_clusters); 407 stats->used_dirs = atomic_read(&flex_group[g].used_dirs); 408 return; 409 } 410 411 desc = ext4_get_group_desc(sb, g, NULL); 412 if (desc) { 413 stats->free_inodes = ext4_free_inodes_count(sb, desc); 414 stats->free_clusters = ext4_free_group_clusters(sb, desc); 415 stats->used_dirs = ext4_used_dirs_count(sb, desc); 416 } else { 417 stats->free_inodes = 0; 418 stats->free_clusters = 0; 419 stats->used_dirs = 0; 420 } 421 } 422 423 /* 424 * Orlov's allocator for directories. 425 * 426 * We always try to spread first-level directories. 427 * 428 * If there are blockgroups with both free inodes and free blocks counts 429 * not worse than average we return one with smallest directory count. 430 * Otherwise we simply return a random group. 431 * 432 * For the rest rules look so: 433 * 434 * It's OK to put directory into a group unless 435 * it has too many directories already (max_dirs) or 436 * it has too few free inodes left (min_inodes) or 437 * it has too few free blocks left (min_blocks) or 438 * Parent's group is preferred, if it doesn't satisfy these 439 * conditions we search cyclically through the rest. If none 440 * of the groups look good we just look for a group with more 441 * free inodes than average (starting at parent's group). 442 */ 443 444 static int find_group_orlov(struct super_block *sb, struct inode *parent, 445 ext4_group_t *group, umode_t mode, 446 const struct qstr *qstr) 447 { 448 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 449 struct ext4_sb_info *sbi = EXT4_SB(sb); 450 ext4_group_t real_ngroups = ext4_get_groups_count(sb); 451 int inodes_per_group = EXT4_INODES_PER_GROUP(sb); 452 unsigned int freei, avefreei, grp_free; 453 ext4_fsblk_t freeb, avefreec; 454 unsigned int ndirs; 455 int max_dirs, min_inodes; 456 ext4_grpblk_t min_clusters; 457 ext4_group_t i, grp, g, ngroups; 458 struct ext4_group_desc *desc; 459 struct orlov_stats stats; 460 int flex_size = ext4_flex_bg_size(sbi); 461 struct dx_hash_info hinfo; 462 463 ngroups = real_ngroups; 464 if (flex_size > 1) { 465 ngroups = (real_ngroups + flex_size - 1) >> 466 sbi->s_log_groups_per_flex; 467 parent_group >>= sbi->s_log_groups_per_flex; 468 } 469 470 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter); 471 avefreei = freei / ngroups; 472 freeb = EXT4_C2B(sbi, 473 percpu_counter_read_positive(&sbi->s_freeclusters_counter)); 474 avefreec = freeb; 475 do_div(avefreec, ngroups); 476 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter); 477 478 if (S_ISDIR(mode) && 479 ((parent == d_inode(sb->s_root)) || 480 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) { 481 int best_ndir = inodes_per_group; 482 int ret = -1; 483 484 if (qstr) { 485 hinfo.hash_version = DX_HASH_HALF_MD4; 486 hinfo.seed = sbi->s_hash_seed; 487 ext4fs_dirhash(qstr->name, qstr->len, &hinfo); 488 grp = hinfo.hash; 489 } else 490 grp = prandom_u32(); 491 parent_group = (unsigned)grp % ngroups; 492 for (i = 0; i < ngroups; i++) { 493 g = (parent_group + i) % ngroups; 494 get_orlov_stats(sb, g, flex_size, &stats); 495 if (!stats.free_inodes) 496 continue; 497 if (stats.used_dirs >= best_ndir) 498 continue; 499 if (stats.free_inodes < avefreei) 500 continue; 501 if (stats.free_clusters < avefreec) 502 continue; 503 grp = g; 504 ret = 0; 505 best_ndir = stats.used_dirs; 506 } 507 if (ret) 508 goto fallback; 509 found_flex_bg: 510 if (flex_size == 1) { 511 *group = grp; 512 return 0; 513 } 514 515 /* 516 * We pack inodes at the beginning of the flexgroup's 517 * inode tables. Block allocation decisions will do 518 * something similar, although regular files will 519 * start at 2nd block group of the flexgroup. See 520 * ext4_ext_find_goal() and ext4_find_near(). 521 */ 522 grp *= flex_size; 523 for (i = 0; i < flex_size; i++) { 524 if (grp+i >= real_ngroups) 525 break; 526 desc = ext4_get_group_desc(sb, grp+i, NULL); 527 if (desc && ext4_free_inodes_count(sb, desc)) { 528 *group = grp+i; 529 return 0; 530 } 531 } 532 goto fallback; 533 } 534 535 max_dirs = ndirs / ngroups + inodes_per_group / 16; 536 min_inodes = avefreei - inodes_per_group*flex_size / 4; 537 if (min_inodes < 1) 538 min_inodes = 1; 539 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4; 540 541 /* 542 * Start looking in the flex group where we last allocated an 543 * inode for this parent directory 544 */ 545 if (EXT4_I(parent)->i_last_alloc_group != ~0) { 546 parent_group = EXT4_I(parent)->i_last_alloc_group; 547 if (flex_size > 1) 548 parent_group >>= sbi->s_log_groups_per_flex; 549 } 550 551 for (i = 0; i < ngroups; i++) { 552 grp = (parent_group + i) % ngroups; 553 get_orlov_stats(sb, grp, flex_size, &stats); 554 if (stats.used_dirs >= max_dirs) 555 continue; 556 if (stats.free_inodes < min_inodes) 557 continue; 558 if (stats.free_clusters < min_clusters) 559 continue; 560 goto found_flex_bg; 561 } 562 563 fallback: 564 ngroups = real_ngroups; 565 avefreei = freei / ngroups; 566 fallback_retry: 567 parent_group = EXT4_I(parent)->i_block_group; 568 for (i = 0; i < ngroups; i++) { 569 grp = (parent_group + i) % ngroups; 570 desc = ext4_get_group_desc(sb, grp, NULL); 571 if (desc) { 572 grp_free = ext4_free_inodes_count(sb, desc); 573 if (grp_free && grp_free >= avefreei) { 574 *group = grp; 575 return 0; 576 } 577 } 578 } 579 580 if (avefreei) { 581 /* 582 * The free-inodes counter is approximate, and for really small 583 * filesystems the above test can fail to find any blockgroups 584 */ 585 avefreei = 0; 586 goto fallback_retry; 587 } 588 589 return -1; 590 } 591 592 static int find_group_other(struct super_block *sb, struct inode *parent, 593 ext4_group_t *group, umode_t mode) 594 { 595 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 596 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb); 597 struct ext4_group_desc *desc; 598 int flex_size = ext4_flex_bg_size(EXT4_SB(sb)); 599 600 /* 601 * Try to place the inode is the same flex group as its 602 * parent. If we can't find space, use the Orlov algorithm to 603 * find another flex group, and store that information in the 604 * parent directory's inode information so that use that flex 605 * group for future allocations. 606 */ 607 if (flex_size > 1) { 608 int retry = 0; 609 610 try_again: 611 parent_group &= ~(flex_size-1); 612 last = parent_group + flex_size; 613 if (last > ngroups) 614 last = ngroups; 615 for (i = parent_group; i < last; i++) { 616 desc = ext4_get_group_desc(sb, i, NULL); 617 if (desc && ext4_free_inodes_count(sb, desc)) { 618 *group = i; 619 return 0; 620 } 621 } 622 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) { 623 retry = 1; 624 parent_group = EXT4_I(parent)->i_last_alloc_group; 625 goto try_again; 626 } 627 /* 628 * If this didn't work, use the Orlov search algorithm 629 * to find a new flex group; we pass in the mode to 630 * avoid the topdir algorithms. 631 */ 632 *group = parent_group + flex_size; 633 if (*group > ngroups) 634 *group = 0; 635 return find_group_orlov(sb, parent, group, mode, NULL); 636 } 637 638 /* 639 * Try to place the inode in its parent directory 640 */ 641 *group = parent_group; 642 desc = ext4_get_group_desc(sb, *group, NULL); 643 if (desc && ext4_free_inodes_count(sb, desc) && 644 ext4_free_group_clusters(sb, desc)) 645 return 0; 646 647 /* 648 * We're going to place this inode in a different blockgroup from its 649 * parent. We want to cause files in a common directory to all land in 650 * the same blockgroup. But we want files which are in a different 651 * directory which shares a blockgroup with our parent to land in a 652 * different blockgroup. 653 * 654 * So add our directory's i_ino into the starting point for the hash. 655 */ 656 *group = (*group + parent->i_ino) % ngroups; 657 658 /* 659 * Use a quadratic hash to find a group with a free inode and some free 660 * blocks. 661 */ 662 for (i = 1; i < ngroups; i <<= 1) { 663 *group += i; 664 if (*group >= ngroups) 665 *group -= ngroups; 666 desc = ext4_get_group_desc(sb, *group, NULL); 667 if (desc && ext4_free_inodes_count(sb, desc) && 668 ext4_free_group_clusters(sb, desc)) 669 return 0; 670 } 671 672 /* 673 * That failed: try linear search for a free inode, even if that group 674 * has no free blocks. 675 */ 676 *group = parent_group; 677 for (i = 0; i < ngroups; i++) { 678 if (++*group >= ngroups) 679 *group = 0; 680 desc = ext4_get_group_desc(sb, *group, NULL); 681 if (desc && ext4_free_inodes_count(sb, desc)) 682 return 0; 683 } 684 685 return -1; 686 } 687 688 /* 689 * In no journal mode, if an inode has recently been deleted, we want 690 * to avoid reusing it until we're reasonably sure the inode table 691 * block has been written back to disk. (Yes, these values are 692 * somewhat arbitrary...) 693 */ 694 #define RECENTCY_MIN 5 695 #define RECENTCY_DIRTY 300 696 697 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino) 698 { 699 struct ext4_group_desc *gdp; 700 struct ext4_inode *raw_inode; 701 struct buffer_head *bh; 702 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 703 int offset, ret = 0; 704 int recentcy = RECENTCY_MIN; 705 u32 dtime, now; 706 707 gdp = ext4_get_group_desc(sb, group, NULL); 708 if (unlikely(!gdp)) 709 return 0; 710 711 bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) + 712 (ino / inodes_per_block)); 713 if (!bh || !buffer_uptodate(bh)) 714 /* 715 * If the block is not in the buffer cache, then it 716 * must have been written out. 717 */ 718 goto out; 719 720 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb); 721 raw_inode = (struct ext4_inode *) (bh->b_data + offset); 722 723 /* i_dtime is only 32 bits on disk, but we only care about relative 724 * times in the range of a few minutes (i.e. long enough to sync a 725 * recently-deleted inode to disk), so using the low 32 bits of the 726 * clock (a 68 year range) is enough, see time_before32() */ 727 dtime = le32_to_cpu(raw_inode->i_dtime); 728 now = ktime_get_real_seconds(); 729 if (buffer_dirty(bh)) 730 recentcy += RECENTCY_DIRTY; 731 732 if (dtime && time_before32(dtime, now) && 733 time_before32(now, dtime + recentcy)) 734 ret = 1; 735 out: 736 brelse(bh); 737 return ret; 738 } 739 740 static int find_inode_bit(struct super_block *sb, ext4_group_t group, 741 struct buffer_head *bitmap, unsigned long *ino) 742 { 743 next: 744 *ino = ext4_find_next_zero_bit((unsigned long *) 745 bitmap->b_data, 746 EXT4_INODES_PER_GROUP(sb), *ino); 747 if (*ino >= EXT4_INODES_PER_GROUP(sb)) 748 return 0; 749 750 if ((EXT4_SB(sb)->s_journal == NULL) && 751 recently_deleted(sb, group, *ino)) { 752 *ino = *ino + 1; 753 if (*ino < EXT4_INODES_PER_GROUP(sb)) 754 goto next; 755 return 0; 756 } 757 758 return 1; 759 } 760 761 /* 762 * There are two policies for allocating an inode. If the new inode is 763 * a directory, then a forward search is made for a block group with both 764 * free space and a low directory-to-inode ratio; if that fails, then of 765 * the groups with above-average free space, that group with the fewest 766 * directories already is chosen. 767 * 768 * For other inodes, search forward from the parent directory's block 769 * group to find a free inode. 770 */ 771 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir, 772 umode_t mode, const struct qstr *qstr, 773 __u32 goal, uid_t *owner, __u32 i_flags, 774 int handle_type, unsigned int line_no, 775 int nblocks) 776 { 777 struct super_block *sb; 778 struct buffer_head *inode_bitmap_bh = NULL; 779 struct buffer_head *group_desc_bh; 780 ext4_group_t ngroups, group = 0; 781 unsigned long ino = 0; 782 struct inode *inode; 783 struct ext4_group_desc *gdp = NULL; 784 struct ext4_inode_info *ei; 785 struct ext4_sb_info *sbi; 786 int ret2, err; 787 struct inode *ret; 788 ext4_group_t i; 789 ext4_group_t flex_group; 790 struct ext4_group_info *grp; 791 int encrypt = 0; 792 793 /* Cannot create files in a deleted directory */ 794 if (!dir || !dir->i_nlink) 795 return ERR_PTR(-EPERM); 796 797 sb = dir->i_sb; 798 sbi = EXT4_SB(sb); 799 800 if (unlikely(ext4_forced_shutdown(sbi))) 801 return ERR_PTR(-EIO); 802 803 if ((ext4_encrypted_inode(dir) || DUMMY_ENCRYPTION_ENABLED(sbi)) && 804 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) && 805 !(i_flags & EXT4_EA_INODE_FL)) { 806 err = fscrypt_get_encryption_info(dir); 807 if (err) 808 return ERR_PTR(err); 809 if (!fscrypt_has_encryption_key(dir)) 810 return ERR_PTR(-ENOKEY); 811 encrypt = 1; 812 } 813 814 if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) { 815 #ifdef CONFIG_EXT4_FS_POSIX_ACL 816 struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT); 817 818 if (p) { 819 int acl_size = p->a_count * sizeof(ext4_acl_entry); 820 821 nblocks += (S_ISDIR(mode) ? 2 : 1) * 822 __ext4_xattr_set_credits(sb, NULL /* inode */, 823 NULL /* block_bh */, acl_size, 824 true /* is_create */); 825 posix_acl_release(p); 826 } 827 #endif 828 829 #ifdef CONFIG_SECURITY 830 { 831 int num_security_xattrs = 1; 832 833 #ifdef CONFIG_INTEGRITY 834 num_security_xattrs++; 835 #endif 836 /* 837 * We assume that security xattrs are never 838 * more than 1k. In practice they are under 839 * 128 bytes. 840 */ 841 nblocks += num_security_xattrs * 842 __ext4_xattr_set_credits(sb, NULL /* inode */, 843 NULL /* block_bh */, 1024, 844 true /* is_create */); 845 } 846 #endif 847 if (encrypt) 848 nblocks += __ext4_xattr_set_credits(sb, 849 NULL /* inode */, NULL /* block_bh */, 850 FSCRYPT_SET_CONTEXT_MAX_SIZE, 851 true /* is_create */); 852 } 853 854 ngroups = ext4_get_groups_count(sb); 855 trace_ext4_request_inode(dir, mode); 856 inode = new_inode(sb); 857 if (!inode) 858 return ERR_PTR(-ENOMEM); 859 ei = EXT4_I(inode); 860 861 /* 862 * Initialize owners and quota early so that we don't have to account 863 * for quota initialization worst case in standard inode creating 864 * transaction 865 */ 866 if (owner) { 867 inode->i_mode = mode; 868 i_uid_write(inode, owner[0]); 869 i_gid_write(inode, owner[1]); 870 } else if (test_opt(sb, GRPID)) { 871 inode->i_mode = mode; 872 inode->i_uid = current_fsuid(); 873 inode->i_gid = dir->i_gid; 874 } else 875 inode_init_owner(inode, dir, mode); 876 877 if (ext4_has_feature_project(sb) && 878 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT)) 879 ei->i_projid = EXT4_I(dir)->i_projid; 880 else 881 ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID); 882 883 err = dquot_initialize(inode); 884 if (err) 885 goto out; 886 887 if (!goal) 888 goal = sbi->s_inode_goal; 889 890 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) { 891 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb); 892 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb); 893 ret2 = 0; 894 goto got_group; 895 } 896 897 if (S_ISDIR(mode)) 898 ret2 = find_group_orlov(sb, dir, &group, mode, qstr); 899 else 900 ret2 = find_group_other(sb, dir, &group, mode); 901 902 got_group: 903 EXT4_I(dir)->i_last_alloc_group = group; 904 err = -ENOSPC; 905 if (ret2 == -1) 906 goto out; 907 908 /* 909 * Normally we will only go through one pass of this loop, 910 * unless we get unlucky and it turns out the group we selected 911 * had its last inode grabbed by someone else. 912 */ 913 for (i = 0; i < ngroups; i++, ino = 0) { 914 err = -EIO; 915 916 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 917 if (!gdp) 918 goto out; 919 920 /* 921 * Check free inodes count before loading bitmap. 922 */ 923 if (ext4_free_inodes_count(sb, gdp) == 0) 924 goto next_group; 925 926 grp = ext4_get_group_info(sb, group); 927 /* Skip groups with already-known suspicious inode tables */ 928 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 929 goto next_group; 930 931 brelse(inode_bitmap_bh); 932 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); 933 /* Skip groups with suspicious inode tables */ 934 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) || 935 IS_ERR(inode_bitmap_bh)) { 936 inode_bitmap_bh = NULL; 937 goto next_group; 938 } 939 940 repeat_in_this_group: 941 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino); 942 if (!ret2) 943 goto next_group; 944 945 if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) { 946 ext4_error(sb, "reserved inode found cleared - " 947 "inode=%lu", ino + 1); 948 goto next_group; 949 } 950 951 if (!handle) { 952 BUG_ON(nblocks <= 0); 953 handle = __ext4_journal_start_sb(dir->i_sb, line_no, 954 handle_type, nblocks, 955 0); 956 if (IS_ERR(handle)) { 957 err = PTR_ERR(handle); 958 ext4_std_error(sb, err); 959 goto out; 960 } 961 } 962 BUFFER_TRACE(inode_bitmap_bh, "get_write_access"); 963 err = ext4_journal_get_write_access(handle, inode_bitmap_bh); 964 if (err) { 965 ext4_std_error(sb, err); 966 goto out; 967 } 968 ext4_lock_group(sb, group); 969 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data); 970 if (ret2) { 971 /* Someone already took the bit. Repeat the search 972 * with lock held. 973 */ 974 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino); 975 if (ret2) { 976 ext4_set_bit(ino, inode_bitmap_bh->b_data); 977 ret2 = 0; 978 } else { 979 ret2 = 1; /* we didn't grab the inode */ 980 } 981 } 982 ext4_unlock_group(sb, group); 983 ino++; /* the inode bitmap is zero-based */ 984 if (!ret2) 985 goto got; /* we grabbed the inode! */ 986 987 if (ino < EXT4_INODES_PER_GROUP(sb)) 988 goto repeat_in_this_group; 989 next_group: 990 if (++group == ngroups) 991 group = 0; 992 } 993 err = -ENOSPC; 994 goto out; 995 996 got: 997 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata"); 998 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh); 999 if (err) { 1000 ext4_std_error(sb, err); 1001 goto out; 1002 } 1003 1004 BUFFER_TRACE(group_desc_bh, "get_write_access"); 1005 err = ext4_journal_get_write_access(handle, group_desc_bh); 1006 if (err) { 1007 ext4_std_error(sb, err); 1008 goto out; 1009 } 1010 1011 /* We may have to initialize the block bitmap if it isn't already */ 1012 if (ext4_has_group_desc_csum(sb) && 1013 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 1014 struct buffer_head *block_bitmap_bh; 1015 1016 block_bitmap_bh = ext4_read_block_bitmap(sb, group); 1017 if (IS_ERR(block_bitmap_bh)) { 1018 err = PTR_ERR(block_bitmap_bh); 1019 goto out; 1020 } 1021 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access"); 1022 err = ext4_journal_get_write_access(handle, block_bitmap_bh); 1023 if (err) { 1024 brelse(block_bitmap_bh); 1025 ext4_std_error(sb, err); 1026 goto out; 1027 } 1028 1029 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); 1030 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh); 1031 1032 /* recheck and clear flag under lock if we still need to */ 1033 ext4_lock_group(sb, group); 1034 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 1035 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 1036 ext4_free_group_clusters_set(sb, gdp, 1037 ext4_free_clusters_after_init(sb, group, gdp)); 1038 ext4_block_bitmap_csum_set(sb, group, gdp, 1039 block_bitmap_bh); 1040 ext4_group_desc_csum_set(sb, group, gdp); 1041 } 1042 ext4_unlock_group(sb, group); 1043 brelse(block_bitmap_bh); 1044 1045 if (err) { 1046 ext4_std_error(sb, err); 1047 goto out; 1048 } 1049 } 1050 1051 /* Update the relevant bg descriptor fields */ 1052 if (ext4_has_group_desc_csum(sb)) { 1053 int free; 1054 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1055 1056 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */ 1057 ext4_lock_group(sb, group); /* while we modify the bg desc */ 1058 free = EXT4_INODES_PER_GROUP(sb) - 1059 ext4_itable_unused_count(sb, gdp); 1060 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 1061 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); 1062 free = 0; 1063 } 1064 /* 1065 * Check the relative inode number against the last used 1066 * relative inode number in this group. if it is greater 1067 * we need to update the bg_itable_unused count 1068 */ 1069 if (ino > free) 1070 ext4_itable_unused_set(sb, gdp, 1071 (EXT4_INODES_PER_GROUP(sb) - ino)); 1072 up_read(&grp->alloc_sem); 1073 } else { 1074 ext4_lock_group(sb, group); 1075 } 1076 1077 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1); 1078 if (S_ISDIR(mode)) { 1079 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1); 1080 if (sbi->s_log_groups_per_flex) { 1081 ext4_group_t f = ext4_flex_group(sbi, group); 1082 1083 atomic_inc(&sbi->s_flex_groups[f].used_dirs); 1084 } 1085 } 1086 if (ext4_has_group_desc_csum(sb)) { 1087 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh, 1088 EXT4_INODES_PER_GROUP(sb) / 8); 1089 ext4_group_desc_csum_set(sb, group, gdp); 1090 } 1091 ext4_unlock_group(sb, group); 1092 1093 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata"); 1094 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh); 1095 if (err) { 1096 ext4_std_error(sb, err); 1097 goto out; 1098 } 1099 1100 percpu_counter_dec(&sbi->s_freeinodes_counter); 1101 if (S_ISDIR(mode)) 1102 percpu_counter_inc(&sbi->s_dirs_counter); 1103 1104 if (sbi->s_log_groups_per_flex) { 1105 flex_group = ext4_flex_group(sbi, group); 1106 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes); 1107 } 1108 1109 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb); 1110 /* This is the optimal IO size (for stat), not the fs block size */ 1111 inode->i_blocks = 0; 1112 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime = 1113 current_time(inode); 1114 1115 memset(ei->i_data, 0, sizeof(ei->i_data)); 1116 ei->i_dir_start_lookup = 0; 1117 ei->i_disksize = 0; 1118 1119 /* Don't inherit extent flag from directory, amongst others. */ 1120 ei->i_flags = 1121 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED); 1122 ei->i_flags |= i_flags; 1123 ei->i_file_acl = 0; 1124 ei->i_dtime = 0; 1125 ei->i_block_group = group; 1126 ei->i_last_alloc_group = ~0; 1127 1128 ext4_set_inode_flags(inode); 1129 if (IS_DIRSYNC(inode)) 1130 ext4_handle_sync(handle); 1131 if (insert_inode_locked(inode) < 0) { 1132 /* 1133 * Likely a bitmap corruption causing inode to be allocated 1134 * twice. 1135 */ 1136 err = -EIO; 1137 ext4_error(sb, "failed to insert inode %lu: doubly allocated?", 1138 inode->i_ino); 1139 goto out; 1140 } 1141 spin_lock(&sbi->s_next_gen_lock); 1142 inode->i_generation = sbi->s_next_generation++; 1143 spin_unlock(&sbi->s_next_gen_lock); 1144 1145 /* Precompute checksum seed for inode metadata */ 1146 if (ext4_has_metadata_csum(sb)) { 1147 __u32 csum; 1148 __le32 inum = cpu_to_le32(inode->i_ino); 1149 __le32 gen = cpu_to_le32(inode->i_generation); 1150 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 1151 sizeof(inum)); 1152 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 1153 sizeof(gen)); 1154 } 1155 1156 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 1157 ext4_set_inode_state(inode, EXT4_STATE_NEW); 1158 1159 ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize; 1160 ei->i_inline_off = 0; 1161 if (ext4_has_feature_inline_data(sb)) 1162 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 1163 ret = inode; 1164 err = dquot_alloc_inode(inode); 1165 if (err) 1166 goto fail_drop; 1167 1168 /* 1169 * Since the encryption xattr will always be unique, create it first so 1170 * that it's less likely to end up in an external xattr block and 1171 * prevent its deduplication. 1172 */ 1173 if (encrypt) { 1174 err = fscrypt_inherit_context(dir, inode, handle, true); 1175 if (err) 1176 goto fail_free_drop; 1177 } 1178 1179 if (!(ei->i_flags & EXT4_EA_INODE_FL)) { 1180 err = ext4_init_acl(handle, inode, dir); 1181 if (err) 1182 goto fail_free_drop; 1183 1184 err = ext4_init_security(handle, inode, dir, qstr); 1185 if (err) 1186 goto fail_free_drop; 1187 } 1188 1189 if (ext4_has_feature_extents(sb)) { 1190 /* set extent flag only for directory, file and normal symlink*/ 1191 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) { 1192 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS); 1193 ext4_ext_tree_init(handle, inode); 1194 } 1195 } 1196 1197 if (ext4_handle_valid(handle)) { 1198 ei->i_sync_tid = handle->h_transaction->t_tid; 1199 ei->i_datasync_tid = handle->h_transaction->t_tid; 1200 } 1201 1202 err = ext4_mark_inode_dirty(handle, inode); 1203 if (err) { 1204 ext4_std_error(sb, err); 1205 goto fail_free_drop; 1206 } 1207 1208 ext4_debug("allocating inode %lu\n", inode->i_ino); 1209 trace_ext4_allocate_inode(inode, dir, mode); 1210 brelse(inode_bitmap_bh); 1211 return ret; 1212 1213 fail_free_drop: 1214 dquot_free_inode(inode); 1215 fail_drop: 1216 clear_nlink(inode); 1217 unlock_new_inode(inode); 1218 out: 1219 dquot_drop(inode); 1220 inode->i_flags |= S_NOQUOTA; 1221 iput(inode); 1222 brelse(inode_bitmap_bh); 1223 return ERR_PTR(err); 1224 } 1225 1226 /* Verify that we are loading a valid orphan from disk */ 1227 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino) 1228 { 1229 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); 1230 ext4_group_t block_group; 1231 int bit; 1232 struct buffer_head *bitmap_bh = NULL; 1233 struct inode *inode = NULL; 1234 int err = -EFSCORRUPTED; 1235 1236 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino) 1237 goto bad_orphan; 1238 1239 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 1240 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 1241 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 1242 if (IS_ERR(bitmap_bh)) { 1243 ext4_error(sb, "inode bitmap error %ld for orphan %lu", 1244 ino, PTR_ERR(bitmap_bh)); 1245 return (struct inode *) bitmap_bh; 1246 } 1247 1248 /* Having the inode bit set should be a 100% indicator that this 1249 * is a valid orphan (no e2fsck run on fs). Orphans also include 1250 * inodes that were being truncated, so we can't check i_nlink==0. 1251 */ 1252 if (!ext4_test_bit(bit, bitmap_bh->b_data)) 1253 goto bad_orphan; 1254 1255 inode = ext4_iget(sb, ino); 1256 if (IS_ERR(inode)) { 1257 err = PTR_ERR(inode); 1258 ext4_error(sb, "couldn't read orphan inode %lu (err %d)", 1259 ino, err); 1260 return inode; 1261 } 1262 1263 /* 1264 * If the orphans has i_nlinks > 0 then it should be able to 1265 * be truncated, otherwise it won't be removed from the orphan 1266 * list during processing and an infinite loop will result. 1267 * Similarly, it must not be a bad inode. 1268 */ 1269 if ((inode->i_nlink && !ext4_can_truncate(inode)) || 1270 is_bad_inode(inode)) 1271 goto bad_orphan; 1272 1273 if (NEXT_ORPHAN(inode) > max_ino) 1274 goto bad_orphan; 1275 brelse(bitmap_bh); 1276 return inode; 1277 1278 bad_orphan: 1279 ext4_error(sb, "bad orphan inode %lu", ino); 1280 if (bitmap_bh) 1281 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n", 1282 bit, (unsigned long long)bitmap_bh->b_blocknr, 1283 ext4_test_bit(bit, bitmap_bh->b_data)); 1284 if (inode) { 1285 printk(KERN_ERR "is_bad_inode(inode)=%d\n", 1286 is_bad_inode(inode)); 1287 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n", 1288 NEXT_ORPHAN(inode)); 1289 printk(KERN_ERR "max_ino=%lu\n", max_ino); 1290 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink); 1291 /* Avoid freeing blocks if we got a bad deleted inode */ 1292 if (inode->i_nlink == 0) 1293 inode->i_blocks = 0; 1294 iput(inode); 1295 } 1296 brelse(bitmap_bh); 1297 return ERR_PTR(err); 1298 } 1299 1300 unsigned long ext4_count_free_inodes(struct super_block *sb) 1301 { 1302 unsigned long desc_count; 1303 struct ext4_group_desc *gdp; 1304 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1305 #ifdef EXT4FS_DEBUG 1306 struct ext4_super_block *es; 1307 unsigned long bitmap_count, x; 1308 struct buffer_head *bitmap_bh = NULL; 1309 1310 es = EXT4_SB(sb)->s_es; 1311 desc_count = 0; 1312 bitmap_count = 0; 1313 gdp = NULL; 1314 for (i = 0; i < ngroups; i++) { 1315 gdp = ext4_get_group_desc(sb, i, NULL); 1316 if (!gdp) 1317 continue; 1318 desc_count += ext4_free_inodes_count(sb, gdp); 1319 brelse(bitmap_bh); 1320 bitmap_bh = ext4_read_inode_bitmap(sb, i); 1321 if (IS_ERR(bitmap_bh)) { 1322 bitmap_bh = NULL; 1323 continue; 1324 } 1325 1326 x = ext4_count_free(bitmap_bh->b_data, 1327 EXT4_INODES_PER_GROUP(sb) / 8); 1328 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n", 1329 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x); 1330 bitmap_count += x; 1331 } 1332 brelse(bitmap_bh); 1333 printk(KERN_DEBUG "ext4_count_free_inodes: " 1334 "stored = %u, computed = %lu, %lu\n", 1335 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count); 1336 return desc_count; 1337 #else 1338 desc_count = 0; 1339 for (i = 0; i < ngroups; i++) { 1340 gdp = ext4_get_group_desc(sb, i, NULL); 1341 if (!gdp) 1342 continue; 1343 desc_count += ext4_free_inodes_count(sb, gdp); 1344 cond_resched(); 1345 } 1346 return desc_count; 1347 #endif 1348 } 1349 1350 /* Called at mount-time, super-block is locked */ 1351 unsigned long ext4_count_dirs(struct super_block * sb) 1352 { 1353 unsigned long count = 0; 1354 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1355 1356 for (i = 0; i < ngroups; i++) { 1357 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1358 if (!gdp) 1359 continue; 1360 count += ext4_used_dirs_count(sb, gdp); 1361 } 1362 return count; 1363 } 1364 1365 /* 1366 * Zeroes not yet zeroed inode table - just write zeroes through the whole 1367 * inode table. Must be called without any spinlock held. The only place 1368 * where it is called from on active part of filesystem is ext4lazyinit 1369 * thread, so we do not need any special locks, however we have to prevent 1370 * inode allocation from the current group, so we take alloc_sem lock, to 1371 * block ext4_new_inode() until we are finished. 1372 */ 1373 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group, 1374 int barrier) 1375 { 1376 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1377 struct ext4_sb_info *sbi = EXT4_SB(sb); 1378 struct ext4_group_desc *gdp = NULL; 1379 struct buffer_head *group_desc_bh; 1380 handle_t *handle; 1381 ext4_fsblk_t blk; 1382 int num, ret = 0, used_blks = 0; 1383 1384 /* This should not happen, but just to be sure check this */ 1385 if (sb_rdonly(sb)) { 1386 ret = 1; 1387 goto out; 1388 } 1389 1390 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 1391 if (!gdp) 1392 goto out; 1393 1394 /* 1395 * We do not need to lock this, because we are the only one 1396 * handling this flag. 1397 */ 1398 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)) 1399 goto out; 1400 1401 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 1402 if (IS_ERR(handle)) { 1403 ret = PTR_ERR(handle); 1404 goto out; 1405 } 1406 1407 down_write(&grp->alloc_sem); 1408 /* 1409 * If inode bitmap was already initialized there may be some 1410 * used inodes so we need to skip blocks with used inodes in 1411 * inode table. 1412 */ 1413 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) 1414 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) - 1415 ext4_itable_unused_count(sb, gdp)), 1416 sbi->s_inodes_per_block); 1417 1418 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) { 1419 ext4_error(sb, "Something is wrong with group %u: " 1420 "used itable blocks: %d; " 1421 "itable unused count: %u", 1422 group, used_blks, 1423 ext4_itable_unused_count(sb, gdp)); 1424 ret = 1; 1425 goto err_out; 1426 } 1427 1428 blk = ext4_inode_table(sb, gdp) + used_blks; 1429 num = sbi->s_itb_per_group - used_blks; 1430 1431 BUFFER_TRACE(group_desc_bh, "get_write_access"); 1432 ret = ext4_journal_get_write_access(handle, 1433 group_desc_bh); 1434 if (ret) 1435 goto err_out; 1436 1437 /* 1438 * Skip zeroout if the inode table is full. But we set the ZEROED 1439 * flag anyway, because obviously, when it is full it does not need 1440 * further zeroing. 1441 */ 1442 if (unlikely(num == 0)) 1443 goto skip_zeroout; 1444 1445 ext4_debug("going to zero out inode table in group %d\n", 1446 group); 1447 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS); 1448 if (ret < 0) 1449 goto err_out; 1450 if (barrier) 1451 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL); 1452 1453 skip_zeroout: 1454 ext4_lock_group(sb, group); 1455 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED); 1456 ext4_group_desc_csum_set(sb, group, gdp); 1457 ext4_unlock_group(sb, group); 1458 1459 BUFFER_TRACE(group_desc_bh, 1460 "call ext4_handle_dirty_metadata"); 1461 ret = ext4_handle_dirty_metadata(handle, NULL, 1462 group_desc_bh); 1463 1464 err_out: 1465 up_write(&grp->alloc_sem); 1466 ext4_journal_stop(handle); 1467 out: 1468 return ret; 1469 } 1470