xref: /linux/fs/ext4/ialloc.c (revision 74ce1896c6c65b2f8cccbf59162d542988835835)
1 /*
2  *  linux/fs/ext4/ialloc.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  BSD ufs-inspired inode and directory allocation by
10  *  Stephen Tweedie (sct@redhat.com), 1993
11  *  Big-endian to little-endian byte-swapping/bitmaps by
12  *        David S. Miller (davem@caip.rutgers.edu), 1995
13  */
14 
15 #include <linux/time.h>
16 #include <linux/fs.h>
17 #include <linux/stat.h>
18 #include <linux/string.h>
19 #include <linux/quotaops.h>
20 #include <linux/buffer_head.h>
21 #include <linux/random.h>
22 #include <linux/bitops.h>
23 #include <linux/blkdev.h>
24 #include <linux/cred.h>
25 
26 #include <asm/byteorder.h>
27 
28 #include "ext4.h"
29 #include "ext4_jbd2.h"
30 #include "xattr.h"
31 #include "acl.h"
32 
33 #include <trace/events/ext4.h>
34 
35 /*
36  * ialloc.c contains the inodes allocation and deallocation routines
37  */
38 
39 /*
40  * The free inodes are managed by bitmaps.  A file system contains several
41  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
42  * block for inodes, N blocks for the inode table and data blocks.
43  *
44  * The file system contains group descriptors which are located after the
45  * super block.  Each descriptor contains the number of the bitmap block and
46  * the free blocks count in the block.
47  */
48 
49 /*
50  * To avoid calling the atomic setbit hundreds or thousands of times, we only
51  * need to use it within a single byte (to ensure we get endianness right).
52  * We can use memset for the rest of the bitmap as there are no other users.
53  */
54 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
55 {
56 	int i;
57 
58 	if (start_bit >= end_bit)
59 		return;
60 
61 	ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
62 	for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
63 		ext4_set_bit(i, bitmap);
64 	if (i < end_bit)
65 		memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
66 }
67 
68 /* Initializes an uninitialized inode bitmap */
69 static int ext4_init_inode_bitmap(struct super_block *sb,
70 				       struct buffer_head *bh,
71 				       ext4_group_t block_group,
72 				       struct ext4_group_desc *gdp)
73 {
74 	struct ext4_group_info *grp;
75 	struct ext4_sb_info *sbi = EXT4_SB(sb);
76 	J_ASSERT_BH(bh, buffer_locked(bh));
77 
78 	/* If checksum is bad mark all blocks and inodes use to prevent
79 	 * allocation, essentially implementing a per-group read-only flag. */
80 	if (!ext4_group_desc_csum_verify(sb, block_group, gdp)) {
81 		grp = ext4_get_group_info(sb, block_group);
82 		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
83 			percpu_counter_sub(&sbi->s_freeclusters_counter,
84 					   grp->bb_free);
85 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
86 		if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
87 			int count;
88 			count = ext4_free_inodes_count(sb, gdp);
89 			percpu_counter_sub(&sbi->s_freeinodes_counter,
90 					   count);
91 		}
92 		set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
93 		return -EFSBADCRC;
94 	}
95 
96 	memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
97 	ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
98 			bh->b_data);
99 	ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh,
100 				   EXT4_INODES_PER_GROUP(sb) / 8);
101 	ext4_group_desc_csum_set(sb, block_group, gdp);
102 
103 	return 0;
104 }
105 
106 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
107 {
108 	if (uptodate) {
109 		set_buffer_uptodate(bh);
110 		set_bitmap_uptodate(bh);
111 	}
112 	unlock_buffer(bh);
113 	put_bh(bh);
114 }
115 
116 static int ext4_validate_inode_bitmap(struct super_block *sb,
117 				      struct ext4_group_desc *desc,
118 				      ext4_group_t block_group,
119 				      struct buffer_head *bh)
120 {
121 	ext4_fsblk_t	blk;
122 	struct ext4_group_info *grp = ext4_get_group_info(sb, block_group);
123 	struct ext4_sb_info *sbi = EXT4_SB(sb);
124 
125 	if (buffer_verified(bh))
126 		return 0;
127 	if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
128 		return -EFSCORRUPTED;
129 
130 	ext4_lock_group(sb, block_group);
131 	blk = ext4_inode_bitmap(sb, desc);
132 	if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
133 					   EXT4_INODES_PER_GROUP(sb) / 8)) {
134 		ext4_unlock_group(sb, block_group);
135 		ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
136 			   "inode_bitmap = %llu", block_group, blk);
137 		grp = ext4_get_group_info(sb, block_group);
138 		if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
139 			int count;
140 			count = ext4_free_inodes_count(sb, desc);
141 			percpu_counter_sub(&sbi->s_freeinodes_counter,
142 					   count);
143 		}
144 		set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
145 		return -EFSBADCRC;
146 	}
147 	set_buffer_verified(bh);
148 	ext4_unlock_group(sb, block_group);
149 	return 0;
150 }
151 
152 /*
153  * Read the inode allocation bitmap for a given block_group, reading
154  * into the specified slot in the superblock's bitmap cache.
155  *
156  * Return buffer_head of bitmap on success or NULL.
157  */
158 static struct buffer_head *
159 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
160 {
161 	struct ext4_group_desc *desc;
162 	struct buffer_head *bh = NULL;
163 	ext4_fsblk_t bitmap_blk;
164 	int err;
165 
166 	desc = ext4_get_group_desc(sb, block_group, NULL);
167 	if (!desc)
168 		return ERR_PTR(-EFSCORRUPTED);
169 
170 	bitmap_blk = ext4_inode_bitmap(sb, desc);
171 	bh = sb_getblk(sb, bitmap_blk);
172 	if (unlikely(!bh)) {
173 		ext4_error(sb, "Cannot read inode bitmap - "
174 			    "block_group = %u, inode_bitmap = %llu",
175 			    block_group, bitmap_blk);
176 		return ERR_PTR(-EIO);
177 	}
178 	if (bitmap_uptodate(bh))
179 		goto verify;
180 
181 	lock_buffer(bh);
182 	if (bitmap_uptodate(bh)) {
183 		unlock_buffer(bh);
184 		goto verify;
185 	}
186 
187 	ext4_lock_group(sb, block_group);
188 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
189 		err = ext4_init_inode_bitmap(sb, bh, block_group, desc);
190 		set_bitmap_uptodate(bh);
191 		set_buffer_uptodate(bh);
192 		set_buffer_verified(bh);
193 		ext4_unlock_group(sb, block_group);
194 		unlock_buffer(bh);
195 		if (err) {
196 			ext4_error(sb, "Failed to init inode bitmap for group "
197 				   "%u: %d", block_group, err);
198 			goto out;
199 		}
200 		return bh;
201 	}
202 	ext4_unlock_group(sb, block_group);
203 
204 	if (buffer_uptodate(bh)) {
205 		/*
206 		 * if not uninit if bh is uptodate,
207 		 * bitmap is also uptodate
208 		 */
209 		set_bitmap_uptodate(bh);
210 		unlock_buffer(bh);
211 		goto verify;
212 	}
213 	/*
214 	 * submit the buffer_head for reading
215 	 */
216 	trace_ext4_load_inode_bitmap(sb, block_group);
217 	bh->b_end_io = ext4_end_bitmap_read;
218 	get_bh(bh);
219 	submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
220 	wait_on_buffer(bh);
221 	if (!buffer_uptodate(bh)) {
222 		put_bh(bh);
223 		ext4_error(sb, "Cannot read inode bitmap - "
224 			   "block_group = %u, inode_bitmap = %llu",
225 			   block_group, bitmap_blk);
226 		return ERR_PTR(-EIO);
227 	}
228 
229 verify:
230 	err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
231 	if (err)
232 		goto out;
233 	return bh;
234 out:
235 	put_bh(bh);
236 	return ERR_PTR(err);
237 }
238 
239 /*
240  * NOTE! When we get the inode, we're the only people
241  * that have access to it, and as such there are no
242  * race conditions we have to worry about. The inode
243  * is not on the hash-lists, and it cannot be reached
244  * through the filesystem because the directory entry
245  * has been deleted earlier.
246  *
247  * HOWEVER: we must make sure that we get no aliases,
248  * which means that we have to call "clear_inode()"
249  * _before_ we mark the inode not in use in the inode
250  * bitmaps. Otherwise a newly created file might use
251  * the same inode number (not actually the same pointer
252  * though), and then we'd have two inodes sharing the
253  * same inode number and space on the harddisk.
254  */
255 void ext4_free_inode(handle_t *handle, struct inode *inode)
256 {
257 	struct super_block *sb = inode->i_sb;
258 	int is_directory;
259 	unsigned long ino;
260 	struct buffer_head *bitmap_bh = NULL;
261 	struct buffer_head *bh2;
262 	ext4_group_t block_group;
263 	unsigned long bit;
264 	struct ext4_group_desc *gdp;
265 	struct ext4_super_block *es;
266 	struct ext4_sb_info *sbi;
267 	int fatal = 0, err, count, cleared;
268 	struct ext4_group_info *grp;
269 
270 	if (!sb) {
271 		printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
272 		       "nonexistent device\n", __func__, __LINE__);
273 		return;
274 	}
275 	if (atomic_read(&inode->i_count) > 1) {
276 		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
277 			 __func__, __LINE__, inode->i_ino,
278 			 atomic_read(&inode->i_count));
279 		return;
280 	}
281 	if (inode->i_nlink) {
282 		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
283 			 __func__, __LINE__, inode->i_ino, inode->i_nlink);
284 		return;
285 	}
286 	sbi = EXT4_SB(sb);
287 
288 	ino = inode->i_ino;
289 	ext4_debug("freeing inode %lu\n", ino);
290 	trace_ext4_free_inode(inode);
291 
292 	/*
293 	 * Note: we must free any quota before locking the superblock,
294 	 * as writing the quota to disk may need the lock as well.
295 	 */
296 	dquot_initialize(inode);
297 	dquot_free_inode(inode);
298 	dquot_drop(inode);
299 
300 	is_directory = S_ISDIR(inode->i_mode);
301 
302 	/* Do this BEFORE marking the inode not in use or returning an error */
303 	ext4_clear_inode(inode);
304 
305 	es = EXT4_SB(sb)->s_es;
306 	if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
307 		ext4_error(sb, "reserved or nonexistent inode %lu", ino);
308 		goto error_return;
309 	}
310 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
311 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
312 	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
313 	/* Don't bother if the inode bitmap is corrupt. */
314 	grp = ext4_get_group_info(sb, block_group);
315 	if (IS_ERR(bitmap_bh)) {
316 		fatal = PTR_ERR(bitmap_bh);
317 		bitmap_bh = NULL;
318 		goto error_return;
319 	}
320 	if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
321 		fatal = -EFSCORRUPTED;
322 		goto error_return;
323 	}
324 
325 	BUFFER_TRACE(bitmap_bh, "get_write_access");
326 	fatal = ext4_journal_get_write_access(handle, bitmap_bh);
327 	if (fatal)
328 		goto error_return;
329 
330 	fatal = -ESRCH;
331 	gdp = ext4_get_group_desc(sb, block_group, &bh2);
332 	if (gdp) {
333 		BUFFER_TRACE(bh2, "get_write_access");
334 		fatal = ext4_journal_get_write_access(handle, bh2);
335 	}
336 	ext4_lock_group(sb, block_group);
337 	cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
338 	if (fatal || !cleared) {
339 		ext4_unlock_group(sb, block_group);
340 		goto out;
341 	}
342 
343 	count = ext4_free_inodes_count(sb, gdp) + 1;
344 	ext4_free_inodes_set(sb, gdp, count);
345 	if (is_directory) {
346 		count = ext4_used_dirs_count(sb, gdp) - 1;
347 		ext4_used_dirs_set(sb, gdp, count);
348 		percpu_counter_dec(&sbi->s_dirs_counter);
349 	}
350 	ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
351 				   EXT4_INODES_PER_GROUP(sb) / 8);
352 	ext4_group_desc_csum_set(sb, block_group, gdp);
353 	ext4_unlock_group(sb, block_group);
354 
355 	percpu_counter_inc(&sbi->s_freeinodes_counter);
356 	if (sbi->s_log_groups_per_flex) {
357 		ext4_group_t f = ext4_flex_group(sbi, block_group);
358 
359 		atomic_inc(&sbi->s_flex_groups[f].free_inodes);
360 		if (is_directory)
361 			atomic_dec(&sbi->s_flex_groups[f].used_dirs);
362 	}
363 	BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
364 	fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
365 out:
366 	if (cleared) {
367 		BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
368 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
369 		if (!fatal)
370 			fatal = err;
371 	} else {
372 		ext4_error(sb, "bit already cleared for inode %lu", ino);
373 		if (gdp && !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
374 			int count;
375 			count = ext4_free_inodes_count(sb, gdp);
376 			percpu_counter_sub(&sbi->s_freeinodes_counter,
377 					   count);
378 		}
379 		set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
380 	}
381 
382 error_return:
383 	brelse(bitmap_bh);
384 	ext4_std_error(sb, fatal);
385 }
386 
387 struct orlov_stats {
388 	__u64 free_clusters;
389 	__u32 free_inodes;
390 	__u32 used_dirs;
391 };
392 
393 /*
394  * Helper function for Orlov's allocator; returns critical information
395  * for a particular block group or flex_bg.  If flex_size is 1, then g
396  * is a block group number; otherwise it is flex_bg number.
397  */
398 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
399 			    int flex_size, struct orlov_stats *stats)
400 {
401 	struct ext4_group_desc *desc;
402 	struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
403 
404 	if (flex_size > 1) {
405 		stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
406 		stats->free_clusters = atomic64_read(&flex_group[g].free_clusters);
407 		stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
408 		return;
409 	}
410 
411 	desc = ext4_get_group_desc(sb, g, NULL);
412 	if (desc) {
413 		stats->free_inodes = ext4_free_inodes_count(sb, desc);
414 		stats->free_clusters = ext4_free_group_clusters(sb, desc);
415 		stats->used_dirs = ext4_used_dirs_count(sb, desc);
416 	} else {
417 		stats->free_inodes = 0;
418 		stats->free_clusters = 0;
419 		stats->used_dirs = 0;
420 	}
421 }
422 
423 /*
424  * Orlov's allocator for directories.
425  *
426  * We always try to spread first-level directories.
427  *
428  * If there are blockgroups with both free inodes and free blocks counts
429  * not worse than average we return one with smallest directory count.
430  * Otherwise we simply return a random group.
431  *
432  * For the rest rules look so:
433  *
434  * It's OK to put directory into a group unless
435  * it has too many directories already (max_dirs) or
436  * it has too few free inodes left (min_inodes) or
437  * it has too few free blocks left (min_blocks) or
438  * Parent's group is preferred, if it doesn't satisfy these
439  * conditions we search cyclically through the rest. If none
440  * of the groups look good we just look for a group with more
441  * free inodes than average (starting at parent's group).
442  */
443 
444 static int find_group_orlov(struct super_block *sb, struct inode *parent,
445 			    ext4_group_t *group, umode_t mode,
446 			    const struct qstr *qstr)
447 {
448 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
449 	struct ext4_sb_info *sbi = EXT4_SB(sb);
450 	ext4_group_t real_ngroups = ext4_get_groups_count(sb);
451 	int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
452 	unsigned int freei, avefreei, grp_free;
453 	ext4_fsblk_t freeb, avefreec;
454 	unsigned int ndirs;
455 	int max_dirs, min_inodes;
456 	ext4_grpblk_t min_clusters;
457 	ext4_group_t i, grp, g, ngroups;
458 	struct ext4_group_desc *desc;
459 	struct orlov_stats stats;
460 	int flex_size = ext4_flex_bg_size(sbi);
461 	struct dx_hash_info hinfo;
462 
463 	ngroups = real_ngroups;
464 	if (flex_size > 1) {
465 		ngroups = (real_ngroups + flex_size - 1) >>
466 			sbi->s_log_groups_per_flex;
467 		parent_group >>= sbi->s_log_groups_per_flex;
468 	}
469 
470 	freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
471 	avefreei = freei / ngroups;
472 	freeb = EXT4_C2B(sbi,
473 		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
474 	avefreec = freeb;
475 	do_div(avefreec, ngroups);
476 	ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
477 
478 	if (S_ISDIR(mode) &&
479 	    ((parent == d_inode(sb->s_root)) ||
480 	     (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
481 		int best_ndir = inodes_per_group;
482 		int ret = -1;
483 
484 		if (qstr) {
485 			hinfo.hash_version = DX_HASH_HALF_MD4;
486 			hinfo.seed = sbi->s_hash_seed;
487 			ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
488 			grp = hinfo.hash;
489 		} else
490 			grp = prandom_u32();
491 		parent_group = (unsigned)grp % ngroups;
492 		for (i = 0; i < ngroups; i++) {
493 			g = (parent_group + i) % ngroups;
494 			get_orlov_stats(sb, g, flex_size, &stats);
495 			if (!stats.free_inodes)
496 				continue;
497 			if (stats.used_dirs >= best_ndir)
498 				continue;
499 			if (stats.free_inodes < avefreei)
500 				continue;
501 			if (stats.free_clusters < avefreec)
502 				continue;
503 			grp = g;
504 			ret = 0;
505 			best_ndir = stats.used_dirs;
506 		}
507 		if (ret)
508 			goto fallback;
509 	found_flex_bg:
510 		if (flex_size == 1) {
511 			*group = grp;
512 			return 0;
513 		}
514 
515 		/*
516 		 * We pack inodes at the beginning of the flexgroup's
517 		 * inode tables.  Block allocation decisions will do
518 		 * something similar, although regular files will
519 		 * start at 2nd block group of the flexgroup.  See
520 		 * ext4_ext_find_goal() and ext4_find_near().
521 		 */
522 		grp *= flex_size;
523 		for (i = 0; i < flex_size; i++) {
524 			if (grp+i >= real_ngroups)
525 				break;
526 			desc = ext4_get_group_desc(sb, grp+i, NULL);
527 			if (desc && ext4_free_inodes_count(sb, desc)) {
528 				*group = grp+i;
529 				return 0;
530 			}
531 		}
532 		goto fallback;
533 	}
534 
535 	max_dirs = ndirs / ngroups + inodes_per_group / 16;
536 	min_inodes = avefreei - inodes_per_group*flex_size / 4;
537 	if (min_inodes < 1)
538 		min_inodes = 1;
539 	min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
540 
541 	/*
542 	 * Start looking in the flex group where we last allocated an
543 	 * inode for this parent directory
544 	 */
545 	if (EXT4_I(parent)->i_last_alloc_group != ~0) {
546 		parent_group = EXT4_I(parent)->i_last_alloc_group;
547 		if (flex_size > 1)
548 			parent_group >>= sbi->s_log_groups_per_flex;
549 	}
550 
551 	for (i = 0; i < ngroups; i++) {
552 		grp = (parent_group + i) % ngroups;
553 		get_orlov_stats(sb, grp, flex_size, &stats);
554 		if (stats.used_dirs >= max_dirs)
555 			continue;
556 		if (stats.free_inodes < min_inodes)
557 			continue;
558 		if (stats.free_clusters < min_clusters)
559 			continue;
560 		goto found_flex_bg;
561 	}
562 
563 fallback:
564 	ngroups = real_ngroups;
565 	avefreei = freei / ngroups;
566 fallback_retry:
567 	parent_group = EXT4_I(parent)->i_block_group;
568 	for (i = 0; i < ngroups; i++) {
569 		grp = (parent_group + i) % ngroups;
570 		desc = ext4_get_group_desc(sb, grp, NULL);
571 		if (desc) {
572 			grp_free = ext4_free_inodes_count(sb, desc);
573 			if (grp_free && grp_free >= avefreei) {
574 				*group = grp;
575 				return 0;
576 			}
577 		}
578 	}
579 
580 	if (avefreei) {
581 		/*
582 		 * The free-inodes counter is approximate, and for really small
583 		 * filesystems the above test can fail to find any blockgroups
584 		 */
585 		avefreei = 0;
586 		goto fallback_retry;
587 	}
588 
589 	return -1;
590 }
591 
592 static int find_group_other(struct super_block *sb, struct inode *parent,
593 			    ext4_group_t *group, umode_t mode)
594 {
595 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
596 	ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
597 	struct ext4_group_desc *desc;
598 	int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
599 
600 	/*
601 	 * Try to place the inode is the same flex group as its
602 	 * parent.  If we can't find space, use the Orlov algorithm to
603 	 * find another flex group, and store that information in the
604 	 * parent directory's inode information so that use that flex
605 	 * group for future allocations.
606 	 */
607 	if (flex_size > 1) {
608 		int retry = 0;
609 
610 	try_again:
611 		parent_group &= ~(flex_size-1);
612 		last = parent_group + flex_size;
613 		if (last > ngroups)
614 			last = ngroups;
615 		for  (i = parent_group; i < last; i++) {
616 			desc = ext4_get_group_desc(sb, i, NULL);
617 			if (desc && ext4_free_inodes_count(sb, desc)) {
618 				*group = i;
619 				return 0;
620 			}
621 		}
622 		if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
623 			retry = 1;
624 			parent_group = EXT4_I(parent)->i_last_alloc_group;
625 			goto try_again;
626 		}
627 		/*
628 		 * If this didn't work, use the Orlov search algorithm
629 		 * to find a new flex group; we pass in the mode to
630 		 * avoid the topdir algorithms.
631 		 */
632 		*group = parent_group + flex_size;
633 		if (*group > ngroups)
634 			*group = 0;
635 		return find_group_orlov(sb, parent, group, mode, NULL);
636 	}
637 
638 	/*
639 	 * Try to place the inode in its parent directory
640 	 */
641 	*group = parent_group;
642 	desc = ext4_get_group_desc(sb, *group, NULL);
643 	if (desc && ext4_free_inodes_count(sb, desc) &&
644 	    ext4_free_group_clusters(sb, desc))
645 		return 0;
646 
647 	/*
648 	 * We're going to place this inode in a different blockgroup from its
649 	 * parent.  We want to cause files in a common directory to all land in
650 	 * the same blockgroup.  But we want files which are in a different
651 	 * directory which shares a blockgroup with our parent to land in a
652 	 * different blockgroup.
653 	 *
654 	 * So add our directory's i_ino into the starting point for the hash.
655 	 */
656 	*group = (*group + parent->i_ino) % ngroups;
657 
658 	/*
659 	 * Use a quadratic hash to find a group with a free inode and some free
660 	 * blocks.
661 	 */
662 	for (i = 1; i < ngroups; i <<= 1) {
663 		*group += i;
664 		if (*group >= ngroups)
665 			*group -= ngroups;
666 		desc = ext4_get_group_desc(sb, *group, NULL);
667 		if (desc && ext4_free_inodes_count(sb, desc) &&
668 		    ext4_free_group_clusters(sb, desc))
669 			return 0;
670 	}
671 
672 	/*
673 	 * That failed: try linear search for a free inode, even if that group
674 	 * has no free blocks.
675 	 */
676 	*group = parent_group;
677 	for (i = 0; i < ngroups; i++) {
678 		if (++*group >= ngroups)
679 			*group = 0;
680 		desc = ext4_get_group_desc(sb, *group, NULL);
681 		if (desc && ext4_free_inodes_count(sb, desc))
682 			return 0;
683 	}
684 
685 	return -1;
686 }
687 
688 /*
689  * In no journal mode, if an inode has recently been deleted, we want
690  * to avoid reusing it until we're reasonably sure the inode table
691  * block has been written back to disk.  (Yes, these values are
692  * somewhat arbitrary...)
693  */
694 #define RECENTCY_MIN	5
695 #define RECENTCY_DIRTY	300
696 
697 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
698 {
699 	struct ext4_group_desc	*gdp;
700 	struct ext4_inode	*raw_inode;
701 	struct buffer_head	*bh;
702 	int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
703 	int offset, ret = 0;
704 	int recentcy = RECENTCY_MIN;
705 	u32 dtime, now;
706 
707 	gdp = ext4_get_group_desc(sb, group, NULL);
708 	if (unlikely(!gdp))
709 		return 0;
710 
711 	bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) +
712 		       (ino / inodes_per_block));
713 	if (!bh || !buffer_uptodate(bh))
714 		/*
715 		 * If the block is not in the buffer cache, then it
716 		 * must have been written out.
717 		 */
718 		goto out;
719 
720 	offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
721 	raw_inode = (struct ext4_inode *) (bh->b_data + offset);
722 
723 	/* i_dtime is only 32 bits on disk, but we only care about relative
724 	 * times in the range of a few minutes (i.e. long enough to sync a
725 	 * recently-deleted inode to disk), so using the low 32 bits of the
726 	 * clock (a 68 year range) is enough, see time_before32() */
727 	dtime = le32_to_cpu(raw_inode->i_dtime);
728 	now = ktime_get_real_seconds();
729 	if (buffer_dirty(bh))
730 		recentcy += RECENTCY_DIRTY;
731 
732 	if (dtime && time_before32(dtime, now) &&
733 	    time_before32(now, dtime + recentcy))
734 		ret = 1;
735 out:
736 	brelse(bh);
737 	return ret;
738 }
739 
740 static int find_inode_bit(struct super_block *sb, ext4_group_t group,
741 			  struct buffer_head *bitmap, unsigned long *ino)
742 {
743 next:
744 	*ino = ext4_find_next_zero_bit((unsigned long *)
745 				       bitmap->b_data,
746 				       EXT4_INODES_PER_GROUP(sb), *ino);
747 	if (*ino >= EXT4_INODES_PER_GROUP(sb))
748 		return 0;
749 
750 	if ((EXT4_SB(sb)->s_journal == NULL) &&
751 	    recently_deleted(sb, group, *ino)) {
752 		*ino = *ino + 1;
753 		if (*ino < EXT4_INODES_PER_GROUP(sb))
754 			goto next;
755 		return 0;
756 	}
757 
758 	return 1;
759 }
760 
761 /*
762  * There are two policies for allocating an inode.  If the new inode is
763  * a directory, then a forward search is made for a block group with both
764  * free space and a low directory-to-inode ratio; if that fails, then of
765  * the groups with above-average free space, that group with the fewest
766  * directories already is chosen.
767  *
768  * For other inodes, search forward from the parent directory's block
769  * group to find a free inode.
770  */
771 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
772 			       umode_t mode, const struct qstr *qstr,
773 			       __u32 goal, uid_t *owner, __u32 i_flags,
774 			       int handle_type, unsigned int line_no,
775 			       int nblocks)
776 {
777 	struct super_block *sb;
778 	struct buffer_head *inode_bitmap_bh = NULL;
779 	struct buffer_head *group_desc_bh;
780 	ext4_group_t ngroups, group = 0;
781 	unsigned long ino = 0;
782 	struct inode *inode;
783 	struct ext4_group_desc *gdp = NULL;
784 	struct ext4_inode_info *ei;
785 	struct ext4_sb_info *sbi;
786 	int ret2, err;
787 	struct inode *ret;
788 	ext4_group_t i;
789 	ext4_group_t flex_group;
790 	struct ext4_group_info *grp;
791 	int encrypt = 0;
792 
793 	/* Cannot create files in a deleted directory */
794 	if (!dir || !dir->i_nlink)
795 		return ERR_PTR(-EPERM);
796 
797 	sb = dir->i_sb;
798 	sbi = EXT4_SB(sb);
799 
800 	if (unlikely(ext4_forced_shutdown(sbi)))
801 		return ERR_PTR(-EIO);
802 
803 	if ((ext4_encrypted_inode(dir) || DUMMY_ENCRYPTION_ENABLED(sbi)) &&
804 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) &&
805 	    !(i_flags & EXT4_EA_INODE_FL)) {
806 		err = fscrypt_get_encryption_info(dir);
807 		if (err)
808 			return ERR_PTR(err);
809 		if (!fscrypt_has_encryption_key(dir))
810 			return ERR_PTR(-ENOKEY);
811 		encrypt = 1;
812 	}
813 
814 	if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) {
815 #ifdef CONFIG_EXT4_FS_POSIX_ACL
816 		struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT);
817 
818 		if (p) {
819 			int acl_size = p->a_count * sizeof(ext4_acl_entry);
820 
821 			nblocks += (S_ISDIR(mode) ? 2 : 1) *
822 				__ext4_xattr_set_credits(sb, NULL /* inode */,
823 					NULL /* block_bh */, acl_size,
824 					true /* is_create */);
825 			posix_acl_release(p);
826 		}
827 #endif
828 
829 #ifdef CONFIG_SECURITY
830 		{
831 			int num_security_xattrs = 1;
832 
833 #ifdef CONFIG_INTEGRITY
834 			num_security_xattrs++;
835 #endif
836 			/*
837 			 * We assume that security xattrs are never
838 			 * more than 1k.  In practice they are under
839 			 * 128 bytes.
840 			 */
841 			nblocks += num_security_xattrs *
842 				__ext4_xattr_set_credits(sb, NULL /* inode */,
843 					NULL /* block_bh */, 1024,
844 					true /* is_create */);
845 		}
846 #endif
847 		if (encrypt)
848 			nblocks += __ext4_xattr_set_credits(sb,
849 					NULL /* inode */, NULL /* block_bh */,
850 					FSCRYPT_SET_CONTEXT_MAX_SIZE,
851 					true /* is_create */);
852 	}
853 
854 	ngroups = ext4_get_groups_count(sb);
855 	trace_ext4_request_inode(dir, mode);
856 	inode = new_inode(sb);
857 	if (!inode)
858 		return ERR_PTR(-ENOMEM);
859 	ei = EXT4_I(inode);
860 
861 	/*
862 	 * Initialize owners and quota early so that we don't have to account
863 	 * for quota initialization worst case in standard inode creating
864 	 * transaction
865 	 */
866 	if (owner) {
867 		inode->i_mode = mode;
868 		i_uid_write(inode, owner[0]);
869 		i_gid_write(inode, owner[1]);
870 	} else if (test_opt(sb, GRPID)) {
871 		inode->i_mode = mode;
872 		inode->i_uid = current_fsuid();
873 		inode->i_gid = dir->i_gid;
874 	} else
875 		inode_init_owner(inode, dir, mode);
876 
877 	if (ext4_has_feature_project(sb) &&
878 	    ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT))
879 		ei->i_projid = EXT4_I(dir)->i_projid;
880 	else
881 		ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID);
882 
883 	err = dquot_initialize(inode);
884 	if (err)
885 		goto out;
886 
887 	if (!goal)
888 		goal = sbi->s_inode_goal;
889 
890 	if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
891 		group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
892 		ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
893 		ret2 = 0;
894 		goto got_group;
895 	}
896 
897 	if (S_ISDIR(mode))
898 		ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
899 	else
900 		ret2 = find_group_other(sb, dir, &group, mode);
901 
902 got_group:
903 	EXT4_I(dir)->i_last_alloc_group = group;
904 	err = -ENOSPC;
905 	if (ret2 == -1)
906 		goto out;
907 
908 	/*
909 	 * Normally we will only go through one pass of this loop,
910 	 * unless we get unlucky and it turns out the group we selected
911 	 * had its last inode grabbed by someone else.
912 	 */
913 	for (i = 0; i < ngroups; i++, ino = 0) {
914 		err = -EIO;
915 
916 		gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
917 		if (!gdp)
918 			goto out;
919 
920 		/*
921 		 * Check free inodes count before loading bitmap.
922 		 */
923 		if (ext4_free_inodes_count(sb, gdp) == 0)
924 			goto next_group;
925 
926 		grp = ext4_get_group_info(sb, group);
927 		/* Skip groups with already-known suspicious inode tables */
928 		if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
929 			goto next_group;
930 
931 		brelse(inode_bitmap_bh);
932 		inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
933 		/* Skip groups with suspicious inode tables */
934 		if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) ||
935 		    IS_ERR(inode_bitmap_bh)) {
936 			inode_bitmap_bh = NULL;
937 			goto next_group;
938 		}
939 
940 repeat_in_this_group:
941 		ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
942 		if (!ret2)
943 			goto next_group;
944 
945 		if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) {
946 			ext4_error(sb, "reserved inode found cleared - "
947 				   "inode=%lu", ino + 1);
948 			goto next_group;
949 		}
950 
951 		if (!handle) {
952 			BUG_ON(nblocks <= 0);
953 			handle = __ext4_journal_start_sb(dir->i_sb, line_no,
954 							 handle_type, nblocks,
955 							 0);
956 			if (IS_ERR(handle)) {
957 				err = PTR_ERR(handle);
958 				ext4_std_error(sb, err);
959 				goto out;
960 			}
961 		}
962 		BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
963 		err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
964 		if (err) {
965 			ext4_std_error(sb, err);
966 			goto out;
967 		}
968 		ext4_lock_group(sb, group);
969 		ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
970 		if (ret2) {
971 			/* Someone already took the bit. Repeat the search
972 			 * with lock held.
973 			 */
974 			ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
975 			if (ret2) {
976 				ext4_set_bit(ino, inode_bitmap_bh->b_data);
977 				ret2 = 0;
978 			} else {
979 				ret2 = 1; /* we didn't grab the inode */
980 			}
981 		}
982 		ext4_unlock_group(sb, group);
983 		ino++;		/* the inode bitmap is zero-based */
984 		if (!ret2)
985 			goto got; /* we grabbed the inode! */
986 
987 		if (ino < EXT4_INODES_PER_GROUP(sb))
988 			goto repeat_in_this_group;
989 next_group:
990 		if (++group == ngroups)
991 			group = 0;
992 	}
993 	err = -ENOSPC;
994 	goto out;
995 
996 got:
997 	BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
998 	err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
999 	if (err) {
1000 		ext4_std_error(sb, err);
1001 		goto out;
1002 	}
1003 
1004 	BUFFER_TRACE(group_desc_bh, "get_write_access");
1005 	err = ext4_journal_get_write_access(handle, group_desc_bh);
1006 	if (err) {
1007 		ext4_std_error(sb, err);
1008 		goto out;
1009 	}
1010 
1011 	/* We may have to initialize the block bitmap if it isn't already */
1012 	if (ext4_has_group_desc_csum(sb) &&
1013 	    gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
1014 		struct buffer_head *block_bitmap_bh;
1015 
1016 		block_bitmap_bh = ext4_read_block_bitmap(sb, group);
1017 		if (IS_ERR(block_bitmap_bh)) {
1018 			err = PTR_ERR(block_bitmap_bh);
1019 			goto out;
1020 		}
1021 		BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
1022 		err = ext4_journal_get_write_access(handle, block_bitmap_bh);
1023 		if (err) {
1024 			brelse(block_bitmap_bh);
1025 			ext4_std_error(sb, err);
1026 			goto out;
1027 		}
1028 
1029 		BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
1030 		err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
1031 
1032 		/* recheck and clear flag under lock if we still need to */
1033 		ext4_lock_group(sb, group);
1034 		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
1035 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1036 			ext4_free_group_clusters_set(sb, gdp,
1037 				ext4_free_clusters_after_init(sb, group, gdp));
1038 			ext4_block_bitmap_csum_set(sb, group, gdp,
1039 						   block_bitmap_bh);
1040 			ext4_group_desc_csum_set(sb, group, gdp);
1041 		}
1042 		ext4_unlock_group(sb, group);
1043 		brelse(block_bitmap_bh);
1044 
1045 		if (err) {
1046 			ext4_std_error(sb, err);
1047 			goto out;
1048 		}
1049 	}
1050 
1051 	/* Update the relevant bg descriptor fields */
1052 	if (ext4_has_group_desc_csum(sb)) {
1053 		int free;
1054 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1055 
1056 		down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
1057 		ext4_lock_group(sb, group); /* while we modify the bg desc */
1058 		free = EXT4_INODES_PER_GROUP(sb) -
1059 			ext4_itable_unused_count(sb, gdp);
1060 		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
1061 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
1062 			free = 0;
1063 		}
1064 		/*
1065 		 * Check the relative inode number against the last used
1066 		 * relative inode number in this group. if it is greater
1067 		 * we need to update the bg_itable_unused count
1068 		 */
1069 		if (ino > free)
1070 			ext4_itable_unused_set(sb, gdp,
1071 					(EXT4_INODES_PER_GROUP(sb) - ino));
1072 		up_read(&grp->alloc_sem);
1073 	} else {
1074 		ext4_lock_group(sb, group);
1075 	}
1076 
1077 	ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
1078 	if (S_ISDIR(mode)) {
1079 		ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
1080 		if (sbi->s_log_groups_per_flex) {
1081 			ext4_group_t f = ext4_flex_group(sbi, group);
1082 
1083 			atomic_inc(&sbi->s_flex_groups[f].used_dirs);
1084 		}
1085 	}
1086 	if (ext4_has_group_desc_csum(sb)) {
1087 		ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
1088 					   EXT4_INODES_PER_GROUP(sb) / 8);
1089 		ext4_group_desc_csum_set(sb, group, gdp);
1090 	}
1091 	ext4_unlock_group(sb, group);
1092 
1093 	BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
1094 	err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
1095 	if (err) {
1096 		ext4_std_error(sb, err);
1097 		goto out;
1098 	}
1099 
1100 	percpu_counter_dec(&sbi->s_freeinodes_counter);
1101 	if (S_ISDIR(mode))
1102 		percpu_counter_inc(&sbi->s_dirs_counter);
1103 
1104 	if (sbi->s_log_groups_per_flex) {
1105 		flex_group = ext4_flex_group(sbi, group);
1106 		atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
1107 	}
1108 
1109 	inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
1110 	/* This is the optimal IO size (for stat), not the fs block size */
1111 	inode->i_blocks = 0;
1112 	inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
1113 						       current_time(inode);
1114 
1115 	memset(ei->i_data, 0, sizeof(ei->i_data));
1116 	ei->i_dir_start_lookup = 0;
1117 	ei->i_disksize = 0;
1118 
1119 	/* Don't inherit extent flag from directory, amongst others. */
1120 	ei->i_flags =
1121 		ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1122 	ei->i_flags |= i_flags;
1123 	ei->i_file_acl = 0;
1124 	ei->i_dtime = 0;
1125 	ei->i_block_group = group;
1126 	ei->i_last_alloc_group = ~0;
1127 
1128 	ext4_set_inode_flags(inode);
1129 	if (IS_DIRSYNC(inode))
1130 		ext4_handle_sync(handle);
1131 	if (insert_inode_locked(inode) < 0) {
1132 		/*
1133 		 * Likely a bitmap corruption causing inode to be allocated
1134 		 * twice.
1135 		 */
1136 		err = -EIO;
1137 		ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1138 			   inode->i_ino);
1139 		goto out;
1140 	}
1141 	spin_lock(&sbi->s_next_gen_lock);
1142 	inode->i_generation = sbi->s_next_generation++;
1143 	spin_unlock(&sbi->s_next_gen_lock);
1144 
1145 	/* Precompute checksum seed for inode metadata */
1146 	if (ext4_has_metadata_csum(sb)) {
1147 		__u32 csum;
1148 		__le32 inum = cpu_to_le32(inode->i_ino);
1149 		__le32 gen = cpu_to_le32(inode->i_generation);
1150 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1151 				   sizeof(inum));
1152 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1153 					      sizeof(gen));
1154 	}
1155 
1156 	ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1157 	ext4_set_inode_state(inode, EXT4_STATE_NEW);
1158 
1159 	ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
1160 	ei->i_inline_off = 0;
1161 	if (ext4_has_feature_inline_data(sb))
1162 		ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1163 	ret = inode;
1164 	err = dquot_alloc_inode(inode);
1165 	if (err)
1166 		goto fail_drop;
1167 
1168 	/*
1169 	 * Since the encryption xattr will always be unique, create it first so
1170 	 * that it's less likely to end up in an external xattr block and
1171 	 * prevent its deduplication.
1172 	 */
1173 	if (encrypt) {
1174 		err = fscrypt_inherit_context(dir, inode, handle, true);
1175 		if (err)
1176 			goto fail_free_drop;
1177 	}
1178 
1179 	if (!(ei->i_flags & EXT4_EA_INODE_FL)) {
1180 		err = ext4_init_acl(handle, inode, dir);
1181 		if (err)
1182 			goto fail_free_drop;
1183 
1184 		err = ext4_init_security(handle, inode, dir, qstr);
1185 		if (err)
1186 			goto fail_free_drop;
1187 	}
1188 
1189 	if (ext4_has_feature_extents(sb)) {
1190 		/* set extent flag only for directory, file and normal symlink*/
1191 		if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1192 			ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1193 			ext4_ext_tree_init(handle, inode);
1194 		}
1195 	}
1196 
1197 	if (ext4_handle_valid(handle)) {
1198 		ei->i_sync_tid = handle->h_transaction->t_tid;
1199 		ei->i_datasync_tid = handle->h_transaction->t_tid;
1200 	}
1201 
1202 	err = ext4_mark_inode_dirty(handle, inode);
1203 	if (err) {
1204 		ext4_std_error(sb, err);
1205 		goto fail_free_drop;
1206 	}
1207 
1208 	ext4_debug("allocating inode %lu\n", inode->i_ino);
1209 	trace_ext4_allocate_inode(inode, dir, mode);
1210 	brelse(inode_bitmap_bh);
1211 	return ret;
1212 
1213 fail_free_drop:
1214 	dquot_free_inode(inode);
1215 fail_drop:
1216 	clear_nlink(inode);
1217 	unlock_new_inode(inode);
1218 out:
1219 	dquot_drop(inode);
1220 	inode->i_flags |= S_NOQUOTA;
1221 	iput(inode);
1222 	brelse(inode_bitmap_bh);
1223 	return ERR_PTR(err);
1224 }
1225 
1226 /* Verify that we are loading a valid orphan from disk */
1227 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1228 {
1229 	unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1230 	ext4_group_t block_group;
1231 	int bit;
1232 	struct buffer_head *bitmap_bh = NULL;
1233 	struct inode *inode = NULL;
1234 	int err = -EFSCORRUPTED;
1235 
1236 	if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
1237 		goto bad_orphan;
1238 
1239 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1240 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1241 	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1242 	if (IS_ERR(bitmap_bh)) {
1243 		ext4_error(sb, "inode bitmap error %ld for orphan %lu",
1244 			   ino, PTR_ERR(bitmap_bh));
1245 		return (struct inode *) bitmap_bh;
1246 	}
1247 
1248 	/* Having the inode bit set should be a 100% indicator that this
1249 	 * is a valid orphan (no e2fsck run on fs).  Orphans also include
1250 	 * inodes that were being truncated, so we can't check i_nlink==0.
1251 	 */
1252 	if (!ext4_test_bit(bit, bitmap_bh->b_data))
1253 		goto bad_orphan;
1254 
1255 	inode = ext4_iget(sb, ino);
1256 	if (IS_ERR(inode)) {
1257 		err = PTR_ERR(inode);
1258 		ext4_error(sb, "couldn't read orphan inode %lu (err %d)",
1259 			   ino, err);
1260 		return inode;
1261 	}
1262 
1263 	/*
1264 	 * If the orphans has i_nlinks > 0 then it should be able to
1265 	 * be truncated, otherwise it won't be removed from the orphan
1266 	 * list during processing and an infinite loop will result.
1267 	 * Similarly, it must not be a bad inode.
1268 	 */
1269 	if ((inode->i_nlink && !ext4_can_truncate(inode)) ||
1270 	    is_bad_inode(inode))
1271 		goto bad_orphan;
1272 
1273 	if (NEXT_ORPHAN(inode) > max_ino)
1274 		goto bad_orphan;
1275 	brelse(bitmap_bh);
1276 	return inode;
1277 
1278 bad_orphan:
1279 	ext4_error(sb, "bad orphan inode %lu", ino);
1280 	if (bitmap_bh)
1281 		printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1282 		       bit, (unsigned long long)bitmap_bh->b_blocknr,
1283 		       ext4_test_bit(bit, bitmap_bh->b_data));
1284 	if (inode) {
1285 		printk(KERN_ERR "is_bad_inode(inode)=%d\n",
1286 		       is_bad_inode(inode));
1287 		printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n",
1288 		       NEXT_ORPHAN(inode));
1289 		printk(KERN_ERR "max_ino=%lu\n", max_ino);
1290 		printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink);
1291 		/* Avoid freeing blocks if we got a bad deleted inode */
1292 		if (inode->i_nlink == 0)
1293 			inode->i_blocks = 0;
1294 		iput(inode);
1295 	}
1296 	brelse(bitmap_bh);
1297 	return ERR_PTR(err);
1298 }
1299 
1300 unsigned long ext4_count_free_inodes(struct super_block *sb)
1301 {
1302 	unsigned long desc_count;
1303 	struct ext4_group_desc *gdp;
1304 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1305 #ifdef EXT4FS_DEBUG
1306 	struct ext4_super_block *es;
1307 	unsigned long bitmap_count, x;
1308 	struct buffer_head *bitmap_bh = NULL;
1309 
1310 	es = EXT4_SB(sb)->s_es;
1311 	desc_count = 0;
1312 	bitmap_count = 0;
1313 	gdp = NULL;
1314 	for (i = 0; i < ngroups; i++) {
1315 		gdp = ext4_get_group_desc(sb, i, NULL);
1316 		if (!gdp)
1317 			continue;
1318 		desc_count += ext4_free_inodes_count(sb, gdp);
1319 		brelse(bitmap_bh);
1320 		bitmap_bh = ext4_read_inode_bitmap(sb, i);
1321 		if (IS_ERR(bitmap_bh)) {
1322 			bitmap_bh = NULL;
1323 			continue;
1324 		}
1325 
1326 		x = ext4_count_free(bitmap_bh->b_data,
1327 				    EXT4_INODES_PER_GROUP(sb) / 8);
1328 		printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1329 			(unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1330 		bitmap_count += x;
1331 	}
1332 	brelse(bitmap_bh);
1333 	printk(KERN_DEBUG "ext4_count_free_inodes: "
1334 	       "stored = %u, computed = %lu, %lu\n",
1335 	       le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1336 	return desc_count;
1337 #else
1338 	desc_count = 0;
1339 	for (i = 0; i < ngroups; i++) {
1340 		gdp = ext4_get_group_desc(sb, i, NULL);
1341 		if (!gdp)
1342 			continue;
1343 		desc_count += ext4_free_inodes_count(sb, gdp);
1344 		cond_resched();
1345 	}
1346 	return desc_count;
1347 #endif
1348 }
1349 
1350 /* Called at mount-time, super-block is locked */
1351 unsigned long ext4_count_dirs(struct super_block * sb)
1352 {
1353 	unsigned long count = 0;
1354 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1355 
1356 	for (i = 0; i < ngroups; i++) {
1357 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1358 		if (!gdp)
1359 			continue;
1360 		count += ext4_used_dirs_count(sb, gdp);
1361 	}
1362 	return count;
1363 }
1364 
1365 /*
1366  * Zeroes not yet zeroed inode table - just write zeroes through the whole
1367  * inode table. Must be called without any spinlock held. The only place
1368  * where it is called from on active part of filesystem is ext4lazyinit
1369  * thread, so we do not need any special locks, however we have to prevent
1370  * inode allocation from the current group, so we take alloc_sem lock, to
1371  * block ext4_new_inode() until we are finished.
1372  */
1373 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1374 				 int barrier)
1375 {
1376 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1377 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1378 	struct ext4_group_desc *gdp = NULL;
1379 	struct buffer_head *group_desc_bh;
1380 	handle_t *handle;
1381 	ext4_fsblk_t blk;
1382 	int num, ret = 0, used_blks = 0;
1383 
1384 	/* This should not happen, but just to be sure check this */
1385 	if (sb_rdonly(sb)) {
1386 		ret = 1;
1387 		goto out;
1388 	}
1389 
1390 	gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1391 	if (!gdp)
1392 		goto out;
1393 
1394 	/*
1395 	 * We do not need to lock this, because we are the only one
1396 	 * handling this flag.
1397 	 */
1398 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1399 		goto out;
1400 
1401 	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1402 	if (IS_ERR(handle)) {
1403 		ret = PTR_ERR(handle);
1404 		goto out;
1405 	}
1406 
1407 	down_write(&grp->alloc_sem);
1408 	/*
1409 	 * If inode bitmap was already initialized there may be some
1410 	 * used inodes so we need to skip blocks with used inodes in
1411 	 * inode table.
1412 	 */
1413 	if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1414 		used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1415 			    ext4_itable_unused_count(sb, gdp)),
1416 			    sbi->s_inodes_per_block);
1417 
1418 	if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1419 		ext4_error(sb, "Something is wrong with group %u: "
1420 			   "used itable blocks: %d; "
1421 			   "itable unused count: %u",
1422 			   group, used_blks,
1423 			   ext4_itable_unused_count(sb, gdp));
1424 		ret = 1;
1425 		goto err_out;
1426 	}
1427 
1428 	blk = ext4_inode_table(sb, gdp) + used_blks;
1429 	num = sbi->s_itb_per_group - used_blks;
1430 
1431 	BUFFER_TRACE(group_desc_bh, "get_write_access");
1432 	ret = ext4_journal_get_write_access(handle,
1433 					    group_desc_bh);
1434 	if (ret)
1435 		goto err_out;
1436 
1437 	/*
1438 	 * Skip zeroout if the inode table is full. But we set the ZEROED
1439 	 * flag anyway, because obviously, when it is full it does not need
1440 	 * further zeroing.
1441 	 */
1442 	if (unlikely(num == 0))
1443 		goto skip_zeroout;
1444 
1445 	ext4_debug("going to zero out inode table in group %d\n",
1446 		   group);
1447 	ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1448 	if (ret < 0)
1449 		goto err_out;
1450 	if (barrier)
1451 		blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1452 
1453 skip_zeroout:
1454 	ext4_lock_group(sb, group);
1455 	gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1456 	ext4_group_desc_csum_set(sb, group, gdp);
1457 	ext4_unlock_group(sb, group);
1458 
1459 	BUFFER_TRACE(group_desc_bh,
1460 		     "call ext4_handle_dirty_metadata");
1461 	ret = ext4_handle_dirty_metadata(handle, NULL,
1462 					 group_desc_bh);
1463 
1464 err_out:
1465 	up_write(&grp->alloc_sem);
1466 	ext4_journal_stop(handle);
1467 out:
1468 	return ret;
1469 }
1470