1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/ialloc.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * BSD ufs-inspired inode and directory allocation by 11 * Stephen Tweedie (sct@redhat.com), 1993 12 * Big-endian to little-endian byte-swapping/bitmaps by 13 * David S. Miller (davem@caip.rutgers.edu), 1995 14 */ 15 16 #include <linux/time.h> 17 #include <linux/fs.h> 18 #include <linux/stat.h> 19 #include <linux/string.h> 20 #include <linux/quotaops.h> 21 #include <linux/buffer_head.h> 22 #include <linux/random.h> 23 #include <linux/bitops.h> 24 #include <linux/blkdev.h> 25 #include <linux/cred.h> 26 27 #include <asm/byteorder.h> 28 29 #include "ext4.h" 30 #include "ext4_jbd2.h" 31 #include "xattr.h" 32 #include "acl.h" 33 34 #include <trace/events/ext4.h> 35 36 /* 37 * ialloc.c contains the inodes allocation and deallocation routines 38 */ 39 40 /* 41 * The free inodes are managed by bitmaps. A file system contains several 42 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap 43 * block for inodes, N blocks for the inode table and data blocks. 44 * 45 * The file system contains group descriptors which are located after the 46 * super block. Each descriptor contains the number of the bitmap block and 47 * the free blocks count in the block. 48 */ 49 50 /* 51 * To avoid calling the atomic setbit hundreds or thousands of times, we only 52 * need to use it within a single byte (to ensure we get endianness right). 53 * We can use memset for the rest of the bitmap as there are no other users. 54 */ 55 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap) 56 { 57 int i; 58 59 if (start_bit >= end_bit) 60 return; 61 62 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit); 63 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++) 64 ext4_set_bit(i, bitmap); 65 if (i < end_bit) 66 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3); 67 } 68 69 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate) 70 { 71 if (uptodate) { 72 set_buffer_uptodate(bh); 73 set_bitmap_uptodate(bh); 74 } 75 unlock_buffer(bh); 76 put_bh(bh); 77 } 78 79 static int ext4_validate_inode_bitmap(struct super_block *sb, 80 struct ext4_group_desc *desc, 81 ext4_group_t block_group, 82 struct buffer_head *bh) 83 { 84 ext4_fsblk_t blk; 85 struct ext4_group_info *grp; 86 87 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) 88 return 0; 89 90 if (buffer_verified(bh)) 91 return 0; 92 93 grp = ext4_get_group_info(sb, block_group); 94 if (!grp || EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 95 return -EFSCORRUPTED; 96 97 ext4_lock_group(sb, block_group); 98 if (buffer_verified(bh)) 99 goto verified; 100 blk = ext4_inode_bitmap(sb, desc); 101 if (!ext4_inode_bitmap_csum_verify(sb, desc, bh) || 102 ext4_simulate_fail(sb, EXT4_SIM_IBITMAP_CRC)) { 103 ext4_unlock_group(sb, block_group); 104 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, " 105 "inode_bitmap = %llu", block_group, blk); 106 ext4_mark_group_bitmap_corrupted(sb, block_group, 107 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 108 return -EFSBADCRC; 109 } 110 set_buffer_verified(bh); 111 verified: 112 ext4_unlock_group(sb, block_group); 113 return 0; 114 } 115 116 /* 117 * Read the inode allocation bitmap for a given block_group, reading 118 * into the specified slot in the superblock's bitmap cache. 119 * 120 * Return buffer_head of bitmap on success, or an ERR_PTR on error. 121 */ 122 static struct buffer_head * 123 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group) 124 { 125 struct ext4_group_desc *desc; 126 struct ext4_sb_info *sbi = EXT4_SB(sb); 127 struct buffer_head *bh = NULL; 128 ext4_fsblk_t bitmap_blk; 129 int err; 130 131 desc = ext4_get_group_desc(sb, block_group, NULL); 132 if (!desc) 133 return ERR_PTR(-EFSCORRUPTED); 134 135 bitmap_blk = ext4_inode_bitmap(sb, desc); 136 if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) || 137 (bitmap_blk >= ext4_blocks_count(sbi->s_es))) { 138 ext4_error(sb, "Invalid inode bitmap blk %llu in " 139 "block_group %u", bitmap_blk, block_group); 140 ext4_mark_group_bitmap_corrupted(sb, block_group, 141 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 142 return ERR_PTR(-EFSCORRUPTED); 143 } 144 bh = sb_getblk(sb, bitmap_blk); 145 if (unlikely(!bh)) { 146 ext4_warning(sb, "Cannot read inode bitmap - " 147 "block_group = %u, inode_bitmap = %llu", 148 block_group, bitmap_blk); 149 return ERR_PTR(-ENOMEM); 150 } 151 if (bitmap_uptodate(bh)) 152 goto verify; 153 154 lock_buffer(bh); 155 if (bitmap_uptodate(bh)) { 156 unlock_buffer(bh); 157 goto verify; 158 } 159 160 ext4_lock_group(sb, block_group); 161 if (ext4_has_group_desc_csum(sb) && 162 (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) { 163 if (block_group == 0) { 164 ext4_unlock_group(sb, block_group); 165 unlock_buffer(bh); 166 ext4_error(sb, "Inode bitmap for bg 0 marked " 167 "uninitialized"); 168 err = -EFSCORRUPTED; 169 goto out; 170 } 171 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8); 172 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), 173 sb->s_blocksize * 8, bh->b_data); 174 set_bitmap_uptodate(bh); 175 set_buffer_uptodate(bh); 176 set_buffer_verified(bh); 177 ext4_unlock_group(sb, block_group); 178 unlock_buffer(bh); 179 return bh; 180 } 181 ext4_unlock_group(sb, block_group); 182 183 if (buffer_uptodate(bh)) { 184 /* 185 * if not uninit if bh is uptodate, 186 * bitmap is also uptodate 187 */ 188 set_bitmap_uptodate(bh); 189 unlock_buffer(bh); 190 goto verify; 191 } 192 /* 193 * submit the buffer_head for reading 194 */ 195 trace_ext4_load_inode_bitmap(sb, block_group); 196 ext4_read_bh(bh, REQ_META | REQ_PRIO, ext4_end_bitmap_read); 197 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_IBITMAP_EIO); 198 if (!buffer_uptodate(bh)) { 199 put_bh(bh); 200 ext4_error_err(sb, EIO, "Cannot read inode bitmap - " 201 "block_group = %u, inode_bitmap = %llu", 202 block_group, bitmap_blk); 203 ext4_mark_group_bitmap_corrupted(sb, block_group, 204 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 205 return ERR_PTR(-EIO); 206 } 207 208 verify: 209 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh); 210 if (err) 211 goto out; 212 return bh; 213 out: 214 put_bh(bh); 215 return ERR_PTR(err); 216 } 217 218 /* 219 * NOTE! When we get the inode, we're the only people 220 * that have access to it, and as such there are no 221 * race conditions we have to worry about. The inode 222 * is not on the hash-lists, and it cannot be reached 223 * through the filesystem because the directory entry 224 * has been deleted earlier. 225 * 226 * HOWEVER: we must make sure that we get no aliases, 227 * which means that we have to call "clear_inode()" 228 * _before_ we mark the inode not in use in the inode 229 * bitmaps. Otherwise a newly created file might use 230 * the same inode number (not actually the same pointer 231 * though), and then we'd have two inodes sharing the 232 * same inode number and space on the harddisk. 233 */ 234 void ext4_free_inode(handle_t *handle, struct inode *inode) 235 { 236 struct super_block *sb = inode->i_sb; 237 int is_directory; 238 unsigned long ino; 239 struct buffer_head *bitmap_bh = NULL; 240 struct buffer_head *bh2; 241 ext4_group_t block_group; 242 unsigned long bit; 243 struct ext4_group_desc *gdp; 244 struct ext4_super_block *es; 245 struct ext4_sb_info *sbi; 246 int fatal = 0, err, count, cleared; 247 struct ext4_group_info *grp; 248 249 if (!sb) { 250 printk(KERN_ERR "EXT4-fs: %s:%d: inode on " 251 "nonexistent device\n", __func__, __LINE__); 252 return; 253 } 254 if (atomic_read(&inode->i_count) > 1) { 255 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d", 256 __func__, __LINE__, inode->i_ino, 257 atomic_read(&inode->i_count)); 258 return; 259 } 260 if (inode->i_nlink) { 261 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n", 262 __func__, __LINE__, inode->i_ino, inode->i_nlink); 263 return; 264 } 265 sbi = EXT4_SB(sb); 266 267 ino = inode->i_ino; 268 ext4_debug("freeing inode %lu\n", ino); 269 trace_ext4_free_inode(inode); 270 271 dquot_initialize(inode); 272 dquot_free_inode(inode); 273 274 is_directory = S_ISDIR(inode->i_mode); 275 276 /* Do this BEFORE marking the inode not in use or returning an error */ 277 ext4_clear_inode(inode); 278 279 es = sbi->s_es; 280 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { 281 ext4_error(sb, "reserved or nonexistent inode %lu", ino); 282 goto error_return; 283 } 284 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 285 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 286 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 287 /* Don't bother if the inode bitmap is corrupt. */ 288 if (IS_ERR(bitmap_bh)) { 289 fatal = PTR_ERR(bitmap_bh); 290 bitmap_bh = NULL; 291 goto error_return; 292 } 293 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) { 294 grp = ext4_get_group_info(sb, block_group); 295 if (!grp || unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) { 296 fatal = -EFSCORRUPTED; 297 goto error_return; 298 } 299 } 300 301 BUFFER_TRACE(bitmap_bh, "get_write_access"); 302 fatal = ext4_journal_get_write_access(handle, sb, bitmap_bh, 303 EXT4_JTR_NONE); 304 if (fatal) 305 goto error_return; 306 307 fatal = -ESRCH; 308 gdp = ext4_get_group_desc(sb, block_group, &bh2); 309 if (gdp) { 310 BUFFER_TRACE(bh2, "get_write_access"); 311 fatal = ext4_journal_get_write_access(handle, sb, bh2, 312 EXT4_JTR_NONE); 313 } 314 ext4_lock_group(sb, block_group); 315 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data); 316 if (fatal || !cleared) { 317 ext4_unlock_group(sb, block_group); 318 goto out; 319 } 320 321 count = ext4_free_inodes_count(sb, gdp) + 1; 322 ext4_free_inodes_set(sb, gdp, count); 323 if (is_directory) { 324 count = ext4_used_dirs_count(sb, gdp) - 1; 325 ext4_used_dirs_set(sb, gdp, count); 326 if (percpu_counter_initialized(&sbi->s_dirs_counter)) 327 percpu_counter_dec(&sbi->s_dirs_counter); 328 } 329 ext4_inode_bitmap_csum_set(sb, gdp, bitmap_bh); 330 ext4_group_desc_csum_set(sb, block_group, gdp); 331 ext4_unlock_group(sb, block_group); 332 333 if (percpu_counter_initialized(&sbi->s_freeinodes_counter)) 334 percpu_counter_inc(&sbi->s_freeinodes_counter); 335 if (sbi->s_log_groups_per_flex) { 336 struct flex_groups *fg; 337 338 fg = sbi_array_rcu_deref(sbi, s_flex_groups, 339 ext4_flex_group(sbi, block_group)); 340 atomic_inc(&fg->free_inodes); 341 if (is_directory) 342 atomic_dec(&fg->used_dirs); 343 } 344 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata"); 345 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2); 346 out: 347 if (cleared) { 348 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata"); 349 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 350 if (!fatal) 351 fatal = err; 352 } else { 353 ext4_error(sb, "bit already cleared for inode %lu", ino); 354 ext4_mark_group_bitmap_corrupted(sb, block_group, 355 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 356 } 357 358 error_return: 359 brelse(bitmap_bh); 360 ext4_std_error(sb, fatal); 361 } 362 363 struct orlov_stats { 364 __u64 free_clusters; 365 __u32 free_inodes; 366 __u32 used_dirs; 367 }; 368 369 /* 370 * Helper function for Orlov's allocator; returns critical information 371 * for a particular block group or flex_bg. If flex_size is 1, then g 372 * is a block group number; otherwise it is flex_bg number. 373 */ 374 static void get_orlov_stats(struct super_block *sb, ext4_group_t g, 375 int flex_size, struct orlov_stats *stats) 376 { 377 struct ext4_group_desc *desc; 378 379 if (flex_size > 1) { 380 struct flex_groups *fg = sbi_array_rcu_deref(EXT4_SB(sb), 381 s_flex_groups, g); 382 stats->free_inodes = atomic_read(&fg->free_inodes); 383 stats->free_clusters = atomic64_read(&fg->free_clusters); 384 stats->used_dirs = atomic_read(&fg->used_dirs); 385 return; 386 } 387 388 desc = ext4_get_group_desc(sb, g, NULL); 389 if (desc) { 390 stats->free_inodes = ext4_free_inodes_count(sb, desc); 391 stats->free_clusters = ext4_free_group_clusters(sb, desc); 392 stats->used_dirs = ext4_used_dirs_count(sb, desc); 393 } else { 394 stats->free_inodes = 0; 395 stats->free_clusters = 0; 396 stats->used_dirs = 0; 397 } 398 } 399 400 /* 401 * Orlov's allocator for directories. 402 * 403 * We always try to spread first-level directories. 404 * 405 * If there are blockgroups with both free inodes and free clusters counts 406 * not worse than average we return one with smallest directory count. 407 * Otherwise we simply return a random group. 408 * 409 * For the rest rules look so: 410 * 411 * It's OK to put directory into a group unless 412 * it has too many directories already (max_dirs) or 413 * it has too few free inodes left (min_inodes) or 414 * it has too few free clusters left (min_clusters) or 415 * Parent's group is preferred, if it doesn't satisfy these 416 * conditions we search cyclically through the rest. If none 417 * of the groups look good we just look for a group with more 418 * free inodes than average (starting at parent's group). 419 */ 420 421 static int find_group_orlov(struct super_block *sb, struct inode *parent, 422 ext4_group_t *group, umode_t mode, 423 const struct qstr *qstr) 424 { 425 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 426 struct ext4_sb_info *sbi = EXT4_SB(sb); 427 ext4_group_t real_ngroups = ext4_get_groups_count(sb); 428 int inodes_per_group = EXT4_INODES_PER_GROUP(sb); 429 unsigned int freei, avefreei, grp_free; 430 ext4_fsblk_t freec, avefreec; 431 unsigned int ndirs; 432 int max_dirs, min_inodes; 433 ext4_grpblk_t min_clusters; 434 ext4_group_t i, grp, g, ngroups; 435 struct ext4_group_desc *desc; 436 struct orlov_stats stats; 437 int flex_size = ext4_flex_bg_size(sbi); 438 struct dx_hash_info hinfo; 439 440 ngroups = real_ngroups; 441 if (flex_size > 1) { 442 ngroups = (real_ngroups + flex_size - 1) >> 443 sbi->s_log_groups_per_flex; 444 parent_group >>= sbi->s_log_groups_per_flex; 445 } 446 447 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter); 448 avefreei = freei / ngroups; 449 freec = percpu_counter_read_positive(&sbi->s_freeclusters_counter); 450 avefreec = freec; 451 do_div(avefreec, ngroups); 452 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter); 453 454 if (S_ISDIR(mode) && 455 ((parent == d_inode(sb->s_root)) || 456 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) { 457 int best_ndir = inodes_per_group; 458 int ret = -1; 459 460 if (qstr) { 461 hinfo.hash_version = DX_HASH_HALF_MD4; 462 hinfo.seed = sbi->s_hash_seed; 463 ext4fs_dirhash(parent, qstr->name, qstr->len, &hinfo); 464 parent_group = hinfo.hash % ngroups; 465 } else 466 parent_group = get_random_u32_below(ngroups); 467 for (i = 0; i < ngroups; i++) { 468 g = (parent_group + i) % ngroups; 469 get_orlov_stats(sb, g, flex_size, &stats); 470 if (!stats.free_inodes) 471 continue; 472 if (stats.used_dirs >= best_ndir) 473 continue; 474 if (stats.free_inodes < avefreei) 475 continue; 476 if (stats.free_clusters < avefreec) 477 continue; 478 grp = g; 479 ret = 0; 480 best_ndir = stats.used_dirs; 481 } 482 if (ret) 483 goto fallback; 484 found_flex_bg: 485 if (flex_size == 1) { 486 *group = grp; 487 return 0; 488 } 489 490 /* 491 * We pack inodes at the beginning of the flexgroup's 492 * inode tables. Block allocation decisions will do 493 * something similar, although regular files will 494 * start at 2nd block group of the flexgroup. See 495 * ext4_ext_find_goal() and ext4_find_near(). 496 */ 497 grp *= flex_size; 498 for (i = 0; i < flex_size; i++) { 499 if (grp+i >= real_ngroups) 500 break; 501 desc = ext4_get_group_desc(sb, grp+i, NULL); 502 if (desc && ext4_free_inodes_count(sb, desc)) { 503 *group = grp+i; 504 return 0; 505 } 506 } 507 goto fallback; 508 } 509 510 max_dirs = ndirs / ngroups + inodes_per_group*flex_size / 16; 511 min_inodes = avefreei - inodes_per_group*flex_size / 4; 512 if (min_inodes < 1) 513 min_inodes = 1; 514 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4; 515 if (min_clusters < 0) 516 min_clusters = 0; 517 518 /* 519 * Start looking in the flex group where we last allocated an 520 * inode for this parent directory 521 */ 522 if (EXT4_I(parent)->i_last_alloc_group != ~0) { 523 parent_group = EXT4_I(parent)->i_last_alloc_group; 524 if (flex_size > 1) 525 parent_group >>= sbi->s_log_groups_per_flex; 526 } 527 528 for (i = 0; i < ngroups; i++) { 529 grp = (parent_group + i) % ngroups; 530 get_orlov_stats(sb, grp, flex_size, &stats); 531 if (stats.used_dirs >= max_dirs) 532 continue; 533 if (stats.free_inodes < min_inodes) 534 continue; 535 if (stats.free_clusters < min_clusters) 536 continue; 537 goto found_flex_bg; 538 } 539 540 fallback: 541 ngroups = real_ngroups; 542 avefreei = freei / ngroups; 543 fallback_retry: 544 parent_group = EXT4_I(parent)->i_block_group; 545 for (i = 0; i < ngroups; i++) { 546 grp = (parent_group + i) % ngroups; 547 desc = ext4_get_group_desc(sb, grp, NULL); 548 if (desc) { 549 grp_free = ext4_free_inodes_count(sb, desc); 550 if (grp_free && grp_free >= avefreei) { 551 *group = grp; 552 return 0; 553 } 554 } 555 } 556 557 if (avefreei) { 558 /* 559 * The free-inodes counter is approximate, and for really small 560 * filesystems the above test can fail to find any blockgroups 561 */ 562 avefreei = 0; 563 goto fallback_retry; 564 } 565 566 return -1; 567 } 568 569 static int find_group_other(struct super_block *sb, struct inode *parent, 570 ext4_group_t *group, umode_t mode) 571 { 572 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 573 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb); 574 struct ext4_group_desc *desc; 575 int flex_size = ext4_flex_bg_size(EXT4_SB(sb)); 576 577 /* 578 * Try to place the inode is the same flex group as its 579 * parent. If we can't find space, use the Orlov algorithm to 580 * find another flex group, and store that information in the 581 * parent directory's inode information so that use that flex 582 * group for future allocations. 583 */ 584 if (flex_size > 1) { 585 int retry = 0; 586 587 try_again: 588 parent_group &= ~(flex_size-1); 589 last = parent_group + flex_size; 590 if (last > ngroups) 591 last = ngroups; 592 for (i = parent_group; i < last; i++) { 593 desc = ext4_get_group_desc(sb, i, NULL); 594 if (desc && ext4_free_inodes_count(sb, desc)) { 595 *group = i; 596 return 0; 597 } 598 } 599 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) { 600 retry = 1; 601 parent_group = EXT4_I(parent)->i_last_alloc_group; 602 goto try_again; 603 } 604 /* 605 * If this didn't work, use the Orlov search algorithm 606 * to find a new flex group; we pass in the mode to 607 * avoid the topdir algorithms. 608 */ 609 *group = parent_group + flex_size; 610 if (*group > ngroups) 611 *group = 0; 612 return find_group_orlov(sb, parent, group, mode, NULL); 613 } 614 615 /* 616 * Try to place the inode in its parent directory 617 */ 618 *group = parent_group; 619 desc = ext4_get_group_desc(sb, *group, NULL); 620 if (desc && ext4_free_inodes_count(sb, desc) && 621 ext4_free_group_clusters(sb, desc)) 622 return 0; 623 624 /* 625 * We're going to place this inode in a different blockgroup from its 626 * parent. We want to cause files in a common directory to all land in 627 * the same blockgroup. But we want files which are in a different 628 * directory which shares a blockgroup with our parent to land in a 629 * different blockgroup. 630 * 631 * So add our directory's i_ino into the starting point for the hash. 632 */ 633 *group = (*group + parent->i_ino) % ngroups; 634 635 /* 636 * Use a quadratic hash to find a group with a free inode and some free 637 * blocks. 638 */ 639 for (i = 1; i < ngroups; i <<= 1) { 640 *group += i; 641 if (*group >= ngroups) 642 *group -= ngroups; 643 desc = ext4_get_group_desc(sb, *group, NULL); 644 if (desc && ext4_free_inodes_count(sb, desc) && 645 ext4_free_group_clusters(sb, desc)) 646 return 0; 647 } 648 649 /* 650 * That failed: try linear search for a free inode, even if that group 651 * has no free blocks. 652 */ 653 *group = parent_group; 654 for (i = 0; i < ngroups; i++) { 655 if (++*group >= ngroups) 656 *group = 0; 657 desc = ext4_get_group_desc(sb, *group, NULL); 658 if (desc && ext4_free_inodes_count(sb, desc)) 659 return 0; 660 } 661 662 return -1; 663 } 664 665 /* 666 * In no journal mode, if an inode has recently been deleted, we want 667 * to avoid reusing it until we're reasonably sure the inode table 668 * block has been written back to disk. (Yes, these values are 669 * somewhat arbitrary...) 670 */ 671 #define RECENTCY_MIN 60 672 #define RECENTCY_DIRTY 300 673 674 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino) 675 { 676 struct ext4_group_desc *gdp; 677 struct ext4_inode *raw_inode; 678 struct buffer_head *bh; 679 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 680 int offset, ret = 0; 681 int recentcy = RECENTCY_MIN; 682 u32 dtime, now; 683 684 gdp = ext4_get_group_desc(sb, group, NULL); 685 if (unlikely(!gdp)) 686 return 0; 687 688 bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) + 689 (ino / inodes_per_block)); 690 if (!bh || !buffer_uptodate(bh)) 691 /* 692 * If the block is not in the buffer cache, then it 693 * must have been written out. 694 */ 695 goto out; 696 697 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb); 698 raw_inode = (struct ext4_inode *) (bh->b_data + offset); 699 700 /* i_dtime is only 32 bits on disk, but we only care about relative 701 * times in the range of a few minutes (i.e. long enough to sync a 702 * recently-deleted inode to disk), so using the low 32 bits of the 703 * clock (a 68 year range) is enough, see time_before32() */ 704 dtime = le32_to_cpu(raw_inode->i_dtime); 705 now = ktime_get_real_seconds(); 706 if (buffer_dirty(bh)) 707 recentcy += RECENTCY_DIRTY; 708 709 if (dtime && time_before32(dtime, now) && 710 time_before32(now, dtime + recentcy)) 711 ret = 1; 712 out: 713 brelse(bh); 714 return ret; 715 } 716 717 static int find_inode_bit(struct super_block *sb, ext4_group_t group, 718 struct buffer_head *bitmap, unsigned long *ino) 719 { 720 bool check_recently_deleted = EXT4_SB(sb)->s_journal == NULL; 721 unsigned long recently_deleted_ino = EXT4_INODES_PER_GROUP(sb); 722 723 next: 724 *ino = ext4_find_next_zero_bit((unsigned long *) 725 bitmap->b_data, 726 EXT4_INODES_PER_GROUP(sb), *ino); 727 if (*ino >= EXT4_INODES_PER_GROUP(sb)) 728 goto not_found; 729 730 if (check_recently_deleted && recently_deleted(sb, group, *ino)) { 731 recently_deleted_ino = *ino; 732 *ino = *ino + 1; 733 if (*ino < EXT4_INODES_PER_GROUP(sb)) 734 goto next; 735 goto not_found; 736 } 737 return 1; 738 not_found: 739 if (recently_deleted_ino >= EXT4_INODES_PER_GROUP(sb)) 740 return 0; 741 /* 742 * Not reusing recently deleted inodes is mostly a preference. We don't 743 * want to report ENOSPC or skew allocation patterns because of that. 744 * So return even recently deleted inode if we could find better in the 745 * given range. 746 */ 747 *ino = recently_deleted_ino; 748 return 1; 749 } 750 751 int ext4_mark_inode_used(struct super_block *sb, int ino) 752 { 753 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); 754 struct buffer_head *inode_bitmap_bh = NULL, *group_desc_bh = NULL; 755 struct ext4_group_desc *gdp; 756 ext4_group_t group; 757 int bit; 758 int err; 759 760 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino) 761 return -EFSCORRUPTED; 762 763 group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 764 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 765 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); 766 if (IS_ERR(inode_bitmap_bh)) 767 return PTR_ERR(inode_bitmap_bh); 768 769 if (ext4_test_bit(bit, inode_bitmap_bh->b_data)) { 770 err = 0; 771 goto out; 772 } 773 774 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 775 if (!gdp) { 776 err = -EINVAL; 777 goto out; 778 } 779 780 ext4_set_bit(bit, inode_bitmap_bh->b_data); 781 782 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata"); 783 err = ext4_handle_dirty_metadata(NULL, NULL, inode_bitmap_bh); 784 if (err) { 785 ext4_std_error(sb, err); 786 goto out; 787 } 788 err = sync_dirty_buffer(inode_bitmap_bh); 789 if (err) { 790 ext4_std_error(sb, err); 791 goto out; 792 } 793 794 /* We may have to initialize the block bitmap if it isn't already */ 795 if (ext4_has_group_desc_csum(sb) && 796 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 797 struct buffer_head *block_bitmap_bh; 798 799 block_bitmap_bh = ext4_read_block_bitmap(sb, group); 800 if (IS_ERR(block_bitmap_bh)) { 801 err = PTR_ERR(block_bitmap_bh); 802 goto out; 803 } 804 805 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); 806 err = ext4_handle_dirty_metadata(NULL, NULL, block_bitmap_bh); 807 sync_dirty_buffer(block_bitmap_bh); 808 809 /* recheck and clear flag under lock if we still need to */ 810 ext4_lock_group(sb, group); 811 if (ext4_has_group_desc_csum(sb) && 812 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 813 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 814 ext4_free_group_clusters_set(sb, gdp, 815 ext4_free_clusters_after_init(sb, group, gdp)); 816 ext4_block_bitmap_csum_set(sb, gdp, block_bitmap_bh); 817 ext4_group_desc_csum_set(sb, group, gdp); 818 } 819 ext4_unlock_group(sb, group); 820 brelse(block_bitmap_bh); 821 822 if (err) { 823 ext4_std_error(sb, err); 824 goto out; 825 } 826 } 827 828 /* Update the relevant bg descriptor fields */ 829 if (ext4_has_group_desc_csum(sb)) { 830 int free; 831 832 ext4_lock_group(sb, group); /* while we modify the bg desc */ 833 free = EXT4_INODES_PER_GROUP(sb) - 834 ext4_itable_unused_count(sb, gdp); 835 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 836 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); 837 free = 0; 838 } 839 840 /* 841 * Check the relative inode number against the last used 842 * relative inode number in this group. if it is greater 843 * we need to update the bg_itable_unused count 844 */ 845 if (bit >= free) 846 ext4_itable_unused_set(sb, gdp, 847 (EXT4_INODES_PER_GROUP(sb) - bit - 1)); 848 } else { 849 ext4_lock_group(sb, group); 850 } 851 852 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1); 853 if (ext4_has_group_desc_csum(sb)) { 854 ext4_inode_bitmap_csum_set(sb, gdp, inode_bitmap_bh); 855 ext4_group_desc_csum_set(sb, group, gdp); 856 } 857 858 ext4_unlock_group(sb, group); 859 err = ext4_handle_dirty_metadata(NULL, NULL, group_desc_bh); 860 sync_dirty_buffer(group_desc_bh); 861 out: 862 brelse(inode_bitmap_bh); 863 return err; 864 } 865 866 static int ext4_xattr_credits_for_new_inode(struct inode *dir, mode_t mode, 867 bool encrypt) 868 { 869 struct super_block *sb = dir->i_sb; 870 int nblocks = 0; 871 #ifdef CONFIG_EXT4_FS_POSIX_ACL 872 struct posix_acl *p = get_inode_acl(dir, ACL_TYPE_DEFAULT); 873 874 if (IS_ERR(p)) 875 return PTR_ERR(p); 876 if (p) { 877 int acl_size = p->a_count * sizeof(ext4_acl_entry); 878 879 nblocks += (S_ISDIR(mode) ? 2 : 1) * 880 __ext4_xattr_set_credits(sb, NULL /* inode */, 881 NULL /* block_bh */, acl_size, 882 true /* is_create */); 883 posix_acl_release(p); 884 } 885 #endif 886 887 #ifdef CONFIG_SECURITY 888 { 889 int num_security_xattrs = 1; 890 891 #ifdef CONFIG_INTEGRITY 892 num_security_xattrs++; 893 #endif 894 /* 895 * We assume that security xattrs are never more than 1k. 896 * In practice they are under 128 bytes. 897 */ 898 nblocks += num_security_xattrs * 899 __ext4_xattr_set_credits(sb, NULL /* inode */, 900 NULL /* block_bh */, 1024, 901 true /* is_create */); 902 } 903 #endif 904 if (encrypt) 905 nblocks += __ext4_xattr_set_credits(sb, 906 NULL /* inode */, 907 NULL /* block_bh */, 908 FSCRYPT_SET_CONTEXT_MAX_SIZE, 909 true /* is_create */); 910 return nblocks; 911 } 912 913 /* 914 * There are two policies for allocating an inode. If the new inode is 915 * a directory, then a forward search is made for a block group with both 916 * free space and a low directory-to-inode ratio; if that fails, then of 917 * the groups with above-average free space, that group with the fewest 918 * directories already is chosen. 919 * 920 * For other inodes, search forward from the parent directory's block 921 * group to find a free inode. 922 */ 923 struct inode *__ext4_new_inode(struct mnt_idmap *idmap, 924 handle_t *handle, struct inode *dir, 925 umode_t mode, const struct qstr *qstr, 926 __u32 goal, uid_t *owner, __u32 i_flags, 927 int handle_type, unsigned int line_no, 928 int nblocks) 929 { 930 struct super_block *sb; 931 struct buffer_head *inode_bitmap_bh = NULL; 932 struct buffer_head *group_desc_bh; 933 ext4_group_t ngroups, group = 0; 934 unsigned long ino = 0; 935 struct inode *inode; 936 struct ext4_group_desc *gdp = NULL; 937 struct ext4_inode_info *ei; 938 struct ext4_sb_info *sbi; 939 int ret2, err; 940 struct inode *ret; 941 ext4_group_t i; 942 ext4_group_t flex_group; 943 struct ext4_group_info *grp = NULL; 944 bool encrypt = false; 945 946 /* Cannot create files in a deleted directory */ 947 if (!dir || !dir->i_nlink) 948 return ERR_PTR(-EPERM); 949 950 sb = dir->i_sb; 951 sbi = EXT4_SB(sb); 952 953 if (unlikely(ext4_forced_shutdown(sb))) 954 return ERR_PTR(-EIO); 955 956 ngroups = ext4_get_groups_count(sb); 957 trace_ext4_request_inode(dir, mode); 958 inode = new_inode(sb); 959 if (!inode) 960 return ERR_PTR(-ENOMEM); 961 ei = EXT4_I(inode); 962 963 /* 964 * Initialize owners and quota early so that we don't have to account 965 * for quota initialization worst case in standard inode creating 966 * transaction 967 */ 968 if (owner) { 969 inode->i_mode = mode; 970 i_uid_write(inode, owner[0]); 971 i_gid_write(inode, owner[1]); 972 } else if (test_opt(sb, GRPID)) { 973 inode->i_mode = mode; 974 inode_fsuid_set(inode, idmap); 975 inode->i_gid = dir->i_gid; 976 } else 977 inode_init_owner(idmap, inode, dir, mode); 978 979 if (ext4_has_feature_project(sb) && 980 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT)) 981 ei->i_projid = EXT4_I(dir)->i_projid; 982 else 983 ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID); 984 985 if (!(i_flags & EXT4_EA_INODE_FL)) { 986 err = fscrypt_prepare_new_inode(dir, inode, &encrypt); 987 if (err) 988 goto out; 989 } 990 991 err = dquot_initialize(inode); 992 if (err) 993 goto out; 994 995 if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) { 996 ret2 = ext4_xattr_credits_for_new_inode(dir, mode, encrypt); 997 if (ret2 < 0) { 998 err = ret2; 999 goto out; 1000 } 1001 nblocks += ret2; 1002 } 1003 1004 if (!goal) 1005 goal = sbi->s_inode_goal; 1006 1007 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) { 1008 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb); 1009 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb); 1010 ret2 = 0; 1011 goto got_group; 1012 } 1013 1014 if (S_ISDIR(mode)) 1015 ret2 = find_group_orlov(sb, dir, &group, mode, qstr); 1016 else 1017 ret2 = find_group_other(sb, dir, &group, mode); 1018 1019 got_group: 1020 EXT4_I(dir)->i_last_alloc_group = group; 1021 err = -ENOSPC; 1022 if (ret2 == -1) 1023 goto out; 1024 1025 /* 1026 * Normally we will only go through one pass of this loop, 1027 * unless we get unlucky and it turns out the group we selected 1028 * had its last inode grabbed by someone else. 1029 */ 1030 for (i = 0; i < ngroups; i++, ino = 0) { 1031 err = -EIO; 1032 1033 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 1034 if (!gdp) 1035 goto out; 1036 1037 /* 1038 * Check free inodes count before loading bitmap. 1039 */ 1040 if (ext4_free_inodes_count(sb, gdp) == 0) 1041 goto next_group; 1042 1043 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) { 1044 grp = ext4_get_group_info(sb, group); 1045 /* 1046 * Skip groups with already-known suspicious inode 1047 * tables 1048 */ 1049 if (!grp || EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 1050 goto next_group; 1051 } 1052 1053 brelse(inode_bitmap_bh); 1054 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); 1055 /* Skip groups with suspicious inode tables */ 1056 if (IS_ERR(inode_bitmap_bh)) { 1057 inode_bitmap_bh = NULL; 1058 goto next_group; 1059 } 1060 if (!(sbi->s_mount_state & EXT4_FC_REPLAY) && 1061 EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 1062 goto next_group; 1063 1064 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino); 1065 if (!ret2) 1066 goto next_group; 1067 1068 if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) { 1069 ext4_error(sb, "reserved inode found cleared - " 1070 "inode=%lu", ino + 1); 1071 ext4_mark_group_bitmap_corrupted(sb, group, 1072 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 1073 goto next_group; 1074 } 1075 1076 if ((!(sbi->s_mount_state & EXT4_FC_REPLAY)) && !handle) { 1077 BUG_ON(nblocks <= 0); 1078 handle = __ext4_journal_start_sb(NULL, dir->i_sb, 1079 line_no, handle_type, nblocks, 0, 1080 ext4_trans_default_revoke_credits(sb)); 1081 if (IS_ERR(handle)) { 1082 err = PTR_ERR(handle); 1083 ext4_std_error(sb, err); 1084 goto out; 1085 } 1086 } 1087 BUFFER_TRACE(inode_bitmap_bh, "get_write_access"); 1088 err = ext4_journal_get_write_access(handle, sb, inode_bitmap_bh, 1089 EXT4_JTR_NONE); 1090 if (err) { 1091 ext4_std_error(sb, err); 1092 goto out; 1093 } 1094 ext4_lock_group(sb, group); 1095 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data); 1096 if (ret2) { 1097 /* Someone already took the bit. Repeat the search 1098 * with lock held. 1099 */ 1100 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino); 1101 if (ret2) { 1102 ext4_set_bit(ino, inode_bitmap_bh->b_data); 1103 ret2 = 0; 1104 } else { 1105 ret2 = 1; /* we didn't grab the inode */ 1106 } 1107 } 1108 ext4_unlock_group(sb, group); 1109 ino++; /* the inode bitmap is zero-based */ 1110 if (!ret2) 1111 goto got; /* we grabbed the inode! */ 1112 1113 next_group: 1114 if (++group == ngroups) 1115 group = 0; 1116 } 1117 err = -ENOSPC; 1118 goto out; 1119 1120 got: 1121 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata"); 1122 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh); 1123 if (err) { 1124 ext4_std_error(sb, err); 1125 goto out; 1126 } 1127 1128 BUFFER_TRACE(group_desc_bh, "get_write_access"); 1129 err = ext4_journal_get_write_access(handle, sb, group_desc_bh, 1130 EXT4_JTR_NONE); 1131 if (err) { 1132 ext4_std_error(sb, err); 1133 goto out; 1134 } 1135 1136 /* We may have to initialize the block bitmap if it isn't already */ 1137 if (ext4_has_group_desc_csum(sb) && 1138 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 1139 struct buffer_head *block_bitmap_bh; 1140 1141 block_bitmap_bh = ext4_read_block_bitmap(sb, group); 1142 if (IS_ERR(block_bitmap_bh)) { 1143 err = PTR_ERR(block_bitmap_bh); 1144 goto out; 1145 } 1146 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access"); 1147 err = ext4_journal_get_write_access(handle, sb, block_bitmap_bh, 1148 EXT4_JTR_NONE); 1149 if (err) { 1150 brelse(block_bitmap_bh); 1151 ext4_std_error(sb, err); 1152 goto out; 1153 } 1154 1155 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); 1156 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh); 1157 1158 /* recheck and clear flag under lock if we still need to */ 1159 ext4_lock_group(sb, group); 1160 if (ext4_has_group_desc_csum(sb) && 1161 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 1162 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 1163 ext4_free_group_clusters_set(sb, gdp, 1164 ext4_free_clusters_after_init(sb, group, gdp)); 1165 ext4_block_bitmap_csum_set(sb, gdp, block_bitmap_bh); 1166 ext4_group_desc_csum_set(sb, group, gdp); 1167 } 1168 ext4_unlock_group(sb, group); 1169 brelse(block_bitmap_bh); 1170 1171 if (err) { 1172 ext4_std_error(sb, err); 1173 goto out; 1174 } 1175 } 1176 1177 /* Update the relevant bg descriptor fields */ 1178 if (ext4_has_group_desc_csum(sb)) { 1179 int free; 1180 struct ext4_group_info *grp = NULL; 1181 1182 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) { 1183 grp = ext4_get_group_info(sb, group); 1184 if (!grp) { 1185 err = -EFSCORRUPTED; 1186 goto out; 1187 } 1188 down_read(&grp->alloc_sem); /* 1189 * protect vs itable 1190 * lazyinit 1191 */ 1192 } 1193 ext4_lock_group(sb, group); /* while we modify the bg desc */ 1194 free = EXT4_INODES_PER_GROUP(sb) - 1195 ext4_itable_unused_count(sb, gdp); 1196 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 1197 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); 1198 free = 0; 1199 } 1200 /* 1201 * Check the relative inode number against the last used 1202 * relative inode number in this group. if it is greater 1203 * we need to update the bg_itable_unused count 1204 */ 1205 if (ino > free) 1206 ext4_itable_unused_set(sb, gdp, 1207 (EXT4_INODES_PER_GROUP(sb) - ino)); 1208 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) 1209 up_read(&grp->alloc_sem); 1210 } else { 1211 ext4_lock_group(sb, group); 1212 } 1213 1214 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1); 1215 if (S_ISDIR(mode)) { 1216 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1); 1217 if (sbi->s_log_groups_per_flex) { 1218 ext4_group_t f = ext4_flex_group(sbi, group); 1219 1220 atomic_inc(&sbi_array_rcu_deref(sbi, s_flex_groups, 1221 f)->used_dirs); 1222 } 1223 } 1224 if (ext4_has_group_desc_csum(sb)) { 1225 ext4_inode_bitmap_csum_set(sb, gdp, inode_bitmap_bh); 1226 ext4_group_desc_csum_set(sb, group, gdp); 1227 } 1228 ext4_unlock_group(sb, group); 1229 1230 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata"); 1231 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh); 1232 if (err) { 1233 ext4_std_error(sb, err); 1234 goto out; 1235 } 1236 1237 percpu_counter_dec(&sbi->s_freeinodes_counter); 1238 if (S_ISDIR(mode)) 1239 percpu_counter_inc(&sbi->s_dirs_counter); 1240 1241 if (sbi->s_log_groups_per_flex) { 1242 flex_group = ext4_flex_group(sbi, group); 1243 atomic_dec(&sbi_array_rcu_deref(sbi, s_flex_groups, 1244 flex_group)->free_inodes); 1245 } 1246 1247 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb); 1248 /* This is the optimal IO size (for stat), not the fs block size */ 1249 inode->i_blocks = 0; 1250 simple_inode_init_ts(inode); 1251 ei->i_crtime = inode_get_mtime(inode); 1252 1253 memset(ei->i_data, 0, sizeof(ei->i_data)); 1254 ei->i_dir_start_lookup = 0; 1255 ei->i_disksize = 0; 1256 1257 /* Don't inherit extent flag from directory, amongst others. */ 1258 ei->i_flags = 1259 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED); 1260 ei->i_flags |= i_flags; 1261 ei->i_file_acl = 0; 1262 ei->i_dtime = 0; 1263 ei->i_block_group = group; 1264 ei->i_last_alloc_group = ~0; 1265 1266 ext4_set_inode_flags(inode, true); 1267 if (IS_DIRSYNC(inode)) 1268 ext4_handle_sync(handle); 1269 if (insert_inode_locked(inode) < 0) { 1270 /* 1271 * Likely a bitmap corruption causing inode to be allocated 1272 * twice. 1273 */ 1274 err = -EIO; 1275 ext4_error(sb, "failed to insert inode %lu: doubly allocated?", 1276 inode->i_ino); 1277 ext4_mark_group_bitmap_corrupted(sb, group, 1278 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 1279 goto out; 1280 } 1281 inode->i_generation = get_random_u32(); 1282 1283 /* Precompute checksum seed for inode metadata */ 1284 if (ext4_has_metadata_csum(sb)) { 1285 __u32 csum; 1286 __le32 inum = cpu_to_le32(inode->i_ino); 1287 __le32 gen = cpu_to_le32(inode->i_generation); 1288 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 1289 sizeof(inum)); 1290 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 1291 sizeof(gen)); 1292 } 1293 1294 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 1295 ext4_set_inode_state(inode, EXT4_STATE_NEW); 1296 1297 ei->i_extra_isize = sbi->s_want_extra_isize; 1298 ei->i_inline_off = 0; 1299 if (ext4_has_feature_inline_data(sb) && 1300 (!(ei->i_flags & EXT4_DAX_FL) || S_ISDIR(mode))) 1301 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 1302 ret = inode; 1303 err = dquot_alloc_inode(inode); 1304 if (err) 1305 goto fail_drop; 1306 1307 /* 1308 * Since the encryption xattr will always be unique, create it first so 1309 * that it's less likely to end up in an external xattr block and 1310 * prevent its deduplication. 1311 */ 1312 if (encrypt) { 1313 err = fscrypt_set_context(inode, handle); 1314 if (err) 1315 goto fail_free_drop; 1316 } 1317 1318 if (!(ei->i_flags & EXT4_EA_INODE_FL)) { 1319 err = ext4_init_acl(handle, inode, dir); 1320 if (err) 1321 goto fail_free_drop; 1322 1323 err = ext4_init_security(handle, inode, dir, qstr); 1324 if (err) 1325 goto fail_free_drop; 1326 } 1327 1328 if (ext4_has_feature_extents(sb)) { 1329 /* set extent flag only for directory, file and normal symlink*/ 1330 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) { 1331 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS); 1332 ext4_ext_tree_init(handle, inode); 1333 } 1334 } 1335 1336 ext4_update_inode_fsync_trans(handle, inode, 1); 1337 1338 err = ext4_mark_inode_dirty(handle, inode); 1339 if (err) { 1340 ext4_std_error(sb, err); 1341 goto fail_free_drop; 1342 } 1343 1344 ext4_debug("allocating inode %lu\n", inode->i_ino); 1345 trace_ext4_allocate_inode(inode, dir, mode); 1346 brelse(inode_bitmap_bh); 1347 return ret; 1348 1349 fail_free_drop: 1350 dquot_free_inode(inode); 1351 fail_drop: 1352 clear_nlink(inode); 1353 unlock_new_inode(inode); 1354 out: 1355 dquot_drop(inode); 1356 inode->i_flags |= S_NOQUOTA; 1357 iput(inode); 1358 brelse(inode_bitmap_bh); 1359 return ERR_PTR(err); 1360 } 1361 1362 /* Verify that we are loading a valid orphan from disk */ 1363 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino) 1364 { 1365 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); 1366 ext4_group_t block_group; 1367 int bit; 1368 struct buffer_head *bitmap_bh = NULL; 1369 struct inode *inode = NULL; 1370 int err = -EFSCORRUPTED; 1371 1372 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino) 1373 goto bad_orphan; 1374 1375 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 1376 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 1377 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 1378 if (IS_ERR(bitmap_bh)) 1379 return ERR_CAST(bitmap_bh); 1380 1381 /* Having the inode bit set should be a 100% indicator that this 1382 * is a valid orphan (no e2fsck run on fs). Orphans also include 1383 * inodes that were being truncated, so we can't check i_nlink==0. 1384 */ 1385 if (!ext4_test_bit(bit, bitmap_bh->b_data)) 1386 goto bad_orphan; 1387 1388 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); 1389 if (IS_ERR(inode)) { 1390 err = PTR_ERR(inode); 1391 ext4_error_err(sb, -err, 1392 "couldn't read orphan inode %lu (err %d)", 1393 ino, err); 1394 brelse(bitmap_bh); 1395 return inode; 1396 } 1397 1398 /* 1399 * If the orphans has i_nlinks > 0 then it should be able to 1400 * be truncated, otherwise it won't be removed from the orphan 1401 * list during processing and an infinite loop will result. 1402 * Similarly, it must not be a bad inode. 1403 */ 1404 if ((inode->i_nlink && !ext4_can_truncate(inode)) || 1405 is_bad_inode(inode)) 1406 goto bad_orphan; 1407 1408 if (NEXT_ORPHAN(inode) > max_ino) 1409 goto bad_orphan; 1410 brelse(bitmap_bh); 1411 return inode; 1412 1413 bad_orphan: 1414 ext4_error(sb, "bad orphan inode %lu", ino); 1415 if (bitmap_bh) 1416 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n", 1417 bit, (unsigned long long)bitmap_bh->b_blocknr, 1418 ext4_test_bit(bit, bitmap_bh->b_data)); 1419 if (inode) { 1420 printk(KERN_ERR "is_bad_inode(inode)=%d\n", 1421 is_bad_inode(inode)); 1422 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n", 1423 NEXT_ORPHAN(inode)); 1424 printk(KERN_ERR "max_ino=%lu\n", max_ino); 1425 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink); 1426 /* Avoid freeing blocks if we got a bad deleted inode */ 1427 if (inode->i_nlink == 0) 1428 inode->i_blocks = 0; 1429 iput(inode); 1430 } 1431 brelse(bitmap_bh); 1432 return ERR_PTR(err); 1433 } 1434 1435 unsigned long ext4_count_free_inodes(struct super_block *sb) 1436 { 1437 unsigned long desc_count; 1438 struct ext4_group_desc *gdp; 1439 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1440 #ifdef EXT4FS_DEBUG 1441 struct ext4_super_block *es; 1442 unsigned long bitmap_count, x; 1443 struct buffer_head *bitmap_bh = NULL; 1444 1445 es = EXT4_SB(sb)->s_es; 1446 desc_count = 0; 1447 bitmap_count = 0; 1448 gdp = NULL; 1449 for (i = 0; i < ngroups; i++) { 1450 gdp = ext4_get_group_desc(sb, i, NULL); 1451 if (!gdp) 1452 continue; 1453 desc_count += ext4_free_inodes_count(sb, gdp); 1454 brelse(bitmap_bh); 1455 bitmap_bh = ext4_read_inode_bitmap(sb, i); 1456 if (IS_ERR(bitmap_bh)) { 1457 bitmap_bh = NULL; 1458 continue; 1459 } 1460 1461 x = ext4_count_free(bitmap_bh->b_data, 1462 EXT4_INODES_PER_GROUP(sb) / 8); 1463 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n", 1464 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x); 1465 bitmap_count += x; 1466 } 1467 brelse(bitmap_bh); 1468 printk(KERN_DEBUG "ext4_count_free_inodes: " 1469 "stored = %u, computed = %lu, %lu\n", 1470 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count); 1471 return desc_count; 1472 #else 1473 desc_count = 0; 1474 for (i = 0; i < ngroups; i++) { 1475 gdp = ext4_get_group_desc(sb, i, NULL); 1476 if (!gdp) 1477 continue; 1478 desc_count += ext4_free_inodes_count(sb, gdp); 1479 cond_resched(); 1480 } 1481 return desc_count; 1482 #endif 1483 } 1484 1485 /* Called at mount-time, super-block is locked */ 1486 unsigned long ext4_count_dirs(struct super_block * sb) 1487 { 1488 unsigned long count = 0; 1489 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1490 1491 for (i = 0; i < ngroups; i++) { 1492 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1493 if (!gdp) 1494 continue; 1495 count += ext4_used_dirs_count(sb, gdp); 1496 } 1497 return count; 1498 } 1499 1500 /* 1501 * Zeroes not yet zeroed inode table - just write zeroes through the whole 1502 * inode table. Must be called without any spinlock held. The only place 1503 * where it is called from on active part of filesystem is ext4lazyinit 1504 * thread, so we do not need any special locks, however we have to prevent 1505 * inode allocation from the current group, so we take alloc_sem lock, to 1506 * block ext4_new_inode() until we are finished. 1507 */ 1508 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group, 1509 int barrier) 1510 { 1511 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1512 struct ext4_sb_info *sbi = EXT4_SB(sb); 1513 struct ext4_group_desc *gdp = NULL; 1514 struct buffer_head *group_desc_bh; 1515 handle_t *handle; 1516 ext4_fsblk_t blk; 1517 int num, ret = 0, used_blks = 0; 1518 unsigned long used_inos = 0; 1519 1520 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 1521 if (!gdp || !grp) 1522 goto out; 1523 1524 /* 1525 * We do not need to lock this, because we are the only one 1526 * handling this flag. 1527 */ 1528 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)) 1529 goto out; 1530 1531 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 1532 if (IS_ERR(handle)) { 1533 ret = PTR_ERR(handle); 1534 goto out; 1535 } 1536 1537 down_write(&grp->alloc_sem); 1538 /* 1539 * If inode bitmap was already initialized there may be some 1540 * used inodes so we need to skip blocks with used inodes in 1541 * inode table. 1542 */ 1543 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) { 1544 used_inos = EXT4_INODES_PER_GROUP(sb) - 1545 ext4_itable_unused_count(sb, gdp); 1546 used_blks = DIV_ROUND_UP(used_inos, sbi->s_inodes_per_block); 1547 1548 /* Bogus inode unused count? */ 1549 if (used_blks < 0 || used_blks > sbi->s_itb_per_group) { 1550 ext4_error(sb, "Something is wrong with group %u: " 1551 "used itable blocks: %d; " 1552 "itable unused count: %u", 1553 group, used_blks, 1554 ext4_itable_unused_count(sb, gdp)); 1555 ret = 1; 1556 goto err_out; 1557 } 1558 1559 used_inos += group * EXT4_INODES_PER_GROUP(sb); 1560 /* 1561 * Are there some uninitialized inodes in the inode table 1562 * before the first normal inode? 1563 */ 1564 if ((used_blks != sbi->s_itb_per_group) && 1565 (used_inos < EXT4_FIRST_INO(sb))) { 1566 ext4_error(sb, "Something is wrong with group %u: " 1567 "itable unused count: %u; " 1568 "itables initialized count: %ld", 1569 group, ext4_itable_unused_count(sb, gdp), 1570 used_inos); 1571 ret = 1; 1572 goto err_out; 1573 } 1574 } 1575 1576 blk = ext4_inode_table(sb, gdp) + used_blks; 1577 num = sbi->s_itb_per_group - used_blks; 1578 1579 BUFFER_TRACE(group_desc_bh, "get_write_access"); 1580 ret = ext4_journal_get_write_access(handle, sb, group_desc_bh, 1581 EXT4_JTR_NONE); 1582 if (ret) 1583 goto err_out; 1584 1585 /* 1586 * Skip zeroout if the inode table is full. But we set the ZEROED 1587 * flag anyway, because obviously, when it is full it does not need 1588 * further zeroing. 1589 */ 1590 if (unlikely(num == 0)) 1591 goto skip_zeroout; 1592 1593 ext4_debug("going to zero out inode table in group %d\n", 1594 group); 1595 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS); 1596 if (ret < 0) 1597 goto err_out; 1598 if (barrier) 1599 blkdev_issue_flush(sb->s_bdev); 1600 1601 skip_zeroout: 1602 ext4_lock_group(sb, group); 1603 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED); 1604 ext4_group_desc_csum_set(sb, group, gdp); 1605 ext4_unlock_group(sb, group); 1606 1607 BUFFER_TRACE(group_desc_bh, 1608 "call ext4_handle_dirty_metadata"); 1609 ret = ext4_handle_dirty_metadata(handle, NULL, 1610 group_desc_bh); 1611 1612 err_out: 1613 up_write(&grp->alloc_sem); 1614 ext4_journal_stop(handle); 1615 out: 1616 return ret; 1617 } 1618