1 /* 2 * linux/fs/ext4/ialloc.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * BSD ufs-inspired inode and directory allocation by 10 * Stephen Tweedie (sct@redhat.com), 1993 11 * Big-endian to little-endian byte-swapping/bitmaps by 12 * David S. Miller (davem@caip.rutgers.edu), 1995 13 */ 14 15 #include <linux/time.h> 16 #include <linux/fs.h> 17 #include <linux/jbd2.h> 18 #include <linux/stat.h> 19 #include <linux/string.h> 20 #include <linux/quotaops.h> 21 #include <linux/buffer_head.h> 22 #include <linux/random.h> 23 #include <linux/bitops.h> 24 #include <linux/blkdev.h> 25 #include <asm/byteorder.h> 26 27 #include "ext4.h" 28 #include "ext4_jbd2.h" 29 #include "xattr.h" 30 #include "acl.h" 31 32 #include <trace/events/ext4.h> 33 34 /* 35 * ialloc.c contains the inodes allocation and deallocation routines 36 */ 37 38 /* 39 * The free inodes are managed by bitmaps. A file system contains several 40 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap 41 * block for inodes, N blocks for the inode table and data blocks. 42 * 43 * The file system contains group descriptors which are located after the 44 * super block. Each descriptor contains the number of the bitmap block and 45 * the free blocks count in the block. 46 */ 47 48 /* 49 * To avoid calling the atomic setbit hundreds or thousands of times, we only 50 * need to use it within a single byte (to ensure we get endianness right). 51 * We can use memset for the rest of the bitmap as there are no other users. 52 */ 53 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap) 54 { 55 int i; 56 57 if (start_bit >= end_bit) 58 return; 59 60 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit); 61 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++) 62 ext4_set_bit(i, bitmap); 63 if (i < end_bit) 64 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3); 65 } 66 67 /* Initializes an uninitialized inode bitmap */ 68 static unsigned ext4_init_inode_bitmap(struct super_block *sb, 69 struct buffer_head *bh, 70 ext4_group_t block_group, 71 struct ext4_group_desc *gdp) 72 { 73 J_ASSERT_BH(bh, buffer_locked(bh)); 74 75 /* If checksum is bad mark all blocks and inodes use to prevent 76 * allocation, essentially implementing a per-group read-only flag. */ 77 if (!ext4_group_desc_csum_verify(sb, block_group, gdp)) { 78 ext4_error(sb, "Checksum bad for group %u", block_group); 79 ext4_free_group_clusters_set(sb, gdp, 0); 80 ext4_free_inodes_set(sb, gdp, 0); 81 ext4_itable_unused_set(sb, gdp, 0); 82 memset(bh->b_data, 0xff, sb->s_blocksize); 83 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh, 84 EXT4_INODES_PER_GROUP(sb) / 8); 85 return 0; 86 } 87 88 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8); 89 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8, 90 bh->b_data); 91 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh, 92 EXT4_INODES_PER_GROUP(sb) / 8); 93 ext4_group_desc_csum_set(sb, block_group, gdp); 94 95 return EXT4_INODES_PER_GROUP(sb); 96 } 97 98 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate) 99 { 100 if (uptodate) { 101 set_buffer_uptodate(bh); 102 set_bitmap_uptodate(bh); 103 } 104 unlock_buffer(bh); 105 put_bh(bh); 106 } 107 108 /* 109 * Read the inode allocation bitmap for a given block_group, reading 110 * into the specified slot in the superblock's bitmap cache. 111 * 112 * Return buffer_head of bitmap on success or NULL. 113 */ 114 static struct buffer_head * 115 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group) 116 { 117 struct ext4_group_desc *desc; 118 struct buffer_head *bh = NULL; 119 ext4_fsblk_t bitmap_blk; 120 121 desc = ext4_get_group_desc(sb, block_group, NULL); 122 if (!desc) 123 return NULL; 124 125 bitmap_blk = ext4_inode_bitmap(sb, desc); 126 bh = sb_getblk(sb, bitmap_blk); 127 if (unlikely(!bh)) { 128 ext4_error(sb, "Cannot read inode bitmap - " 129 "block_group = %u, inode_bitmap = %llu", 130 block_group, bitmap_blk); 131 return NULL; 132 } 133 if (bitmap_uptodate(bh)) 134 goto verify; 135 136 lock_buffer(bh); 137 if (bitmap_uptodate(bh)) { 138 unlock_buffer(bh); 139 goto verify; 140 } 141 142 ext4_lock_group(sb, block_group); 143 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 144 ext4_init_inode_bitmap(sb, bh, block_group, desc); 145 set_bitmap_uptodate(bh); 146 set_buffer_uptodate(bh); 147 set_buffer_verified(bh); 148 ext4_unlock_group(sb, block_group); 149 unlock_buffer(bh); 150 return bh; 151 } 152 ext4_unlock_group(sb, block_group); 153 154 if (buffer_uptodate(bh)) { 155 /* 156 * if not uninit if bh is uptodate, 157 * bitmap is also uptodate 158 */ 159 set_bitmap_uptodate(bh); 160 unlock_buffer(bh); 161 goto verify; 162 } 163 /* 164 * submit the buffer_head for reading 165 */ 166 trace_ext4_load_inode_bitmap(sb, block_group); 167 bh->b_end_io = ext4_end_bitmap_read; 168 get_bh(bh); 169 submit_bh(READ, bh); 170 wait_on_buffer(bh); 171 if (!buffer_uptodate(bh)) { 172 put_bh(bh); 173 ext4_error(sb, "Cannot read inode bitmap - " 174 "block_group = %u, inode_bitmap = %llu", 175 block_group, bitmap_blk); 176 return NULL; 177 } 178 179 verify: 180 ext4_lock_group(sb, block_group); 181 if (!buffer_verified(bh) && 182 !ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh, 183 EXT4_INODES_PER_GROUP(sb) / 8)) { 184 ext4_unlock_group(sb, block_group); 185 put_bh(bh); 186 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, " 187 "inode_bitmap = %llu", block_group, bitmap_blk); 188 return NULL; 189 } 190 ext4_unlock_group(sb, block_group); 191 set_buffer_verified(bh); 192 return bh; 193 } 194 195 /* 196 * NOTE! When we get the inode, we're the only people 197 * that have access to it, and as such there are no 198 * race conditions we have to worry about. The inode 199 * is not on the hash-lists, and it cannot be reached 200 * through the filesystem because the directory entry 201 * has been deleted earlier. 202 * 203 * HOWEVER: we must make sure that we get no aliases, 204 * which means that we have to call "clear_inode()" 205 * _before_ we mark the inode not in use in the inode 206 * bitmaps. Otherwise a newly created file might use 207 * the same inode number (not actually the same pointer 208 * though), and then we'd have two inodes sharing the 209 * same inode number and space on the harddisk. 210 */ 211 void ext4_free_inode(handle_t *handle, struct inode *inode) 212 { 213 struct super_block *sb = inode->i_sb; 214 int is_directory; 215 unsigned long ino; 216 struct buffer_head *bitmap_bh = NULL; 217 struct buffer_head *bh2; 218 ext4_group_t block_group; 219 unsigned long bit; 220 struct ext4_group_desc *gdp; 221 struct ext4_super_block *es; 222 struct ext4_sb_info *sbi; 223 int fatal = 0, err, count, cleared; 224 225 if (!sb) { 226 printk(KERN_ERR "EXT4-fs: %s:%d: inode on " 227 "nonexistent device\n", __func__, __LINE__); 228 return; 229 } 230 if (atomic_read(&inode->i_count) > 1) { 231 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d", 232 __func__, __LINE__, inode->i_ino, 233 atomic_read(&inode->i_count)); 234 return; 235 } 236 if (inode->i_nlink) { 237 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n", 238 __func__, __LINE__, inode->i_ino, inode->i_nlink); 239 return; 240 } 241 sbi = EXT4_SB(sb); 242 243 ino = inode->i_ino; 244 ext4_debug("freeing inode %lu\n", ino); 245 trace_ext4_free_inode(inode); 246 247 /* 248 * Note: we must free any quota before locking the superblock, 249 * as writing the quota to disk may need the lock as well. 250 */ 251 dquot_initialize(inode); 252 ext4_xattr_delete_inode(handle, inode); 253 dquot_free_inode(inode); 254 dquot_drop(inode); 255 256 is_directory = S_ISDIR(inode->i_mode); 257 258 /* Do this BEFORE marking the inode not in use or returning an error */ 259 ext4_clear_inode(inode); 260 261 es = EXT4_SB(sb)->s_es; 262 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { 263 ext4_error(sb, "reserved or nonexistent inode %lu", ino); 264 goto error_return; 265 } 266 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 267 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 268 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 269 if (!bitmap_bh) 270 goto error_return; 271 272 BUFFER_TRACE(bitmap_bh, "get_write_access"); 273 fatal = ext4_journal_get_write_access(handle, bitmap_bh); 274 if (fatal) 275 goto error_return; 276 277 fatal = -ESRCH; 278 gdp = ext4_get_group_desc(sb, block_group, &bh2); 279 if (gdp) { 280 BUFFER_TRACE(bh2, "get_write_access"); 281 fatal = ext4_journal_get_write_access(handle, bh2); 282 } 283 ext4_lock_group(sb, block_group); 284 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data); 285 if (fatal || !cleared) { 286 ext4_unlock_group(sb, block_group); 287 goto out; 288 } 289 290 count = ext4_free_inodes_count(sb, gdp) + 1; 291 ext4_free_inodes_set(sb, gdp, count); 292 if (is_directory) { 293 count = ext4_used_dirs_count(sb, gdp) - 1; 294 ext4_used_dirs_set(sb, gdp, count); 295 percpu_counter_dec(&sbi->s_dirs_counter); 296 } 297 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh, 298 EXT4_INODES_PER_GROUP(sb) / 8); 299 ext4_group_desc_csum_set(sb, block_group, gdp); 300 ext4_unlock_group(sb, block_group); 301 302 percpu_counter_inc(&sbi->s_freeinodes_counter); 303 if (sbi->s_log_groups_per_flex) { 304 ext4_group_t f = ext4_flex_group(sbi, block_group); 305 306 atomic_inc(&sbi->s_flex_groups[f].free_inodes); 307 if (is_directory) 308 atomic_dec(&sbi->s_flex_groups[f].used_dirs); 309 } 310 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata"); 311 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2); 312 out: 313 if (cleared) { 314 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata"); 315 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 316 if (!fatal) 317 fatal = err; 318 ext4_mark_super_dirty(sb); 319 } else 320 ext4_error(sb, "bit already cleared for inode %lu", ino); 321 322 error_return: 323 brelse(bitmap_bh); 324 ext4_std_error(sb, fatal); 325 } 326 327 struct orlov_stats { 328 __u32 free_inodes; 329 __u32 free_clusters; 330 __u32 used_dirs; 331 }; 332 333 /* 334 * Helper function for Orlov's allocator; returns critical information 335 * for a particular block group or flex_bg. If flex_size is 1, then g 336 * is a block group number; otherwise it is flex_bg number. 337 */ 338 static void get_orlov_stats(struct super_block *sb, ext4_group_t g, 339 int flex_size, struct orlov_stats *stats) 340 { 341 struct ext4_group_desc *desc; 342 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups; 343 344 if (flex_size > 1) { 345 stats->free_inodes = atomic_read(&flex_group[g].free_inodes); 346 stats->free_clusters = atomic_read(&flex_group[g].free_clusters); 347 stats->used_dirs = atomic_read(&flex_group[g].used_dirs); 348 return; 349 } 350 351 desc = ext4_get_group_desc(sb, g, NULL); 352 if (desc) { 353 stats->free_inodes = ext4_free_inodes_count(sb, desc); 354 stats->free_clusters = ext4_free_group_clusters(sb, desc); 355 stats->used_dirs = ext4_used_dirs_count(sb, desc); 356 } else { 357 stats->free_inodes = 0; 358 stats->free_clusters = 0; 359 stats->used_dirs = 0; 360 } 361 } 362 363 /* 364 * Orlov's allocator for directories. 365 * 366 * We always try to spread first-level directories. 367 * 368 * If there are blockgroups with both free inodes and free blocks counts 369 * not worse than average we return one with smallest directory count. 370 * Otherwise we simply return a random group. 371 * 372 * For the rest rules look so: 373 * 374 * It's OK to put directory into a group unless 375 * it has too many directories already (max_dirs) or 376 * it has too few free inodes left (min_inodes) or 377 * it has too few free blocks left (min_blocks) or 378 * Parent's group is preferred, if it doesn't satisfy these 379 * conditions we search cyclically through the rest. If none 380 * of the groups look good we just look for a group with more 381 * free inodes than average (starting at parent's group). 382 */ 383 384 static int find_group_orlov(struct super_block *sb, struct inode *parent, 385 ext4_group_t *group, umode_t mode, 386 const struct qstr *qstr) 387 { 388 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 389 struct ext4_sb_info *sbi = EXT4_SB(sb); 390 ext4_group_t real_ngroups = ext4_get_groups_count(sb); 391 int inodes_per_group = EXT4_INODES_PER_GROUP(sb); 392 unsigned int freei, avefreei, grp_free; 393 ext4_fsblk_t freeb, avefreec; 394 unsigned int ndirs; 395 int max_dirs, min_inodes; 396 ext4_grpblk_t min_clusters; 397 ext4_group_t i, grp, g, ngroups; 398 struct ext4_group_desc *desc; 399 struct orlov_stats stats; 400 int flex_size = ext4_flex_bg_size(sbi); 401 struct dx_hash_info hinfo; 402 403 ngroups = real_ngroups; 404 if (flex_size > 1) { 405 ngroups = (real_ngroups + flex_size - 1) >> 406 sbi->s_log_groups_per_flex; 407 parent_group >>= sbi->s_log_groups_per_flex; 408 } 409 410 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter); 411 avefreei = freei / ngroups; 412 freeb = EXT4_C2B(sbi, 413 percpu_counter_read_positive(&sbi->s_freeclusters_counter)); 414 avefreec = freeb; 415 do_div(avefreec, ngroups); 416 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter); 417 418 if (S_ISDIR(mode) && 419 ((parent == sb->s_root->d_inode) || 420 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) { 421 int best_ndir = inodes_per_group; 422 int ret = -1; 423 424 if (qstr) { 425 hinfo.hash_version = DX_HASH_HALF_MD4; 426 hinfo.seed = sbi->s_hash_seed; 427 ext4fs_dirhash(qstr->name, qstr->len, &hinfo); 428 grp = hinfo.hash; 429 } else 430 get_random_bytes(&grp, sizeof(grp)); 431 parent_group = (unsigned)grp % ngroups; 432 for (i = 0; i < ngroups; i++) { 433 g = (parent_group + i) % ngroups; 434 get_orlov_stats(sb, g, flex_size, &stats); 435 if (!stats.free_inodes) 436 continue; 437 if (stats.used_dirs >= best_ndir) 438 continue; 439 if (stats.free_inodes < avefreei) 440 continue; 441 if (stats.free_clusters < avefreec) 442 continue; 443 grp = g; 444 ret = 0; 445 best_ndir = stats.used_dirs; 446 } 447 if (ret) 448 goto fallback; 449 found_flex_bg: 450 if (flex_size == 1) { 451 *group = grp; 452 return 0; 453 } 454 455 /* 456 * We pack inodes at the beginning of the flexgroup's 457 * inode tables. Block allocation decisions will do 458 * something similar, although regular files will 459 * start at 2nd block group of the flexgroup. See 460 * ext4_ext_find_goal() and ext4_find_near(). 461 */ 462 grp *= flex_size; 463 for (i = 0; i < flex_size; i++) { 464 if (grp+i >= real_ngroups) 465 break; 466 desc = ext4_get_group_desc(sb, grp+i, NULL); 467 if (desc && ext4_free_inodes_count(sb, desc)) { 468 *group = grp+i; 469 return 0; 470 } 471 } 472 goto fallback; 473 } 474 475 max_dirs = ndirs / ngroups + inodes_per_group / 16; 476 min_inodes = avefreei - inodes_per_group*flex_size / 4; 477 if (min_inodes < 1) 478 min_inodes = 1; 479 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4; 480 481 /* 482 * Start looking in the flex group where we last allocated an 483 * inode for this parent directory 484 */ 485 if (EXT4_I(parent)->i_last_alloc_group != ~0) { 486 parent_group = EXT4_I(parent)->i_last_alloc_group; 487 if (flex_size > 1) 488 parent_group >>= sbi->s_log_groups_per_flex; 489 } 490 491 for (i = 0; i < ngroups; i++) { 492 grp = (parent_group + i) % ngroups; 493 get_orlov_stats(sb, grp, flex_size, &stats); 494 if (stats.used_dirs >= max_dirs) 495 continue; 496 if (stats.free_inodes < min_inodes) 497 continue; 498 if (stats.free_clusters < min_clusters) 499 continue; 500 goto found_flex_bg; 501 } 502 503 fallback: 504 ngroups = real_ngroups; 505 avefreei = freei / ngroups; 506 fallback_retry: 507 parent_group = EXT4_I(parent)->i_block_group; 508 for (i = 0; i < ngroups; i++) { 509 grp = (parent_group + i) % ngroups; 510 desc = ext4_get_group_desc(sb, grp, NULL); 511 if (desc) { 512 grp_free = ext4_free_inodes_count(sb, desc); 513 if (grp_free && grp_free >= avefreei) { 514 *group = grp; 515 return 0; 516 } 517 } 518 } 519 520 if (avefreei) { 521 /* 522 * The free-inodes counter is approximate, and for really small 523 * filesystems the above test can fail to find any blockgroups 524 */ 525 avefreei = 0; 526 goto fallback_retry; 527 } 528 529 return -1; 530 } 531 532 static int find_group_other(struct super_block *sb, struct inode *parent, 533 ext4_group_t *group, umode_t mode) 534 { 535 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 536 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb); 537 struct ext4_group_desc *desc; 538 int flex_size = ext4_flex_bg_size(EXT4_SB(sb)); 539 540 /* 541 * Try to place the inode is the same flex group as its 542 * parent. If we can't find space, use the Orlov algorithm to 543 * find another flex group, and store that information in the 544 * parent directory's inode information so that use that flex 545 * group for future allocations. 546 */ 547 if (flex_size > 1) { 548 int retry = 0; 549 550 try_again: 551 parent_group &= ~(flex_size-1); 552 last = parent_group + flex_size; 553 if (last > ngroups) 554 last = ngroups; 555 for (i = parent_group; i < last; i++) { 556 desc = ext4_get_group_desc(sb, i, NULL); 557 if (desc && ext4_free_inodes_count(sb, desc)) { 558 *group = i; 559 return 0; 560 } 561 } 562 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) { 563 retry = 1; 564 parent_group = EXT4_I(parent)->i_last_alloc_group; 565 goto try_again; 566 } 567 /* 568 * If this didn't work, use the Orlov search algorithm 569 * to find a new flex group; we pass in the mode to 570 * avoid the topdir algorithms. 571 */ 572 *group = parent_group + flex_size; 573 if (*group > ngroups) 574 *group = 0; 575 return find_group_orlov(sb, parent, group, mode, NULL); 576 } 577 578 /* 579 * Try to place the inode in its parent directory 580 */ 581 *group = parent_group; 582 desc = ext4_get_group_desc(sb, *group, NULL); 583 if (desc && ext4_free_inodes_count(sb, desc) && 584 ext4_free_group_clusters(sb, desc)) 585 return 0; 586 587 /* 588 * We're going to place this inode in a different blockgroup from its 589 * parent. We want to cause files in a common directory to all land in 590 * the same blockgroup. But we want files which are in a different 591 * directory which shares a blockgroup with our parent to land in a 592 * different blockgroup. 593 * 594 * So add our directory's i_ino into the starting point for the hash. 595 */ 596 *group = (*group + parent->i_ino) % ngroups; 597 598 /* 599 * Use a quadratic hash to find a group with a free inode and some free 600 * blocks. 601 */ 602 for (i = 1; i < ngroups; i <<= 1) { 603 *group += i; 604 if (*group >= ngroups) 605 *group -= ngroups; 606 desc = ext4_get_group_desc(sb, *group, NULL); 607 if (desc && ext4_free_inodes_count(sb, desc) && 608 ext4_free_group_clusters(sb, desc)) 609 return 0; 610 } 611 612 /* 613 * That failed: try linear search for a free inode, even if that group 614 * has no free blocks. 615 */ 616 *group = parent_group; 617 for (i = 0; i < ngroups; i++) { 618 if (++*group >= ngroups) 619 *group = 0; 620 desc = ext4_get_group_desc(sb, *group, NULL); 621 if (desc && ext4_free_inodes_count(sb, desc)) 622 return 0; 623 } 624 625 return -1; 626 } 627 628 /* 629 * There are two policies for allocating an inode. If the new inode is 630 * a directory, then a forward search is made for a block group with both 631 * free space and a low directory-to-inode ratio; if that fails, then of 632 * the groups with above-average free space, that group with the fewest 633 * directories already is chosen. 634 * 635 * For other inodes, search forward from the parent directory's block 636 * group to find a free inode. 637 */ 638 struct inode *ext4_new_inode(handle_t *handle, struct inode *dir, umode_t mode, 639 const struct qstr *qstr, __u32 goal, uid_t *owner) 640 { 641 struct super_block *sb; 642 struct buffer_head *inode_bitmap_bh = NULL; 643 struct buffer_head *group_desc_bh; 644 ext4_group_t ngroups, group = 0; 645 unsigned long ino = 0; 646 struct inode *inode; 647 struct ext4_group_desc *gdp = NULL; 648 struct ext4_inode_info *ei; 649 struct ext4_sb_info *sbi; 650 int ret2, err = 0; 651 struct inode *ret; 652 ext4_group_t i; 653 ext4_group_t flex_group; 654 655 /* Cannot create files in a deleted directory */ 656 if (!dir || !dir->i_nlink) 657 return ERR_PTR(-EPERM); 658 659 sb = dir->i_sb; 660 ngroups = ext4_get_groups_count(sb); 661 trace_ext4_request_inode(dir, mode); 662 inode = new_inode(sb); 663 if (!inode) 664 return ERR_PTR(-ENOMEM); 665 ei = EXT4_I(inode); 666 sbi = EXT4_SB(sb); 667 668 if (!goal) 669 goal = sbi->s_inode_goal; 670 671 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) { 672 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb); 673 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb); 674 ret2 = 0; 675 goto got_group; 676 } 677 678 if (S_ISDIR(mode)) 679 ret2 = find_group_orlov(sb, dir, &group, mode, qstr); 680 else 681 ret2 = find_group_other(sb, dir, &group, mode); 682 683 got_group: 684 EXT4_I(dir)->i_last_alloc_group = group; 685 err = -ENOSPC; 686 if (ret2 == -1) 687 goto out; 688 689 /* 690 * Normally we will only go through one pass of this loop, 691 * unless we get unlucky and it turns out the group we selected 692 * had its last inode grabbed by someone else. 693 */ 694 for (i = 0; i < ngroups; i++, ino = 0) { 695 err = -EIO; 696 697 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 698 if (!gdp) 699 goto fail; 700 701 brelse(inode_bitmap_bh); 702 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); 703 if (!inode_bitmap_bh) 704 goto fail; 705 706 repeat_in_this_group: 707 ino = ext4_find_next_zero_bit((unsigned long *) 708 inode_bitmap_bh->b_data, 709 EXT4_INODES_PER_GROUP(sb), ino); 710 if (ino >= EXT4_INODES_PER_GROUP(sb)) { 711 if (++group == ngroups) 712 group = 0; 713 continue; 714 } 715 if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) { 716 ext4_error(sb, "reserved inode found cleared - " 717 "inode=%lu", ino + 1); 718 continue; 719 } 720 ext4_lock_group(sb, group); 721 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data); 722 ext4_unlock_group(sb, group); 723 ino++; /* the inode bitmap is zero-based */ 724 if (!ret2) 725 goto got; /* we grabbed the inode! */ 726 if (ino < EXT4_INODES_PER_GROUP(sb)) 727 goto repeat_in_this_group; 728 } 729 err = -ENOSPC; 730 goto out; 731 732 got: 733 /* We may have to initialize the block bitmap if it isn't already */ 734 if (ext4_has_group_desc_csum(sb) && 735 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 736 struct buffer_head *block_bitmap_bh; 737 738 block_bitmap_bh = ext4_read_block_bitmap(sb, group); 739 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access"); 740 err = ext4_journal_get_write_access(handle, block_bitmap_bh); 741 if (err) { 742 brelse(block_bitmap_bh); 743 goto fail; 744 } 745 746 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); 747 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh); 748 brelse(block_bitmap_bh); 749 750 /* recheck and clear flag under lock if we still need to */ 751 ext4_lock_group(sb, group); 752 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 753 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 754 ext4_free_group_clusters_set(sb, gdp, 755 ext4_free_clusters_after_init(sb, group, gdp)); 756 ext4_block_bitmap_csum_set(sb, group, gdp, 757 block_bitmap_bh, 758 EXT4_BLOCKS_PER_GROUP(sb) / 759 8); 760 ext4_group_desc_csum_set(sb, group, gdp); 761 } 762 ext4_unlock_group(sb, group); 763 764 if (err) 765 goto fail; 766 } 767 768 BUFFER_TRACE(inode_bitmap_bh, "get_write_access"); 769 err = ext4_journal_get_write_access(handle, inode_bitmap_bh); 770 if (err) 771 goto fail; 772 773 BUFFER_TRACE(group_desc_bh, "get_write_access"); 774 err = ext4_journal_get_write_access(handle, group_desc_bh); 775 if (err) 776 goto fail; 777 778 /* Update the relevant bg descriptor fields */ 779 if (ext4_has_group_desc_csum(sb)) { 780 int free; 781 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 782 783 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */ 784 ext4_lock_group(sb, group); /* while we modify the bg desc */ 785 free = EXT4_INODES_PER_GROUP(sb) - 786 ext4_itable_unused_count(sb, gdp); 787 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 788 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); 789 free = 0; 790 } 791 /* 792 * Check the relative inode number against the last used 793 * relative inode number in this group. if it is greater 794 * we need to update the bg_itable_unused count 795 */ 796 if (ino > free) 797 ext4_itable_unused_set(sb, gdp, 798 (EXT4_INODES_PER_GROUP(sb) - ino)); 799 up_read(&grp->alloc_sem); 800 } else { 801 ext4_lock_group(sb, group); 802 } 803 804 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1); 805 if (S_ISDIR(mode)) { 806 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1); 807 if (sbi->s_log_groups_per_flex) { 808 ext4_group_t f = ext4_flex_group(sbi, group); 809 810 atomic_inc(&sbi->s_flex_groups[f].used_dirs); 811 } 812 } 813 if (ext4_has_group_desc_csum(sb)) { 814 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh, 815 EXT4_INODES_PER_GROUP(sb) / 8); 816 ext4_group_desc_csum_set(sb, group, gdp); 817 } 818 ext4_unlock_group(sb, group); 819 820 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata"); 821 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh); 822 if (err) 823 goto fail; 824 825 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata"); 826 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh); 827 if (err) 828 goto fail; 829 830 percpu_counter_dec(&sbi->s_freeinodes_counter); 831 if (S_ISDIR(mode)) 832 percpu_counter_inc(&sbi->s_dirs_counter); 833 ext4_mark_super_dirty(sb); 834 835 if (sbi->s_log_groups_per_flex) { 836 flex_group = ext4_flex_group(sbi, group); 837 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes); 838 } 839 if (owner) { 840 inode->i_mode = mode; 841 i_uid_write(inode, owner[0]); 842 i_gid_write(inode, owner[1]); 843 } else if (test_opt(sb, GRPID)) { 844 inode->i_mode = mode; 845 inode->i_uid = current_fsuid(); 846 inode->i_gid = dir->i_gid; 847 } else 848 inode_init_owner(inode, dir, mode); 849 850 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb); 851 /* This is the optimal IO size (for stat), not the fs block size */ 852 inode->i_blocks = 0; 853 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime = 854 ext4_current_time(inode); 855 856 memset(ei->i_data, 0, sizeof(ei->i_data)); 857 ei->i_dir_start_lookup = 0; 858 ei->i_disksize = 0; 859 860 /* Don't inherit extent flag from directory, amongst others. */ 861 ei->i_flags = 862 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED); 863 ei->i_file_acl = 0; 864 ei->i_dtime = 0; 865 ei->i_block_group = group; 866 ei->i_last_alloc_group = ~0; 867 868 ext4_set_inode_flags(inode); 869 if (IS_DIRSYNC(inode)) 870 ext4_handle_sync(handle); 871 if (insert_inode_locked(inode) < 0) { 872 /* 873 * Likely a bitmap corruption causing inode to be allocated 874 * twice. 875 */ 876 err = -EIO; 877 goto fail; 878 } 879 spin_lock(&sbi->s_next_gen_lock); 880 inode->i_generation = sbi->s_next_generation++; 881 spin_unlock(&sbi->s_next_gen_lock); 882 883 /* Precompute checksum seed for inode metadata */ 884 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 885 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 886 __u32 csum; 887 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 888 __le32 inum = cpu_to_le32(inode->i_ino); 889 __le32 gen = cpu_to_le32(inode->i_generation); 890 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 891 sizeof(inum)); 892 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 893 sizeof(gen)); 894 } 895 896 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 897 ext4_set_inode_state(inode, EXT4_STATE_NEW); 898 899 ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize; 900 901 ret = inode; 902 dquot_initialize(inode); 903 err = dquot_alloc_inode(inode); 904 if (err) 905 goto fail_drop; 906 907 err = ext4_init_acl(handle, inode, dir); 908 if (err) 909 goto fail_free_drop; 910 911 err = ext4_init_security(handle, inode, dir, qstr); 912 if (err) 913 goto fail_free_drop; 914 915 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 916 /* set extent flag only for directory, file and normal symlink*/ 917 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) { 918 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS); 919 ext4_ext_tree_init(handle, inode); 920 } 921 } 922 923 if (ext4_handle_valid(handle)) { 924 ei->i_sync_tid = handle->h_transaction->t_tid; 925 ei->i_datasync_tid = handle->h_transaction->t_tid; 926 } 927 928 err = ext4_mark_inode_dirty(handle, inode); 929 if (err) { 930 ext4_std_error(sb, err); 931 goto fail_free_drop; 932 } 933 934 ext4_debug("allocating inode %lu\n", inode->i_ino); 935 trace_ext4_allocate_inode(inode, dir, mode); 936 goto really_out; 937 fail: 938 ext4_std_error(sb, err); 939 out: 940 iput(inode); 941 ret = ERR_PTR(err); 942 really_out: 943 brelse(inode_bitmap_bh); 944 return ret; 945 946 fail_free_drop: 947 dquot_free_inode(inode); 948 949 fail_drop: 950 dquot_drop(inode); 951 inode->i_flags |= S_NOQUOTA; 952 clear_nlink(inode); 953 unlock_new_inode(inode); 954 iput(inode); 955 brelse(inode_bitmap_bh); 956 return ERR_PTR(err); 957 } 958 959 /* Verify that we are loading a valid orphan from disk */ 960 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino) 961 { 962 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); 963 ext4_group_t block_group; 964 int bit; 965 struct buffer_head *bitmap_bh; 966 struct inode *inode = NULL; 967 long err = -EIO; 968 969 /* Error cases - e2fsck has already cleaned up for us */ 970 if (ino > max_ino) { 971 ext4_warning(sb, "bad orphan ino %lu! e2fsck was run?", ino); 972 goto error; 973 } 974 975 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 976 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 977 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 978 if (!bitmap_bh) { 979 ext4_warning(sb, "inode bitmap error for orphan %lu", ino); 980 goto error; 981 } 982 983 /* Having the inode bit set should be a 100% indicator that this 984 * is a valid orphan (no e2fsck run on fs). Orphans also include 985 * inodes that were being truncated, so we can't check i_nlink==0. 986 */ 987 if (!ext4_test_bit(bit, bitmap_bh->b_data)) 988 goto bad_orphan; 989 990 inode = ext4_iget(sb, ino); 991 if (IS_ERR(inode)) 992 goto iget_failed; 993 994 /* 995 * If the orphans has i_nlinks > 0 then it should be able to be 996 * truncated, otherwise it won't be removed from the orphan list 997 * during processing and an infinite loop will result. 998 */ 999 if (inode->i_nlink && !ext4_can_truncate(inode)) 1000 goto bad_orphan; 1001 1002 if (NEXT_ORPHAN(inode) > max_ino) 1003 goto bad_orphan; 1004 brelse(bitmap_bh); 1005 return inode; 1006 1007 iget_failed: 1008 err = PTR_ERR(inode); 1009 inode = NULL; 1010 bad_orphan: 1011 ext4_warning(sb, "bad orphan inode %lu! e2fsck was run?", ino); 1012 printk(KERN_NOTICE "ext4_test_bit(bit=%d, block=%llu) = %d\n", 1013 bit, (unsigned long long)bitmap_bh->b_blocknr, 1014 ext4_test_bit(bit, bitmap_bh->b_data)); 1015 printk(KERN_NOTICE "inode=%p\n", inode); 1016 if (inode) { 1017 printk(KERN_NOTICE "is_bad_inode(inode)=%d\n", 1018 is_bad_inode(inode)); 1019 printk(KERN_NOTICE "NEXT_ORPHAN(inode)=%u\n", 1020 NEXT_ORPHAN(inode)); 1021 printk(KERN_NOTICE "max_ino=%lu\n", max_ino); 1022 printk(KERN_NOTICE "i_nlink=%u\n", inode->i_nlink); 1023 /* Avoid freeing blocks if we got a bad deleted inode */ 1024 if (inode->i_nlink == 0) 1025 inode->i_blocks = 0; 1026 iput(inode); 1027 } 1028 brelse(bitmap_bh); 1029 error: 1030 return ERR_PTR(err); 1031 } 1032 1033 unsigned long ext4_count_free_inodes(struct super_block *sb) 1034 { 1035 unsigned long desc_count; 1036 struct ext4_group_desc *gdp; 1037 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1038 #ifdef EXT4FS_DEBUG 1039 struct ext4_super_block *es; 1040 unsigned long bitmap_count, x; 1041 struct buffer_head *bitmap_bh = NULL; 1042 1043 es = EXT4_SB(sb)->s_es; 1044 desc_count = 0; 1045 bitmap_count = 0; 1046 gdp = NULL; 1047 for (i = 0; i < ngroups; i++) { 1048 gdp = ext4_get_group_desc(sb, i, NULL); 1049 if (!gdp) 1050 continue; 1051 desc_count += ext4_free_inodes_count(sb, gdp); 1052 brelse(bitmap_bh); 1053 bitmap_bh = ext4_read_inode_bitmap(sb, i); 1054 if (!bitmap_bh) 1055 continue; 1056 1057 x = ext4_count_free(bitmap_bh, EXT4_INODES_PER_GROUP(sb) / 8); 1058 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n", 1059 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x); 1060 bitmap_count += x; 1061 } 1062 brelse(bitmap_bh); 1063 printk(KERN_DEBUG "ext4_count_free_inodes: " 1064 "stored = %u, computed = %lu, %lu\n", 1065 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count); 1066 return desc_count; 1067 #else 1068 desc_count = 0; 1069 for (i = 0; i < ngroups; i++) { 1070 gdp = ext4_get_group_desc(sb, i, NULL); 1071 if (!gdp) 1072 continue; 1073 desc_count += ext4_free_inodes_count(sb, gdp); 1074 cond_resched(); 1075 } 1076 return desc_count; 1077 #endif 1078 } 1079 1080 /* Called at mount-time, super-block is locked */ 1081 unsigned long ext4_count_dirs(struct super_block * sb) 1082 { 1083 unsigned long count = 0; 1084 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1085 1086 for (i = 0; i < ngroups; i++) { 1087 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1088 if (!gdp) 1089 continue; 1090 count += ext4_used_dirs_count(sb, gdp); 1091 } 1092 return count; 1093 } 1094 1095 /* 1096 * Zeroes not yet zeroed inode table - just write zeroes through the whole 1097 * inode table. Must be called without any spinlock held. The only place 1098 * where it is called from on active part of filesystem is ext4lazyinit 1099 * thread, so we do not need any special locks, however we have to prevent 1100 * inode allocation from the current group, so we take alloc_sem lock, to 1101 * block ext4_new_inode() until we are finished. 1102 */ 1103 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group, 1104 int barrier) 1105 { 1106 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1107 struct ext4_sb_info *sbi = EXT4_SB(sb); 1108 struct ext4_group_desc *gdp = NULL; 1109 struct buffer_head *group_desc_bh; 1110 handle_t *handle; 1111 ext4_fsblk_t blk; 1112 int num, ret = 0, used_blks = 0; 1113 1114 /* This should not happen, but just to be sure check this */ 1115 if (sb->s_flags & MS_RDONLY) { 1116 ret = 1; 1117 goto out; 1118 } 1119 1120 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 1121 if (!gdp) 1122 goto out; 1123 1124 /* 1125 * We do not need to lock this, because we are the only one 1126 * handling this flag. 1127 */ 1128 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)) 1129 goto out; 1130 1131 handle = ext4_journal_start_sb(sb, 1); 1132 if (IS_ERR(handle)) { 1133 ret = PTR_ERR(handle); 1134 goto out; 1135 } 1136 1137 down_write(&grp->alloc_sem); 1138 /* 1139 * If inode bitmap was already initialized there may be some 1140 * used inodes so we need to skip blocks with used inodes in 1141 * inode table. 1142 */ 1143 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) 1144 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) - 1145 ext4_itable_unused_count(sb, gdp)), 1146 sbi->s_inodes_per_block); 1147 1148 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) { 1149 ext4_error(sb, "Something is wrong with group %u: " 1150 "used itable blocks: %d; " 1151 "itable unused count: %u", 1152 group, used_blks, 1153 ext4_itable_unused_count(sb, gdp)); 1154 ret = 1; 1155 goto err_out; 1156 } 1157 1158 blk = ext4_inode_table(sb, gdp) + used_blks; 1159 num = sbi->s_itb_per_group - used_blks; 1160 1161 BUFFER_TRACE(group_desc_bh, "get_write_access"); 1162 ret = ext4_journal_get_write_access(handle, 1163 group_desc_bh); 1164 if (ret) 1165 goto err_out; 1166 1167 /* 1168 * Skip zeroout if the inode table is full. But we set the ZEROED 1169 * flag anyway, because obviously, when it is full it does not need 1170 * further zeroing. 1171 */ 1172 if (unlikely(num == 0)) 1173 goto skip_zeroout; 1174 1175 ext4_debug("going to zero out inode table in group %d\n", 1176 group); 1177 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS); 1178 if (ret < 0) 1179 goto err_out; 1180 if (barrier) 1181 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL); 1182 1183 skip_zeroout: 1184 ext4_lock_group(sb, group); 1185 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED); 1186 ext4_group_desc_csum_set(sb, group, gdp); 1187 ext4_unlock_group(sb, group); 1188 1189 BUFFER_TRACE(group_desc_bh, 1190 "call ext4_handle_dirty_metadata"); 1191 ret = ext4_handle_dirty_metadata(handle, NULL, 1192 group_desc_bh); 1193 1194 err_out: 1195 up_write(&grp->alloc_sem); 1196 ext4_journal_stop(handle); 1197 out: 1198 return ret; 1199 } 1200