xref: /linux/fs/ext4/ialloc.c (revision 22d55f02b8922a097cd4be1e2f131dfa7ef65901)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/ialloc.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  BSD ufs-inspired inode and directory allocation by
11  *  Stephen Tweedie (sct@redhat.com), 1993
12  *  Big-endian to little-endian byte-swapping/bitmaps by
13  *        David S. Miller (davem@caip.rutgers.edu), 1995
14  */
15 
16 #include <linux/time.h>
17 #include <linux/fs.h>
18 #include <linux/stat.h>
19 #include <linux/string.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/random.h>
23 #include <linux/bitops.h>
24 #include <linux/blkdev.h>
25 #include <linux/cred.h>
26 
27 #include <asm/byteorder.h>
28 
29 #include "ext4.h"
30 #include "ext4_jbd2.h"
31 #include "xattr.h"
32 #include "acl.h"
33 
34 #include <trace/events/ext4.h>
35 
36 /*
37  * ialloc.c contains the inodes allocation and deallocation routines
38  */
39 
40 /*
41  * The free inodes are managed by bitmaps.  A file system contains several
42  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
43  * block for inodes, N blocks for the inode table and data blocks.
44  *
45  * The file system contains group descriptors which are located after the
46  * super block.  Each descriptor contains the number of the bitmap block and
47  * the free blocks count in the block.
48  */
49 
50 /*
51  * To avoid calling the atomic setbit hundreds or thousands of times, we only
52  * need to use it within a single byte (to ensure we get endianness right).
53  * We can use memset for the rest of the bitmap as there are no other users.
54  */
55 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
56 {
57 	int i;
58 
59 	if (start_bit >= end_bit)
60 		return;
61 
62 	ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
63 	for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
64 		ext4_set_bit(i, bitmap);
65 	if (i < end_bit)
66 		memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
67 }
68 
69 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
70 {
71 	if (uptodate) {
72 		set_buffer_uptodate(bh);
73 		set_bitmap_uptodate(bh);
74 	}
75 	unlock_buffer(bh);
76 	put_bh(bh);
77 }
78 
79 static int ext4_validate_inode_bitmap(struct super_block *sb,
80 				      struct ext4_group_desc *desc,
81 				      ext4_group_t block_group,
82 				      struct buffer_head *bh)
83 {
84 	ext4_fsblk_t	blk;
85 	struct ext4_group_info *grp = ext4_get_group_info(sb, block_group);
86 
87 	if (buffer_verified(bh))
88 		return 0;
89 	if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
90 		return -EFSCORRUPTED;
91 
92 	ext4_lock_group(sb, block_group);
93 	if (buffer_verified(bh))
94 		goto verified;
95 	blk = ext4_inode_bitmap(sb, desc);
96 	if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
97 					   EXT4_INODES_PER_GROUP(sb) / 8)) {
98 		ext4_unlock_group(sb, block_group);
99 		ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
100 			   "inode_bitmap = %llu", block_group, blk);
101 		ext4_mark_group_bitmap_corrupted(sb, block_group,
102 					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
103 		return -EFSBADCRC;
104 	}
105 	set_buffer_verified(bh);
106 verified:
107 	ext4_unlock_group(sb, block_group);
108 	return 0;
109 }
110 
111 /*
112  * Read the inode allocation bitmap for a given block_group, reading
113  * into the specified slot in the superblock's bitmap cache.
114  *
115  * Return buffer_head of bitmap on success or NULL.
116  */
117 static struct buffer_head *
118 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
119 {
120 	struct ext4_group_desc *desc;
121 	struct ext4_sb_info *sbi = EXT4_SB(sb);
122 	struct buffer_head *bh = NULL;
123 	ext4_fsblk_t bitmap_blk;
124 	int err;
125 
126 	desc = ext4_get_group_desc(sb, block_group, NULL);
127 	if (!desc)
128 		return ERR_PTR(-EFSCORRUPTED);
129 
130 	bitmap_blk = ext4_inode_bitmap(sb, desc);
131 	if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) ||
132 	    (bitmap_blk >= ext4_blocks_count(sbi->s_es))) {
133 		ext4_error(sb, "Invalid inode bitmap blk %llu in "
134 			   "block_group %u", bitmap_blk, block_group);
135 		ext4_mark_group_bitmap_corrupted(sb, block_group,
136 					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
137 		return ERR_PTR(-EFSCORRUPTED);
138 	}
139 	bh = sb_getblk(sb, bitmap_blk);
140 	if (unlikely(!bh)) {
141 		ext4_warning(sb, "Cannot read inode bitmap - "
142 			     "block_group = %u, inode_bitmap = %llu",
143 			     block_group, bitmap_blk);
144 		return ERR_PTR(-ENOMEM);
145 	}
146 	if (bitmap_uptodate(bh))
147 		goto verify;
148 
149 	lock_buffer(bh);
150 	if (bitmap_uptodate(bh)) {
151 		unlock_buffer(bh);
152 		goto verify;
153 	}
154 
155 	ext4_lock_group(sb, block_group);
156 	if (ext4_has_group_desc_csum(sb) &&
157 	    (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) {
158 		if (block_group == 0) {
159 			ext4_unlock_group(sb, block_group);
160 			unlock_buffer(bh);
161 			ext4_error(sb, "Inode bitmap for bg 0 marked "
162 				   "uninitialized");
163 			err = -EFSCORRUPTED;
164 			goto out;
165 		}
166 		memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
167 		ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb),
168 				     sb->s_blocksize * 8, bh->b_data);
169 		set_bitmap_uptodate(bh);
170 		set_buffer_uptodate(bh);
171 		set_buffer_verified(bh);
172 		ext4_unlock_group(sb, block_group);
173 		unlock_buffer(bh);
174 		return bh;
175 	}
176 	ext4_unlock_group(sb, block_group);
177 
178 	if (buffer_uptodate(bh)) {
179 		/*
180 		 * if not uninit if bh is uptodate,
181 		 * bitmap is also uptodate
182 		 */
183 		set_bitmap_uptodate(bh);
184 		unlock_buffer(bh);
185 		goto verify;
186 	}
187 	/*
188 	 * submit the buffer_head for reading
189 	 */
190 	trace_ext4_load_inode_bitmap(sb, block_group);
191 	bh->b_end_io = ext4_end_bitmap_read;
192 	get_bh(bh);
193 	submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
194 	wait_on_buffer(bh);
195 	if (!buffer_uptodate(bh)) {
196 		put_bh(bh);
197 		ext4_error(sb, "Cannot read inode bitmap - "
198 			   "block_group = %u, inode_bitmap = %llu",
199 			   block_group, bitmap_blk);
200 		ext4_mark_group_bitmap_corrupted(sb, block_group,
201 				EXT4_GROUP_INFO_IBITMAP_CORRUPT);
202 		return ERR_PTR(-EIO);
203 	}
204 
205 verify:
206 	err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
207 	if (err)
208 		goto out;
209 	return bh;
210 out:
211 	put_bh(bh);
212 	return ERR_PTR(err);
213 }
214 
215 /*
216  * NOTE! When we get the inode, we're the only people
217  * that have access to it, and as such there are no
218  * race conditions we have to worry about. The inode
219  * is not on the hash-lists, and it cannot be reached
220  * through the filesystem because the directory entry
221  * has been deleted earlier.
222  *
223  * HOWEVER: we must make sure that we get no aliases,
224  * which means that we have to call "clear_inode()"
225  * _before_ we mark the inode not in use in the inode
226  * bitmaps. Otherwise a newly created file might use
227  * the same inode number (not actually the same pointer
228  * though), and then we'd have two inodes sharing the
229  * same inode number and space on the harddisk.
230  */
231 void ext4_free_inode(handle_t *handle, struct inode *inode)
232 {
233 	struct super_block *sb = inode->i_sb;
234 	int is_directory;
235 	unsigned long ino;
236 	struct buffer_head *bitmap_bh = NULL;
237 	struct buffer_head *bh2;
238 	ext4_group_t block_group;
239 	unsigned long bit;
240 	struct ext4_group_desc *gdp;
241 	struct ext4_super_block *es;
242 	struct ext4_sb_info *sbi;
243 	int fatal = 0, err, count, cleared;
244 	struct ext4_group_info *grp;
245 
246 	if (!sb) {
247 		printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
248 		       "nonexistent device\n", __func__, __LINE__);
249 		return;
250 	}
251 	if (atomic_read(&inode->i_count) > 1) {
252 		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
253 			 __func__, __LINE__, inode->i_ino,
254 			 atomic_read(&inode->i_count));
255 		return;
256 	}
257 	if (inode->i_nlink) {
258 		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
259 			 __func__, __LINE__, inode->i_ino, inode->i_nlink);
260 		return;
261 	}
262 	sbi = EXT4_SB(sb);
263 
264 	ino = inode->i_ino;
265 	ext4_debug("freeing inode %lu\n", ino);
266 	trace_ext4_free_inode(inode);
267 
268 	/*
269 	 * Note: we must free any quota before locking the superblock,
270 	 * as writing the quota to disk may need the lock as well.
271 	 */
272 	dquot_initialize(inode);
273 	dquot_free_inode(inode);
274 	dquot_drop(inode);
275 
276 	is_directory = S_ISDIR(inode->i_mode);
277 
278 	/* Do this BEFORE marking the inode not in use or returning an error */
279 	ext4_clear_inode(inode);
280 
281 	es = sbi->s_es;
282 	if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
283 		ext4_error(sb, "reserved or nonexistent inode %lu", ino);
284 		goto error_return;
285 	}
286 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
287 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
288 	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
289 	/* Don't bother if the inode bitmap is corrupt. */
290 	grp = ext4_get_group_info(sb, block_group);
291 	if (IS_ERR(bitmap_bh)) {
292 		fatal = PTR_ERR(bitmap_bh);
293 		bitmap_bh = NULL;
294 		goto error_return;
295 	}
296 	if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
297 		fatal = -EFSCORRUPTED;
298 		goto error_return;
299 	}
300 
301 	BUFFER_TRACE(bitmap_bh, "get_write_access");
302 	fatal = ext4_journal_get_write_access(handle, bitmap_bh);
303 	if (fatal)
304 		goto error_return;
305 
306 	fatal = -ESRCH;
307 	gdp = ext4_get_group_desc(sb, block_group, &bh2);
308 	if (gdp) {
309 		BUFFER_TRACE(bh2, "get_write_access");
310 		fatal = ext4_journal_get_write_access(handle, bh2);
311 	}
312 	ext4_lock_group(sb, block_group);
313 	cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
314 	if (fatal || !cleared) {
315 		ext4_unlock_group(sb, block_group);
316 		goto out;
317 	}
318 
319 	count = ext4_free_inodes_count(sb, gdp) + 1;
320 	ext4_free_inodes_set(sb, gdp, count);
321 	if (is_directory) {
322 		count = ext4_used_dirs_count(sb, gdp) - 1;
323 		ext4_used_dirs_set(sb, gdp, count);
324 		percpu_counter_dec(&sbi->s_dirs_counter);
325 	}
326 	ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
327 				   EXT4_INODES_PER_GROUP(sb) / 8);
328 	ext4_group_desc_csum_set(sb, block_group, gdp);
329 	ext4_unlock_group(sb, block_group);
330 
331 	percpu_counter_inc(&sbi->s_freeinodes_counter);
332 	if (sbi->s_log_groups_per_flex) {
333 		ext4_group_t f = ext4_flex_group(sbi, block_group);
334 
335 		atomic_inc(&sbi->s_flex_groups[f].free_inodes);
336 		if (is_directory)
337 			atomic_dec(&sbi->s_flex_groups[f].used_dirs);
338 	}
339 	BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
340 	fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
341 out:
342 	if (cleared) {
343 		BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
344 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
345 		if (!fatal)
346 			fatal = err;
347 	} else {
348 		ext4_error(sb, "bit already cleared for inode %lu", ino);
349 		ext4_mark_group_bitmap_corrupted(sb, block_group,
350 					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
351 	}
352 
353 error_return:
354 	brelse(bitmap_bh);
355 	ext4_std_error(sb, fatal);
356 }
357 
358 struct orlov_stats {
359 	__u64 free_clusters;
360 	__u32 free_inodes;
361 	__u32 used_dirs;
362 };
363 
364 /*
365  * Helper function for Orlov's allocator; returns critical information
366  * for a particular block group or flex_bg.  If flex_size is 1, then g
367  * is a block group number; otherwise it is flex_bg number.
368  */
369 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
370 			    int flex_size, struct orlov_stats *stats)
371 {
372 	struct ext4_group_desc *desc;
373 	struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
374 
375 	if (flex_size > 1) {
376 		stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
377 		stats->free_clusters = atomic64_read(&flex_group[g].free_clusters);
378 		stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
379 		return;
380 	}
381 
382 	desc = ext4_get_group_desc(sb, g, NULL);
383 	if (desc) {
384 		stats->free_inodes = ext4_free_inodes_count(sb, desc);
385 		stats->free_clusters = ext4_free_group_clusters(sb, desc);
386 		stats->used_dirs = ext4_used_dirs_count(sb, desc);
387 	} else {
388 		stats->free_inodes = 0;
389 		stats->free_clusters = 0;
390 		stats->used_dirs = 0;
391 	}
392 }
393 
394 /*
395  * Orlov's allocator for directories.
396  *
397  * We always try to spread first-level directories.
398  *
399  * If there are blockgroups with both free inodes and free blocks counts
400  * not worse than average we return one with smallest directory count.
401  * Otherwise we simply return a random group.
402  *
403  * For the rest rules look so:
404  *
405  * It's OK to put directory into a group unless
406  * it has too many directories already (max_dirs) or
407  * it has too few free inodes left (min_inodes) or
408  * it has too few free blocks left (min_blocks) or
409  * Parent's group is preferred, if it doesn't satisfy these
410  * conditions we search cyclically through the rest. If none
411  * of the groups look good we just look for a group with more
412  * free inodes than average (starting at parent's group).
413  */
414 
415 static int find_group_orlov(struct super_block *sb, struct inode *parent,
416 			    ext4_group_t *group, umode_t mode,
417 			    const struct qstr *qstr)
418 {
419 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
420 	struct ext4_sb_info *sbi = EXT4_SB(sb);
421 	ext4_group_t real_ngroups = ext4_get_groups_count(sb);
422 	int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
423 	unsigned int freei, avefreei, grp_free;
424 	ext4_fsblk_t freeb, avefreec;
425 	unsigned int ndirs;
426 	int max_dirs, min_inodes;
427 	ext4_grpblk_t min_clusters;
428 	ext4_group_t i, grp, g, ngroups;
429 	struct ext4_group_desc *desc;
430 	struct orlov_stats stats;
431 	int flex_size = ext4_flex_bg_size(sbi);
432 	struct dx_hash_info hinfo;
433 
434 	ngroups = real_ngroups;
435 	if (flex_size > 1) {
436 		ngroups = (real_ngroups + flex_size - 1) >>
437 			sbi->s_log_groups_per_flex;
438 		parent_group >>= sbi->s_log_groups_per_flex;
439 	}
440 
441 	freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
442 	avefreei = freei / ngroups;
443 	freeb = EXT4_C2B(sbi,
444 		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
445 	avefreec = freeb;
446 	do_div(avefreec, ngroups);
447 	ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
448 
449 	if (S_ISDIR(mode) &&
450 	    ((parent == d_inode(sb->s_root)) ||
451 	     (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
452 		int best_ndir = inodes_per_group;
453 		int ret = -1;
454 
455 		if (qstr) {
456 			hinfo.hash_version = DX_HASH_HALF_MD4;
457 			hinfo.seed = sbi->s_hash_seed;
458 			ext4fs_dirhash(parent, qstr->name, qstr->len, &hinfo);
459 			grp = hinfo.hash;
460 		} else
461 			grp = prandom_u32();
462 		parent_group = (unsigned)grp % ngroups;
463 		for (i = 0; i < ngroups; i++) {
464 			g = (parent_group + i) % ngroups;
465 			get_orlov_stats(sb, g, flex_size, &stats);
466 			if (!stats.free_inodes)
467 				continue;
468 			if (stats.used_dirs >= best_ndir)
469 				continue;
470 			if (stats.free_inodes < avefreei)
471 				continue;
472 			if (stats.free_clusters < avefreec)
473 				continue;
474 			grp = g;
475 			ret = 0;
476 			best_ndir = stats.used_dirs;
477 		}
478 		if (ret)
479 			goto fallback;
480 	found_flex_bg:
481 		if (flex_size == 1) {
482 			*group = grp;
483 			return 0;
484 		}
485 
486 		/*
487 		 * We pack inodes at the beginning of the flexgroup's
488 		 * inode tables.  Block allocation decisions will do
489 		 * something similar, although regular files will
490 		 * start at 2nd block group of the flexgroup.  See
491 		 * ext4_ext_find_goal() and ext4_find_near().
492 		 */
493 		grp *= flex_size;
494 		for (i = 0; i < flex_size; i++) {
495 			if (grp+i >= real_ngroups)
496 				break;
497 			desc = ext4_get_group_desc(sb, grp+i, NULL);
498 			if (desc && ext4_free_inodes_count(sb, desc)) {
499 				*group = grp+i;
500 				return 0;
501 			}
502 		}
503 		goto fallback;
504 	}
505 
506 	max_dirs = ndirs / ngroups + inodes_per_group / 16;
507 	min_inodes = avefreei - inodes_per_group*flex_size / 4;
508 	if (min_inodes < 1)
509 		min_inodes = 1;
510 	min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
511 
512 	/*
513 	 * Start looking in the flex group where we last allocated an
514 	 * inode for this parent directory
515 	 */
516 	if (EXT4_I(parent)->i_last_alloc_group != ~0) {
517 		parent_group = EXT4_I(parent)->i_last_alloc_group;
518 		if (flex_size > 1)
519 			parent_group >>= sbi->s_log_groups_per_flex;
520 	}
521 
522 	for (i = 0; i < ngroups; i++) {
523 		grp = (parent_group + i) % ngroups;
524 		get_orlov_stats(sb, grp, flex_size, &stats);
525 		if (stats.used_dirs >= max_dirs)
526 			continue;
527 		if (stats.free_inodes < min_inodes)
528 			continue;
529 		if (stats.free_clusters < min_clusters)
530 			continue;
531 		goto found_flex_bg;
532 	}
533 
534 fallback:
535 	ngroups = real_ngroups;
536 	avefreei = freei / ngroups;
537 fallback_retry:
538 	parent_group = EXT4_I(parent)->i_block_group;
539 	for (i = 0; i < ngroups; i++) {
540 		grp = (parent_group + i) % ngroups;
541 		desc = ext4_get_group_desc(sb, grp, NULL);
542 		if (desc) {
543 			grp_free = ext4_free_inodes_count(sb, desc);
544 			if (grp_free && grp_free >= avefreei) {
545 				*group = grp;
546 				return 0;
547 			}
548 		}
549 	}
550 
551 	if (avefreei) {
552 		/*
553 		 * The free-inodes counter is approximate, and for really small
554 		 * filesystems the above test can fail to find any blockgroups
555 		 */
556 		avefreei = 0;
557 		goto fallback_retry;
558 	}
559 
560 	return -1;
561 }
562 
563 static int find_group_other(struct super_block *sb, struct inode *parent,
564 			    ext4_group_t *group, umode_t mode)
565 {
566 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
567 	ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
568 	struct ext4_group_desc *desc;
569 	int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
570 
571 	/*
572 	 * Try to place the inode is the same flex group as its
573 	 * parent.  If we can't find space, use the Orlov algorithm to
574 	 * find another flex group, and store that information in the
575 	 * parent directory's inode information so that use that flex
576 	 * group for future allocations.
577 	 */
578 	if (flex_size > 1) {
579 		int retry = 0;
580 
581 	try_again:
582 		parent_group &= ~(flex_size-1);
583 		last = parent_group + flex_size;
584 		if (last > ngroups)
585 			last = ngroups;
586 		for  (i = parent_group; i < last; i++) {
587 			desc = ext4_get_group_desc(sb, i, NULL);
588 			if (desc && ext4_free_inodes_count(sb, desc)) {
589 				*group = i;
590 				return 0;
591 			}
592 		}
593 		if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
594 			retry = 1;
595 			parent_group = EXT4_I(parent)->i_last_alloc_group;
596 			goto try_again;
597 		}
598 		/*
599 		 * If this didn't work, use the Orlov search algorithm
600 		 * to find a new flex group; we pass in the mode to
601 		 * avoid the topdir algorithms.
602 		 */
603 		*group = parent_group + flex_size;
604 		if (*group > ngroups)
605 			*group = 0;
606 		return find_group_orlov(sb, parent, group, mode, NULL);
607 	}
608 
609 	/*
610 	 * Try to place the inode in its parent directory
611 	 */
612 	*group = parent_group;
613 	desc = ext4_get_group_desc(sb, *group, NULL);
614 	if (desc && ext4_free_inodes_count(sb, desc) &&
615 	    ext4_free_group_clusters(sb, desc))
616 		return 0;
617 
618 	/*
619 	 * We're going to place this inode in a different blockgroup from its
620 	 * parent.  We want to cause files in a common directory to all land in
621 	 * the same blockgroup.  But we want files which are in a different
622 	 * directory which shares a blockgroup with our parent to land in a
623 	 * different blockgroup.
624 	 *
625 	 * So add our directory's i_ino into the starting point for the hash.
626 	 */
627 	*group = (*group + parent->i_ino) % ngroups;
628 
629 	/*
630 	 * Use a quadratic hash to find a group with a free inode and some free
631 	 * blocks.
632 	 */
633 	for (i = 1; i < ngroups; i <<= 1) {
634 		*group += i;
635 		if (*group >= ngroups)
636 			*group -= ngroups;
637 		desc = ext4_get_group_desc(sb, *group, NULL);
638 		if (desc && ext4_free_inodes_count(sb, desc) &&
639 		    ext4_free_group_clusters(sb, desc))
640 			return 0;
641 	}
642 
643 	/*
644 	 * That failed: try linear search for a free inode, even if that group
645 	 * has no free blocks.
646 	 */
647 	*group = parent_group;
648 	for (i = 0; i < ngroups; i++) {
649 		if (++*group >= ngroups)
650 			*group = 0;
651 		desc = ext4_get_group_desc(sb, *group, NULL);
652 		if (desc && ext4_free_inodes_count(sb, desc))
653 			return 0;
654 	}
655 
656 	return -1;
657 }
658 
659 /*
660  * In no journal mode, if an inode has recently been deleted, we want
661  * to avoid reusing it until we're reasonably sure the inode table
662  * block has been written back to disk.  (Yes, these values are
663  * somewhat arbitrary...)
664  */
665 #define RECENTCY_MIN	5
666 #define RECENTCY_DIRTY	300
667 
668 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
669 {
670 	struct ext4_group_desc	*gdp;
671 	struct ext4_inode	*raw_inode;
672 	struct buffer_head	*bh;
673 	int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
674 	int offset, ret = 0;
675 	int recentcy = RECENTCY_MIN;
676 	u32 dtime, now;
677 
678 	gdp = ext4_get_group_desc(sb, group, NULL);
679 	if (unlikely(!gdp))
680 		return 0;
681 
682 	bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) +
683 		       (ino / inodes_per_block));
684 	if (!bh || !buffer_uptodate(bh))
685 		/*
686 		 * If the block is not in the buffer cache, then it
687 		 * must have been written out.
688 		 */
689 		goto out;
690 
691 	offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
692 	raw_inode = (struct ext4_inode *) (bh->b_data + offset);
693 
694 	/* i_dtime is only 32 bits on disk, but we only care about relative
695 	 * times in the range of a few minutes (i.e. long enough to sync a
696 	 * recently-deleted inode to disk), so using the low 32 bits of the
697 	 * clock (a 68 year range) is enough, see time_before32() */
698 	dtime = le32_to_cpu(raw_inode->i_dtime);
699 	now = ktime_get_real_seconds();
700 	if (buffer_dirty(bh))
701 		recentcy += RECENTCY_DIRTY;
702 
703 	if (dtime && time_before32(dtime, now) &&
704 	    time_before32(now, dtime + recentcy))
705 		ret = 1;
706 out:
707 	brelse(bh);
708 	return ret;
709 }
710 
711 static int find_inode_bit(struct super_block *sb, ext4_group_t group,
712 			  struct buffer_head *bitmap, unsigned long *ino)
713 {
714 next:
715 	*ino = ext4_find_next_zero_bit((unsigned long *)
716 				       bitmap->b_data,
717 				       EXT4_INODES_PER_GROUP(sb), *ino);
718 	if (*ino >= EXT4_INODES_PER_GROUP(sb))
719 		return 0;
720 
721 	if ((EXT4_SB(sb)->s_journal == NULL) &&
722 	    recently_deleted(sb, group, *ino)) {
723 		*ino = *ino + 1;
724 		if (*ino < EXT4_INODES_PER_GROUP(sb))
725 			goto next;
726 		return 0;
727 	}
728 
729 	return 1;
730 }
731 
732 /*
733  * There are two policies for allocating an inode.  If the new inode is
734  * a directory, then a forward search is made for a block group with both
735  * free space and a low directory-to-inode ratio; if that fails, then of
736  * the groups with above-average free space, that group with the fewest
737  * directories already is chosen.
738  *
739  * For other inodes, search forward from the parent directory's block
740  * group to find a free inode.
741  */
742 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
743 			       umode_t mode, const struct qstr *qstr,
744 			       __u32 goal, uid_t *owner, __u32 i_flags,
745 			       int handle_type, unsigned int line_no,
746 			       int nblocks)
747 {
748 	struct super_block *sb;
749 	struct buffer_head *inode_bitmap_bh = NULL;
750 	struct buffer_head *group_desc_bh;
751 	ext4_group_t ngroups, group = 0;
752 	unsigned long ino = 0;
753 	struct inode *inode;
754 	struct ext4_group_desc *gdp = NULL;
755 	struct ext4_inode_info *ei;
756 	struct ext4_sb_info *sbi;
757 	int ret2, err;
758 	struct inode *ret;
759 	ext4_group_t i;
760 	ext4_group_t flex_group;
761 	struct ext4_group_info *grp;
762 	int encrypt = 0;
763 
764 	/* Cannot create files in a deleted directory */
765 	if (!dir || !dir->i_nlink)
766 		return ERR_PTR(-EPERM);
767 
768 	sb = dir->i_sb;
769 	sbi = EXT4_SB(sb);
770 
771 	if (unlikely(ext4_forced_shutdown(sbi)))
772 		return ERR_PTR(-EIO);
773 
774 	if ((IS_ENCRYPTED(dir) || DUMMY_ENCRYPTION_ENABLED(sbi)) &&
775 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) &&
776 	    !(i_flags & EXT4_EA_INODE_FL)) {
777 		err = fscrypt_get_encryption_info(dir);
778 		if (err)
779 			return ERR_PTR(err);
780 		if (!fscrypt_has_encryption_key(dir))
781 			return ERR_PTR(-ENOKEY);
782 		encrypt = 1;
783 	}
784 
785 	if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) {
786 #ifdef CONFIG_EXT4_FS_POSIX_ACL
787 		struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT);
788 
789 		if (IS_ERR(p))
790 			return ERR_CAST(p);
791 		if (p) {
792 			int acl_size = p->a_count * sizeof(ext4_acl_entry);
793 
794 			nblocks += (S_ISDIR(mode) ? 2 : 1) *
795 				__ext4_xattr_set_credits(sb, NULL /* inode */,
796 					NULL /* block_bh */, acl_size,
797 					true /* is_create */);
798 			posix_acl_release(p);
799 		}
800 #endif
801 
802 #ifdef CONFIG_SECURITY
803 		{
804 			int num_security_xattrs = 1;
805 
806 #ifdef CONFIG_INTEGRITY
807 			num_security_xattrs++;
808 #endif
809 			/*
810 			 * We assume that security xattrs are never
811 			 * more than 1k.  In practice they are under
812 			 * 128 bytes.
813 			 */
814 			nblocks += num_security_xattrs *
815 				__ext4_xattr_set_credits(sb, NULL /* inode */,
816 					NULL /* block_bh */, 1024,
817 					true /* is_create */);
818 		}
819 #endif
820 		if (encrypt)
821 			nblocks += __ext4_xattr_set_credits(sb,
822 					NULL /* inode */, NULL /* block_bh */,
823 					FSCRYPT_SET_CONTEXT_MAX_SIZE,
824 					true /* is_create */);
825 	}
826 
827 	ngroups = ext4_get_groups_count(sb);
828 	trace_ext4_request_inode(dir, mode);
829 	inode = new_inode(sb);
830 	if (!inode)
831 		return ERR_PTR(-ENOMEM);
832 	ei = EXT4_I(inode);
833 
834 	/*
835 	 * Initialize owners and quota early so that we don't have to account
836 	 * for quota initialization worst case in standard inode creating
837 	 * transaction
838 	 */
839 	if (owner) {
840 		inode->i_mode = mode;
841 		i_uid_write(inode, owner[0]);
842 		i_gid_write(inode, owner[1]);
843 	} else if (test_opt(sb, GRPID)) {
844 		inode->i_mode = mode;
845 		inode->i_uid = current_fsuid();
846 		inode->i_gid = dir->i_gid;
847 	} else
848 		inode_init_owner(inode, dir, mode);
849 
850 	if (ext4_has_feature_project(sb) &&
851 	    ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT))
852 		ei->i_projid = EXT4_I(dir)->i_projid;
853 	else
854 		ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID);
855 
856 	err = dquot_initialize(inode);
857 	if (err)
858 		goto out;
859 
860 	if (!goal)
861 		goal = sbi->s_inode_goal;
862 
863 	if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
864 		group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
865 		ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
866 		ret2 = 0;
867 		goto got_group;
868 	}
869 
870 	if (S_ISDIR(mode))
871 		ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
872 	else
873 		ret2 = find_group_other(sb, dir, &group, mode);
874 
875 got_group:
876 	EXT4_I(dir)->i_last_alloc_group = group;
877 	err = -ENOSPC;
878 	if (ret2 == -1)
879 		goto out;
880 
881 	/*
882 	 * Normally we will only go through one pass of this loop,
883 	 * unless we get unlucky and it turns out the group we selected
884 	 * had its last inode grabbed by someone else.
885 	 */
886 	for (i = 0; i < ngroups; i++, ino = 0) {
887 		err = -EIO;
888 
889 		gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
890 		if (!gdp)
891 			goto out;
892 
893 		/*
894 		 * Check free inodes count before loading bitmap.
895 		 */
896 		if (ext4_free_inodes_count(sb, gdp) == 0)
897 			goto next_group;
898 
899 		grp = ext4_get_group_info(sb, group);
900 		/* Skip groups with already-known suspicious inode tables */
901 		if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
902 			goto next_group;
903 
904 		brelse(inode_bitmap_bh);
905 		inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
906 		/* Skip groups with suspicious inode tables */
907 		if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) ||
908 		    IS_ERR(inode_bitmap_bh)) {
909 			inode_bitmap_bh = NULL;
910 			goto next_group;
911 		}
912 
913 repeat_in_this_group:
914 		ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
915 		if (!ret2)
916 			goto next_group;
917 
918 		if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) {
919 			ext4_error(sb, "reserved inode found cleared - "
920 				   "inode=%lu", ino + 1);
921 			ext4_mark_group_bitmap_corrupted(sb, group,
922 					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
923 			goto next_group;
924 		}
925 
926 		if (!handle) {
927 			BUG_ON(nblocks <= 0);
928 			handle = __ext4_journal_start_sb(dir->i_sb, line_no,
929 							 handle_type, nblocks,
930 							 0);
931 			if (IS_ERR(handle)) {
932 				err = PTR_ERR(handle);
933 				ext4_std_error(sb, err);
934 				goto out;
935 			}
936 		}
937 		BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
938 		err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
939 		if (err) {
940 			ext4_std_error(sb, err);
941 			goto out;
942 		}
943 		ext4_lock_group(sb, group);
944 		ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
945 		if (ret2) {
946 			/* Someone already took the bit. Repeat the search
947 			 * with lock held.
948 			 */
949 			ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
950 			if (ret2) {
951 				ext4_set_bit(ino, inode_bitmap_bh->b_data);
952 				ret2 = 0;
953 			} else {
954 				ret2 = 1; /* we didn't grab the inode */
955 			}
956 		}
957 		ext4_unlock_group(sb, group);
958 		ino++;		/* the inode bitmap is zero-based */
959 		if (!ret2)
960 			goto got; /* we grabbed the inode! */
961 
962 		if (ino < EXT4_INODES_PER_GROUP(sb))
963 			goto repeat_in_this_group;
964 next_group:
965 		if (++group == ngroups)
966 			group = 0;
967 	}
968 	err = -ENOSPC;
969 	goto out;
970 
971 got:
972 	BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
973 	err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
974 	if (err) {
975 		ext4_std_error(sb, err);
976 		goto out;
977 	}
978 
979 	BUFFER_TRACE(group_desc_bh, "get_write_access");
980 	err = ext4_journal_get_write_access(handle, group_desc_bh);
981 	if (err) {
982 		ext4_std_error(sb, err);
983 		goto out;
984 	}
985 
986 	/* We may have to initialize the block bitmap if it isn't already */
987 	if (ext4_has_group_desc_csum(sb) &&
988 	    gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
989 		struct buffer_head *block_bitmap_bh;
990 
991 		block_bitmap_bh = ext4_read_block_bitmap(sb, group);
992 		if (IS_ERR(block_bitmap_bh)) {
993 			err = PTR_ERR(block_bitmap_bh);
994 			goto out;
995 		}
996 		BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
997 		err = ext4_journal_get_write_access(handle, block_bitmap_bh);
998 		if (err) {
999 			brelse(block_bitmap_bh);
1000 			ext4_std_error(sb, err);
1001 			goto out;
1002 		}
1003 
1004 		BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
1005 		err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
1006 
1007 		/* recheck and clear flag under lock if we still need to */
1008 		ext4_lock_group(sb, group);
1009 		if (ext4_has_group_desc_csum(sb) &&
1010 		    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
1011 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1012 			ext4_free_group_clusters_set(sb, gdp,
1013 				ext4_free_clusters_after_init(sb, group, gdp));
1014 			ext4_block_bitmap_csum_set(sb, group, gdp,
1015 						   block_bitmap_bh);
1016 			ext4_group_desc_csum_set(sb, group, gdp);
1017 		}
1018 		ext4_unlock_group(sb, group);
1019 		brelse(block_bitmap_bh);
1020 
1021 		if (err) {
1022 			ext4_std_error(sb, err);
1023 			goto out;
1024 		}
1025 	}
1026 
1027 	/* Update the relevant bg descriptor fields */
1028 	if (ext4_has_group_desc_csum(sb)) {
1029 		int free;
1030 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1031 
1032 		down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
1033 		ext4_lock_group(sb, group); /* while we modify the bg desc */
1034 		free = EXT4_INODES_PER_GROUP(sb) -
1035 			ext4_itable_unused_count(sb, gdp);
1036 		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
1037 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
1038 			free = 0;
1039 		}
1040 		/*
1041 		 * Check the relative inode number against the last used
1042 		 * relative inode number in this group. if it is greater
1043 		 * we need to update the bg_itable_unused count
1044 		 */
1045 		if (ino > free)
1046 			ext4_itable_unused_set(sb, gdp,
1047 					(EXT4_INODES_PER_GROUP(sb) - ino));
1048 		up_read(&grp->alloc_sem);
1049 	} else {
1050 		ext4_lock_group(sb, group);
1051 	}
1052 
1053 	ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
1054 	if (S_ISDIR(mode)) {
1055 		ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
1056 		if (sbi->s_log_groups_per_flex) {
1057 			ext4_group_t f = ext4_flex_group(sbi, group);
1058 
1059 			atomic_inc(&sbi->s_flex_groups[f].used_dirs);
1060 		}
1061 	}
1062 	if (ext4_has_group_desc_csum(sb)) {
1063 		ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
1064 					   EXT4_INODES_PER_GROUP(sb) / 8);
1065 		ext4_group_desc_csum_set(sb, group, gdp);
1066 	}
1067 	ext4_unlock_group(sb, group);
1068 
1069 	BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
1070 	err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
1071 	if (err) {
1072 		ext4_std_error(sb, err);
1073 		goto out;
1074 	}
1075 
1076 	percpu_counter_dec(&sbi->s_freeinodes_counter);
1077 	if (S_ISDIR(mode))
1078 		percpu_counter_inc(&sbi->s_dirs_counter);
1079 
1080 	if (sbi->s_log_groups_per_flex) {
1081 		flex_group = ext4_flex_group(sbi, group);
1082 		atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
1083 	}
1084 
1085 	inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
1086 	/* This is the optimal IO size (for stat), not the fs block size */
1087 	inode->i_blocks = 0;
1088 	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1089 	ei->i_crtime = inode->i_mtime;
1090 
1091 	memset(ei->i_data, 0, sizeof(ei->i_data));
1092 	ei->i_dir_start_lookup = 0;
1093 	ei->i_disksize = 0;
1094 
1095 	/* Don't inherit extent flag from directory, amongst others. */
1096 	ei->i_flags =
1097 		ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1098 	ei->i_flags |= i_flags;
1099 	ei->i_file_acl = 0;
1100 	ei->i_dtime = 0;
1101 	ei->i_block_group = group;
1102 	ei->i_last_alloc_group = ~0;
1103 
1104 	ext4_set_inode_flags(inode);
1105 	if (IS_DIRSYNC(inode))
1106 		ext4_handle_sync(handle);
1107 	if (insert_inode_locked(inode) < 0) {
1108 		/*
1109 		 * Likely a bitmap corruption causing inode to be allocated
1110 		 * twice.
1111 		 */
1112 		err = -EIO;
1113 		ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1114 			   inode->i_ino);
1115 		ext4_mark_group_bitmap_corrupted(sb, group,
1116 					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
1117 		goto out;
1118 	}
1119 	inode->i_generation = prandom_u32();
1120 
1121 	/* Precompute checksum seed for inode metadata */
1122 	if (ext4_has_metadata_csum(sb)) {
1123 		__u32 csum;
1124 		__le32 inum = cpu_to_le32(inode->i_ino);
1125 		__le32 gen = cpu_to_le32(inode->i_generation);
1126 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1127 				   sizeof(inum));
1128 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1129 					      sizeof(gen));
1130 	}
1131 
1132 	ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1133 	ext4_set_inode_state(inode, EXT4_STATE_NEW);
1134 
1135 	ei->i_extra_isize = sbi->s_want_extra_isize;
1136 	ei->i_inline_off = 0;
1137 	if (ext4_has_feature_inline_data(sb))
1138 		ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1139 	ret = inode;
1140 	err = dquot_alloc_inode(inode);
1141 	if (err)
1142 		goto fail_drop;
1143 
1144 	/*
1145 	 * Since the encryption xattr will always be unique, create it first so
1146 	 * that it's less likely to end up in an external xattr block and
1147 	 * prevent its deduplication.
1148 	 */
1149 	if (encrypt) {
1150 		err = fscrypt_inherit_context(dir, inode, handle, true);
1151 		if (err)
1152 			goto fail_free_drop;
1153 	}
1154 
1155 	if (!(ei->i_flags & EXT4_EA_INODE_FL)) {
1156 		err = ext4_init_acl(handle, inode, dir);
1157 		if (err)
1158 			goto fail_free_drop;
1159 
1160 		err = ext4_init_security(handle, inode, dir, qstr);
1161 		if (err)
1162 			goto fail_free_drop;
1163 	}
1164 
1165 	if (ext4_has_feature_extents(sb)) {
1166 		/* set extent flag only for directory, file and normal symlink*/
1167 		if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1168 			ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1169 			ext4_ext_tree_init(handle, inode);
1170 		}
1171 	}
1172 
1173 	if (ext4_handle_valid(handle)) {
1174 		ei->i_sync_tid = handle->h_transaction->t_tid;
1175 		ei->i_datasync_tid = handle->h_transaction->t_tid;
1176 	}
1177 
1178 	err = ext4_mark_inode_dirty(handle, inode);
1179 	if (err) {
1180 		ext4_std_error(sb, err);
1181 		goto fail_free_drop;
1182 	}
1183 
1184 	ext4_debug("allocating inode %lu\n", inode->i_ino);
1185 	trace_ext4_allocate_inode(inode, dir, mode);
1186 	brelse(inode_bitmap_bh);
1187 	return ret;
1188 
1189 fail_free_drop:
1190 	dquot_free_inode(inode);
1191 fail_drop:
1192 	clear_nlink(inode);
1193 	unlock_new_inode(inode);
1194 out:
1195 	dquot_drop(inode);
1196 	inode->i_flags |= S_NOQUOTA;
1197 	iput(inode);
1198 	brelse(inode_bitmap_bh);
1199 	return ERR_PTR(err);
1200 }
1201 
1202 /* Verify that we are loading a valid orphan from disk */
1203 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1204 {
1205 	unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1206 	ext4_group_t block_group;
1207 	int bit;
1208 	struct buffer_head *bitmap_bh = NULL;
1209 	struct inode *inode = NULL;
1210 	int err = -EFSCORRUPTED;
1211 
1212 	if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
1213 		goto bad_orphan;
1214 
1215 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1216 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1217 	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1218 	if (IS_ERR(bitmap_bh))
1219 		return ERR_CAST(bitmap_bh);
1220 
1221 	/* Having the inode bit set should be a 100% indicator that this
1222 	 * is a valid orphan (no e2fsck run on fs).  Orphans also include
1223 	 * inodes that were being truncated, so we can't check i_nlink==0.
1224 	 */
1225 	if (!ext4_test_bit(bit, bitmap_bh->b_data))
1226 		goto bad_orphan;
1227 
1228 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1229 	if (IS_ERR(inode)) {
1230 		err = PTR_ERR(inode);
1231 		ext4_error(sb, "couldn't read orphan inode %lu (err %d)",
1232 			   ino, err);
1233 		return inode;
1234 	}
1235 
1236 	/*
1237 	 * If the orphans has i_nlinks > 0 then it should be able to
1238 	 * be truncated, otherwise it won't be removed from the orphan
1239 	 * list during processing and an infinite loop will result.
1240 	 * Similarly, it must not be a bad inode.
1241 	 */
1242 	if ((inode->i_nlink && !ext4_can_truncate(inode)) ||
1243 	    is_bad_inode(inode))
1244 		goto bad_orphan;
1245 
1246 	if (NEXT_ORPHAN(inode) > max_ino)
1247 		goto bad_orphan;
1248 	brelse(bitmap_bh);
1249 	return inode;
1250 
1251 bad_orphan:
1252 	ext4_error(sb, "bad orphan inode %lu", ino);
1253 	if (bitmap_bh)
1254 		printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1255 		       bit, (unsigned long long)bitmap_bh->b_blocknr,
1256 		       ext4_test_bit(bit, bitmap_bh->b_data));
1257 	if (inode) {
1258 		printk(KERN_ERR "is_bad_inode(inode)=%d\n",
1259 		       is_bad_inode(inode));
1260 		printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n",
1261 		       NEXT_ORPHAN(inode));
1262 		printk(KERN_ERR "max_ino=%lu\n", max_ino);
1263 		printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink);
1264 		/* Avoid freeing blocks if we got a bad deleted inode */
1265 		if (inode->i_nlink == 0)
1266 			inode->i_blocks = 0;
1267 		iput(inode);
1268 	}
1269 	brelse(bitmap_bh);
1270 	return ERR_PTR(err);
1271 }
1272 
1273 unsigned long ext4_count_free_inodes(struct super_block *sb)
1274 {
1275 	unsigned long desc_count;
1276 	struct ext4_group_desc *gdp;
1277 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1278 #ifdef EXT4FS_DEBUG
1279 	struct ext4_super_block *es;
1280 	unsigned long bitmap_count, x;
1281 	struct buffer_head *bitmap_bh = NULL;
1282 
1283 	es = EXT4_SB(sb)->s_es;
1284 	desc_count = 0;
1285 	bitmap_count = 0;
1286 	gdp = NULL;
1287 	for (i = 0; i < ngroups; i++) {
1288 		gdp = ext4_get_group_desc(sb, i, NULL);
1289 		if (!gdp)
1290 			continue;
1291 		desc_count += ext4_free_inodes_count(sb, gdp);
1292 		brelse(bitmap_bh);
1293 		bitmap_bh = ext4_read_inode_bitmap(sb, i);
1294 		if (IS_ERR(bitmap_bh)) {
1295 			bitmap_bh = NULL;
1296 			continue;
1297 		}
1298 
1299 		x = ext4_count_free(bitmap_bh->b_data,
1300 				    EXT4_INODES_PER_GROUP(sb) / 8);
1301 		printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1302 			(unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1303 		bitmap_count += x;
1304 	}
1305 	brelse(bitmap_bh);
1306 	printk(KERN_DEBUG "ext4_count_free_inodes: "
1307 	       "stored = %u, computed = %lu, %lu\n",
1308 	       le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1309 	return desc_count;
1310 #else
1311 	desc_count = 0;
1312 	for (i = 0; i < ngroups; i++) {
1313 		gdp = ext4_get_group_desc(sb, i, NULL);
1314 		if (!gdp)
1315 			continue;
1316 		desc_count += ext4_free_inodes_count(sb, gdp);
1317 		cond_resched();
1318 	}
1319 	return desc_count;
1320 #endif
1321 }
1322 
1323 /* Called at mount-time, super-block is locked */
1324 unsigned long ext4_count_dirs(struct super_block * sb)
1325 {
1326 	unsigned long count = 0;
1327 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1328 
1329 	for (i = 0; i < ngroups; i++) {
1330 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1331 		if (!gdp)
1332 			continue;
1333 		count += ext4_used_dirs_count(sb, gdp);
1334 	}
1335 	return count;
1336 }
1337 
1338 /*
1339  * Zeroes not yet zeroed inode table - just write zeroes through the whole
1340  * inode table. Must be called without any spinlock held. The only place
1341  * where it is called from on active part of filesystem is ext4lazyinit
1342  * thread, so we do not need any special locks, however we have to prevent
1343  * inode allocation from the current group, so we take alloc_sem lock, to
1344  * block ext4_new_inode() until we are finished.
1345  */
1346 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1347 				 int barrier)
1348 {
1349 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1350 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1351 	struct ext4_group_desc *gdp = NULL;
1352 	struct buffer_head *group_desc_bh;
1353 	handle_t *handle;
1354 	ext4_fsblk_t blk;
1355 	int num, ret = 0, used_blks = 0;
1356 
1357 	/* This should not happen, but just to be sure check this */
1358 	if (sb_rdonly(sb)) {
1359 		ret = 1;
1360 		goto out;
1361 	}
1362 
1363 	gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1364 	if (!gdp)
1365 		goto out;
1366 
1367 	/*
1368 	 * We do not need to lock this, because we are the only one
1369 	 * handling this flag.
1370 	 */
1371 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1372 		goto out;
1373 
1374 	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1375 	if (IS_ERR(handle)) {
1376 		ret = PTR_ERR(handle);
1377 		goto out;
1378 	}
1379 
1380 	down_write(&grp->alloc_sem);
1381 	/*
1382 	 * If inode bitmap was already initialized there may be some
1383 	 * used inodes so we need to skip blocks with used inodes in
1384 	 * inode table.
1385 	 */
1386 	if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1387 		used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1388 			    ext4_itable_unused_count(sb, gdp)),
1389 			    sbi->s_inodes_per_block);
1390 
1391 	if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group) ||
1392 	    ((group == 0) && ((EXT4_INODES_PER_GROUP(sb) -
1393 			       ext4_itable_unused_count(sb, gdp)) <
1394 			      EXT4_FIRST_INO(sb)))) {
1395 		ext4_error(sb, "Something is wrong with group %u: "
1396 			   "used itable blocks: %d; "
1397 			   "itable unused count: %u",
1398 			   group, used_blks,
1399 			   ext4_itable_unused_count(sb, gdp));
1400 		ret = 1;
1401 		goto err_out;
1402 	}
1403 
1404 	blk = ext4_inode_table(sb, gdp) + used_blks;
1405 	num = sbi->s_itb_per_group - used_blks;
1406 
1407 	BUFFER_TRACE(group_desc_bh, "get_write_access");
1408 	ret = ext4_journal_get_write_access(handle,
1409 					    group_desc_bh);
1410 	if (ret)
1411 		goto err_out;
1412 
1413 	/*
1414 	 * Skip zeroout if the inode table is full. But we set the ZEROED
1415 	 * flag anyway, because obviously, when it is full it does not need
1416 	 * further zeroing.
1417 	 */
1418 	if (unlikely(num == 0))
1419 		goto skip_zeroout;
1420 
1421 	ext4_debug("going to zero out inode table in group %d\n",
1422 		   group);
1423 	ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1424 	if (ret < 0)
1425 		goto err_out;
1426 	if (barrier)
1427 		blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1428 
1429 skip_zeroout:
1430 	ext4_lock_group(sb, group);
1431 	gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1432 	ext4_group_desc_csum_set(sb, group, gdp);
1433 	ext4_unlock_group(sb, group);
1434 
1435 	BUFFER_TRACE(group_desc_bh,
1436 		     "call ext4_handle_dirty_metadata");
1437 	ret = ext4_handle_dirty_metadata(handle, NULL,
1438 					 group_desc_bh);
1439 
1440 err_out:
1441 	up_write(&grp->alloc_sem);
1442 	ext4_journal_stop(handle);
1443 out:
1444 	return ret;
1445 }
1446