xref: /linux/fs/ext4/ialloc.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/ialloc.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  BSD ufs-inspired inode and directory allocation by
11  *  Stephen Tweedie (sct@redhat.com), 1993
12  *  Big-endian to little-endian byte-swapping/bitmaps by
13  *        David S. Miller (davem@caip.rutgers.edu), 1995
14  */
15 
16 #include <linux/time.h>
17 #include <linux/fs.h>
18 #include <linux/stat.h>
19 #include <linux/string.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/random.h>
23 #include <linux/bitops.h>
24 #include <linux/blkdev.h>
25 #include <linux/cred.h>
26 
27 #include <asm/byteorder.h>
28 
29 #include "ext4.h"
30 #include "ext4_jbd2.h"
31 #include "xattr.h"
32 #include "acl.h"
33 
34 #include <trace/events/ext4.h>
35 
36 /*
37  * ialloc.c contains the inodes allocation and deallocation routines
38  */
39 
40 /*
41  * The free inodes are managed by bitmaps.  A file system contains several
42  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
43  * block for inodes, N blocks for the inode table and data blocks.
44  *
45  * The file system contains group descriptors which are located after the
46  * super block.  Each descriptor contains the number of the bitmap block and
47  * the free blocks count in the block.
48  */
49 
50 /*
51  * To avoid calling the atomic setbit hundreds or thousands of times, we only
52  * need to use it within a single byte (to ensure we get endianness right).
53  * We can use memset for the rest of the bitmap as there are no other users.
54  */
55 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
56 {
57 	int i;
58 
59 	if (start_bit >= end_bit)
60 		return;
61 
62 	ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
63 	for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
64 		ext4_set_bit(i, bitmap);
65 	if (i < end_bit)
66 		memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
67 }
68 
69 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
70 {
71 	if (uptodate) {
72 		set_buffer_uptodate(bh);
73 		set_bitmap_uptodate(bh);
74 	}
75 	unlock_buffer(bh);
76 	put_bh(bh);
77 }
78 
79 static int ext4_validate_inode_bitmap(struct super_block *sb,
80 				      struct ext4_group_desc *desc,
81 				      ext4_group_t block_group,
82 				      struct buffer_head *bh)
83 {
84 	ext4_fsblk_t	blk;
85 	struct ext4_group_info *grp = ext4_get_group_info(sb, block_group);
86 
87 	if (buffer_verified(bh))
88 		return 0;
89 	if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
90 		return -EFSCORRUPTED;
91 
92 	ext4_lock_group(sb, block_group);
93 	if (buffer_verified(bh))
94 		goto verified;
95 	blk = ext4_inode_bitmap(sb, desc);
96 	if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
97 					   EXT4_INODES_PER_GROUP(sb) / 8) ||
98 	    ext4_simulate_fail(sb, EXT4_SIM_IBITMAP_CRC)) {
99 		ext4_unlock_group(sb, block_group);
100 		ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
101 			   "inode_bitmap = %llu", block_group, blk);
102 		ext4_mark_group_bitmap_corrupted(sb, block_group,
103 					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
104 		return -EFSBADCRC;
105 	}
106 	set_buffer_verified(bh);
107 verified:
108 	ext4_unlock_group(sb, block_group);
109 	return 0;
110 }
111 
112 /*
113  * Read the inode allocation bitmap for a given block_group, reading
114  * into the specified slot in the superblock's bitmap cache.
115  *
116  * Return buffer_head of bitmap on success or NULL.
117  */
118 static struct buffer_head *
119 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
120 {
121 	struct ext4_group_desc *desc;
122 	struct ext4_sb_info *sbi = EXT4_SB(sb);
123 	struct buffer_head *bh = NULL;
124 	ext4_fsblk_t bitmap_blk;
125 	int err;
126 
127 	desc = ext4_get_group_desc(sb, block_group, NULL);
128 	if (!desc)
129 		return ERR_PTR(-EFSCORRUPTED);
130 
131 	bitmap_blk = ext4_inode_bitmap(sb, desc);
132 	if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) ||
133 	    (bitmap_blk >= ext4_blocks_count(sbi->s_es))) {
134 		ext4_error(sb, "Invalid inode bitmap blk %llu in "
135 			   "block_group %u", bitmap_blk, block_group);
136 		ext4_mark_group_bitmap_corrupted(sb, block_group,
137 					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
138 		return ERR_PTR(-EFSCORRUPTED);
139 	}
140 	bh = sb_getblk(sb, bitmap_blk);
141 	if (unlikely(!bh)) {
142 		ext4_warning(sb, "Cannot read inode bitmap - "
143 			     "block_group = %u, inode_bitmap = %llu",
144 			     block_group, bitmap_blk);
145 		return ERR_PTR(-ENOMEM);
146 	}
147 	if (bitmap_uptodate(bh))
148 		goto verify;
149 
150 	lock_buffer(bh);
151 	if (bitmap_uptodate(bh)) {
152 		unlock_buffer(bh);
153 		goto verify;
154 	}
155 
156 	ext4_lock_group(sb, block_group);
157 	if (ext4_has_group_desc_csum(sb) &&
158 	    (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) {
159 		if (block_group == 0) {
160 			ext4_unlock_group(sb, block_group);
161 			unlock_buffer(bh);
162 			ext4_error(sb, "Inode bitmap for bg 0 marked "
163 				   "uninitialized");
164 			err = -EFSCORRUPTED;
165 			goto out;
166 		}
167 		memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
168 		ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb),
169 				     sb->s_blocksize * 8, bh->b_data);
170 		set_bitmap_uptodate(bh);
171 		set_buffer_uptodate(bh);
172 		set_buffer_verified(bh);
173 		ext4_unlock_group(sb, block_group);
174 		unlock_buffer(bh);
175 		return bh;
176 	}
177 	ext4_unlock_group(sb, block_group);
178 
179 	if (buffer_uptodate(bh)) {
180 		/*
181 		 * if not uninit if bh is uptodate,
182 		 * bitmap is also uptodate
183 		 */
184 		set_bitmap_uptodate(bh);
185 		unlock_buffer(bh);
186 		goto verify;
187 	}
188 	/*
189 	 * submit the buffer_head for reading
190 	 */
191 	trace_ext4_load_inode_bitmap(sb, block_group);
192 	bh->b_end_io = ext4_end_bitmap_read;
193 	get_bh(bh);
194 	submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
195 	wait_on_buffer(bh);
196 	ext4_simulate_fail_bh(sb, bh, EXT4_SIM_IBITMAP_EIO);
197 	if (!buffer_uptodate(bh)) {
198 		put_bh(bh);
199 		ext4_set_errno(sb, EIO);
200 		ext4_error(sb, "Cannot read inode bitmap - "
201 			   "block_group = %u, inode_bitmap = %llu",
202 			   block_group, bitmap_blk);
203 		ext4_mark_group_bitmap_corrupted(sb, block_group,
204 				EXT4_GROUP_INFO_IBITMAP_CORRUPT);
205 		return ERR_PTR(-EIO);
206 	}
207 
208 verify:
209 	err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
210 	if (err)
211 		goto out;
212 	return bh;
213 out:
214 	put_bh(bh);
215 	return ERR_PTR(err);
216 }
217 
218 /*
219  * NOTE! When we get the inode, we're the only people
220  * that have access to it, and as such there are no
221  * race conditions we have to worry about. The inode
222  * is not on the hash-lists, and it cannot be reached
223  * through the filesystem because the directory entry
224  * has been deleted earlier.
225  *
226  * HOWEVER: we must make sure that we get no aliases,
227  * which means that we have to call "clear_inode()"
228  * _before_ we mark the inode not in use in the inode
229  * bitmaps. Otherwise a newly created file might use
230  * the same inode number (not actually the same pointer
231  * though), and then we'd have two inodes sharing the
232  * same inode number and space on the harddisk.
233  */
234 void ext4_free_inode(handle_t *handle, struct inode *inode)
235 {
236 	struct super_block *sb = inode->i_sb;
237 	int is_directory;
238 	unsigned long ino;
239 	struct buffer_head *bitmap_bh = NULL;
240 	struct buffer_head *bh2;
241 	ext4_group_t block_group;
242 	unsigned long bit;
243 	struct ext4_group_desc *gdp;
244 	struct ext4_super_block *es;
245 	struct ext4_sb_info *sbi;
246 	int fatal = 0, err, count, cleared;
247 	struct ext4_group_info *grp;
248 
249 	if (!sb) {
250 		printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
251 		       "nonexistent device\n", __func__, __LINE__);
252 		return;
253 	}
254 	if (atomic_read(&inode->i_count) > 1) {
255 		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
256 			 __func__, __LINE__, inode->i_ino,
257 			 atomic_read(&inode->i_count));
258 		return;
259 	}
260 	if (inode->i_nlink) {
261 		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
262 			 __func__, __LINE__, inode->i_ino, inode->i_nlink);
263 		return;
264 	}
265 	sbi = EXT4_SB(sb);
266 
267 	ino = inode->i_ino;
268 	ext4_debug("freeing inode %lu\n", ino);
269 	trace_ext4_free_inode(inode);
270 
271 	dquot_initialize(inode);
272 	dquot_free_inode(inode);
273 
274 	is_directory = S_ISDIR(inode->i_mode);
275 
276 	/* Do this BEFORE marking the inode not in use or returning an error */
277 	ext4_clear_inode(inode);
278 
279 	es = sbi->s_es;
280 	if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
281 		ext4_error(sb, "reserved or nonexistent inode %lu", ino);
282 		goto error_return;
283 	}
284 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
285 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
286 	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
287 	/* Don't bother if the inode bitmap is corrupt. */
288 	grp = ext4_get_group_info(sb, block_group);
289 	if (IS_ERR(bitmap_bh)) {
290 		fatal = PTR_ERR(bitmap_bh);
291 		bitmap_bh = NULL;
292 		goto error_return;
293 	}
294 	if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
295 		fatal = -EFSCORRUPTED;
296 		goto error_return;
297 	}
298 
299 	BUFFER_TRACE(bitmap_bh, "get_write_access");
300 	fatal = ext4_journal_get_write_access(handle, bitmap_bh);
301 	if (fatal)
302 		goto error_return;
303 
304 	fatal = -ESRCH;
305 	gdp = ext4_get_group_desc(sb, block_group, &bh2);
306 	if (gdp) {
307 		BUFFER_TRACE(bh2, "get_write_access");
308 		fatal = ext4_journal_get_write_access(handle, bh2);
309 	}
310 	ext4_lock_group(sb, block_group);
311 	cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
312 	if (fatal || !cleared) {
313 		ext4_unlock_group(sb, block_group);
314 		goto out;
315 	}
316 
317 	count = ext4_free_inodes_count(sb, gdp) + 1;
318 	ext4_free_inodes_set(sb, gdp, count);
319 	if (is_directory) {
320 		count = ext4_used_dirs_count(sb, gdp) - 1;
321 		ext4_used_dirs_set(sb, gdp, count);
322 		percpu_counter_dec(&sbi->s_dirs_counter);
323 	}
324 	ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
325 				   EXT4_INODES_PER_GROUP(sb) / 8);
326 	ext4_group_desc_csum_set(sb, block_group, gdp);
327 	ext4_unlock_group(sb, block_group);
328 
329 	percpu_counter_inc(&sbi->s_freeinodes_counter);
330 	if (sbi->s_log_groups_per_flex) {
331 		ext4_group_t f = ext4_flex_group(sbi, block_group);
332 
333 		atomic_inc(&sbi->s_flex_groups[f].free_inodes);
334 		if (is_directory)
335 			atomic_dec(&sbi->s_flex_groups[f].used_dirs);
336 	}
337 	BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
338 	fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
339 out:
340 	if (cleared) {
341 		BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
342 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
343 		if (!fatal)
344 			fatal = err;
345 	} else {
346 		ext4_error(sb, "bit already cleared for inode %lu", ino);
347 		ext4_mark_group_bitmap_corrupted(sb, block_group,
348 					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
349 	}
350 
351 error_return:
352 	brelse(bitmap_bh);
353 	ext4_std_error(sb, fatal);
354 }
355 
356 struct orlov_stats {
357 	__u64 free_clusters;
358 	__u32 free_inodes;
359 	__u32 used_dirs;
360 };
361 
362 /*
363  * Helper function for Orlov's allocator; returns critical information
364  * for a particular block group or flex_bg.  If flex_size is 1, then g
365  * is a block group number; otherwise it is flex_bg number.
366  */
367 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
368 			    int flex_size, struct orlov_stats *stats)
369 {
370 	struct ext4_group_desc *desc;
371 	struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
372 
373 	if (flex_size > 1) {
374 		stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
375 		stats->free_clusters = atomic64_read(&flex_group[g].free_clusters);
376 		stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
377 		return;
378 	}
379 
380 	desc = ext4_get_group_desc(sb, g, NULL);
381 	if (desc) {
382 		stats->free_inodes = ext4_free_inodes_count(sb, desc);
383 		stats->free_clusters = ext4_free_group_clusters(sb, desc);
384 		stats->used_dirs = ext4_used_dirs_count(sb, desc);
385 	} else {
386 		stats->free_inodes = 0;
387 		stats->free_clusters = 0;
388 		stats->used_dirs = 0;
389 	}
390 }
391 
392 /*
393  * Orlov's allocator for directories.
394  *
395  * We always try to spread first-level directories.
396  *
397  * If there are blockgroups with both free inodes and free blocks counts
398  * not worse than average we return one with smallest directory count.
399  * Otherwise we simply return a random group.
400  *
401  * For the rest rules look so:
402  *
403  * It's OK to put directory into a group unless
404  * it has too many directories already (max_dirs) or
405  * it has too few free inodes left (min_inodes) or
406  * it has too few free blocks left (min_blocks) or
407  * Parent's group is preferred, if it doesn't satisfy these
408  * conditions we search cyclically through the rest. If none
409  * of the groups look good we just look for a group with more
410  * free inodes than average (starting at parent's group).
411  */
412 
413 static int find_group_orlov(struct super_block *sb, struct inode *parent,
414 			    ext4_group_t *group, umode_t mode,
415 			    const struct qstr *qstr)
416 {
417 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
418 	struct ext4_sb_info *sbi = EXT4_SB(sb);
419 	ext4_group_t real_ngroups = ext4_get_groups_count(sb);
420 	int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
421 	unsigned int freei, avefreei, grp_free;
422 	ext4_fsblk_t freeb, avefreec;
423 	unsigned int ndirs;
424 	int max_dirs, min_inodes;
425 	ext4_grpblk_t min_clusters;
426 	ext4_group_t i, grp, g, ngroups;
427 	struct ext4_group_desc *desc;
428 	struct orlov_stats stats;
429 	int flex_size = ext4_flex_bg_size(sbi);
430 	struct dx_hash_info hinfo;
431 
432 	ngroups = real_ngroups;
433 	if (flex_size > 1) {
434 		ngroups = (real_ngroups + flex_size - 1) >>
435 			sbi->s_log_groups_per_flex;
436 		parent_group >>= sbi->s_log_groups_per_flex;
437 	}
438 
439 	freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
440 	avefreei = freei / ngroups;
441 	freeb = EXT4_C2B(sbi,
442 		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
443 	avefreec = freeb;
444 	do_div(avefreec, ngroups);
445 	ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
446 
447 	if (S_ISDIR(mode) &&
448 	    ((parent == d_inode(sb->s_root)) ||
449 	     (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
450 		int best_ndir = inodes_per_group;
451 		int ret = -1;
452 
453 		if (qstr) {
454 			hinfo.hash_version = DX_HASH_HALF_MD4;
455 			hinfo.seed = sbi->s_hash_seed;
456 			ext4fs_dirhash(parent, qstr->name, qstr->len, &hinfo);
457 			grp = hinfo.hash;
458 		} else
459 			grp = prandom_u32();
460 		parent_group = (unsigned)grp % ngroups;
461 		for (i = 0; i < ngroups; i++) {
462 			g = (parent_group + i) % ngroups;
463 			get_orlov_stats(sb, g, flex_size, &stats);
464 			if (!stats.free_inodes)
465 				continue;
466 			if (stats.used_dirs >= best_ndir)
467 				continue;
468 			if (stats.free_inodes < avefreei)
469 				continue;
470 			if (stats.free_clusters < avefreec)
471 				continue;
472 			grp = g;
473 			ret = 0;
474 			best_ndir = stats.used_dirs;
475 		}
476 		if (ret)
477 			goto fallback;
478 	found_flex_bg:
479 		if (flex_size == 1) {
480 			*group = grp;
481 			return 0;
482 		}
483 
484 		/*
485 		 * We pack inodes at the beginning of the flexgroup's
486 		 * inode tables.  Block allocation decisions will do
487 		 * something similar, although regular files will
488 		 * start at 2nd block group of the flexgroup.  See
489 		 * ext4_ext_find_goal() and ext4_find_near().
490 		 */
491 		grp *= flex_size;
492 		for (i = 0; i < flex_size; i++) {
493 			if (grp+i >= real_ngroups)
494 				break;
495 			desc = ext4_get_group_desc(sb, grp+i, NULL);
496 			if (desc && ext4_free_inodes_count(sb, desc)) {
497 				*group = grp+i;
498 				return 0;
499 			}
500 		}
501 		goto fallback;
502 	}
503 
504 	max_dirs = ndirs / ngroups + inodes_per_group / 16;
505 	min_inodes = avefreei - inodes_per_group*flex_size / 4;
506 	if (min_inodes < 1)
507 		min_inodes = 1;
508 	min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
509 
510 	/*
511 	 * Start looking in the flex group where we last allocated an
512 	 * inode for this parent directory
513 	 */
514 	if (EXT4_I(parent)->i_last_alloc_group != ~0) {
515 		parent_group = EXT4_I(parent)->i_last_alloc_group;
516 		if (flex_size > 1)
517 			parent_group >>= sbi->s_log_groups_per_flex;
518 	}
519 
520 	for (i = 0; i < ngroups; i++) {
521 		grp = (parent_group + i) % ngroups;
522 		get_orlov_stats(sb, grp, flex_size, &stats);
523 		if (stats.used_dirs >= max_dirs)
524 			continue;
525 		if (stats.free_inodes < min_inodes)
526 			continue;
527 		if (stats.free_clusters < min_clusters)
528 			continue;
529 		goto found_flex_bg;
530 	}
531 
532 fallback:
533 	ngroups = real_ngroups;
534 	avefreei = freei / ngroups;
535 fallback_retry:
536 	parent_group = EXT4_I(parent)->i_block_group;
537 	for (i = 0; i < ngroups; i++) {
538 		grp = (parent_group + i) % ngroups;
539 		desc = ext4_get_group_desc(sb, grp, NULL);
540 		if (desc) {
541 			grp_free = ext4_free_inodes_count(sb, desc);
542 			if (grp_free && grp_free >= avefreei) {
543 				*group = grp;
544 				return 0;
545 			}
546 		}
547 	}
548 
549 	if (avefreei) {
550 		/*
551 		 * The free-inodes counter is approximate, and for really small
552 		 * filesystems the above test can fail to find any blockgroups
553 		 */
554 		avefreei = 0;
555 		goto fallback_retry;
556 	}
557 
558 	return -1;
559 }
560 
561 static int find_group_other(struct super_block *sb, struct inode *parent,
562 			    ext4_group_t *group, umode_t mode)
563 {
564 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
565 	ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
566 	struct ext4_group_desc *desc;
567 	int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
568 
569 	/*
570 	 * Try to place the inode is the same flex group as its
571 	 * parent.  If we can't find space, use the Orlov algorithm to
572 	 * find another flex group, and store that information in the
573 	 * parent directory's inode information so that use that flex
574 	 * group for future allocations.
575 	 */
576 	if (flex_size > 1) {
577 		int retry = 0;
578 
579 	try_again:
580 		parent_group &= ~(flex_size-1);
581 		last = parent_group + flex_size;
582 		if (last > ngroups)
583 			last = ngroups;
584 		for  (i = parent_group; i < last; i++) {
585 			desc = ext4_get_group_desc(sb, i, NULL);
586 			if (desc && ext4_free_inodes_count(sb, desc)) {
587 				*group = i;
588 				return 0;
589 			}
590 		}
591 		if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
592 			retry = 1;
593 			parent_group = EXT4_I(parent)->i_last_alloc_group;
594 			goto try_again;
595 		}
596 		/*
597 		 * If this didn't work, use the Orlov search algorithm
598 		 * to find a new flex group; we pass in the mode to
599 		 * avoid the topdir algorithms.
600 		 */
601 		*group = parent_group + flex_size;
602 		if (*group > ngroups)
603 			*group = 0;
604 		return find_group_orlov(sb, parent, group, mode, NULL);
605 	}
606 
607 	/*
608 	 * Try to place the inode in its parent directory
609 	 */
610 	*group = parent_group;
611 	desc = ext4_get_group_desc(sb, *group, NULL);
612 	if (desc && ext4_free_inodes_count(sb, desc) &&
613 	    ext4_free_group_clusters(sb, desc))
614 		return 0;
615 
616 	/*
617 	 * We're going to place this inode in a different blockgroup from its
618 	 * parent.  We want to cause files in a common directory to all land in
619 	 * the same blockgroup.  But we want files which are in a different
620 	 * directory which shares a blockgroup with our parent to land in a
621 	 * different blockgroup.
622 	 *
623 	 * So add our directory's i_ino into the starting point for the hash.
624 	 */
625 	*group = (*group + parent->i_ino) % ngroups;
626 
627 	/*
628 	 * Use a quadratic hash to find a group with a free inode and some free
629 	 * blocks.
630 	 */
631 	for (i = 1; i < ngroups; i <<= 1) {
632 		*group += i;
633 		if (*group >= ngroups)
634 			*group -= ngroups;
635 		desc = ext4_get_group_desc(sb, *group, NULL);
636 		if (desc && ext4_free_inodes_count(sb, desc) &&
637 		    ext4_free_group_clusters(sb, desc))
638 			return 0;
639 	}
640 
641 	/*
642 	 * That failed: try linear search for a free inode, even if that group
643 	 * has no free blocks.
644 	 */
645 	*group = parent_group;
646 	for (i = 0; i < ngroups; i++) {
647 		if (++*group >= ngroups)
648 			*group = 0;
649 		desc = ext4_get_group_desc(sb, *group, NULL);
650 		if (desc && ext4_free_inodes_count(sb, desc))
651 			return 0;
652 	}
653 
654 	return -1;
655 }
656 
657 /*
658  * In no journal mode, if an inode has recently been deleted, we want
659  * to avoid reusing it until we're reasonably sure the inode table
660  * block has been written back to disk.  (Yes, these values are
661  * somewhat arbitrary...)
662  */
663 #define RECENTCY_MIN	5
664 #define RECENTCY_DIRTY	300
665 
666 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
667 {
668 	struct ext4_group_desc	*gdp;
669 	struct ext4_inode	*raw_inode;
670 	struct buffer_head	*bh;
671 	int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
672 	int offset, ret = 0;
673 	int recentcy = RECENTCY_MIN;
674 	u32 dtime, now;
675 
676 	gdp = ext4_get_group_desc(sb, group, NULL);
677 	if (unlikely(!gdp))
678 		return 0;
679 
680 	bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) +
681 		       (ino / inodes_per_block));
682 	if (!bh || !buffer_uptodate(bh))
683 		/*
684 		 * If the block is not in the buffer cache, then it
685 		 * must have been written out.
686 		 */
687 		goto out;
688 
689 	offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
690 	raw_inode = (struct ext4_inode *) (bh->b_data + offset);
691 
692 	/* i_dtime is only 32 bits on disk, but we only care about relative
693 	 * times in the range of a few minutes (i.e. long enough to sync a
694 	 * recently-deleted inode to disk), so using the low 32 bits of the
695 	 * clock (a 68 year range) is enough, see time_before32() */
696 	dtime = le32_to_cpu(raw_inode->i_dtime);
697 	now = ktime_get_real_seconds();
698 	if (buffer_dirty(bh))
699 		recentcy += RECENTCY_DIRTY;
700 
701 	if (dtime && time_before32(dtime, now) &&
702 	    time_before32(now, dtime + recentcy))
703 		ret = 1;
704 out:
705 	brelse(bh);
706 	return ret;
707 }
708 
709 static int find_inode_bit(struct super_block *sb, ext4_group_t group,
710 			  struct buffer_head *bitmap, unsigned long *ino)
711 {
712 next:
713 	*ino = ext4_find_next_zero_bit((unsigned long *)
714 				       bitmap->b_data,
715 				       EXT4_INODES_PER_GROUP(sb), *ino);
716 	if (*ino >= EXT4_INODES_PER_GROUP(sb))
717 		return 0;
718 
719 	if ((EXT4_SB(sb)->s_journal == NULL) &&
720 	    recently_deleted(sb, group, *ino)) {
721 		*ino = *ino + 1;
722 		if (*ino < EXT4_INODES_PER_GROUP(sb))
723 			goto next;
724 		return 0;
725 	}
726 
727 	return 1;
728 }
729 
730 /*
731  * There are two policies for allocating an inode.  If the new inode is
732  * a directory, then a forward search is made for a block group with both
733  * free space and a low directory-to-inode ratio; if that fails, then of
734  * the groups with above-average free space, that group with the fewest
735  * directories already is chosen.
736  *
737  * For other inodes, search forward from the parent directory's block
738  * group to find a free inode.
739  */
740 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
741 			       umode_t mode, const struct qstr *qstr,
742 			       __u32 goal, uid_t *owner, __u32 i_flags,
743 			       int handle_type, unsigned int line_no,
744 			       int nblocks)
745 {
746 	struct super_block *sb;
747 	struct buffer_head *inode_bitmap_bh = NULL;
748 	struct buffer_head *group_desc_bh;
749 	ext4_group_t ngroups, group = 0;
750 	unsigned long ino = 0;
751 	struct inode *inode;
752 	struct ext4_group_desc *gdp = NULL;
753 	struct ext4_inode_info *ei;
754 	struct ext4_sb_info *sbi;
755 	int ret2, err;
756 	struct inode *ret;
757 	ext4_group_t i;
758 	ext4_group_t flex_group;
759 	struct ext4_group_info *grp;
760 	int encrypt = 0;
761 
762 	/* Cannot create files in a deleted directory */
763 	if (!dir || !dir->i_nlink)
764 		return ERR_PTR(-EPERM);
765 
766 	sb = dir->i_sb;
767 	sbi = EXT4_SB(sb);
768 
769 	if (unlikely(ext4_forced_shutdown(sbi)))
770 		return ERR_PTR(-EIO);
771 
772 	if ((IS_ENCRYPTED(dir) || DUMMY_ENCRYPTION_ENABLED(sbi)) &&
773 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) &&
774 	    !(i_flags & EXT4_EA_INODE_FL)) {
775 		err = fscrypt_get_encryption_info(dir);
776 		if (err)
777 			return ERR_PTR(err);
778 		if (!fscrypt_has_encryption_key(dir))
779 			return ERR_PTR(-ENOKEY);
780 		encrypt = 1;
781 	}
782 
783 	if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) {
784 #ifdef CONFIG_EXT4_FS_POSIX_ACL
785 		struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT);
786 
787 		if (IS_ERR(p))
788 			return ERR_CAST(p);
789 		if (p) {
790 			int acl_size = p->a_count * sizeof(ext4_acl_entry);
791 
792 			nblocks += (S_ISDIR(mode) ? 2 : 1) *
793 				__ext4_xattr_set_credits(sb, NULL /* inode */,
794 					NULL /* block_bh */, acl_size,
795 					true /* is_create */);
796 			posix_acl_release(p);
797 		}
798 #endif
799 
800 #ifdef CONFIG_SECURITY
801 		{
802 			int num_security_xattrs = 1;
803 
804 #ifdef CONFIG_INTEGRITY
805 			num_security_xattrs++;
806 #endif
807 			/*
808 			 * We assume that security xattrs are never
809 			 * more than 1k.  In practice they are under
810 			 * 128 bytes.
811 			 */
812 			nblocks += num_security_xattrs *
813 				__ext4_xattr_set_credits(sb, NULL /* inode */,
814 					NULL /* block_bh */, 1024,
815 					true /* is_create */);
816 		}
817 #endif
818 		if (encrypt)
819 			nblocks += __ext4_xattr_set_credits(sb,
820 					NULL /* inode */, NULL /* block_bh */,
821 					FSCRYPT_SET_CONTEXT_MAX_SIZE,
822 					true /* is_create */);
823 	}
824 
825 	ngroups = ext4_get_groups_count(sb);
826 	trace_ext4_request_inode(dir, mode);
827 	inode = new_inode(sb);
828 	if (!inode)
829 		return ERR_PTR(-ENOMEM);
830 	ei = EXT4_I(inode);
831 
832 	/*
833 	 * Initialize owners and quota early so that we don't have to account
834 	 * for quota initialization worst case in standard inode creating
835 	 * transaction
836 	 */
837 	if (owner) {
838 		inode->i_mode = mode;
839 		i_uid_write(inode, owner[0]);
840 		i_gid_write(inode, owner[1]);
841 	} else if (test_opt(sb, GRPID)) {
842 		inode->i_mode = mode;
843 		inode->i_uid = current_fsuid();
844 		inode->i_gid = dir->i_gid;
845 	} else
846 		inode_init_owner(inode, dir, mode);
847 
848 	if (ext4_has_feature_project(sb) &&
849 	    ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT))
850 		ei->i_projid = EXT4_I(dir)->i_projid;
851 	else
852 		ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID);
853 
854 	err = dquot_initialize(inode);
855 	if (err)
856 		goto out;
857 
858 	if (!goal)
859 		goal = sbi->s_inode_goal;
860 
861 	if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
862 		group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
863 		ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
864 		ret2 = 0;
865 		goto got_group;
866 	}
867 
868 	if (S_ISDIR(mode))
869 		ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
870 	else
871 		ret2 = find_group_other(sb, dir, &group, mode);
872 
873 got_group:
874 	EXT4_I(dir)->i_last_alloc_group = group;
875 	err = -ENOSPC;
876 	if (ret2 == -1)
877 		goto out;
878 
879 	/*
880 	 * Normally we will only go through one pass of this loop,
881 	 * unless we get unlucky and it turns out the group we selected
882 	 * had its last inode grabbed by someone else.
883 	 */
884 	for (i = 0; i < ngroups; i++, ino = 0) {
885 		err = -EIO;
886 
887 		gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
888 		if (!gdp)
889 			goto out;
890 
891 		/*
892 		 * Check free inodes count before loading bitmap.
893 		 */
894 		if (ext4_free_inodes_count(sb, gdp) == 0)
895 			goto next_group;
896 
897 		grp = ext4_get_group_info(sb, group);
898 		/* Skip groups with already-known suspicious inode tables */
899 		if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
900 			goto next_group;
901 
902 		brelse(inode_bitmap_bh);
903 		inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
904 		/* Skip groups with suspicious inode tables */
905 		if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) ||
906 		    IS_ERR(inode_bitmap_bh)) {
907 			inode_bitmap_bh = NULL;
908 			goto next_group;
909 		}
910 
911 repeat_in_this_group:
912 		ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
913 		if (!ret2)
914 			goto next_group;
915 
916 		if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) {
917 			ext4_error(sb, "reserved inode found cleared - "
918 				   "inode=%lu", ino + 1);
919 			ext4_mark_group_bitmap_corrupted(sb, group,
920 					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
921 			goto next_group;
922 		}
923 
924 		if (!handle) {
925 			BUG_ON(nblocks <= 0);
926 			handle = __ext4_journal_start_sb(dir->i_sb, line_no,
927 				 handle_type, nblocks, 0,
928 				 ext4_trans_default_revoke_credits(sb));
929 			if (IS_ERR(handle)) {
930 				err = PTR_ERR(handle);
931 				ext4_std_error(sb, err);
932 				goto out;
933 			}
934 		}
935 		BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
936 		err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
937 		if (err) {
938 			ext4_std_error(sb, err);
939 			goto out;
940 		}
941 		ext4_lock_group(sb, group);
942 		ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
943 		if (ret2) {
944 			/* Someone already took the bit. Repeat the search
945 			 * with lock held.
946 			 */
947 			ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
948 			if (ret2) {
949 				ext4_set_bit(ino, inode_bitmap_bh->b_data);
950 				ret2 = 0;
951 			} else {
952 				ret2 = 1; /* we didn't grab the inode */
953 			}
954 		}
955 		ext4_unlock_group(sb, group);
956 		ino++;		/* the inode bitmap is zero-based */
957 		if (!ret2)
958 			goto got; /* we grabbed the inode! */
959 
960 		if (ino < EXT4_INODES_PER_GROUP(sb))
961 			goto repeat_in_this_group;
962 next_group:
963 		if (++group == ngroups)
964 			group = 0;
965 	}
966 	err = -ENOSPC;
967 	goto out;
968 
969 got:
970 	BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
971 	err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
972 	if (err) {
973 		ext4_std_error(sb, err);
974 		goto out;
975 	}
976 
977 	BUFFER_TRACE(group_desc_bh, "get_write_access");
978 	err = ext4_journal_get_write_access(handle, group_desc_bh);
979 	if (err) {
980 		ext4_std_error(sb, err);
981 		goto out;
982 	}
983 
984 	/* We may have to initialize the block bitmap if it isn't already */
985 	if (ext4_has_group_desc_csum(sb) &&
986 	    gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
987 		struct buffer_head *block_bitmap_bh;
988 
989 		block_bitmap_bh = ext4_read_block_bitmap(sb, group);
990 		if (IS_ERR(block_bitmap_bh)) {
991 			err = PTR_ERR(block_bitmap_bh);
992 			goto out;
993 		}
994 		BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
995 		err = ext4_journal_get_write_access(handle, block_bitmap_bh);
996 		if (err) {
997 			brelse(block_bitmap_bh);
998 			ext4_std_error(sb, err);
999 			goto out;
1000 		}
1001 
1002 		BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
1003 		err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
1004 
1005 		/* recheck and clear flag under lock if we still need to */
1006 		ext4_lock_group(sb, group);
1007 		if (ext4_has_group_desc_csum(sb) &&
1008 		    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
1009 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1010 			ext4_free_group_clusters_set(sb, gdp,
1011 				ext4_free_clusters_after_init(sb, group, gdp));
1012 			ext4_block_bitmap_csum_set(sb, group, gdp,
1013 						   block_bitmap_bh);
1014 			ext4_group_desc_csum_set(sb, group, gdp);
1015 		}
1016 		ext4_unlock_group(sb, group);
1017 		brelse(block_bitmap_bh);
1018 
1019 		if (err) {
1020 			ext4_std_error(sb, err);
1021 			goto out;
1022 		}
1023 	}
1024 
1025 	/* Update the relevant bg descriptor fields */
1026 	if (ext4_has_group_desc_csum(sb)) {
1027 		int free;
1028 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1029 
1030 		down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
1031 		ext4_lock_group(sb, group); /* while we modify the bg desc */
1032 		free = EXT4_INODES_PER_GROUP(sb) -
1033 			ext4_itable_unused_count(sb, gdp);
1034 		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
1035 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
1036 			free = 0;
1037 		}
1038 		/*
1039 		 * Check the relative inode number against the last used
1040 		 * relative inode number in this group. if it is greater
1041 		 * we need to update the bg_itable_unused count
1042 		 */
1043 		if (ino > free)
1044 			ext4_itable_unused_set(sb, gdp,
1045 					(EXT4_INODES_PER_GROUP(sb) - ino));
1046 		up_read(&grp->alloc_sem);
1047 	} else {
1048 		ext4_lock_group(sb, group);
1049 	}
1050 
1051 	ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
1052 	if (S_ISDIR(mode)) {
1053 		ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
1054 		if (sbi->s_log_groups_per_flex) {
1055 			ext4_group_t f = ext4_flex_group(sbi, group);
1056 
1057 			atomic_inc(&sbi->s_flex_groups[f].used_dirs);
1058 		}
1059 	}
1060 	if (ext4_has_group_desc_csum(sb)) {
1061 		ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
1062 					   EXT4_INODES_PER_GROUP(sb) / 8);
1063 		ext4_group_desc_csum_set(sb, group, gdp);
1064 	}
1065 	ext4_unlock_group(sb, group);
1066 
1067 	BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
1068 	err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
1069 	if (err) {
1070 		ext4_std_error(sb, err);
1071 		goto out;
1072 	}
1073 
1074 	percpu_counter_dec(&sbi->s_freeinodes_counter);
1075 	if (S_ISDIR(mode))
1076 		percpu_counter_inc(&sbi->s_dirs_counter);
1077 
1078 	if (sbi->s_log_groups_per_flex) {
1079 		flex_group = ext4_flex_group(sbi, group);
1080 		atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
1081 	}
1082 
1083 	inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
1084 	/* This is the optimal IO size (for stat), not the fs block size */
1085 	inode->i_blocks = 0;
1086 	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1087 	ei->i_crtime = inode->i_mtime;
1088 
1089 	memset(ei->i_data, 0, sizeof(ei->i_data));
1090 	ei->i_dir_start_lookup = 0;
1091 	ei->i_disksize = 0;
1092 
1093 	/* Don't inherit extent flag from directory, amongst others. */
1094 	ei->i_flags =
1095 		ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1096 	ei->i_flags |= i_flags;
1097 	ei->i_file_acl = 0;
1098 	ei->i_dtime = 0;
1099 	ei->i_block_group = group;
1100 	ei->i_last_alloc_group = ~0;
1101 
1102 	ext4_set_inode_flags(inode);
1103 	if (IS_DIRSYNC(inode))
1104 		ext4_handle_sync(handle);
1105 	if (insert_inode_locked(inode) < 0) {
1106 		/*
1107 		 * Likely a bitmap corruption causing inode to be allocated
1108 		 * twice.
1109 		 */
1110 		err = -EIO;
1111 		ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1112 			   inode->i_ino);
1113 		ext4_mark_group_bitmap_corrupted(sb, group,
1114 					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
1115 		goto out;
1116 	}
1117 	inode->i_generation = prandom_u32();
1118 
1119 	/* Precompute checksum seed for inode metadata */
1120 	if (ext4_has_metadata_csum(sb)) {
1121 		__u32 csum;
1122 		__le32 inum = cpu_to_le32(inode->i_ino);
1123 		__le32 gen = cpu_to_le32(inode->i_generation);
1124 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1125 				   sizeof(inum));
1126 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1127 					      sizeof(gen));
1128 	}
1129 
1130 	ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1131 	ext4_set_inode_state(inode, EXT4_STATE_NEW);
1132 
1133 	ei->i_extra_isize = sbi->s_want_extra_isize;
1134 	ei->i_inline_off = 0;
1135 	if (ext4_has_feature_inline_data(sb))
1136 		ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1137 	ret = inode;
1138 	err = dquot_alloc_inode(inode);
1139 	if (err)
1140 		goto fail_drop;
1141 
1142 	/*
1143 	 * Since the encryption xattr will always be unique, create it first so
1144 	 * that it's less likely to end up in an external xattr block and
1145 	 * prevent its deduplication.
1146 	 */
1147 	if (encrypt) {
1148 		err = fscrypt_inherit_context(dir, inode, handle, true);
1149 		if (err)
1150 			goto fail_free_drop;
1151 	}
1152 
1153 	if (!(ei->i_flags & EXT4_EA_INODE_FL)) {
1154 		err = ext4_init_acl(handle, inode, dir);
1155 		if (err)
1156 			goto fail_free_drop;
1157 
1158 		err = ext4_init_security(handle, inode, dir, qstr);
1159 		if (err)
1160 			goto fail_free_drop;
1161 	}
1162 
1163 	if (ext4_has_feature_extents(sb)) {
1164 		/* set extent flag only for directory, file and normal symlink*/
1165 		if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1166 			ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1167 			ext4_ext_tree_init(handle, inode);
1168 		}
1169 	}
1170 
1171 	if (ext4_handle_valid(handle)) {
1172 		ei->i_sync_tid = handle->h_transaction->t_tid;
1173 		ei->i_datasync_tid = handle->h_transaction->t_tid;
1174 	}
1175 
1176 	err = ext4_mark_inode_dirty(handle, inode);
1177 	if (err) {
1178 		ext4_std_error(sb, err);
1179 		goto fail_free_drop;
1180 	}
1181 
1182 	ext4_debug("allocating inode %lu\n", inode->i_ino);
1183 	trace_ext4_allocate_inode(inode, dir, mode);
1184 	brelse(inode_bitmap_bh);
1185 	return ret;
1186 
1187 fail_free_drop:
1188 	dquot_free_inode(inode);
1189 fail_drop:
1190 	clear_nlink(inode);
1191 	unlock_new_inode(inode);
1192 out:
1193 	dquot_drop(inode);
1194 	inode->i_flags |= S_NOQUOTA;
1195 	iput(inode);
1196 	brelse(inode_bitmap_bh);
1197 	return ERR_PTR(err);
1198 }
1199 
1200 /* Verify that we are loading a valid orphan from disk */
1201 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1202 {
1203 	unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1204 	ext4_group_t block_group;
1205 	int bit;
1206 	struct buffer_head *bitmap_bh = NULL;
1207 	struct inode *inode = NULL;
1208 	int err = -EFSCORRUPTED;
1209 
1210 	if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
1211 		goto bad_orphan;
1212 
1213 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1214 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1215 	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1216 	if (IS_ERR(bitmap_bh))
1217 		return ERR_CAST(bitmap_bh);
1218 
1219 	/* Having the inode bit set should be a 100% indicator that this
1220 	 * is a valid orphan (no e2fsck run on fs).  Orphans also include
1221 	 * inodes that were being truncated, so we can't check i_nlink==0.
1222 	 */
1223 	if (!ext4_test_bit(bit, bitmap_bh->b_data))
1224 		goto bad_orphan;
1225 
1226 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1227 	if (IS_ERR(inode)) {
1228 		err = PTR_ERR(inode);
1229 		ext4_set_errno(sb, -err);
1230 		ext4_error(sb, "couldn't read orphan inode %lu (err %d)",
1231 			   ino, err);
1232 		return inode;
1233 	}
1234 
1235 	/*
1236 	 * If the orphans has i_nlinks > 0 then it should be able to
1237 	 * be truncated, otherwise it won't be removed from the orphan
1238 	 * list during processing and an infinite loop will result.
1239 	 * Similarly, it must not be a bad inode.
1240 	 */
1241 	if ((inode->i_nlink && !ext4_can_truncate(inode)) ||
1242 	    is_bad_inode(inode))
1243 		goto bad_orphan;
1244 
1245 	if (NEXT_ORPHAN(inode) > max_ino)
1246 		goto bad_orphan;
1247 	brelse(bitmap_bh);
1248 	return inode;
1249 
1250 bad_orphan:
1251 	ext4_error(sb, "bad orphan inode %lu", ino);
1252 	if (bitmap_bh)
1253 		printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1254 		       bit, (unsigned long long)bitmap_bh->b_blocknr,
1255 		       ext4_test_bit(bit, bitmap_bh->b_data));
1256 	if (inode) {
1257 		printk(KERN_ERR "is_bad_inode(inode)=%d\n",
1258 		       is_bad_inode(inode));
1259 		printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n",
1260 		       NEXT_ORPHAN(inode));
1261 		printk(KERN_ERR "max_ino=%lu\n", max_ino);
1262 		printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink);
1263 		/* Avoid freeing blocks if we got a bad deleted inode */
1264 		if (inode->i_nlink == 0)
1265 			inode->i_blocks = 0;
1266 		iput(inode);
1267 	}
1268 	brelse(bitmap_bh);
1269 	return ERR_PTR(err);
1270 }
1271 
1272 unsigned long ext4_count_free_inodes(struct super_block *sb)
1273 {
1274 	unsigned long desc_count;
1275 	struct ext4_group_desc *gdp;
1276 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1277 #ifdef EXT4FS_DEBUG
1278 	struct ext4_super_block *es;
1279 	unsigned long bitmap_count, x;
1280 	struct buffer_head *bitmap_bh = NULL;
1281 
1282 	es = EXT4_SB(sb)->s_es;
1283 	desc_count = 0;
1284 	bitmap_count = 0;
1285 	gdp = NULL;
1286 	for (i = 0; i < ngroups; i++) {
1287 		gdp = ext4_get_group_desc(sb, i, NULL);
1288 		if (!gdp)
1289 			continue;
1290 		desc_count += ext4_free_inodes_count(sb, gdp);
1291 		brelse(bitmap_bh);
1292 		bitmap_bh = ext4_read_inode_bitmap(sb, i);
1293 		if (IS_ERR(bitmap_bh)) {
1294 			bitmap_bh = NULL;
1295 			continue;
1296 		}
1297 
1298 		x = ext4_count_free(bitmap_bh->b_data,
1299 				    EXT4_INODES_PER_GROUP(sb) / 8);
1300 		printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1301 			(unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1302 		bitmap_count += x;
1303 	}
1304 	brelse(bitmap_bh);
1305 	printk(KERN_DEBUG "ext4_count_free_inodes: "
1306 	       "stored = %u, computed = %lu, %lu\n",
1307 	       le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1308 	return desc_count;
1309 #else
1310 	desc_count = 0;
1311 	for (i = 0; i < ngroups; i++) {
1312 		gdp = ext4_get_group_desc(sb, i, NULL);
1313 		if (!gdp)
1314 			continue;
1315 		desc_count += ext4_free_inodes_count(sb, gdp);
1316 		cond_resched();
1317 	}
1318 	return desc_count;
1319 #endif
1320 }
1321 
1322 /* Called at mount-time, super-block is locked */
1323 unsigned long ext4_count_dirs(struct super_block * sb)
1324 {
1325 	unsigned long count = 0;
1326 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1327 
1328 	for (i = 0; i < ngroups; i++) {
1329 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1330 		if (!gdp)
1331 			continue;
1332 		count += ext4_used_dirs_count(sb, gdp);
1333 	}
1334 	return count;
1335 }
1336 
1337 /*
1338  * Zeroes not yet zeroed inode table - just write zeroes through the whole
1339  * inode table. Must be called without any spinlock held. The only place
1340  * where it is called from on active part of filesystem is ext4lazyinit
1341  * thread, so we do not need any special locks, however we have to prevent
1342  * inode allocation from the current group, so we take alloc_sem lock, to
1343  * block ext4_new_inode() until we are finished.
1344  */
1345 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1346 				 int barrier)
1347 {
1348 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1349 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1350 	struct ext4_group_desc *gdp = NULL;
1351 	struct buffer_head *group_desc_bh;
1352 	handle_t *handle;
1353 	ext4_fsblk_t blk;
1354 	int num, ret = 0, used_blks = 0;
1355 
1356 	/* This should not happen, but just to be sure check this */
1357 	if (sb_rdonly(sb)) {
1358 		ret = 1;
1359 		goto out;
1360 	}
1361 
1362 	gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1363 	if (!gdp)
1364 		goto out;
1365 
1366 	/*
1367 	 * We do not need to lock this, because we are the only one
1368 	 * handling this flag.
1369 	 */
1370 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1371 		goto out;
1372 
1373 	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1374 	if (IS_ERR(handle)) {
1375 		ret = PTR_ERR(handle);
1376 		goto out;
1377 	}
1378 
1379 	down_write(&grp->alloc_sem);
1380 	/*
1381 	 * If inode bitmap was already initialized there may be some
1382 	 * used inodes so we need to skip blocks with used inodes in
1383 	 * inode table.
1384 	 */
1385 	if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1386 		used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1387 			    ext4_itable_unused_count(sb, gdp)),
1388 			    sbi->s_inodes_per_block);
1389 
1390 	if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group) ||
1391 	    ((group == 0) && ((EXT4_INODES_PER_GROUP(sb) -
1392 			       ext4_itable_unused_count(sb, gdp)) <
1393 			      EXT4_FIRST_INO(sb)))) {
1394 		ext4_error(sb, "Something is wrong with group %u: "
1395 			   "used itable blocks: %d; "
1396 			   "itable unused count: %u",
1397 			   group, used_blks,
1398 			   ext4_itable_unused_count(sb, gdp));
1399 		ret = 1;
1400 		goto err_out;
1401 	}
1402 
1403 	blk = ext4_inode_table(sb, gdp) + used_blks;
1404 	num = sbi->s_itb_per_group - used_blks;
1405 
1406 	BUFFER_TRACE(group_desc_bh, "get_write_access");
1407 	ret = ext4_journal_get_write_access(handle,
1408 					    group_desc_bh);
1409 	if (ret)
1410 		goto err_out;
1411 
1412 	/*
1413 	 * Skip zeroout if the inode table is full. But we set the ZEROED
1414 	 * flag anyway, because obviously, when it is full it does not need
1415 	 * further zeroing.
1416 	 */
1417 	if (unlikely(num == 0))
1418 		goto skip_zeroout;
1419 
1420 	ext4_debug("going to zero out inode table in group %d\n",
1421 		   group);
1422 	ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1423 	if (ret < 0)
1424 		goto err_out;
1425 	if (barrier)
1426 		blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1427 
1428 skip_zeroout:
1429 	ext4_lock_group(sb, group);
1430 	gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1431 	ext4_group_desc_csum_set(sb, group, gdp);
1432 	ext4_unlock_group(sb, group);
1433 
1434 	BUFFER_TRACE(group_desc_bh,
1435 		     "call ext4_handle_dirty_metadata");
1436 	ret = ext4_handle_dirty_metadata(handle, NULL,
1437 					 group_desc_bh);
1438 
1439 err_out:
1440 	up_write(&grp->alloc_sem);
1441 	ext4_journal_stop(handle);
1442 out:
1443 	return ret;
1444 }
1445