xref: /linux/fs/ext4/ialloc.c (revision 0a91330b2af9f71ceeeed483f92774182b58f6d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/ialloc.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  BSD ufs-inspired inode and directory allocation by
11  *  Stephen Tweedie (sct@redhat.com), 1993
12  *  Big-endian to little-endian byte-swapping/bitmaps by
13  *        David S. Miller (davem@caip.rutgers.edu), 1995
14  */
15 
16 #include <linux/time.h>
17 #include <linux/fs.h>
18 #include <linux/stat.h>
19 #include <linux/string.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/random.h>
23 #include <linux/bitops.h>
24 #include <linux/blkdev.h>
25 #include <linux/cred.h>
26 
27 #include <asm/byteorder.h>
28 
29 #include "ext4.h"
30 #include "ext4_jbd2.h"
31 #include "xattr.h"
32 #include "acl.h"
33 
34 #include <trace/events/ext4.h>
35 
36 /*
37  * ialloc.c contains the inodes allocation and deallocation routines
38  */
39 
40 /*
41  * The free inodes are managed by bitmaps.  A file system contains several
42  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
43  * block for inodes, N blocks for the inode table and data blocks.
44  *
45  * The file system contains group descriptors which are located after the
46  * super block.  Each descriptor contains the number of the bitmap block and
47  * the free blocks count in the block.
48  */
49 
50 /*
51  * To avoid calling the atomic setbit hundreds or thousands of times, we only
52  * need to use it within a single byte (to ensure we get endianness right).
53  * We can use memset for the rest of the bitmap as there are no other users.
54  */
55 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
56 {
57 	int i;
58 
59 	if (start_bit >= end_bit)
60 		return;
61 
62 	ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
63 	for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
64 		ext4_set_bit(i, bitmap);
65 	if (i < end_bit)
66 		memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
67 }
68 
69 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
70 {
71 	if (uptodate) {
72 		set_buffer_uptodate(bh);
73 		set_bitmap_uptodate(bh);
74 	}
75 	unlock_buffer(bh);
76 	put_bh(bh);
77 }
78 
79 static int ext4_validate_inode_bitmap(struct super_block *sb,
80 				      struct ext4_group_desc *desc,
81 				      ext4_group_t block_group,
82 				      struct buffer_head *bh)
83 {
84 	ext4_fsblk_t	blk;
85 	struct ext4_group_info *grp = ext4_get_group_info(sb, block_group);
86 
87 	if (buffer_verified(bh))
88 		return 0;
89 	if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
90 		return -EFSCORRUPTED;
91 
92 	ext4_lock_group(sb, block_group);
93 	if (buffer_verified(bh))
94 		goto verified;
95 	blk = ext4_inode_bitmap(sb, desc);
96 	if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
97 					   EXT4_INODES_PER_GROUP(sb) / 8) ||
98 	    ext4_simulate_fail(sb, EXT4_SIM_IBITMAP_CRC)) {
99 		ext4_unlock_group(sb, block_group);
100 		ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
101 			   "inode_bitmap = %llu", block_group, blk);
102 		ext4_mark_group_bitmap_corrupted(sb, block_group,
103 					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
104 		return -EFSBADCRC;
105 	}
106 	set_buffer_verified(bh);
107 verified:
108 	ext4_unlock_group(sb, block_group);
109 	return 0;
110 }
111 
112 /*
113  * Read the inode allocation bitmap for a given block_group, reading
114  * into the specified slot in the superblock's bitmap cache.
115  *
116  * Return buffer_head of bitmap on success or NULL.
117  */
118 static struct buffer_head *
119 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
120 {
121 	struct ext4_group_desc *desc;
122 	struct ext4_sb_info *sbi = EXT4_SB(sb);
123 	struct buffer_head *bh = NULL;
124 	ext4_fsblk_t bitmap_blk;
125 	int err;
126 
127 	desc = ext4_get_group_desc(sb, block_group, NULL);
128 	if (!desc)
129 		return ERR_PTR(-EFSCORRUPTED);
130 
131 	bitmap_blk = ext4_inode_bitmap(sb, desc);
132 	if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) ||
133 	    (bitmap_blk >= ext4_blocks_count(sbi->s_es))) {
134 		ext4_error(sb, "Invalid inode bitmap blk %llu in "
135 			   "block_group %u", bitmap_blk, block_group);
136 		ext4_mark_group_bitmap_corrupted(sb, block_group,
137 					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
138 		return ERR_PTR(-EFSCORRUPTED);
139 	}
140 	bh = sb_getblk(sb, bitmap_blk);
141 	if (unlikely(!bh)) {
142 		ext4_warning(sb, "Cannot read inode bitmap - "
143 			     "block_group = %u, inode_bitmap = %llu",
144 			     block_group, bitmap_blk);
145 		return ERR_PTR(-ENOMEM);
146 	}
147 	if (bitmap_uptodate(bh))
148 		goto verify;
149 
150 	lock_buffer(bh);
151 	if (bitmap_uptodate(bh)) {
152 		unlock_buffer(bh);
153 		goto verify;
154 	}
155 
156 	ext4_lock_group(sb, block_group);
157 	if (ext4_has_group_desc_csum(sb) &&
158 	    (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) {
159 		if (block_group == 0) {
160 			ext4_unlock_group(sb, block_group);
161 			unlock_buffer(bh);
162 			ext4_error(sb, "Inode bitmap for bg 0 marked "
163 				   "uninitialized");
164 			err = -EFSCORRUPTED;
165 			goto out;
166 		}
167 		memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
168 		ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb),
169 				     sb->s_blocksize * 8, bh->b_data);
170 		set_bitmap_uptodate(bh);
171 		set_buffer_uptodate(bh);
172 		set_buffer_verified(bh);
173 		ext4_unlock_group(sb, block_group);
174 		unlock_buffer(bh);
175 		return bh;
176 	}
177 	ext4_unlock_group(sb, block_group);
178 
179 	if (buffer_uptodate(bh)) {
180 		/*
181 		 * if not uninit if bh is uptodate,
182 		 * bitmap is also uptodate
183 		 */
184 		set_bitmap_uptodate(bh);
185 		unlock_buffer(bh);
186 		goto verify;
187 	}
188 	/*
189 	 * submit the buffer_head for reading
190 	 */
191 	trace_ext4_load_inode_bitmap(sb, block_group);
192 	bh->b_end_io = ext4_end_bitmap_read;
193 	get_bh(bh);
194 	submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
195 	wait_on_buffer(bh);
196 	ext4_simulate_fail_bh(sb, bh, EXT4_SIM_IBITMAP_EIO);
197 	if (!buffer_uptodate(bh)) {
198 		put_bh(bh);
199 		ext4_set_errno(sb, EIO);
200 		ext4_error(sb, "Cannot read inode bitmap - "
201 			   "block_group = %u, inode_bitmap = %llu",
202 			   block_group, bitmap_blk);
203 		ext4_mark_group_bitmap_corrupted(sb, block_group,
204 				EXT4_GROUP_INFO_IBITMAP_CORRUPT);
205 		return ERR_PTR(-EIO);
206 	}
207 
208 verify:
209 	err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
210 	if (err)
211 		goto out;
212 	return bh;
213 out:
214 	put_bh(bh);
215 	return ERR_PTR(err);
216 }
217 
218 /*
219  * NOTE! When we get the inode, we're the only people
220  * that have access to it, and as such there are no
221  * race conditions we have to worry about. The inode
222  * is not on the hash-lists, and it cannot be reached
223  * through the filesystem because the directory entry
224  * has been deleted earlier.
225  *
226  * HOWEVER: we must make sure that we get no aliases,
227  * which means that we have to call "clear_inode()"
228  * _before_ we mark the inode not in use in the inode
229  * bitmaps. Otherwise a newly created file might use
230  * the same inode number (not actually the same pointer
231  * though), and then we'd have two inodes sharing the
232  * same inode number and space on the harddisk.
233  */
234 void ext4_free_inode(handle_t *handle, struct inode *inode)
235 {
236 	struct super_block *sb = inode->i_sb;
237 	int is_directory;
238 	unsigned long ino;
239 	struct buffer_head *bitmap_bh = NULL;
240 	struct buffer_head *bh2;
241 	ext4_group_t block_group;
242 	unsigned long bit;
243 	struct ext4_group_desc *gdp;
244 	struct ext4_super_block *es;
245 	struct ext4_sb_info *sbi;
246 	int fatal = 0, err, count, cleared;
247 	struct ext4_group_info *grp;
248 
249 	if (!sb) {
250 		printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
251 		       "nonexistent device\n", __func__, __LINE__);
252 		return;
253 	}
254 	if (atomic_read(&inode->i_count) > 1) {
255 		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
256 			 __func__, __LINE__, inode->i_ino,
257 			 atomic_read(&inode->i_count));
258 		return;
259 	}
260 	if (inode->i_nlink) {
261 		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
262 			 __func__, __LINE__, inode->i_ino, inode->i_nlink);
263 		return;
264 	}
265 	sbi = EXT4_SB(sb);
266 
267 	ino = inode->i_ino;
268 	ext4_debug("freeing inode %lu\n", ino);
269 	trace_ext4_free_inode(inode);
270 
271 	dquot_initialize(inode);
272 	dquot_free_inode(inode);
273 
274 	is_directory = S_ISDIR(inode->i_mode);
275 
276 	/* Do this BEFORE marking the inode not in use or returning an error */
277 	ext4_clear_inode(inode);
278 
279 	es = sbi->s_es;
280 	if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
281 		ext4_error(sb, "reserved or nonexistent inode %lu", ino);
282 		goto error_return;
283 	}
284 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
285 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
286 	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
287 	/* Don't bother if the inode bitmap is corrupt. */
288 	grp = ext4_get_group_info(sb, block_group);
289 	if (IS_ERR(bitmap_bh)) {
290 		fatal = PTR_ERR(bitmap_bh);
291 		bitmap_bh = NULL;
292 		goto error_return;
293 	}
294 	if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
295 		fatal = -EFSCORRUPTED;
296 		goto error_return;
297 	}
298 
299 	BUFFER_TRACE(bitmap_bh, "get_write_access");
300 	fatal = ext4_journal_get_write_access(handle, bitmap_bh);
301 	if (fatal)
302 		goto error_return;
303 
304 	fatal = -ESRCH;
305 	gdp = ext4_get_group_desc(sb, block_group, &bh2);
306 	if (gdp) {
307 		BUFFER_TRACE(bh2, "get_write_access");
308 		fatal = ext4_journal_get_write_access(handle, bh2);
309 	}
310 	ext4_lock_group(sb, block_group);
311 	cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
312 	if (fatal || !cleared) {
313 		ext4_unlock_group(sb, block_group);
314 		goto out;
315 	}
316 
317 	count = ext4_free_inodes_count(sb, gdp) + 1;
318 	ext4_free_inodes_set(sb, gdp, count);
319 	if (is_directory) {
320 		count = ext4_used_dirs_count(sb, gdp) - 1;
321 		ext4_used_dirs_set(sb, gdp, count);
322 		percpu_counter_dec(&sbi->s_dirs_counter);
323 	}
324 	ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
325 				   EXT4_INODES_PER_GROUP(sb) / 8);
326 	ext4_group_desc_csum_set(sb, block_group, gdp);
327 	ext4_unlock_group(sb, block_group);
328 
329 	percpu_counter_inc(&sbi->s_freeinodes_counter);
330 	if (sbi->s_log_groups_per_flex) {
331 		struct flex_groups *fg;
332 
333 		fg = sbi_array_rcu_deref(sbi, s_flex_groups,
334 					 ext4_flex_group(sbi, block_group));
335 		atomic_inc(&fg->free_inodes);
336 		if (is_directory)
337 			atomic_dec(&fg->used_dirs);
338 	}
339 	BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
340 	fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
341 out:
342 	if (cleared) {
343 		BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
344 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
345 		if (!fatal)
346 			fatal = err;
347 	} else {
348 		ext4_error(sb, "bit already cleared for inode %lu", ino);
349 		ext4_mark_group_bitmap_corrupted(sb, block_group,
350 					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
351 	}
352 
353 error_return:
354 	brelse(bitmap_bh);
355 	ext4_std_error(sb, fatal);
356 }
357 
358 struct orlov_stats {
359 	__u64 free_clusters;
360 	__u32 free_inodes;
361 	__u32 used_dirs;
362 };
363 
364 /*
365  * Helper function for Orlov's allocator; returns critical information
366  * for a particular block group or flex_bg.  If flex_size is 1, then g
367  * is a block group number; otherwise it is flex_bg number.
368  */
369 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
370 			    int flex_size, struct orlov_stats *stats)
371 {
372 	struct ext4_group_desc *desc;
373 
374 	if (flex_size > 1) {
375 		struct flex_groups *fg = sbi_array_rcu_deref(EXT4_SB(sb),
376 							     s_flex_groups, g);
377 		stats->free_inodes = atomic_read(&fg->free_inodes);
378 		stats->free_clusters = atomic64_read(&fg->free_clusters);
379 		stats->used_dirs = atomic_read(&fg->used_dirs);
380 		return;
381 	}
382 
383 	desc = ext4_get_group_desc(sb, g, NULL);
384 	if (desc) {
385 		stats->free_inodes = ext4_free_inodes_count(sb, desc);
386 		stats->free_clusters = ext4_free_group_clusters(sb, desc);
387 		stats->used_dirs = ext4_used_dirs_count(sb, desc);
388 	} else {
389 		stats->free_inodes = 0;
390 		stats->free_clusters = 0;
391 		stats->used_dirs = 0;
392 	}
393 }
394 
395 /*
396  * Orlov's allocator for directories.
397  *
398  * We always try to spread first-level directories.
399  *
400  * If there are blockgroups with both free inodes and free blocks counts
401  * not worse than average we return one with smallest directory count.
402  * Otherwise we simply return a random group.
403  *
404  * For the rest rules look so:
405  *
406  * It's OK to put directory into a group unless
407  * it has too many directories already (max_dirs) or
408  * it has too few free inodes left (min_inodes) or
409  * it has too few free blocks left (min_blocks) or
410  * Parent's group is preferred, if it doesn't satisfy these
411  * conditions we search cyclically through the rest. If none
412  * of the groups look good we just look for a group with more
413  * free inodes than average (starting at parent's group).
414  */
415 
416 static int find_group_orlov(struct super_block *sb, struct inode *parent,
417 			    ext4_group_t *group, umode_t mode,
418 			    const struct qstr *qstr)
419 {
420 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
421 	struct ext4_sb_info *sbi = EXT4_SB(sb);
422 	ext4_group_t real_ngroups = ext4_get_groups_count(sb);
423 	int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
424 	unsigned int freei, avefreei, grp_free;
425 	ext4_fsblk_t freeb, avefreec;
426 	unsigned int ndirs;
427 	int max_dirs, min_inodes;
428 	ext4_grpblk_t min_clusters;
429 	ext4_group_t i, grp, g, ngroups;
430 	struct ext4_group_desc *desc;
431 	struct orlov_stats stats;
432 	int flex_size = ext4_flex_bg_size(sbi);
433 	struct dx_hash_info hinfo;
434 
435 	ngroups = real_ngroups;
436 	if (flex_size > 1) {
437 		ngroups = (real_ngroups + flex_size - 1) >>
438 			sbi->s_log_groups_per_flex;
439 		parent_group >>= sbi->s_log_groups_per_flex;
440 	}
441 
442 	freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
443 	avefreei = freei / ngroups;
444 	freeb = EXT4_C2B(sbi,
445 		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
446 	avefreec = freeb;
447 	do_div(avefreec, ngroups);
448 	ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
449 
450 	if (S_ISDIR(mode) &&
451 	    ((parent == d_inode(sb->s_root)) ||
452 	     (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
453 		int best_ndir = inodes_per_group;
454 		int ret = -1;
455 
456 		if (qstr) {
457 			hinfo.hash_version = DX_HASH_HALF_MD4;
458 			hinfo.seed = sbi->s_hash_seed;
459 			ext4fs_dirhash(parent, qstr->name, qstr->len, &hinfo);
460 			grp = hinfo.hash;
461 		} else
462 			grp = prandom_u32();
463 		parent_group = (unsigned)grp % ngroups;
464 		for (i = 0; i < ngroups; i++) {
465 			g = (parent_group + i) % ngroups;
466 			get_orlov_stats(sb, g, flex_size, &stats);
467 			if (!stats.free_inodes)
468 				continue;
469 			if (stats.used_dirs >= best_ndir)
470 				continue;
471 			if (stats.free_inodes < avefreei)
472 				continue;
473 			if (stats.free_clusters < avefreec)
474 				continue;
475 			grp = g;
476 			ret = 0;
477 			best_ndir = stats.used_dirs;
478 		}
479 		if (ret)
480 			goto fallback;
481 	found_flex_bg:
482 		if (flex_size == 1) {
483 			*group = grp;
484 			return 0;
485 		}
486 
487 		/*
488 		 * We pack inodes at the beginning of the flexgroup's
489 		 * inode tables.  Block allocation decisions will do
490 		 * something similar, although regular files will
491 		 * start at 2nd block group of the flexgroup.  See
492 		 * ext4_ext_find_goal() and ext4_find_near().
493 		 */
494 		grp *= flex_size;
495 		for (i = 0; i < flex_size; i++) {
496 			if (grp+i >= real_ngroups)
497 				break;
498 			desc = ext4_get_group_desc(sb, grp+i, NULL);
499 			if (desc && ext4_free_inodes_count(sb, desc)) {
500 				*group = grp+i;
501 				return 0;
502 			}
503 		}
504 		goto fallback;
505 	}
506 
507 	max_dirs = ndirs / ngroups + inodes_per_group / 16;
508 	min_inodes = avefreei - inodes_per_group*flex_size / 4;
509 	if (min_inodes < 1)
510 		min_inodes = 1;
511 	min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
512 
513 	/*
514 	 * Start looking in the flex group where we last allocated an
515 	 * inode for this parent directory
516 	 */
517 	if (EXT4_I(parent)->i_last_alloc_group != ~0) {
518 		parent_group = EXT4_I(parent)->i_last_alloc_group;
519 		if (flex_size > 1)
520 			parent_group >>= sbi->s_log_groups_per_flex;
521 	}
522 
523 	for (i = 0; i < ngroups; i++) {
524 		grp = (parent_group + i) % ngroups;
525 		get_orlov_stats(sb, grp, flex_size, &stats);
526 		if (stats.used_dirs >= max_dirs)
527 			continue;
528 		if (stats.free_inodes < min_inodes)
529 			continue;
530 		if (stats.free_clusters < min_clusters)
531 			continue;
532 		goto found_flex_bg;
533 	}
534 
535 fallback:
536 	ngroups = real_ngroups;
537 	avefreei = freei / ngroups;
538 fallback_retry:
539 	parent_group = EXT4_I(parent)->i_block_group;
540 	for (i = 0; i < ngroups; i++) {
541 		grp = (parent_group + i) % ngroups;
542 		desc = ext4_get_group_desc(sb, grp, NULL);
543 		if (desc) {
544 			grp_free = ext4_free_inodes_count(sb, desc);
545 			if (grp_free && grp_free >= avefreei) {
546 				*group = grp;
547 				return 0;
548 			}
549 		}
550 	}
551 
552 	if (avefreei) {
553 		/*
554 		 * The free-inodes counter is approximate, and for really small
555 		 * filesystems the above test can fail to find any blockgroups
556 		 */
557 		avefreei = 0;
558 		goto fallback_retry;
559 	}
560 
561 	return -1;
562 }
563 
564 static int find_group_other(struct super_block *sb, struct inode *parent,
565 			    ext4_group_t *group, umode_t mode)
566 {
567 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
568 	ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
569 	struct ext4_group_desc *desc;
570 	int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
571 
572 	/*
573 	 * Try to place the inode is the same flex group as its
574 	 * parent.  If we can't find space, use the Orlov algorithm to
575 	 * find another flex group, and store that information in the
576 	 * parent directory's inode information so that use that flex
577 	 * group for future allocations.
578 	 */
579 	if (flex_size > 1) {
580 		int retry = 0;
581 
582 	try_again:
583 		parent_group &= ~(flex_size-1);
584 		last = parent_group + flex_size;
585 		if (last > ngroups)
586 			last = ngroups;
587 		for  (i = parent_group; i < last; i++) {
588 			desc = ext4_get_group_desc(sb, i, NULL);
589 			if (desc && ext4_free_inodes_count(sb, desc)) {
590 				*group = i;
591 				return 0;
592 			}
593 		}
594 		if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
595 			retry = 1;
596 			parent_group = EXT4_I(parent)->i_last_alloc_group;
597 			goto try_again;
598 		}
599 		/*
600 		 * If this didn't work, use the Orlov search algorithm
601 		 * to find a new flex group; we pass in the mode to
602 		 * avoid the topdir algorithms.
603 		 */
604 		*group = parent_group + flex_size;
605 		if (*group > ngroups)
606 			*group = 0;
607 		return find_group_orlov(sb, parent, group, mode, NULL);
608 	}
609 
610 	/*
611 	 * Try to place the inode in its parent directory
612 	 */
613 	*group = parent_group;
614 	desc = ext4_get_group_desc(sb, *group, NULL);
615 	if (desc && ext4_free_inodes_count(sb, desc) &&
616 	    ext4_free_group_clusters(sb, desc))
617 		return 0;
618 
619 	/*
620 	 * We're going to place this inode in a different blockgroup from its
621 	 * parent.  We want to cause files in a common directory to all land in
622 	 * the same blockgroup.  But we want files which are in a different
623 	 * directory which shares a blockgroup with our parent to land in a
624 	 * different blockgroup.
625 	 *
626 	 * So add our directory's i_ino into the starting point for the hash.
627 	 */
628 	*group = (*group + parent->i_ino) % ngroups;
629 
630 	/*
631 	 * Use a quadratic hash to find a group with a free inode and some free
632 	 * blocks.
633 	 */
634 	for (i = 1; i < ngroups; i <<= 1) {
635 		*group += i;
636 		if (*group >= ngroups)
637 			*group -= ngroups;
638 		desc = ext4_get_group_desc(sb, *group, NULL);
639 		if (desc && ext4_free_inodes_count(sb, desc) &&
640 		    ext4_free_group_clusters(sb, desc))
641 			return 0;
642 	}
643 
644 	/*
645 	 * That failed: try linear search for a free inode, even if that group
646 	 * has no free blocks.
647 	 */
648 	*group = parent_group;
649 	for (i = 0; i < ngroups; i++) {
650 		if (++*group >= ngroups)
651 			*group = 0;
652 		desc = ext4_get_group_desc(sb, *group, NULL);
653 		if (desc && ext4_free_inodes_count(sb, desc))
654 			return 0;
655 	}
656 
657 	return -1;
658 }
659 
660 /*
661  * In no journal mode, if an inode has recently been deleted, we want
662  * to avoid reusing it until we're reasonably sure the inode table
663  * block has been written back to disk.  (Yes, these values are
664  * somewhat arbitrary...)
665  */
666 #define RECENTCY_MIN	5
667 #define RECENTCY_DIRTY	300
668 
669 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
670 {
671 	struct ext4_group_desc	*gdp;
672 	struct ext4_inode	*raw_inode;
673 	struct buffer_head	*bh;
674 	int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
675 	int offset, ret = 0;
676 	int recentcy = RECENTCY_MIN;
677 	u32 dtime, now;
678 
679 	gdp = ext4_get_group_desc(sb, group, NULL);
680 	if (unlikely(!gdp))
681 		return 0;
682 
683 	bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) +
684 		       (ino / inodes_per_block));
685 	if (!bh || !buffer_uptodate(bh))
686 		/*
687 		 * If the block is not in the buffer cache, then it
688 		 * must have been written out.
689 		 */
690 		goto out;
691 
692 	offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
693 	raw_inode = (struct ext4_inode *) (bh->b_data + offset);
694 
695 	/* i_dtime is only 32 bits on disk, but we only care about relative
696 	 * times in the range of a few minutes (i.e. long enough to sync a
697 	 * recently-deleted inode to disk), so using the low 32 bits of the
698 	 * clock (a 68 year range) is enough, see time_before32() */
699 	dtime = le32_to_cpu(raw_inode->i_dtime);
700 	now = ktime_get_real_seconds();
701 	if (buffer_dirty(bh))
702 		recentcy += RECENTCY_DIRTY;
703 
704 	if (dtime && time_before32(dtime, now) &&
705 	    time_before32(now, dtime + recentcy))
706 		ret = 1;
707 out:
708 	brelse(bh);
709 	return ret;
710 }
711 
712 static int find_inode_bit(struct super_block *sb, ext4_group_t group,
713 			  struct buffer_head *bitmap, unsigned long *ino)
714 {
715 next:
716 	*ino = ext4_find_next_zero_bit((unsigned long *)
717 				       bitmap->b_data,
718 				       EXT4_INODES_PER_GROUP(sb), *ino);
719 	if (*ino >= EXT4_INODES_PER_GROUP(sb))
720 		return 0;
721 
722 	if ((EXT4_SB(sb)->s_journal == NULL) &&
723 	    recently_deleted(sb, group, *ino)) {
724 		*ino = *ino + 1;
725 		if (*ino < EXT4_INODES_PER_GROUP(sb))
726 			goto next;
727 		return 0;
728 	}
729 
730 	return 1;
731 }
732 
733 /*
734  * There are two policies for allocating an inode.  If the new inode is
735  * a directory, then a forward search is made for a block group with both
736  * free space and a low directory-to-inode ratio; if that fails, then of
737  * the groups with above-average free space, that group with the fewest
738  * directories already is chosen.
739  *
740  * For other inodes, search forward from the parent directory's block
741  * group to find a free inode.
742  */
743 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
744 			       umode_t mode, const struct qstr *qstr,
745 			       __u32 goal, uid_t *owner, __u32 i_flags,
746 			       int handle_type, unsigned int line_no,
747 			       int nblocks)
748 {
749 	struct super_block *sb;
750 	struct buffer_head *inode_bitmap_bh = NULL;
751 	struct buffer_head *group_desc_bh;
752 	ext4_group_t ngroups, group = 0;
753 	unsigned long ino = 0;
754 	struct inode *inode;
755 	struct ext4_group_desc *gdp = NULL;
756 	struct ext4_inode_info *ei;
757 	struct ext4_sb_info *sbi;
758 	int ret2, err;
759 	struct inode *ret;
760 	ext4_group_t i;
761 	ext4_group_t flex_group;
762 	struct ext4_group_info *grp;
763 	int encrypt = 0;
764 
765 	/* Cannot create files in a deleted directory */
766 	if (!dir || !dir->i_nlink)
767 		return ERR_PTR(-EPERM);
768 
769 	sb = dir->i_sb;
770 	sbi = EXT4_SB(sb);
771 
772 	if (unlikely(ext4_forced_shutdown(sbi)))
773 		return ERR_PTR(-EIO);
774 
775 	if ((IS_ENCRYPTED(dir) || DUMMY_ENCRYPTION_ENABLED(sbi)) &&
776 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) &&
777 	    !(i_flags & EXT4_EA_INODE_FL)) {
778 		err = fscrypt_get_encryption_info(dir);
779 		if (err)
780 			return ERR_PTR(err);
781 		if (!fscrypt_has_encryption_key(dir))
782 			return ERR_PTR(-ENOKEY);
783 		encrypt = 1;
784 	}
785 
786 	if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) {
787 #ifdef CONFIG_EXT4_FS_POSIX_ACL
788 		struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT);
789 
790 		if (IS_ERR(p))
791 			return ERR_CAST(p);
792 		if (p) {
793 			int acl_size = p->a_count * sizeof(ext4_acl_entry);
794 
795 			nblocks += (S_ISDIR(mode) ? 2 : 1) *
796 				__ext4_xattr_set_credits(sb, NULL /* inode */,
797 					NULL /* block_bh */, acl_size,
798 					true /* is_create */);
799 			posix_acl_release(p);
800 		}
801 #endif
802 
803 #ifdef CONFIG_SECURITY
804 		{
805 			int num_security_xattrs = 1;
806 
807 #ifdef CONFIG_INTEGRITY
808 			num_security_xattrs++;
809 #endif
810 			/*
811 			 * We assume that security xattrs are never
812 			 * more than 1k.  In practice they are under
813 			 * 128 bytes.
814 			 */
815 			nblocks += num_security_xattrs *
816 				__ext4_xattr_set_credits(sb, NULL /* inode */,
817 					NULL /* block_bh */, 1024,
818 					true /* is_create */);
819 		}
820 #endif
821 		if (encrypt)
822 			nblocks += __ext4_xattr_set_credits(sb,
823 					NULL /* inode */, NULL /* block_bh */,
824 					FSCRYPT_SET_CONTEXT_MAX_SIZE,
825 					true /* is_create */);
826 	}
827 
828 	ngroups = ext4_get_groups_count(sb);
829 	trace_ext4_request_inode(dir, mode);
830 	inode = new_inode(sb);
831 	if (!inode)
832 		return ERR_PTR(-ENOMEM);
833 	ei = EXT4_I(inode);
834 
835 	/*
836 	 * Initialize owners and quota early so that we don't have to account
837 	 * for quota initialization worst case in standard inode creating
838 	 * transaction
839 	 */
840 	if (owner) {
841 		inode->i_mode = mode;
842 		i_uid_write(inode, owner[0]);
843 		i_gid_write(inode, owner[1]);
844 	} else if (test_opt(sb, GRPID)) {
845 		inode->i_mode = mode;
846 		inode->i_uid = current_fsuid();
847 		inode->i_gid = dir->i_gid;
848 	} else
849 		inode_init_owner(inode, dir, mode);
850 
851 	if (ext4_has_feature_project(sb) &&
852 	    ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT))
853 		ei->i_projid = EXT4_I(dir)->i_projid;
854 	else
855 		ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID);
856 
857 	err = dquot_initialize(inode);
858 	if (err)
859 		goto out;
860 
861 	if (!goal)
862 		goal = sbi->s_inode_goal;
863 
864 	if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
865 		group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
866 		ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
867 		ret2 = 0;
868 		goto got_group;
869 	}
870 
871 	if (S_ISDIR(mode))
872 		ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
873 	else
874 		ret2 = find_group_other(sb, dir, &group, mode);
875 
876 got_group:
877 	EXT4_I(dir)->i_last_alloc_group = group;
878 	err = -ENOSPC;
879 	if (ret2 == -1)
880 		goto out;
881 
882 	/*
883 	 * Normally we will only go through one pass of this loop,
884 	 * unless we get unlucky and it turns out the group we selected
885 	 * had its last inode grabbed by someone else.
886 	 */
887 	for (i = 0; i < ngroups; i++, ino = 0) {
888 		err = -EIO;
889 
890 		gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
891 		if (!gdp)
892 			goto out;
893 
894 		/*
895 		 * Check free inodes count before loading bitmap.
896 		 */
897 		if (ext4_free_inodes_count(sb, gdp) == 0)
898 			goto next_group;
899 
900 		grp = ext4_get_group_info(sb, group);
901 		/* Skip groups with already-known suspicious inode tables */
902 		if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
903 			goto next_group;
904 
905 		brelse(inode_bitmap_bh);
906 		inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
907 		/* Skip groups with suspicious inode tables */
908 		if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) ||
909 		    IS_ERR(inode_bitmap_bh)) {
910 			inode_bitmap_bh = NULL;
911 			goto next_group;
912 		}
913 
914 repeat_in_this_group:
915 		ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
916 		if (!ret2)
917 			goto next_group;
918 
919 		if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) {
920 			ext4_error(sb, "reserved inode found cleared - "
921 				   "inode=%lu", ino + 1);
922 			ext4_mark_group_bitmap_corrupted(sb, group,
923 					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
924 			goto next_group;
925 		}
926 
927 		if (!handle) {
928 			BUG_ON(nblocks <= 0);
929 			handle = __ext4_journal_start_sb(dir->i_sb, line_no,
930 				 handle_type, nblocks, 0,
931 				 ext4_trans_default_revoke_credits(sb));
932 			if (IS_ERR(handle)) {
933 				err = PTR_ERR(handle);
934 				ext4_std_error(sb, err);
935 				goto out;
936 			}
937 		}
938 		BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
939 		err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
940 		if (err) {
941 			ext4_std_error(sb, err);
942 			goto out;
943 		}
944 		ext4_lock_group(sb, group);
945 		ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
946 		if (ret2) {
947 			/* Someone already took the bit. Repeat the search
948 			 * with lock held.
949 			 */
950 			ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
951 			if (ret2) {
952 				ext4_set_bit(ino, inode_bitmap_bh->b_data);
953 				ret2 = 0;
954 			} else {
955 				ret2 = 1; /* we didn't grab the inode */
956 			}
957 		}
958 		ext4_unlock_group(sb, group);
959 		ino++;		/* the inode bitmap is zero-based */
960 		if (!ret2)
961 			goto got; /* we grabbed the inode! */
962 
963 		if (ino < EXT4_INODES_PER_GROUP(sb))
964 			goto repeat_in_this_group;
965 next_group:
966 		if (++group == ngroups)
967 			group = 0;
968 	}
969 	err = -ENOSPC;
970 	goto out;
971 
972 got:
973 	BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
974 	err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
975 	if (err) {
976 		ext4_std_error(sb, err);
977 		goto out;
978 	}
979 
980 	BUFFER_TRACE(group_desc_bh, "get_write_access");
981 	err = ext4_journal_get_write_access(handle, group_desc_bh);
982 	if (err) {
983 		ext4_std_error(sb, err);
984 		goto out;
985 	}
986 
987 	/* We may have to initialize the block bitmap if it isn't already */
988 	if (ext4_has_group_desc_csum(sb) &&
989 	    gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
990 		struct buffer_head *block_bitmap_bh;
991 
992 		block_bitmap_bh = ext4_read_block_bitmap(sb, group);
993 		if (IS_ERR(block_bitmap_bh)) {
994 			err = PTR_ERR(block_bitmap_bh);
995 			goto out;
996 		}
997 		BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
998 		err = ext4_journal_get_write_access(handle, block_bitmap_bh);
999 		if (err) {
1000 			brelse(block_bitmap_bh);
1001 			ext4_std_error(sb, err);
1002 			goto out;
1003 		}
1004 
1005 		BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
1006 		err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
1007 
1008 		/* recheck and clear flag under lock if we still need to */
1009 		ext4_lock_group(sb, group);
1010 		if (ext4_has_group_desc_csum(sb) &&
1011 		    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
1012 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1013 			ext4_free_group_clusters_set(sb, gdp,
1014 				ext4_free_clusters_after_init(sb, group, gdp));
1015 			ext4_block_bitmap_csum_set(sb, group, gdp,
1016 						   block_bitmap_bh);
1017 			ext4_group_desc_csum_set(sb, group, gdp);
1018 		}
1019 		ext4_unlock_group(sb, group);
1020 		brelse(block_bitmap_bh);
1021 
1022 		if (err) {
1023 			ext4_std_error(sb, err);
1024 			goto out;
1025 		}
1026 	}
1027 
1028 	/* Update the relevant bg descriptor fields */
1029 	if (ext4_has_group_desc_csum(sb)) {
1030 		int free;
1031 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1032 
1033 		down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
1034 		ext4_lock_group(sb, group); /* while we modify the bg desc */
1035 		free = EXT4_INODES_PER_GROUP(sb) -
1036 			ext4_itable_unused_count(sb, gdp);
1037 		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
1038 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
1039 			free = 0;
1040 		}
1041 		/*
1042 		 * Check the relative inode number against the last used
1043 		 * relative inode number in this group. if it is greater
1044 		 * we need to update the bg_itable_unused count
1045 		 */
1046 		if (ino > free)
1047 			ext4_itable_unused_set(sb, gdp,
1048 					(EXT4_INODES_PER_GROUP(sb) - ino));
1049 		up_read(&grp->alloc_sem);
1050 	} else {
1051 		ext4_lock_group(sb, group);
1052 	}
1053 
1054 	ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
1055 	if (S_ISDIR(mode)) {
1056 		ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
1057 		if (sbi->s_log_groups_per_flex) {
1058 			ext4_group_t f = ext4_flex_group(sbi, group);
1059 
1060 			atomic_inc(&sbi_array_rcu_deref(sbi, s_flex_groups,
1061 							f)->used_dirs);
1062 		}
1063 	}
1064 	if (ext4_has_group_desc_csum(sb)) {
1065 		ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
1066 					   EXT4_INODES_PER_GROUP(sb) / 8);
1067 		ext4_group_desc_csum_set(sb, group, gdp);
1068 	}
1069 	ext4_unlock_group(sb, group);
1070 
1071 	BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
1072 	err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
1073 	if (err) {
1074 		ext4_std_error(sb, err);
1075 		goto out;
1076 	}
1077 
1078 	percpu_counter_dec(&sbi->s_freeinodes_counter);
1079 	if (S_ISDIR(mode))
1080 		percpu_counter_inc(&sbi->s_dirs_counter);
1081 
1082 	if (sbi->s_log_groups_per_flex) {
1083 		flex_group = ext4_flex_group(sbi, group);
1084 		atomic_dec(&sbi_array_rcu_deref(sbi, s_flex_groups,
1085 						flex_group)->free_inodes);
1086 	}
1087 
1088 	inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
1089 	/* This is the optimal IO size (for stat), not the fs block size */
1090 	inode->i_blocks = 0;
1091 	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1092 	ei->i_crtime = inode->i_mtime;
1093 
1094 	memset(ei->i_data, 0, sizeof(ei->i_data));
1095 	ei->i_dir_start_lookup = 0;
1096 	ei->i_disksize = 0;
1097 
1098 	/* Don't inherit extent flag from directory, amongst others. */
1099 	ei->i_flags =
1100 		ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1101 	ei->i_flags |= i_flags;
1102 	ei->i_file_acl = 0;
1103 	ei->i_dtime = 0;
1104 	ei->i_block_group = group;
1105 	ei->i_last_alloc_group = ~0;
1106 
1107 	ext4_set_inode_flags(inode);
1108 	if (IS_DIRSYNC(inode))
1109 		ext4_handle_sync(handle);
1110 	if (insert_inode_locked(inode) < 0) {
1111 		/*
1112 		 * Likely a bitmap corruption causing inode to be allocated
1113 		 * twice.
1114 		 */
1115 		err = -EIO;
1116 		ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1117 			   inode->i_ino);
1118 		ext4_mark_group_bitmap_corrupted(sb, group,
1119 					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
1120 		goto out;
1121 	}
1122 	inode->i_generation = prandom_u32();
1123 
1124 	/* Precompute checksum seed for inode metadata */
1125 	if (ext4_has_metadata_csum(sb)) {
1126 		__u32 csum;
1127 		__le32 inum = cpu_to_le32(inode->i_ino);
1128 		__le32 gen = cpu_to_le32(inode->i_generation);
1129 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1130 				   sizeof(inum));
1131 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1132 					      sizeof(gen));
1133 	}
1134 
1135 	ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1136 	ext4_set_inode_state(inode, EXT4_STATE_NEW);
1137 
1138 	ei->i_extra_isize = sbi->s_want_extra_isize;
1139 	ei->i_inline_off = 0;
1140 	if (ext4_has_feature_inline_data(sb))
1141 		ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1142 	ret = inode;
1143 	err = dquot_alloc_inode(inode);
1144 	if (err)
1145 		goto fail_drop;
1146 
1147 	/*
1148 	 * Since the encryption xattr will always be unique, create it first so
1149 	 * that it's less likely to end up in an external xattr block and
1150 	 * prevent its deduplication.
1151 	 */
1152 	if (encrypt) {
1153 		err = fscrypt_inherit_context(dir, inode, handle, true);
1154 		if (err)
1155 			goto fail_free_drop;
1156 	}
1157 
1158 	if (!(ei->i_flags & EXT4_EA_INODE_FL)) {
1159 		err = ext4_init_acl(handle, inode, dir);
1160 		if (err)
1161 			goto fail_free_drop;
1162 
1163 		err = ext4_init_security(handle, inode, dir, qstr);
1164 		if (err)
1165 			goto fail_free_drop;
1166 	}
1167 
1168 	if (ext4_has_feature_extents(sb)) {
1169 		/* set extent flag only for directory, file and normal symlink*/
1170 		if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1171 			ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1172 			ext4_ext_tree_init(handle, inode);
1173 		}
1174 	}
1175 
1176 	if (ext4_handle_valid(handle)) {
1177 		ei->i_sync_tid = handle->h_transaction->t_tid;
1178 		ei->i_datasync_tid = handle->h_transaction->t_tid;
1179 	}
1180 
1181 	err = ext4_mark_inode_dirty(handle, inode);
1182 	if (err) {
1183 		ext4_std_error(sb, err);
1184 		goto fail_free_drop;
1185 	}
1186 
1187 	ext4_debug("allocating inode %lu\n", inode->i_ino);
1188 	trace_ext4_allocate_inode(inode, dir, mode);
1189 	brelse(inode_bitmap_bh);
1190 	return ret;
1191 
1192 fail_free_drop:
1193 	dquot_free_inode(inode);
1194 fail_drop:
1195 	clear_nlink(inode);
1196 	unlock_new_inode(inode);
1197 out:
1198 	dquot_drop(inode);
1199 	inode->i_flags |= S_NOQUOTA;
1200 	iput(inode);
1201 	brelse(inode_bitmap_bh);
1202 	return ERR_PTR(err);
1203 }
1204 
1205 /* Verify that we are loading a valid orphan from disk */
1206 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1207 {
1208 	unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1209 	ext4_group_t block_group;
1210 	int bit;
1211 	struct buffer_head *bitmap_bh = NULL;
1212 	struct inode *inode = NULL;
1213 	int err = -EFSCORRUPTED;
1214 
1215 	if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
1216 		goto bad_orphan;
1217 
1218 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1219 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1220 	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1221 	if (IS_ERR(bitmap_bh))
1222 		return ERR_CAST(bitmap_bh);
1223 
1224 	/* Having the inode bit set should be a 100% indicator that this
1225 	 * is a valid orphan (no e2fsck run on fs).  Orphans also include
1226 	 * inodes that were being truncated, so we can't check i_nlink==0.
1227 	 */
1228 	if (!ext4_test_bit(bit, bitmap_bh->b_data))
1229 		goto bad_orphan;
1230 
1231 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1232 	if (IS_ERR(inode)) {
1233 		err = PTR_ERR(inode);
1234 		ext4_set_errno(sb, -err);
1235 		ext4_error(sb, "couldn't read orphan inode %lu (err %d)",
1236 			   ino, err);
1237 		return inode;
1238 	}
1239 
1240 	/*
1241 	 * If the orphans has i_nlinks > 0 then it should be able to
1242 	 * be truncated, otherwise it won't be removed from the orphan
1243 	 * list during processing and an infinite loop will result.
1244 	 * Similarly, it must not be a bad inode.
1245 	 */
1246 	if ((inode->i_nlink && !ext4_can_truncate(inode)) ||
1247 	    is_bad_inode(inode))
1248 		goto bad_orphan;
1249 
1250 	if (NEXT_ORPHAN(inode) > max_ino)
1251 		goto bad_orphan;
1252 	brelse(bitmap_bh);
1253 	return inode;
1254 
1255 bad_orphan:
1256 	ext4_error(sb, "bad orphan inode %lu", ino);
1257 	if (bitmap_bh)
1258 		printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1259 		       bit, (unsigned long long)bitmap_bh->b_blocknr,
1260 		       ext4_test_bit(bit, bitmap_bh->b_data));
1261 	if (inode) {
1262 		printk(KERN_ERR "is_bad_inode(inode)=%d\n",
1263 		       is_bad_inode(inode));
1264 		printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n",
1265 		       NEXT_ORPHAN(inode));
1266 		printk(KERN_ERR "max_ino=%lu\n", max_ino);
1267 		printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink);
1268 		/* Avoid freeing blocks if we got a bad deleted inode */
1269 		if (inode->i_nlink == 0)
1270 			inode->i_blocks = 0;
1271 		iput(inode);
1272 	}
1273 	brelse(bitmap_bh);
1274 	return ERR_PTR(err);
1275 }
1276 
1277 unsigned long ext4_count_free_inodes(struct super_block *sb)
1278 {
1279 	unsigned long desc_count;
1280 	struct ext4_group_desc *gdp;
1281 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1282 #ifdef EXT4FS_DEBUG
1283 	struct ext4_super_block *es;
1284 	unsigned long bitmap_count, x;
1285 	struct buffer_head *bitmap_bh = NULL;
1286 
1287 	es = EXT4_SB(sb)->s_es;
1288 	desc_count = 0;
1289 	bitmap_count = 0;
1290 	gdp = NULL;
1291 	for (i = 0; i < ngroups; i++) {
1292 		gdp = ext4_get_group_desc(sb, i, NULL);
1293 		if (!gdp)
1294 			continue;
1295 		desc_count += ext4_free_inodes_count(sb, gdp);
1296 		brelse(bitmap_bh);
1297 		bitmap_bh = ext4_read_inode_bitmap(sb, i);
1298 		if (IS_ERR(bitmap_bh)) {
1299 			bitmap_bh = NULL;
1300 			continue;
1301 		}
1302 
1303 		x = ext4_count_free(bitmap_bh->b_data,
1304 				    EXT4_INODES_PER_GROUP(sb) / 8);
1305 		printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1306 			(unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1307 		bitmap_count += x;
1308 	}
1309 	brelse(bitmap_bh);
1310 	printk(KERN_DEBUG "ext4_count_free_inodes: "
1311 	       "stored = %u, computed = %lu, %lu\n",
1312 	       le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1313 	return desc_count;
1314 #else
1315 	desc_count = 0;
1316 	for (i = 0; i < ngroups; i++) {
1317 		gdp = ext4_get_group_desc(sb, i, NULL);
1318 		if (!gdp)
1319 			continue;
1320 		desc_count += ext4_free_inodes_count(sb, gdp);
1321 		cond_resched();
1322 	}
1323 	return desc_count;
1324 #endif
1325 }
1326 
1327 /* Called at mount-time, super-block is locked */
1328 unsigned long ext4_count_dirs(struct super_block * sb)
1329 {
1330 	unsigned long count = 0;
1331 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1332 
1333 	for (i = 0; i < ngroups; i++) {
1334 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1335 		if (!gdp)
1336 			continue;
1337 		count += ext4_used_dirs_count(sb, gdp);
1338 	}
1339 	return count;
1340 }
1341 
1342 /*
1343  * Zeroes not yet zeroed inode table - just write zeroes through the whole
1344  * inode table. Must be called without any spinlock held. The only place
1345  * where it is called from on active part of filesystem is ext4lazyinit
1346  * thread, so we do not need any special locks, however we have to prevent
1347  * inode allocation from the current group, so we take alloc_sem lock, to
1348  * block ext4_new_inode() until we are finished.
1349  */
1350 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1351 				 int barrier)
1352 {
1353 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1354 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1355 	struct ext4_group_desc *gdp = NULL;
1356 	struct buffer_head *group_desc_bh;
1357 	handle_t *handle;
1358 	ext4_fsblk_t blk;
1359 	int num, ret = 0, used_blks = 0;
1360 
1361 	/* This should not happen, but just to be sure check this */
1362 	if (sb_rdonly(sb)) {
1363 		ret = 1;
1364 		goto out;
1365 	}
1366 
1367 	gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1368 	if (!gdp)
1369 		goto out;
1370 
1371 	/*
1372 	 * We do not need to lock this, because we are the only one
1373 	 * handling this flag.
1374 	 */
1375 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1376 		goto out;
1377 
1378 	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1379 	if (IS_ERR(handle)) {
1380 		ret = PTR_ERR(handle);
1381 		goto out;
1382 	}
1383 
1384 	down_write(&grp->alloc_sem);
1385 	/*
1386 	 * If inode bitmap was already initialized there may be some
1387 	 * used inodes so we need to skip blocks with used inodes in
1388 	 * inode table.
1389 	 */
1390 	if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1391 		used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1392 			    ext4_itable_unused_count(sb, gdp)),
1393 			    sbi->s_inodes_per_block);
1394 
1395 	if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group) ||
1396 	    ((group == 0) && ((EXT4_INODES_PER_GROUP(sb) -
1397 			       ext4_itable_unused_count(sb, gdp)) <
1398 			      EXT4_FIRST_INO(sb)))) {
1399 		ext4_error(sb, "Something is wrong with group %u: "
1400 			   "used itable blocks: %d; "
1401 			   "itable unused count: %u",
1402 			   group, used_blks,
1403 			   ext4_itable_unused_count(sb, gdp));
1404 		ret = 1;
1405 		goto err_out;
1406 	}
1407 
1408 	blk = ext4_inode_table(sb, gdp) + used_blks;
1409 	num = sbi->s_itb_per_group - used_blks;
1410 
1411 	BUFFER_TRACE(group_desc_bh, "get_write_access");
1412 	ret = ext4_journal_get_write_access(handle,
1413 					    group_desc_bh);
1414 	if (ret)
1415 		goto err_out;
1416 
1417 	/*
1418 	 * Skip zeroout if the inode table is full. But we set the ZEROED
1419 	 * flag anyway, because obviously, when it is full it does not need
1420 	 * further zeroing.
1421 	 */
1422 	if (unlikely(num == 0))
1423 		goto skip_zeroout;
1424 
1425 	ext4_debug("going to zero out inode table in group %d\n",
1426 		   group);
1427 	ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1428 	if (ret < 0)
1429 		goto err_out;
1430 	if (barrier)
1431 		blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1432 
1433 skip_zeroout:
1434 	ext4_lock_group(sb, group);
1435 	gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1436 	ext4_group_desc_csum_set(sb, group, gdp);
1437 	ext4_unlock_group(sb, group);
1438 
1439 	BUFFER_TRACE(group_desc_bh,
1440 		     "call ext4_handle_dirty_metadata");
1441 	ret = ext4_handle_dirty_metadata(handle, NULL,
1442 					 group_desc_bh);
1443 
1444 err_out:
1445 	up_write(&grp->alloc_sem);
1446 	ext4_journal_stop(handle);
1447 out:
1448 	return ret;
1449 }
1450