1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/ialloc.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * BSD ufs-inspired inode and directory allocation by 11 * Stephen Tweedie (sct@redhat.com), 1993 12 * Big-endian to little-endian byte-swapping/bitmaps by 13 * David S. Miller (davem@caip.rutgers.edu), 1995 14 */ 15 16 #include <linux/time.h> 17 #include <linux/fs.h> 18 #include <linux/stat.h> 19 #include <linux/string.h> 20 #include <linux/quotaops.h> 21 #include <linux/buffer_head.h> 22 #include <linux/random.h> 23 #include <linux/bitops.h> 24 #include <linux/blkdev.h> 25 #include <linux/cred.h> 26 27 #include <asm/byteorder.h> 28 29 #include "ext4.h" 30 #include "ext4_jbd2.h" 31 #include "xattr.h" 32 #include "acl.h" 33 34 #include <trace/events/ext4.h> 35 36 /* 37 * ialloc.c contains the inodes allocation and deallocation routines 38 */ 39 40 /* 41 * The free inodes are managed by bitmaps. A file system contains several 42 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap 43 * block for inodes, N blocks for the inode table and data blocks. 44 * 45 * The file system contains group descriptors which are located after the 46 * super block. Each descriptor contains the number of the bitmap block and 47 * the free blocks count in the block. 48 */ 49 50 /* 51 * To avoid calling the atomic setbit hundreds or thousands of times, we only 52 * need to use it within a single byte (to ensure we get endianness right). 53 * We can use memset for the rest of the bitmap as there are no other users. 54 */ 55 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap) 56 { 57 int i; 58 59 if (start_bit >= end_bit) 60 return; 61 62 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit); 63 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++) 64 ext4_set_bit(i, bitmap); 65 if (i < end_bit) 66 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3); 67 } 68 69 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate) 70 { 71 if (uptodate) { 72 set_buffer_uptodate(bh); 73 set_bitmap_uptodate(bh); 74 } 75 unlock_buffer(bh); 76 put_bh(bh); 77 } 78 79 static int ext4_validate_inode_bitmap(struct super_block *sb, 80 struct ext4_group_desc *desc, 81 ext4_group_t block_group, 82 struct buffer_head *bh) 83 { 84 ext4_fsblk_t blk; 85 struct ext4_group_info *grp = ext4_get_group_info(sb, block_group); 86 87 if (buffer_verified(bh)) 88 return 0; 89 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 90 return -EFSCORRUPTED; 91 92 ext4_lock_group(sb, block_group); 93 if (buffer_verified(bh)) 94 goto verified; 95 blk = ext4_inode_bitmap(sb, desc); 96 if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh, 97 EXT4_INODES_PER_GROUP(sb) / 8) || 98 ext4_simulate_fail(sb, EXT4_SIM_IBITMAP_CRC)) { 99 ext4_unlock_group(sb, block_group); 100 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, " 101 "inode_bitmap = %llu", block_group, blk); 102 ext4_mark_group_bitmap_corrupted(sb, block_group, 103 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 104 return -EFSBADCRC; 105 } 106 set_buffer_verified(bh); 107 verified: 108 ext4_unlock_group(sb, block_group); 109 return 0; 110 } 111 112 /* 113 * Read the inode allocation bitmap for a given block_group, reading 114 * into the specified slot in the superblock's bitmap cache. 115 * 116 * Return buffer_head of bitmap on success or NULL. 117 */ 118 static struct buffer_head * 119 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group) 120 { 121 struct ext4_group_desc *desc; 122 struct ext4_sb_info *sbi = EXT4_SB(sb); 123 struct buffer_head *bh = NULL; 124 ext4_fsblk_t bitmap_blk; 125 int err; 126 127 desc = ext4_get_group_desc(sb, block_group, NULL); 128 if (!desc) 129 return ERR_PTR(-EFSCORRUPTED); 130 131 bitmap_blk = ext4_inode_bitmap(sb, desc); 132 if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) || 133 (bitmap_blk >= ext4_blocks_count(sbi->s_es))) { 134 ext4_error(sb, "Invalid inode bitmap blk %llu in " 135 "block_group %u", bitmap_blk, block_group); 136 ext4_mark_group_bitmap_corrupted(sb, block_group, 137 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 138 return ERR_PTR(-EFSCORRUPTED); 139 } 140 bh = sb_getblk(sb, bitmap_blk); 141 if (unlikely(!bh)) { 142 ext4_warning(sb, "Cannot read inode bitmap - " 143 "block_group = %u, inode_bitmap = %llu", 144 block_group, bitmap_blk); 145 return ERR_PTR(-ENOMEM); 146 } 147 if (bitmap_uptodate(bh)) 148 goto verify; 149 150 lock_buffer(bh); 151 if (bitmap_uptodate(bh)) { 152 unlock_buffer(bh); 153 goto verify; 154 } 155 156 ext4_lock_group(sb, block_group); 157 if (ext4_has_group_desc_csum(sb) && 158 (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) { 159 if (block_group == 0) { 160 ext4_unlock_group(sb, block_group); 161 unlock_buffer(bh); 162 ext4_error(sb, "Inode bitmap for bg 0 marked " 163 "uninitialized"); 164 err = -EFSCORRUPTED; 165 goto out; 166 } 167 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8); 168 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), 169 sb->s_blocksize * 8, bh->b_data); 170 set_bitmap_uptodate(bh); 171 set_buffer_uptodate(bh); 172 set_buffer_verified(bh); 173 ext4_unlock_group(sb, block_group); 174 unlock_buffer(bh); 175 return bh; 176 } 177 ext4_unlock_group(sb, block_group); 178 179 if (buffer_uptodate(bh)) { 180 /* 181 * if not uninit if bh is uptodate, 182 * bitmap is also uptodate 183 */ 184 set_bitmap_uptodate(bh); 185 unlock_buffer(bh); 186 goto verify; 187 } 188 /* 189 * submit the buffer_head for reading 190 */ 191 trace_ext4_load_inode_bitmap(sb, block_group); 192 bh->b_end_io = ext4_end_bitmap_read; 193 get_bh(bh); 194 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 195 wait_on_buffer(bh); 196 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_IBITMAP_EIO); 197 if (!buffer_uptodate(bh)) { 198 put_bh(bh); 199 ext4_set_errno(sb, EIO); 200 ext4_error(sb, "Cannot read inode bitmap - " 201 "block_group = %u, inode_bitmap = %llu", 202 block_group, bitmap_blk); 203 ext4_mark_group_bitmap_corrupted(sb, block_group, 204 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 205 return ERR_PTR(-EIO); 206 } 207 208 verify: 209 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh); 210 if (err) 211 goto out; 212 return bh; 213 out: 214 put_bh(bh); 215 return ERR_PTR(err); 216 } 217 218 /* 219 * NOTE! When we get the inode, we're the only people 220 * that have access to it, and as such there are no 221 * race conditions we have to worry about. The inode 222 * is not on the hash-lists, and it cannot be reached 223 * through the filesystem because the directory entry 224 * has been deleted earlier. 225 * 226 * HOWEVER: we must make sure that we get no aliases, 227 * which means that we have to call "clear_inode()" 228 * _before_ we mark the inode not in use in the inode 229 * bitmaps. Otherwise a newly created file might use 230 * the same inode number (not actually the same pointer 231 * though), and then we'd have two inodes sharing the 232 * same inode number and space on the harddisk. 233 */ 234 void ext4_free_inode(handle_t *handle, struct inode *inode) 235 { 236 struct super_block *sb = inode->i_sb; 237 int is_directory; 238 unsigned long ino; 239 struct buffer_head *bitmap_bh = NULL; 240 struct buffer_head *bh2; 241 ext4_group_t block_group; 242 unsigned long bit; 243 struct ext4_group_desc *gdp; 244 struct ext4_super_block *es; 245 struct ext4_sb_info *sbi; 246 int fatal = 0, err, count, cleared; 247 struct ext4_group_info *grp; 248 249 if (!sb) { 250 printk(KERN_ERR "EXT4-fs: %s:%d: inode on " 251 "nonexistent device\n", __func__, __LINE__); 252 return; 253 } 254 if (atomic_read(&inode->i_count) > 1) { 255 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d", 256 __func__, __LINE__, inode->i_ino, 257 atomic_read(&inode->i_count)); 258 return; 259 } 260 if (inode->i_nlink) { 261 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n", 262 __func__, __LINE__, inode->i_ino, inode->i_nlink); 263 return; 264 } 265 sbi = EXT4_SB(sb); 266 267 ino = inode->i_ino; 268 ext4_debug("freeing inode %lu\n", ino); 269 trace_ext4_free_inode(inode); 270 271 dquot_initialize(inode); 272 dquot_free_inode(inode); 273 274 is_directory = S_ISDIR(inode->i_mode); 275 276 /* Do this BEFORE marking the inode not in use or returning an error */ 277 ext4_clear_inode(inode); 278 279 es = sbi->s_es; 280 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { 281 ext4_error(sb, "reserved or nonexistent inode %lu", ino); 282 goto error_return; 283 } 284 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 285 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 286 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 287 /* Don't bother if the inode bitmap is corrupt. */ 288 grp = ext4_get_group_info(sb, block_group); 289 if (IS_ERR(bitmap_bh)) { 290 fatal = PTR_ERR(bitmap_bh); 291 bitmap_bh = NULL; 292 goto error_return; 293 } 294 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) { 295 fatal = -EFSCORRUPTED; 296 goto error_return; 297 } 298 299 BUFFER_TRACE(bitmap_bh, "get_write_access"); 300 fatal = ext4_journal_get_write_access(handle, bitmap_bh); 301 if (fatal) 302 goto error_return; 303 304 fatal = -ESRCH; 305 gdp = ext4_get_group_desc(sb, block_group, &bh2); 306 if (gdp) { 307 BUFFER_TRACE(bh2, "get_write_access"); 308 fatal = ext4_journal_get_write_access(handle, bh2); 309 } 310 ext4_lock_group(sb, block_group); 311 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data); 312 if (fatal || !cleared) { 313 ext4_unlock_group(sb, block_group); 314 goto out; 315 } 316 317 count = ext4_free_inodes_count(sb, gdp) + 1; 318 ext4_free_inodes_set(sb, gdp, count); 319 if (is_directory) { 320 count = ext4_used_dirs_count(sb, gdp) - 1; 321 ext4_used_dirs_set(sb, gdp, count); 322 percpu_counter_dec(&sbi->s_dirs_counter); 323 } 324 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh, 325 EXT4_INODES_PER_GROUP(sb) / 8); 326 ext4_group_desc_csum_set(sb, block_group, gdp); 327 ext4_unlock_group(sb, block_group); 328 329 percpu_counter_inc(&sbi->s_freeinodes_counter); 330 if (sbi->s_log_groups_per_flex) { 331 struct flex_groups *fg; 332 333 fg = sbi_array_rcu_deref(sbi, s_flex_groups, 334 ext4_flex_group(sbi, block_group)); 335 atomic_inc(&fg->free_inodes); 336 if (is_directory) 337 atomic_dec(&fg->used_dirs); 338 } 339 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata"); 340 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2); 341 out: 342 if (cleared) { 343 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata"); 344 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 345 if (!fatal) 346 fatal = err; 347 } else { 348 ext4_error(sb, "bit already cleared for inode %lu", ino); 349 ext4_mark_group_bitmap_corrupted(sb, block_group, 350 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 351 } 352 353 error_return: 354 brelse(bitmap_bh); 355 ext4_std_error(sb, fatal); 356 } 357 358 struct orlov_stats { 359 __u64 free_clusters; 360 __u32 free_inodes; 361 __u32 used_dirs; 362 }; 363 364 /* 365 * Helper function for Orlov's allocator; returns critical information 366 * for a particular block group or flex_bg. If flex_size is 1, then g 367 * is a block group number; otherwise it is flex_bg number. 368 */ 369 static void get_orlov_stats(struct super_block *sb, ext4_group_t g, 370 int flex_size, struct orlov_stats *stats) 371 { 372 struct ext4_group_desc *desc; 373 374 if (flex_size > 1) { 375 struct flex_groups *fg = sbi_array_rcu_deref(EXT4_SB(sb), 376 s_flex_groups, g); 377 stats->free_inodes = atomic_read(&fg->free_inodes); 378 stats->free_clusters = atomic64_read(&fg->free_clusters); 379 stats->used_dirs = atomic_read(&fg->used_dirs); 380 return; 381 } 382 383 desc = ext4_get_group_desc(sb, g, NULL); 384 if (desc) { 385 stats->free_inodes = ext4_free_inodes_count(sb, desc); 386 stats->free_clusters = ext4_free_group_clusters(sb, desc); 387 stats->used_dirs = ext4_used_dirs_count(sb, desc); 388 } else { 389 stats->free_inodes = 0; 390 stats->free_clusters = 0; 391 stats->used_dirs = 0; 392 } 393 } 394 395 /* 396 * Orlov's allocator for directories. 397 * 398 * We always try to spread first-level directories. 399 * 400 * If there are blockgroups with both free inodes and free blocks counts 401 * not worse than average we return one with smallest directory count. 402 * Otherwise we simply return a random group. 403 * 404 * For the rest rules look so: 405 * 406 * It's OK to put directory into a group unless 407 * it has too many directories already (max_dirs) or 408 * it has too few free inodes left (min_inodes) or 409 * it has too few free blocks left (min_blocks) or 410 * Parent's group is preferred, if it doesn't satisfy these 411 * conditions we search cyclically through the rest. If none 412 * of the groups look good we just look for a group with more 413 * free inodes than average (starting at parent's group). 414 */ 415 416 static int find_group_orlov(struct super_block *sb, struct inode *parent, 417 ext4_group_t *group, umode_t mode, 418 const struct qstr *qstr) 419 { 420 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 421 struct ext4_sb_info *sbi = EXT4_SB(sb); 422 ext4_group_t real_ngroups = ext4_get_groups_count(sb); 423 int inodes_per_group = EXT4_INODES_PER_GROUP(sb); 424 unsigned int freei, avefreei, grp_free; 425 ext4_fsblk_t freeb, avefreec; 426 unsigned int ndirs; 427 int max_dirs, min_inodes; 428 ext4_grpblk_t min_clusters; 429 ext4_group_t i, grp, g, ngroups; 430 struct ext4_group_desc *desc; 431 struct orlov_stats stats; 432 int flex_size = ext4_flex_bg_size(sbi); 433 struct dx_hash_info hinfo; 434 435 ngroups = real_ngroups; 436 if (flex_size > 1) { 437 ngroups = (real_ngroups + flex_size - 1) >> 438 sbi->s_log_groups_per_flex; 439 parent_group >>= sbi->s_log_groups_per_flex; 440 } 441 442 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter); 443 avefreei = freei / ngroups; 444 freeb = EXT4_C2B(sbi, 445 percpu_counter_read_positive(&sbi->s_freeclusters_counter)); 446 avefreec = freeb; 447 do_div(avefreec, ngroups); 448 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter); 449 450 if (S_ISDIR(mode) && 451 ((parent == d_inode(sb->s_root)) || 452 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) { 453 int best_ndir = inodes_per_group; 454 int ret = -1; 455 456 if (qstr) { 457 hinfo.hash_version = DX_HASH_HALF_MD4; 458 hinfo.seed = sbi->s_hash_seed; 459 ext4fs_dirhash(parent, qstr->name, qstr->len, &hinfo); 460 grp = hinfo.hash; 461 } else 462 grp = prandom_u32(); 463 parent_group = (unsigned)grp % ngroups; 464 for (i = 0; i < ngroups; i++) { 465 g = (parent_group + i) % ngroups; 466 get_orlov_stats(sb, g, flex_size, &stats); 467 if (!stats.free_inodes) 468 continue; 469 if (stats.used_dirs >= best_ndir) 470 continue; 471 if (stats.free_inodes < avefreei) 472 continue; 473 if (stats.free_clusters < avefreec) 474 continue; 475 grp = g; 476 ret = 0; 477 best_ndir = stats.used_dirs; 478 } 479 if (ret) 480 goto fallback; 481 found_flex_bg: 482 if (flex_size == 1) { 483 *group = grp; 484 return 0; 485 } 486 487 /* 488 * We pack inodes at the beginning of the flexgroup's 489 * inode tables. Block allocation decisions will do 490 * something similar, although regular files will 491 * start at 2nd block group of the flexgroup. See 492 * ext4_ext_find_goal() and ext4_find_near(). 493 */ 494 grp *= flex_size; 495 for (i = 0; i < flex_size; i++) { 496 if (grp+i >= real_ngroups) 497 break; 498 desc = ext4_get_group_desc(sb, grp+i, NULL); 499 if (desc && ext4_free_inodes_count(sb, desc)) { 500 *group = grp+i; 501 return 0; 502 } 503 } 504 goto fallback; 505 } 506 507 max_dirs = ndirs / ngroups + inodes_per_group / 16; 508 min_inodes = avefreei - inodes_per_group*flex_size / 4; 509 if (min_inodes < 1) 510 min_inodes = 1; 511 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4; 512 513 /* 514 * Start looking in the flex group where we last allocated an 515 * inode for this parent directory 516 */ 517 if (EXT4_I(parent)->i_last_alloc_group != ~0) { 518 parent_group = EXT4_I(parent)->i_last_alloc_group; 519 if (flex_size > 1) 520 parent_group >>= sbi->s_log_groups_per_flex; 521 } 522 523 for (i = 0; i < ngroups; i++) { 524 grp = (parent_group + i) % ngroups; 525 get_orlov_stats(sb, grp, flex_size, &stats); 526 if (stats.used_dirs >= max_dirs) 527 continue; 528 if (stats.free_inodes < min_inodes) 529 continue; 530 if (stats.free_clusters < min_clusters) 531 continue; 532 goto found_flex_bg; 533 } 534 535 fallback: 536 ngroups = real_ngroups; 537 avefreei = freei / ngroups; 538 fallback_retry: 539 parent_group = EXT4_I(parent)->i_block_group; 540 for (i = 0; i < ngroups; i++) { 541 grp = (parent_group + i) % ngroups; 542 desc = ext4_get_group_desc(sb, grp, NULL); 543 if (desc) { 544 grp_free = ext4_free_inodes_count(sb, desc); 545 if (grp_free && grp_free >= avefreei) { 546 *group = grp; 547 return 0; 548 } 549 } 550 } 551 552 if (avefreei) { 553 /* 554 * The free-inodes counter is approximate, and for really small 555 * filesystems the above test can fail to find any blockgroups 556 */ 557 avefreei = 0; 558 goto fallback_retry; 559 } 560 561 return -1; 562 } 563 564 static int find_group_other(struct super_block *sb, struct inode *parent, 565 ext4_group_t *group, umode_t mode) 566 { 567 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 568 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb); 569 struct ext4_group_desc *desc; 570 int flex_size = ext4_flex_bg_size(EXT4_SB(sb)); 571 572 /* 573 * Try to place the inode is the same flex group as its 574 * parent. If we can't find space, use the Orlov algorithm to 575 * find another flex group, and store that information in the 576 * parent directory's inode information so that use that flex 577 * group for future allocations. 578 */ 579 if (flex_size > 1) { 580 int retry = 0; 581 582 try_again: 583 parent_group &= ~(flex_size-1); 584 last = parent_group + flex_size; 585 if (last > ngroups) 586 last = ngroups; 587 for (i = parent_group; i < last; i++) { 588 desc = ext4_get_group_desc(sb, i, NULL); 589 if (desc && ext4_free_inodes_count(sb, desc)) { 590 *group = i; 591 return 0; 592 } 593 } 594 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) { 595 retry = 1; 596 parent_group = EXT4_I(parent)->i_last_alloc_group; 597 goto try_again; 598 } 599 /* 600 * If this didn't work, use the Orlov search algorithm 601 * to find a new flex group; we pass in the mode to 602 * avoid the topdir algorithms. 603 */ 604 *group = parent_group + flex_size; 605 if (*group > ngroups) 606 *group = 0; 607 return find_group_orlov(sb, parent, group, mode, NULL); 608 } 609 610 /* 611 * Try to place the inode in its parent directory 612 */ 613 *group = parent_group; 614 desc = ext4_get_group_desc(sb, *group, NULL); 615 if (desc && ext4_free_inodes_count(sb, desc) && 616 ext4_free_group_clusters(sb, desc)) 617 return 0; 618 619 /* 620 * We're going to place this inode in a different blockgroup from its 621 * parent. We want to cause files in a common directory to all land in 622 * the same blockgroup. But we want files which are in a different 623 * directory which shares a blockgroup with our parent to land in a 624 * different blockgroup. 625 * 626 * So add our directory's i_ino into the starting point for the hash. 627 */ 628 *group = (*group + parent->i_ino) % ngroups; 629 630 /* 631 * Use a quadratic hash to find a group with a free inode and some free 632 * blocks. 633 */ 634 for (i = 1; i < ngroups; i <<= 1) { 635 *group += i; 636 if (*group >= ngroups) 637 *group -= ngroups; 638 desc = ext4_get_group_desc(sb, *group, NULL); 639 if (desc && ext4_free_inodes_count(sb, desc) && 640 ext4_free_group_clusters(sb, desc)) 641 return 0; 642 } 643 644 /* 645 * That failed: try linear search for a free inode, even if that group 646 * has no free blocks. 647 */ 648 *group = parent_group; 649 for (i = 0; i < ngroups; i++) { 650 if (++*group >= ngroups) 651 *group = 0; 652 desc = ext4_get_group_desc(sb, *group, NULL); 653 if (desc && ext4_free_inodes_count(sb, desc)) 654 return 0; 655 } 656 657 return -1; 658 } 659 660 /* 661 * In no journal mode, if an inode has recently been deleted, we want 662 * to avoid reusing it until we're reasonably sure the inode table 663 * block has been written back to disk. (Yes, these values are 664 * somewhat arbitrary...) 665 */ 666 #define RECENTCY_MIN 5 667 #define RECENTCY_DIRTY 300 668 669 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino) 670 { 671 struct ext4_group_desc *gdp; 672 struct ext4_inode *raw_inode; 673 struct buffer_head *bh; 674 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 675 int offset, ret = 0; 676 int recentcy = RECENTCY_MIN; 677 u32 dtime, now; 678 679 gdp = ext4_get_group_desc(sb, group, NULL); 680 if (unlikely(!gdp)) 681 return 0; 682 683 bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) + 684 (ino / inodes_per_block)); 685 if (!bh || !buffer_uptodate(bh)) 686 /* 687 * If the block is not in the buffer cache, then it 688 * must have been written out. 689 */ 690 goto out; 691 692 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb); 693 raw_inode = (struct ext4_inode *) (bh->b_data + offset); 694 695 /* i_dtime is only 32 bits on disk, but we only care about relative 696 * times in the range of a few minutes (i.e. long enough to sync a 697 * recently-deleted inode to disk), so using the low 32 bits of the 698 * clock (a 68 year range) is enough, see time_before32() */ 699 dtime = le32_to_cpu(raw_inode->i_dtime); 700 now = ktime_get_real_seconds(); 701 if (buffer_dirty(bh)) 702 recentcy += RECENTCY_DIRTY; 703 704 if (dtime && time_before32(dtime, now) && 705 time_before32(now, dtime + recentcy)) 706 ret = 1; 707 out: 708 brelse(bh); 709 return ret; 710 } 711 712 static int find_inode_bit(struct super_block *sb, ext4_group_t group, 713 struct buffer_head *bitmap, unsigned long *ino) 714 { 715 next: 716 *ino = ext4_find_next_zero_bit((unsigned long *) 717 bitmap->b_data, 718 EXT4_INODES_PER_GROUP(sb), *ino); 719 if (*ino >= EXT4_INODES_PER_GROUP(sb)) 720 return 0; 721 722 if ((EXT4_SB(sb)->s_journal == NULL) && 723 recently_deleted(sb, group, *ino)) { 724 *ino = *ino + 1; 725 if (*ino < EXT4_INODES_PER_GROUP(sb)) 726 goto next; 727 return 0; 728 } 729 730 return 1; 731 } 732 733 /* 734 * There are two policies for allocating an inode. If the new inode is 735 * a directory, then a forward search is made for a block group with both 736 * free space and a low directory-to-inode ratio; if that fails, then of 737 * the groups with above-average free space, that group with the fewest 738 * directories already is chosen. 739 * 740 * For other inodes, search forward from the parent directory's block 741 * group to find a free inode. 742 */ 743 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir, 744 umode_t mode, const struct qstr *qstr, 745 __u32 goal, uid_t *owner, __u32 i_flags, 746 int handle_type, unsigned int line_no, 747 int nblocks) 748 { 749 struct super_block *sb; 750 struct buffer_head *inode_bitmap_bh = NULL; 751 struct buffer_head *group_desc_bh; 752 ext4_group_t ngroups, group = 0; 753 unsigned long ino = 0; 754 struct inode *inode; 755 struct ext4_group_desc *gdp = NULL; 756 struct ext4_inode_info *ei; 757 struct ext4_sb_info *sbi; 758 int ret2, err; 759 struct inode *ret; 760 ext4_group_t i; 761 ext4_group_t flex_group; 762 struct ext4_group_info *grp; 763 int encrypt = 0; 764 765 /* Cannot create files in a deleted directory */ 766 if (!dir || !dir->i_nlink) 767 return ERR_PTR(-EPERM); 768 769 sb = dir->i_sb; 770 sbi = EXT4_SB(sb); 771 772 if (unlikely(ext4_forced_shutdown(sbi))) 773 return ERR_PTR(-EIO); 774 775 if ((IS_ENCRYPTED(dir) || DUMMY_ENCRYPTION_ENABLED(sbi)) && 776 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) && 777 !(i_flags & EXT4_EA_INODE_FL)) { 778 err = fscrypt_get_encryption_info(dir); 779 if (err) 780 return ERR_PTR(err); 781 if (!fscrypt_has_encryption_key(dir)) 782 return ERR_PTR(-ENOKEY); 783 encrypt = 1; 784 } 785 786 if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) { 787 #ifdef CONFIG_EXT4_FS_POSIX_ACL 788 struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT); 789 790 if (IS_ERR(p)) 791 return ERR_CAST(p); 792 if (p) { 793 int acl_size = p->a_count * sizeof(ext4_acl_entry); 794 795 nblocks += (S_ISDIR(mode) ? 2 : 1) * 796 __ext4_xattr_set_credits(sb, NULL /* inode */, 797 NULL /* block_bh */, acl_size, 798 true /* is_create */); 799 posix_acl_release(p); 800 } 801 #endif 802 803 #ifdef CONFIG_SECURITY 804 { 805 int num_security_xattrs = 1; 806 807 #ifdef CONFIG_INTEGRITY 808 num_security_xattrs++; 809 #endif 810 /* 811 * We assume that security xattrs are never 812 * more than 1k. In practice they are under 813 * 128 bytes. 814 */ 815 nblocks += num_security_xattrs * 816 __ext4_xattr_set_credits(sb, NULL /* inode */, 817 NULL /* block_bh */, 1024, 818 true /* is_create */); 819 } 820 #endif 821 if (encrypt) 822 nblocks += __ext4_xattr_set_credits(sb, 823 NULL /* inode */, NULL /* block_bh */, 824 FSCRYPT_SET_CONTEXT_MAX_SIZE, 825 true /* is_create */); 826 } 827 828 ngroups = ext4_get_groups_count(sb); 829 trace_ext4_request_inode(dir, mode); 830 inode = new_inode(sb); 831 if (!inode) 832 return ERR_PTR(-ENOMEM); 833 ei = EXT4_I(inode); 834 835 /* 836 * Initialize owners and quota early so that we don't have to account 837 * for quota initialization worst case in standard inode creating 838 * transaction 839 */ 840 if (owner) { 841 inode->i_mode = mode; 842 i_uid_write(inode, owner[0]); 843 i_gid_write(inode, owner[1]); 844 } else if (test_opt(sb, GRPID)) { 845 inode->i_mode = mode; 846 inode->i_uid = current_fsuid(); 847 inode->i_gid = dir->i_gid; 848 } else 849 inode_init_owner(inode, dir, mode); 850 851 if (ext4_has_feature_project(sb) && 852 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT)) 853 ei->i_projid = EXT4_I(dir)->i_projid; 854 else 855 ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID); 856 857 err = dquot_initialize(inode); 858 if (err) 859 goto out; 860 861 if (!goal) 862 goal = sbi->s_inode_goal; 863 864 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) { 865 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb); 866 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb); 867 ret2 = 0; 868 goto got_group; 869 } 870 871 if (S_ISDIR(mode)) 872 ret2 = find_group_orlov(sb, dir, &group, mode, qstr); 873 else 874 ret2 = find_group_other(sb, dir, &group, mode); 875 876 got_group: 877 EXT4_I(dir)->i_last_alloc_group = group; 878 err = -ENOSPC; 879 if (ret2 == -1) 880 goto out; 881 882 /* 883 * Normally we will only go through one pass of this loop, 884 * unless we get unlucky and it turns out the group we selected 885 * had its last inode grabbed by someone else. 886 */ 887 for (i = 0; i < ngroups; i++, ino = 0) { 888 err = -EIO; 889 890 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 891 if (!gdp) 892 goto out; 893 894 /* 895 * Check free inodes count before loading bitmap. 896 */ 897 if (ext4_free_inodes_count(sb, gdp) == 0) 898 goto next_group; 899 900 grp = ext4_get_group_info(sb, group); 901 /* Skip groups with already-known suspicious inode tables */ 902 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 903 goto next_group; 904 905 brelse(inode_bitmap_bh); 906 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); 907 /* Skip groups with suspicious inode tables */ 908 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) || 909 IS_ERR(inode_bitmap_bh)) { 910 inode_bitmap_bh = NULL; 911 goto next_group; 912 } 913 914 repeat_in_this_group: 915 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino); 916 if (!ret2) 917 goto next_group; 918 919 if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) { 920 ext4_error(sb, "reserved inode found cleared - " 921 "inode=%lu", ino + 1); 922 ext4_mark_group_bitmap_corrupted(sb, group, 923 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 924 goto next_group; 925 } 926 927 if (!handle) { 928 BUG_ON(nblocks <= 0); 929 handle = __ext4_journal_start_sb(dir->i_sb, line_no, 930 handle_type, nblocks, 0, 931 ext4_trans_default_revoke_credits(sb)); 932 if (IS_ERR(handle)) { 933 err = PTR_ERR(handle); 934 ext4_std_error(sb, err); 935 goto out; 936 } 937 } 938 BUFFER_TRACE(inode_bitmap_bh, "get_write_access"); 939 err = ext4_journal_get_write_access(handle, inode_bitmap_bh); 940 if (err) { 941 ext4_std_error(sb, err); 942 goto out; 943 } 944 ext4_lock_group(sb, group); 945 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data); 946 if (ret2) { 947 /* Someone already took the bit. Repeat the search 948 * with lock held. 949 */ 950 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino); 951 if (ret2) { 952 ext4_set_bit(ino, inode_bitmap_bh->b_data); 953 ret2 = 0; 954 } else { 955 ret2 = 1; /* we didn't grab the inode */ 956 } 957 } 958 ext4_unlock_group(sb, group); 959 ino++; /* the inode bitmap is zero-based */ 960 if (!ret2) 961 goto got; /* we grabbed the inode! */ 962 963 if (ino < EXT4_INODES_PER_GROUP(sb)) 964 goto repeat_in_this_group; 965 next_group: 966 if (++group == ngroups) 967 group = 0; 968 } 969 err = -ENOSPC; 970 goto out; 971 972 got: 973 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata"); 974 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh); 975 if (err) { 976 ext4_std_error(sb, err); 977 goto out; 978 } 979 980 BUFFER_TRACE(group_desc_bh, "get_write_access"); 981 err = ext4_journal_get_write_access(handle, group_desc_bh); 982 if (err) { 983 ext4_std_error(sb, err); 984 goto out; 985 } 986 987 /* We may have to initialize the block bitmap if it isn't already */ 988 if (ext4_has_group_desc_csum(sb) && 989 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 990 struct buffer_head *block_bitmap_bh; 991 992 block_bitmap_bh = ext4_read_block_bitmap(sb, group); 993 if (IS_ERR(block_bitmap_bh)) { 994 err = PTR_ERR(block_bitmap_bh); 995 goto out; 996 } 997 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access"); 998 err = ext4_journal_get_write_access(handle, block_bitmap_bh); 999 if (err) { 1000 brelse(block_bitmap_bh); 1001 ext4_std_error(sb, err); 1002 goto out; 1003 } 1004 1005 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); 1006 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh); 1007 1008 /* recheck and clear flag under lock if we still need to */ 1009 ext4_lock_group(sb, group); 1010 if (ext4_has_group_desc_csum(sb) && 1011 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 1012 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 1013 ext4_free_group_clusters_set(sb, gdp, 1014 ext4_free_clusters_after_init(sb, group, gdp)); 1015 ext4_block_bitmap_csum_set(sb, group, gdp, 1016 block_bitmap_bh); 1017 ext4_group_desc_csum_set(sb, group, gdp); 1018 } 1019 ext4_unlock_group(sb, group); 1020 brelse(block_bitmap_bh); 1021 1022 if (err) { 1023 ext4_std_error(sb, err); 1024 goto out; 1025 } 1026 } 1027 1028 /* Update the relevant bg descriptor fields */ 1029 if (ext4_has_group_desc_csum(sb)) { 1030 int free; 1031 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1032 1033 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */ 1034 ext4_lock_group(sb, group); /* while we modify the bg desc */ 1035 free = EXT4_INODES_PER_GROUP(sb) - 1036 ext4_itable_unused_count(sb, gdp); 1037 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 1038 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); 1039 free = 0; 1040 } 1041 /* 1042 * Check the relative inode number against the last used 1043 * relative inode number in this group. if it is greater 1044 * we need to update the bg_itable_unused count 1045 */ 1046 if (ino > free) 1047 ext4_itable_unused_set(sb, gdp, 1048 (EXT4_INODES_PER_GROUP(sb) - ino)); 1049 up_read(&grp->alloc_sem); 1050 } else { 1051 ext4_lock_group(sb, group); 1052 } 1053 1054 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1); 1055 if (S_ISDIR(mode)) { 1056 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1); 1057 if (sbi->s_log_groups_per_flex) { 1058 ext4_group_t f = ext4_flex_group(sbi, group); 1059 1060 atomic_inc(&sbi_array_rcu_deref(sbi, s_flex_groups, 1061 f)->used_dirs); 1062 } 1063 } 1064 if (ext4_has_group_desc_csum(sb)) { 1065 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh, 1066 EXT4_INODES_PER_GROUP(sb) / 8); 1067 ext4_group_desc_csum_set(sb, group, gdp); 1068 } 1069 ext4_unlock_group(sb, group); 1070 1071 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata"); 1072 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh); 1073 if (err) { 1074 ext4_std_error(sb, err); 1075 goto out; 1076 } 1077 1078 percpu_counter_dec(&sbi->s_freeinodes_counter); 1079 if (S_ISDIR(mode)) 1080 percpu_counter_inc(&sbi->s_dirs_counter); 1081 1082 if (sbi->s_log_groups_per_flex) { 1083 flex_group = ext4_flex_group(sbi, group); 1084 atomic_dec(&sbi_array_rcu_deref(sbi, s_flex_groups, 1085 flex_group)->free_inodes); 1086 } 1087 1088 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb); 1089 /* This is the optimal IO size (for stat), not the fs block size */ 1090 inode->i_blocks = 0; 1091 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 1092 ei->i_crtime = inode->i_mtime; 1093 1094 memset(ei->i_data, 0, sizeof(ei->i_data)); 1095 ei->i_dir_start_lookup = 0; 1096 ei->i_disksize = 0; 1097 1098 /* Don't inherit extent flag from directory, amongst others. */ 1099 ei->i_flags = 1100 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED); 1101 ei->i_flags |= i_flags; 1102 ei->i_file_acl = 0; 1103 ei->i_dtime = 0; 1104 ei->i_block_group = group; 1105 ei->i_last_alloc_group = ~0; 1106 1107 ext4_set_inode_flags(inode); 1108 if (IS_DIRSYNC(inode)) 1109 ext4_handle_sync(handle); 1110 if (insert_inode_locked(inode) < 0) { 1111 /* 1112 * Likely a bitmap corruption causing inode to be allocated 1113 * twice. 1114 */ 1115 err = -EIO; 1116 ext4_error(sb, "failed to insert inode %lu: doubly allocated?", 1117 inode->i_ino); 1118 ext4_mark_group_bitmap_corrupted(sb, group, 1119 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 1120 goto out; 1121 } 1122 inode->i_generation = prandom_u32(); 1123 1124 /* Precompute checksum seed for inode metadata */ 1125 if (ext4_has_metadata_csum(sb)) { 1126 __u32 csum; 1127 __le32 inum = cpu_to_le32(inode->i_ino); 1128 __le32 gen = cpu_to_le32(inode->i_generation); 1129 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 1130 sizeof(inum)); 1131 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 1132 sizeof(gen)); 1133 } 1134 1135 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 1136 ext4_set_inode_state(inode, EXT4_STATE_NEW); 1137 1138 ei->i_extra_isize = sbi->s_want_extra_isize; 1139 ei->i_inline_off = 0; 1140 if (ext4_has_feature_inline_data(sb)) 1141 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 1142 ret = inode; 1143 err = dquot_alloc_inode(inode); 1144 if (err) 1145 goto fail_drop; 1146 1147 /* 1148 * Since the encryption xattr will always be unique, create it first so 1149 * that it's less likely to end up in an external xattr block and 1150 * prevent its deduplication. 1151 */ 1152 if (encrypt) { 1153 err = fscrypt_inherit_context(dir, inode, handle, true); 1154 if (err) 1155 goto fail_free_drop; 1156 } 1157 1158 if (!(ei->i_flags & EXT4_EA_INODE_FL)) { 1159 err = ext4_init_acl(handle, inode, dir); 1160 if (err) 1161 goto fail_free_drop; 1162 1163 err = ext4_init_security(handle, inode, dir, qstr); 1164 if (err) 1165 goto fail_free_drop; 1166 } 1167 1168 if (ext4_has_feature_extents(sb)) { 1169 /* set extent flag only for directory, file and normal symlink*/ 1170 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) { 1171 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS); 1172 ext4_ext_tree_init(handle, inode); 1173 } 1174 } 1175 1176 if (ext4_handle_valid(handle)) { 1177 ei->i_sync_tid = handle->h_transaction->t_tid; 1178 ei->i_datasync_tid = handle->h_transaction->t_tid; 1179 } 1180 1181 err = ext4_mark_inode_dirty(handle, inode); 1182 if (err) { 1183 ext4_std_error(sb, err); 1184 goto fail_free_drop; 1185 } 1186 1187 ext4_debug("allocating inode %lu\n", inode->i_ino); 1188 trace_ext4_allocate_inode(inode, dir, mode); 1189 brelse(inode_bitmap_bh); 1190 return ret; 1191 1192 fail_free_drop: 1193 dquot_free_inode(inode); 1194 fail_drop: 1195 clear_nlink(inode); 1196 unlock_new_inode(inode); 1197 out: 1198 dquot_drop(inode); 1199 inode->i_flags |= S_NOQUOTA; 1200 iput(inode); 1201 brelse(inode_bitmap_bh); 1202 return ERR_PTR(err); 1203 } 1204 1205 /* Verify that we are loading a valid orphan from disk */ 1206 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino) 1207 { 1208 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); 1209 ext4_group_t block_group; 1210 int bit; 1211 struct buffer_head *bitmap_bh = NULL; 1212 struct inode *inode = NULL; 1213 int err = -EFSCORRUPTED; 1214 1215 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino) 1216 goto bad_orphan; 1217 1218 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 1219 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 1220 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 1221 if (IS_ERR(bitmap_bh)) 1222 return ERR_CAST(bitmap_bh); 1223 1224 /* Having the inode bit set should be a 100% indicator that this 1225 * is a valid orphan (no e2fsck run on fs). Orphans also include 1226 * inodes that were being truncated, so we can't check i_nlink==0. 1227 */ 1228 if (!ext4_test_bit(bit, bitmap_bh->b_data)) 1229 goto bad_orphan; 1230 1231 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); 1232 if (IS_ERR(inode)) { 1233 err = PTR_ERR(inode); 1234 ext4_set_errno(sb, -err); 1235 ext4_error(sb, "couldn't read orphan inode %lu (err %d)", 1236 ino, err); 1237 return inode; 1238 } 1239 1240 /* 1241 * If the orphans has i_nlinks > 0 then it should be able to 1242 * be truncated, otherwise it won't be removed from the orphan 1243 * list during processing and an infinite loop will result. 1244 * Similarly, it must not be a bad inode. 1245 */ 1246 if ((inode->i_nlink && !ext4_can_truncate(inode)) || 1247 is_bad_inode(inode)) 1248 goto bad_orphan; 1249 1250 if (NEXT_ORPHAN(inode) > max_ino) 1251 goto bad_orphan; 1252 brelse(bitmap_bh); 1253 return inode; 1254 1255 bad_orphan: 1256 ext4_error(sb, "bad orphan inode %lu", ino); 1257 if (bitmap_bh) 1258 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n", 1259 bit, (unsigned long long)bitmap_bh->b_blocknr, 1260 ext4_test_bit(bit, bitmap_bh->b_data)); 1261 if (inode) { 1262 printk(KERN_ERR "is_bad_inode(inode)=%d\n", 1263 is_bad_inode(inode)); 1264 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n", 1265 NEXT_ORPHAN(inode)); 1266 printk(KERN_ERR "max_ino=%lu\n", max_ino); 1267 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink); 1268 /* Avoid freeing blocks if we got a bad deleted inode */ 1269 if (inode->i_nlink == 0) 1270 inode->i_blocks = 0; 1271 iput(inode); 1272 } 1273 brelse(bitmap_bh); 1274 return ERR_PTR(err); 1275 } 1276 1277 unsigned long ext4_count_free_inodes(struct super_block *sb) 1278 { 1279 unsigned long desc_count; 1280 struct ext4_group_desc *gdp; 1281 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1282 #ifdef EXT4FS_DEBUG 1283 struct ext4_super_block *es; 1284 unsigned long bitmap_count, x; 1285 struct buffer_head *bitmap_bh = NULL; 1286 1287 es = EXT4_SB(sb)->s_es; 1288 desc_count = 0; 1289 bitmap_count = 0; 1290 gdp = NULL; 1291 for (i = 0; i < ngroups; i++) { 1292 gdp = ext4_get_group_desc(sb, i, NULL); 1293 if (!gdp) 1294 continue; 1295 desc_count += ext4_free_inodes_count(sb, gdp); 1296 brelse(bitmap_bh); 1297 bitmap_bh = ext4_read_inode_bitmap(sb, i); 1298 if (IS_ERR(bitmap_bh)) { 1299 bitmap_bh = NULL; 1300 continue; 1301 } 1302 1303 x = ext4_count_free(bitmap_bh->b_data, 1304 EXT4_INODES_PER_GROUP(sb) / 8); 1305 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n", 1306 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x); 1307 bitmap_count += x; 1308 } 1309 brelse(bitmap_bh); 1310 printk(KERN_DEBUG "ext4_count_free_inodes: " 1311 "stored = %u, computed = %lu, %lu\n", 1312 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count); 1313 return desc_count; 1314 #else 1315 desc_count = 0; 1316 for (i = 0; i < ngroups; i++) { 1317 gdp = ext4_get_group_desc(sb, i, NULL); 1318 if (!gdp) 1319 continue; 1320 desc_count += ext4_free_inodes_count(sb, gdp); 1321 cond_resched(); 1322 } 1323 return desc_count; 1324 #endif 1325 } 1326 1327 /* Called at mount-time, super-block is locked */ 1328 unsigned long ext4_count_dirs(struct super_block * sb) 1329 { 1330 unsigned long count = 0; 1331 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1332 1333 for (i = 0; i < ngroups; i++) { 1334 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1335 if (!gdp) 1336 continue; 1337 count += ext4_used_dirs_count(sb, gdp); 1338 } 1339 return count; 1340 } 1341 1342 /* 1343 * Zeroes not yet zeroed inode table - just write zeroes through the whole 1344 * inode table. Must be called without any spinlock held. The only place 1345 * where it is called from on active part of filesystem is ext4lazyinit 1346 * thread, so we do not need any special locks, however we have to prevent 1347 * inode allocation from the current group, so we take alloc_sem lock, to 1348 * block ext4_new_inode() until we are finished. 1349 */ 1350 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group, 1351 int barrier) 1352 { 1353 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1354 struct ext4_sb_info *sbi = EXT4_SB(sb); 1355 struct ext4_group_desc *gdp = NULL; 1356 struct buffer_head *group_desc_bh; 1357 handle_t *handle; 1358 ext4_fsblk_t blk; 1359 int num, ret = 0, used_blks = 0; 1360 1361 /* This should not happen, but just to be sure check this */ 1362 if (sb_rdonly(sb)) { 1363 ret = 1; 1364 goto out; 1365 } 1366 1367 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 1368 if (!gdp) 1369 goto out; 1370 1371 /* 1372 * We do not need to lock this, because we are the only one 1373 * handling this flag. 1374 */ 1375 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)) 1376 goto out; 1377 1378 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 1379 if (IS_ERR(handle)) { 1380 ret = PTR_ERR(handle); 1381 goto out; 1382 } 1383 1384 down_write(&grp->alloc_sem); 1385 /* 1386 * If inode bitmap was already initialized there may be some 1387 * used inodes so we need to skip blocks with used inodes in 1388 * inode table. 1389 */ 1390 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) 1391 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) - 1392 ext4_itable_unused_count(sb, gdp)), 1393 sbi->s_inodes_per_block); 1394 1395 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group) || 1396 ((group == 0) && ((EXT4_INODES_PER_GROUP(sb) - 1397 ext4_itable_unused_count(sb, gdp)) < 1398 EXT4_FIRST_INO(sb)))) { 1399 ext4_error(sb, "Something is wrong with group %u: " 1400 "used itable blocks: %d; " 1401 "itable unused count: %u", 1402 group, used_blks, 1403 ext4_itable_unused_count(sb, gdp)); 1404 ret = 1; 1405 goto err_out; 1406 } 1407 1408 blk = ext4_inode_table(sb, gdp) + used_blks; 1409 num = sbi->s_itb_per_group - used_blks; 1410 1411 BUFFER_TRACE(group_desc_bh, "get_write_access"); 1412 ret = ext4_journal_get_write_access(handle, 1413 group_desc_bh); 1414 if (ret) 1415 goto err_out; 1416 1417 /* 1418 * Skip zeroout if the inode table is full. But we set the ZEROED 1419 * flag anyway, because obviously, when it is full it does not need 1420 * further zeroing. 1421 */ 1422 if (unlikely(num == 0)) 1423 goto skip_zeroout; 1424 1425 ext4_debug("going to zero out inode table in group %d\n", 1426 group); 1427 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS); 1428 if (ret < 0) 1429 goto err_out; 1430 if (barrier) 1431 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL); 1432 1433 skip_zeroout: 1434 ext4_lock_group(sb, group); 1435 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED); 1436 ext4_group_desc_csum_set(sb, group, gdp); 1437 ext4_unlock_group(sb, group); 1438 1439 BUFFER_TRACE(group_desc_bh, 1440 "call ext4_handle_dirty_metadata"); 1441 ret = ext4_handle_dirty_metadata(handle, NULL, 1442 group_desc_bh); 1443 1444 err_out: 1445 up_write(&grp->alloc_sem); 1446 ext4_journal_stop(handle); 1447 out: 1448 return ret; 1449 } 1450