xref: /linux/fs/ext4/fsync.c (revision f884ab15afdc5514e88105c92a4e2e1e6539869a)
1 /*
2  *  linux/fs/ext4/fsync.c
3  *
4  *  Copyright (C) 1993  Stephen Tweedie (sct@redhat.com)
5  *  from
6  *  Copyright (C) 1992  Remy Card (card@masi.ibp.fr)
7  *                      Laboratoire MASI - Institut Blaise Pascal
8  *                      Universite Pierre et Marie Curie (Paris VI)
9  *  from
10  *  linux/fs/minix/truncate.c   Copyright (C) 1991, 1992  Linus Torvalds
11  *
12  *  ext4fs fsync primitive
13  *
14  *  Big-endian to little-endian byte-swapping/bitmaps by
15  *        David S. Miller (davem@caip.rutgers.edu), 1995
16  *
17  *  Removed unnecessary code duplication for little endian machines
18  *  and excessive __inline__s.
19  *        Andi Kleen, 1997
20  *
21  * Major simplications and cleanup - we only need to do the metadata, because
22  * we can depend on generic_block_fdatasync() to sync the data blocks.
23  */
24 
25 #include <linux/time.h>
26 #include <linux/fs.h>
27 #include <linux/sched.h>
28 #include <linux/writeback.h>
29 #include <linux/jbd2.h>
30 #include <linux/blkdev.h>
31 
32 #include "ext4.h"
33 #include "ext4_jbd2.h"
34 
35 #include <trace/events/ext4.h>
36 
37 /*
38  * If we're not journaling and this is a just-created file, we have to
39  * sync our parent directory (if it was freshly created) since
40  * otherwise it will only be written by writeback, leaving a huge
41  * window during which a crash may lose the file.  This may apply for
42  * the parent directory's parent as well, and so on recursively, if
43  * they are also freshly created.
44  */
45 static int ext4_sync_parent(struct inode *inode)
46 {
47 	struct dentry *dentry = NULL;
48 	struct inode *next;
49 	int ret = 0;
50 
51 	if (!ext4_test_inode_state(inode, EXT4_STATE_NEWENTRY))
52 		return 0;
53 	inode = igrab(inode);
54 	while (ext4_test_inode_state(inode, EXT4_STATE_NEWENTRY)) {
55 		ext4_clear_inode_state(inode, EXT4_STATE_NEWENTRY);
56 		dentry = d_find_any_alias(inode);
57 		if (!dentry)
58 			break;
59 		next = igrab(dentry->d_parent->d_inode);
60 		dput(dentry);
61 		if (!next)
62 			break;
63 		iput(inode);
64 		inode = next;
65 		ret = sync_mapping_buffers(inode->i_mapping);
66 		if (ret)
67 			break;
68 		ret = sync_inode_metadata(inode, 1);
69 		if (ret)
70 			break;
71 	}
72 	iput(inode);
73 	return ret;
74 }
75 
76 /**
77  * __sync_file - generic_file_fsync without the locking and filemap_write
78  * @inode:	inode to sync
79  * @datasync:	only sync essential metadata if true
80  *
81  * This is just generic_file_fsync without the locking.  This is needed for
82  * nojournal mode to make sure this inodes data/metadata makes it to disk
83  * properly.  The i_mutex should be held already.
84  */
85 static int __sync_inode(struct inode *inode, int datasync)
86 {
87 	int err;
88 	int ret;
89 
90 	ret = sync_mapping_buffers(inode->i_mapping);
91 	if (!(inode->i_state & I_DIRTY))
92 		return ret;
93 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
94 		return ret;
95 
96 	err = sync_inode_metadata(inode, 1);
97 	if (ret == 0)
98 		ret = err;
99 	return ret;
100 }
101 
102 /*
103  * akpm: A new design for ext4_sync_file().
104  *
105  * This is only called from sys_fsync(), sys_fdatasync() and sys_msync().
106  * There cannot be a transaction open by this task.
107  * Another task could have dirtied this inode.  Its data can be in any
108  * state in the journalling system.
109  *
110  * What we do is just kick off a commit and wait on it.  This will snapshot the
111  * inode to disk.
112  */
113 
114 int ext4_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
115 {
116 	struct inode *inode = file->f_mapping->host;
117 	struct ext4_inode_info *ei = EXT4_I(inode);
118 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
119 	int ret, err;
120 	tid_t commit_tid;
121 	bool needs_barrier = false;
122 
123 	J_ASSERT(ext4_journal_current_handle() == NULL);
124 
125 	trace_ext4_sync_file_enter(file, datasync);
126 
127 	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
128 	if (ret)
129 		return ret;
130 	mutex_lock(&inode->i_mutex);
131 
132 	if (inode->i_sb->s_flags & MS_RDONLY)
133 		goto out;
134 
135 	ret = ext4_flush_unwritten_io(inode);
136 	if (ret < 0)
137 		goto out;
138 
139 	if (!journal) {
140 		ret = __sync_inode(inode, datasync);
141 		if (!ret && !hlist_empty(&inode->i_dentry))
142 			ret = ext4_sync_parent(inode);
143 		goto out;
144 	}
145 
146 	/*
147 	 * data=writeback,ordered:
148 	 *  The caller's filemap_fdatawrite()/wait will sync the data.
149 	 *  Metadata is in the journal, we wait for proper transaction to
150 	 *  commit here.
151 	 *
152 	 * data=journal:
153 	 *  filemap_fdatawrite won't do anything (the buffers are clean).
154 	 *  ext4_force_commit will write the file data into the journal and
155 	 *  will wait on that.
156 	 *  filemap_fdatawait() will encounter a ton of newly-dirtied pages
157 	 *  (they were dirtied by commit).  But that's OK - the blocks are
158 	 *  safe in-journal, which is all fsync() needs to ensure.
159 	 */
160 	if (ext4_should_journal_data(inode)) {
161 		ret = ext4_force_commit(inode->i_sb);
162 		goto out;
163 	}
164 
165 	commit_tid = datasync ? ei->i_datasync_tid : ei->i_sync_tid;
166 	if (journal->j_flags & JBD2_BARRIER &&
167 	    !jbd2_trans_will_send_data_barrier(journal, commit_tid))
168 		needs_barrier = true;
169 	ret = jbd2_complete_transaction(journal, commit_tid);
170 	if (needs_barrier) {
171 		err = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
172 		if (!ret)
173 			ret = err;
174 	}
175  out:
176 	mutex_unlock(&inode->i_mutex);
177 	trace_ext4_sync_file_exit(inode, ret);
178 	return ret;
179 }
180