xref: /linux/fs/ext4/fsync.c (revision 4b4e41f35cc700e328e693f0c18b24424ab47ff0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/fsync.c
4  *
5  *  Copyright (C) 1993  Stephen Tweedie (sct@redhat.com)
6  *  from
7  *  Copyright (C) 1992  Remy Card (card@masi.ibp.fr)
8  *                      Laboratoire MASI - Institut Blaise Pascal
9  *                      Universite Pierre et Marie Curie (Paris VI)
10  *  from
11  *  linux/fs/minix/truncate.c   Copyright (C) 1991, 1992  Linus Torvalds
12  *
13  *  ext4fs fsync primitive
14  *
15  *  Big-endian to little-endian byte-swapping/bitmaps by
16  *        David S. Miller (davem@caip.rutgers.edu), 1995
17  *
18  *  Removed unnecessary code duplication for little endian machines
19  *  and excessive __inline__s.
20  *        Andi Kleen, 1997
21  *
22  * Major simplications and cleanup - we only need to do the metadata, because
23  * we can depend on generic_block_fdatasync() to sync the data blocks.
24  */
25 
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/sched.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 
32 #include "ext4.h"
33 #include "ext4_jbd2.h"
34 
35 #include <trace/events/ext4.h>
36 
37 /*
38  * If we're not journaling and this is a just-created file, we have to
39  * sync our parent directory (if it was freshly created) since
40  * otherwise it will only be written by writeback, leaving a huge
41  * window during which a crash may lose the file.  This may apply for
42  * the parent directory's parent as well, and so on recursively, if
43  * they are also freshly created.
44  */
45 static int ext4_sync_parent(struct inode *inode)
46 {
47 	struct dentry *dentry = NULL;
48 	struct inode *next;
49 	int ret = 0;
50 
51 	if (!ext4_test_inode_state(inode, EXT4_STATE_NEWENTRY))
52 		return 0;
53 	inode = igrab(inode);
54 	while (ext4_test_inode_state(inode, EXT4_STATE_NEWENTRY)) {
55 		ext4_clear_inode_state(inode, EXT4_STATE_NEWENTRY);
56 		dentry = d_find_any_alias(inode);
57 		if (!dentry)
58 			break;
59 		next = igrab(d_inode(dentry->d_parent));
60 		dput(dentry);
61 		if (!next)
62 			break;
63 		iput(inode);
64 		inode = next;
65 		/*
66 		 * The directory inode may have gone through rmdir by now. But
67 		 * the inode itself and its blocks are still allocated (we hold
68 		 * a reference to the inode so it didn't go through
69 		 * ext4_evict_inode()) and so we are safe to flush metadata
70 		 * blocks and the inode.
71 		 */
72 		ret = sync_mapping_buffers(inode->i_mapping);
73 		if (ret)
74 			break;
75 		ret = sync_inode_metadata(inode, 1);
76 		if (ret)
77 			break;
78 	}
79 	iput(inode);
80 	return ret;
81 }
82 
83 static int ext4_fsync_nojournal(struct inode *inode, bool datasync,
84 				bool *needs_barrier)
85 {
86 	int ret, err;
87 
88 	ret = sync_mapping_buffers(inode->i_mapping);
89 	if (!(inode->i_state & I_DIRTY_ALL))
90 		return ret;
91 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
92 		return ret;
93 
94 	err = sync_inode_metadata(inode, 1);
95 	if (!ret)
96 		ret = err;
97 
98 	if (!ret)
99 		ret = ext4_sync_parent(inode);
100 	if (test_opt(inode->i_sb, BARRIER))
101 		*needs_barrier = true;
102 
103 	return ret;
104 }
105 
106 static int ext4_fsync_journal(struct inode *inode, bool datasync,
107 			     bool *needs_barrier)
108 {
109 	struct ext4_inode_info *ei = EXT4_I(inode);
110 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
111 	tid_t commit_tid = datasync ? ei->i_datasync_tid : ei->i_sync_tid;
112 
113 	if (journal->j_flags & JBD2_BARRIER &&
114 	    !jbd2_trans_will_send_data_barrier(journal, commit_tid))
115 		*needs_barrier = true;
116 
117 	return jbd2_complete_transaction(journal, commit_tid);
118 }
119 
120 /*
121  * akpm: A new design for ext4_sync_file().
122  *
123  * This is only called from sys_fsync(), sys_fdatasync() and sys_msync().
124  * There cannot be a transaction open by this task.
125  * Another task could have dirtied this inode.  Its data can be in any
126  * state in the journalling system.
127  *
128  * What we do is just kick off a commit and wait on it.  This will snapshot the
129  * inode to disk.
130  */
131 int ext4_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
132 {
133 	int ret = 0, err;
134 	bool needs_barrier = false;
135 	struct inode *inode = file->f_mapping->host;
136 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
137 
138 	if (unlikely(ext4_forced_shutdown(sbi)))
139 		return -EIO;
140 
141 	J_ASSERT(ext4_journal_current_handle() == NULL);
142 
143 	trace_ext4_sync_file_enter(file, datasync);
144 
145 	if (sb_rdonly(inode->i_sb)) {
146 		/* Make sure that we read updated s_mount_flags value */
147 		smp_rmb();
148 		if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
149 			ret = -EROFS;
150 		goto out;
151 	}
152 
153 	ret = file_write_and_wait_range(file, start, end);
154 	if (ret)
155 		return ret;
156 
157 	/*
158 	 * data=writeback,ordered:
159 	 *  The caller's filemap_fdatawrite()/wait will sync the data.
160 	 *  Metadata is in the journal, we wait for proper transaction to
161 	 *  commit here.
162 	 *
163 	 * data=journal:
164 	 *  filemap_fdatawrite won't do anything (the buffers are clean).
165 	 *  ext4_force_commit will write the file data into the journal and
166 	 *  will wait on that.
167 	 *  filemap_fdatawait() will encounter a ton of newly-dirtied pages
168 	 *  (they were dirtied by commit).  But that's OK - the blocks are
169 	 *  safe in-journal, which is all fsync() needs to ensure.
170 	 */
171 	if (!sbi->s_journal)
172 		ret = ext4_fsync_nojournal(inode, datasync, &needs_barrier);
173 	else if (ext4_should_journal_data(inode))
174 		ret = ext4_force_commit(inode->i_sb);
175 	else
176 		ret = ext4_fsync_journal(inode, datasync, &needs_barrier);
177 
178 	if (needs_barrier) {
179 		err = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
180 		if (!ret)
181 			ret = err;
182 	}
183 out:
184 	err = file_check_and_advance_wb_err(file);
185 	if (ret == 0)
186 		ret = err;
187 	trace_ext4_sync_file_exit(inode, ret);
188 	return ret;
189 }
190