xref: /linux/fs/ext4/file.c (revision d8c6b3fc918dd7b93c66e49ff8640746b84fbfe9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/file.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/file.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  ext4 fs regular file handling primitives
17  *
18  *  64-bit file support on 64-bit platforms by Jakub Jelinek
19  *	(jj@sunsite.ms.mff.cuni.cz)
20  */
21 
22 #include <linux/time.h>
23 #include <linux/fs.h>
24 #include <linux/iomap.h>
25 #include <linux/mount.h>
26 #include <linux/path.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/pagevec.h>
30 #include <linux/uio.h>
31 #include <linux/mman.h>
32 #include <linux/backing-dev.h>
33 #include "ext4.h"
34 #include "ext4_jbd2.h"
35 #include "xattr.h"
36 #include "acl.h"
37 #include "truncate.h"
38 
39 /*
40  * Returns %true if the given DIO request should be attempted with DIO, or
41  * %false if it should fall back to buffered I/O.
42  *
43  * DIO isn't well specified; when it's unsupported (either due to the request
44  * being misaligned, or due to the file not supporting DIO at all), filesystems
45  * either fall back to buffered I/O or return EINVAL.  For files that don't use
46  * any special features like encryption or verity, ext4 has traditionally
47  * returned EINVAL for misaligned DIO.  iomap_dio_rw() uses this convention too.
48  * In this case, we should attempt the DIO, *not* fall back to buffered I/O.
49  *
50  * In contrast, in cases where DIO is unsupported due to ext4 features, ext4
51  * traditionally falls back to buffered I/O.
52  *
53  * This function implements the traditional ext4 behavior in all these cases.
54  */
55 static bool ext4_should_use_dio(struct kiocb *iocb, struct iov_iter *iter)
56 {
57 	struct inode *inode = file_inode(iocb->ki_filp);
58 	u32 dio_align = ext4_dio_alignment(inode);
59 
60 	if (dio_align == 0)
61 		return false;
62 
63 	if (dio_align == 1)
64 		return true;
65 
66 	return IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter), dio_align);
67 }
68 
69 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
70 {
71 	ssize_t ret;
72 	struct inode *inode = file_inode(iocb->ki_filp);
73 
74 	if (iocb->ki_flags & IOCB_NOWAIT) {
75 		if (!inode_trylock_shared(inode))
76 			return -EAGAIN;
77 	} else {
78 		inode_lock_shared(inode);
79 	}
80 
81 	if (!ext4_should_use_dio(iocb, to)) {
82 		inode_unlock_shared(inode);
83 		/*
84 		 * Fallback to buffered I/O if the operation being performed on
85 		 * the inode is not supported by direct I/O. The IOCB_DIRECT
86 		 * flag needs to be cleared here in order to ensure that the
87 		 * direct I/O path within generic_file_read_iter() is not
88 		 * taken.
89 		 */
90 		iocb->ki_flags &= ~IOCB_DIRECT;
91 		return generic_file_read_iter(iocb, to);
92 	}
93 
94 	ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 0, NULL, 0);
95 	inode_unlock_shared(inode);
96 
97 	file_accessed(iocb->ki_filp);
98 	return ret;
99 }
100 
101 #ifdef CONFIG_FS_DAX
102 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
103 {
104 	struct inode *inode = file_inode(iocb->ki_filp);
105 	ssize_t ret;
106 
107 	if (iocb->ki_flags & IOCB_NOWAIT) {
108 		if (!inode_trylock_shared(inode))
109 			return -EAGAIN;
110 	} else {
111 		inode_lock_shared(inode);
112 	}
113 	/*
114 	 * Recheck under inode lock - at this point we are sure it cannot
115 	 * change anymore
116 	 */
117 	if (!IS_DAX(inode)) {
118 		inode_unlock_shared(inode);
119 		/* Fallback to buffered IO in case we cannot support DAX */
120 		return generic_file_read_iter(iocb, to);
121 	}
122 	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
123 	inode_unlock_shared(inode);
124 
125 	file_accessed(iocb->ki_filp);
126 	return ret;
127 }
128 #endif
129 
130 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
131 {
132 	struct inode *inode = file_inode(iocb->ki_filp);
133 
134 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
135 		return -EIO;
136 
137 	if (!iov_iter_count(to))
138 		return 0; /* skip atime */
139 
140 #ifdef CONFIG_FS_DAX
141 	if (IS_DAX(inode))
142 		return ext4_dax_read_iter(iocb, to);
143 #endif
144 	if (iocb->ki_flags & IOCB_DIRECT)
145 		return ext4_dio_read_iter(iocb, to);
146 
147 	return generic_file_read_iter(iocb, to);
148 }
149 
150 static ssize_t ext4_file_splice_read(struct file *in, loff_t *ppos,
151 				     struct pipe_inode_info *pipe,
152 				     size_t len, unsigned int flags)
153 {
154 	struct inode *inode = file_inode(in);
155 
156 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
157 		return -EIO;
158 	return filemap_splice_read(in, ppos, pipe, len, flags);
159 }
160 
161 /*
162  * Called when an inode is released. Note that this is different
163  * from ext4_file_open: open gets called at every open, but release
164  * gets called only when /all/ the files are closed.
165  */
166 static int ext4_release_file(struct inode *inode, struct file *filp)
167 {
168 	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
169 		ext4_alloc_da_blocks(inode);
170 		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
171 	}
172 	/* if we are the last writer on the inode, drop the block reservation */
173 	if ((filp->f_mode & FMODE_WRITE) &&
174 			(atomic_read(&inode->i_writecount) == 1) &&
175 			!EXT4_I(inode)->i_reserved_data_blocks) {
176 		down_write(&EXT4_I(inode)->i_data_sem);
177 		ext4_discard_preallocations(inode, 0);
178 		up_write(&EXT4_I(inode)->i_data_sem);
179 	}
180 	if (is_dx(inode) && filp->private_data)
181 		ext4_htree_free_dir_info(filp->private_data);
182 
183 	return 0;
184 }
185 
186 /*
187  * This tests whether the IO in question is block-aligned or not.
188  * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
189  * are converted to written only after the IO is complete.  Until they are
190  * mapped, these blocks appear as holes, so dio_zero_block() will assume that
191  * it needs to zero out portions of the start and/or end block.  If 2 AIO
192  * threads are at work on the same unwritten block, they must be synchronized
193  * or one thread will zero the other's data, causing corruption.
194  */
195 static bool
196 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
197 {
198 	struct super_block *sb = inode->i_sb;
199 	unsigned long blockmask = sb->s_blocksize - 1;
200 
201 	if ((pos | iov_iter_alignment(from)) & blockmask)
202 		return true;
203 
204 	return false;
205 }
206 
207 static bool
208 ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
209 {
210 	if (offset + len > i_size_read(inode) ||
211 	    offset + len > EXT4_I(inode)->i_disksize)
212 		return true;
213 	return false;
214 }
215 
216 /* Is IO overwriting allocated or initialized blocks? */
217 static bool ext4_overwrite_io(struct inode *inode,
218 			      loff_t pos, loff_t len, bool *unwritten)
219 {
220 	struct ext4_map_blocks map;
221 	unsigned int blkbits = inode->i_blkbits;
222 	int err, blklen;
223 
224 	if (pos + len > i_size_read(inode))
225 		return false;
226 
227 	map.m_lblk = pos >> blkbits;
228 	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
229 	blklen = map.m_len;
230 
231 	err = ext4_map_blocks(NULL, inode, &map, 0);
232 	if (err != blklen)
233 		return false;
234 	/*
235 	 * 'err==len' means that all of the blocks have been preallocated,
236 	 * regardless of whether they have been initialized or not. We need to
237 	 * check m_flags to distinguish the unwritten extents.
238 	 */
239 	*unwritten = !(map.m_flags & EXT4_MAP_MAPPED);
240 	return true;
241 }
242 
243 static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
244 					 struct iov_iter *from)
245 {
246 	struct inode *inode = file_inode(iocb->ki_filp);
247 	ssize_t ret;
248 
249 	if (unlikely(IS_IMMUTABLE(inode)))
250 		return -EPERM;
251 
252 	ret = generic_write_checks(iocb, from);
253 	if (ret <= 0)
254 		return ret;
255 
256 	/*
257 	 * If we have encountered a bitmap-format file, the size limit
258 	 * is smaller than s_maxbytes, which is for extent-mapped files.
259 	 */
260 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
261 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
262 
263 		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
264 			return -EFBIG;
265 		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
266 	}
267 
268 	return iov_iter_count(from);
269 }
270 
271 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
272 {
273 	ssize_t ret, count;
274 
275 	count = ext4_generic_write_checks(iocb, from);
276 	if (count <= 0)
277 		return count;
278 
279 	ret = file_modified(iocb->ki_filp);
280 	if (ret)
281 		return ret;
282 	return count;
283 }
284 
285 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
286 					struct iov_iter *from)
287 {
288 	ssize_t ret;
289 	struct inode *inode = file_inode(iocb->ki_filp);
290 
291 	if (iocb->ki_flags & IOCB_NOWAIT)
292 		return -EOPNOTSUPP;
293 
294 	inode_lock(inode);
295 	ret = ext4_write_checks(iocb, from);
296 	if (ret <= 0)
297 		goto out;
298 
299 	ret = generic_perform_write(iocb, from);
300 
301 out:
302 	inode_unlock(inode);
303 	if (unlikely(ret <= 0))
304 		return ret;
305 	return generic_write_sync(iocb, ret);
306 }
307 
308 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
309 					   ssize_t written, size_t count)
310 {
311 	handle_t *handle;
312 	bool truncate = false;
313 	u8 blkbits = inode->i_blkbits;
314 	ext4_lblk_t written_blk, end_blk;
315 	int ret;
316 
317 	/*
318 	 * Note that EXT4_I(inode)->i_disksize can get extended up to
319 	 * inode->i_size while the I/O was running due to writeback of delalloc
320 	 * blocks. But, the code in ext4_iomap_alloc() is careful to use
321 	 * zeroed/unwritten extents if this is possible; thus we won't leave
322 	 * uninitialized blocks in a file even if we didn't succeed in writing
323 	 * as much as we intended.
324 	 */
325 	WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize);
326 	if (offset + count <= EXT4_I(inode)->i_disksize) {
327 		/*
328 		 * We need to ensure that the inode is removed from the orphan
329 		 * list if it has been added prematurely, due to writeback of
330 		 * delalloc blocks.
331 		 */
332 		if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
333 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
334 
335 			if (IS_ERR(handle)) {
336 				ext4_orphan_del(NULL, inode);
337 				return PTR_ERR(handle);
338 			}
339 
340 			ext4_orphan_del(handle, inode);
341 			ext4_journal_stop(handle);
342 		}
343 
344 		return written;
345 	}
346 
347 	if (written < 0)
348 		goto truncate;
349 
350 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
351 	if (IS_ERR(handle)) {
352 		written = PTR_ERR(handle);
353 		goto truncate;
354 	}
355 
356 	if (ext4_update_inode_size(inode, offset + written)) {
357 		ret = ext4_mark_inode_dirty(handle, inode);
358 		if (unlikely(ret)) {
359 			written = ret;
360 			ext4_journal_stop(handle);
361 			goto truncate;
362 		}
363 	}
364 
365 	/*
366 	 * We may need to truncate allocated but not written blocks beyond EOF.
367 	 */
368 	written_blk = ALIGN(offset + written, 1 << blkbits);
369 	end_blk = ALIGN(offset + count, 1 << blkbits);
370 	if (written_blk < end_blk && ext4_can_truncate(inode))
371 		truncate = true;
372 
373 	/*
374 	 * Remove the inode from the orphan list if it has been extended and
375 	 * everything went OK.
376 	 */
377 	if (!truncate && inode->i_nlink)
378 		ext4_orphan_del(handle, inode);
379 	ext4_journal_stop(handle);
380 
381 	if (truncate) {
382 truncate:
383 		ext4_truncate_failed_write(inode);
384 		/*
385 		 * If the truncate operation failed early, then the inode may
386 		 * still be on the orphan list. In that case, we need to try
387 		 * remove the inode from the in-memory linked list.
388 		 */
389 		if (inode->i_nlink)
390 			ext4_orphan_del(NULL, inode);
391 	}
392 
393 	return written;
394 }
395 
396 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
397 				 int error, unsigned int flags)
398 {
399 	loff_t pos = iocb->ki_pos;
400 	struct inode *inode = file_inode(iocb->ki_filp);
401 
402 	if (error)
403 		return error;
404 
405 	if (size && flags & IOMAP_DIO_UNWRITTEN) {
406 		error = ext4_convert_unwritten_extents(NULL, inode, pos, size);
407 		if (error < 0)
408 			return error;
409 	}
410 	/*
411 	 * If we are extending the file, we have to update i_size here before
412 	 * page cache gets invalidated in iomap_dio_rw(). Otherwise racing
413 	 * buffered reads could zero out too much from page cache pages. Update
414 	 * of on-disk size will happen later in ext4_dio_write_iter() where
415 	 * we have enough information to also perform orphan list handling etc.
416 	 * Note that we perform all extending writes synchronously under
417 	 * i_rwsem held exclusively so i_size update is safe here in that case.
418 	 * If the write was not extending, we cannot see pos > i_size here
419 	 * because operations reducing i_size like truncate wait for all
420 	 * outstanding DIO before updating i_size.
421 	 */
422 	pos += size;
423 	if (pos > i_size_read(inode))
424 		i_size_write(inode, pos);
425 
426 	return 0;
427 }
428 
429 static const struct iomap_dio_ops ext4_dio_write_ops = {
430 	.end_io = ext4_dio_write_end_io,
431 };
432 
433 /*
434  * The intention here is to start with shared lock acquired then see if any
435  * condition requires an exclusive inode lock. If yes, then we restart the
436  * whole operation by releasing the shared lock and acquiring exclusive lock.
437  *
438  * - For unaligned_io we never take shared lock as it may cause data corruption
439  *   when two unaligned IO tries to modify the same block e.g. while zeroing.
440  *
441  * - For extending writes case we don't take the shared lock, since it requires
442  *   updating inode i_disksize and/or orphan handling with exclusive lock.
443  *
444  * - shared locking will only be true mostly with overwrites, including
445  *   initialized blocks and unwritten blocks. For overwrite unwritten blocks
446  *   we protect splitting extents by i_data_sem in ext4_inode_info, so we can
447  *   also release exclusive i_rwsem lock.
448  *
449  * - Otherwise we will switch to exclusive i_rwsem lock.
450  */
451 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
452 				     bool *ilock_shared, bool *extend,
453 				     bool *unwritten, int *dio_flags)
454 {
455 	struct file *file = iocb->ki_filp;
456 	struct inode *inode = file_inode(file);
457 	loff_t offset;
458 	size_t count;
459 	ssize_t ret;
460 	bool overwrite, unaligned_io;
461 
462 restart:
463 	ret = ext4_generic_write_checks(iocb, from);
464 	if (ret <= 0)
465 		goto out;
466 
467 	offset = iocb->ki_pos;
468 	count = ret;
469 
470 	unaligned_io = ext4_unaligned_io(inode, from, offset);
471 	*extend = ext4_extending_io(inode, offset, count);
472 	overwrite = ext4_overwrite_io(inode, offset, count, unwritten);
473 
474 	/*
475 	 * Determine whether we need to upgrade to an exclusive lock. This is
476 	 * required to change security info in file_modified(), for extending
477 	 * I/O, any form of non-overwrite I/O, and unaligned I/O to unwritten
478 	 * extents (as partial block zeroing may be required).
479 	 *
480 	 * Note that unaligned writes are allowed under shared lock so long as
481 	 * they are pure overwrites. Otherwise, concurrent unaligned writes risk
482 	 * data corruption due to partial block zeroing in the dio layer, and so
483 	 * the I/O must occur exclusively.
484 	 */
485 	if (*ilock_shared &&
486 	    ((!IS_NOSEC(inode) || *extend || !overwrite ||
487 	     (unaligned_io && *unwritten)))) {
488 		if (iocb->ki_flags & IOCB_NOWAIT) {
489 			ret = -EAGAIN;
490 			goto out;
491 		}
492 		inode_unlock_shared(inode);
493 		*ilock_shared = false;
494 		inode_lock(inode);
495 		goto restart;
496 	}
497 
498 	/*
499 	 * Now that locking is settled, determine dio flags and exclusivity
500 	 * requirements. We don't use DIO_OVERWRITE_ONLY because we enforce
501 	 * behavior already. The inode lock is already held exclusive if the
502 	 * write is non-overwrite or extending, so drain all outstanding dio and
503 	 * set the force wait dio flag.
504 	 */
505 	if (!*ilock_shared && (unaligned_io || *extend)) {
506 		if (iocb->ki_flags & IOCB_NOWAIT) {
507 			ret = -EAGAIN;
508 			goto out;
509 		}
510 		if (unaligned_io && (!overwrite || *unwritten))
511 			inode_dio_wait(inode);
512 		*dio_flags = IOMAP_DIO_FORCE_WAIT;
513 	}
514 
515 	ret = file_modified(file);
516 	if (ret < 0)
517 		goto out;
518 
519 	return count;
520 out:
521 	if (*ilock_shared)
522 		inode_unlock_shared(inode);
523 	else
524 		inode_unlock(inode);
525 	return ret;
526 }
527 
528 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
529 {
530 	ssize_t ret;
531 	handle_t *handle;
532 	struct inode *inode = file_inode(iocb->ki_filp);
533 	loff_t offset = iocb->ki_pos;
534 	size_t count = iov_iter_count(from);
535 	const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
536 	bool extend = false, unwritten = false;
537 	bool ilock_shared = true;
538 	int dio_flags = 0;
539 
540 	/*
541 	 * Quick check here without any i_rwsem lock to see if it is extending
542 	 * IO. A more reliable check is done in ext4_dio_write_checks() with
543 	 * proper locking in place.
544 	 */
545 	if (offset + count > i_size_read(inode))
546 		ilock_shared = false;
547 
548 	if (iocb->ki_flags & IOCB_NOWAIT) {
549 		if (ilock_shared) {
550 			if (!inode_trylock_shared(inode))
551 				return -EAGAIN;
552 		} else {
553 			if (!inode_trylock(inode))
554 				return -EAGAIN;
555 		}
556 	} else {
557 		if (ilock_shared)
558 			inode_lock_shared(inode);
559 		else
560 			inode_lock(inode);
561 	}
562 
563 	/* Fallback to buffered I/O if the inode does not support direct I/O. */
564 	if (!ext4_should_use_dio(iocb, from)) {
565 		if (ilock_shared)
566 			inode_unlock_shared(inode);
567 		else
568 			inode_unlock(inode);
569 		return ext4_buffered_write_iter(iocb, from);
570 	}
571 
572 	ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend,
573 				    &unwritten, &dio_flags);
574 	if (ret <= 0)
575 		return ret;
576 
577 	/*
578 	 * Make sure inline data cannot be created anymore since we are going
579 	 * to allocate blocks for DIO. We know the inode does not have any
580 	 * inline data now because ext4_dio_supported() checked for that.
581 	 */
582 	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
583 
584 	offset = iocb->ki_pos;
585 	count = ret;
586 
587 	if (extend) {
588 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
589 		if (IS_ERR(handle)) {
590 			ret = PTR_ERR(handle);
591 			goto out;
592 		}
593 
594 		ret = ext4_orphan_add(handle, inode);
595 		if (ret) {
596 			ext4_journal_stop(handle);
597 			goto out;
598 		}
599 
600 		ext4_journal_stop(handle);
601 	}
602 
603 	if (ilock_shared && !unwritten)
604 		iomap_ops = &ext4_iomap_overwrite_ops;
605 	ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
606 			   dio_flags, NULL, 0);
607 	if (ret == -ENOTBLK)
608 		ret = 0;
609 
610 	if (extend)
611 		ret = ext4_handle_inode_extension(inode, offset, ret, count);
612 
613 out:
614 	if (ilock_shared)
615 		inode_unlock_shared(inode);
616 	else
617 		inode_unlock(inode);
618 
619 	if (ret >= 0 && iov_iter_count(from)) {
620 		ssize_t err;
621 		loff_t endbyte;
622 
623 		offset = iocb->ki_pos;
624 		err = ext4_buffered_write_iter(iocb, from);
625 		if (err < 0)
626 			return err;
627 
628 		/*
629 		 * We need to ensure that the pages within the page cache for
630 		 * the range covered by this I/O are written to disk and
631 		 * invalidated. This is in attempt to preserve the expected
632 		 * direct I/O semantics in the case we fallback to buffered I/O
633 		 * to complete off the I/O request.
634 		 */
635 		ret += err;
636 		endbyte = offset + err - 1;
637 		err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
638 						   offset, endbyte);
639 		if (!err)
640 			invalidate_mapping_pages(iocb->ki_filp->f_mapping,
641 						 offset >> PAGE_SHIFT,
642 						 endbyte >> PAGE_SHIFT);
643 	}
644 
645 	return ret;
646 }
647 
648 #ifdef CONFIG_FS_DAX
649 static ssize_t
650 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
651 {
652 	ssize_t ret;
653 	size_t count;
654 	loff_t offset;
655 	handle_t *handle;
656 	bool extend = false;
657 	struct inode *inode = file_inode(iocb->ki_filp);
658 
659 	if (iocb->ki_flags & IOCB_NOWAIT) {
660 		if (!inode_trylock(inode))
661 			return -EAGAIN;
662 	} else {
663 		inode_lock(inode);
664 	}
665 
666 	ret = ext4_write_checks(iocb, from);
667 	if (ret <= 0)
668 		goto out;
669 
670 	offset = iocb->ki_pos;
671 	count = iov_iter_count(from);
672 
673 	if (offset + count > EXT4_I(inode)->i_disksize) {
674 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
675 		if (IS_ERR(handle)) {
676 			ret = PTR_ERR(handle);
677 			goto out;
678 		}
679 
680 		ret = ext4_orphan_add(handle, inode);
681 		if (ret) {
682 			ext4_journal_stop(handle);
683 			goto out;
684 		}
685 
686 		extend = true;
687 		ext4_journal_stop(handle);
688 	}
689 
690 	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
691 
692 	if (extend)
693 		ret = ext4_handle_inode_extension(inode, offset, ret, count);
694 out:
695 	inode_unlock(inode);
696 	if (ret > 0)
697 		ret = generic_write_sync(iocb, ret);
698 	return ret;
699 }
700 #endif
701 
702 static ssize_t
703 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
704 {
705 	struct inode *inode = file_inode(iocb->ki_filp);
706 
707 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
708 		return -EIO;
709 
710 #ifdef CONFIG_FS_DAX
711 	if (IS_DAX(inode))
712 		return ext4_dax_write_iter(iocb, from);
713 #endif
714 	if (iocb->ki_flags & IOCB_DIRECT)
715 		return ext4_dio_write_iter(iocb, from);
716 	else
717 		return ext4_buffered_write_iter(iocb, from);
718 }
719 
720 #ifdef CONFIG_FS_DAX
721 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf, unsigned int order)
722 {
723 	int error = 0;
724 	vm_fault_t result;
725 	int retries = 0;
726 	handle_t *handle = NULL;
727 	struct inode *inode = file_inode(vmf->vma->vm_file);
728 	struct super_block *sb = inode->i_sb;
729 
730 	/*
731 	 * We have to distinguish real writes from writes which will result in a
732 	 * COW page; COW writes should *not* poke the journal (the file will not
733 	 * be changed). Doing so would cause unintended failures when mounted
734 	 * read-only.
735 	 *
736 	 * We check for VM_SHARED rather than vmf->cow_page since the latter is
737 	 * unset for order != 0 (i.e. only in do_cow_fault); for
738 	 * other sizes, dax_iomap_fault will handle splitting / fallback so that
739 	 * we eventually come back with a COW page.
740 	 */
741 	bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
742 		(vmf->vma->vm_flags & VM_SHARED);
743 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
744 	pfn_t pfn;
745 
746 	if (write) {
747 		sb_start_pagefault(sb);
748 		file_update_time(vmf->vma->vm_file);
749 		filemap_invalidate_lock_shared(mapping);
750 retry:
751 		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
752 					       EXT4_DATA_TRANS_BLOCKS(sb));
753 		if (IS_ERR(handle)) {
754 			filemap_invalidate_unlock_shared(mapping);
755 			sb_end_pagefault(sb);
756 			return VM_FAULT_SIGBUS;
757 		}
758 	} else {
759 		filemap_invalidate_lock_shared(mapping);
760 	}
761 	result = dax_iomap_fault(vmf, order, &pfn, &error, &ext4_iomap_ops);
762 	if (write) {
763 		ext4_journal_stop(handle);
764 
765 		if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
766 		    ext4_should_retry_alloc(sb, &retries))
767 			goto retry;
768 		/* Handling synchronous page fault? */
769 		if (result & VM_FAULT_NEEDDSYNC)
770 			result = dax_finish_sync_fault(vmf, order, pfn);
771 		filemap_invalidate_unlock_shared(mapping);
772 		sb_end_pagefault(sb);
773 	} else {
774 		filemap_invalidate_unlock_shared(mapping);
775 	}
776 
777 	return result;
778 }
779 
780 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
781 {
782 	return ext4_dax_huge_fault(vmf, 0);
783 }
784 
785 static const struct vm_operations_struct ext4_dax_vm_ops = {
786 	.fault		= ext4_dax_fault,
787 	.huge_fault	= ext4_dax_huge_fault,
788 	.page_mkwrite	= ext4_dax_fault,
789 	.pfn_mkwrite	= ext4_dax_fault,
790 };
791 #else
792 #define ext4_dax_vm_ops	ext4_file_vm_ops
793 #endif
794 
795 static const struct vm_operations_struct ext4_file_vm_ops = {
796 	.fault		= filemap_fault,
797 	.map_pages	= filemap_map_pages,
798 	.page_mkwrite   = ext4_page_mkwrite,
799 };
800 
801 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
802 {
803 	struct inode *inode = file->f_mapping->host;
804 	struct dax_device *dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
805 
806 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
807 		return -EIO;
808 
809 	/*
810 	 * We don't support synchronous mappings for non-DAX files and
811 	 * for DAX files if underneath dax_device is not synchronous.
812 	 */
813 	if (!daxdev_mapping_supported(vma, dax_dev))
814 		return -EOPNOTSUPP;
815 
816 	file_accessed(file);
817 	if (IS_DAX(file_inode(file))) {
818 		vma->vm_ops = &ext4_dax_vm_ops;
819 		vm_flags_set(vma, VM_HUGEPAGE);
820 	} else {
821 		vma->vm_ops = &ext4_file_vm_ops;
822 	}
823 	return 0;
824 }
825 
826 static int ext4_sample_last_mounted(struct super_block *sb,
827 				    struct vfsmount *mnt)
828 {
829 	struct ext4_sb_info *sbi = EXT4_SB(sb);
830 	struct path path;
831 	char buf[64], *cp;
832 	handle_t *handle;
833 	int err;
834 
835 	if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED)))
836 		return 0;
837 
838 	if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
839 		return 0;
840 
841 	ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED);
842 	/*
843 	 * Sample where the filesystem has been mounted and
844 	 * store it in the superblock for sysadmin convenience
845 	 * when trying to sort through large numbers of block
846 	 * devices or filesystem images.
847 	 */
848 	memset(buf, 0, sizeof(buf));
849 	path.mnt = mnt;
850 	path.dentry = mnt->mnt_root;
851 	cp = d_path(&path, buf, sizeof(buf));
852 	err = 0;
853 	if (IS_ERR(cp))
854 		goto out;
855 
856 	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
857 	err = PTR_ERR(handle);
858 	if (IS_ERR(handle))
859 		goto out;
860 	BUFFER_TRACE(sbi->s_sbh, "get_write_access");
861 	err = ext4_journal_get_write_access(handle, sb, sbi->s_sbh,
862 					    EXT4_JTR_NONE);
863 	if (err)
864 		goto out_journal;
865 	lock_buffer(sbi->s_sbh);
866 	strncpy(sbi->s_es->s_last_mounted, cp,
867 		sizeof(sbi->s_es->s_last_mounted));
868 	ext4_superblock_csum_set(sb);
869 	unlock_buffer(sbi->s_sbh);
870 	ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh);
871 out_journal:
872 	ext4_journal_stop(handle);
873 out:
874 	sb_end_intwrite(sb);
875 	return err;
876 }
877 
878 static int ext4_file_open(struct inode *inode, struct file *filp)
879 {
880 	int ret;
881 
882 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
883 		return -EIO;
884 
885 	ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
886 	if (ret)
887 		return ret;
888 
889 	ret = fscrypt_file_open(inode, filp);
890 	if (ret)
891 		return ret;
892 
893 	ret = fsverity_file_open(inode, filp);
894 	if (ret)
895 		return ret;
896 
897 	/*
898 	 * Set up the jbd2_inode if we are opening the inode for
899 	 * writing and the journal is present
900 	 */
901 	if (filp->f_mode & FMODE_WRITE) {
902 		ret = ext4_inode_attach_jinode(inode);
903 		if (ret < 0)
904 			return ret;
905 	}
906 
907 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC |
908 			FMODE_DIO_PARALLEL_WRITE;
909 	return dquot_file_open(inode, filp);
910 }
911 
912 /*
913  * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
914  * by calling generic_file_llseek_size() with the appropriate maxbytes
915  * value for each.
916  */
917 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
918 {
919 	struct inode *inode = file->f_mapping->host;
920 	loff_t maxbytes;
921 
922 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
923 		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
924 	else
925 		maxbytes = inode->i_sb->s_maxbytes;
926 
927 	switch (whence) {
928 	default:
929 		return generic_file_llseek_size(file, offset, whence,
930 						maxbytes, i_size_read(inode));
931 	case SEEK_HOLE:
932 		inode_lock_shared(inode);
933 		offset = iomap_seek_hole(inode, offset,
934 					 &ext4_iomap_report_ops);
935 		inode_unlock_shared(inode);
936 		break;
937 	case SEEK_DATA:
938 		inode_lock_shared(inode);
939 		offset = iomap_seek_data(inode, offset,
940 					 &ext4_iomap_report_ops);
941 		inode_unlock_shared(inode);
942 		break;
943 	}
944 
945 	if (offset < 0)
946 		return offset;
947 	return vfs_setpos(file, offset, maxbytes);
948 }
949 
950 const struct file_operations ext4_file_operations = {
951 	.llseek		= ext4_llseek,
952 	.read_iter	= ext4_file_read_iter,
953 	.write_iter	= ext4_file_write_iter,
954 	.iopoll		= iocb_bio_iopoll,
955 	.unlocked_ioctl = ext4_ioctl,
956 #ifdef CONFIG_COMPAT
957 	.compat_ioctl	= ext4_compat_ioctl,
958 #endif
959 	.mmap		= ext4_file_mmap,
960 	.mmap_supported_flags = MAP_SYNC,
961 	.open		= ext4_file_open,
962 	.release	= ext4_release_file,
963 	.fsync		= ext4_sync_file,
964 	.get_unmapped_area = thp_get_unmapped_area,
965 	.splice_read	= ext4_file_splice_read,
966 	.splice_write	= iter_file_splice_write,
967 	.fallocate	= ext4_fallocate,
968 };
969 
970 const struct inode_operations ext4_file_inode_operations = {
971 	.setattr	= ext4_setattr,
972 	.getattr	= ext4_file_getattr,
973 	.listxattr	= ext4_listxattr,
974 	.get_inode_acl	= ext4_get_acl,
975 	.set_acl	= ext4_set_acl,
976 	.fiemap		= ext4_fiemap,
977 	.fileattr_get	= ext4_fileattr_get,
978 	.fileattr_set	= ext4_fileattr_set,
979 };
980 
981