xref: /linux/fs/ext4/file.c (revision c1aac62f36c1e37ee81c9e09ee9ee733eef05dcb)
1 /*
2  *  linux/fs/ext4/file.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/file.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  ext4 fs regular file handling primitives
16  *
17  *  64-bit file support on 64-bit platforms by Jakub Jelinek
18  *	(jj@sunsite.ms.mff.cuni.cz)
19  */
20 
21 #include <linux/time.h>
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/path.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/pagevec.h>
28 #include <linux/uio.h>
29 #include "ext4.h"
30 #include "ext4_jbd2.h"
31 #include "xattr.h"
32 #include "acl.h"
33 
34 #ifdef CONFIG_FS_DAX
35 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
36 {
37 	struct inode *inode = file_inode(iocb->ki_filp);
38 	ssize_t ret;
39 
40 	inode_lock_shared(inode);
41 	/*
42 	 * Recheck under inode lock - at this point we are sure it cannot
43 	 * change anymore
44 	 */
45 	if (!IS_DAX(inode)) {
46 		inode_unlock_shared(inode);
47 		/* Fallback to buffered IO in case we cannot support DAX */
48 		return generic_file_read_iter(iocb, to);
49 	}
50 	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
51 	inode_unlock_shared(inode);
52 
53 	file_accessed(iocb->ki_filp);
54 	return ret;
55 }
56 #endif
57 
58 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
59 {
60 	if (unlikely(ext4_forced_shutdown(EXT4_SB(file_inode(iocb->ki_filp)->i_sb))))
61 		return -EIO;
62 
63 	if (!iov_iter_count(to))
64 		return 0; /* skip atime */
65 
66 #ifdef CONFIG_FS_DAX
67 	if (IS_DAX(file_inode(iocb->ki_filp)))
68 		return ext4_dax_read_iter(iocb, to);
69 #endif
70 	return generic_file_read_iter(iocb, to);
71 }
72 
73 /*
74  * Called when an inode is released. Note that this is different
75  * from ext4_file_open: open gets called at every open, but release
76  * gets called only when /all/ the files are closed.
77  */
78 static int ext4_release_file(struct inode *inode, struct file *filp)
79 {
80 	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
81 		ext4_alloc_da_blocks(inode);
82 		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
83 	}
84 	/* if we are the last writer on the inode, drop the block reservation */
85 	if ((filp->f_mode & FMODE_WRITE) &&
86 			(atomic_read(&inode->i_writecount) == 1) &&
87 		        !EXT4_I(inode)->i_reserved_data_blocks)
88 	{
89 		down_write(&EXT4_I(inode)->i_data_sem);
90 		ext4_discard_preallocations(inode);
91 		up_write(&EXT4_I(inode)->i_data_sem);
92 	}
93 	if (is_dx(inode) && filp->private_data)
94 		ext4_htree_free_dir_info(filp->private_data);
95 
96 	return 0;
97 }
98 
99 static void ext4_unwritten_wait(struct inode *inode)
100 {
101 	wait_queue_head_t *wq = ext4_ioend_wq(inode);
102 
103 	wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
104 }
105 
106 /*
107  * This tests whether the IO in question is block-aligned or not.
108  * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
109  * are converted to written only after the IO is complete.  Until they are
110  * mapped, these blocks appear as holes, so dio_zero_block() will assume that
111  * it needs to zero out portions of the start and/or end block.  If 2 AIO
112  * threads are at work on the same unwritten block, they must be synchronized
113  * or one thread will zero the other's data, causing corruption.
114  */
115 static int
116 ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
117 {
118 	struct super_block *sb = inode->i_sb;
119 	int blockmask = sb->s_blocksize - 1;
120 
121 	if (pos >= i_size_read(inode))
122 		return 0;
123 
124 	if ((pos | iov_iter_alignment(from)) & blockmask)
125 		return 1;
126 
127 	return 0;
128 }
129 
130 /* Is IO overwriting allocated and initialized blocks? */
131 static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
132 {
133 	struct ext4_map_blocks map;
134 	unsigned int blkbits = inode->i_blkbits;
135 	int err, blklen;
136 
137 	if (pos + len > i_size_read(inode))
138 		return false;
139 
140 	map.m_lblk = pos >> blkbits;
141 	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
142 	blklen = map.m_len;
143 
144 	err = ext4_map_blocks(NULL, inode, &map, 0);
145 	/*
146 	 * 'err==len' means that all of the blocks have been preallocated,
147 	 * regardless of whether they have been initialized or not. To exclude
148 	 * unwritten extents, we need to check m_flags.
149 	 */
150 	return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
151 }
152 
153 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
154 {
155 	struct inode *inode = file_inode(iocb->ki_filp);
156 	ssize_t ret;
157 
158 	ret = generic_write_checks(iocb, from);
159 	if (ret <= 0)
160 		return ret;
161 	/*
162 	 * If we have encountered a bitmap-format file, the size limit
163 	 * is smaller than s_maxbytes, which is for extent-mapped files.
164 	 */
165 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
166 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
167 
168 		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
169 			return -EFBIG;
170 		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
171 	}
172 	return iov_iter_count(from);
173 }
174 
175 #ifdef CONFIG_FS_DAX
176 static ssize_t
177 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
178 {
179 	struct inode *inode = file_inode(iocb->ki_filp);
180 	ssize_t ret;
181 
182 	inode_lock(inode);
183 	ret = ext4_write_checks(iocb, from);
184 	if (ret <= 0)
185 		goto out;
186 	ret = file_remove_privs(iocb->ki_filp);
187 	if (ret)
188 		goto out;
189 	ret = file_update_time(iocb->ki_filp);
190 	if (ret)
191 		goto out;
192 
193 	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
194 out:
195 	inode_unlock(inode);
196 	if (ret > 0)
197 		ret = generic_write_sync(iocb, ret);
198 	return ret;
199 }
200 #endif
201 
202 static ssize_t
203 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
204 {
205 	struct inode *inode = file_inode(iocb->ki_filp);
206 	int o_direct = iocb->ki_flags & IOCB_DIRECT;
207 	int unaligned_aio = 0;
208 	int overwrite = 0;
209 	ssize_t ret;
210 
211 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
212 		return -EIO;
213 
214 #ifdef CONFIG_FS_DAX
215 	if (IS_DAX(inode))
216 		return ext4_dax_write_iter(iocb, from);
217 #endif
218 
219 	inode_lock(inode);
220 	ret = ext4_write_checks(iocb, from);
221 	if (ret <= 0)
222 		goto out;
223 
224 	/*
225 	 * Unaligned direct AIO must be serialized among each other as zeroing
226 	 * of partial blocks of two competing unaligned AIOs can result in data
227 	 * corruption.
228 	 */
229 	if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
230 	    !is_sync_kiocb(iocb) &&
231 	    ext4_unaligned_aio(inode, from, iocb->ki_pos)) {
232 		unaligned_aio = 1;
233 		ext4_unwritten_wait(inode);
234 	}
235 
236 	iocb->private = &overwrite;
237 	/* Check whether we do a DIO overwrite or not */
238 	if (o_direct && ext4_should_dioread_nolock(inode) && !unaligned_aio &&
239 	    ext4_overwrite_io(inode, iocb->ki_pos, iov_iter_count(from)))
240 		overwrite = 1;
241 
242 	ret = __generic_file_write_iter(iocb, from);
243 	inode_unlock(inode);
244 
245 	if (ret > 0)
246 		ret = generic_write_sync(iocb, ret);
247 
248 	return ret;
249 
250 out:
251 	inode_unlock(inode);
252 	return ret;
253 }
254 
255 #ifdef CONFIG_FS_DAX
256 static int ext4_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
257 {
258 	int result;
259 	struct inode *inode = file_inode(vma->vm_file);
260 	struct super_block *sb = inode->i_sb;
261 	bool write = vmf->flags & FAULT_FLAG_WRITE;
262 
263 	if (write) {
264 		sb_start_pagefault(sb);
265 		file_update_time(vma->vm_file);
266 	}
267 	down_read(&EXT4_I(inode)->i_mmap_sem);
268 	result = dax_iomap_fault(vma, vmf, &ext4_iomap_ops);
269 	up_read(&EXT4_I(inode)->i_mmap_sem);
270 	if (write)
271 		sb_end_pagefault(sb);
272 
273 	return result;
274 }
275 
276 static int ext4_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr,
277 						pmd_t *pmd, unsigned int flags)
278 {
279 	int result;
280 	struct inode *inode = file_inode(vma->vm_file);
281 	struct super_block *sb = inode->i_sb;
282 	bool write = flags & FAULT_FLAG_WRITE;
283 
284 	if (write) {
285 		sb_start_pagefault(sb);
286 		file_update_time(vma->vm_file);
287 	}
288 	down_read(&EXT4_I(inode)->i_mmap_sem);
289 	result = dax_iomap_pmd_fault(vma, addr, pmd, flags,
290 				     &ext4_iomap_ops);
291 	up_read(&EXT4_I(inode)->i_mmap_sem);
292 	if (write)
293 		sb_end_pagefault(sb);
294 
295 	return result;
296 }
297 
298 /*
299  * Handle write fault for VM_MIXEDMAP mappings. Similarly to ext4_dax_fault()
300  * handler we check for races agaist truncate. Note that since we cycle through
301  * i_mmap_sem, we are sure that also any hole punching that began before we
302  * were called is finished by now and so if it included part of the file we
303  * are working on, our pte will get unmapped and the check for pte_same() in
304  * wp_pfn_shared() fails. Thus fault gets retried and things work out as
305  * desired.
306  */
307 static int ext4_dax_pfn_mkwrite(struct vm_area_struct *vma,
308 				struct vm_fault *vmf)
309 {
310 	struct inode *inode = file_inode(vma->vm_file);
311 	struct super_block *sb = inode->i_sb;
312 	loff_t size;
313 	int ret;
314 
315 	sb_start_pagefault(sb);
316 	file_update_time(vma->vm_file);
317 	down_read(&EXT4_I(inode)->i_mmap_sem);
318 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
319 	if (vmf->pgoff >= size)
320 		ret = VM_FAULT_SIGBUS;
321 	else
322 		ret = dax_pfn_mkwrite(vma, vmf);
323 	up_read(&EXT4_I(inode)->i_mmap_sem);
324 	sb_end_pagefault(sb);
325 
326 	return ret;
327 }
328 
329 static const struct vm_operations_struct ext4_dax_vm_ops = {
330 	.fault		= ext4_dax_fault,
331 	.pmd_fault	= ext4_dax_pmd_fault,
332 	.page_mkwrite	= ext4_dax_fault,
333 	.pfn_mkwrite	= ext4_dax_pfn_mkwrite,
334 };
335 #else
336 #define ext4_dax_vm_ops	ext4_file_vm_ops
337 #endif
338 
339 static const struct vm_operations_struct ext4_file_vm_ops = {
340 	.fault		= ext4_filemap_fault,
341 	.map_pages	= filemap_map_pages,
342 	.page_mkwrite   = ext4_page_mkwrite,
343 };
344 
345 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
346 {
347 	struct inode *inode = file->f_mapping->host;
348 
349 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
350 		return -EIO;
351 
352 	if (ext4_encrypted_inode(inode)) {
353 		int err = fscrypt_get_encryption_info(inode);
354 		if (err)
355 			return 0;
356 		if (!fscrypt_has_encryption_key(inode))
357 			return -ENOKEY;
358 	}
359 	file_accessed(file);
360 	if (IS_DAX(file_inode(file))) {
361 		vma->vm_ops = &ext4_dax_vm_ops;
362 		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
363 	} else {
364 		vma->vm_ops = &ext4_file_vm_ops;
365 	}
366 	return 0;
367 }
368 
369 static int ext4_file_open(struct inode * inode, struct file * filp)
370 {
371 	struct super_block *sb = inode->i_sb;
372 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
373 	struct vfsmount *mnt = filp->f_path.mnt;
374 	struct dentry *dir;
375 	struct path path;
376 	char buf[64], *cp;
377 	int ret;
378 
379 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
380 		return -EIO;
381 
382 	if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
383 		     !(sb->s_flags & MS_RDONLY))) {
384 		sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
385 		/*
386 		 * Sample where the filesystem has been mounted and
387 		 * store it in the superblock for sysadmin convenience
388 		 * when trying to sort through large numbers of block
389 		 * devices or filesystem images.
390 		 */
391 		memset(buf, 0, sizeof(buf));
392 		path.mnt = mnt;
393 		path.dentry = mnt->mnt_root;
394 		cp = d_path(&path, buf, sizeof(buf));
395 		if (!IS_ERR(cp)) {
396 			handle_t *handle;
397 			int err;
398 
399 			handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
400 			if (IS_ERR(handle))
401 				return PTR_ERR(handle);
402 			BUFFER_TRACE(sbi->s_sbh, "get_write_access");
403 			err = ext4_journal_get_write_access(handle, sbi->s_sbh);
404 			if (err) {
405 				ext4_journal_stop(handle);
406 				return err;
407 			}
408 			strlcpy(sbi->s_es->s_last_mounted, cp,
409 				sizeof(sbi->s_es->s_last_mounted));
410 			ext4_handle_dirty_super(handle, sb);
411 			ext4_journal_stop(handle);
412 		}
413 	}
414 	if (ext4_encrypted_inode(inode)) {
415 		ret = fscrypt_get_encryption_info(inode);
416 		if (ret)
417 			return -EACCES;
418 		if (!fscrypt_has_encryption_key(inode))
419 			return -ENOKEY;
420 	}
421 
422 	dir = dget_parent(file_dentry(filp));
423 	if (ext4_encrypted_inode(d_inode(dir)) &&
424 			!fscrypt_has_permitted_context(d_inode(dir), inode)) {
425 		ext4_warning(inode->i_sb,
426 			     "Inconsistent encryption contexts: %lu/%lu",
427 			     (unsigned long) d_inode(dir)->i_ino,
428 			     (unsigned long) inode->i_ino);
429 		dput(dir);
430 		return -EPERM;
431 	}
432 	dput(dir);
433 	/*
434 	 * Set up the jbd2_inode if we are opening the inode for
435 	 * writing and the journal is present
436 	 */
437 	if (filp->f_mode & FMODE_WRITE) {
438 		ret = ext4_inode_attach_jinode(inode);
439 		if (ret < 0)
440 			return ret;
441 	}
442 	return dquot_file_open(inode, filp);
443 }
444 
445 /*
446  * Here we use ext4_map_blocks() to get a block mapping for a extent-based
447  * file rather than ext4_ext_walk_space() because we can introduce
448  * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same
449  * function.  When extent status tree has been fully implemented, it will
450  * track all extent status for a file and we can directly use it to
451  * retrieve the offset for SEEK_DATA/SEEK_HOLE.
452  */
453 
454 /*
455  * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to
456  * lookup page cache to check whether or not there has some data between
457  * [startoff, endoff] because, if this range contains an unwritten extent,
458  * we determine this extent as a data or a hole according to whether the
459  * page cache has data or not.
460  */
461 static int ext4_find_unwritten_pgoff(struct inode *inode,
462 				     int whence,
463 				     ext4_lblk_t end_blk,
464 				     loff_t *offset)
465 {
466 	struct pagevec pvec;
467 	unsigned int blkbits;
468 	pgoff_t index;
469 	pgoff_t end;
470 	loff_t endoff;
471 	loff_t startoff;
472 	loff_t lastoff;
473 	int found = 0;
474 
475 	blkbits = inode->i_sb->s_blocksize_bits;
476 	startoff = *offset;
477 	lastoff = startoff;
478 	endoff = (loff_t)end_blk << blkbits;
479 
480 	index = startoff >> PAGE_SHIFT;
481 	end = endoff >> PAGE_SHIFT;
482 
483 	pagevec_init(&pvec, 0);
484 	do {
485 		int i, num;
486 		unsigned long nr_pages;
487 
488 		num = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
489 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
490 					  (pgoff_t)num);
491 		if (nr_pages == 0) {
492 			if (whence == SEEK_DATA)
493 				break;
494 
495 			BUG_ON(whence != SEEK_HOLE);
496 			/*
497 			 * If this is the first time to go into the loop and
498 			 * offset is not beyond the end offset, it will be a
499 			 * hole at this offset
500 			 */
501 			if (lastoff == startoff || lastoff < endoff)
502 				found = 1;
503 			break;
504 		}
505 
506 		/*
507 		 * If this is the first time to go into the loop and
508 		 * offset is smaller than the first page offset, it will be a
509 		 * hole at this offset.
510 		 */
511 		if (lastoff == startoff && whence == SEEK_HOLE &&
512 		    lastoff < page_offset(pvec.pages[0])) {
513 			found = 1;
514 			break;
515 		}
516 
517 		for (i = 0; i < nr_pages; i++) {
518 			struct page *page = pvec.pages[i];
519 			struct buffer_head *bh, *head;
520 
521 			/*
522 			 * If the current offset is not beyond the end of given
523 			 * range, it will be a hole.
524 			 */
525 			if (lastoff < endoff && whence == SEEK_HOLE &&
526 			    page->index > end) {
527 				found = 1;
528 				*offset = lastoff;
529 				goto out;
530 			}
531 
532 			lock_page(page);
533 
534 			if (unlikely(page->mapping != inode->i_mapping)) {
535 				unlock_page(page);
536 				continue;
537 			}
538 
539 			if (!page_has_buffers(page)) {
540 				unlock_page(page);
541 				continue;
542 			}
543 
544 			if (page_has_buffers(page)) {
545 				lastoff = page_offset(page);
546 				bh = head = page_buffers(page);
547 				do {
548 					if (buffer_uptodate(bh) ||
549 					    buffer_unwritten(bh)) {
550 						if (whence == SEEK_DATA)
551 							found = 1;
552 					} else {
553 						if (whence == SEEK_HOLE)
554 							found = 1;
555 					}
556 					if (found) {
557 						*offset = max_t(loff_t,
558 							startoff, lastoff);
559 						unlock_page(page);
560 						goto out;
561 					}
562 					lastoff += bh->b_size;
563 					bh = bh->b_this_page;
564 				} while (bh != head);
565 			}
566 
567 			lastoff = page_offset(page) + PAGE_SIZE;
568 			unlock_page(page);
569 		}
570 
571 		/*
572 		 * The no. of pages is less than our desired, that would be a
573 		 * hole in there.
574 		 */
575 		if (nr_pages < num && whence == SEEK_HOLE) {
576 			found = 1;
577 			*offset = lastoff;
578 			break;
579 		}
580 
581 		index = pvec.pages[i - 1]->index + 1;
582 		pagevec_release(&pvec);
583 	} while (index <= end);
584 
585 out:
586 	pagevec_release(&pvec);
587 	return found;
588 }
589 
590 /*
591  * ext4_seek_data() retrieves the offset for SEEK_DATA.
592  */
593 static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize)
594 {
595 	struct inode *inode = file->f_mapping->host;
596 	struct extent_status es;
597 	ext4_lblk_t start, last, end;
598 	loff_t dataoff, isize;
599 	int blkbits;
600 	int ret;
601 
602 	inode_lock(inode);
603 
604 	isize = i_size_read(inode);
605 	if (offset >= isize) {
606 		inode_unlock(inode);
607 		return -ENXIO;
608 	}
609 
610 	blkbits = inode->i_sb->s_blocksize_bits;
611 	start = offset >> blkbits;
612 	last = start;
613 	end = isize >> blkbits;
614 	dataoff = offset;
615 
616 	do {
617 		ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
618 		if (ret <= 0) {
619 			/* No extent found -> no data */
620 			if (ret == 0)
621 				ret = -ENXIO;
622 			inode_unlock(inode);
623 			return ret;
624 		}
625 
626 		last = es.es_lblk;
627 		if (last != start)
628 			dataoff = (loff_t)last << blkbits;
629 		if (!ext4_es_is_unwritten(&es))
630 			break;
631 
632 		/*
633 		 * If there is a unwritten extent at this offset,
634 		 * it will be as a data or a hole according to page
635 		 * cache that has data or not.
636 		 */
637 		if (ext4_find_unwritten_pgoff(inode, SEEK_DATA,
638 					      es.es_lblk + es.es_len, &dataoff))
639 			break;
640 		last += es.es_len;
641 		dataoff = (loff_t)last << blkbits;
642 		cond_resched();
643 	} while (last <= end);
644 
645 	inode_unlock(inode);
646 
647 	if (dataoff > isize)
648 		return -ENXIO;
649 
650 	return vfs_setpos(file, dataoff, maxsize);
651 }
652 
653 /*
654  * ext4_seek_hole() retrieves the offset for SEEK_HOLE.
655  */
656 static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize)
657 {
658 	struct inode *inode = file->f_mapping->host;
659 	struct extent_status es;
660 	ext4_lblk_t start, last, end;
661 	loff_t holeoff, isize;
662 	int blkbits;
663 	int ret;
664 
665 	inode_lock(inode);
666 
667 	isize = i_size_read(inode);
668 	if (offset >= isize) {
669 		inode_unlock(inode);
670 		return -ENXIO;
671 	}
672 
673 	blkbits = inode->i_sb->s_blocksize_bits;
674 	start = offset >> blkbits;
675 	last = start;
676 	end = isize >> blkbits;
677 	holeoff = offset;
678 
679 	do {
680 		ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
681 		if (ret < 0) {
682 			inode_unlock(inode);
683 			return ret;
684 		}
685 		/* Found a hole? */
686 		if (ret == 0 || es.es_lblk > last) {
687 			if (last != start)
688 				holeoff = (loff_t)last << blkbits;
689 			break;
690 		}
691 		/*
692 		 * If there is a unwritten extent at this offset,
693 		 * it will be as a data or a hole according to page
694 		 * cache that has data or not.
695 		 */
696 		if (ext4_es_is_unwritten(&es) &&
697 		    ext4_find_unwritten_pgoff(inode, SEEK_HOLE,
698 					      last + es.es_len, &holeoff))
699 			break;
700 
701 		last += es.es_len;
702 		holeoff = (loff_t)last << blkbits;
703 		cond_resched();
704 	} while (last <= end);
705 
706 	inode_unlock(inode);
707 
708 	if (holeoff > isize)
709 		holeoff = isize;
710 
711 	return vfs_setpos(file, holeoff, maxsize);
712 }
713 
714 /*
715  * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
716  * by calling generic_file_llseek_size() with the appropriate maxbytes
717  * value for each.
718  */
719 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
720 {
721 	struct inode *inode = file->f_mapping->host;
722 	loff_t maxbytes;
723 
724 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
725 		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
726 	else
727 		maxbytes = inode->i_sb->s_maxbytes;
728 
729 	switch (whence) {
730 	case SEEK_SET:
731 	case SEEK_CUR:
732 	case SEEK_END:
733 		return generic_file_llseek_size(file, offset, whence,
734 						maxbytes, i_size_read(inode));
735 	case SEEK_DATA:
736 		return ext4_seek_data(file, offset, maxbytes);
737 	case SEEK_HOLE:
738 		return ext4_seek_hole(file, offset, maxbytes);
739 	}
740 
741 	return -EINVAL;
742 }
743 
744 const struct file_operations ext4_file_operations = {
745 	.llseek		= ext4_llseek,
746 	.read_iter	= ext4_file_read_iter,
747 	.write_iter	= ext4_file_write_iter,
748 	.unlocked_ioctl = ext4_ioctl,
749 #ifdef CONFIG_COMPAT
750 	.compat_ioctl	= ext4_compat_ioctl,
751 #endif
752 	.mmap		= ext4_file_mmap,
753 	.open		= ext4_file_open,
754 	.release	= ext4_release_file,
755 	.fsync		= ext4_sync_file,
756 	.get_unmapped_area = thp_get_unmapped_area,
757 	.splice_read	= generic_file_splice_read,
758 	.splice_write	= iter_file_splice_write,
759 	.fallocate	= ext4_fallocate,
760 };
761 
762 const struct inode_operations ext4_file_inode_operations = {
763 	.setattr	= ext4_setattr,
764 	.getattr	= ext4_getattr,
765 	.listxattr	= ext4_listxattr,
766 	.get_acl	= ext4_get_acl,
767 	.set_acl	= ext4_set_acl,
768 	.fiemap		= ext4_fiemap,
769 };
770 
771