xref: /linux/fs/ext4/file.c (revision af873fcecef567abf8a3468b06dd4e4aab46da6d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/file.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/file.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  ext4 fs regular file handling primitives
17  *
18  *  64-bit file support on 64-bit platforms by Jakub Jelinek
19  *	(jj@sunsite.ms.mff.cuni.cz)
20  */
21 
22 #include <linux/time.h>
23 #include <linux/fs.h>
24 #include <linux/iomap.h>
25 #include <linux/mount.h>
26 #include <linux/path.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/pagevec.h>
30 #include <linux/uio.h>
31 #include <linux/mman.h>
32 #include "ext4.h"
33 #include "ext4_jbd2.h"
34 #include "xattr.h"
35 #include "acl.h"
36 
37 #ifdef CONFIG_FS_DAX
38 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
39 {
40 	struct inode *inode = file_inode(iocb->ki_filp);
41 	ssize_t ret;
42 
43 	if (!inode_trylock_shared(inode)) {
44 		if (iocb->ki_flags & IOCB_NOWAIT)
45 			return -EAGAIN;
46 		inode_lock_shared(inode);
47 	}
48 	/*
49 	 * Recheck under inode lock - at this point we are sure it cannot
50 	 * change anymore
51 	 */
52 	if (!IS_DAX(inode)) {
53 		inode_unlock_shared(inode);
54 		/* Fallback to buffered IO in case we cannot support DAX */
55 		return generic_file_read_iter(iocb, to);
56 	}
57 	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
58 	inode_unlock_shared(inode);
59 
60 	file_accessed(iocb->ki_filp);
61 	return ret;
62 }
63 #endif
64 
65 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
66 {
67 	if (unlikely(ext4_forced_shutdown(EXT4_SB(file_inode(iocb->ki_filp)->i_sb))))
68 		return -EIO;
69 
70 	if (!iov_iter_count(to))
71 		return 0; /* skip atime */
72 
73 #ifdef CONFIG_FS_DAX
74 	if (IS_DAX(file_inode(iocb->ki_filp)))
75 		return ext4_dax_read_iter(iocb, to);
76 #endif
77 	return generic_file_read_iter(iocb, to);
78 }
79 
80 /*
81  * Called when an inode is released. Note that this is different
82  * from ext4_file_open: open gets called at every open, but release
83  * gets called only when /all/ the files are closed.
84  */
85 static int ext4_release_file(struct inode *inode, struct file *filp)
86 {
87 	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
88 		ext4_alloc_da_blocks(inode);
89 		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
90 	}
91 	/* if we are the last writer on the inode, drop the block reservation */
92 	if ((filp->f_mode & FMODE_WRITE) &&
93 			(atomic_read(&inode->i_writecount) == 1) &&
94 		        !EXT4_I(inode)->i_reserved_data_blocks)
95 	{
96 		down_write(&EXT4_I(inode)->i_data_sem);
97 		ext4_discard_preallocations(inode);
98 		up_write(&EXT4_I(inode)->i_data_sem);
99 	}
100 	if (is_dx(inode) && filp->private_data)
101 		ext4_htree_free_dir_info(filp->private_data);
102 
103 	return 0;
104 }
105 
106 static void ext4_unwritten_wait(struct inode *inode)
107 {
108 	wait_queue_head_t *wq = ext4_ioend_wq(inode);
109 
110 	wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
111 }
112 
113 /*
114  * This tests whether the IO in question is block-aligned or not.
115  * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
116  * are converted to written only after the IO is complete.  Until they are
117  * mapped, these blocks appear as holes, so dio_zero_block() will assume that
118  * it needs to zero out portions of the start and/or end block.  If 2 AIO
119  * threads are at work on the same unwritten block, they must be synchronized
120  * or one thread will zero the other's data, causing corruption.
121  */
122 static int
123 ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
124 {
125 	struct super_block *sb = inode->i_sb;
126 	int blockmask = sb->s_blocksize - 1;
127 
128 	if (pos >= ALIGN(i_size_read(inode), sb->s_blocksize))
129 		return 0;
130 
131 	if ((pos | iov_iter_alignment(from)) & blockmask)
132 		return 1;
133 
134 	return 0;
135 }
136 
137 /* Is IO overwriting allocated and initialized blocks? */
138 static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
139 {
140 	struct ext4_map_blocks map;
141 	unsigned int blkbits = inode->i_blkbits;
142 	int err, blklen;
143 
144 	if (pos + len > i_size_read(inode))
145 		return false;
146 
147 	map.m_lblk = pos >> blkbits;
148 	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
149 	blklen = map.m_len;
150 
151 	err = ext4_map_blocks(NULL, inode, &map, 0);
152 	/*
153 	 * 'err==len' means that all of the blocks have been preallocated,
154 	 * regardless of whether they have been initialized or not. To exclude
155 	 * unwritten extents, we need to check m_flags.
156 	 */
157 	return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
158 }
159 
160 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
161 {
162 	struct inode *inode = file_inode(iocb->ki_filp);
163 	ssize_t ret;
164 
165 	ret = generic_write_checks(iocb, from);
166 	if (ret <= 0)
167 		return ret;
168 	/*
169 	 * If we have encountered a bitmap-format file, the size limit
170 	 * is smaller than s_maxbytes, which is for extent-mapped files.
171 	 */
172 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
173 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
174 
175 		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
176 			return -EFBIG;
177 		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
178 	}
179 	return iov_iter_count(from);
180 }
181 
182 #ifdef CONFIG_FS_DAX
183 static ssize_t
184 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
185 {
186 	struct inode *inode = file_inode(iocb->ki_filp);
187 	ssize_t ret;
188 
189 	if (!inode_trylock(inode)) {
190 		if (iocb->ki_flags & IOCB_NOWAIT)
191 			return -EAGAIN;
192 		inode_lock(inode);
193 	}
194 	ret = ext4_write_checks(iocb, from);
195 	if (ret <= 0)
196 		goto out;
197 	ret = file_remove_privs(iocb->ki_filp);
198 	if (ret)
199 		goto out;
200 	ret = file_update_time(iocb->ki_filp);
201 	if (ret)
202 		goto out;
203 
204 	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
205 out:
206 	inode_unlock(inode);
207 	if (ret > 0)
208 		ret = generic_write_sync(iocb, ret);
209 	return ret;
210 }
211 #endif
212 
213 static ssize_t
214 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
215 {
216 	struct inode *inode = file_inode(iocb->ki_filp);
217 	int o_direct = iocb->ki_flags & IOCB_DIRECT;
218 	int unaligned_aio = 0;
219 	int overwrite = 0;
220 	ssize_t ret;
221 
222 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
223 		return -EIO;
224 
225 #ifdef CONFIG_FS_DAX
226 	if (IS_DAX(inode))
227 		return ext4_dax_write_iter(iocb, from);
228 #endif
229 	if (!o_direct && (iocb->ki_flags & IOCB_NOWAIT))
230 		return -EOPNOTSUPP;
231 
232 	if (!inode_trylock(inode)) {
233 		if (iocb->ki_flags & IOCB_NOWAIT)
234 			return -EAGAIN;
235 		inode_lock(inode);
236 	}
237 
238 	ret = ext4_write_checks(iocb, from);
239 	if (ret <= 0)
240 		goto out;
241 
242 	/*
243 	 * Unaligned direct AIO must be serialized among each other as zeroing
244 	 * of partial blocks of two competing unaligned AIOs can result in data
245 	 * corruption.
246 	 */
247 	if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
248 	    !is_sync_kiocb(iocb) &&
249 	    ext4_unaligned_aio(inode, from, iocb->ki_pos)) {
250 		unaligned_aio = 1;
251 		ext4_unwritten_wait(inode);
252 	}
253 
254 	iocb->private = &overwrite;
255 	/* Check whether we do a DIO overwrite or not */
256 	if (o_direct && !unaligned_aio) {
257 		if (ext4_overwrite_io(inode, iocb->ki_pos, iov_iter_count(from))) {
258 			if (ext4_should_dioread_nolock(inode))
259 				overwrite = 1;
260 		} else if (iocb->ki_flags & IOCB_NOWAIT) {
261 			ret = -EAGAIN;
262 			goto out;
263 		}
264 	}
265 
266 	ret = __generic_file_write_iter(iocb, from);
267 	/*
268 	 * Unaligned direct AIO must be the only IO in flight. Otherwise
269 	 * overlapping aligned IO after unaligned might result in data
270 	 * corruption.
271 	 */
272 	if (ret == -EIOCBQUEUED && unaligned_aio)
273 		ext4_unwritten_wait(inode);
274 	inode_unlock(inode);
275 
276 	if (ret > 0)
277 		ret = generic_write_sync(iocb, ret);
278 
279 	return ret;
280 
281 out:
282 	inode_unlock(inode);
283 	return ret;
284 }
285 
286 #ifdef CONFIG_FS_DAX
287 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf,
288 		enum page_entry_size pe_size)
289 {
290 	int error = 0;
291 	vm_fault_t result;
292 	int retries = 0;
293 	handle_t *handle = NULL;
294 	struct inode *inode = file_inode(vmf->vma->vm_file);
295 	struct super_block *sb = inode->i_sb;
296 
297 	/*
298 	 * We have to distinguish real writes from writes which will result in a
299 	 * COW page; COW writes should *not* poke the journal (the file will not
300 	 * be changed). Doing so would cause unintended failures when mounted
301 	 * read-only.
302 	 *
303 	 * We check for VM_SHARED rather than vmf->cow_page since the latter is
304 	 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
305 	 * other sizes, dax_iomap_fault will handle splitting / fallback so that
306 	 * we eventually come back with a COW page.
307 	 */
308 	bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
309 		(vmf->vma->vm_flags & VM_SHARED);
310 	pfn_t pfn;
311 
312 	if (write) {
313 		sb_start_pagefault(sb);
314 		file_update_time(vmf->vma->vm_file);
315 		down_read(&EXT4_I(inode)->i_mmap_sem);
316 retry:
317 		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
318 					       EXT4_DATA_TRANS_BLOCKS(sb));
319 		if (IS_ERR(handle)) {
320 			up_read(&EXT4_I(inode)->i_mmap_sem);
321 			sb_end_pagefault(sb);
322 			return VM_FAULT_SIGBUS;
323 		}
324 	} else {
325 		down_read(&EXT4_I(inode)->i_mmap_sem);
326 	}
327 	result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops);
328 	if (write) {
329 		ext4_journal_stop(handle);
330 
331 		if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
332 		    ext4_should_retry_alloc(sb, &retries))
333 			goto retry;
334 		/* Handling synchronous page fault? */
335 		if (result & VM_FAULT_NEEDDSYNC)
336 			result = dax_finish_sync_fault(vmf, pe_size, pfn);
337 		up_read(&EXT4_I(inode)->i_mmap_sem);
338 		sb_end_pagefault(sb);
339 	} else {
340 		up_read(&EXT4_I(inode)->i_mmap_sem);
341 	}
342 
343 	return result;
344 }
345 
346 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
347 {
348 	return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
349 }
350 
351 static const struct vm_operations_struct ext4_dax_vm_ops = {
352 	.fault		= ext4_dax_fault,
353 	.huge_fault	= ext4_dax_huge_fault,
354 	.page_mkwrite	= ext4_dax_fault,
355 	.pfn_mkwrite	= ext4_dax_fault,
356 };
357 #else
358 #define ext4_dax_vm_ops	ext4_file_vm_ops
359 #endif
360 
361 static const struct vm_operations_struct ext4_file_vm_ops = {
362 	.fault		= ext4_filemap_fault,
363 	.map_pages	= filemap_map_pages,
364 	.page_mkwrite   = ext4_page_mkwrite,
365 };
366 
367 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
368 {
369 	struct inode *inode = file->f_mapping->host;
370 
371 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
372 		return -EIO;
373 
374 	/*
375 	 * We don't support synchronous mappings for non-DAX files. At least
376 	 * until someone comes with a sensible use case.
377 	 */
378 	if (!IS_DAX(file_inode(file)) && (vma->vm_flags & VM_SYNC))
379 		return -EOPNOTSUPP;
380 
381 	file_accessed(file);
382 	if (IS_DAX(file_inode(file))) {
383 		vma->vm_ops = &ext4_dax_vm_ops;
384 		vma->vm_flags |= VM_HUGEPAGE;
385 	} else {
386 		vma->vm_ops = &ext4_file_vm_ops;
387 	}
388 	return 0;
389 }
390 
391 static int ext4_sample_last_mounted(struct super_block *sb,
392 				    struct vfsmount *mnt)
393 {
394 	struct ext4_sb_info *sbi = EXT4_SB(sb);
395 	struct path path;
396 	char buf[64], *cp;
397 	handle_t *handle;
398 	int err;
399 
400 	if (likely(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED))
401 		return 0;
402 
403 	if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
404 		return 0;
405 
406 	sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
407 	/*
408 	 * Sample where the filesystem has been mounted and
409 	 * store it in the superblock for sysadmin convenience
410 	 * when trying to sort through large numbers of block
411 	 * devices or filesystem images.
412 	 */
413 	memset(buf, 0, sizeof(buf));
414 	path.mnt = mnt;
415 	path.dentry = mnt->mnt_root;
416 	cp = d_path(&path, buf, sizeof(buf));
417 	err = 0;
418 	if (IS_ERR(cp))
419 		goto out;
420 
421 	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
422 	err = PTR_ERR(handle);
423 	if (IS_ERR(handle))
424 		goto out;
425 	BUFFER_TRACE(sbi->s_sbh, "get_write_access");
426 	err = ext4_journal_get_write_access(handle, sbi->s_sbh);
427 	if (err)
428 		goto out_journal;
429 	strlcpy(sbi->s_es->s_last_mounted, cp,
430 		sizeof(sbi->s_es->s_last_mounted));
431 	ext4_handle_dirty_super(handle, sb);
432 out_journal:
433 	ext4_journal_stop(handle);
434 out:
435 	sb_end_intwrite(sb);
436 	return err;
437 }
438 
439 static int ext4_file_open(struct inode * inode, struct file * filp)
440 {
441 	int ret;
442 
443 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
444 		return -EIO;
445 
446 	ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
447 	if (ret)
448 		return ret;
449 
450 	ret = fscrypt_file_open(inode, filp);
451 	if (ret)
452 		return ret;
453 
454 	/*
455 	 * Set up the jbd2_inode if we are opening the inode for
456 	 * writing and the journal is present
457 	 */
458 	if (filp->f_mode & FMODE_WRITE) {
459 		ret = ext4_inode_attach_jinode(inode);
460 		if (ret < 0)
461 			return ret;
462 	}
463 
464 	filp->f_mode |= FMODE_NOWAIT;
465 	return dquot_file_open(inode, filp);
466 }
467 
468 /*
469  * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
470  * by calling generic_file_llseek_size() with the appropriate maxbytes
471  * value for each.
472  */
473 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
474 {
475 	struct inode *inode = file->f_mapping->host;
476 	loff_t maxbytes;
477 
478 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
479 		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
480 	else
481 		maxbytes = inode->i_sb->s_maxbytes;
482 
483 	switch (whence) {
484 	default:
485 		return generic_file_llseek_size(file, offset, whence,
486 						maxbytes, i_size_read(inode));
487 	case SEEK_HOLE:
488 		inode_lock_shared(inode);
489 		offset = iomap_seek_hole(inode, offset, &ext4_iomap_ops);
490 		inode_unlock_shared(inode);
491 		break;
492 	case SEEK_DATA:
493 		inode_lock_shared(inode);
494 		offset = iomap_seek_data(inode, offset, &ext4_iomap_ops);
495 		inode_unlock_shared(inode);
496 		break;
497 	}
498 
499 	if (offset < 0)
500 		return offset;
501 	return vfs_setpos(file, offset, maxbytes);
502 }
503 
504 const struct file_operations ext4_file_operations = {
505 	.llseek		= ext4_llseek,
506 	.read_iter	= ext4_file_read_iter,
507 	.write_iter	= ext4_file_write_iter,
508 	.unlocked_ioctl = ext4_ioctl,
509 #ifdef CONFIG_COMPAT
510 	.compat_ioctl	= ext4_compat_ioctl,
511 #endif
512 	.mmap		= ext4_file_mmap,
513 	.mmap_supported_flags = MAP_SYNC,
514 	.open		= ext4_file_open,
515 	.release	= ext4_release_file,
516 	.fsync		= ext4_sync_file,
517 	.get_unmapped_area = thp_get_unmapped_area,
518 	.splice_read	= generic_file_splice_read,
519 	.splice_write	= iter_file_splice_write,
520 	.fallocate	= ext4_fallocate,
521 };
522 
523 const struct inode_operations ext4_file_inode_operations = {
524 	.setattr	= ext4_setattr,
525 	.getattr	= ext4_file_getattr,
526 	.listxattr	= ext4_listxattr,
527 	.get_acl	= ext4_get_acl,
528 	.set_acl	= ext4_set_acl,
529 	.fiemap		= ext4_fiemap,
530 };
531 
532