xref: /linux/fs/ext4/file.c (revision 69fb09f6ccdb2f070557fd1f4c56c4d646694c8e)
1 /*
2  *  linux/fs/ext4/file.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/file.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  ext4 fs regular file handling primitives
16  *
17  *  64-bit file support on 64-bit platforms by Jakub Jelinek
18  *	(jj@sunsite.ms.mff.cuni.cz)
19  */
20 
21 #include <linux/time.h>
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/path.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/pagevec.h>
28 #include <linux/uio.h>
29 #include "ext4.h"
30 #include "ext4_jbd2.h"
31 #include "xattr.h"
32 #include "acl.h"
33 
34 #ifdef CONFIG_FS_DAX
35 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
36 {
37 	struct inode *inode = file_inode(iocb->ki_filp);
38 	ssize_t ret;
39 
40 	if (!inode_trylock_shared(inode)) {
41 		if (iocb->ki_flags & IOCB_NOWAIT)
42 			return -EAGAIN;
43 		inode_lock_shared(inode);
44 	}
45 	/*
46 	 * Recheck under inode lock - at this point we are sure it cannot
47 	 * change anymore
48 	 */
49 	if (!IS_DAX(inode)) {
50 		inode_unlock_shared(inode);
51 		/* Fallback to buffered IO in case we cannot support DAX */
52 		return generic_file_read_iter(iocb, to);
53 	}
54 	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
55 	inode_unlock_shared(inode);
56 
57 	file_accessed(iocb->ki_filp);
58 	return ret;
59 }
60 #endif
61 
62 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
63 {
64 	if (unlikely(ext4_forced_shutdown(EXT4_SB(file_inode(iocb->ki_filp)->i_sb))))
65 		return -EIO;
66 
67 	if (!iov_iter_count(to))
68 		return 0; /* skip atime */
69 
70 #ifdef CONFIG_FS_DAX
71 	if (IS_DAX(file_inode(iocb->ki_filp)))
72 		return ext4_dax_read_iter(iocb, to);
73 #endif
74 	return generic_file_read_iter(iocb, to);
75 }
76 
77 /*
78  * Called when an inode is released. Note that this is different
79  * from ext4_file_open: open gets called at every open, but release
80  * gets called only when /all/ the files are closed.
81  */
82 static int ext4_release_file(struct inode *inode, struct file *filp)
83 {
84 	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
85 		ext4_alloc_da_blocks(inode);
86 		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
87 	}
88 	/* if we are the last writer on the inode, drop the block reservation */
89 	if ((filp->f_mode & FMODE_WRITE) &&
90 			(atomic_read(&inode->i_writecount) == 1) &&
91 		        !EXT4_I(inode)->i_reserved_data_blocks)
92 	{
93 		down_write(&EXT4_I(inode)->i_data_sem);
94 		ext4_discard_preallocations(inode);
95 		up_write(&EXT4_I(inode)->i_data_sem);
96 	}
97 	if (is_dx(inode) && filp->private_data)
98 		ext4_htree_free_dir_info(filp->private_data);
99 
100 	return 0;
101 }
102 
103 static void ext4_unwritten_wait(struct inode *inode)
104 {
105 	wait_queue_head_t *wq = ext4_ioend_wq(inode);
106 
107 	wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
108 }
109 
110 /*
111  * This tests whether the IO in question is block-aligned or not.
112  * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
113  * are converted to written only after the IO is complete.  Until they are
114  * mapped, these blocks appear as holes, so dio_zero_block() will assume that
115  * it needs to zero out portions of the start and/or end block.  If 2 AIO
116  * threads are at work on the same unwritten block, they must be synchronized
117  * or one thread will zero the other's data, causing corruption.
118  */
119 static int
120 ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
121 {
122 	struct super_block *sb = inode->i_sb;
123 	int blockmask = sb->s_blocksize - 1;
124 
125 	if (pos >= i_size_read(inode))
126 		return 0;
127 
128 	if ((pos | iov_iter_alignment(from)) & blockmask)
129 		return 1;
130 
131 	return 0;
132 }
133 
134 /* Is IO overwriting allocated and initialized blocks? */
135 static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
136 {
137 	struct ext4_map_blocks map;
138 	unsigned int blkbits = inode->i_blkbits;
139 	int err, blklen;
140 
141 	if (pos + len > i_size_read(inode))
142 		return false;
143 
144 	map.m_lblk = pos >> blkbits;
145 	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
146 	blklen = map.m_len;
147 
148 	err = ext4_map_blocks(NULL, inode, &map, 0);
149 	/*
150 	 * 'err==len' means that all of the blocks have been preallocated,
151 	 * regardless of whether they have been initialized or not. To exclude
152 	 * unwritten extents, we need to check m_flags.
153 	 */
154 	return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
155 }
156 
157 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
158 {
159 	struct inode *inode = file_inode(iocb->ki_filp);
160 	ssize_t ret;
161 
162 	ret = generic_write_checks(iocb, from);
163 	if (ret <= 0)
164 		return ret;
165 	/*
166 	 * If we have encountered a bitmap-format file, the size limit
167 	 * is smaller than s_maxbytes, which is for extent-mapped files.
168 	 */
169 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
170 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
171 
172 		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
173 			return -EFBIG;
174 		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
175 	}
176 	return iov_iter_count(from);
177 }
178 
179 #ifdef CONFIG_FS_DAX
180 static ssize_t
181 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
182 {
183 	struct inode *inode = file_inode(iocb->ki_filp);
184 	ssize_t ret;
185 
186 	if (!inode_trylock(inode)) {
187 		if (iocb->ki_flags & IOCB_NOWAIT)
188 			return -EAGAIN;
189 		inode_lock(inode);
190 	}
191 	ret = ext4_write_checks(iocb, from);
192 	if (ret <= 0)
193 		goto out;
194 	ret = file_remove_privs(iocb->ki_filp);
195 	if (ret)
196 		goto out;
197 	ret = file_update_time(iocb->ki_filp);
198 	if (ret)
199 		goto out;
200 
201 	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
202 out:
203 	inode_unlock(inode);
204 	if (ret > 0)
205 		ret = generic_write_sync(iocb, ret);
206 	return ret;
207 }
208 #endif
209 
210 static ssize_t
211 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
212 {
213 	struct inode *inode = file_inode(iocb->ki_filp);
214 	int o_direct = iocb->ki_flags & IOCB_DIRECT;
215 	int unaligned_aio = 0;
216 	int overwrite = 0;
217 	ssize_t ret;
218 
219 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
220 		return -EIO;
221 
222 #ifdef CONFIG_FS_DAX
223 	if (IS_DAX(inode))
224 		return ext4_dax_write_iter(iocb, from);
225 #endif
226 
227 	if (!inode_trylock(inode)) {
228 		if (iocb->ki_flags & IOCB_NOWAIT)
229 			return -EAGAIN;
230 		inode_lock(inode);
231 	}
232 
233 	ret = ext4_write_checks(iocb, from);
234 	if (ret <= 0)
235 		goto out;
236 
237 	/*
238 	 * Unaligned direct AIO must be serialized among each other as zeroing
239 	 * of partial blocks of two competing unaligned AIOs can result in data
240 	 * corruption.
241 	 */
242 	if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
243 	    !is_sync_kiocb(iocb) &&
244 	    ext4_unaligned_aio(inode, from, iocb->ki_pos)) {
245 		unaligned_aio = 1;
246 		ext4_unwritten_wait(inode);
247 	}
248 
249 	iocb->private = &overwrite;
250 	/* Check whether we do a DIO overwrite or not */
251 	if (o_direct && !unaligned_aio) {
252 		if (ext4_overwrite_io(inode, iocb->ki_pos, iov_iter_count(from))) {
253 			if (ext4_should_dioread_nolock(inode))
254 				overwrite = 1;
255 		} else if (iocb->ki_flags & IOCB_NOWAIT) {
256 			ret = -EAGAIN;
257 			goto out;
258 		}
259 	}
260 
261 	ret = __generic_file_write_iter(iocb, from);
262 	inode_unlock(inode);
263 
264 	if (ret > 0)
265 		ret = generic_write_sync(iocb, ret);
266 
267 	return ret;
268 
269 out:
270 	inode_unlock(inode);
271 	return ret;
272 }
273 
274 #ifdef CONFIG_FS_DAX
275 static int ext4_dax_huge_fault(struct vm_fault *vmf,
276 		enum page_entry_size pe_size)
277 {
278 	int result;
279 	handle_t *handle = NULL;
280 	struct inode *inode = file_inode(vmf->vma->vm_file);
281 	struct super_block *sb = inode->i_sb;
282 	bool write = vmf->flags & FAULT_FLAG_WRITE;
283 
284 	if (write) {
285 		sb_start_pagefault(sb);
286 		file_update_time(vmf->vma->vm_file);
287 		down_read(&EXT4_I(inode)->i_mmap_sem);
288 		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
289 					       EXT4_DATA_TRANS_BLOCKS(sb));
290 	} else {
291 		down_read(&EXT4_I(inode)->i_mmap_sem);
292 	}
293 	if (!IS_ERR(handle))
294 		result = dax_iomap_fault(vmf, pe_size, &ext4_iomap_ops);
295 	else
296 		result = VM_FAULT_SIGBUS;
297 	if (write) {
298 		if (!IS_ERR(handle))
299 			ext4_journal_stop(handle);
300 		up_read(&EXT4_I(inode)->i_mmap_sem);
301 		sb_end_pagefault(sb);
302 	} else {
303 		up_read(&EXT4_I(inode)->i_mmap_sem);
304 	}
305 
306 	return result;
307 }
308 
309 static int ext4_dax_fault(struct vm_fault *vmf)
310 {
311 	return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
312 }
313 
314 /*
315  * Handle write fault for VM_MIXEDMAP mappings. Similarly to ext4_dax_fault()
316  * handler we check for races agaist truncate. Note that since we cycle through
317  * i_mmap_sem, we are sure that also any hole punching that began before we
318  * were called is finished by now and so if it included part of the file we
319  * are working on, our pte will get unmapped and the check for pte_same() in
320  * wp_pfn_shared() fails. Thus fault gets retried and things work out as
321  * desired.
322  */
323 static int ext4_dax_pfn_mkwrite(struct vm_fault *vmf)
324 {
325 	struct inode *inode = file_inode(vmf->vma->vm_file);
326 	struct super_block *sb = inode->i_sb;
327 	loff_t size;
328 	int ret;
329 
330 	sb_start_pagefault(sb);
331 	file_update_time(vmf->vma->vm_file);
332 	down_read(&EXT4_I(inode)->i_mmap_sem);
333 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
334 	if (vmf->pgoff >= size)
335 		ret = VM_FAULT_SIGBUS;
336 	else
337 		ret = dax_pfn_mkwrite(vmf);
338 	up_read(&EXT4_I(inode)->i_mmap_sem);
339 	sb_end_pagefault(sb);
340 
341 	return ret;
342 }
343 
344 static const struct vm_operations_struct ext4_dax_vm_ops = {
345 	.fault		= ext4_dax_fault,
346 	.huge_fault	= ext4_dax_huge_fault,
347 	.page_mkwrite	= ext4_dax_fault,
348 	.pfn_mkwrite	= ext4_dax_pfn_mkwrite,
349 };
350 #else
351 #define ext4_dax_vm_ops	ext4_file_vm_ops
352 #endif
353 
354 static const struct vm_operations_struct ext4_file_vm_ops = {
355 	.fault		= ext4_filemap_fault,
356 	.map_pages	= filemap_map_pages,
357 	.page_mkwrite   = ext4_page_mkwrite,
358 };
359 
360 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
361 {
362 	struct inode *inode = file->f_mapping->host;
363 
364 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
365 		return -EIO;
366 
367 	if (ext4_encrypted_inode(inode)) {
368 		int err = fscrypt_get_encryption_info(inode);
369 		if (err)
370 			return 0;
371 		if (!fscrypt_has_encryption_key(inode))
372 			return -ENOKEY;
373 	}
374 	file_accessed(file);
375 	if (IS_DAX(file_inode(file))) {
376 		vma->vm_ops = &ext4_dax_vm_ops;
377 		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
378 	} else {
379 		vma->vm_ops = &ext4_file_vm_ops;
380 	}
381 	return 0;
382 }
383 
384 static int ext4_file_open(struct inode * inode, struct file * filp)
385 {
386 	struct super_block *sb = inode->i_sb;
387 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
388 	struct vfsmount *mnt = filp->f_path.mnt;
389 	struct dentry *dir;
390 	struct path path;
391 	char buf[64], *cp;
392 	int ret;
393 
394 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
395 		return -EIO;
396 
397 	if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
398 		     !(sb->s_flags & MS_RDONLY))) {
399 		sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
400 		/*
401 		 * Sample where the filesystem has been mounted and
402 		 * store it in the superblock for sysadmin convenience
403 		 * when trying to sort through large numbers of block
404 		 * devices or filesystem images.
405 		 */
406 		memset(buf, 0, sizeof(buf));
407 		path.mnt = mnt;
408 		path.dentry = mnt->mnt_root;
409 		cp = d_path(&path, buf, sizeof(buf));
410 		if (!IS_ERR(cp)) {
411 			handle_t *handle;
412 			int err;
413 
414 			handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
415 			if (IS_ERR(handle))
416 				return PTR_ERR(handle);
417 			BUFFER_TRACE(sbi->s_sbh, "get_write_access");
418 			err = ext4_journal_get_write_access(handle, sbi->s_sbh);
419 			if (err) {
420 				ext4_journal_stop(handle);
421 				return err;
422 			}
423 			strlcpy(sbi->s_es->s_last_mounted, cp,
424 				sizeof(sbi->s_es->s_last_mounted));
425 			ext4_handle_dirty_super(handle, sb);
426 			ext4_journal_stop(handle);
427 		}
428 	}
429 	if (ext4_encrypted_inode(inode)) {
430 		ret = fscrypt_get_encryption_info(inode);
431 		if (ret)
432 			return -EACCES;
433 		if (!fscrypt_has_encryption_key(inode))
434 			return -ENOKEY;
435 	}
436 
437 	dir = dget_parent(file_dentry(filp));
438 	if (ext4_encrypted_inode(d_inode(dir)) &&
439 			!fscrypt_has_permitted_context(d_inode(dir), inode)) {
440 		ext4_warning(inode->i_sb,
441 			     "Inconsistent encryption contexts: %lu/%lu",
442 			     (unsigned long) d_inode(dir)->i_ino,
443 			     (unsigned long) inode->i_ino);
444 		dput(dir);
445 		return -EPERM;
446 	}
447 	dput(dir);
448 	/*
449 	 * Set up the jbd2_inode if we are opening the inode for
450 	 * writing and the journal is present
451 	 */
452 	if (filp->f_mode & FMODE_WRITE) {
453 		ret = ext4_inode_attach_jinode(inode);
454 		if (ret < 0)
455 			return ret;
456 	}
457 
458 	/* Set the flags to support nowait AIO */
459 	filp->f_mode |= FMODE_AIO_NOWAIT;
460 
461 	return dquot_file_open(inode, filp);
462 }
463 
464 /*
465  * Here we use ext4_map_blocks() to get a block mapping for a extent-based
466  * file rather than ext4_ext_walk_space() because we can introduce
467  * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same
468  * function.  When extent status tree has been fully implemented, it will
469  * track all extent status for a file and we can directly use it to
470  * retrieve the offset for SEEK_DATA/SEEK_HOLE.
471  */
472 
473 /*
474  * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to
475  * lookup page cache to check whether or not there has some data between
476  * [startoff, endoff] because, if this range contains an unwritten extent,
477  * we determine this extent as a data or a hole according to whether the
478  * page cache has data or not.
479  */
480 static int ext4_find_unwritten_pgoff(struct inode *inode,
481 				     int whence,
482 				     ext4_lblk_t end_blk,
483 				     loff_t *offset)
484 {
485 	struct pagevec pvec;
486 	unsigned int blkbits;
487 	pgoff_t index;
488 	pgoff_t end;
489 	loff_t endoff;
490 	loff_t startoff;
491 	loff_t lastoff;
492 	int found = 0;
493 
494 	blkbits = inode->i_sb->s_blocksize_bits;
495 	startoff = *offset;
496 	lastoff = startoff;
497 	endoff = (loff_t)end_blk << blkbits;
498 
499 	index = startoff >> PAGE_SHIFT;
500 	end = (endoff - 1) >> PAGE_SHIFT;
501 
502 	pagevec_init(&pvec, 0);
503 	do {
504 		int i, num;
505 		unsigned long nr_pages;
506 
507 		num = min_t(pgoff_t, end - index, PAGEVEC_SIZE - 1) + 1;
508 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
509 					  (pgoff_t)num);
510 		if (nr_pages == 0)
511 			break;
512 
513 		for (i = 0; i < nr_pages; i++) {
514 			struct page *page = pvec.pages[i];
515 			struct buffer_head *bh, *head;
516 
517 			/*
518 			 * If current offset is smaller than the page offset,
519 			 * there is a hole at this offset.
520 			 */
521 			if (whence == SEEK_HOLE && lastoff < endoff &&
522 			    lastoff < page_offset(pvec.pages[i])) {
523 				found = 1;
524 				*offset = lastoff;
525 				goto out;
526 			}
527 
528 			if (page->index > end)
529 				goto out;
530 
531 			lock_page(page);
532 
533 			if (unlikely(page->mapping != inode->i_mapping)) {
534 				unlock_page(page);
535 				continue;
536 			}
537 
538 			if (!page_has_buffers(page)) {
539 				unlock_page(page);
540 				continue;
541 			}
542 
543 			if (page_has_buffers(page)) {
544 				lastoff = page_offset(page);
545 				bh = head = page_buffers(page);
546 				do {
547 					if (buffer_uptodate(bh) ||
548 					    buffer_unwritten(bh)) {
549 						if (whence == SEEK_DATA)
550 							found = 1;
551 					} else {
552 						if (whence == SEEK_HOLE)
553 							found = 1;
554 					}
555 					if (found) {
556 						*offset = max_t(loff_t,
557 							startoff, lastoff);
558 						unlock_page(page);
559 						goto out;
560 					}
561 					lastoff += bh->b_size;
562 					bh = bh->b_this_page;
563 				} while (bh != head);
564 			}
565 
566 			lastoff = page_offset(page) + PAGE_SIZE;
567 			unlock_page(page);
568 		}
569 
570 		/* The no. of pages is less than our desired, we are done. */
571 		if (nr_pages < num)
572 			break;
573 
574 		index = pvec.pages[i - 1]->index + 1;
575 		pagevec_release(&pvec);
576 	} while (index <= end);
577 
578 	if (whence == SEEK_HOLE && lastoff < endoff) {
579 		found = 1;
580 		*offset = lastoff;
581 	}
582 out:
583 	pagevec_release(&pvec);
584 	return found;
585 }
586 
587 /*
588  * ext4_seek_data() retrieves the offset for SEEK_DATA.
589  */
590 static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize)
591 {
592 	struct inode *inode = file->f_mapping->host;
593 	struct extent_status es;
594 	ext4_lblk_t start, last, end;
595 	loff_t dataoff, isize;
596 	int blkbits;
597 	int ret;
598 
599 	inode_lock(inode);
600 
601 	isize = i_size_read(inode);
602 	if (offset >= isize) {
603 		inode_unlock(inode);
604 		return -ENXIO;
605 	}
606 
607 	blkbits = inode->i_sb->s_blocksize_bits;
608 	start = offset >> blkbits;
609 	last = start;
610 	end = isize >> blkbits;
611 	dataoff = offset;
612 
613 	do {
614 		ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
615 		if (ret <= 0) {
616 			/* No extent found -> no data */
617 			if (ret == 0)
618 				ret = -ENXIO;
619 			inode_unlock(inode);
620 			return ret;
621 		}
622 
623 		last = es.es_lblk;
624 		if (last != start)
625 			dataoff = (loff_t)last << blkbits;
626 		if (!ext4_es_is_unwritten(&es))
627 			break;
628 
629 		/*
630 		 * If there is a unwritten extent at this offset,
631 		 * it will be as a data or a hole according to page
632 		 * cache that has data or not.
633 		 */
634 		if (ext4_find_unwritten_pgoff(inode, SEEK_DATA,
635 					      es.es_lblk + es.es_len, &dataoff))
636 			break;
637 		last += es.es_len;
638 		dataoff = (loff_t)last << blkbits;
639 		cond_resched();
640 	} while (last <= end);
641 
642 	inode_unlock(inode);
643 
644 	if (dataoff > isize)
645 		return -ENXIO;
646 
647 	return vfs_setpos(file, dataoff, maxsize);
648 }
649 
650 /*
651  * ext4_seek_hole() retrieves the offset for SEEK_HOLE.
652  */
653 static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize)
654 {
655 	struct inode *inode = file->f_mapping->host;
656 	struct extent_status es;
657 	ext4_lblk_t start, last, end;
658 	loff_t holeoff, isize;
659 	int blkbits;
660 	int ret;
661 
662 	inode_lock(inode);
663 
664 	isize = i_size_read(inode);
665 	if (offset >= isize) {
666 		inode_unlock(inode);
667 		return -ENXIO;
668 	}
669 
670 	blkbits = inode->i_sb->s_blocksize_bits;
671 	start = offset >> blkbits;
672 	last = start;
673 	end = isize >> blkbits;
674 	holeoff = offset;
675 
676 	do {
677 		ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
678 		if (ret < 0) {
679 			inode_unlock(inode);
680 			return ret;
681 		}
682 		/* Found a hole? */
683 		if (ret == 0 || es.es_lblk > last) {
684 			if (last != start)
685 				holeoff = (loff_t)last << blkbits;
686 			break;
687 		}
688 		/*
689 		 * If there is a unwritten extent at this offset,
690 		 * it will be as a data or a hole according to page
691 		 * cache that has data or not.
692 		 */
693 		if (ext4_es_is_unwritten(&es) &&
694 		    ext4_find_unwritten_pgoff(inode, SEEK_HOLE,
695 					      last + es.es_len, &holeoff))
696 			break;
697 
698 		last += es.es_len;
699 		holeoff = (loff_t)last << blkbits;
700 		cond_resched();
701 	} while (last <= end);
702 
703 	inode_unlock(inode);
704 
705 	if (holeoff > isize)
706 		holeoff = isize;
707 
708 	return vfs_setpos(file, holeoff, maxsize);
709 }
710 
711 /*
712  * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
713  * by calling generic_file_llseek_size() with the appropriate maxbytes
714  * value for each.
715  */
716 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
717 {
718 	struct inode *inode = file->f_mapping->host;
719 	loff_t maxbytes;
720 
721 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
722 		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
723 	else
724 		maxbytes = inode->i_sb->s_maxbytes;
725 
726 	switch (whence) {
727 	case SEEK_SET:
728 	case SEEK_CUR:
729 	case SEEK_END:
730 		return generic_file_llseek_size(file, offset, whence,
731 						maxbytes, i_size_read(inode));
732 	case SEEK_DATA:
733 		return ext4_seek_data(file, offset, maxbytes);
734 	case SEEK_HOLE:
735 		return ext4_seek_hole(file, offset, maxbytes);
736 	}
737 
738 	return -EINVAL;
739 }
740 
741 const struct file_operations ext4_file_operations = {
742 	.llseek		= ext4_llseek,
743 	.read_iter	= ext4_file_read_iter,
744 	.write_iter	= ext4_file_write_iter,
745 	.unlocked_ioctl = ext4_ioctl,
746 #ifdef CONFIG_COMPAT
747 	.compat_ioctl	= ext4_compat_ioctl,
748 #endif
749 	.mmap		= ext4_file_mmap,
750 	.open		= ext4_file_open,
751 	.release	= ext4_release_file,
752 	.fsync		= ext4_sync_file,
753 	.get_unmapped_area = thp_get_unmapped_area,
754 	.splice_read	= generic_file_splice_read,
755 	.splice_write	= iter_file_splice_write,
756 	.fallocate	= ext4_fallocate,
757 };
758 
759 const struct inode_operations ext4_file_inode_operations = {
760 	.setattr	= ext4_setattr,
761 	.getattr	= ext4_file_getattr,
762 	.listxattr	= ext4_listxattr,
763 	.get_acl	= ext4_get_acl,
764 	.set_acl	= ext4_set_acl,
765 	.fiemap		= ext4_fiemap,
766 };
767 
768