xref: /linux/fs/ext4/file.c (revision 2fe05e1139a555ae91f00a812cb9520e7d3022ab)
1 /*
2  *  linux/fs/ext4/file.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/file.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  ext4 fs regular file handling primitives
16  *
17  *  64-bit file support on 64-bit platforms by Jakub Jelinek
18  *	(jj@sunsite.ms.mff.cuni.cz)
19  */
20 
21 #include <linux/time.h>
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/path.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/pagevec.h>
28 #include <linux/uio.h>
29 #include "ext4.h"
30 #include "ext4_jbd2.h"
31 #include "xattr.h"
32 #include "acl.h"
33 
34 #ifdef CONFIG_FS_DAX
35 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
36 {
37 	struct inode *inode = file_inode(iocb->ki_filp);
38 	ssize_t ret;
39 
40 	if (!inode_trylock_shared(inode)) {
41 		if (iocb->ki_flags & IOCB_NOWAIT)
42 			return -EAGAIN;
43 		inode_lock_shared(inode);
44 	}
45 	/*
46 	 * Recheck under inode lock - at this point we are sure it cannot
47 	 * change anymore
48 	 */
49 	if (!IS_DAX(inode)) {
50 		inode_unlock_shared(inode);
51 		/* Fallback to buffered IO in case we cannot support DAX */
52 		return generic_file_read_iter(iocb, to);
53 	}
54 	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
55 	inode_unlock_shared(inode);
56 
57 	file_accessed(iocb->ki_filp);
58 	return ret;
59 }
60 #endif
61 
62 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
63 {
64 	if (unlikely(ext4_forced_shutdown(EXT4_SB(file_inode(iocb->ki_filp)->i_sb))))
65 		return -EIO;
66 
67 	if (!iov_iter_count(to))
68 		return 0; /* skip atime */
69 
70 #ifdef CONFIG_FS_DAX
71 	if (IS_DAX(file_inode(iocb->ki_filp)))
72 		return ext4_dax_read_iter(iocb, to);
73 #endif
74 	return generic_file_read_iter(iocb, to);
75 }
76 
77 /*
78  * Called when an inode is released. Note that this is different
79  * from ext4_file_open: open gets called at every open, but release
80  * gets called only when /all/ the files are closed.
81  */
82 static int ext4_release_file(struct inode *inode, struct file *filp)
83 {
84 	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
85 		ext4_alloc_da_blocks(inode);
86 		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
87 	}
88 	/* if we are the last writer on the inode, drop the block reservation */
89 	if ((filp->f_mode & FMODE_WRITE) &&
90 			(atomic_read(&inode->i_writecount) == 1) &&
91 		        !EXT4_I(inode)->i_reserved_data_blocks)
92 	{
93 		down_write(&EXT4_I(inode)->i_data_sem);
94 		ext4_discard_preallocations(inode);
95 		up_write(&EXT4_I(inode)->i_data_sem);
96 	}
97 	if (is_dx(inode) && filp->private_data)
98 		ext4_htree_free_dir_info(filp->private_data);
99 
100 	return 0;
101 }
102 
103 static void ext4_unwritten_wait(struct inode *inode)
104 {
105 	wait_queue_head_t *wq = ext4_ioend_wq(inode);
106 
107 	wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
108 }
109 
110 /*
111  * This tests whether the IO in question is block-aligned or not.
112  * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
113  * are converted to written only after the IO is complete.  Until they are
114  * mapped, these blocks appear as holes, so dio_zero_block() will assume that
115  * it needs to zero out portions of the start and/or end block.  If 2 AIO
116  * threads are at work on the same unwritten block, they must be synchronized
117  * or one thread will zero the other's data, causing corruption.
118  */
119 static int
120 ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
121 {
122 	struct super_block *sb = inode->i_sb;
123 	int blockmask = sb->s_blocksize - 1;
124 
125 	if (pos >= i_size_read(inode))
126 		return 0;
127 
128 	if ((pos | iov_iter_alignment(from)) & blockmask)
129 		return 1;
130 
131 	return 0;
132 }
133 
134 /* Is IO overwriting allocated and initialized blocks? */
135 static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
136 {
137 	struct ext4_map_blocks map;
138 	unsigned int blkbits = inode->i_blkbits;
139 	int err, blklen;
140 
141 	if (pos + len > i_size_read(inode))
142 		return false;
143 
144 	map.m_lblk = pos >> blkbits;
145 	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
146 	blklen = map.m_len;
147 
148 	err = ext4_map_blocks(NULL, inode, &map, 0);
149 	/*
150 	 * 'err==len' means that all of the blocks have been preallocated,
151 	 * regardless of whether they have been initialized or not. To exclude
152 	 * unwritten extents, we need to check m_flags.
153 	 */
154 	return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
155 }
156 
157 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
158 {
159 	struct inode *inode = file_inode(iocb->ki_filp);
160 	ssize_t ret;
161 
162 	ret = generic_write_checks(iocb, from);
163 	if (ret <= 0)
164 		return ret;
165 	/*
166 	 * If we have encountered a bitmap-format file, the size limit
167 	 * is smaller than s_maxbytes, which is for extent-mapped files.
168 	 */
169 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
170 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
171 
172 		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
173 			return -EFBIG;
174 		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
175 	}
176 	return iov_iter_count(from);
177 }
178 
179 #ifdef CONFIG_FS_DAX
180 static ssize_t
181 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
182 {
183 	struct inode *inode = file_inode(iocb->ki_filp);
184 	ssize_t ret;
185 
186 	if (!inode_trylock(inode)) {
187 		if (iocb->ki_flags & IOCB_NOWAIT)
188 			return -EAGAIN;
189 		inode_lock(inode);
190 	}
191 	ret = ext4_write_checks(iocb, from);
192 	if (ret <= 0)
193 		goto out;
194 	ret = file_remove_privs(iocb->ki_filp);
195 	if (ret)
196 		goto out;
197 	ret = file_update_time(iocb->ki_filp);
198 	if (ret)
199 		goto out;
200 
201 	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
202 out:
203 	inode_unlock(inode);
204 	if (ret > 0)
205 		ret = generic_write_sync(iocb, ret);
206 	return ret;
207 }
208 #endif
209 
210 static ssize_t
211 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
212 {
213 	struct inode *inode = file_inode(iocb->ki_filp);
214 	int o_direct = iocb->ki_flags & IOCB_DIRECT;
215 	int unaligned_aio = 0;
216 	int overwrite = 0;
217 	ssize_t ret;
218 
219 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
220 		return -EIO;
221 
222 #ifdef CONFIG_FS_DAX
223 	if (IS_DAX(inode))
224 		return ext4_dax_write_iter(iocb, from);
225 #endif
226 
227 	if (!inode_trylock(inode)) {
228 		if (iocb->ki_flags & IOCB_NOWAIT)
229 			return -EAGAIN;
230 		inode_lock(inode);
231 	}
232 
233 	ret = ext4_write_checks(iocb, from);
234 	if (ret <= 0)
235 		goto out;
236 
237 	/*
238 	 * Unaligned direct AIO must be serialized among each other as zeroing
239 	 * of partial blocks of two competing unaligned AIOs can result in data
240 	 * corruption.
241 	 */
242 	if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
243 	    !is_sync_kiocb(iocb) &&
244 	    ext4_unaligned_aio(inode, from, iocb->ki_pos)) {
245 		unaligned_aio = 1;
246 		ext4_unwritten_wait(inode);
247 	}
248 
249 	iocb->private = &overwrite;
250 	/* Check whether we do a DIO overwrite or not */
251 	if (o_direct && !unaligned_aio) {
252 		if (ext4_overwrite_io(inode, iocb->ki_pos, iov_iter_count(from))) {
253 			if (ext4_should_dioread_nolock(inode))
254 				overwrite = 1;
255 		} else if (iocb->ki_flags & IOCB_NOWAIT) {
256 			ret = -EAGAIN;
257 			goto out;
258 		}
259 	}
260 
261 	ret = __generic_file_write_iter(iocb, from);
262 	inode_unlock(inode);
263 
264 	if (ret > 0)
265 		ret = generic_write_sync(iocb, ret);
266 
267 	return ret;
268 
269 out:
270 	inode_unlock(inode);
271 	return ret;
272 }
273 
274 #ifdef CONFIG_FS_DAX
275 static int ext4_dax_huge_fault(struct vm_fault *vmf,
276 		enum page_entry_size pe_size)
277 {
278 	int result;
279 	handle_t *handle = NULL;
280 	struct inode *inode = file_inode(vmf->vma->vm_file);
281 	struct super_block *sb = inode->i_sb;
282 	bool write = vmf->flags & FAULT_FLAG_WRITE;
283 
284 	if (write) {
285 		sb_start_pagefault(sb);
286 		file_update_time(vmf->vma->vm_file);
287 		down_read(&EXT4_I(inode)->i_mmap_sem);
288 		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
289 					       EXT4_DATA_TRANS_BLOCKS(sb));
290 	} else {
291 		down_read(&EXT4_I(inode)->i_mmap_sem);
292 	}
293 	if (!IS_ERR(handle))
294 		result = dax_iomap_fault(vmf, pe_size, &ext4_iomap_ops);
295 	else
296 		result = VM_FAULT_SIGBUS;
297 	if (write) {
298 		if (!IS_ERR(handle))
299 			ext4_journal_stop(handle);
300 		up_read(&EXT4_I(inode)->i_mmap_sem);
301 		sb_end_pagefault(sb);
302 	} else {
303 		up_read(&EXT4_I(inode)->i_mmap_sem);
304 	}
305 
306 	return result;
307 }
308 
309 static int ext4_dax_fault(struct vm_fault *vmf)
310 {
311 	return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
312 }
313 
314 /*
315  * Handle write fault for VM_MIXEDMAP mappings. Similarly to ext4_dax_fault()
316  * handler we check for races agaist truncate. Note that since we cycle through
317  * i_mmap_sem, we are sure that also any hole punching that began before we
318  * were called is finished by now and so if it included part of the file we
319  * are working on, our pte will get unmapped and the check for pte_same() in
320  * wp_pfn_shared() fails. Thus fault gets retried and things work out as
321  * desired.
322  */
323 static int ext4_dax_pfn_mkwrite(struct vm_fault *vmf)
324 {
325 	struct inode *inode = file_inode(vmf->vma->vm_file);
326 	struct super_block *sb = inode->i_sb;
327 	loff_t size;
328 	int ret;
329 
330 	sb_start_pagefault(sb);
331 	file_update_time(vmf->vma->vm_file);
332 	down_read(&EXT4_I(inode)->i_mmap_sem);
333 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
334 	if (vmf->pgoff >= size)
335 		ret = VM_FAULT_SIGBUS;
336 	else
337 		ret = dax_pfn_mkwrite(vmf);
338 	up_read(&EXT4_I(inode)->i_mmap_sem);
339 	sb_end_pagefault(sb);
340 
341 	return ret;
342 }
343 
344 static const struct vm_operations_struct ext4_dax_vm_ops = {
345 	.fault		= ext4_dax_fault,
346 	.huge_fault	= ext4_dax_huge_fault,
347 	.page_mkwrite	= ext4_dax_fault,
348 	.pfn_mkwrite	= ext4_dax_pfn_mkwrite,
349 };
350 #else
351 #define ext4_dax_vm_ops	ext4_file_vm_ops
352 #endif
353 
354 static const struct vm_operations_struct ext4_file_vm_ops = {
355 	.fault		= ext4_filemap_fault,
356 	.map_pages	= filemap_map_pages,
357 	.page_mkwrite   = ext4_page_mkwrite,
358 };
359 
360 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
361 {
362 	struct inode *inode = file->f_mapping->host;
363 
364 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
365 		return -EIO;
366 
367 	file_accessed(file);
368 	if (IS_DAX(file_inode(file))) {
369 		vma->vm_ops = &ext4_dax_vm_ops;
370 		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
371 	} else {
372 		vma->vm_ops = &ext4_file_vm_ops;
373 	}
374 	return 0;
375 }
376 
377 static int ext4_file_open(struct inode * inode, struct file * filp)
378 {
379 	struct super_block *sb = inode->i_sb;
380 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
381 	struct vfsmount *mnt = filp->f_path.mnt;
382 	struct dentry *dir;
383 	struct path path;
384 	char buf[64], *cp;
385 	int ret;
386 
387 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
388 		return -EIO;
389 
390 	if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
391 		     !(sb->s_flags & MS_RDONLY))) {
392 		sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
393 		/*
394 		 * Sample where the filesystem has been mounted and
395 		 * store it in the superblock for sysadmin convenience
396 		 * when trying to sort through large numbers of block
397 		 * devices or filesystem images.
398 		 */
399 		memset(buf, 0, sizeof(buf));
400 		path.mnt = mnt;
401 		path.dentry = mnt->mnt_root;
402 		cp = d_path(&path, buf, sizeof(buf));
403 		if (!IS_ERR(cp)) {
404 			handle_t *handle;
405 			int err;
406 
407 			handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
408 			if (IS_ERR(handle))
409 				return PTR_ERR(handle);
410 			BUFFER_TRACE(sbi->s_sbh, "get_write_access");
411 			err = ext4_journal_get_write_access(handle, sbi->s_sbh);
412 			if (err) {
413 				ext4_journal_stop(handle);
414 				return err;
415 			}
416 			strlcpy(sbi->s_es->s_last_mounted, cp,
417 				sizeof(sbi->s_es->s_last_mounted));
418 			ext4_handle_dirty_super(handle, sb);
419 			ext4_journal_stop(handle);
420 		}
421 	}
422 	if (ext4_encrypted_inode(inode)) {
423 		ret = fscrypt_get_encryption_info(inode);
424 		if (ret)
425 			return -EACCES;
426 		if (!fscrypt_has_encryption_key(inode))
427 			return -ENOKEY;
428 	}
429 
430 	dir = dget_parent(file_dentry(filp));
431 	if (ext4_encrypted_inode(d_inode(dir)) &&
432 			!fscrypt_has_permitted_context(d_inode(dir), inode)) {
433 		ext4_warning(inode->i_sb,
434 			     "Inconsistent encryption contexts: %lu/%lu",
435 			     (unsigned long) d_inode(dir)->i_ino,
436 			     (unsigned long) inode->i_ino);
437 		dput(dir);
438 		return -EPERM;
439 	}
440 	dput(dir);
441 	/*
442 	 * Set up the jbd2_inode if we are opening the inode for
443 	 * writing and the journal is present
444 	 */
445 	if (filp->f_mode & FMODE_WRITE) {
446 		ret = ext4_inode_attach_jinode(inode);
447 		if (ret < 0)
448 			return ret;
449 	}
450 
451 	/* Set the flags to support nowait AIO */
452 	filp->f_mode |= FMODE_AIO_NOWAIT;
453 
454 	return dquot_file_open(inode, filp);
455 }
456 
457 /*
458  * Here we use ext4_map_blocks() to get a block mapping for a extent-based
459  * file rather than ext4_ext_walk_space() because we can introduce
460  * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same
461  * function.  When extent status tree has been fully implemented, it will
462  * track all extent status for a file and we can directly use it to
463  * retrieve the offset for SEEK_DATA/SEEK_HOLE.
464  */
465 
466 /*
467  * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to
468  * lookup page cache to check whether or not there has some data between
469  * [startoff, endoff] because, if this range contains an unwritten extent,
470  * we determine this extent as a data or a hole according to whether the
471  * page cache has data or not.
472  */
473 static int ext4_find_unwritten_pgoff(struct inode *inode,
474 				     int whence,
475 				     ext4_lblk_t end_blk,
476 				     loff_t *offset)
477 {
478 	struct pagevec pvec;
479 	unsigned int blkbits;
480 	pgoff_t index;
481 	pgoff_t end;
482 	loff_t endoff;
483 	loff_t startoff;
484 	loff_t lastoff;
485 	int found = 0;
486 
487 	blkbits = inode->i_sb->s_blocksize_bits;
488 	startoff = *offset;
489 	lastoff = startoff;
490 	endoff = (loff_t)end_blk << blkbits;
491 
492 	index = startoff >> PAGE_SHIFT;
493 	end = (endoff - 1) >> PAGE_SHIFT;
494 
495 	pagevec_init(&pvec, 0);
496 	do {
497 		int i, num;
498 		unsigned long nr_pages;
499 
500 		num = min_t(pgoff_t, end - index, PAGEVEC_SIZE - 1) + 1;
501 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
502 					  (pgoff_t)num);
503 		if (nr_pages == 0)
504 			break;
505 
506 		for (i = 0; i < nr_pages; i++) {
507 			struct page *page = pvec.pages[i];
508 			struct buffer_head *bh, *head;
509 
510 			/*
511 			 * If current offset is smaller than the page offset,
512 			 * there is a hole at this offset.
513 			 */
514 			if (whence == SEEK_HOLE && lastoff < endoff &&
515 			    lastoff < page_offset(pvec.pages[i])) {
516 				found = 1;
517 				*offset = lastoff;
518 				goto out;
519 			}
520 
521 			if (page->index > end)
522 				goto out;
523 
524 			lock_page(page);
525 
526 			if (unlikely(page->mapping != inode->i_mapping)) {
527 				unlock_page(page);
528 				continue;
529 			}
530 
531 			if (!page_has_buffers(page)) {
532 				unlock_page(page);
533 				continue;
534 			}
535 
536 			if (page_has_buffers(page)) {
537 				lastoff = page_offset(page);
538 				bh = head = page_buffers(page);
539 				do {
540 					if (buffer_uptodate(bh) ||
541 					    buffer_unwritten(bh)) {
542 						if (whence == SEEK_DATA)
543 							found = 1;
544 					} else {
545 						if (whence == SEEK_HOLE)
546 							found = 1;
547 					}
548 					if (found) {
549 						*offset = max_t(loff_t,
550 							startoff, lastoff);
551 						unlock_page(page);
552 						goto out;
553 					}
554 					lastoff += bh->b_size;
555 					bh = bh->b_this_page;
556 				} while (bh != head);
557 			}
558 
559 			lastoff = page_offset(page) + PAGE_SIZE;
560 			unlock_page(page);
561 		}
562 
563 		/* The no. of pages is less than our desired, we are done. */
564 		if (nr_pages < num)
565 			break;
566 
567 		index = pvec.pages[i - 1]->index + 1;
568 		pagevec_release(&pvec);
569 	} while (index <= end);
570 
571 	if (whence == SEEK_HOLE && lastoff < endoff) {
572 		found = 1;
573 		*offset = lastoff;
574 	}
575 out:
576 	pagevec_release(&pvec);
577 	return found;
578 }
579 
580 /*
581  * ext4_seek_data() retrieves the offset for SEEK_DATA.
582  */
583 static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize)
584 {
585 	struct inode *inode = file->f_mapping->host;
586 	struct extent_status es;
587 	ext4_lblk_t start, last, end;
588 	loff_t dataoff, isize;
589 	int blkbits;
590 	int ret;
591 
592 	inode_lock(inode);
593 
594 	isize = i_size_read(inode);
595 	if (offset >= isize) {
596 		inode_unlock(inode);
597 		return -ENXIO;
598 	}
599 
600 	blkbits = inode->i_sb->s_blocksize_bits;
601 	start = offset >> blkbits;
602 	last = start;
603 	end = isize >> blkbits;
604 	dataoff = offset;
605 
606 	do {
607 		ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
608 		if (ret <= 0) {
609 			/* No extent found -> no data */
610 			if (ret == 0)
611 				ret = -ENXIO;
612 			inode_unlock(inode);
613 			return ret;
614 		}
615 
616 		last = es.es_lblk;
617 		if (last != start)
618 			dataoff = (loff_t)last << blkbits;
619 		if (!ext4_es_is_unwritten(&es))
620 			break;
621 
622 		/*
623 		 * If there is a unwritten extent at this offset,
624 		 * it will be as a data or a hole according to page
625 		 * cache that has data or not.
626 		 */
627 		if (ext4_find_unwritten_pgoff(inode, SEEK_DATA,
628 					      es.es_lblk + es.es_len, &dataoff))
629 			break;
630 		last += es.es_len;
631 		dataoff = (loff_t)last << blkbits;
632 		cond_resched();
633 	} while (last <= end);
634 
635 	inode_unlock(inode);
636 
637 	if (dataoff > isize)
638 		return -ENXIO;
639 
640 	return vfs_setpos(file, dataoff, maxsize);
641 }
642 
643 /*
644  * ext4_seek_hole() retrieves the offset for SEEK_HOLE.
645  */
646 static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize)
647 {
648 	struct inode *inode = file->f_mapping->host;
649 	struct extent_status es;
650 	ext4_lblk_t start, last, end;
651 	loff_t holeoff, isize;
652 	int blkbits;
653 	int ret;
654 
655 	inode_lock(inode);
656 
657 	isize = i_size_read(inode);
658 	if (offset >= isize) {
659 		inode_unlock(inode);
660 		return -ENXIO;
661 	}
662 
663 	blkbits = inode->i_sb->s_blocksize_bits;
664 	start = offset >> blkbits;
665 	last = start;
666 	end = isize >> blkbits;
667 	holeoff = offset;
668 
669 	do {
670 		ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
671 		if (ret < 0) {
672 			inode_unlock(inode);
673 			return ret;
674 		}
675 		/* Found a hole? */
676 		if (ret == 0 || es.es_lblk > last) {
677 			if (last != start)
678 				holeoff = (loff_t)last << blkbits;
679 			break;
680 		}
681 		/*
682 		 * If there is a unwritten extent at this offset,
683 		 * it will be as a data or a hole according to page
684 		 * cache that has data or not.
685 		 */
686 		if (ext4_es_is_unwritten(&es) &&
687 		    ext4_find_unwritten_pgoff(inode, SEEK_HOLE,
688 					      last + es.es_len, &holeoff))
689 			break;
690 
691 		last += es.es_len;
692 		holeoff = (loff_t)last << blkbits;
693 		cond_resched();
694 	} while (last <= end);
695 
696 	inode_unlock(inode);
697 
698 	if (holeoff > isize)
699 		holeoff = isize;
700 
701 	return vfs_setpos(file, holeoff, maxsize);
702 }
703 
704 /*
705  * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
706  * by calling generic_file_llseek_size() with the appropriate maxbytes
707  * value for each.
708  */
709 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
710 {
711 	struct inode *inode = file->f_mapping->host;
712 	loff_t maxbytes;
713 
714 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
715 		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
716 	else
717 		maxbytes = inode->i_sb->s_maxbytes;
718 
719 	switch (whence) {
720 	case SEEK_SET:
721 	case SEEK_CUR:
722 	case SEEK_END:
723 		return generic_file_llseek_size(file, offset, whence,
724 						maxbytes, i_size_read(inode));
725 	case SEEK_DATA:
726 		return ext4_seek_data(file, offset, maxbytes);
727 	case SEEK_HOLE:
728 		return ext4_seek_hole(file, offset, maxbytes);
729 	}
730 
731 	return -EINVAL;
732 }
733 
734 const struct file_operations ext4_file_operations = {
735 	.llseek		= ext4_llseek,
736 	.read_iter	= ext4_file_read_iter,
737 	.write_iter	= ext4_file_write_iter,
738 	.unlocked_ioctl = ext4_ioctl,
739 #ifdef CONFIG_COMPAT
740 	.compat_ioctl	= ext4_compat_ioctl,
741 #endif
742 	.mmap		= ext4_file_mmap,
743 	.open		= ext4_file_open,
744 	.release	= ext4_release_file,
745 	.fsync		= ext4_sync_file,
746 	.get_unmapped_area = thp_get_unmapped_area,
747 	.splice_read	= generic_file_splice_read,
748 	.splice_write	= iter_file_splice_write,
749 	.fallocate	= ext4_fallocate,
750 };
751 
752 const struct inode_operations ext4_file_inode_operations = {
753 	.setattr	= ext4_setattr,
754 	.getattr	= ext4_file_getattr,
755 	.listxattr	= ext4_listxattr,
756 	.get_acl	= ext4_get_acl,
757 	.set_acl	= ext4_set_acl,
758 	.fiemap		= ext4_fiemap,
759 };
760 
761