xref: /linux/fs/ext4/file.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/file.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/file.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  ext4 fs regular file handling primitives
17  *
18  *  64-bit file support on 64-bit platforms by Jakub Jelinek
19  *	(jj@sunsite.ms.mff.cuni.cz)
20  */
21 
22 #include <linux/time.h>
23 #include <linux/fs.h>
24 #include <linux/iomap.h>
25 #include <linux/mount.h>
26 #include <linux/path.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/pagevec.h>
30 #include <linux/uio.h>
31 #include <linux/mman.h>
32 #include <linux/backing-dev.h>
33 #include "ext4.h"
34 #include "ext4_jbd2.h"
35 #include "xattr.h"
36 #include "acl.h"
37 #include "truncate.h"
38 
39 static bool ext4_dio_supported(struct inode *inode)
40 {
41 	if (IS_ENABLED(CONFIG_FS_ENCRYPTION) && IS_ENCRYPTED(inode))
42 		return false;
43 	if (fsverity_active(inode))
44 		return false;
45 	if (ext4_should_journal_data(inode))
46 		return false;
47 	if (ext4_has_inline_data(inode))
48 		return false;
49 	return true;
50 }
51 
52 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
53 {
54 	ssize_t ret;
55 	struct inode *inode = file_inode(iocb->ki_filp);
56 
57 	if (iocb->ki_flags & IOCB_NOWAIT) {
58 		if (!inode_trylock_shared(inode))
59 			return -EAGAIN;
60 	} else {
61 		inode_lock_shared(inode);
62 	}
63 
64 	if (!ext4_dio_supported(inode)) {
65 		inode_unlock_shared(inode);
66 		/*
67 		 * Fallback to buffered I/O if the operation being performed on
68 		 * the inode is not supported by direct I/O. The IOCB_DIRECT
69 		 * flag needs to be cleared here in order to ensure that the
70 		 * direct I/O path within generic_file_read_iter() is not
71 		 * taken.
72 		 */
73 		iocb->ki_flags &= ~IOCB_DIRECT;
74 		return generic_file_read_iter(iocb, to);
75 	}
76 
77 	ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL,
78 			   is_sync_kiocb(iocb));
79 	inode_unlock_shared(inode);
80 
81 	file_accessed(iocb->ki_filp);
82 	return ret;
83 }
84 
85 #ifdef CONFIG_FS_DAX
86 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
87 {
88 	struct inode *inode = file_inode(iocb->ki_filp);
89 	ssize_t ret;
90 
91 	if (iocb->ki_flags & IOCB_NOWAIT) {
92 		if (!inode_trylock_shared(inode))
93 			return -EAGAIN;
94 	} else {
95 		inode_lock_shared(inode);
96 	}
97 	/*
98 	 * Recheck under inode lock - at this point we are sure it cannot
99 	 * change anymore
100 	 */
101 	if (!IS_DAX(inode)) {
102 		inode_unlock_shared(inode);
103 		/* Fallback to buffered IO in case we cannot support DAX */
104 		return generic_file_read_iter(iocb, to);
105 	}
106 	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
107 	inode_unlock_shared(inode);
108 
109 	file_accessed(iocb->ki_filp);
110 	return ret;
111 }
112 #endif
113 
114 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
115 {
116 	struct inode *inode = file_inode(iocb->ki_filp);
117 
118 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
119 		return -EIO;
120 
121 	if (!iov_iter_count(to))
122 		return 0; /* skip atime */
123 
124 #ifdef CONFIG_FS_DAX
125 	if (IS_DAX(inode))
126 		return ext4_dax_read_iter(iocb, to);
127 #endif
128 	if (iocb->ki_flags & IOCB_DIRECT)
129 		return ext4_dio_read_iter(iocb, to);
130 
131 	return generic_file_read_iter(iocb, to);
132 }
133 
134 /*
135  * Called when an inode is released. Note that this is different
136  * from ext4_file_open: open gets called at every open, but release
137  * gets called only when /all/ the files are closed.
138  */
139 static int ext4_release_file(struct inode *inode, struct file *filp)
140 {
141 	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
142 		ext4_alloc_da_blocks(inode);
143 		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
144 	}
145 	/* if we are the last writer on the inode, drop the block reservation */
146 	if ((filp->f_mode & FMODE_WRITE) &&
147 			(atomic_read(&inode->i_writecount) == 1) &&
148 		        !EXT4_I(inode)->i_reserved_data_blocks)
149 	{
150 		down_write(&EXT4_I(inode)->i_data_sem);
151 		ext4_discard_preallocations(inode);
152 		up_write(&EXT4_I(inode)->i_data_sem);
153 	}
154 	if (is_dx(inode) && filp->private_data)
155 		ext4_htree_free_dir_info(filp->private_data);
156 
157 	return 0;
158 }
159 
160 /*
161  * This tests whether the IO in question is block-aligned or not.
162  * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
163  * are converted to written only after the IO is complete.  Until they are
164  * mapped, these blocks appear as holes, so dio_zero_block() will assume that
165  * it needs to zero out portions of the start and/or end block.  If 2 AIO
166  * threads are at work on the same unwritten block, they must be synchronized
167  * or one thread will zero the other's data, causing corruption.
168  */
169 static bool
170 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
171 {
172 	struct super_block *sb = inode->i_sb;
173 	unsigned long blockmask = sb->s_blocksize - 1;
174 
175 	if ((pos | iov_iter_alignment(from)) & blockmask)
176 		return true;
177 
178 	return false;
179 }
180 
181 static bool
182 ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
183 {
184 	if (offset + len > i_size_read(inode) ||
185 	    offset + len > EXT4_I(inode)->i_disksize)
186 		return true;
187 	return false;
188 }
189 
190 /* Is IO overwriting allocated and initialized blocks? */
191 static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
192 {
193 	struct ext4_map_blocks map;
194 	unsigned int blkbits = inode->i_blkbits;
195 	int err, blklen;
196 
197 	if (pos + len > i_size_read(inode))
198 		return false;
199 
200 	map.m_lblk = pos >> blkbits;
201 	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
202 	blklen = map.m_len;
203 
204 	err = ext4_map_blocks(NULL, inode, &map, 0);
205 	/*
206 	 * 'err==len' means that all of the blocks have been preallocated,
207 	 * regardless of whether they have been initialized or not. To exclude
208 	 * unwritten extents, we need to check m_flags.
209 	 */
210 	return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
211 }
212 
213 static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
214 					 struct iov_iter *from)
215 {
216 	struct inode *inode = file_inode(iocb->ki_filp);
217 	ssize_t ret;
218 
219 	if (unlikely(IS_IMMUTABLE(inode)))
220 		return -EPERM;
221 
222 	ret = generic_write_checks(iocb, from);
223 	if (ret <= 0)
224 		return ret;
225 
226 	/*
227 	 * If we have encountered a bitmap-format file, the size limit
228 	 * is smaller than s_maxbytes, which is for extent-mapped files.
229 	 */
230 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
231 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
232 
233 		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
234 			return -EFBIG;
235 		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
236 	}
237 
238 	return iov_iter_count(from);
239 }
240 
241 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
242 {
243 	ssize_t ret, count;
244 
245 	count = ext4_generic_write_checks(iocb, from);
246 	if (count <= 0)
247 		return count;
248 
249 	ret = file_modified(iocb->ki_filp);
250 	if (ret)
251 		return ret;
252 	return count;
253 }
254 
255 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
256 					struct iov_iter *from)
257 {
258 	ssize_t ret;
259 	struct inode *inode = file_inode(iocb->ki_filp);
260 
261 	if (iocb->ki_flags & IOCB_NOWAIT)
262 		return -EOPNOTSUPP;
263 
264 	inode_lock(inode);
265 	ret = ext4_write_checks(iocb, from);
266 	if (ret <= 0)
267 		goto out;
268 
269 	current->backing_dev_info = inode_to_bdi(inode);
270 	ret = generic_perform_write(iocb->ki_filp, from, iocb->ki_pos);
271 	current->backing_dev_info = NULL;
272 
273 out:
274 	inode_unlock(inode);
275 	if (likely(ret > 0)) {
276 		iocb->ki_pos += ret;
277 		ret = generic_write_sync(iocb, ret);
278 	}
279 
280 	return ret;
281 }
282 
283 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
284 					   ssize_t written, size_t count)
285 {
286 	handle_t *handle;
287 	bool truncate = false;
288 	u8 blkbits = inode->i_blkbits;
289 	ext4_lblk_t written_blk, end_blk;
290 
291 	/*
292 	 * Note that EXT4_I(inode)->i_disksize can get extended up to
293 	 * inode->i_size while the I/O was running due to writeback of delalloc
294 	 * blocks. But, the code in ext4_iomap_alloc() is careful to use
295 	 * zeroed/unwritten extents if this is possible; thus we won't leave
296 	 * uninitialized blocks in a file even if we didn't succeed in writing
297 	 * as much as we intended.
298 	 */
299 	WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize);
300 	if (offset + count <= EXT4_I(inode)->i_disksize) {
301 		/*
302 		 * We need to ensure that the inode is removed from the orphan
303 		 * list if it has been added prematurely, due to writeback of
304 		 * delalloc blocks.
305 		 */
306 		if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
307 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
308 
309 			if (IS_ERR(handle)) {
310 				ext4_orphan_del(NULL, inode);
311 				return PTR_ERR(handle);
312 			}
313 
314 			ext4_orphan_del(handle, inode);
315 			ext4_journal_stop(handle);
316 		}
317 
318 		return written;
319 	}
320 
321 	if (written < 0)
322 		goto truncate;
323 
324 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
325 	if (IS_ERR(handle)) {
326 		written = PTR_ERR(handle);
327 		goto truncate;
328 	}
329 
330 	if (ext4_update_inode_size(inode, offset + written))
331 		ext4_mark_inode_dirty(handle, inode);
332 
333 	/*
334 	 * We may need to truncate allocated but not written blocks beyond EOF.
335 	 */
336 	written_blk = ALIGN(offset + written, 1 << blkbits);
337 	end_blk = ALIGN(offset + count, 1 << blkbits);
338 	if (written_blk < end_blk && ext4_can_truncate(inode))
339 		truncate = true;
340 
341 	/*
342 	 * Remove the inode from the orphan list if it has been extended and
343 	 * everything went OK.
344 	 */
345 	if (!truncate && inode->i_nlink)
346 		ext4_orphan_del(handle, inode);
347 	ext4_journal_stop(handle);
348 
349 	if (truncate) {
350 truncate:
351 		ext4_truncate_failed_write(inode);
352 		/*
353 		 * If the truncate operation failed early, then the inode may
354 		 * still be on the orphan list. In that case, we need to try
355 		 * remove the inode from the in-memory linked list.
356 		 */
357 		if (inode->i_nlink)
358 			ext4_orphan_del(NULL, inode);
359 	}
360 
361 	return written;
362 }
363 
364 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
365 				 int error, unsigned int flags)
366 {
367 	loff_t offset = iocb->ki_pos;
368 	struct inode *inode = file_inode(iocb->ki_filp);
369 
370 	if (error)
371 		return error;
372 
373 	if (size && flags & IOMAP_DIO_UNWRITTEN)
374 		return ext4_convert_unwritten_extents(NULL, inode,
375 						      offset, size);
376 
377 	return 0;
378 }
379 
380 static const struct iomap_dio_ops ext4_dio_write_ops = {
381 	.end_io = ext4_dio_write_end_io,
382 };
383 
384 /*
385  * The intention here is to start with shared lock acquired then see if any
386  * condition requires an exclusive inode lock. If yes, then we restart the
387  * whole operation by releasing the shared lock and acquiring exclusive lock.
388  *
389  * - For unaligned_io we never take shared lock as it may cause data corruption
390  *   when two unaligned IO tries to modify the same block e.g. while zeroing.
391  *
392  * - For extending writes case we don't take the shared lock, since it requires
393  *   updating inode i_disksize and/or orphan handling with exclusive lock.
394  *
395  * - shared locking will only be true mostly with overwrites. Otherwise we will
396  *   switch to exclusive i_rwsem lock.
397  */
398 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
399 				     bool *ilock_shared, bool *extend)
400 {
401 	struct file *file = iocb->ki_filp;
402 	struct inode *inode = file_inode(file);
403 	loff_t offset;
404 	size_t count;
405 	ssize_t ret;
406 
407 restart:
408 	ret = ext4_generic_write_checks(iocb, from);
409 	if (ret <= 0)
410 		goto out;
411 
412 	offset = iocb->ki_pos;
413 	count = ret;
414 	if (ext4_extending_io(inode, offset, count))
415 		*extend = true;
416 	/*
417 	 * Determine whether the IO operation will overwrite allocated
418 	 * and initialized blocks.
419 	 * We need exclusive i_rwsem for changing security info
420 	 * in file_modified().
421 	 */
422 	if (*ilock_shared && (!IS_NOSEC(inode) || *extend ||
423 	     !ext4_overwrite_io(inode, offset, count))) {
424 		inode_unlock_shared(inode);
425 		*ilock_shared = false;
426 		inode_lock(inode);
427 		goto restart;
428 	}
429 
430 	ret = file_modified(file);
431 	if (ret < 0)
432 		goto out;
433 
434 	return count;
435 out:
436 	if (*ilock_shared)
437 		inode_unlock_shared(inode);
438 	else
439 		inode_unlock(inode);
440 	return ret;
441 }
442 
443 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
444 {
445 	ssize_t ret;
446 	handle_t *handle;
447 	struct inode *inode = file_inode(iocb->ki_filp);
448 	loff_t offset = iocb->ki_pos;
449 	size_t count = iov_iter_count(from);
450 	const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
451 	bool extend = false, unaligned_io = false;
452 	bool ilock_shared = true;
453 
454 	/*
455 	 * We initially start with shared inode lock unless it is
456 	 * unaligned IO which needs exclusive lock anyways.
457 	 */
458 	if (ext4_unaligned_io(inode, from, offset)) {
459 		unaligned_io = true;
460 		ilock_shared = false;
461 	}
462 	/*
463 	 * Quick check here without any i_rwsem lock to see if it is extending
464 	 * IO. A more reliable check is done in ext4_dio_write_checks() with
465 	 * proper locking in place.
466 	 */
467 	if (offset + count > i_size_read(inode))
468 		ilock_shared = false;
469 
470 	if (iocb->ki_flags & IOCB_NOWAIT) {
471 		if (ilock_shared) {
472 			if (!inode_trylock_shared(inode))
473 				return -EAGAIN;
474 		} else {
475 			if (!inode_trylock(inode))
476 				return -EAGAIN;
477 		}
478 	} else {
479 		if (ilock_shared)
480 			inode_lock_shared(inode);
481 		else
482 			inode_lock(inode);
483 	}
484 
485 	/* Fallback to buffered I/O if the inode does not support direct I/O. */
486 	if (!ext4_dio_supported(inode)) {
487 		if (ilock_shared)
488 			inode_unlock_shared(inode);
489 		else
490 			inode_unlock(inode);
491 		return ext4_buffered_write_iter(iocb, from);
492 	}
493 
494 	ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend);
495 	if (ret <= 0)
496 		return ret;
497 
498 	offset = iocb->ki_pos;
499 	count = ret;
500 
501 	/*
502 	 * Unaligned direct IO must be serialized among each other as zeroing
503 	 * of partial blocks of two competing unaligned IOs can result in data
504 	 * corruption.
505 	 *
506 	 * So we make sure we don't allow any unaligned IO in flight.
507 	 * For IOs where we need not wait (like unaligned non-AIO DIO),
508 	 * below inode_dio_wait() may anyway become a no-op, since we start
509 	 * with exclusive lock.
510 	 */
511 	if (unaligned_io)
512 		inode_dio_wait(inode);
513 
514 	if (extend) {
515 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
516 		if (IS_ERR(handle)) {
517 			ret = PTR_ERR(handle);
518 			goto out;
519 		}
520 
521 		ret = ext4_orphan_add(handle, inode);
522 		if (ret) {
523 			ext4_journal_stop(handle);
524 			goto out;
525 		}
526 
527 		ext4_journal_stop(handle);
528 	}
529 
530 	if (ilock_shared)
531 		iomap_ops = &ext4_iomap_overwrite_ops;
532 	ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
533 			   is_sync_kiocb(iocb) || unaligned_io || extend);
534 
535 	if (extend)
536 		ret = ext4_handle_inode_extension(inode, offset, ret, count);
537 
538 out:
539 	if (ilock_shared)
540 		inode_unlock_shared(inode);
541 	else
542 		inode_unlock(inode);
543 
544 	if (ret >= 0 && iov_iter_count(from)) {
545 		ssize_t err;
546 		loff_t endbyte;
547 
548 		offset = iocb->ki_pos;
549 		err = ext4_buffered_write_iter(iocb, from);
550 		if (err < 0)
551 			return err;
552 
553 		/*
554 		 * We need to ensure that the pages within the page cache for
555 		 * the range covered by this I/O are written to disk and
556 		 * invalidated. This is in attempt to preserve the expected
557 		 * direct I/O semantics in the case we fallback to buffered I/O
558 		 * to complete off the I/O request.
559 		 */
560 		ret += err;
561 		endbyte = offset + err - 1;
562 		err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
563 						   offset, endbyte);
564 		if (!err)
565 			invalidate_mapping_pages(iocb->ki_filp->f_mapping,
566 						 offset >> PAGE_SHIFT,
567 						 endbyte >> PAGE_SHIFT);
568 	}
569 
570 	return ret;
571 }
572 
573 #ifdef CONFIG_FS_DAX
574 static ssize_t
575 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
576 {
577 	ssize_t ret;
578 	size_t count;
579 	loff_t offset;
580 	handle_t *handle;
581 	bool extend = false;
582 	struct inode *inode = file_inode(iocb->ki_filp);
583 
584 	if (iocb->ki_flags & IOCB_NOWAIT) {
585 		if (!inode_trylock(inode))
586 			return -EAGAIN;
587 	} else {
588 		inode_lock(inode);
589 	}
590 
591 	ret = ext4_write_checks(iocb, from);
592 	if (ret <= 0)
593 		goto out;
594 
595 	offset = iocb->ki_pos;
596 	count = iov_iter_count(from);
597 
598 	if (offset + count > EXT4_I(inode)->i_disksize) {
599 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
600 		if (IS_ERR(handle)) {
601 			ret = PTR_ERR(handle);
602 			goto out;
603 		}
604 
605 		ret = ext4_orphan_add(handle, inode);
606 		if (ret) {
607 			ext4_journal_stop(handle);
608 			goto out;
609 		}
610 
611 		extend = true;
612 		ext4_journal_stop(handle);
613 	}
614 
615 	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
616 
617 	if (extend)
618 		ret = ext4_handle_inode_extension(inode, offset, ret, count);
619 out:
620 	inode_unlock(inode);
621 	if (ret > 0)
622 		ret = generic_write_sync(iocb, ret);
623 	return ret;
624 }
625 #endif
626 
627 static ssize_t
628 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
629 {
630 	struct inode *inode = file_inode(iocb->ki_filp);
631 
632 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
633 		return -EIO;
634 
635 #ifdef CONFIG_FS_DAX
636 	if (IS_DAX(inode))
637 		return ext4_dax_write_iter(iocb, from);
638 #endif
639 	if (iocb->ki_flags & IOCB_DIRECT)
640 		return ext4_dio_write_iter(iocb, from);
641 
642 	return ext4_buffered_write_iter(iocb, from);
643 }
644 
645 #ifdef CONFIG_FS_DAX
646 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf,
647 		enum page_entry_size pe_size)
648 {
649 	int error = 0;
650 	vm_fault_t result;
651 	int retries = 0;
652 	handle_t *handle = NULL;
653 	struct inode *inode = file_inode(vmf->vma->vm_file);
654 	struct super_block *sb = inode->i_sb;
655 
656 	/*
657 	 * We have to distinguish real writes from writes which will result in a
658 	 * COW page; COW writes should *not* poke the journal (the file will not
659 	 * be changed). Doing so would cause unintended failures when mounted
660 	 * read-only.
661 	 *
662 	 * We check for VM_SHARED rather than vmf->cow_page since the latter is
663 	 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
664 	 * other sizes, dax_iomap_fault will handle splitting / fallback so that
665 	 * we eventually come back with a COW page.
666 	 */
667 	bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
668 		(vmf->vma->vm_flags & VM_SHARED);
669 	pfn_t pfn;
670 
671 	if (write) {
672 		sb_start_pagefault(sb);
673 		file_update_time(vmf->vma->vm_file);
674 		down_read(&EXT4_I(inode)->i_mmap_sem);
675 retry:
676 		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
677 					       EXT4_DATA_TRANS_BLOCKS(sb));
678 		if (IS_ERR(handle)) {
679 			up_read(&EXT4_I(inode)->i_mmap_sem);
680 			sb_end_pagefault(sb);
681 			return VM_FAULT_SIGBUS;
682 		}
683 	} else {
684 		down_read(&EXT4_I(inode)->i_mmap_sem);
685 	}
686 	result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops);
687 	if (write) {
688 		ext4_journal_stop(handle);
689 
690 		if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
691 		    ext4_should_retry_alloc(sb, &retries))
692 			goto retry;
693 		/* Handling synchronous page fault? */
694 		if (result & VM_FAULT_NEEDDSYNC)
695 			result = dax_finish_sync_fault(vmf, pe_size, pfn);
696 		up_read(&EXT4_I(inode)->i_mmap_sem);
697 		sb_end_pagefault(sb);
698 	} else {
699 		up_read(&EXT4_I(inode)->i_mmap_sem);
700 	}
701 
702 	return result;
703 }
704 
705 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
706 {
707 	return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
708 }
709 
710 static const struct vm_operations_struct ext4_dax_vm_ops = {
711 	.fault		= ext4_dax_fault,
712 	.huge_fault	= ext4_dax_huge_fault,
713 	.page_mkwrite	= ext4_dax_fault,
714 	.pfn_mkwrite	= ext4_dax_fault,
715 };
716 #else
717 #define ext4_dax_vm_ops	ext4_file_vm_ops
718 #endif
719 
720 static const struct vm_operations_struct ext4_file_vm_ops = {
721 	.fault		= ext4_filemap_fault,
722 	.map_pages	= filemap_map_pages,
723 	.page_mkwrite   = ext4_page_mkwrite,
724 };
725 
726 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
727 {
728 	struct inode *inode = file->f_mapping->host;
729 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
730 	struct dax_device *dax_dev = sbi->s_daxdev;
731 
732 	if (unlikely(ext4_forced_shutdown(sbi)))
733 		return -EIO;
734 
735 	/*
736 	 * We don't support synchronous mappings for non-DAX files and
737 	 * for DAX files if underneath dax_device is not synchronous.
738 	 */
739 	if (!daxdev_mapping_supported(vma, dax_dev))
740 		return -EOPNOTSUPP;
741 
742 	file_accessed(file);
743 	if (IS_DAX(file_inode(file))) {
744 		vma->vm_ops = &ext4_dax_vm_ops;
745 		vma->vm_flags |= VM_HUGEPAGE;
746 	} else {
747 		vma->vm_ops = &ext4_file_vm_ops;
748 	}
749 	return 0;
750 }
751 
752 static int ext4_sample_last_mounted(struct super_block *sb,
753 				    struct vfsmount *mnt)
754 {
755 	struct ext4_sb_info *sbi = EXT4_SB(sb);
756 	struct path path;
757 	char buf[64], *cp;
758 	handle_t *handle;
759 	int err;
760 
761 	if (likely(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED))
762 		return 0;
763 
764 	if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
765 		return 0;
766 
767 	sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
768 	/*
769 	 * Sample where the filesystem has been mounted and
770 	 * store it in the superblock for sysadmin convenience
771 	 * when trying to sort through large numbers of block
772 	 * devices or filesystem images.
773 	 */
774 	memset(buf, 0, sizeof(buf));
775 	path.mnt = mnt;
776 	path.dentry = mnt->mnt_root;
777 	cp = d_path(&path, buf, sizeof(buf));
778 	err = 0;
779 	if (IS_ERR(cp))
780 		goto out;
781 
782 	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
783 	err = PTR_ERR(handle);
784 	if (IS_ERR(handle))
785 		goto out;
786 	BUFFER_TRACE(sbi->s_sbh, "get_write_access");
787 	err = ext4_journal_get_write_access(handle, sbi->s_sbh);
788 	if (err)
789 		goto out_journal;
790 	strlcpy(sbi->s_es->s_last_mounted, cp,
791 		sizeof(sbi->s_es->s_last_mounted));
792 	ext4_handle_dirty_super(handle, sb);
793 out_journal:
794 	ext4_journal_stop(handle);
795 out:
796 	sb_end_intwrite(sb);
797 	return err;
798 }
799 
800 static int ext4_file_open(struct inode * inode, struct file * filp)
801 {
802 	int ret;
803 
804 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
805 		return -EIO;
806 
807 	ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
808 	if (ret)
809 		return ret;
810 
811 	ret = fscrypt_file_open(inode, filp);
812 	if (ret)
813 		return ret;
814 
815 	ret = fsverity_file_open(inode, filp);
816 	if (ret)
817 		return ret;
818 
819 	/*
820 	 * Set up the jbd2_inode if we are opening the inode for
821 	 * writing and the journal is present
822 	 */
823 	if (filp->f_mode & FMODE_WRITE) {
824 		ret = ext4_inode_attach_jinode(inode);
825 		if (ret < 0)
826 			return ret;
827 	}
828 
829 	filp->f_mode |= FMODE_NOWAIT;
830 	return dquot_file_open(inode, filp);
831 }
832 
833 /*
834  * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
835  * by calling generic_file_llseek_size() with the appropriate maxbytes
836  * value for each.
837  */
838 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
839 {
840 	struct inode *inode = file->f_mapping->host;
841 	loff_t maxbytes;
842 
843 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
844 		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
845 	else
846 		maxbytes = inode->i_sb->s_maxbytes;
847 
848 	switch (whence) {
849 	default:
850 		return generic_file_llseek_size(file, offset, whence,
851 						maxbytes, i_size_read(inode));
852 	case SEEK_HOLE:
853 		inode_lock_shared(inode);
854 		offset = iomap_seek_hole(inode, offset,
855 					 &ext4_iomap_report_ops);
856 		inode_unlock_shared(inode);
857 		break;
858 	case SEEK_DATA:
859 		inode_lock_shared(inode);
860 		offset = iomap_seek_data(inode, offset,
861 					 &ext4_iomap_report_ops);
862 		inode_unlock_shared(inode);
863 		break;
864 	}
865 
866 	if (offset < 0)
867 		return offset;
868 	return vfs_setpos(file, offset, maxbytes);
869 }
870 
871 const struct file_operations ext4_file_operations = {
872 	.llseek		= ext4_llseek,
873 	.read_iter	= ext4_file_read_iter,
874 	.write_iter	= ext4_file_write_iter,
875 	.unlocked_ioctl = ext4_ioctl,
876 #ifdef CONFIG_COMPAT
877 	.compat_ioctl	= ext4_compat_ioctl,
878 #endif
879 	.mmap		= ext4_file_mmap,
880 	.mmap_supported_flags = MAP_SYNC,
881 	.open		= ext4_file_open,
882 	.release	= ext4_release_file,
883 	.fsync		= ext4_sync_file,
884 	.get_unmapped_area = thp_get_unmapped_area,
885 	.splice_read	= generic_file_splice_read,
886 	.splice_write	= iter_file_splice_write,
887 	.fallocate	= ext4_fallocate,
888 };
889 
890 const struct inode_operations ext4_file_inode_operations = {
891 	.setattr	= ext4_setattr,
892 	.getattr	= ext4_file_getattr,
893 	.listxattr	= ext4_listxattr,
894 	.get_acl	= ext4_get_acl,
895 	.set_acl	= ext4_set_acl,
896 	.fiemap		= ext4_fiemap,
897 };
898 
899