1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/file.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/file.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * ext4 fs regular file handling primitives 17 * 18 * 64-bit file support on 64-bit platforms by Jakub Jelinek 19 * (jj@sunsite.ms.mff.cuni.cz) 20 */ 21 22 #include <linux/time.h> 23 #include <linux/fs.h> 24 #include <linux/iomap.h> 25 #include <linux/mount.h> 26 #include <linux/path.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/pagevec.h> 30 #include <linux/uio.h> 31 #include <linux/mman.h> 32 #include <linux/backing-dev.h> 33 #include "ext4.h" 34 #include "ext4_jbd2.h" 35 #include "xattr.h" 36 #include "acl.h" 37 #include "truncate.h" 38 39 /* 40 * Returns %true if the given DIO request should be attempted with DIO, or 41 * %false if it should fall back to buffered I/O. 42 * 43 * DIO isn't well specified; when it's unsupported (either due to the request 44 * being misaligned, or due to the file not supporting DIO at all), filesystems 45 * either fall back to buffered I/O or return EINVAL. For files that don't use 46 * any special features like encryption or verity, ext4 has traditionally 47 * returned EINVAL for misaligned DIO. iomap_dio_rw() uses this convention too. 48 * In this case, we should attempt the DIO, *not* fall back to buffered I/O. 49 * 50 * In contrast, in cases where DIO is unsupported due to ext4 features, ext4 51 * traditionally falls back to buffered I/O. 52 * 53 * This function implements the traditional ext4 behavior in all these cases. 54 */ 55 static bool ext4_should_use_dio(struct kiocb *iocb, struct iov_iter *iter) 56 { 57 struct inode *inode = file_inode(iocb->ki_filp); 58 u32 dio_align = ext4_dio_alignment(inode); 59 60 if (dio_align == 0) 61 return false; 62 63 if (dio_align == 1) 64 return true; 65 66 return IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter), dio_align); 67 } 68 69 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to) 70 { 71 ssize_t ret; 72 struct inode *inode = file_inode(iocb->ki_filp); 73 74 if (iocb->ki_flags & IOCB_NOWAIT) { 75 if (!inode_trylock_shared(inode)) 76 return -EAGAIN; 77 } else { 78 inode_lock_shared(inode); 79 } 80 81 if (!ext4_should_use_dio(iocb, to)) { 82 inode_unlock_shared(inode); 83 /* 84 * Fallback to buffered I/O if the operation being performed on 85 * the inode is not supported by direct I/O. The IOCB_DIRECT 86 * flag needs to be cleared here in order to ensure that the 87 * direct I/O path within generic_file_read_iter() is not 88 * taken. 89 */ 90 iocb->ki_flags &= ~IOCB_DIRECT; 91 return generic_file_read_iter(iocb, to); 92 } 93 94 ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 0, NULL, 0); 95 inode_unlock_shared(inode); 96 97 file_accessed(iocb->ki_filp); 98 return ret; 99 } 100 101 #ifdef CONFIG_FS_DAX 102 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to) 103 { 104 struct inode *inode = file_inode(iocb->ki_filp); 105 ssize_t ret; 106 107 if (iocb->ki_flags & IOCB_NOWAIT) { 108 if (!inode_trylock_shared(inode)) 109 return -EAGAIN; 110 } else { 111 inode_lock_shared(inode); 112 } 113 /* 114 * Recheck under inode lock - at this point we are sure it cannot 115 * change anymore 116 */ 117 if (!IS_DAX(inode)) { 118 inode_unlock_shared(inode); 119 /* Fallback to buffered IO in case we cannot support DAX */ 120 return generic_file_read_iter(iocb, to); 121 } 122 ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops); 123 inode_unlock_shared(inode); 124 125 file_accessed(iocb->ki_filp); 126 return ret; 127 } 128 #endif 129 130 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 131 { 132 struct inode *inode = file_inode(iocb->ki_filp); 133 134 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 135 return -EIO; 136 137 if (!iov_iter_count(to)) 138 return 0; /* skip atime */ 139 140 #ifdef CONFIG_FS_DAX 141 if (IS_DAX(inode)) 142 return ext4_dax_read_iter(iocb, to); 143 #endif 144 if (iocb->ki_flags & IOCB_DIRECT) 145 return ext4_dio_read_iter(iocb, to); 146 147 return generic_file_read_iter(iocb, to); 148 } 149 150 /* 151 * Called when an inode is released. Note that this is different 152 * from ext4_file_open: open gets called at every open, but release 153 * gets called only when /all/ the files are closed. 154 */ 155 static int ext4_release_file(struct inode *inode, struct file *filp) 156 { 157 if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) { 158 ext4_alloc_da_blocks(inode); 159 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 160 } 161 /* if we are the last writer on the inode, drop the block reservation */ 162 if ((filp->f_mode & FMODE_WRITE) && 163 (atomic_read(&inode->i_writecount) == 1) && 164 !EXT4_I(inode)->i_reserved_data_blocks) { 165 down_write(&EXT4_I(inode)->i_data_sem); 166 ext4_discard_preallocations(inode, 0); 167 up_write(&EXT4_I(inode)->i_data_sem); 168 } 169 if (is_dx(inode) && filp->private_data) 170 ext4_htree_free_dir_info(filp->private_data); 171 172 return 0; 173 } 174 175 /* 176 * This tests whether the IO in question is block-aligned or not. 177 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they 178 * are converted to written only after the IO is complete. Until they are 179 * mapped, these blocks appear as holes, so dio_zero_block() will assume that 180 * it needs to zero out portions of the start and/or end block. If 2 AIO 181 * threads are at work on the same unwritten block, they must be synchronized 182 * or one thread will zero the other's data, causing corruption. 183 */ 184 static bool 185 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos) 186 { 187 struct super_block *sb = inode->i_sb; 188 unsigned long blockmask = sb->s_blocksize - 1; 189 190 if ((pos | iov_iter_alignment(from)) & blockmask) 191 return true; 192 193 return false; 194 } 195 196 static bool 197 ext4_extending_io(struct inode *inode, loff_t offset, size_t len) 198 { 199 if (offset + len > i_size_read(inode) || 200 offset + len > EXT4_I(inode)->i_disksize) 201 return true; 202 return false; 203 } 204 205 /* Is IO overwriting allocated or initialized blocks? */ 206 static bool ext4_overwrite_io(struct inode *inode, 207 loff_t pos, loff_t len, bool *unwritten) 208 { 209 struct ext4_map_blocks map; 210 unsigned int blkbits = inode->i_blkbits; 211 int err, blklen; 212 213 if (pos + len > i_size_read(inode)) 214 return false; 215 216 map.m_lblk = pos >> blkbits; 217 map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits); 218 blklen = map.m_len; 219 220 err = ext4_map_blocks(NULL, inode, &map, 0); 221 if (err != blklen) 222 return false; 223 /* 224 * 'err==len' means that all of the blocks have been preallocated, 225 * regardless of whether they have been initialized or not. We need to 226 * check m_flags to distinguish the unwritten extents. 227 */ 228 *unwritten = !(map.m_flags & EXT4_MAP_MAPPED); 229 return true; 230 } 231 232 static ssize_t ext4_generic_write_checks(struct kiocb *iocb, 233 struct iov_iter *from) 234 { 235 struct inode *inode = file_inode(iocb->ki_filp); 236 ssize_t ret; 237 238 if (unlikely(IS_IMMUTABLE(inode))) 239 return -EPERM; 240 241 ret = generic_write_checks(iocb, from); 242 if (ret <= 0) 243 return ret; 244 245 /* 246 * If we have encountered a bitmap-format file, the size limit 247 * is smaller than s_maxbytes, which is for extent-mapped files. 248 */ 249 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 250 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 251 252 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes) 253 return -EFBIG; 254 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos); 255 } 256 257 return iov_iter_count(from); 258 } 259 260 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from) 261 { 262 ssize_t ret, count; 263 264 count = ext4_generic_write_checks(iocb, from); 265 if (count <= 0) 266 return count; 267 268 ret = file_modified(iocb->ki_filp); 269 if (ret) 270 return ret; 271 return count; 272 } 273 274 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb, 275 struct iov_iter *from) 276 { 277 ssize_t ret; 278 struct inode *inode = file_inode(iocb->ki_filp); 279 280 if (iocb->ki_flags & IOCB_NOWAIT) 281 return -EOPNOTSUPP; 282 283 inode_lock(inode); 284 ret = ext4_write_checks(iocb, from); 285 if (ret <= 0) 286 goto out; 287 288 current->backing_dev_info = inode_to_bdi(inode); 289 ret = generic_perform_write(iocb, from); 290 current->backing_dev_info = NULL; 291 292 out: 293 inode_unlock(inode); 294 if (likely(ret > 0)) { 295 iocb->ki_pos += ret; 296 ret = generic_write_sync(iocb, ret); 297 } 298 299 return ret; 300 } 301 302 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset, 303 ssize_t written, size_t count) 304 { 305 handle_t *handle; 306 bool truncate = false; 307 u8 blkbits = inode->i_blkbits; 308 ext4_lblk_t written_blk, end_blk; 309 int ret; 310 311 /* 312 * Note that EXT4_I(inode)->i_disksize can get extended up to 313 * inode->i_size while the I/O was running due to writeback of delalloc 314 * blocks. But, the code in ext4_iomap_alloc() is careful to use 315 * zeroed/unwritten extents if this is possible; thus we won't leave 316 * uninitialized blocks in a file even if we didn't succeed in writing 317 * as much as we intended. 318 */ 319 WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize); 320 if (offset + count <= EXT4_I(inode)->i_disksize) { 321 /* 322 * We need to ensure that the inode is removed from the orphan 323 * list if it has been added prematurely, due to writeback of 324 * delalloc blocks. 325 */ 326 if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) { 327 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 328 329 if (IS_ERR(handle)) { 330 ext4_orphan_del(NULL, inode); 331 return PTR_ERR(handle); 332 } 333 334 ext4_orphan_del(handle, inode); 335 ext4_journal_stop(handle); 336 } 337 338 return written; 339 } 340 341 if (written < 0) 342 goto truncate; 343 344 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 345 if (IS_ERR(handle)) { 346 written = PTR_ERR(handle); 347 goto truncate; 348 } 349 350 if (ext4_update_inode_size(inode, offset + written)) { 351 ret = ext4_mark_inode_dirty(handle, inode); 352 if (unlikely(ret)) { 353 written = ret; 354 ext4_journal_stop(handle); 355 goto truncate; 356 } 357 } 358 359 /* 360 * We may need to truncate allocated but not written blocks beyond EOF. 361 */ 362 written_blk = ALIGN(offset + written, 1 << blkbits); 363 end_blk = ALIGN(offset + count, 1 << blkbits); 364 if (written_blk < end_blk && ext4_can_truncate(inode)) 365 truncate = true; 366 367 /* 368 * Remove the inode from the orphan list if it has been extended and 369 * everything went OK. 370 */ 371 if (!truncate && inode->i_nlink) 372 ext4_orphan_del(handle, inode); 373 ext4_journal_stop(handle); 374 375 if (truncate) { 376 truncate: 377 ext4_truncate_failed_write(inode); 378 /* 379 * If the truncate operation failed early, then the inode may 380 * still be on the orphan list. In that case, we need to try 381 * remove the inode from the in-memory linked list. 382 */ 383 if (inode->i_nlink) 384 ext4_orphan_del(NULL, inode); 385 } 386 387 return written; 388 } 389 390 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size, 391 int error, unsigned int flags) 392 { 393 loff_t pos = iocb->ki_pos; 394 struct inode *inode = file_inode(iocb->ki_filp); 395 396 if (error) 397 return error; 398 399 if (size && flags & IOMAP_DIO_UNWRITTEN) { 400 error = ext4_convert_unwritten_extents(NULL, inode, pos, size); 401 if (error < 0) 402 return error; 403 } 404 /* 405 * If we are extending the file, we have to update i_size here before 406 * page cache gets invalidated in iomap_dio_rw(). Otherwise racing 407 * buffered reads could zero out too much from page cache pages. Update 408 * of on-disk size will happen later in ext4_dio_write_iter() where 409 * we have enough information to also perform orphan list handling etc. 410 * Note that we perform all extending writes synchronously under 411 * i_rwsem held exclusively so i_size update is safe here in that case. 412 * If the write was not extending, we cannot see pos > i_size here 413 * because operations reducing i_size like truncate wait for all 414 * outstanding DIO before updating i_size. 415 */ 416 pos += size; 417 if (pos > i_size_read(inode)) 418 i_size_write(inode, pos); 419 420 return 0; 421 } 422 423 static const struct iomap_dio_ops ext4_dio_write_ops = { 424 .end_io = ext4_dio_write_end_io, 425 }; 426 427 /* 428 * The intention here is to start with shared lock acquired then see if any 429 * condition requires an exclusive inode lock. If yes, then we restart the 430 * whole operation by releasing the shared lock and acquiring exclusive lock. 431 * 432 * - For unaligned_io we never take shared lock as it may cause data corruption 433 * when two unaligned IO tries to modify the same block e.g. while zeroing. 434 * 435 * - For extending writes case we don't take the shared lock, since it requires 436 * updating inode i_disksize and/or orphan handling with exclusive lock. 437 * 438 * - shared locking will only be true mostly with overwrites, including 439 * initialized blocks and unwritten blocks. For overwrite unwritten blocks 440 * we protect splitting extents by i_data_sem in ext4_inode_info, so we can 441 * also release exclusive i_rwsem lock. 442 * 443 * - Otherwise we will switch to exclusive i_rwsem lock. 444 */ 445 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from, 446 bool *ilock_shared, bool *extend, 447 bool *unwritten) 448 { 449 struct file *file = iocb->ki_filp; 450 struct inode *inode = file_inode(file); 451 loff_t offset; 452 size_t count; 453 ssize_t ret; 454 455 restart: 456 ret = ext4_generic_write_checks(iocb, from); 457 if (ret <= 0) 458 goto out; 459 460 offset = iocb->ki_pos; 461 count = ret; 462 if (ext4_extending_io(inode, offset, count)) 463 *extend = true; 464 /* 465 * Determine whether the IO operation will overwrite allocated 466 * and initialized blocks. 467 * We need exclusive i_rwsem for changing security info 468 * in file_modified(). 469 */ 470 if (*ilock_shared && (!IS_NOSEC(inode) || *extend || 471 !ext4_overwrite_io(inode, offset, count, unwritten))) { 472 if (iocb->ki_flags & IOCB_NOWAIT) { 473 ret = -EAGAIN; 474 goto out; 475 } 476 inode_unlock_shared(inode); 477 *ilock_shared = false; 478 inode_lock(inode); 479 goto restart; 480 } 481 482 ret = file_modified(file); 483 if (ret < 0) 484 goto out; 485 486 return count; 487 out: 488 if (*ilock_shared) 489 inode_unlock_shared(inode); 490 else 491 inode_unlock(inode); 492 return ret; 493 } 494 495 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from) 496 { 497 ssize_t ret; 498 handle_t *handle; 499 struct inode *inode = file_inode(iocb->ki_filp); 500 loff_t offset = iocb->ki_pos; 501 size_t count = iov_iter_count(from); 502 const struct iomap_ops *iomap_ops = &ext4_iomap_ops; 503 bool extend = false, unaligned_io = false, unwritten = false; 504 bool ilock_shared = true; 505 506 /* 507 * We initially start with shared inode lock unless it is 508 * unaligned IO which needs exclusive lock anyways. 509 */ 510 if (ext4_unaligned_io(inode, from, offset)) { 511 unaligned_io = true; 512 ilock_shared = false; 513 } 514 /* 515 * Quick check here without any i_rwsem lock to see if it is extending 516 * IO. A more reliable check is done in ext4_dio_write_checks() with 517 * proper locking in place. 518 */ 519 if (offset + count > i_size_read(inode)) 520 ilock_shared = false; 521 522 if (iocb->ki_flags & IOCB_NOWAIT) { 523 if (ilock_shared) { 524 if (!inode_trylock_shared(inode)) 525 return -EAGAIN; 526 } else { 527 if (!inode_trylock(inode)) 528 return -EAGAIN; 529 } 530 } else { 531 if (ilock_shared) 532 inode_lock_shared(inode); 533 else 534 inode_lock(inode); 535 } 536 537 /* Fallback to buffered I/O if the inode does not support direct I/O. */ 538 if (!ext4_should_use_dio(iocb, from)) { 539 if (ilock_shared) 540 inode_unlock_shared(inode); 541 else 542 inode_unlock(inode); 543 return ext4_buffered_write_iter(iocb, from); 544 } 545 546 ret = ext4_dio_write_checks(iocb, from, 547 &ilock_shared, &extend, &unwritten); 548 if (ret <= 0) 549 return ret; 550 551 /* if we're going to block and IOCB_NOWAIT is set, return -EAGAIN */ 552 if ((iocb->ki_flags & IOCB_NOWAIT) && (unaligned_io || extend)) { 553 ret = -EAGAIN; 554 goto out; 555 } 556 /* 557 * Make sure inline data cannot be created anymore since we are going 558 * to allocate blocks for DIO. We know the inode does not have any 559 * inline data now because ext4_dio_supported() checked for that. 560 */ 561 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 562 563 offset = iocb->ki_pos; 564 count = ret; 565 566 /* 567 * Unaligned direct IO must be serialized among each other as zeroing 568 * of partial blocks of two competing unaligned IOs can result in data 569 * corruption. 570 * 571 * So we make sure we don't allow any unaligned IO in flight. 572 * For IOs where we need not wait (like unaligned non-AIO DIO), 573 * below inode_dio_wait() may anyway become a no-op, since we start 574 * with exclusive lock. 575 */ 576 if (unaligned_io) 577 inode_dio_wait(inode); 578 579 if (extend) { 580 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 581 if (IS_ERR(handle)) { 582 ret = PTR_ERR(handle); 583 goto out; 584 } 585 586 ret = ext4_orphan_add(handle, inode); 587 if (ret) { 588 ext4_journal_stop(handle); 589 goto out; 590 } 591 592 ext4_journal_stop(handle); 593 } 594 595 if (ilock_shared && !unwritten) 596 iomap_ops = &ext4_iomap_overwrite_ops; 597 ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops, 598 (unaligned_io || extend) ? IOMAP_DIO_FORCE_WAIT : 0, 599 NULL, 0); 600 if (ret == -ENOTBLK) 601 ret = 0; 602 603 if (extend) 604 ret = ext4_handle_inode_extension(inode, offset, ret, count); 605 606 out: 607 if (ilock_shared) 608 inode_unlock_shared(inode); 609 else 610 inode_unlock(inode); 611 612 if (ret >= 0 && iov_iter_count(from)) { 613 ssize_t err; 614 loff_t endbyte; 615 616 offset = iocb->ki_pos; 617 err = ext4_buffered_write_iter(iocb, from); 618 if (err < 0) 619 return err; 620 621 /* 622 * We need to ensure that the pages within the page cache for 623 * the range covered by this I/O are written to disk and 624 * invalidated. This is in attempt to preserve the expected 625 * direct I/O semantics in the case we fallback to buffered I/O 626 * to complete off the I/O request. 627 */ 628 ret += err; 629 endbyte = offset + err - 1; 630 err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping, 631 offset, endbyte); 632 if (!err) 633 invalidate_mapping_pages(iocb->ki_filp->f_mapping, 634 offset >> PAGE_SHIFT, 635 endbyte >> PAGE_SHIFT); 636 } 637 638 return ret; 639 } 640 641 #ifdef CONFIG_FS_DAX 642 static ssize_t 643 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from) 644 { 645 ssize_t ret; 646 size_t count; 647 loff_t offset; 648 handle_t *handle; 649 bool extend = false; 650 struct inode *inode = file_inode(iocb->ki_filp); 651 652 if (iocb->ki_flags & IOCB_NOWAIT) { 653 if (!inode_trylock(inode)) 654 return -EAGAIN; 655 } else { 656 inode_lock(inode); 657 } 658 659 ret = ext4_write_checks(iocb, from); 660 if (ret <= 0) 661 goto out; 662 663 offset = iocb->ki_pos; 664 count = iov_iter_count(from); 665 666 if (offset + count > EXT4_I(inode)->i_disksize) { 667 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 668 if (IS_ERR(handle)) { 669 ret = PTR_ERR(handle); 670 goto out; 671 } 672 673 ret = ext4_orphan_add(handle, inode); 674 if (ret) { 675 ext4_journal_stop(handle); 676 goto out; 677 } 678 679 extend = true; 680 ext4_journal_stop(handle); 681 } 682 683 ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops); 684 685 if (extend) 686 ret = ext4_handle_inode_extension(inode, offset, ret, count); 687 out: 688 inode_unlock(inode); 689 if (ret > 0) 690 ret = generic_write_sync(iocb, ret); 691 return ret; 692 } 693 #endif 694 695 static ssize_t 696 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 697 { 698 struct inode *inode = file_inode(iocb->ki_filp); 699 700 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 701 return -EIO; 702 703 #ifdef CONFIG_FS_DAX 704 if (IS_DAX(inode)) 705 return ext4_dax_write_iter(iocb, from); 706 #endif 707 if (iocb->ki_flags & IOCB_DIRECT) 708 return ext4_dio_write_iter(iocb, from); 709 else 710 return ext4_buffered_write_iter(iocb, from); 711 } 712 713 #ifdef CONFIG_FS_DAX 714 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf, 715 enum page_entry_size pe_size) 716 { 717 int error = 0; 718 vm_fault_t result; 719 int retries = 0; 720 handle_t *handle = NULL; 721 struct inode *inode = file_inode(vmf->vma->vm_file); 722 struct super_block *sb = inode->i_sb; 723 724 /* 725 * We have to distinguish real writes from writes which will result in a 726 * COW page; COW writes should *not* poke the journal (the file will not 727 * be changed). Doing so would cause unintended failures when mounted 728 * read-only. 729 * 730 * We check for VM_SHARED rather than vmf->cow_page since the latter is 731 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for 732 * other sizes, dax_iomap_fault will handle splitting / fallback so that 733 * we eventually come back with a COW page. 734 */ 735 bool write = (vmf->flags & FAULT_FLAG_WRITE) && 736 (vmf->vma->vm_flags & VM_SHARED); 737 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 738 pfn_t pfn; 739 740 if (write) { 741 sb_start_pagefault(sb); 742 file_update_time(vmf->vma->vm_file); 743 filemap_invalidate_lock_shared(mapping); 744 retry: 745 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE, 746 EXT4_DATA_TRANS_BLOCKS(sb)); 747 if (IS_ERR(handle)) { 748 filemap_invalidate_unlock_shared(mapping); 749 sb_end_pagefault(sb); 750 return VM_FAULT_SIGBUS; 751 } 752 } else { 753 filemap_invalidate_lock_shared(mapping); 754 } 755 result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops); 756 if (write) { 757 ext4_journal_stop(handle); 758 759 if ((result & VM_FAULT_ERROR) && error == -ENOSPC && 760 ext4_should_retry_alloc(sb, &retries)) 761 goto retry; 762 /* Handling synchronous page fault? */ 763 if (result & VM_FAULT_NEEDDSYNC) 764 result = dax_finish_sync_fault(vmf, pe_size, pfn); 765 filemap_invalidate_unlock_shared(mapping); 766 sb_end_pagefault(sb); 767 } else { 768 filemap_invalidate_unlock_shared(mapping); 769 } 770 771 return result; 772 } 773 774 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf) 775 { 776 return ext4_dax_huge_fault(vmf, PE_SIZE_PTE); 777 } 778 779 static const struct vm_operations_struct ext4_dax_vm_ops = { 780 .fault = ext4_dax_fault, 781 .huge_fault = ext4_dax_huge_fault, 782 .page_mkwrite = ext4_dax_fault, 783 .pfn_mkwrite = ext4_dax_fault, 784 }; 785 #else 786 #define ext4_dax_vm_ops ext4_file_vm_ops 787 #endif 788 789 static const struct vm_operations_struct ext4_file_vm_ops = { 790 .fault = filemap_fault, 791 .map_pages = filemap_map_pages, 792 .page_mkwrite = ext4_page_mkwrite, 793 }; 794 795 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma) 796 { 797 struct inode *inode = file->f_mapping->host; 798 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 799 struct dax_device *dax_dev = sbi->s_daxdev; 800 801 if (unlikely(ext4_forced_shutdown(sbi))) 802 return -EIO; 803 804 /* 805 * We don't support synchronous mappings for non-DAX files and 806 * for DAX files if underneath dax_device is not synchronous. 807 */ 808 if (!daxdev_mapping_supported(vma, dax_dev)) 809 return -EOPNOTSUPP; 810 811 file_accessed(file); 812 if (IS_DAX(file_inode(file))) { 813 vma->vm_ops = &ext4_dax_vm_ops; 814 vm_flags_set(vma, VM_HUGEPAGE); 815 } else { 816 vma->vm_ops = &ext4_file_vm_ops; 817 } 818 return 0; 819 } 820 821 static int ext4_sample_last_mounted(struct super_block *sb, 822 struct vfsmount *mnt) 823 { 824 struct ext4_sb_info *sbi = EXT4_SB(sb); 825 struct path path; 826 char buf[64], *cp; 827 handle_t *handle; 828 int err; 829 830 if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED))) 831 return 0; 832 833 if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb)) 834 return 0; 835 836 ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED); 837 /* 838 * Sample where the filesystem has been mounted and 839 * store it in the superblock for sysadmin convenience 840 * when trying to sort through large numbers of block 841 * devices or filesystem images. 842 */ 843 memset(buf, 0, sizeof(buf)); 844 path.mnt = mnt; 845 path.dentry = mnt->mnt_root; 846 cp = d_path(&path, buf, sizeof(buf)); 847 err = 0; 848 if (IS_ERR(cp)) 849 goto out; 850 851 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 852 err = PTR_ERR(handle); 853 if (IS_ERR(handle)) 854 goto out; 855 BUFFER_TRACE(sbi->s_sbh, "get_write_access"); 856 err = ext4_journal_get_write_access(handle, sb, sbi->s_sbh, 857 EXT4_JTR_NONE); 858 if (err) 859 goto out_journal; 860 lock_buffer(sbi->s_sbh); 861 strncpy(sbi->s_es->s_last_mounted, cp, 862 sizeof(sbi->s_es->s_last_mounted)); 863 ext4_superblock_csum_set(sb); 864 unlock_buffer(sbi->s_sbh); 865 ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh); 866 out_journal: 867 ext4_journal_stop(handle); 868 out: 869 sb_end_intwrite(sb); 870 return err; 871 } 872 873 static int ext4_file_open(struct inode *inode, struct file *filp) 874 { 875 int ret; 876 877 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 878 return -EIO; 879 880 ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt); 881 if (ret) 882 return ret; 883 884 ret = fscrypt_file_open(inode, filp); 885 if (ret) 886 return ret; 887 888 ret = fsverity_file_open(inode, filp); 889 if (ret) 890 return ret; 891 892 /* 893 * Set up the jbd2_inode if we are opening the inode for 894 * writing and the journal is present 895 */ 896 if (filp->f_mode & FMODE_WRITE) { 897 ret = ext4_inode_attach_jinode(inode); 898 if (ret < 0) 899 return ret; 900 } 901 902 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC; 903 return dquot_file_open(inode, filp); 904 } 905 906 /* 907 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values 908 * by calling generic_file_llseek_size() with the appropriate maxbytes 909 * value for each. 910 */ 911 loff_t ext4_llseek(struct file *file, loff_t offset, int whence) 912 { 913 struct inode *inode = file->f_mapping->host; 914 loff_t maxbytes; 915 916 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 917 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes; 918 else 919 maxbytes = inode->i_sb->s_maxbytes; 920 921 switch (whence) { 922 default: 923 return generic_file_llseek_size(file, offset, whence, 924 maxbytes, i_size_read(inode)); 925 case SEEK_HOLE: 926 inode_lock_shared(inode); 927 offset = iomap_seek_hole(inode, offset, 928 &ext4_iomap_report_ops); 929 inode_unlock_shared(inode); 930 break; 931 case SEEK_DATA: 932 inode_lock_shared(inode); 933 offset = iomap_seek_data(inode, offset, 934 &ext4_iomap_report_ops); 935 inode_unlock_shared(inode); 936 break; 937 } 938 939 if (offset < 0) 940 return offset; 941 return vfs_setpos(file, offset, maxbytes); 942 } 943 944 const struct file_operations ext4_file_operations = { 945 .llseek = ext4_llseek, 946 .read_iter = ext4_file_read_iter, 947 .write_iter = ext4_file_write_iter, 948 .iopoll = iocb_bio_iopoll, 949 .unlocked_ioctl = ext4_ioctl, 950 #ifdef CONFIG_COMPAT 951 .compat_ioctl = ext4_compat_ioctl, 952 #endif 953 .mmap = ext4_file_mmap, 954 .mmap_supported_flags = MAP_SYNC, 955 .open = ext4_file_open, 956 .release = ext4_release_file, 957 .fsync = ext4_sync_file, 958 .get_unmapped_area = thp_get_unmapped_area, 959 .splice_read = generic_file_splice_read, 960 .splice_write = iter_file_splice_write, 961 .fallocate = ext4_fallocate, 962 }; 963 964 const struct inode_operations ext4_file_inode_operations = { 965 .setattr = ext4_setattr, 966 .getattr = ext4_file_getattr, 967 .listxattr = ext4_listxattr, 968 .get_inode_acl = ext4_get_acl, 969 .set_acl = ext4_set_acl, 970 .fiemap = ext4_fiemap, 971 .fileattr_get = ext4_fileattr_get, 972 .fileattr_set = ext4_fileattr_set, 973 }; 974 975