1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/file.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/file.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * ext4 fs regular file handling primitives
17 *
18 * 64-bit file support on 64-bit platforms by Jakub Jelinek
19 * (jj@sunsite.ms.mff.cuni.cz)
20 */
21
22 #include <linux/time.h>
23 #include <linux/fs.h>
24 #include <linux/iomap.h>
25 #include <linux/mount.h>
26 #include <linux/path.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/pagevec.h>
30 #include <linux/uio.h>
31 #include <linux/mman.h>
32 #include <linux/backing-dev.h>
33 #include "ext4.h"
34 #include "ext4_jbd2.h"
35 #include "xattr.h"
36 #include "acl.h"
37 #include "truncate.h"
38
39 /*
40 * Returns %true if the given DIO request should be attempted with DIO, or
41 * %false if it should fall back to buffered I/O.
42 *
43 * DIO isn't well specified; when it's unsupported (either due to the request
44 * being misaligned, or due to the file not supporting DIO at all), filesystems
45 * either fall back to buffered I/O or return EINVAL. For files that don't use
46 * any special features like encryption or verity, ext4 has traditionally
47 * returned EINVAL for misaligned DIO. iomap_dio_rw() uses this convention too.
48 * In this case, we should attempt the DIO, *not* fall back to buffered I/O.
49 *
50 * In contrast, in cases where DIO is unsupported due to ext4 features, ext4
51 * traditionally falls back to buffered I/O.
52 *
53 * This function implements the traditional ext4 behavior in all these cases.
54 */
ext4_should_use_dio(struct kiocb * iocb,struct iov_iter * iter)55 static bool ext4_should_use_dio(struct kiocb *iocb, struct iov_iter *iter)
56 {
57 struct inode *inode = file_inode(iocb->ki_filp);
58 u32 dio_align = ext4_dio_alignment(inode);
59
60 if (dio_align == 0)
61 return false;
62
63 if (dio_align == 1)
64 return true;
65
66 return IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter), dio_align);
67 }
68
ext4_dio_read_iter(struct kiocb * iocb,struct iov_iter * to)69 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
70 {
71 ssize_t ret;
72 struct inode *inode = file_inode(iocb->ki_filp);
73
74 if (iocb->ki_flags & IOCB_NOWAIT) {
75 if (!inode_trylock_shared(inode))
76 return -EAGAIN;
77 } else {
78 inode_lock_shared(inode);
79 }
80
81 if (!ext4_should_use_dio(iocb, to)) {
82 inode_unlock_shared(inode);
83 /*
84 * Fallback to buffered I/O if the operation being performed on
85 * the inode is not supported by direct I/O. The IOCB_DIRECT
86 * flag needs to be cleared here in order to ensure that the
87 * direct I/O path within generic_file_read_iter() is not
88 * taken.
89 */
90 iocb->ki_flags &= ~IOCB_DIRECT;
91 return generic_file_read_iter(iocb, to);
92 }
93
94 ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 0, NULL, 0);
95 inode_unlock_shared(inode);
96
97 file_accessed(iocb->ki_filp);
98 return ret;
99 }
100
101 #ifdef CONFIG_FS_DAX
ext4_dax_read_iter(struct kiocb * iocb,struct iov_iter * to)102 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
103 {
104 struct inode *inode = file_inode(iocb->ki_filp);
105 ssize_t ret;
106
107 if (iocb->ki_flags & IOCB_NOWAIT) {
108 if (!inode_trylock_shared(inode))
109 return -EAGAIN;
110 } else {
111 inode_lock_shared(inode);
112 }
113 /*
114 * Recheck under inode lock - at this point we are sure it cannot
115 * change anymore
116 */
117 if (!IS_DAX(inode)) {
118 inode_unlock_shared(inode);
119 /* Fallback to buffered IO in case we cannot support DAX */
120 return generic_file_read_iter(iocb, to);
121 }
122 ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
123 inode_unlock_shared(inode);
124
125 file_accessed(iocb->ki_filp);
126 return ret;
127 }
128 #endif
129
ext4_file_read_iter(struct kiocb * iocb,struct iov_iter * to)130 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
131 {
132 struct inode *inode = file_inode(iocb->ki_filp);
133
134 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
135 return -EIO;
136
137 if (!iov_iter_count(to))
138 return 0; /* skip atime */
139
140 #ifdef CONFIG_FS_DAX
141 if (IS_DAX(inode))
142 return ext4_dax_read_iter(iocb, to);
143 #endif
144 if (iocb->ki_flags & IOCB_DIRECT)
145 return ext4_dio_read_iter(iocb, to);
146
147 return generic_file_read_iter(iocb, to);
148 }
149
ext4_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)150 static ssize_t ext4_file_splice_read(struct file *in, loff_t *ppos,
151 struct pipe_inode_info *pipe,
152 size_t len, unsigned int flags)
153 {
154 struct inode *inode = file_inode(in);
155
156 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
157 return -EIO;
158 return filemap_splice_read(in, ppos, pipe, len, flags);
159 }
160
161 /*
162 * Called when an inode is released. Note that this is different
163 * from ext4_file_open: open gets called at every open, but release
164 * gets called only when /all/ the files are closed.
165 */
ext4_release_file(struct inode * inode,struct file * filp)166 static int ext4_release_file(struct inode *inode, struct file *filp)
167 {
168 if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
169 ext4_alloc_da_blocks(inode);
170 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
171 }
172 /* if we are the last writer on the inode, drop the block reservation */
173 if ((filp->f_mode & FMODE_WRITE) &&
174 (atomic_read(&inode->i_writecount) == 1) &&
175 !EXT4_I(inode)->i_reserved_data_blocks) {
176 down_write(&EXT4_I(inode)->i_data_sem);
177 ext4_discard_preallocations(inode);
178 up_write(&EXT4_I(inode)->i_data_sem);
179 }
180 if (is_dx(inode) && filp->private_data)
181 ext4_htree_free_dir_info(filp->private_data);
182
183 return 0;
184 }
185
186 /*
187 * This tests whether the IO in question is block-aligned or not.
188 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
189 * are converted to written only after the IO is complete. Until they are
190 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
191 * it needs to zero out portions of the start and/or end block. If 2 AIO
192 * threads are at work on the same unwritten block, they must be synchronized
193 * or one thread will zero the other's data, causing corruption.
194 */
195 static bool
ext4_unaligned_io(struct inode * inode,struct iov_iter * from,loff_t pos)196 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
197 {
198 struct super_block *sb = inode->i_sb;
199 unsigned long blockmask = sb->s_blocksize - 1;
200
201 if ((pos | iov_iter_alignment(from)) & blockmask)
202 return true;
203
204 return false;
205 }
206
207 static bool
ext4_extending_io(struct inode * inode,loff_t offset,size_t len)208 ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
209 {
210 if (offset + len > i_size_read(inode) ||
211 offset + len > EXT4_I(inode)->i_disksize)
212 return true;
213 return false;
214 }
215
216 /* Is IO overwriting allocated or initialized blocks? */
ext4_overwrite_io(struct inode * inode,loff_t pos,loff_t len,bool * unwritten)217 static bool ext4_overwrite_io(struct inode *inode,
218 loff_t pos, loff_t len, bool *unwritten)
219 {
220 struct ext4_map_blocks map;
221 unsigned int blkbits = inode->i_blkbits;
222 int err, blklen;
223
224 if (pos + len > i_size_read(inode))
225 return false;
226
227 map.m_lblk = pos >> blkbits;
228 map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
229 blklen = map.m_len;
230
231 err = ext4_map_blocks(NULL, inode, &map, 0);
232 if (err != blklen)
233 return false;
234 /*
235 * 'err==len' means that all of the blocks have been preallocated,
236 * regardless of whether they have been initialized or not. We need to
237 * check m_flags to distinguish the unwritten extents.
238 */
239 *unwritten = !(map.m_flags & EXT4_MAP_MAPPED);
240 return true;
241 }
242
ext4_generic_write_checks(struct kiocb * iocb,struct iov_iter * from)243 static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
244 struct iov_iter *from)
245 {
246 struct inode *inode = file_inode(iocb->ki_filp);
247 ssize_t ret;
248
249 if (unlikely(IS_IMMUTABLE(inode)))
250 return -EPERM;
251
252 ret = generic_write_checks(iocb, from);
253 if (ret <= 0)
254 return ret;
255
256 /*
257 * If we have encountered a bitmap-format file, the size limit
258 * is smaller than s_maxbytes, which is for extent-mapped files.
259 */
260 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
261 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
262
263 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
264 return -EFBIG;
265 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
266 }
267
268 return iov_iter_count(from);
269 }
270
ext4_write_checks(struct kiocb * iocb,struct iov_iter * from)271 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
272 {
273 ssize_t ret, count;
274
275 count = ext4_generic_write_checks(iocb, from);
276 if (count <= 0)
277 return count;
278
279 ret = file_modified(iocb->ki_filp);
280 if (ret)
281 return ret;
282 return count;
283 }
284
ext4_buffered_write_iter(struct kiocb * iocb,struct iov_iter * from)285 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
286 struct iov_iter *from)
287 {
288 ssize_t ret;
289 struct inode *inode = file_inode(iocb->ki_filp);
290
291 if (iocb->ki_flags & IOCB_NOWAIT)
292 return -EOPNOTSUPP;
293
294 inode_lock(inode);
295 ret = ext4_write_checks(iocb, from);
296 if (ret <= 0)
297 goto out;
298
299 ret = generic_perform_write(iocb, from);
300
301 out:
302 inode_unlock(inode);
303 if (unlikely(ret <= 0))
304 return ret;
305 return generic_write_sync(iocb, ret);
306 }
307
ext4_handle_inode_extension(struct inode * inode,loff_t offset,ssize_t written,ssize_t count)308 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
309 ssize_t written, ssize_t count)
310 {
311 handle_t *handle;
312
313 lockdep_assert_held_write(&inode->i_rwsem);
314 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
315 if (IS_ERR(handle))
316 return PTR_ERR(handle);
317
318 if (ext4_update_inode_size(inode, offset + written)) {
319 int ret = ext4_mark_inode_dirty(handle, inode);
320 if (unlikely(ret)) {
321 ext4_journal_stop(handle);
322 return ret;
323 }
324 }
325
326 if ((written == count) && inode->i_nlink)
327 ext4_orphan_del(handle, inode);
328 ext4_journal_stop(handle);
329
330 return written;
331 }
332
333 /*
334 * Clean up the inode after DIO or DAX extending write has completed and the
335 * inode size has been updated using ext4_handle_inode_extension().
336 */
ext4_inode_extension_cleanup(struct inode * inode,bool need_trunc)337 static void ext4_inode_extension_cleanup(struct inode *inode, bool need_trunc)
338 {
339 lockdep_assert_held_write(&inode->i_rwsem);
340 if (need_trunc) {
341 ext4_truncate_failed_write(inode);
342 /*
343 * If the truncate operation failed early, then the inode may
344 * still be on the orphan list. In that case, we need to try
345 * remove the inode from the in-memory linked list.
346 */
347 if (inode->i_nlink)
348 ext4_orphan_del(NULL, inode);
349 return;
350 }
351 /*
352 * If i_disksize got extended either due to writeback of delalloc
353 * blocks or extending truncate while the DIO was running we could fail
354 * to cleanup the orphan list in ext4_handle_inode_extension(). Do it
355 * now.
356 */
357 if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
358 handle_t *handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
359
360 if (IS_ERR(handle)) {
361 /*
362 * The write has successfully completed. Not much to
363 * do with the error here so just cleanup the orphan
364 * list and hope for the best.
365 */
366 ext4_orphan_del(NULL, inode);
367 return;
368 }
369 ext4_orphan_del(handle, inode);
370 ext4_journal_stop(handle);
371 }
372 }
373
ext4_dio_write_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)374 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
375 int error, unsigned int flags)
376 {
377 loff_t pos = iocb->ki_pos;
378 struct inode *inode = file_inode(iocb->ki_filp);
379
380 if (!error && size && flags & IOMAP_DIO_UNWRITTEN)
381 error = ext4_convert_unwritten_extents(NULL, inode, pos, size);
382 if (error)
383 return error;
384 /*
385 * Note that EXT4_I(inode)->i_disksize can get extended up to
386 * inode->i_size while the I/O was running due to writeback of delalloc
387 * blocks. But the code in ext4_iomap_alloc() is careful to use
388 * zeroed/unwritten extents if this is possible; thus we won't leave
389 * uninitialized blocks in a file even if we didn't succeed in writing
390 * as much as we intended. Also we can race with truncate or write
391 * expanding the file so we have to be a bit careful here.
392 */
393 if (pos + size <= READ_ONCE(EXT4_I(inode)->i_disksize) &&
394 pos + size <= i_size_read(inode))
395 return 0;
396 error = ext4_handle_inode_extension(inode, pos, size, size);
397 return error < 0 ? error : 0;
398 }
399
400 static const struct iomap_dio_ops ext4_dio_write_ops = {
401 .end_io = ext4_dio_write_end_io,
402 };
403
404 /*
405 * The intention here is to start with shared lock acquired then see if any
406 * condition requires an exclusive inode lock. If yes, then we restart the
407 * whole operation by releasing the shared lock and acquiring exclusive lock.
408 *
409 * - For unaligned_io we never take shared lock as it may cause data corruption
410 * when two unaligned IO tries to modify the same block e.g. while zeroing.
411 *
412 * - For extending writes case we don't take the shared lock, since it requires
413 * updating inode i_disksize and/or orphan handling with exclusive lock.
414 *
415 * - shared locking will only be true mostly with overwrites, including
416 * initialized blocks and unwritten blocks. For overwrite unwritten blocks
417 * we protect splitting extents by i_data_sem in ext4_inode_info, so we can
418 * also release exclusive i_rwsem lock.
419 *
420 * - Otherwise we will switch to exclusive i_rwsem lock.
421 */
ext4_dio_write_checks(struct kiocb * iocb,struct iov_iter * from,bool * ilock_shared,bool * extend,bool * unwritten,int * dio_flags)422 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
423 bool *ilock_shared, bool *extend,
424 bool *unwritten, int *dio_flags)
425 {
426 struct file *file = iocb->ki_filp;
427 struct inode *inode = file_inode(file);
428 loff_t offset;
429 size_t count;
430 ssize_t ret;
431 bool overwrite, unaligned_io;
432
433 restart:
434 ret = ext4_generic_write_checks(iocb, from);
435 if (ret <= 0)
436 goto out;
437
438 offset = iocb->ki_pos;
439 count = ret;
440
441 unaligned_io = ext4_unaligned_io(inode, from, offset);
442 *extend = ext4_extending_io(inode, offset, count);
443 overwrite = ext4_overwrite_io(inode, offset, count, unwritten);
444
445 /*
446 * Determine whether we need to upgrade to an exclusive lock. This is
447 * required to change security info in file_modified(), for extending
448 * I/O, any form of non-overwrite I/O, and unaligned I/O to unwritten
449 * extents (as partial block zeroing may be required).
450 *
451 * Note that unaligned writes are allowed under shared lock so long as
452 * they are pure overwrites. Otherwise, concurrent unaligned writes risk
453 * data corruption due to partial block zeroing in the dio layer, and so
454 * the I/O must occur exclusively.
455 */
456 if (*ilock_shared &&
457 ((!IS_NOSEC(inode) || *extend || !overwrite ||
458 (unaligned_io && *unwritten)))) {
459 if (iocb->ki_flags & IOCB_NOWAIT) {
460 ret = -EAGAIN;
461 goto out;
462 }
463 inode_unlock_shared(inode);
464 *ilock_shared = false;
465 inode_lock(inode);
466 goto restart;
467 }
468
469 /*
470 * Now that locking is settled, determine dio flags and exclusivity
471 * requirements. We don't use DIO_OVERWRITE_ONLY because we enforce
472 * behavior already. The inode lock is already held exclusive if the
473 * write is non-overwrite or extending, so drain all outstanding dio and
474 * set the force wait dio flag.
475 */
476 if (!*ilock_shared && (unaligned_io || *extend)) {
477 if (iocb->ki_flags & IOCB_NOWAIT) {
478 ret = -EAGAIN;
479 goto out;
480 }
481 if (unaligned_io && (!overwrite || *unwritten))
482 inode_dio_wait(inode);
483 *dio_flags = IOMAP_DIO_FORCE_WAIT;
484 }
485
486 ret = file_modified(file);
487 if (ret < 0)
488 goto out;
489
490 return count;
491 out:
492 if (*ilock_shared)
493 inode_unlock_shared(inode);
494 else
495 inode_unlock(inode);
496 return ret;
497 }
498
ext4_dio_write_iter(struct kiocb * iocb,struct iov_iter * from)499 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
500 {
501 ssize_t ret;
502 handle_t *handle;
503 struct inode *inode = file_inode(iocb->ki_filp);
504 loff_t offset = iocb->ki_pos;
505 size_t count = iov_iter_count(from);
506 const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
507 bool extend = false, unwritten = false;
508 bool ilock_shared = true;
509 int dio_flags = 0;
510
511 /*
512 * Quick check here without any i_rwsem lock to see if it is extending
513 * IO. A more reliable check is done in ext4_dio_write_checks() with
514 * proper locking in place.
515 */
516 if (offset + count > i_size_read(inode))
517 ilock_shared = false;
518
519 if (iocb->ki_flags & IOCB_NOWAIT) {
520 if (ilock_shared) {
521 if (!inode_trylock_shared(inode))
522 return -EAGAIN;
523 } else {
524 if (!inode_trylock(inode))
525 return -EAGAIN;
526 }
527 } else {
528 if (ilock_shared)
529 inode_lock_shared(inode);
530 else
531 inode_lock(inode);
532 }
533
534 /* Fallback to buffered I/O if the inode does not support direct I/O. */
535 if (!ext4_should_use_dio(iocb, from)) {
536 if (ilock_shared)
537 inode_unlock_shared(inode);
538 else
539 inode_unlock(inode);
540 return ext4_buffered_write_iter(iocb, from);
541 }
542
543 /*
544 * Prevent inline data from being created since we are going to allocate
545 * blocks for DIO. We know the inode does not currently have inline data
546 * because ext4_should_use_dio() checked for it, but we have to clear
547 * the state flag before the write checks because a lock cycle could
548 * introduce races with other writers.
549 */
550 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
551
552 ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend,
553 &unwritten, &dio_flags);
554 if (ret <= 0)
555 return ret;
556
557 offset = iocb->ki_pos;
558 count = ret;
559
560 if (extend) {
561 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
562 if (IS_ERR(handle)) {
563 ret = PTR_ERR(handle);
564 goto out;
565 }
566
567 ret = ext4_orphan_add(handle, inode);
568 ext4_journal_stop(handle);
569 if (ret)
570 goto out;
571 }
572
573 if (ilock_shared && !unwritten)
574 iomap_ops = &ext4_iomap_overwrite_ops;
575 ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
576 dio_flags, NULL, 0);
577 if (ret == -ENOTBLK)
578 ret = 0;
579 if (extend) {
580 /*
581 * We always perform extending DIO write synchronously so by
582 * now the IO is completed and ext4_handle_inode_extension()
583 * was called. Cleanup the inode in case of error or race with
584 * writeback of delalloc blocks.
585 */
586 WARN_ON_ONCE(ret == -EIOCBQUEUED);
587 ext4_inode_extension_cleanup(inode, ret < 0);
588 }
589
590 out:
591 if (ilock_shared)
592 inode_unlock_shared(inode);
593 else
594 inode_unlock(inode);
595
596 if (ret >= 0 && iov_iter_count(from)) {
597 ssize_t err;
598 loff_t endbyte;
599
600 /*
601 * There is no support for atomic writes on buffered-io yet,
602 * we should never fallback to buffered-io for DIO atomic
603 * writes.
604 */
605 WARN_ON_ONCE(iocb->ki_flags & IOCB_ATOMIC);
606
607 offset = iocb->ki_pos;
608 err = ext4_buffered_write_iter(iocb, from);
609 if (err < 0)
610 return err;
611
612 /*
613 * We need to ensure that the pages within the page cache for
614 * the range covered by this I/O are written to disk and
615 * invalidated. This is in attempt to preserve the expected
616 * direct I/O semantics in the case we fallback to buffered I/O
617 * to complete off the I/O request.
618 */
619 ret += err;
620 endbyte = offset + err - 1;
621 err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
622 offset, endbyte);
623 if (!err)
624 invalidate_mapping_pages(iocb->ki_filp->f_mapping,
625 offset >> PAGE_SHIFT,
626 endbyte >> PAGE_SHIFT);
627 }
628
629 return ret;
630 }
631
632 #ifdef CONFIG_FS_DAX
633 static ssize_t
ext4_dax_write_iter(struct kiocb * iocb,struct iov_iter * from)634 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
635 {
636 ssize_t ret;
637 size_t count;
638 loff_t offset;
639 handle_t *handle;
640 bool extend = false;
641 struct inode *inode = file_inode(iocb->ki_filp);
642
643 if (iocb->ki_flags & IOCB_NOWAIT) {
644 if (!inode_trylock(inode))
645 return -EAGAIN;
646 } else {
647 inode_lock(inode);
648 }
649
650 ret = ext4_write_checks(iocb, from);
651 if (ret <= 0)
652 goto out;
653
654 offset = iocb->ki_pos;
655 count = iov_iter_count(from);
656
657 if (offset + count > EXT4_I(inode)->i_disksize) {
658 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
659 if (IS_ERR(handle)) {
660 ret = PTR_ERR(handle);
661 goto out;
662 }
663
664 ret = ext4_orphan_add(handle, inode);
665 if (ret) {
666 ext4_journal_stop(handle);
667 goto out;
668 }
669
670 extend = true;
671 ext4_journal_stop(handle);
672 }
673
674 ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
675
676 if (extend) {
677 ret = ext4_handle_inode_extension(inode, offset, ret, count);
678 ext4_inode_extension_cleanup(inode, ret < (ssize_t)count);
679 }
680 out:
681 inode_unlock(inode);
682 if (ret > 0)
683 ret = generic_write_sync(iocb, ret);
684 return ret;
685 }
686 #endif
687
688 static ssize_t
ext4_file_write_iter(struct kiocb * iocb,struct iov_iter * from)689 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
690 {
691 struct inode *inode = file_inode(iocb->ki_filp);
692
693 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
694 return -EIO;
695
696 #ifdef CONFIG_FS_DAX
697 if (IS_DAX(inode))
698 return ext4_dax_write_iter(iocb, from);
699 #endif
700
701 if (iocb->ki_flags & IOCB_ATOMIC) {
702 size_t len = iov_iter_count(from);
703 int ret;
704
705 if (len < EXT4_SB(inode->i_sb)->s_awu_min ||
706 len > EXT4_SB(inode->i_sb)->s_awu_max)
707 return -EINVAL;
708
709 ret = generic_atomic_write_valid(iocb, from);
710 if (ret)
711 return ret;
712 }
713
714 if (iocb->ki_flags & IOCB_DIRECT)
715 return ext4_dio_write_iter(iocb, from);
716 else
717 return ext4_buffered_write_iter(iocb, from);
718 }
719
720 #ifdef CONFIG_FS_DAX
ext4_dax_huge_fault(struct vm_fault * vmf,unsigned int order)721 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf, unsigned int order)
722 {
723 int error = 0;
724 vm_fault_t result;
725 int retries = 0;
726 handle_t *handle = NULL;
727 struct inode *inode = file_inode(vmf->vma->vm_file);
728 struct super_block *sb = inode->i_sb;
729
730 /*
731 * We have to distinguish real writes from writes which will result in a
732 * COW page; COW writes should *not* poke the journal (the file will not
733 * be changed). Doing so would cause unintended failures when mounted
734 * read-only.
735 *
736 * We check for VM_SHARED rather than vmf->cow_page since the latter is
737 * unset for order != 0 (i.e. only in do_cow_fault); for
738 * other sizes, dax_iomap_fault will handle splitting / fallback so that
739 * we eventually come back with a COW page.
740 */
741 bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
742 (vmf->vma->vm_flags & VM_SHARED);
743 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
744 pfn_t pfn;
745
746 if (write) {
747 sb_start_pagefault(sb);
748 file_update_time(vmf->vma->vm_file);
749 filemap_invalidate_lock_shared(mapping);
750 retry:
751 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
752 EXT4_DATA_TRANS_BLOCKS(sb));
753 if (IS_ERR(handle)) {
754 filemap_invalidate_unlock_shared(mapping);
755 sb_end_pagefault(sb);
756 return VM_FAULT_SIGBUS;
757 }
758 } else {
759 filemap_invalidate_lock_shared(mapping);
760 }
761 result = dax_iomap_fault(vmf, order, &pfn, &error, &ext4_iomap_ops);
762 if (write) {
763 ext4_journal_stop(handle);
764
765 if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
766 ext4_should_retry_alloc(sb, &retries))
767 goto retry;
768 /* Handling synchronous page fault? */
769 if (result & VM_FAULT_NEEDDSYNC)
770 result = dax_finish_sync_fault(vmf, order, pfn);
771 filemap_invalidate_unlock_shared(mapping);
772 sb_end_pagefault(sb);
773 } else {
774 filemap_invalidate_unlock_shared(mapping);
775 }
776
777 return result;
778 }
779
ext4_dax_fault(struct vm_fault * vmf)780 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
781 {
782 return ext4_dax_huge_fault(vmf, 0);
783 }
784
785 static const struct vm_operations_struct ext4_dax_vm_ops = {
786 .fault = ext4_dax_fault,
787 .huge_fault = ext4_dax_huge_fault,
788 .page_mkwrite = ext4_dax_fault,
789 .pfn_mkwrite = ext4_dax_fault,
790 };
791 #else
792 #define ext4_dax_vm_ops ext4_file_vm_ops
793 #endif
794
795 static const struct vm_operations_struct ext4_file_vm_ops = {
796 .fault = filemap_fault,
797 .map_pages = filemap_map_pages,
798 .page_mkwrite = ext4_page_mkwrite,
799 };
800
ext4_file_mmap(struct file * file,struct vm_area_struct * vma)801 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
802 {
803 struct inode *inode = file->f_mapping->host;
804 struct dax_device *dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
805
806 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
807 return -EIO;
808
809 /*
810 * We don't support synchronous mappings for non-DAX files and
811 * for DAX files if underneath dax_device is not synchronous.
812 */
813 if (!daxdev_mapping_supported(vma, dax_dev))
814 return -EOPNOTSUPP;
815
816 file_accessed(file);
817 if (IS_DAX(file_inode(file))) {
818 vma->vm_ops = &ext4_dax_vm_ops;
819 vm_flags_set(vma, VM_HUGEPAGE);
820 } else {
821 vma->vm_ops = &ext4_file_vm_ops;
822 }
823 return 0;
824 }
825
ext4_sample_last_mounted(struct super_block * sb,struct vfsmount * mnt)826 static int ext4_sample_last_mounted(struct super_block *sb,
827 struct vfsmount *mnt)
828 {
829 struct ext4_sb_info *sbi = EXT4_SB(sb);
830 struct path path;
831 char buf[64], *cp;
832 handle_t *handle;
833 int err;
834
835 if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED)))
836 return 0;
837
838 if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
839 return 0;
840
841 ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED);
842 /*
843 * Sample where the filesystem has been mounted and
844 * store it in the superblock for sysadmin convenience
845 * when trying to sort through large numbers of block
846 * devices or filesystem images.
847 */
848 memset(buf, 0, sizeof(buf));
849 path.mnt = mnt;
850 path.dentry = mnt->mnt_root;
851 cp = d_path(&path, buf, sizeof(buf));
852 err = 0;
853 if (IS_ERR(cp))
854 goto out;
855
856 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
857 err = PTR_ERR(handle);
858 if (IS_ERR(handle))
859 goto out;
860 BUFFER_TRACE(sbi->s_sbh, "get_write_access");
861 err = ext4_journal_get_write_access(handle, sb, sbi->s_sbh,
862 EXT4_JTR_NONE);
863 if (err)
864 goto out_journal;
865 lock_buffer(sbi->s_sbh);
866 strtomem_pad(sbi->s_es->s_last_mounted, cp, 0);
867 ext4_superblock_csum_set(sb);
868 unlock_buffer(sbi->s_sbh);
869 ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh);
870 out_journal:
871 ext4_journal_stop(handle);
872 out:
873 sb_end_intwrite(sb);
874 return err;
875 }
876
ext4_file_open(struct inode * inode,struct file * filp)877 static int ext4_file_open(struct inode *inode, struct file *filp)
878 {
879 int ret;
880
881 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
882 return -EIO;
883
884 ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
885 if (ret)
886 return ret;
887
888 ret = fscrypt_file_open(inode, filp);
889 if (ret)
890 return ret;
891
892 ret = fsverity_file_open(inode, filp);
893 if (ret)
894 return ret;
895
896 /*
897 * Set up the jbd2_inode if we are opening the inode for
898 * writing and the journal is present
899 */
900 if (filp->f_mode & FMODE_WRITE) {
901 ret = ext4_inode_attach_jinode(inode);
902 if (ret < 0)
903 return ret;
904 }
905
906 if (ext4_inode_can_atomic_write(inode))
907 filp->f_mode |= FMODE_CAN_ATOMIC_WRITE;
908
909 filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT;
910 return dquot_file_open(inode, filp);
911 }
912
913 /*
914 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
915 * by calling generic_file_llseek_size() with the appropriate maxbytes
916 * value for each.
917 */
ext4_llseek(struct file * file,loff_t offset,int whence)918 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
919 {
920 struct inode *inode = file->f_mapping->host;
921 loff_t maxbytes;
922
923 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
924 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
925 else
926 maxbytes = inode->i_sb->s_maxbytes;
927
928 switch (whence) {
929 default:
930 return generic_file_llseek_size(file, offset, whence,
931 maxbytes, i_size_read(inode));
932 case SEEK_HOLE:
933 inode_lock_shared(inode);
934 offset = iomap_seek_hole(inode, offset,
935 &ext4_iomap_report_ops);
936 inode_unlock_shared(inode);
937 break;
938 case SEEK_DATA:
939 inode_lock_shared(inode);
940 offset = iomap_seek_data(inode, offset,
941 &ext4_iomap_report_ops);
942 inode_unlock_shared(inode);
943 break;
944 }
945
946 if (offset < 0)
947 return offset;
948 return vfs_setpos(file, offset, maxbytes);
949 }
950
951 const struct file_operations ext4_file_operations = {
952 .llseek = ext4_llseek,
953 .read_iter = ext4_file_read_iter,
954 .write_iter = ext4_file_write_iter,
955 .iopoll = iocb_bio_iopoll,
956 .unlocked_ioctl = ext4_ioctl,
957 #ifdef CONFIG_COMPAT
958 .compat_ioctl = ext4_compat_ioctl,
959 #endif
960 .mmap = ext4_file_mmap,
961 .open = ext4_file_open,
962 .release = ext4_release_file,
963 .fsync = ext4_sync_file,
964 .get_unmapped_area = thp_get_unmapped_area,
965 .splice_read = ext4_file_splice_read,
966 .splice_write = iter_file_splice_write,
967 .fallocate = ext4_fallocate,
968 .fop_flags = FOP_MMAP_SYNC | FOP_BUFFER_RASYNC |
969 FOP_DIO_PARALLEL_WRITE,
970 };
971
972 const struct inode_operations ext4_file_inode_operations = {
973 .setattr = ext4_setattr,
974 .getattr = ext4_file_getattr,
975 .listxattr = ext4_listxattr,
976 .get_inode_acl = ext4_get_acl,
977 .set_acl = ext4_set_acl,
978 .fiemap = ext4_fiemap,
979 .fileattr_get = ext4_fileattr_get,
980 .fileattr_set = ext4_fileattr_set,
981 };
982
983