1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * fs/ext4/fast_commit.c 5 * 6 * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com> 7 * 8 * Ext4 fast commits routines. 9 */ 10 #include "ext4.h" 11 #include "ext4_jbd2.h" 12 #include "ext4_extents.h" 13 #include "mballoc.h" 14 15 /* 16 * Ext4 Fast Commits 17 * ----------------- 18 * 19 * Ext4 fast commits implement fine grained journalling for Ext4. 20 * 21 * Fast commits are organized as a log of tag-length-value (TLV) structs. (See 22 * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by 23 * TLV during the recovery phase. For the scenarios for which we currently 24 * don't have replay code, fast commit falls back to full commits. 25 * Fast commits record delta in one of the following three categories. 26 * 27 * (A) Directory entry updates: 28 * 29 * - EXT4_FC_TAG_UNLINK - records directory entry unlink 30 * - EXT4_FC_TAG_LINK - records directory entry link 31 * - EXT4_FC_TAG_CREAT - records inode and directory entry creation 32 * 33 * (B) File specific data range updates: 34 * 35 * - EXT4_FC_TAG_ADD_RANGE - records addition of new blocks to an inode 36 * - EXT4_FC_TAG_DEL_RANGE - records deletion of blocks from an inode 37 * 38 * (C) Inode metadata (mtime / ctime etc): 39 * 40 * - EXT4_FC_TAG_INODE - record the inode that should be replayed 41 * during recovery. Note that iblocks field is 42 * not replayed and instead derived during 43 * replay. 44 * Commit Operation 45 * ---------------- 46 * With fast commits, we maintain all the directory entry operations in the 47 * order in which they are issued in an in-memory queue. This queue is flushed 48 * to disk during the commit operation. We also maintain a list of inodes 49 * that need to be committed during a fast commit in another in memory queue of 50 * inodes. During the commit operation, we commit in the following order: 51 * 52 * [1] Lock inodes for any further data updates by setting COMMITTING state 53 * [2] Submit data buffers of all the inodes 54 * [3] Wait for [2] to complete 55 * [4] Commit all the directory entry updates in the fast commit space 56 * [5] Commit all the changed inode structures 57 * [6] Write tail tag (this tag ensures the atomicity, please read the following 58 * section for more details). 59 * [7] Wait for [4], [5] and [6] to complete. 60 * 61 * All the inode updates must call ext4_fc_start_update() before starting an 62 * update. If such an ongoing update is present, fast commit waits for it to 63 * complete. The completion of such an update is marked by 64 * ext4_fc_stop_update(). 65 * 66 * Fast Commit Ineligibility 67 * ------------------------- 68 * 69 * Not all operations are supported by fast commits today (e.g extended 70 * attributes). Fast commit ineligibility is marked by calling 71 * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back 72 * to full commit. 73 * 74 * Atomicity of commits 75 * -------------------- 76 * In order to guarantee atomicity during the commit operation, fast commit 77 * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail 78 * tag contains CRC of the contents and TID of the transaction after which 79 * this fast commit should be applied. Recovery code replays fast commit 80 * logs only if there's at least 1 valid tail present. For every fast commit 81 * operation, there is 1 tail. This means, we may end up with multiple tails 82 * in the fast commit space. Here's an example: 83 * 84 * - Create a new file A and remove existing file B 85 * - fsync() 86 * - Append contents to file A 87 * - Truncate file A 88 * - fsync() 89 * 90 * The fast commit space at the end of above operations would look like this: 91 * [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL] 92 * |<--- Fast Commit 1 --->|<--- Fast Commit 2 ---->| 93 * 94 * Replay code should thus check for all the valid tails in the FC area. 95 * 96 * Fast Commit Replay Idempotence 97 * ------------------------------ 98 * 99 * Fast commits tags are idempotent in nature provided the recovery code follows 100 * certain rules. The guiding principle that the commit path follows while 101 * committing is that it stores the result of a particular operation instead of 102 * storing the procedure. 103 * 104 * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a' 105 * was associated with inode 10. During fast commit, instead of storing this 106 * operation as a procedure "rename a to b", we store the resulting file system 107 * state as a "series" of outcomes: 108 * 109 * - Link dirent b to inode 10 110 * - Unlink dirent a 111 * - Inode <10> with valid refcount 112 * 113 * Now when recovery code runs, it needs "enforce" this state on the file 114 * system. This is what guarantees idempotence of fast commit replay. 115 * 116 * Let's take an example of a procedure that is not idempotent and see how fast 117 * commits make it idempotent. Consider following sequence of operations: 118 * 119 * rm A; mv B A; read A 120 * (x) (y) (z) 121 * 122 * (x), (y) and (z) are the points at which we can crash. If we store this 123 * sequence of operations as is then the replay is not idempotent. Let's say 124 * while in replay, we crash at (z). During the second replay, file A (which was 125 * actually created as a result of "mv B A" operation) would get deleted. Thus, 126 * file named A would be absent when we try to read A. So, this sequence of 127 * operations is not idempotent. However, as mentioned above, instead of storing 128 * the procedure fast commits store the outcome of each procedure. Thus the fast 129 * commit log for above procedure would be as follows: 130 * 131 * (Let's assume dirent A was linked to inode 10 and dirent B was linked to 132 * inode 11 before the replay) 133 * 134 * [Unlink A] [Link A to inode 11] [Unlink B] [Inode 11] 135 * (w) (x) (y) (z) 136 * 137 * If we crash at (z), we will have file A linked to inode 11. During the second 138 * replay, we will remove file A (inode 11). But we will create it back and make 139 * it point to inode 11. We won't find B, so we'll just skip that step. At this 140 * point, the refcount for inode 11 is not reliable, but that gets fixed by the 141 * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled 142 * similarly. Thus, by converting a non-idempotent procedure into a series of 143 * idempotent outcomes, fast commits ensured idempotence during the replay. 144 * 145 * TODOs 146 * ----- 147 * 148 * 0) Fast commit replay path hardening: Fast commit replay code should use 149 * journal handles to make sure all the updates it does during the replay 150 * path are atomic. With that if we crash during fast commit replay, after 151 * trying to do recovery again, we will find a file system where fast commit 152 * area is invalid (because new full commit would be found). In order to deal 153 * with that, fast commit replay code should ensure that the "FC_REPLAY" 154 * superblock state is persisted before starting the replay, so that after 155 * the crash, fast commit recovery code can look at that flag and perform 156 * fast commit recovery even if that area is invalidated by later full 157 * commits. 158 * 159 * 1) Fast commit's commit path locks the entire file system during fast 160 * commit. This has significant performance penalty. Instead of that, we 161 * should use ext4_fc_start/stop_update functions to start inode level 162 * updates from ext4_journal_start/stop. Once we do that we can drop file 163 * system locking during commit path. 164 * 165 * 2) Handle more ineligible cases. 166 */ 167 168 #include <trace/events/ext4.h> 169 static struct kmem_cache *ext4_fc_dentry_cachep; 170 171 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate) 172 { 173 BUFFER_TRACE(bh, ""); 174 if (uptodate) { 175 ext4_debug("%s: Block %lld up-to-date", 176 __func__, bh->b_blocknr); 177 set_buffer_uptodate(bh); 178 } else { 179 ext4_debug("%s: Block %lld not up-to-date", 180 __func__, bh->b_blocknr); 181 clear_buffer_uptodate(bh); 182 } 183 184 unlock_buffer(bh); 185 } 186 187 static inline void ext4_fc_reset_inode(struct inode *inode) 188 { 189 struct ext4_inode_info *ei = EXT4_I(inode); 190 191 ei->i_fc_lblk_start = 0; 192 ei->i_fc_lblk_len = 0; 193 } 194 195 void ext4_fc_init_inode(struct inode *inode) 196 { 197 struct ext4_inode_info *ei = EXT4_I(inode); 198 199 ext4_fc_reset_inode(inode); 200 ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING); 201 INIT_LIST_HEAD(&ei->i_fc_list); 202 INIT_LIST_HEAD(&ei->i_fc_dilist); 203 init_waitqueue_head(&ei->i_fc_wait); 204 atomic_set(&ei->i_fc_updates, 0); 205 } 206 207 /* This function must be called with sbi->s_fc_lock held. */ 208 static void ext4_fc_wait_committing_inode(struct inode *inode) 209 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock) 210 { 211 wait_queue_head_t *wq; 212 struct ext4_inode_info *ei = EXT4_I(inode); 213 214 #if (BITS_PER_LONG < 64) 215 DEFINE_WAIT_BIT(wait, &ei->i_state_flags, 216 EXT4_STATE_FC_COMMITTING); 217 wq = bit_waitqueue(&ei->i_state_flags, 218 EXT4_STATE_FC_COMMITTING); 219 #else 220 DEFINE_WAIT_BIT(wait, &ei->i_flags, 221 EXT4_STATE_FC_COMMITTING); 222 wq = bit_waitqueue(&ei->i_flags, 223 EXT4_STATE_FC_COMMITTING); 224 #endif 225 lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock); 226 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 227 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock); 228 schedule(); 229 finish_wait(wq, &wait.wq_entry); 230 } 231 232 static bool ext4_fc_disabled(struct super_block *sb) 233 { 234 return (!test_opt2(sb, JOURNAL_FAST_COMMIT) || 235 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)); 236 } 237 238 /* 239 * Inform Ext4's fast about start of an inode update 240 * 241 * This function is called by the high level call VFS callbacks before 242 * performing any inode update. This function blocks if there's an ongoing 243 * fast commit on the inode in question. 244 */ 245 void ext4_fc_start_update(struct inode *inode) 246 { 247 struct ext4_inode_info *ei = EXT4_I(inode); 248 249 if (ext4_fc_disabled(inode->i_sb)) 250 return; 251 252 restart: 253 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock); 254 if (list_empty(&ei->i_fc_list)) 255 goto out; 256 257 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) { 258 ext4_fc_wait_committing_inode(inode); 259 goto restart; 260 } 261 out: 262 atomic_inc(&ei->i_fc_updates); 263 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock); 264 } 265 266 /* 267 * Stop inode update and wake up waiting fast commits if any. 268 */ 269 void ext4_fc_stop_update(struct inode *inode) 270 { 271 struct ext4_inode_info *ei = EXT4_I(inode); 272 273 if (ext4_fc_disabled(inode->i_sb)) 274 return; 275 276 if (atomic_dec_and_test(&ei->i_fc_updates)) 277 wake_up_all(&ei->i_fc_wait); 278 } 279 280 /* 281 * Remove inode from fast commit list. If the inode is being committed 282 * we wait until inode commit is done. 283 */ 284 void ext4_fc_del(struct inode *inode) 285 { 286 struct ext4_inode_info *ei = EXT4_I(inode); 287 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 288 struct ext4_fc_dentry_update *fc_dentry; 289 290 if (ext4_fc_disabled(inode->i_sb)) 291 return; 292 293 restart: 294 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock); 295 if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) { 296 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock); 297 return; 298 } 299 300 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) { 301 ext4_fc_wait_committing_inode(inode); 302 goto restart; 303 } 304 305 if (!list_empty(&ei->i_fc_list)) 306 list_del_init(&ei->i_fc_list); 307 308 /* 309 * Since this inode is getting removed, let's also remove all FC 310 * dentry create references, since it is not needed to log it anyways. 311 */ 312 if (list_empty(&ei->i_fc_dilist)) { 313 spin_unlock(&sbi->s_fc_lock); 314 return; 315 } 316 317 fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist); 318 WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT); 319 list_del_init(&fc_dentry->fcd_list); 320 list_del_init(&fc_dentry->fcd_dilist); 321 322 WARN_ON(!list_empty(&ei->i_fc_dilist)); 323 spin_unlock(&sbi->s_fc_lock); 324 325 if (fc_dentry->fcd_name.name && 326 fc_dentry->fcd_name.len > DNAME_INLINE_LEN) 327 kfree(fc_dentry->fcd_name.name); 328 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry); 329 330 return; 331 } 332 333 /* 334 * Mark file system as fast commit ineligible, and record latest 335 * ineligible transaction tid. This means until the recorded 336 * transaction, commit operation would result in a full jbd2 commit. 337 */ 338 void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle) 339 { 340 struct ext4_sb_info *sbi = EXT4_SB(sb); 341 tid_t tid; 342 bool has_transaction = true; 343 bool is_ineligible; 344 345 if (ext4_fc_disabled(sb)) 346 return; 347 348 if (handle && !IS_ERR(handle)) 349 tid = handle->h_transaction->t_tid; 350 else { 351 read_lock(&sbi->s_journal->j_state_lock); 352 if (sbi->s_journal->j_running_transaction) 353 tid = sbi->s_journal->j_running_transaction->t_tid; 354 else 355 has_transaction = false; 356 read_unlock(&sbi->s_journal->j_state_lock); 357 } 358 spin_lock(&sbi->s_fc_lock); 359 is_ineligible = ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 360 if (has_transaction && 361 (!is_ineligible || 362 (is_ineligible && tid_gt(tid, sbi->s_fc_ineligible_tid)))) 363 sbi->s_fc_ineligible_tid = tid; 364 ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 365 spin_unlock(&sbi->s_fc_lock); 366 WARN_ON(reason >= EXT4_FC_REASON_MAX); 367 sbi->s_fc_stats.fc_ineligible_reason_count[reason]++; 368 } 369 370 /* 371 * Generic fast commit tracking function. If this is the first time this we are 372 * called after a full commit, we initialize fast commit fields and then call 373 * __fc_track_fn() with update = 0. If we have already been called after a full 374 * commit, we pass update = 1. Based on that, the track function can determine 375 * if it needs to track a field for the first time or if it needs to just 376 * update the previously tracked value. 377 * 378 * If enqueue is set, this function enqueues the inode in fast commit list. 379 */ 380 static int ext4_fc_track_template( 381 handle_t *handle, struct inode *inode, 382 int (*__fc_track_fn)(struct inode *, void *, bool), 383 void *args, int enqueue) 384 { 385 bool update = false; 386 struct ext4_inode_info *ei = EXT4_I(inode); 387 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 388 tid_t tid = 0; 389 int ret; 390 391 tid = handle->h_transaction->t_tid; 392 mutex_lock(&ei->i_fc_lock); 393 if (tid == ei->i_sync_tid) { 394 update = true; 395 } else { 396 ext4_fc_reset_inode(inode); 397 ei->i_sync_tid = tid; 398 } 399 ret = __fc_track_fn(inode, args, update); 400 mutex_unlock(&ei->i_fc_lock); 401 402 if (!enqueue) 403 return ret; 404 405 spin_lock(&sbi->s_fc_lock); 406 if (list_empty(&EXT4_I(inode)->i_fc_list)) 407 list_add_tail(&EXT4_I(inode)->i_fc_list, 408 (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING || 409 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ? 410 &sbi->s_fc_q[FC_Q_STAGING] : 411 &sbi->s_fc_q[FC_Q_MAIN]); 412 spin_unlock(&sbi->s_fc_lock); 413 414 return ret; 415 } 416 417 struct __track_dentry_update_args { 418 struct dentry *dentry; 419 int op; 420 }; 421 422 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */ 423 static int __track_dentry_update(struct inode *inode, void *arg, bool update) 424 { 425 struct ext4_fc_dentry_update *node; 426 struct ext4_inode_info *ei = EXT4_I(inode); 427 struct __track_dentry_update_args *dentry_update = 428 (struct __track_dentry_update_args *)arg; 429 struct dentry *dentry = dentry_update->dentry; 430 struct inode *dir = dentry->d_parent->d_inode; 431 struct super_block *sb = inode->i_sb; 432 struct ext4_sb_info *sbi = EXT4_SB(sb); 433 434 mutex_unlock(&ei->i_fc_lock); 435 436 if (IS_ENCRYPTED(dir)) { 437 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME, 438 NULL); 439 mutex_lock(&ei->i_fc_lock); 440 return -EOPNOTSUPP; 441 } 442 443 node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS); 444 if (!node) { 445 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, NULL); 446 mutex_lock(&ei->i_fc_lock); 447 return -ENOMEM; 448 } 449 450 node->fcd_op = dentry_update->op; 451 node->fcd_parent = dir->i_ino; 452 node->fcd_ino = inode->i_ino; 453 if (dentry->d_name.len > DNAME_INLINE_LEN) { 454 node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS); 455 if (!node->fcd_name.name) { 456 kmem_cache_free(ext4_fc_dentry_cachep, node); 457 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, NULL); 458 mutex_lock(&ei->i_fc_lock); 459 return -ENOMEM; 460 } 461 memcpy((u8 *)node->fcd_name.name, dentry->d_name.name, 462 dentry->d_name.len); 463 } else { 464 memcpy(node->fcd_iname, dentry->d_name.name, 465 dentry->d_name.len); 466 node->fcd_name.name = node->fcd_iname; 467 } 468 node->fcd_name.len = dentry->d_name.len; 469 INIT_LIST_HEAD(&node->fcd_dilist); 470 spin_lock(&sbi->s_fc_lock); 471 if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING || 472 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) 473 list_add_tail(&node->fcd_list, 474 &sbi->s_fc_dentry_q[FC_Q_STAGING]); 475 else 476 list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]); 477 478 /* 479 * This helps us keep a track of all fc_dentry updates which is part of 480 * this ext4 inode. So in case the inode is getting unlinked, before 481 * even we get a chance to fsync, we could remove all fc_dentry 482 * references while evicting the inode in ext4_fc_del(). 483 * Also with this, we don't need to loop over all the inodes in 484 * sbi->s_fc_q to get the corresponding inode in 485 * ext4_fc_commit_dentry_updates(). 486 */ 487 if (dentry_update->op == EXT4_FC_TAG_CREAT) { 488 WARN_ON(!list_empty(&ei->i_fc_dilist)); 489 list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist); 490 } 491 spin_unlock(&sbi->s_fc_lock); 492 mutex_lock(&ei->i_fc_lock); 493 494 return 0; 495 } 496 497 void __ext4_fc_track_unlink(handle_t *handle, 498 struct inode *inode, struct dentry *dentry) 499 { 500 struct __track_dentry_update_args args; 501 int ret; 502 503 args.dentry = dentry; 504 args.op = EXT4_FC_TAG_UNLINK; 505 506 ret = ext4_fc_track_template(handle, inode, __track_dentry_update, 507 (void *)&args, 0); 508 trace_ext4_fc_track_unlink(handle, inode, dentry, ret); 509 } 510 511 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry) 512 { 513 struct inode *inode = d_inode(dentry); 514 515 if (ext4_fc_disabled(inode->i_sb)) 516 return; 517 518 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 519 return; 520 521 __ext4_fc_track_unlink(handle, inode, dentry); 522 } 523 524 void __ext4_fc_track_link(handle_t *handle, 525 struct inode *inode, struct dentry *dentry) 526 { 527 struct __track_dentry_update_args args; 528 int ret; 529 530 args.dentry = dentry; 531 args.op = EXT4_FC_TAG_LINK; 532 533 ret = ext4_fc_track_template(handle, inode, __track_dentry_update, 534 (void *)&args, 0); 535 trace_ext4_fc_track_link(handle, inode, dentry, ret); 536 } 537 538 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry) 539 { 540 struct inode *inode = d_inode(dentry); 541 542 if (ext4_fc_disabled(inode->i_sb)) 543 return; 544 545 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 546 return; 547 548 __ext4_fc_track_link(handle, inode, dentry); 549 } 550 551 void __ext4_fc_track_create(handle_t *handle, struct inode *inode, 552 struct dentry *dentry) 553 { 554 struct __track_dentry_update_args args; 555 int ret; 556 557 args.dentry = dentry; 558 args.op = EXT4_FC_TAG_CREAT; 559 560 ret = ext4_fc_track_template(handle, inode, __track_dentry_update, 561 (void *)&args, 0); 562 trace_ext4_fc_track_create(handle, inode, dentry, ret); 563 } 564 565 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry) 566 { 567 struct inode *inode = d_inode(dentry); 568 569 if (ext4_fc_disabled(inode->i_sb)) 570 return; 571 572 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 573 return; 574 575 __ext4_fc_track_create(handle, inode, dentry); 576 } 577 578 /* __track_fn for inode tracking */ 579 static int __track_inode(struct inode *inode, void *arg, bool update) 580 { 581 if (update) 582 return -EEXIST; 583 584 EXT4_I(inode)->i_fc_lblk_len = 0; 585 586 return 0; 587 } 588 589 void ext4_fc_track_inode(handle_t *handle, struct inode *inode) 590 { 591 int ret; 592 593 if (S_ISDIR(inode->i_mode)) 594 return; 595 596 if (ext4_fc_disabled(inode->i_sb)) 597 return; 598 599 if (ext4_should_journal_data(inode)) { 600 ext4_fc_mark_ineligible(inode->i_sb, 601 EXT4_FC_REASON_INODE_JOURNAL_DATA, handle); 602 return; 603 } 604 605 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 606 return; 607 608 ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1); 609 trace_ext4_fc_track_inode(handle, inode, ret); 610 } 611 612 struct __track_range_args { 613 ext4_lblk_t start, end; 614 }; 615 616 /* __track_fn for tracking data updates */ 617 static int __track_range(struct inode *inode, void *arg, bool update) 618 { 619 struct ext4_inode_info *ei = EXT4_I(inode); 620 ext4_lblk_t oldstart; 621 struct __track_range_args *__arg = 622 (struct __track_range_args *)arg; 623 624 if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) { 625 ext4_debug("Special inode %ld being modified\n", inode->i_ino); 626 return -ECANCELED; 627 } 628 629 oldstart = ei->i_fc_lblk_start; 630 631 if (update && ei->i_fc_lblk_len > 0) { 632 ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start); 633 ei->i_fc_lblk_len = 634 max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) - 635 ei->i_fc_lblk_start + 1; 636 } else { 637 ei->i_fc_lblk_start = __arg->start; 638 ei->i_fc_lblk_len = __arg->end - __arg->start + 1; 639 } 640 641 return 0; 642 } 643 644 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start, 645 ext4_lblk_t end) 646 { 647 struct __track_range_args args; 648 int ret; 649 650 if (S_ISDIR(inode->i_mode)) 651 return; 652 653 if (ext4_fc_disabled(inode->i_sb)) 654 return; 655 656 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 657 return; 658 659 if (ext4_has_inline_data(inode)) { 660 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_XATTR, 661 handle); 662 return; 663 } 664 665 args.start = start; 666 args.end = end; 667 668 ret = ext4_fc_track_template(handle, inode, __track_range, &args, 1); 669 670 trace_ext4_fc_track_range(handle, inode, start, end, ret); 671 } 672 673 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail) 674 { 675 blk_opf_t write_flags = REQ_SYNC; 676 struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh; 677 678 /* Add REQ_FUA | REQ_PREFLUSH only its tail */ 679 if (test_opt(sb, BARRIER) && is_tail) 680 write_flags |= REQ_FUA | REQ_PREFLUSH; 681 lock_buffer(bh); 682 set_buffer_dirty(bh); 683 set_buffer_uptodate(bh); 684 bh->b_end_io = ext4_end_buffer_io_sync; 685 submit_bh(REQ_OP_WRITE | write_flags, bh); 686 EXT4_SB(sb)->s_fc_bh = NULL; 687 } 688 689 /* Ext4 commit path routines */ 690 691 /* 692 * Allocate len bytes on a fast commit buffer. 693 * 694 * During the commit time this function is used to manage fast commit 695 * block space. We don't split a fast commit log onto different 696 * blocks. So this function makes sure that if there's not enough space 697 * on the current block, the remaining space in the current block is 698 * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case, 699 * new block is from jbd2 and CRC is updated to reflect the padding 700 * we added. 701 */ 702 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc) 703 { 704 struct ext4_fc_tl tl; 705 struct ext4_sb_info *sbi = EXT4_SB(sb); 706 struct buffer_head *bh; 707 int bsize = sbi->s_journal->j_blocksize; 708 int ret, off = sbi->s_fc_bytes % bsize; 709 int remaining; 710 u8 *dst; 711 712 /* 713 * If 'len' is too long to fit in any block alongside a PAD tlv, then we 714 * cannot fulfill the request. 715 */ 716 if (len > bsize - EXT4_FC_TAG_BASE_LEN) 717 return NULL; 718 719 if (!sbi->s_fc_bh) { 720 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh); 721 if (ret) 722 return NULL; 723 sbi->s_fc_bh = bh; 724 } 725 dst = sbi->s_fc_bh->b_data + off; 726 727 /* 728 * Allocate the bytes in the current block if we can do so while still 729 * leaving enough space for a PAD tlv. 730 */ 731 remaining = bsize - EXT4_FC_TAG_BASE_LEN - off; 732 if (len <= remaining) { 733 sbi->s_fc_bytes += len; 734 return dst; 735 } 736 737 /* 738 * Else, terminate the current block with a PAD tlv, then allocate a new 739 * block and allocate the bytes at the start of that new block. 740 */ 741 742 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD); 743 tl.fc_len = cpu_to_le16(remaining); 744 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); 745 memset(dst + EXT4_FC_TAG_BASE_LEN, 0, remaining); 746 *crc = ext4_chksum(sbi, *crc, sbi->s_fc_bh->b_data, bsize); 747 748 ext4_fc_submit_bh(sb, false); 749 750 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh); 751 if (ret) 752 return NULL; 753 sbi->s_fc_bh = bh; 754 sbi->s_fc_bytes += bsize - off + len; 755 return sbi->s_fc_bh->b_data; 756 } 757 758 /* 759 * Complete a fast commit by writing tail tag. 760 * 761 * Writing tail tag marks the end of a fast commit. In order to guarantee 762 * atomicity, after writing tail tag, even if there's space remaining 763 * in the block, next commit shouldn't use it. That's why tail tag 764 * has the length as that of the remaining space on the block. 765 */ 766 static int ext4_fc_write_tail(struct super_block *sb, u32 crc) 767 { 768 struct ext4_sb_info *sbi = EXT4_SB(sb); 769 struct ext4_fc_tl tl; 770 struct ext4_fc_tail tail; 771 int off, bsize = sbi->s_journal->j_blocksize; 772 u8 *dst; 773 774 /* 775 * ext4_fc_reserve_space takes care of allocating an extra block if 776 * there's no enough space on this block for accommodating this tail. 777 */ 778 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc); 779 if (!dst) 780 return -ENOSPC; 781 782 off = sbi->s_fc_bytes % bsize; 783 784 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL); 785 tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail)); 786 sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize); 787 788 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); 789 dst += EXT4_FC_TAG_BASE_LEN; 790 tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid); 791 memcpy(dst, &tail.fc_tid, sizeof(tail.fc_tid)); 792 dst += sizeof(tail.fc_tid); 793 crc = ext4_chksum(sbi, crc, sbi->s_fc_bh->b_data, 794 dst - (u8 *)sbi->s_fc_bh->b_data); 795 tail.fc_crc = cpu_to_le32(crc); 796 memcpy(dst, &tail.fc_crc, sizeof(tail.fc_crc)); 797 dst += sizeof(tail.fc_crc); 798 memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */ 799 800 ext4_fc_submit_bh(sb, true); 801 802 return 0; 803 } 804 805 /* 806 * Adds tag, length, value and updates CRC. Returns true if tlv was added. 807 * Returns false if there's not enough space. 808 */ 809 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val, 810 u32 *crc) 811 { 812 struct ext4_fc_tl tl; 813 u8 *dst; 814 815 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc); 816 if (!dst) 817 return false; 818 819 tl.fc_tag = cpu_to_le16(tag); 820 tl.fc_len = cpu_to_le16(len); 821 822 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); 823 memcpy(dst + EXT4_FC_TAG_BASE_LEN, val, len); 824 825 return true; 826 } 827 828 /* Same as above, but adds dentry tlv. */ 829 static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc, 830 struct ext4_fc_dentry_update *fc_dentry) 831 { 832 struct ext4_fc_dentry_info fcd; 833 struct ext4_fc_tl tl; 834 int dlen = fc_dentry->fcd_name.len; 835 u8 *dst = ext4_fc_reserve_space(sb, 836 EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc); 837 838 if (!dst) 839 return false; 840 841 fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent); 842 fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino); 843 tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op); 844 tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen); 845 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); 846 dst += EXT4_FC_TAG_BASE_LEN; 847 memcpy(dst, &fcd, sizeof(fcd)); 848 dst += sizeof(fcd); 849 memcpy(dst, fc_dentry->fcd_name.name, dlen); 850 851 return true; 852 } 853 854 /* 855 * Writes inode in the fast commit space under TLV with tag @tag. 856 * Returns 0 on success, error on failure. 857 */ 858 static int ext4_fc_write_inode(struct inode *inode, u32 *crc) 859 { 860 struct ext4_inode_info *ei = EXT4_I(inode); 861 int inode_len = EXT4_GOOD_OLD_INODE_SIZE; 862 int ret; 863 struct ext4_iloc iloc; 864 struct ext4_fc_inode fc_inode; 865 struct ext4_fc_tl tl; 866 u8 *dst; 867 868 ret = ext4_get_inode_loc(inode, &iloc); 869 if (ret) 870 return ret; 871 872 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) 873 inode_len = EXT4_INODE_SIZE(inode->i_sb); 874 else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) 875 inode_len += ei->i_extra_isize; 876 877 fc_inode.fc_ino = cpu_to_le32(inode->i_ino); 878 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE); 879 tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino)); 880 881 ret = -ECANCELED; 882 dst = ext4_fc_reserve_space(inode->i_sb, 883 EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc); 884 if (!dst) 885 goto err; 886 887 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); 888 dst += EXT4_FC_TAG_BASE_LEN; 889 memcpy(dst, &fc_inode, sizeof(fc_inode)); 890 dst += sizeof(fc_inode); 891 memcpy(dst, (u8 *)ext4_raw_inode(&iloc), inode_len); 892 ret = 0; 893 err: 894 brelse(iloc.bh); 895 return ret; 896 } 897 898 /* 899 * Writes updated data ranges for the inode in question. Updates CRC. 900 * Returns 0 on success, error otherwise. 901 */ 902 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc) 903 { 904 ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size; 905 struct ext4_inode_info *ei = EXT4_I(inode); 906 struct ext4_map_blocks map; 907 struct ext4_fc_add_range fc_ext; 908 struct ext4_fc_del_range lrange; 909 struct ext4_extent *ex; 910 int ret; 911 912 mutex_lock(&ei->i_fc_lock); 913 if (ei->i_fc_lblk_len == 0) { 914 mutex_unlock(&ei->i_fc_lock); 915 return 0; 916 } 917 old_blk_size = ei->i_fc_lblk_start; 918 new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1; 919 ei->i_fc_lblk_len = 0; 920 mutex_unlock(&ei->i_fc_lock); 921 922 cur_lblk_off = old_blk_size; 923 ext4_debug("will try writing %d to %d for inode %ld\n", 924 cur_lblk_off, new_blk_size, inode->i_ino); 925 926 while (cur_lblk_off <= new_blk_size) { 927 map.m_lblk = cur_lblk_off; 928 map.m_len = new_blk_size - cur_lblk_off + 1; 929 ret = ext4_map_blocks(NULL, inode, &map, 0); 930 if (ret < 0) 931 return -ECANCELED; 932 933 if (map.m_len == 0) { 934 cur_lblk_off++; 935 continue; 936 } 937 938 if (ret == 0) { 939 lrange.fc_ino = cpu_to_le32(inode->i_ino); 940 lrange.fc_lblk = cpu_to_le32(map.m_lblk); 941 lrange.fc_len = cpu_to_le32(map.m_len); 942 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE, 943 sizeof(lrange), (u8 *)&lrange, crc)) 944 return -ENOSPC; 945 } else { 946 unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ? 947 EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN; 948 949 /* Limit the number of blocks in one extent */ 950 map.m_len = min(max, map.m_len); 951 952 fc_ext.fc_ino = cpu_to_le32(inode->i_ino); 953 ex = (struct ext4_extent *)&fc_ext.fc_ex; 954 ex->ee_block = cpu_to_le32(map.m_lblk); 955 ex->ee_len = cpu_to_le16(map.m_len); 956 ext4_ext_store_pblock(ex, map.m_pblk); 957 if (map.m_flags & EXT4_MAP_UNWRITTEN) 958 ext4_ext_mark_unwritten(ex); 959 else 960 ext4_ext_mark_initialized(ex); 961 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE, 962 sizeof(fc_ext), (u8 *)&fc_ext, crc)) 963 return -ENOSPC; 964 } 965 966 cur_lblk_off += map.m_len; 967 } 968 969 return 0; 970 } 971 972 973 /* Submit data for all the fast commit inodes */ 974 static int ext4_fc_submit_inode_data_all(journal_t *journal) 975 { 976 struct super_block *sb = journal->j_private; 977 struct ext4_sb_info *sbi = EXT4_SB(sb); 978 struct ext4_inode_info *ei; 979 int ret = 0; 980 981 spin_lock(&sbi->s_fc_lock); 982 list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { 983 ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING); 984 while (atomic_read(&ei->i_fc_updates)) { 985 DEFINE_WAIT(wait); 986 987 prepare_to_wait(&ei->i_fc_wait, &wait, 988 TASK_UNINTERRUPTIBLE); 989 if (atomic_read(&ei->i_fc_updates)) { 990 spin_unlock(&sbi->s_fc_lock); 991 schedule(); 992 spin_lock(&sbi->s_fc_lock); 993 } 994 finish_wait(&ei->i_fc_wait, &wait); 995 } 996 spin_unlock(&sbi->s_fc_lock); 997 ret = jbd2_submit_inode_data(journal, ei->jinode); 998 if (ret) 999 return ret; 1000 spin_lock(&sbi->s_fc_lock); 1001 } 1002 spin_unlock(&sbi->s_fc_lock); 1003 1004 return ret; 1005 } 1006 1007 /* Wait for completion of data for all the fast commit inodes */ 1008 static int ext4_fc_wait_inode_data_all(journal_t *journal) 1009 { 1010 struct super_block *sb = journal->j_private; 1011 struct ext4_sb_info *sbi = EXT4_SB(sb); 1012 struct ext4_inode_info *pos, *n; 1013 int ret = 0; 1014 1015 spin_lock(&sbi->s_fc_lock); 1016 list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { 1017 if (!ext4_test_inode_state(&pos->vfs_inode, 1018 EXT4_STATE_FC_COMMITTING)) 1019 continue; 1020 spin_unlock(&sbi->s_fc_lock); 1021 1022 ret = jbd2_wait_inode_data(journal, pos->jinode); 1023 if (ret) 1024 return ret; 1025 spin_lock(&sbi->s_fc_lock); 1026 } 1027 spin_unlock(&sbi->s_fc_lock); 1028 1029 return 0; 1030 } 1031 1032 /* Commit all the directory entry updates */ 1033 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc) 1034 __acquires(&sbi->s_fc_lock) 1035 __releases(&sbi->s_fc_lock) 1036 { 1037 struct super_block *sb = journal->j_private; 1038 struct ext4_sb_info *sbi = EXT4_SB(sb); 1039 struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n; 1040 struct inode *inode; 1041 struct ext4_inode_info *ei; 1042 int ret; 1043 1044 if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) 1045 return 0; 1046 list_for_each_entry_safe(fc_dentry, fc_dentry_n, 1047 &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) { 1048 if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) { 1049 spin_unlock(&sbi->s_fc_lock); 1050 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) { 1051 ret = -ENOSPC; 1052 goto lock_and_exit; 1053 } 1054 spin_lock(&sbi->s_fc_lock); 1055 continue; 1056 } 1057 /* 1058 * With fcd_dilist we need not loop in sbi->s_fc_q to get the 1059 * corresponding inode pointer 1060 */ 1061 WARN_ON(list_empty(&fc_dentry->fcd_dilist)); 1062 ei = list_first_entry(&fc_dentry->fcd_dilist, 1063 struct ext4_inode_info, i_fc_dilist); 1064 inode = &ei->vfs_inode; 1065 WARN_ON(inode->i_ino != fc_dentry->fcd_ino); 1066 1067 spin_unlock(&sbi->s_fc_lock); 1068 1069 /* 1070 * We first write the inode and then the create dirent. This 1071 * allows the recovery code to create an unnamed inode first 1072 * and then link it to a directory entry. This allows us 1073 * to use namei.c routines almost as is and simplifies 1074 * the recovery code. 1075 */ 1076 ret = ext4_fc_write_inode(inode, crc); 1077 if (ret) 1078 goto lock_and_exit; 1079 1080 ret = ext4_fc_write_inode_data(inode, crc); 1081 if (ret) 1082 goto lock_and_exit; 1083 1084 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) { 1085 ret = -ENOSPC; 1086 goto lock_and_exit; 1087 } 1088 1089 spin_lock(&sbi->s_fc_lock); 1090 } 1091 return 0; 1092 lock_and_exit: 1093 spin_lock(&sbi->s_fc_lock); 1094 return ret; 1095 } 1096 1097 static int ext4_fc_perform_commit(journal_t *journal) 1098 { 1099 struct super_block *sb = journal->j_private; 1100 struct ext4_sb_info *sbi = EXT4_SB(sb); 1101 struct ext4_inode_info *iter; 1102 struct ext4_fc_head head; 1103 struct inode *inode; 1104 struct blk_plug plug; 1105 int ret = 0; 1106 u32 crc = 0; 1107 1108 ret = ext4_fc_submit_inode_data_all(journal); 1109 if (ret) 1110 return ret; 1111 1112 ret = ext4_fc_wait_inode_data_all(journal); 1113 if (ret) 1114 return ret; 1115 1116 /* 1117 * If file system device is different from journal device, issue a cache 1118 * flush before we start writing fast commit blocks. 1119 */ 1120 if (journal->j_fs_dev != journal->j_dev) 1121 blkdev_issue_flush(journal->j_fs_dev); 1122 1123 blk_start_plug(&plug); 1124 if (sbi->s_fc_bytes == 0) { 1125 /* 1126 * Add a head tag only if this is the first fast commit 1127 * in this TID. 1128 */ 1129 head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES); 1130 head.fc_tid = cpu_to_le32( 1131 sbi->s_journal->j_running_transaction->t_tid); 1132 if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head), 1133 (u8 *)&head, &crc)) { 1134 ret = -ENOSPC; 1135 goto out; 1136 } 1137 } 1138 1139 spin_lock(&sbi->s_fc_lock); 1140 ret = ext4_fc_commit_dentry_updates(journal, &crc); 1141 if (ret) { 1142 spin_unlock(&sbi->s_fc_lock); 1143 goto out; 1144 } 1145 1146 list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { 1147 inode = &iter->vfs_inode; 1148 if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) 1149 continue; 1150 1151 spin_unlock(&sbi->s_fc_lock); 1152 ret = ext4_fc_write_inode_data(inode, &crc); 1153 if (ret) 1154 goto out; 1155 ret = ext4_fc_write_inode(inode, &crc); 1156 if (ret) 1157 goto out; 1158 spin_lock(&sbi->s_fc_lock); 1159 } 1160 spin_unlock(&sbi->s_fc_lock); 1161 1162 ret = ext4_fc_write_tail(sb, crc); 1163 1164 out: 1165 blk_finish_plug(&plug); 1166 return ret; 1167 } 1168 1169 static void ext4_fc_update_stats(struct super_block *sb, int status, 1170 u64 commit_time, int nblks, tid_t commit_tid) 1171 { 1172 struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats; 1173 1174 ext4_debug("Fast commit ended with status = %d for tid %u", 1175 status, commit_tid); 1176 if (status == EXT4_FC_STATUS_OK) { 1177 stats->fc_num_commits++; 1178 stats->fc_numblks += nblks; 1179 if (likely(stats->s_fc_avg_commit_time)) 1180 stats->s_fc_avg_commit_time = 1181 (commit_time + 1182 stats->s_fc_avg_commit_time * 3) / 4; 1183 else 1184 stats->s_fc_avg_commit_time = commit_time; 1185 } else if (status == EXT4_FC_STATUS_FAILED || 1186 status == EXT4_FC_STATUS_INELIGIBLE) { 1187 if (status == EXT4_FC_STATUS_FAILED) 1188 stats->fc_failed_commits++; 1189 stats->fc_ineligible_commits++; 1190 } else { 1191 stats->fc_skipped_commits++; 1192 } 1193 trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid); 1194 } 1195 1196 /* 1197 * The main commit entry point. Performs a fast commit for transaction 1198 * commit_tid if needed. If it's not possible to perform a fast commit 1199 * due to various reasons, we fall back to full commit. Returns 0 1200 * on success, error otherwise. 1201 */ 1202 int ext4_fc_commit(journal_t *journal, tid_t commit_tid) 1203 { 1204 struct super_block *sb = journal->j_private; 1205 struct ext4_sb_info *sbi = EXT4_SB(sb); 1206 int nblks = 0, ret, bsize = journal->j_blocksize; 1207 int subtid = atomic_read(&sbi->s_fc_subtid); 1208 int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0; 1209 ktime_t start_time, commit_time; 1210 1211 if (!test_opt2(sb, JOURNAL_FAST_COMMIT)) 1212 return jbd2_complete_transaction(journal, commit_tid); 1213 1214 trace_ext4_fc_commit_start(sb, commit_tid); 1215 1216 start_time = ktime_get(); 1217 1218 restart_fc: 1219 ret = jbd2_fc_begin_commit(journal, commit_tid); 1220 if (ret == -EALREADY) { 1221 /* There was an ongoing commit, check if we need to restart */ 1222 if (atomic_read(&sbi->s_fc_subtid) <= subtid && 1223 tid_gt(commit_tid, journal->j_commit_sequence)) 1224 goto restart_fc; 1225 ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0, 1226 commit_tid); 1227 return 0; 1228 } else if (ret) { 1229 /* 1230 * Commit couldn't start. Just update stats and perform a 1231 * full commit. 1232 */ 1233 ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0, 1234 commit_tid); 1235 return jbd2_complete_transaction(journal, commit_tid); 1236 } 1237 1238 /* 1239 * After establishing journal barrier via jbd2_fc_begin_commit(), check 1240 * if we are fast commit ineligible. 1241 */ 1242 if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) { 1243 status = EXT4_FC_STATUS_INELIGIBLE; 1244 goto fallback; 1245 } 1246 1247 fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize; 1248 ret = ext4_fc_perform_commit(journal); 1249 if (ret < 0) { 1250 status = EXT4_FC_STATUS_FAILED; 1251 goto fallback; 1252 } 1253 nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before; 1254 ret = jbd2_fc_wait_bufs(journal, nblks); 1255 if (ret < 0) { 1256 status = EXT4_FC_STATUS_FAILED; 1257 goto fallback; 1258 } 1259 atomic_inc(&sbi->s_fc_subtid); 1260 ret = jbd2_fc_end_commit(journal); 1261 /* 1262 * weight the commit time higher than the average time so we 1263 * don't react too strongly to vast changes in the commit time 1264 */ 1265 commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time)); 1266 ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid); 1267 return ret; 1268 1269 fallback: 1270 ret = jbd2_fc_end_commit_fallback(journal); 1271 ext4_fc_update_stats(sb, status, 0, 0, commit_tid); 1272 return ret; 1273 } 1274 1275 /* 1276 * Fast commit cleanup routine. This is called after every fast commit and 1277 * full commit. full is true if we are called after a full commit. 1278 */ 1279 static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid) 1280 { 1281 struct super_block *sb = journal->j_private; 1282 struct ext4_sb_info *sbi = EXT4_SB(sb); 1283 struct ext4_inode_info *iter, *iter_n; 1284 struct ext4_fc_dentry_update *fc_dentry; 1285 1286 if (full && sbi->s_fc_bh) 1287 sbi->s_fc_bh = NULL; 1288 1289 trace_ext4_fc_cleanup(journal, full, tid); 1290 jbd2_fc_release_bufs(journal); 1291 1292 spin_lock(&sbi->s_fc_lock); 1293 list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN], 1294 i_fc_list) { 1295 list_del_init(&iter->i_fc_list); 1296 ext4_clear_inode_state(&iter->vfs_inode, 1297 EXT4_STATE_FC_COMMITTING); 1298 if (tid_geq(tid, iter->i_sync_tid)) { 1299 ext4_fc_reset_inode(&iter->vfs_inode); 1300 } else if (full) { 1301 /* 1302 * We are called after a full commit, inode has been 1303 * modified while the commit was running. Re-enqueue 1304 * the inode into STAGING, which will then be splice 1305 * back into MAIN. This cannot happen during 1306 * fastcommit because the journal is locked all the 1307 * time in that case (and tid doesn't increase so 1308 * tid check above isn't reliable). 1309 */ 1310 list_add_tail(&EXT4_I(&iter->vfs_inode)->i_fc_list, 1311 &sbi->s_fc_q[FC_Q_STAGING]); 1312 } 1313 /* Make sure EXT4_STATE_FC_COMMITTING bit is clear */ 1314 smp_mb(); 1315 #if (BITS_PER_LONG < 64) 1316 wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING); 1317 #else 1318 wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING); 1319 #endif 1320 } 1321 1322 while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) { 1323 fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN], 1324 struct ext4_fc_dentry_update, 1325 fcd_list); 1326 list_del_init(&fc_dentry->fcd_list); 1327 list_del_init(&fc_dentry->fcd_dilist); 1328 spin_unlock(&sbi->s_fc_lock); 1329 1330 if (fc_dentry->fcd_name.name && 1331 fc_dentry->fcd_name.len > DNAME_INLINE_LEN) 1332 kfree(fc_dentry->fcd_name.name); 1333 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry); 1334 spin_lock(&sbi->s_fc_lock); 1335 } 1336 1337 list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING], 1338 &sbi->s_fc_dentry_q[FC_Q_MAIN]); 1339 list_splice_init(&sbi->s_fc_q[FC_Q_STAGING], 1340 &sbi->s_fc_q[FC_Q_MAIN]); 1341 1342 if (tid_geq(tid, sbi->s_fc_ineligible_tid)) { 1343 sbi->s_fc_ineligible_tid = 0; 1344 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 1345 } 1346 1347 if (full) 1348 sbi->s_fc_bytes = 0; 1349 spin_unlock(&sbi->s_fc_lock); 1350 trace_ext4_fc_stats(sb); 1351 } 1352 1353 /* Ext4 Replay Path Routines */ 1354 1355 /* Helper struct for dentry replay routines */ 1356 struct dentry_info_args { 1357 int parent_ino, dname_len, ino, inode_len; 1358 char *dname; 1359 }; 1360 1361 /* Same as struct ext4_fc_tl, but uses native endianness fields */ 1362 struct ext4_fc_tl_mem { 1363 u16 fc_tag; 1364 u16 fc_len; 1365 }; 1366 1367 static inline void tl_to_darg(struct dentry_info_args *darg, 1368 struct ext4_fc_tl_mem *tl, u8 *val) 1369 { 1370 struct ext4_fc_dentry_info fcd; 1371 1372 memcpy(&fcd, val, sizeof(fcd)); 1373 1374 darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino); 1375 darg->ino = le32_to_cpu(fcd.fc_ino); 1376 darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname); 1377 darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info); 1378 } 1379 1380 static inline void ext4_fc_get_tl(struct ext4_fc_tl_mem *tl, u8 *val) 1381 { 1382 struct ext4_fc_tl tl_disk; 1383 1384 memcpy(&tl_disk, val, EXT4_FC_TAG_BASE_LEN); 1385 tl->fc_len = le16_to_cpu(tl_disk.fc_len); 1386 tl->fc_tag = le16_to_cpu(tl_disk.fc_tag); 1387 } 1388 1389 /* Unlink replay function */ 1390 static int ext4_fc_replay_unlink(struct super_block *sb, 1391 struct ext4_fc_tl_mem *tl, u8 *val) 1392 { 1393 struct inode *inode, *old_parent; 1394 struct qstr entry; 1395 struct dentry_info_args darg; 1396 int ret = 0; 1397 1398 tl_to_darg(&darg, tl, val); 1399 1400 trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino, 1401 darg.parent_ino, darg.dname_len); 1402 1403 entry.name = darg.dname; 1404 entry.len = darg.dname_len; 1405 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); 1406 1407 if (IS_ERR(inode)) { 1408 ext4_debug("Inode %d not found", darg.ino); 1409 return 0; 1410 } 1411 1412 old_parent = ext4_iget(sb, darg.parent_ino, 1413 EXT4_IGET_NORMAL); 1414 if (IS_ERR(old_parent)) { 1415 ext4_debug("Dir with inode %d not found", darg.parent_ino); 1416 iput(inode); 1417 return 0; 1418 } 1419 1420 ret = __ext4_unlink(old_parent, &entry, inode, NULL); 1421 /* -ENOENT ok coz it might not exist anymore. */ 1422 if (ret == -ENOENT) 1423 ret = 0; 1424 iput(old_parent); 1425 iput(inode); 1426 return ret; 1427 } 1428 1429 static int ext4_fc_replay_link_internal(struct super_block *sb, 1430 struct dentry_info_args *darg, 1431 struct inode *inode) 1432 { 1433 struct inode *dir = NULL; 1434 struct dentry *dentry_dir = NULL, *dentry_inode = NULL; 1435 struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len); 1436 int ret = 0; 1437 1438 dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL); 1439 if (IS_ERR(dir)) { 1440 ext4_debug("Dir with inode %d not found.", darg->parent_ino); 1441 dir = NULL; 1442 goto out; 1443 } 1444 1445 dentry_dir = d_obtain_alias(dir); 1446 if (IS_ERR(dentry_dir)) { 1447 ext4_debug("Failed to obtain dentry"); 1448 dentry_dir = NULL; 1449 goto out; 1450 } 1451 1452 dentry_inode = d_alloc(dentry_dir, &qstr_dname); 1453 if (!dentry_inode) { 1454 ext4_debug("Inode dentry not created."); 1455 ret = -ENOMEM; 1456 goto out; 1457 } 1458 1459 ret = __ext4_link(dir, inode, dentry_inode); 1460 /* 1461 * It's possible that link already existed since data blocks 1462 * for the dir in question got persisted before we crashed OR 1463 * we replayed this tag and crashed before the entire replay 1464 * could complete. 1465 */ 1466 if (ret && ret != -EEXIST) { 1467 ext4_debug("Failed to link\n"); 1468 goto out; 1469 } 1470 1471 ret = 0; 1472 out: 1473 if (dentry_dir) { 1474 d_drop(dentry_dir); 1475 dput(dentry_dir); 1476 } else if (dir) { 1477 iput(dir); 1478 } 1479 if (dentry_inode) { 1480 d_drop(dentry_inode); 1481 dput(dentry_inode); 1482 } 1483 1484 return ret; 1485 } 1486 1487 /* Link replay function */ 1488 static int ext4_fc_replay_link(struct super_block *sb, 1489 struct ext4_fc_tl_mem *tl, u8 *val) 1490 { 1491 struct inode *inode; 1492 struct dentry_info_args darg; 1493 int ret = 0; 1494 1495 tl_to_darg(&darg, tl, val); 1496 trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino, 1497 darg.parent_ino, darg.dname_len); 1498 1499 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); 1500 if (IS_ERR(inode)) { 1501 ext4_debug("Inode not found."); 1502 return 0; 1503 } 1504 1505 ret = ext4_fc_replay_link_internal(sb, &darg, inode); 1506 iput(inode); 1507 return ret; 1508 } 1509 1510 /* 1511 * Record all the modified inodes during replay. We use this later to setup 1512 * block bitmaps correctly. 1513 */ 1514 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino) 1515 { 1516 struct ext4_fc_replay_state *state; 1517 int i; 1518 1519 state = &EXT4_SB(sb)->s_fc_replay_state; 1520 for (i = 0; i < state->fc_modified_inodes_used; i++) 1521 if (state->fc_modified_inodes[i] == ino) 1522 return 0; 1523 if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) { 1524 int *fc_modified_inodes; 1525 1526 fc_modified_inodes = krealloc(state->fc_modified_inodes, 1527 sizeof(int) * (state->fc_modified_inodes_size + 1528 EXT4_FC_REPLAY_REALLOC_INCREMENT), 1529 GFP_KERNEL); 1530 if (!fc_modified_inodes) 1531 return -ENOMEM; 1532 state->fc_modified_inodes = fc_modified_inodes; 1533 state->fc_modified_inodes_size += 1534 EXT4_FC_REPLAY_REALLOC_INCREMENT; 1535 } 1536 state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino; 1537 return 0; 1538 } 1539 1540 /* 1541 * Inode replay function 1542 */ 1543 static int ext4_fc_replay_inode(struct super_block *sb, 1544 struct ext4_fc_tl_mem *tl, u8 *val) 1545 { 1546 struct ext4_fc_inode fc_inode; 1547 struct ext4_inode *raw_inode; 1548 struct ext4_inode *raw_fc_inode; 1549 struct inode *inode = NULL; 1550 struct ext4_iloc iloc; 1551 int inode_len, ino, ret, tag = tl->fc_tag; 1552 struct ext4_extent_header *eh; 1553 size_t off_gen = offsetof(struct ext4_inode, i_generation); 1554 1555 memcpy(&fc_inode, val, sizeof(fc_inode)); 1556 1557 ino = le32_to_cpu(fc_inode.fc_ino); 1558 trace_ext4_fc_replay(sb, tag, ino, 0, 0); 1559 1560 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); 1561 if (!IS_ERR(inode)) { 1562 ext4_ext_clear_bb(inode); 1563 iput(inode); 1564 } 1565 inode = NULL; 1566 1567 ret = ext4_fc_record_modified_inode(sb, ino); 1568 if (ret) 1569 goto out; 1570 1571 raw_fc_inode = (struct ext4_inode *) 1572 (val + offsetof(struct ext4_fc_inode, fc_raw_inode)); 1573 ret = ext4_get_fc_inode_loc(sb, ino, &iloc); 1574 if (ret) 1575 goto out; 1576 1577 inode_len = tl->fc_len - sizeof(struct ext4_fc_inode); 1578 raw_inode = ext4_raw_inode(&iloc); 1579 1580 memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block)); 1581 memcpy((u8 *)raw_inode + off_gen, (u8 *)raw_fc_inode + off_gen, 1582 inode_len - off_gen); 1583 if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) { 1584 eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]); 1585 if (eh->eh_magic != EXT4_EXT_MAGIC) { 1586 memset(eh, 0, sizeof(*eh)); 1587 eh->eh_magic = EXT4_EXT_MAGIC; 1588 eh->eh_max = cpu_to_le16( 1589 (sizeof(raw_inode->i_block) - 1590 sizeof(struct ext4_extent_header)) 1591 / sizeof(struct ext4_extent)); 1592 } 1593 } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) { 1594 memcpy(raw_inode->i_block, raw_fc_inode->i_block, 1595 sizeof(raw_inode->i_block)); 1596 } 1597 1598 /* Immediately update the inode on disk. */ 1599 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh); 1600 if (ret) 1601 goto out; 1602 ret = sync_dirty_buffer(iloc.bh); 1603 if (ret) 1604 goto out; 1605 ret = ext4_mark_inode_used(sb, ino); 1606 if (ret) 1607 goto out; 1608 1609 /* Given that we just wrote the inode on disk, this SHOULD succeed. */ 1610 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); 1611 if (IS_ERR(inode)) { 1612 ext4_debug("Inode not found."); 1613 return -EFSCORRUPTED; 1614 } 1615 1616 /* 1617 * Our allocator could have made different decisions than before 1618 * crashing. This should be fixed but until then, we calculate 1619 * the number of blocks the inode. 1620 */ 1621 if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) 1622 ext4_ext_replay_set_iblocks(inode); 1623 1624 inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation); 1625 ext4_reset_inode_seed(inode); 1626 1627 ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode)); 1628 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh); 1629 sync_dirty_buffer(iloc.bh); 1630 brelse(iloc.bh); 1631 out: 1632 iput(inode); 1633 if (!ret) 1634 blkdev_issue_flush(sb->s_bdev); 1635 1636 return 0; 1637 } 1638 1639 /* 1640 * Dentry create replay function. 1641 * 1642 * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the 1643 * inode for which we are trying to create a dentry here, should already have 1644 * been replayed before we start here. 1645 */ 1646 static int ext4_fc_replay_create(struct super_block *sb, 1647 struct ext4_fc_tl_mem *tl, u8 *val) 1648 { 1649 int ret = 0; 1650 struct inode *inode = NULL; 1651 struct inode *dir = NULL; 1652 struct dentry_info_args darg; 1653 1654 tl_to_darg(&darg, tl, val); 1655 1656 trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino, 1657 darg.parent_ino, darg.dname_len); 1658 1659 /* This takes care of update group descriptor and other metadata */ 1660 ret = ext4_mark_inode_used(sb, darg.ino); 1661 if (ret) 1662 goto out; 1663 1664 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); 1665 if (IS_ERR(inode)) { 1666 ext4_debug("inode %d not found.", darg.ino); 1667 inode = NULL; 1668 ret = -EINVAL; 1669 goto out; 1670 } 1671 1672 if (S_ISDIR(inode->i_mode)) { 1673 /* 1674 * If we are creating a directory, we need to make sure that the 1675 * dot and dot dot dirents are setup properly. 1676 */ 1677 dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL); 1678 if (IS_ERR(dir)) { 1679 ext4_debug("Dir %d not found.", darg.ino); 1680 goto out; 1681 } 1682 ret = ext4_init_new_dir(NULL, dir, inode); 1683 iput(dir); 1684 if (ret) { 1685 ret = 0; 1686 goto out; 1687 } 1688 } 1689 ret = ext4_fc_replay_link_internal(sb, &darg, inode); 1690 if (ret) 1691 goto out; 1692 set_nlink(inode, 1); 1693 ext4_mark_inode_dirty(NULL, inode); 1694 out: 1695 iput(inode); 1696 return ret; 1697 } 1698 1699 /* 1700 * Record physical disk regions which are in use as per fast commit area, 1701 * and used by inodes during replay phase. Our simple replay phase 1702 * allocator excludes these regions from allocation. 1703 */ 1704 int ext4_fc_record_regions(struct super_block *sb, int ino, 1705 ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay) 1706 { 1707 struct ext4_fc_replay_state *state; 1708 struct ext4_fc_alloc_region *region; 1709 1710 state = &EXT4_SB(sb)->s_fc_replay_state; 1711 /* 1712 * during replay phase, the fc_regions_valid may not same as 1713 * fc_regions_used, update it when do new additions. 1714 */ 1715 if (replay && state->fc_regions_used != state->fc_regions_valid) 1716 state->fc_regions_used = state->fc_regions_valid; 1717 if (state->fc_regions_used == state->fc_regions_size) { 1718 struct ext4_fc_alloc_region *fc_regions; 1719 1720 fc_regions = krealloc(state->fc_regions, 1721 sizeof(struct ext4_fc_alloc_region) * 1722 (state->fc_regions_size + 1723 EXT4_FC_REPLAY_REALLOC_INCREMENT), 1724 GFP_KERNEL); 1725 if (!fc_regions) 1726 return -ENOMEM; 1727 state->fc_regions_size += 1728 EXT4_FC_REPLAY_REALLOC_INCREMENT; 1729 state->fc_regions = fc_regions; 1730 } 1731 region = &state->fc_regions[state->fc_regions_used++]; 1732 region->ino = ino; 1733 region->lblk = lblk; 1734 region->pblk = pblk; 1735 region->len = len; 1736 1737 if (replay) 1738 state->fc_regions_valid++; 1739 1740 return 0; 1741 } 1742 1743 /* Replay add range tag */ 1744 static int ext4_fc_replay_add_range(struct super_block *sb, 1745 struct ext4_fc_tl_mem *tl, u8 *val) 1746 { 1747 struct ext4_fc_add_range fc_add_ex; 1748 struct ext4_extent newex, *ex; 1749 struct inode *inode; 1750 ext4_lblk_t start, cur; 1751 int remaining, len; 1752 ext4_fsblk_t start_pblk; 1753 struct ext4_map_blocks map; 1754 struct ext4_ext_path *path = NULL; 1755 int ret; 1756 1757 memcpy(&fc_add_ex, val, sizeof(fc_add_ex)); 1758 ex = (struct ext4_extent *)&fc_add_ex.fc_ex; 1759 1760 trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE, 1761 le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block), 1762 ext4_ext_get_actual_len(ex)); 1763 1764 inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL); 1765 if (IS_ERR(inode)) { 1766 ext4_debug("Inode not found."); 1767 return 0; 1768 } 1769 1770 ret = ext4_fc_record_modified_inode(sb, inode->i_ino); 1771 if (ret) 1772 goto out; 1773 1774 start = le32_to_cpu(ex->ee_block); 1775 start_pblk = ext4_ext_pblock(ex); 1776 len = ext4_ext_get_actual_len(ex); 1777 1778 cur = start; 1779 remaining = len; 1780 ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n", 1781 start, start_pblk, len, ext4_ext_is_unwritten(ex), 1782 inode->i_ino); 1783 1784 while (remaining > 0) { 1785 map.m_lblk = cur; 1786 map.m_len = remaining; 1787 map.m_pblk = 0; 1788 ret = ext4_map_blocks(NULL, inode, &map, 0); 1789 1790 if (ret < 0) 1791 goto out; 1792 1793 if (ret == 0) { 1794 /* Range is not mapped */ 1795 path = ext4_find_extent(inode, cur, path, 0); 1796 if (IS_ERR(path)) 1797 goto out; 1798 memset(&newex, 0, sizeof(newex)); 1799 newex.ee_block = cpu_to_le32(cur); 1800 ext4_ext_store_pblock( 1801 &newex, start_pblk + cur - start); 1802 newex.ee_len = cpu_to_le16(map.m_len); 1803 if (ext4_ext_is_unwritten(ex)) 1804 ext4_ext_mark_unwritten(&newex); 1805 down_write(&EXT4_I(inode)->i_data_sem); 1806 path = ext4_ext_insert_extent(NULL, inode, 1807 path, &newex, 0); 1808 up_write((&EXT4_I(inode)->i_data_sem)); 1809 if (IS_ERR(path)) 1810 goto out; 1811 goto next; 1812 } 1813 1814 if (start_pblk + cur - start != map.m_pblk) { 1815 /* 1816 * Logical to physical mapping changed. This can happen 1817 * if this range was removed and then reallocated to 1818 * map to new physical blocks during a fast commit. 1819 */ 1820 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len, 1821 ext4_ext_is_unwritten(ex), 1822 start_pblk + cur - start); 1823 if (ret) 1824 goto out; 1825 /* 1826 * Mark the old blocks as free since they aren't used 1827 * anymore. We maintain an array of all the modified 1828 * inodes. In case these blocks are still used at either 1829 * a different logical range in the same inode or in 1830 * some different inode, we will mark them as allocated 1831 * at the end of the FC replay using our array of 1832 * modified inodes. 1833 */ 1834 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false); 1835 goto next; 1836 } 1837 1838 /* Range is mapped and needs a state change */ 1839 ext4_debug("Converting from %ld to %d %lld", 1840 map.m_flags & EXT4_MAP_UNWRITTEN, 1841 ext4_ext_is_unwritten(ex), map.m_pblk); 1842 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len, 1843 ext4_ext_is_unwritten(ex), map.m_pblk); 1844 if (ret) 1845 goto out; 1846 /* 1847 * We may have split the extent tree while toggling the state. 1848 * Try to shrink the extent tree now. 1849 */ 1850 ext4_ext_replay_shrink_inode(inode, start + len); 1851 next: 1852 cur += map.m_len; 1853 remaining -= map.m_len; 1854 } 1855 ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >> 1856 sb->s_blocksize_bits); 1857 out: 1858 ext4_free_ext_path(path); 1859 iput(inode); 1860 return 0; 1861 } 1862 1863 /* Replay DEL_RANGE tag */ 1864 static int 1865 ext4_fc_replay_del_range(struct super_block *sb, 1866 struct ext4_fc_tl_mem *tl, u8 *val) 1867 { 1868 struct inode *inode; 1869 struct ext4_fc_del_range lrange; 1870 struct ext4_map_blocks map; 1871 ext4_lblk_t cur, remaining; 1872 int ret; 1873 1874 memcpy(&lrange, val, sizeof(lrange)); 1875 cur = le32_to_cpu(lrange.fc_lblk); 1876 remaining = le32_to_cpu(lrange.fc_len); 1877 1878 trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE, 1879 le32_to_cpu(lrange.fc_ino), cur, remaining); 1880 1881 inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL); 1882 if (IS_ERR(inode)) { 1883 ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino)); 1884 return 0; 1885 } 1886 1887 ret = ext4_fc_record_modified_inode(sb, inode->i_ino); 1888 if (ret) 1889 goto out; 1890 1891 ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n", 1892 inode->i_ino, le32_to_cpu(lrange.fc_lblk), 1893 le32_to_cpu(lrange.fc_len)); 1894 while (remaining > 0) { 1895 map.m_lblk = cur; 1896 map.m_len = remaining; 1897 1898 ret = ext4_map_blocks(NULL, inode, &map, 0); 1899 if (ret < 0) 1900 goto out; 1901 if (ret > 0) { 1902 remaining -= ret; 1903 cur += ret; 1904 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false); 1905 } else { 1906 remaining -= map.m_len; 1907 cur += map.m_len; 1908 } 1909 } 1910 1911 down_write(&EXT4_I(inode)->i_data_sem); 1912 ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk), 1913 le32_to_cpu(lrange.fc_lblk) + 1914 le32_to_cpu(lrange.fc_len) - 1); 1915 up_write(&EXT4_I(inode)->i_data_sem); 1916 if (ret) 1917 goto out; 1918 ext4_ext_replay_shrink_inode(inode, 1919 i_size_read(inode) >> sb->s_blocksize_bits); 1920 ext4_mark_inode_dirty(NULL, inode); 1921 out: 1922 iput(inode); 1923 return 0; 1924 } 1925 1926 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb) 1927 { 1928 struct ext4_fc_replay_state *state; 1929 struct inode *inode; 1930 struct ext4_ext_path *path = NULL; 1931 struct ext4_map_blocks map; 1932 int i, ret, j; 1933 ext4_lblk_t cur, end; 1934 1935 state = &EXT4_SB(sb)->s_fc_replay_state; 1936 for (i = 0; i < state->fc_modified_inodes_used; i++) { 1937 inode = ext4_iget(sb, state->fc_modified_inodes[i], 1938 EXT4_IGET_NORMAL); 1939 if (IS_ERR(inode)) { 1940 ext4_debug("Inode %d not found.", 1941 state->fc_modified_inodes[i]); 1942 continue; 1943 } 1944 cur = 0; 1945 end = EXT_MAX_BLOCKS; 1946 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) { 1947 iput(inode); 1948 continue; 1949 } 1950 while (cur < end) { 1951 map.m_lblk = cur; 1952 map.m_len = end - cur; 1953 1954 ret = ext4_map_blocks(NULL, inode, &map, 0); 1955 if (ret < 0) 1956 break; 1957 1958 if (ret > 0) { 1959 path = ext4_find_extent(inode, map.m_lblk, path, 0); 1960 if (!IS_ERR(path)) { 1961 for (j = 0; j < path->p_depth; j++) 1962 ext4_mb_mark_bb(inode->i_sb, 1963 path[j].p_block, 1, true); 1964 } else { 1965 path = NULL; 1966 } 1967 cur += ret; 1968 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, 1969 map.m_len, true); 1970 } else { 1971 cur = cur + (map.m_len ? map.m_len : 1); 1972 } 1973 } 1974 iput(inode); 1975 } 1976 1977 ext4_free_ext_path(path); 1978 } 1979 1980 /* 1981 * Check if block is in excluded regions for block allocation. The simple 1982 * allocator that runs during replay phase is calls this function to see 1983 * if it is okay to use a block. 1984 */ 1985 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk) 1986 { 1987 int i; 1988 struct ext4_fc_replay_state *state; 1989 1990 state = &EXT4_SB(sb)->s_fc_replay_state; 1991 for (i = 0; i < state->fc_regions_valid; i++) { 1992 if (state->fc_regions[i].ino == 0 || 1993 state->fc_regions[i].len == 0) 1994 continue; 1995 if (in_range(blk, state->fc_regions[i].pblk, 1996 state->fc_regions[i].len)) 1997 return true; 1998 } 1999 return false; 2000 } 2001 2002 /* Cleanup function called after replay */ 2003 void ext4_fc_replay_cleanup(struct super_block *sb) 2004 { 2005 struct ext4_sb_info *sbi = EXT4_SB(sb); 2006 2007 sbi->s_mount_state &= ~EXT4_FC_REPLAY; 2008 kfree(sbi->s_fc_replay_state.fc_regions); 2009 kfree(sbi->s_fc_replay_state.fc_modified_inodes); 2010 } 2011 2012 static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi, 2013 int tag, int len) 2014 { 2015 switch (tag) { 2016 case EXT4_FC_TAG_ADD_RANGE: 2017 return len == sizeof(struct ext4_fc_add_range); 2018 case EXT4_FC_TAG_DEL_RANGE: 2019 return len == sizeof(struct ext4_fc_del_range); 2020 case EXT4_FC_TAG_CREAT: 2021 case EXT4_FC_TAG_LINK: 2022 case EXT4_FC_TAG_UNLINK: 2023 len -= sizeof(struct ext4_fc_dentry_info); 2024 return len >= 1 && len <= EXT4_NAME_LEN; 2025 case EXT4_FC_TAG_INODE: 2026 len -= sizeof(struct ext4_fc_inode); 2027 return len >= EXT4_GOOD_OLD_INODE_SIZE && 2028 len <= sbi->s_inode_size; 2029 case EXT4_FC_TAG_PAD: 2030 return true; /* padding can have any length */ 2031 case EXT4_FC_TAG_TAIL: 2032 return len >= sizeof(struct ext4_fc_tail); 2033 case EXT4_FC_TAG_HEAD: 2034 return len == sizeof(struct ext4_fc_head); 2035 } 2036 return false; 2037 } 2038 2039 /* 2040 * Recovery Scan phase handler 2041 * 2042 * This function is called during the scan phase and is responsible 2043 * for doing following things: 2044 * - Make sure the fast commit area has valid tags for replay 2045 * - Count number of tags that need to be replayed by the replay handler 2046 * - Verify CRC 2047 * - Create a list of excluded blocks for allocation during replay phase 2048 * 2049 * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is 2050 * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP 2051 * to indicate that scan has finished and JBD2 can now start replay phase. 2052 * It returns a negative error to indicate that there was an error. At the end 2053 * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set 2054 * to indicate the number of tags that need to replayed during the replay phase. 2055 */ 2056 static int ext4_fc_replay_scan(journal_t *journal, 2057 struct buffer_head *bh, int off, 2058 tid_t expected_tid) 2059 { 2060 struct super_block *sb = journal->j_private; 2061 struct ext4_sb_info *sbi = EXT4_SB(sb); 2062 struct ext4_fc_replay_state *state; 2063 int ret = JBD2_FC_REPLAY_CONTINUE; 2064 struct ext4_fc_add_range ext; 2065 struct ext4_fc_tl_mem tl; 2066 struct ext4_fc_tail tail; 2067 __u8 *start, *end, *cur, *val; 2068 struct ext4_fc_head head; 2069 struct ext4_extent *ex; 2070 2071 state = &sbi->s_fc_replay_state; 2072 2073 start = (u8 *)bh->b_data; 2074 end = start + journal->j_blocksize; 2075 2076 if (state->fc_replay_expected_off == 0) { 2077 state->fc_cur_tag = 0; 2078 state->fc_replay_num_tags = 0; 2079 state->fc_crc = 0; 2080 state->fc_regions = NULL; 2081 state->fc_regions_valid = state->fc_regions_used = 2082 state->fc_regions_size = 0; 2083 /* Check if we can stop early */ 2084 if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag) 2085 != EXT4_FC_TAG_HEAD) 2086 return 0; 2087 } 2088 2089 if (off != state->fc_replay_expected_off) { 2090 ret = -EFSCORRUPTED; 2091 goto out_err; 2092 } 2093 2094 state->fc_replay_expected_off++; 2095 for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN; 2096 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) { 2097 ext4_fc_get_tl(&tl, cur); 2098 val = cur + EXT4_FC_TAG_BASE_LEN; 2099 if (tl.fc_len > end - val || 2100 !ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) { 2101 ret = state->fc_replay_num_tags ? 2102 JBD2_FC_REPLAY_STOP : -ECANCELED; 2103 goto out_err; 2104 } 2105 ext4_debug("Scan phase, tag:%s, blk %lld\n", 2106 tag2str(tl.fc_tag), bh->b_blocknr); 2107 switch (tl.fc_tag) { 2108 case EXT4_FC_TAG_ADD_RANGE: 2109 memcpy(&ext, val, sizeof(ext)); 2110 ex = (struct ext4_extent *)&ext.fc_ex; 2111 ret = ext4_fc_record_regions(sb, 2112 le32_to_cpu(ext.fc_ino), 2113 le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex), 2114 ext4_ext_get_actual_len(ex), 0); 2115 if (ret < 0) 2116 break; 2117 ret = JBD2_FC_REPLAY_CONTINUE; 2118 fallthrough; 2119 case EXT4_FC_TAG_DEL_RANGE: 2120 case EXT4_FC_TAG_LINK: 2121 case EXT4_FC_TAG_UNLINK: 2122 case EXT4_FC_TAG_CREAT: 2123 case EXT4_FC_TAG_INODE: 2124 case EXT4_FC_TAG_PAD: 2125 state->fc_cur_tag++; 2126 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur, 2127 EXT4_FC_TAG_BASE_LEN + tl.fc_len); 2128 break; 2129 case EXT4_FC_TAG_TAIL: 2130 state->fc_cur_tag++; 2131 memcpy(&tail, val, sizeof(tail)); 2132 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur, 2133 EXT4_FC_TAG_BASE_LEN + 2134 offsetof(struct ext4_fc_tail, 2135 fc_crc)); 2136 if (le32_to_cpu(tail.fc_tid) == expected_tid && 2137 le32_to_cpu(tail.fc_crc) == state->fc_crc) { 2138 state->fc_replay_num_tags = state->fc_cur_tag; 2139 state->fc_regions_valid = 2140 state->fc_regions_used; 2141 } else { 2142 ret = state->fc_replay_num_tags ? 2143 JBD2_FC_REPLAY_STOP : -EFSBADCRC; 2144 } 2145 state->fc_crc = 0; 2146 break; 2147 case EXT4_FC_TAG_HEAD: 2148 memcpy(&head, val, sizeof(head)); 2149 if (le32_to_cpu(head.fc_features) & 2150 ~EXT4_FC_SUPPORTED_FEATURES) { 2151 ret = -EOPNOTSUPP; 2152 break; 2153 } 2154 if (le32_to_cpu(head.fc_tid) != expected_tid) { 2155 ret = JBD2_FC_REPLAY_STOP; 2156 break; 2157 } 2158 state->fc_cur_tag++; 2159 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur, 2160 EXT4_FC_TAG_BASE_LEN + tl.fc_len); 2161 break; 2162 default: 2163 ret = state->fc_replay_num_tags ? 2164 JBD2_FC_REPLAY_STOP : -ECANCELED; 2165 } 2166 if (ret < 0 || ret == JBD2_FC_REPLAY_STOP) 2167 break; 2168 } 2169 2170 out_err: 2171 trace_ext4_fc_replay_scan(sb, ret, off); 2172 return ret; 2173 } 2174 2175 /* 2176 * Main recovery path entry point. 2177 * The meaning of return codes is similar as above. 2178 */ 2179 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh, 2180 enum passtype pass, int off, tid_t expected_tid) 2181 { 2182 struct super_block *sb = journal->j_private; 2183 struct ext4_sb_info *sbi = EXT4_SB(sb); 2184 struct ext4_fc_tl_mem tl; 2185 __u8 *start, *end, *cur, *val; 2186 int ret = JBD2_FC_REPLAY_CONTINUE; 2187 struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state; 2188 struct ext4_fc_tail tail; 2189 2190 if (pass == PASS_SCAN) { 2191 state->fc_current_pass = PASS_SCAN; 2192 return ext4_fc_replay_scan(journal, bh, off, expected_tid); 2193 } 2194 2195 if (state->fc_current_pass != pass) { 2196 state->fc_current_pass = pass; 2197 sbi->s_mount_state |= EXT4_FC_REPLAY; 2198 } 2199 if (!sbi->s_fc_replay_state.fc_replay_num_tags) { 2200 ext4_debug("Replay stops\n"); 2201 ext4_fc_set_bitmaps_and_counters(sb); 2202 return 0; 2203 } 2204 2205 #ifdef CONFIG_EXT4_DEBUG 2206 if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) { 2207 pr_warn("Dropping fc block %d because max_replay set\n", off); 2208 return JBD2_FC_REPLAY_STOP; 2209 } 2210 #endif 2211 2212 start = (u8 *)bh->b_data; 2213 end = start + journal->j_blocksize; 2214 2215 for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN; 2216 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) { 2217 ext4_fc_get_tl(&tl, cur); 2218 val = cur + EXT4_FC_TAG_BASE_LEN; 2219 2220 if (state->fc_replay_num_tags == 0) { 2221 ret = JBD2_FC_REPLAY_STOP; 2222 ext4_fc_set_bitmaps_and_counters(sb); 2223 break; 2224 } 2225 2226 ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag)); 2227 state->fc_replay_num_tags--; 2228 switch (tl.fc_tag) { 2229 case EXT4_FC_TAG_LINK: 2230 ret = ext4_fc_replay_link(sb, &tl, val); 2231 break; 2232 case EXT4_FC_TAG_UNLINK: 2233 ret = ext4_fc_replay_unlink(sb, &tl, val); 2234 break; 2235 case EXT4_FC_TAG_ADD_RANGE: 2236 ret = ext4_fc_replay_add_range(sb, &tl, val); 2237 break; 2238 case EXT4_FC_TAG_CREAT: 2239 ret = ext4_fc_replay_create(sb, &tl, val); 2240 break; 2241 case EXT4_FC_TAG_DEL_RANGE: 2242 ret = ext4_fc_replay_del_range(sb, &tl, val); 2243 break; 2244 case EXT4_FC_TAG_INODE: 2245 ret = ext4_fc_replay_inode(sb, &tl, val); 2246 break; 2247 case EXT4_FC_TAG_PAD: 2248 trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0, 2249 tl.fc_len, 0); 2250 break; 2251 case EXT4_FC_TAG_TAIL: 2252 trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL, 2253 0, tl.fc_len, 0); 2254 memcpy(&tail, val, sizeof(tail)); 2255 WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid); 2256 break; 2257 case EXT4_FC_TAG_HEAD: 2258 break; 2259 default: 2260 trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0); 2261 ret = -ECANCELED; 2262 break; 2263 } 2264 if (ret < 0) 2265 break; 2266 ret = JBD2_FC_REPLAY_CONTINUE; 2267 } 2268 return ret; 2269 } 2270 2271 void ext4_fc_init(struct super_block *sb, journal_t *journal) 2272 { 2273 /* 2274 * We set replay callback even if fast commit disabled because we may 2275 * could still have fast commit blocks that need to be replayed even if 2276 * fast commit has now been turned off. 2277 */ 2278 journal->j_fc_replay_callback = ext4_fc_replay; 2279 if (!test_opt2(sb, JOURNAL_FAST_COMMIT)) 2280 return; 2281 journal->j_fc_cleanup_callback = ext4_fc_cleanup; 2282 } 2283 2284 static const char * const fc_ineligible_reasons[] = { 2285 [EXT4_FC_REASON_XATTR] = "Extended attributes changed", 2286 [EXT4_FC_REASON_CROSS_RENAME] = "Cross rename", 2287 [EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed", 2288 [EXT4_FC_REASON_NOMEM] = "Insufficient memory", 2289 [EXT4_FC_REASON_SWAP_BOOT] = "Swap boot", 2290 [EXT4_FC_REASON_RESIZE] = "Resize", 2291 [EXT4_FC_REASON_RENAME_DIR] = "Dir renamed", 2292 [EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op", 2293 [EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling", 2294 [EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename", 2295 }; 2296 2297 int ext4_fc_info_show(struct seq_file *seq, void *v) 2298 { 2299 struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private); 2300 struct ext4_fc_stats *stats = &sbi->s_fc_stats; 2301 int i; 2302 2303 if (v != SEQ_START_TOKEN) 2304 return 0; 2305 2306 seq_printf(seq, 2307 "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n", 2308 stats->fc_num_commits, stats->fc_ineligible_commits, 2309 stats->fc_numblks, 2310 div_u64(stats->s_fc_avg_commit_time, 1000)); 2311 seq_puts(seq, "Ineligible reasons:\n"); 2312 for (i = 0; i < EXT4_FC_REASON_MAX; i++) 2313 seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i], 2314 stats->fc_ineligible_reason_count[i]); 2315 2316 return 0; 2317 } 2318 2319 int __init ext4_fc_init_dentry_cache(void) 2320 { 2321 ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update, 2322 SLAB_RECLAIM_ACCOUNT); 2323 2324 if (ext4_fc_dentry_cachep == NULL) 2325 return -ENOMEM; 2326 2327 return 0; 2328 } 2329 2330 void ext4_fc_destroy_dentry_cache(void) 2331 { 2332 kmem_cache_destroy(ext4_fc_dentry_cachep); 2333 } 2334