1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * fs/ext4/fast_commit.c 5 * 6 * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com> 7 * 8 * Ext4 fast commits routines. 9 */ 10 #include "ext4.h" 11 #include "ext4_jbd2.h" 12 #include "ext4_extents.h" 13 #include "mballoc.h" 14 15 /* 16 * Ext4 Fast Commits 17 * ----------------- 18 * 19 * Ext4 fast commits implement fine grained journalling for Ext4. 20 * 21 * Fast commits are organized as a log of tag-length-value (TLV) structs. (See 22 * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by 23 * TLV during the recovery phase. For the scenarios for which we currently 24 * don't have replay code, fast commit falls back to full commits. 25 * Fast commits record delta in one of the following three categories. 26 * 27 * (A) Directory entry updates: 28 * 29 * - EXT4_FC_TAG_UNLINK - records directory entry unlink 30 * - EXT4_FC_TAG_LINK - records directory entry link 31 * - EXT4_FC_TAG_CREAT - records inode and directory entry creation 32 * 33 * (B) File specific data range updates: 34 * 35 * - EXT4_FC_TAG_ADD_RANGE - records addition of new blocks to an inode 36 * - EXT4_FC_TAG_DEL_RANGE - records deletion of blocks from an inode 37 * 38 * (C) Inode metadata (mtime / ctime etc): 39 * 40 * - EXT4_FC_TAG_INODE - record the inode that should be replayed 41 * during recovery. Note that iblocks field is 42 * not replayed and instead derived during 43 * replay. 44 * Commit Operation 45 * ---------------- 46 * With fast commits, we maintain all the directory entry operations in the 47 * order in which they are issued in an in-memory queue. This queue is flushed 48 * to disk during the commit operation. We also maintain a list of inodes 49 * that need to be committed during a fast commit in another in memory queue of 50 * inodes. During the commit operation, we commit in the following order: 51 * 52 * [1] Lock inodes for any further data updates by setting COMMITTING state 53 * [2] Submit data buffers of all the inodes 54 * [3] Wait for [2] to complete 55 * [4] Commit all the directory entry updates in the fast commit space 56 * [5] Commit all the changed inode structures 57 * [6] Write tail tag (this tag ensures the atomicity, please read the following 58 * section for more details). 59 * [7] Wait for [4], [5] and [6] to complete. 60 * 61 * All the inode updates must call ext4_fc_start_update() before starting an 62 * update. If such an ongoing update is present, fast commit waits for it to 63 * complete. The completion of such an update is marked by 64 * ext4_fc_stop_update(). 65 * 66 * Fast Commit Ineligibility 67 * ------------------------- 68 * 69 * Not all operations are supported by fast commits today (e.g extended 70 * attributes). Fast commit ineligibility is marked by calling 71 * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back 72 * to full commit. 73 * 74 * Atomicity of commits 75 * -------------------- 76 * In order to guarantee atomicity during the commit operation, fast commit 77 * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail 78 * tag contains CRC of the contents and TID of the transaction after which 79 * this fast commit should be applied. Recovery code replays fast commit 80 * logs only if there's at least 1 valid tail present. For every fast commit 81 * operation, there is 1 tail. This means, we may end up with multiple tails 82 * in the fast commit space. Here's an example: 83 * 84 * - Create a new file A and remove existing file B 85 * - fsync() 86 * - Append contents to file A 87 * - Truncate file A 88 * - fsync() 89 * 90 * The fast commit space at the end of above operations would look like this: 91 * [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL] 92 * |<--- Fast Commit 1 --->|<--- Fast Commit 2 ---->| 93 * 94 * Replay code should thus check for all the valid tails in the FC area. 95 * 96 * Fast Commit Replay Idempotence 97 * ------------------------------ 98 * 99 * Fast commits tags are idempotent in nature provided the recovery code follows 100 * certain rules. The guiding principle that the commit path follows while 101 * committing is that it stores the result of a particular operation instead of 102 * storing the procedure. 103 * 104 * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a' 105 * was associated with inode 10. During fast commit, instead of storing this 106 * operation as a procedure "rename a to b", we store the resulting file system 107 * state as a "series" of outcomes: 108 * 109 * - Link dirent b to inode 10 110 * - Unlink dirent a 111 * - Inode <10> with valid refcount 112 * 113 * Now when recovery code runs, it needs "enforce" this state on the file 114 * system. This is what guarantees idempotence of fast commit replay. 115 * 116 * Let's take an example of a procedure that is not idempotent and see how fast 117 * commits make it idempotent. Consider following sequence of operations: 118 * 119 * rm A; mv B A; read A 120 * (x) (y) (z) 121 * 122 * (x), (y) and (z) are the points at which we can crash. If we store this 123 * sequence of operations as is then the replay is not idempotent. Let's say 124 * while in replay, we crash at (z). During the second replay, file A (which was 125 * actually created as a result of "mv B A" operation) would get deleted. Thus, 126 * file named A would be absent when we try to read A. So, this sequence of 127 * operations is not idempotent. However, as mentioned above, instead of storing 128 * the procedure fast commits store the outcome of each procedure. Thus the fast 129 * commit log for above procedure would be as follows: 130 * 131 * (Let's assume dirent A was linked to inode 10 and dirent B was linked to 132 * inode 11 before the replay) 133 * 134 * [Unlink A] [Link A to inode 11] [Unlink B] [Inode 11] 135 * (w) (x) (y) (z) 136 * 137 * If we crash at (z), we will have file A linked to inode 11. During the second 138 * replay, we will remove file A (inode 11). But we will create it back and make 139 * it point to inode 11. We won't find B, so we'll just skip that step. At this 140 * point, the refcount for inode 11 is not reliable, but that gets fixed by the 141 * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled 142 * similarly. Thus, by converting a non-idempotent procedure into a series of 143 * idempotent outcomes, fast commits ensured idempotence during the replay. 144 * 145 * TODOs 146 * ----- 147 * 148 * 0) Fast commit replay path hardening: Fast commit replay code should use 149 * journal handles to make sure all the updates it does during the replay 150 * path are atomic. With that if we crash during fast commit replay, after 151 * trying to do recovery again, we will find a file system where fast commit 152 * area is invalid (because new full commit would be found). In order to deal 153 * with that, fast commit replay code should ensure that the "FC_REPLAY" 154 * superblock state is persisted before starting the replay, so that after 155 * the crash, fast commit recovery code can look at that flag and perform 156 * fast commit recovery even if that area is invalidated by later full 157 * commits. 158 * 159 * 1) Fast commit's commit path locks the entire file system during fast 160 * commit. This has significant performance penalty. Instead of that, we 161 * should use ext4_fc_start/stop_update functions to start inode level 162 * updates from ext4_journal_start/stop. Once we do that we can drop file 163 * system locking during commit path. 164 * 165 * 2) Handle more ineligible cases. 166 */ 167 168 #include <trace/events/ext4.h> 169 static struct kmem_cache *ext4_fc_dentry_cachep; 170 171 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate) 172 { 173 BUFFER_TRACE(bh, ""); 174 if (uptodate) { 175 ext4_debug("%s: Block %lld up-to-date", 176 __func__, bh->b_blocknr); 177 set_buffer_uptodate(bh); 178 } else { 179 ext4_debug("%s: Block %lld not up-to-date", 180 __func__, bh->b_blocknr); 181 clear_buffer_uptodate(bh); 182 } 183 184 unlock_buffer(bh); 185 } 186 187 static inline void ext4_fc_reset_inode(struct inode *inode) 188 { 189 struct ext4_inode_info *ei = EXT4_I(inode); 190 191 ei->i_fc_lblk_start = 0; 192 ei->i_fc_lblk_len = 0; 193 } 194 195 void ext4_fc_init_inode(struct inode *inode) 196 { 197 struct ext4_inode_info *ei = EXT4_I(inode); 198 199 ext4_fc_reset_inode(inode); 200 ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING); 201 INIT_LIST_HEAD(&ei->i_fc_list); 202 INIT_LIST_HEAD(&ei->i_fc_dilist); 203 init_waitqueue_head(&ei->i_fc_wait); 204 atomic_set(&ei->i_fc_updates, 0); 205 } 206 207 /* This function must be called with sbi->s_fc_lock held. */ 208 static void ext4_fc_wait_committing_inode(struct inode *inode) 209 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock) 210 { 211 wait_queue_head_t *wq; 212 struct ext4_inode_info *ei = EXT4_I(inode); 213 214 #if (BITS_PER_LONG < 64) 215 DEFINE_WAIT_BIT(wait, &ei->i_state_flags, 216 EXT4_STATE_FC_COMMITTING); 217 wq = bit_waitqueue(&ei->i_state_flags, 218 EXT4_STATE_FC_COMMITTING); 219 #else 220 DEFINE_WAIT_BIT(wait, &ei->i_flags, 221 EXT4_STATE_FC_COMMITTING); 222 wq = bit_waitqueue(&ei->i_flags, 223 EXT4_STATE_FC_COMMITTING); 224 #endif 225 lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock); 226 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 227 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock); 228 schedule(); 229 finish_wait(wq, &wait.wq_entry); 230 } 231 232 static bool ext4_fc_disabled(struct super_block *sb) 233 { 234 return (!test_opt2(sb, JOURNAL_FAST_COMMIT) || 235 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)); 236 } 237 238 /* 239 * Inform Ext4's fast about start of an inode update 240 * 241 * This function is called by the high level call VFS callbacks before 242 * performing any inode update. This function blocks if there's an ongoing 243 * fast commit on the inode in question. 244 */ 245 void ext4_fc_start_update(struct inode *inode) 246 { 247 struct ext4_inode_info *ei = EXT4_I(inode); 248 249 if (ext4_fc_disabled(inode->i_sb)) 250 return; 251 252 restart: 253 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock); 254 if (list_empty(&ei->i_fc_list)) 255 goto out; 256 257 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) { 258 ext4_fc_wait_committing_inode(inode); 259 goto restart; 260 } 261 out: 262 atomic_inc(&ei->i_fc_updates); 263 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock); 264 } 265 266 /* 267 * Stop inode update and wake up waiting fast commits if any. 268 */ 269 void ext4_fc_stop_update(struct inode *inode) 270 { 271 struct ext4_inode_info *ei = EXT4_I(inode); 272 273 if (ext4_fc_disabled(inode->i_sb)) 274 return; 275 276 if (atomic_dec_and_test(&ei->i_fc_updates)) 277 wake_up_all(&ei->i_fc_wait); 278 } 279 280 /* 281 * Remove inode from fast commit list. If the inode is being committed 282 * we wait until inode commit is done. 283 */ 284 void ext4_fc_del(struct inode *inode) 285 { 286 struct ext4_inode_info *ei = EXT4_I(inode); 287 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 288 struct ext4_fc_dentry_update *fc_dentry; 289 290 if (ext4_fc_disabled(inode->i_sb)) 291 return; 292 293 restart: 294 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock); 295 if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) { 296 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock); 297 return; 298 } 299 300 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) { 301 ext4_fc_wait_committing_inode(inode); 302 goto restart; 303 } 304 305 if (!list_empty(&ei->i_fc_list)) 306 list_del_init(&ei->i_fc_list); 307 308 /* 309 * Since this inode is getting removed, let's also remove all FC 310 * dentry create references, since it is not needed to log it anyways. 311 */ 312 if (list_empty(&ei->i_fc_dilist)) { 313 spin_unlock(&sbi->s_fc_lock); 314 return; 315 } 316 317 fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist); 318 WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT); 319 list_del_init(&fc_dentry->fcd_list); 320 list_del_init(&fc_dentry->fcd_dilist); 321 322 WARN_ON(!list_empty(&ei->i_fc_dilist)); 323 spin_unlock(&sbi->s_fc_lock); 324 325 if (fc_dentry->fcd_name.name && 326 fc_dentry->fcd_name.len > DNAME_INLINE_LEN) 327 kfree(fc_dentry->fcd_name.name); 328 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry); 329 330 return; 331 } 332 333 /* 334 * Mark file system as fast commit ineligible, and record latest 335 * ineligible transaction tid. This means until the recorded 336 * transaction, commit operation would result in a full jbd2 commit. 337 */ 338 void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle) 339 { 340 struct ext4_sb_info *sbi = EXT4_SB(sb); 341 tid_t tid; 342 343 if (ext4_fc_disabled(sb)) 344 return; 345 346 ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 347 if (handle && !IS_ERR(handle)) 348 tid = handle->h_transaction->t_tid; 349 else { 350 read_lock(&sbi->s_journal->j_state_lock); 351 tid = sbi->s_journal->j_running_transaction ? 352 sbi->s_journal->j_running_transaction->t_tid : 0; 353 read_unlock(&sbi->s_journal->j_state_lock); 354 } 355 spin_lock(&sbi->s_fc_lock); 356 if (sbi->s_fc_ineligible_tid < tid) 357 sbi->s_fc_ineligible_tid = tid; 358 spin_unlock(&sbi->s_fc_lock); 359 WARN_ON(reason >= EXT4_FC_REASON_MAX); 360 sbi->s_fc_stats.fc_ineligible_reason_count[reason]++; 361 } 362 363 /* 364 * Generic fast commit tracking function. If this is the first time this we are 365 * called after a full commit, we initialize fast commit fields and then call 366 * __fc_track_fn() with update = 0. If we have already been called after a full 367 * commit, we pass update = 1. Based on that, the track function can determine 368 * if it needs to track a field for the first time or if it needs to just 369 * update the previously tracked value. 370 * 371 * If enqueue is set, this function enqueues the inode in fast commit list. 372 */ 373 static int ext4_fc_track_template( 374 handle_t *handle, struct inode *inode, 375 int (*__fc_track_fn)(struct inode *, void *, bool), 376 void *args, int enqueue) 377 { 378 bool update = false; 379 struct ext4_inode_info *ei = EXT4_I(inode); 380 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 381 tid_t tid = 0; 382 int ret; 383 384 tid = handle->h_transaction->t_tid; 385 mutex_lock(&ei->i_fc_lock); 386 if (tid == ei->i_sync_tid) { 387 update = true; 388 } else { 389 ext4_fc_reset_inode(inode); 390 ei->i_sync_tid = tid; 391 } 392 ret = __fc_track_fn(inode, args, update); 393 mutex_unlock(&ei->i_fc_lock); 394 395 if (!enqueue) 396 return ret; 397 398 spin_lock(&sbi->s_fc_lock); 399 if (list_empty(&EXT4_I(inode)->i_fc_list)) 400 list_add_tail(&EXT4_I(inode)->i_fc_list, 401 (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING || 402 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ? 403 &sbi->s_fc_q[FC_Q_STAGING] : 404 &sbi->s_fc_q[FC_Q_MAIN]); 405 spin_unlock(&sbi->s_fc_lock); 406 407 return ret; 408 } 409 410 struct __track_dentry_update_args { 411 struct dentry *dentry; 412 int op; 413 }; 414 415 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */ 416 static int __track_dentry_update(struct inode *inode, void *arg, bool update) 417 { 418 struct ext4_fc_dentry_update *node; 419 struct ext4_inode_info *ei = EXT4_I(inode); 420 struct __track_dentry_update_args *dentry_update = 421 (struct __track_dentry_update_args *)arg; 422 struct dentry *dentry = dentry_update->dentry; 423 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 424 425 mutex_unlock(&ei->i_fc_lock); 426 node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS); 427 if (!node) { 428 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL); 429 mutex_lock(&ei->i_fc_lock); 430 return -ENOMEM; 431 } 432 433 node->fcd_op = dentry_update->op; 434 node->fcd_parent = dentry->d_parent->d_inode->i_ino; 435 node->fcd_ino = inode->i_ino; 436 if (dentry->d_name.len > DNAME_INLINE_LEN) { 437 node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS); 438 if (!node->fcd_name.name) { 439 kmem_cache_free(ext4_fc_dentry_cachep, node); 440 ext4_fc_mark_ineligible(inode->i_sb, 441 EXT4_FC_REASON_NOMEM, NULL); 442 mutex_lock(&ei->i_fc_lock); 443 return -ENOMEM; 444 } 445 memcpy((u8 *)node->fcd_name.name, dentry->d_name.name, 446 dentry->d_name.len); 447 } else { 448 memcpy(node->fcd_iname, dentry->d_name.name, 449 dentry->d_name.len); 450 node->fcd_name.name = node->fcd_iname; 451 } 452 node->fcd_name.len = dentry->d_name.len; 453 INIT_LIST_HEAD(&node->fcd_dilist); 454 spin_lock(&sbi->s_fc_lock); 455 if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING || 456 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) 457 list_add_tail(&node->fcd_list, 458 &sbi->s_fc_dentry_q[FC_Q_STAGING]); 459 else 460 list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]); 461 462 /* 463 * This helps us keep a track of all fc_dentry updates which is part of 464 * this ext4 inode. So in case the inode is getting unlinked, before 465 * even we get a chance to fsync, we could remove all fc_dentry 466 * references while evicting the inode in ext4_fc_del(). 467 * Also with this, we don't need to loop over all the inodes in 468 * sbi->s_fc_q to get the corresponding inode in 469 * ext4_fc_commit_dentry_updates(). 470 */ 471 if (dentry_update->op == EXT4_FC_TAG_CREAT) { 472 WARN_ON(!list_empty(&ei->i_fc_dilist)); 473 list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist); 474 } 475 spin_unlock(&sbi->s_fc_lock); 476 mutex_lock(&ei->i_fc_lock); 477 478 return 0; 479 } 480 481 void __ext4_fc_track_unlink(handle_t *handle, 482 struct inode *inode, struct dentry *dentry) 483 { 484 struct __track_dentry_update_args args; 485 int ret; 486 487 args.dentry = dentry; 488 args.op = EXT4_FC_TAG_UNLINK; 489 490 ret = ext4_fc_track_template(handle, inode, __track_dentry_update, 491 (void *)&args, 0); 492 trace_ext4_fc_track_unlink(handle, inode, dentry, ret); 493 } 494 495 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry) 496 { 497 struct inode *inode = d_inode(dentry); 498 499 if (ext4_fc_disabled(inode->i_sb)) 500 return; 501 502 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 503 return; 504 505 __ext4_fc_track_unlink(handle, inode, dentry); 506 } 507 508 void __ext4_fc_track_link(handle_t *handle, 509 struct inode *inode, struct dentry *dentry) 510 { 511 struct __track_dentry_update_args args; 512 int ret; 513 514 args.dentry = dentry; 515 args.op = EXT4_FC_TAG_LINK; 516 517 ret = ext4_fc_track_template(handle, inode, __track_dentry_update, 518 (void *)&args, 0); 519 trace_ext4_fc_track_link(handle, inode, dentry, ret); 520 } 521 522 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry) 523 { 524 struct inode *inode = d_inode(dentry); 525 526 if (ext4_fc_disabled(inode->i_sb)) 527 return; 528 529 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 530 return; 531 532 __ext4_fc_track_link(handle, inode, dentry); 533 } 534 535 void __ext4_fc_track_create(handle_t *handle, struct inode *inode, 536 struct dentry *dentry) 537 { 538 struct __track_dentry_update_args args; 539 int ret; 540 541 args.dentry = dentry; 542 args.op = EXT4_FC_TAG_CREAT; 543 544 ret = ext4_fc_track_template(handle, inode, __track_dentry_update, 545 (void *)&args, 0); 546 trace_ext4_fc_track_create(handle, inode, dentry, ret); 547 } 548 549 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry) 550 { 551 struct inode *inode = d_inode(dentry); 552 553 if (ext4_fc_disabled(inode->i_sb)) 554 return; 555 556 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 557 return; 558 559 __ext4_fc_track_create(handle, inode, dentry); 560 } 561 562 /* __track_fn for inode tracking */ 563 static int __track_inode(struct inode *inode, void *arg, bool update) 564 { 565 if (update) 566 return -EEXIST; 567 568 EXT4_I(inode)->i_fc_lblk_len = 0; 569 570 return 0; 571 } 572 573 void ext4_fc_track_inode(handle_t *handle, struct inode *inode) 574 { 575 int ret; 576 577 if (S_ISDIR(inode->i_mode)) 578 return; 579 580 if (ext4_fc_disabled(inode->i_sb)) 581 return; 582 583 if (ext4_should_journal_data(inode)) { 584 ext4_fc_mark_ineligible(inode->i_sb, 585 EXT4_FC_REASON_INODE_JOURNAL_DATA, handle); 586 return; 587 } 588 589 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 590 return; 591 592 ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1); 593 trace_ext4_fc_track_inode(handle, inode, ret); 594 } 595 596 struct __track_range_args { 597 ext4_lblk_t start, end; 598 }; 599 600 /* __track_fn for tracking data updates */ 601 static int __track_range(struct inode *inode, void *arg, bool update) 602 { 603 struct ext4_inode_info *ei = EXT4_I(inode); 604 ext4_lblk_t oldstart; 605 struct __track_range_args *__arg = 606 (struct __track_range_args *)arg; 607 608 if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) { 609 ext4_debug("Special inode %ld being modified\n", inode->i_ino); 610 return -ECANCELED; 611 } 612 613 oldstart = ei->i_fc_lblk_start; 614 615 if (update && ei->i_fc_lblk_len > 0) { 616 ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start); 617 ei->i_fc_lblk_len = 618 max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) - 619 ei->i_fc_lblk_start + 1; 620 } else { 621 ei->i_fc_lblk_start = __arg->start; 622 ei->i_fc_lblk_len = __arg->end - __arg->start + 1; 623 } 624 625 return 0; 626 } 627 628 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start, 629 ext4_lblk_t end) 630 { 631 struct __track_range_args args; 632 int ret; 633 634 if (S_ISDIR(inode->i_mode)) 635 return; 636 637 if (ext4_fc_disabled(inode->i_sb)) 638 return; 639 640 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 641 return; 642 643 args.start = start; 644 args.end = end; 645 646 ret = ext4_fc_track_template(handle, inode, __track_range, &args, 1); 647 648 trace_ext4_fc_track_range(handle, inode, start, end, ret); 649 } 650 651 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail) 652 { 653 blk_opf_t write_flags = REQ_SYNC; 654 struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh; 655 656 /* Add REQ_FUA | REQ_PREFLUSH only its tail */ 657 if (test_opt(sb, BARRIER) && is_tail) 658 write_flags |= REQ_FUA | REQ_PREFLUSH; 659 lock_buffer(bh); 660 set_buffer_dirty(bh); 661 set_buffer_uptodate(bh); 662 bh->b_end_io = ext4_end_buffer_io_sync; 663 submit_bh(REQ_OP_WRITE | write_flags, bh); 664 EXT4_SB(sb)->s_fc_bh = NULL; 665 } 666 667 /* Ext4 commit path routines */ 668 669 /* memzero and update CRC */ 670 static void *ext4_fc_memzero(struct super_block *sb, void *dst, int len, 671 u32 *crc) 672 { 673 void *ret; 674 675 ret = memset(dst, 0, len); 676 if (crc) 677 *crc = ext4_chksum(EXT4_SB(sb), *crc, dst, len); 678 return ret; 679 } 680 681 /* 682 * Allocate len bytes on a fast commit buffer. 683 * 684 * During the commit time this function is used to manage fast commit 685 * block space. We don't split a fast commit log onto different 686 * blocks. So this function makes sure that if there's not enough space 687 * on the current block, the remaining space in the current block is 688 * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case, 689 * new block is from jbd2 and CRC is updated to reflect the padding 690 * we added. 691 */ 692 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc) 693 { 694 struct ext4_fc_tl *tl; 695 struct ext4_sb_info *sbi = EXT4_SB(sb); 696 struct buffer_head *bh; 697 int bsize = sbi->s_journal->j_blocksize; 698 int ret, off = sbi->s_fc_bytes % bsize; 699 int pad_len; 700 701 /* 702 * After allocating len, we should have space at least for a 0 byte 703 * padding. 704 */ 705 if (len + EXT4_FC_TAG_BASE_LEN > bsize) 706 return NULL; 707 708 if (bsize - off - 1 > len + EXT4_FC_TAG_BASE_LEN) { 709 /* 710 * Only allocate from current buffer if we have enough space for 711 * this request AND we have space to add a zero byte padding. 712 */ 713 if (!sbi->s_fc_bh) { 714 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh); 715 if (ret) 716 return NULL; 717 sbi->s_fc_bh = bh; 718 } 719 sbi->s_fc_bytes += len; 720 return sbi->s_fc_bh->b_data + off; 721 } 722 /* Need to add PAD tag */ 723 tl = (struct ext4_fc_tl *)(sbi->s_fc_bh->b_data + off); 724 tl->fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD); 725 pad_len = bsize - off - 1 - EXT4_FC_TAG_BASE_LEN; 726 tl->fc_len = cpu_to_le16(pad_len); 727 if (crc) 728 *crc = ext4_chksum(sbi, *crc, tl, EXT4_FC_TAG_BASE_LEN); 729 if (pad_len > 0) 730 ext4_fc_memzero(sb, tl + 1, pad_len, crc); 731 ext4_fc_submit_bh(sb, false); 732 733 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh); 734 if (ret) 735 return NULL; 736 sbi->s_fc_bh = bh; 737 sbi->s_fc_bytes = (sbi->s_fc_bytes / bsize + 1) * bsize + len; 738 return sbi->s_fc_bh->b_data; 739 } 740 741 /* memcpy to fc reserved space and update CRC */ 742 static void *ext4_fc_memcpy(struct super_block *sb, void *dst, const void *src, 743 int len, u32 *crc) 744 { 745 if (crc) 746 *crc = ext4_chksum(EXT4_SB(sb), *crc, src, len); 747 return memcpy(dst, src, len); 748 } 749 750 /* 751 * Complete a fast commit by writing tail tag. 752 * 753 * Writing tail tag marks the end of a fast commit. In order to guarantee 754 * atomicity, after writing tail tag, even if there's space remaining 755 * in the block, next commit shouldn't use it. That's why tail tag 756 * has the length as that of the remaining space on the block. 757 */ 758 static int ext4_fc_write_tail(struct super_block *sb, u32 crc) 759 { 760 struct ext4_sb_info *sbi = EXT4_SB(sb); 761 struct ext4_fc_tl tl; 762 struct ext4_fc_tail tail; 763 int off, bsize = sbi->s_journal->j_blocksize; 764 u8 *dst; 765 766 /* 767 * ext4_fc_reserve_space takes care of allocating an extra block if 768 * there's no enough space on this block for accommodating this tail. 769 */ 770 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc); 771 if (!dst) 772 return -ENOSPC; 773 774 off = sbi->s_fc_bytes % bsize; 775 776 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL); 777 tl.fc_len = cpu_to_le16(bsize - off - 1 + sizeof(struct ext4_fc_tail)); 778 sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize); 779 780 ext4_fc_memcpy(sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, &crc); 781 dst += EXT4_FC_TAG_BASE_LEN; 782 tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid); 783 ext4_fc_memcpy(sb, dst, &tail.fc_tid, sizeof(tail.fc_tid), &crc); 784 dst += sizeof(tail.fc_tid); 785 tail.fc_crc = cpu_to_le32(crc); 786 ext4_fc_memcpy(sb, dst, &tail.fc_crc, sizeof(tail.fc_crc), NULL); 787 788 ext4_fc_submit_bh(sb, true); 789 790 return 0; 791 } 792 793 /* 794 * Adds tag, length, value and updates CRC. Returns true if tlv was added. 795 * Returns false if there's not enough space. 796 */ 797 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val, 798 u32 *crc) 799 { 800 struct ext4_fc_tl tl; 801 u8 *dst; 802 803 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc); 804 if (!dst) 805 return false; 806 807 tl.fc_tag = cpu_to_le16(tag); 808 tl.fc_len = cpu_to_le16(len); 809 810 ext4_fc_memcpy(sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, crc); 811 ext4_fc_memcpy(sb, dst + EXT4_FC_TAG_BASE_LEN, val, len, crc); 812 813 return true; 814 } 815 816 /* Same as above, but adds dentry tlv. */ 817 static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc, 818 struct ext4_fc_dentry_update *fc_dentry) 819 { 820 struct ext4_fc_dentry_info fcd; 821 struct ext4_fc_tl tl; 822 int dlen = fc_dentry->fcd_name.len; 823 u8 *dst = ext4_fc_reserve_space(sb, 824 EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc); 825 826 if (!dst) 827 return false; 828 829 fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent); 830 fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino); 831 tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op); 832 tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen); 833 ext4_fc_memcpy(sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, crc); 834 dst += EXT4_FC_TAG_BASE_LEN; 835 ext4_fc_memcpy(sb, dst, &fcd, sizeof(fcd), crc); 836 dst += sizeof(fcd); 837 ext4_fc_memcpy(sb, dst, fc_dentry->fcd_name.name, dlen, crc); 838 839 return true; 840 } 841 842 /* 843 * Writes inode in the fast commit space under TLV with tag @tag. 844 * Returns 0 on success, error on failure. 845 */ 846 static int ext4_fc_write_inode(struct inode *inode, u32 *crc) 847 { 848 struct ext4_inode_info *ei = EXT4_I(inode); 849 int inode_len = EXT4_GOOD_OLD_INODE_SIZE; 850 int ret; 851 struct ext4_iloc iloc; 852 struct ext4_fc_inode fc_inode; 853 struct ext4_fc_tl tl; 854 u8 *dst; 855 856 ret = ext4_get_inode_loc(inode, &iloc); 857 if (ret) 858 return ret; 859 860 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) 861 inode_len = EXT4_INODE_SIZE(inode->i_sb); 862 else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) 863 inode_len += ei->i_extra_isize; 864 865 fc_inode.fc_ino = cpu_to_le32(inode->i_ino); 866 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE); 867 tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino)); 868 869 ret = -ECANCELED; 870 dst = ext4_fc_reserve_space(inode->i_sb, 871 EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc); 872 if (!dst) 873 goto err; 874 875 if (!ext4_fc_memcpy(inode->i_sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, crc)) 876 goto err; 877 dst += EXT4_FC_TAG_BASE_LEN; 878 if (!ext4_fc_memcpy(inode->i_sb, dst, &fc_inode, sizeof(fc_inode), crc)) 879 goto err; 880 dst += sizeof(fc_inode); 881 if (!ext4_fc_memcpy(inode->i_sb, dst, (u8 *)ext4_raw_inode(&iloc), 882 inode_len, crc)) 883 goto err; 884 ret = 0; 885 err: 886 brelse(iloc.bh); 887 return ret; 888 } 889 890 /* 891 * Writes updated data ranges for the inode in question. Updates CRC. 892 * Returns 0 on success, error otherwise. 893 */ 894 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc) 895 { 896 ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size; 897 struct ext4_inode_info *ei = EXT4_I(inode); 898 struct ext4_map_blocks map; 899 struct ext4_fc_add_range fc_ext; 900 struct ext4_fc_del_range lrange; 901 struct ext4_extent *ex; 902 int ret; 903 904 mutex_lock(&ei->i_fc_lock); 905 if (ei->i_fc_lblk_len == 0) { 906 mutex_unlock(&ei->i_fc_lock); 907 return 0; 908 } 909 old_blk_size = ei->i_fc_lblk_start; 910 new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1; 911 ei->i_fc_lblk_len = 0; 912 mutex_unlock(&ei->i_fc_lock); 913 914 cur_lblk_off = old_blk_size; 915 ext4_debug("will try writing %d to %d for inode %ld\n", 916 cur_lblk_off, new_blk_size, inode->i_ino); 917 918 while (cur_lblk_off <= new_blk_size) { 919 map.m_lblk = cur_lblk_off; 920 map.m_len = new_blk_size - cur_lblk_off + 1; 921 ret = ext4_map_blocks(NULL, inode, &map, 0); 922 if (ret < 0) 923 return -ECANCELED; 924 925 if (map.m_len == 0) { 926 cur_lblk_off++; 927 continue; 928 } 929 930 if (ret == 0) { 931 lrange.fc_ino = cpu_to_le32(inode->i_ino); 932 lrange.fc_lblk = cpu_to_le32(map.m_lblk); 933 lrange.fc_len = cpu_to_le32(map.m_len); 934 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE, 935 sizeof(lrange), (u8 *)&lrange, crc)) 936 return -ENOSPC; 937 } else { 938 unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ? 939 EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN; 940 941 /* Limit the number of blocks in one extent */ 942 map.m_len = min(max, map.m_len); 943 944 fc_ext.fc_ino = cpu_to_le32(inode->i_ino); 945 ex = (struct ext4_extent *)&fc_ext.fc_ex; 946 ex->ee_block = cpu_to_le32(map.m_lblk); 947 ex->ee_len = cpu_to_le16(map.m_len); 948 ext4_ext_store_pblock(ex, map.m_pblk); 949 if (map.m_flags & EXT4_MAP_UNWRITTEN) 950 ext4_ext_mark_unwritten(ex); 951 else 952 ext4_ext_mark_initialized(ex); 953 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE, 954 sizeof(fc_ext), (u8 *)&fc_ext, crc)) 955 return -ENOSPC; 956 } 957 958 cur_lblk_off += map.m_len; 959 } 960 961 return 0; 962 } 963 964 965 /* Submit data for all the fast commit inodes */ 966 static int ext4_fc_submit_inode_data_all(journal_t *journal) 967 { 968 struct super_block *sb = journal->j_private; 969 struct ext4_sb_info *sbi = EXT4_SB(sb); 970 struct ext4_inode_info *ei; 971 int ret = 0; 972 973 spin_lock(&sbi->s_fc_lock); 974 list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { 975 ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING); 976 while (atomic_read(&ei->i_fc_updates)) { 977 DEFINE_WAIT(wait); 978 979 prepare_to_wait(&ei->i_fc_wait, &wait, 980 TASK_UNINTERRUPTIBLE); 981 if (atomic_read(&ei->i_fc_updates)) { 982 spin_unlock(&sbi->s_fc_lock); 983 schedule(); 984 spin_lock(&sbi->s_fc_lock); 985 } 986 finish_wait(&ei->i_fc_wait, &wait); 987 } 988 spin_unlock(&sbi->s_fc_lock); 989 ret = jbd2_submit_inode_data(ei->jinode); 990 if (ret) 991 return ret; 992 spin_lock(&sbi->s_fc_lock); 993 } 994 spin_unlock(&sbi->s_fc_lock); 995 996 return ret; 997 } 998 999 /* Wait for completion of data for all the fast commit inodes */ 1000 static int ext4_fc_wait_inode_data_all(journal_t *journal) 1001 { 1002 struct super_block *sb = journal->j_private; 1003 struct ext4_sb_info *sbi = EXT4_SB(sb); 1004 struct ext4_inode_info *pos, *n; 1005 int ret = 0; 1006 1007 spin_lock(&sbi->s_fc_lock); 1008 list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { 1009 if (!ext4_test_inode_state(&pos->vfs_inode, 1010 EXT4_STATE_FC_COMMITTING)) 1011 continue; 1012 spin_unlock(&sbi->s_fc_lock); 1013 1014 ret = jbd2_wait_inode_data(journal, pos->jinode); 1015 if (ret) 1016 return ret; 1017 spin_lock(&sbi->s_fc_lock); 1018 } 1019 spin_unlock(&sbi->s_fc_lock); 1020 1021 return 0; 1022 } 1023 1024 /* Commit all the directory entry updates */ 1025 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc) 1026 __acquires(&sbi->s_fc_lock) 1027 __releases(&sbi->s_fc_lock) 1028 { 1029 struct super_block *sb = journal->j_private; 1030 struct ext4_sb_info *sbi = EXT4_SB(sb); 1031 struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n; 1032 struct inode *inode; 1033 struct ext4_inode_info *ei; 1034 int ret; 1035 1036 if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) 1037 return 0; 1038 list_for_each_entry_safe(fc_dentry, fc_dentry_n, 1039 &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) { 1040 if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) { 1041 spin_unlock(&sbi->s_fc_lock); 1042 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) { 1043 ret = -ENOSPC; 1044 goto lock_and_exit; 1045 } 1046 spin_lock(&sbi->s_fc_lock); 1047 continue; 1048 } 1049 /* 1050 * With fcd_dilist we need not loop in sbi->s_fc_q to get the 1051 * corresponding inode pointer 1052 */ 1053 WARN_ON(list_empty(&fc_dentry->fcd_dilist)); 1054 ei = list_first_entry(&fc_dentry->fcd_dilist, 1055 struct ext4_inode_info, i_fc_dilist); 1056 inode = &ei->vfs_inode; 1057 WARN_ON(inode->i_ino != fc_dentry->fcd_ino); 1058 1059 spin_unlock(&sbi->s_fc_lock); 1060 1061 /* 1062 * We first write the inode and then the create dirent. This 1063 * allows the recovery code to create an unnamed inode first 1064 * and then link it to a directory entry. This allows us 1065 * to use namei.c routines almost as is and simplifies 1066 * the recovery code. 1067 */ 1068 ret = ext4_fc_write_inode(inode, crc); 1069 if (ret) 1070 goto lock_and_exit; 1071 1072 ret = ext4_fc_write_inode_data(inode, crc); 1073 if (ret) 1074 goto lock_and_exit; 1075 1076 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) { 1077 ret = -ENOSPC; 1078 goto lock_and_exit; 1079 } 1080 1081 spin_lock(&sbi->s_fc_lock); 1082 } 1083 return 0; 1084 lock_and_exit: 1085 spin_lock(&sbi->s_fc_lock); 1086 return ret; 1087 } 1088 1089 static int ext4_fc_perform_commit(journal_t *journal) 1090 { 1091 struct super_block *sb = journal->j_private; 1092 struct ext4_sb_info *sbi = EXT4_SB(sb); 1093 struct ext4_inode_info *iter; 1094 struct ext4_fc_head head; 1095 struct inode *inode; 1096 struct blk_plug plug; 1097 int ret = 0; 1098 u32 crc = 0; 1099 1100 ret = ext4_fc_submit_inode_data_all(journal); 1101 if (ret) 1102 return ret; 1103 1104 ret = ext4_fc_wait_inode_data_all(journal); 1105 if (ret) 1106 return ret; 1107 1108 /* 1109 * If file system device is different from journal device, issue a cache 1110 * flush before we start writing fast commit blocks. 1111 */ 1112 if (journal->j_fs_dev != journal->j_dev) 1113 blkdev_issue_flush(journal->j_fs_dev); 1114 1115 blk_start_plug(&plug); 1116 if (sbi->s_fc_bytes == 0) { 1117 /* 1118 * Add a head tag only if this is the first fast commit 1119 * in this TID. 1120 */ 1121 head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES); 1122 head.fc_tid = cpu_to_le32( 1123 sbi->s_journal->j_running_transaction->t_tid); 1124 if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head), 1125 (u8 *)&head, &crc)) { 1126 ret = -ENOSPC; 1127 goto out; 1128 } 1129 } 1130 1131 spin_lock(&sbi->s_fc_lock); 1132 ret = ext4_fc_commit_dentry_updates(journal, &crc); 1133 if (ret) { 1134 spin_unlock(&sbi->s_fc_lock); 1135 goto out; 1136 } 1137 1138 list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { 1139 inode = &iter->vfs_inode; 1140 if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) 1141 continue; 1142 1143 spin_unlock(&sbi->s_fc_lock); 1144 ret = ext4_fc_write_inode_data(inode, &crc); 1145 if (ret) 1146 goto out; 1147 ret = ext4_fc_write_inode(inode, &crc); 1148 if (ret) 1149 goto out; 1150 spin_lock(&sbi->s_fc_lock); 1151 } 1152 spin_unlock(&sbi->s_fc_lock); 1153 1154 ret = ext4_fc_write_tail(sb, crc); 1155 1156 out: 1157 blk_finish_plug(&plug); 1158 return ret; 1159 } 1160 1161 static void ext4_fc_update_stats(struct super_block *sb, int status, 1162 u64 commit_time, int nblks, tid_t commit_tid) 1163 { 1164 struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats; 1165 1166 ext4_debug("Fast commit ended with status = %d for tid %u", 1167 status, commit_tid); 1168 if (status == EXT4_FC_STATUS_OK) { 1169 stats->fc_num_commits++; 1170 stats->fc_numblks += nblks; 1171 if (likely(stats->s_fc_avg_commit_time)) 1172 stats->s_fc_avg_commit_time = 1173 (commit_time + 1174 stats->s_fc_avg_commit_time * 3) / 4; 1175 else 1176 stats->s_fc_avg_commit_time = commit_time; 1177 } else if (status == EXT4_FC_STATUS_FAILED || 1178 status == EXT4_FC_STATUS_INELIGIBLE) { 1179 if (status == EXT4_FC_STATUS_FAILED) 1180 stats->fc_failed_commits++; 1181 stats->fc_ineligible_commits++; 1182 } else { 1183 stats->fc_skipped_commits++; 1184 } 1185 trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid); 1186 } 1187 1188 /* 1189 * The main commit entry point. Performs a fast commit for transaction 1190 * commit_tid if needed. If it's not possible to perform a fast commit 1191 * due to various reasons, we fall back to full commit. Returns 0 1192 * on success, error otherwise. 1193 */ 1194 int ext4_fc_commit(journal_t *journal, tid_t commit_tid) 1195 { 1196 struct super_block *sb = journal->j_private; 1197 struct ext4_sb_info *sbi = EXT4_SB(sb); 1198 int nblks = 0, ret, bsize = journal->j_blocksize; 1199 int subtid = atomic_read(&sbi->s_fc_subtid); 1200 int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0; 1201 ktime_t start_time, commit_time; 1202 1203 if (!test_opt2(sb, JOURNAL_FAST_COMMIT)) 1204 return jbd2_complete_transaction(journal, commit_tid); 1205 1206 trace_ext4_fc_commit_start(sb, commit_tid); 1207 1208 start_time = ktime_get(); 1209 1210 restart_fc: 1211 ret = jbd2_fc_begin_commit(journal, commit_tid); 1212 if (ret == -EALREADY) { 1213 /* There was an ongoing commit, check if we need to restart */ 1214 if (atomic_read(&sbi->s_fc_subtid) <= subtid && 1215 commit_tid > journal->j_commit_sequence) 1216 goto restart_fc; 1217 ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0, 1218 commit_tid); 1219 return 0; 1220 } else if (ret) { 1221 /* 1222 * Commit couldn't start. Just update stats and perform a 1223 * full commit. 1224 */ 1225 ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0, 1226 commit_tid); 1227 return jbd2_complete_transaction(journal, commit_tid); 1228 } 1229 1230 /* 1231 * After establishing journal barrier via jbd2_fc_begin_commit(), check 1232 * if we are fast commit ineligible. 1233 */ 1234 if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) { 1235 status = EXT4_FC_STATUS_INELIGIBLE; 1236 goto fallback; 1237 } 1238 1239 fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize; 1240 ret = ext4_fc_perform_commit(journal); 1241 if (ret < 0) { 1242 status = EXT4_FC_STATUS_FAILED; 1243 goto fallback; 1244 } 1245 nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before; 1246 ret = jbd2_fc_wait_bufs(journal, nblks); 1247 if (ret < 0) { 1248 status = EXT4_FC_STATUS_FAILED; 1249 goto fallback; 1250 } 1251 atomic_inc(&sbi->s_fc_subtid); 1252 ret = jbd2_fc_end_commit(journal); 1253 /* 1254 * weight the commit time higher than the average time so we 1255 * don't react too strongly to vast changes in the commit time 1256 */ 1257 commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time)); 1258 ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid); 1259 return ret; 1260 1261 fallback: 1262 ret = jbd2_fc_end_commit_fallback(journal); 1263 ext4_fc_update_stats(sb, status, 0, 0, commit_tid); 1264 return ret; 1265 } 1266 1267 /* 1268 * Fast commit cleanup routine. This is called after every fast commit and 1269 * full commit. full is true if we are called after a full commit. 1270 */ 1271 static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid) 1272 { 1273 struct super_block *sb = journal->j_private; 1274 struct ext4_sb_info *sbi = EXT4_SB(sb); 1275 struct ext4_inode_info *iter, *iter_n; 1276 struct ext4_fc_dentry_update *fc_dentry; 1277 1278 if (full && sbi->s_fc_bh) 1279 sbi->s_fc_bh = NULL; 1280 1281 trace_ext4_fc_cleanup(journal, full, tid); 1282 jbd2_fc_release_bufs(journal); 1283 1284 spin_lock(&sbi->s_fc_lock); 1285 list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN], 1286 i_fc_list) { 1287 list_del_init(&iter->i_fc_list); 1288 ext4_clear_inode_state(&iter->vfs_inode, 1289 EXT4_STATE_FC_COMMITTING); 1290 if (iter->i_sync_tid <= tid) 1291 ext4_fc_reset_inode(&iter->vfs_inode); 1292 /* Make sure EXT4_STATE_FC_COMMITTING bit is clear */ 1293 smp_mb(); 1294 #if (BITS_PER_LONG < 64) 1295 wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING); 1296 #else 1297 wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING); 1298 #endif 1299 } 1300 1301 while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) { 1302 fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN], 1303 struct ext4_fc_dentry_update, 1304 fcd_list); 1305 list_del_init(&fc_dentry->fcd_list); 1306 list_del_init(&fc_dentry->fcd_dilist); 1307 spin_unlock(&sbi->s_fc_lock); 1308 1309 if (fc_dentry->fcd_name.name && 1310 fc_dentry->fcd_name.len > DNAME_INLINE_LEN) 1311 kfree(fc_dentry->fcd_name.name); 1312 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry); 1313 spin_lock(&sbi->s_fc_lock); 1314 } 1315 1316 list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING], 1317 &sbi->s_fc_dentry_q[FC_Q_MAIN]); 1318 list_splice_init(&sbi->s_fc_q[FC_Q_STAGING], 1319 &sbi->s_fc_q[FC_Q_MAIN]); 1320 1321 if (tid >= sbi->s_fc_ineligible_tid) { 1322 sbi->s_fc_ineligible_tid = 0; 1323 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 1324 } 1325 1326 if (full) 1327 sbi->s_fc_bytes = 0; 1328 spin_unlock(&sbi->s_fc_lock); 1329 trace_ext4_fc_stats(sb); 1330 } 1331 1332 /* Ext4 Replay Path Routines */ 1333 1334 /* Helper struct for dentry replay routines */ 1335 struct dentry_info_args { 1336 int parent_ino, dname_len, ino, inode_len; 1337 char *dname; 1338 }; 1339 1340 static inline void tl_to_darg(struct dentry_info_args *darg, 1341 struct ext4_fc_tl *tl, u8 *val) 1342 { 1343 struct ext4_fc_dentry_info fcd; 1344 1345 memcpy(&fcd, val, sizeof(fcd)); 1346 1347 darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino); 1348 darg->ino = le32_to_cpu(fcd.fc_ino); 1349 darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname); 1350 darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info); 1351 } 1352 1353 static inline void ext4_fc_get_tl(struct ext4_fc_tl *tl, u8 *val) 1354 { 1355 memcpy(tl, val, EXT4_FC_TAG_BASE_LEN); 1356 tl->fc_len = le16_to_cpu(tl->fc_len); 1357 tl->fc_tag = le16_to_cpu(tl->fc_tag); 1358 } 1359 1360 /* Unlink replay function */ 1361 static int ext4_fc_replay_unlink(struct super_block *sb, struct ext4_fc_tl *tl, 1362 u8 *val) 1363 { 1364 struct inode *inode, *old_parent; 1365 struct qstr entry; 1366 struct dentry_info_args darg; 1367 int ret = 0; 1368 1369 tl_to_darg(&darg, tl, val); 1370 1371 trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino, 1372 darg.parent_ino, darg.dname_len); 1373 1374 entry.name = darg.dname; 1375 entry.len = darg.dname_len; 1376 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); 1377 1378 if (IS_ERR(inode)) { 1379 ext4_debug("Inode %d not found", darg.ino); 1380 return 0; 1381 } 1382 1383 old_parent = ext4_iget(sb, darg.parent_ino, 1384 EXT4_IGET_NORMAL); 1385 if (IS_ERR(old_parent)) { 1386 ext4_debug("Dir with inode %d not found", darg.parent_ino); 1387 iput(inode); 1388 return 0; 1389 } 1390 1391 ret = __ext4_unlink(NULL, old_parent, &entry, inode); 1392 /* -ENOENT ok coz it might not exist anymore. */ 1393 if (ret == -ENOENT) 1394 ret = 0; 1395 iput(old_parent); 1396 iput(inode); 1397 return ret; 1398 } 1399 1400 static int ext4_fc_replay_link_internal(struct super_block *sb, 1401 struct dentry_info_args *darg, 1402 struct inode *inode) 1403 { 1404 struct inode *dir = NULL; 1405 struct dentry *dentry_dir = NULL, *dentry_inode = NULL; 1406 struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len); 1407 int ret = 0; 1408 1409 dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL); 1410 if (IS_ERR(dir)) { 1411 ext4_debug("Dir with inode %d not found.", darg->parent_ino); 1412 dir = NULL; 1413 goto out; 1414 } 1415 1416 dentry_dir = d_obtain_alias(dir); 1417 if (IS_ERR(dentry_dir)) { 1418 ext4_debug("Failed to obtain dentry"); 1419 dentry_dir = NULL; 1420 goto out; 1421 } 1422 1423 dentry_inode = d_alloc(dentry_dir, &qstr_dname); 1424 if (!dentry_inode) { 1425 ext4_debug("Inode dentry not created."); 1426 ret = -ENOMEM; 1427 goto out; 1428 } 1429 1430 ret = __ext4_link(dir, inode, dentry_inode); 1431 /* 1432 * It's possible that link already existed since data blocks 1433 * for the dir in question got persisted before we crashed OR 1434 * we replayed this tag and crashed before the entire replay 1435 * could complete. 1436 */ 1437 if (ret && ret != -EEXIST) { 1438 ext4_debug("Failed to link\n"); 1439 goto out; 1440 } 1441 1442 ret = 0; 1443 out: 1444 if (dentry_dir) { 1445 d_drop(dentry_dir); 1446 dput(dentry_dir); 1447 } else if (dir) { 1448 iput(dir); 1449 } 1450 if (dentry_inode) { 1451 d_drop(dentry_inode); 1452 dput(dentry_inode); 1453 } 1454 1455 return ret; 1456 } 1457 1458 /* Link replay function */ 1459 static int ext4_fc_replay_link(struct super_block *sb, struct ext4_fc_tl *tl, 1460 u8 *val) 1461 { 1462 struct inode *inode; 1463 struct dentry_info_args darg; 1464 int ret = 0; 1465 1466 tl_to_darg(&darg, tl, val); 1467 trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino, 1468 darg.parent_ino, darg.dname_len); 1469 1470 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); 1471 if (IS_ERR(inode)) { 1472 ext4_debug("Inode not found."); 1473 return 0; 1474 } 1475 1476 ret = ext4_fc_replay_link_internal(sb, &darg, inode); 1477 iput(inode); 1478 return ret; 1479 } 1480 1481 /* 1482 * Record all the modified inodes during replay. We use this later to setup 1483 * block bitmaps correctly. 1484 */ 1485 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino) 1486 { 1487 struct ext4_fc_replay_state *state; 1488 int i; 1489 1490 state = &EXT4_SB(sb)->s_fc_replay_state; 1491 for (i = 0; i < state->fc_modified_inodes_used; i++) 1492 if (state->fc_modified_inodes[i] == ino) 1493 return 0; 1494 if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) { 1495 int *fc_modified_inodes; 1496 1497 fc_modified_inodes = krealloc(state->fc_modified_inodes, 1498 sizeof(int) * (state->fc_modified_inodes_size + 1499 EXT4_FC_REPLAY_REALLOC_INCREMENT), 1500 GFP_KERNEL); 1501 if (!fc_modified_inodes) 1502 return -ENOMEM; 1503 state->fc_modified_inodes = fc_modified_inodes; 1504 state->fc_modified_inodes_size += 1505 EXT4_FC_REPLAY_REALLOC_INCREMENT; 1506 } 1507 state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino; 1508 return 0; 1509 } 1510 1511 /* 1512 * Inode replay function 1513 */ 1514 static int ext4_fc_replay_inode(struct super_block *sb, struct ext4_fc_tl *tl, 1515 u8 *val) 1516 { 1517 struct ext4_fc_inode fc_inode; 1518 struct ext4_inode *raw_inode; 1519 struct ext4_inode *raw_fc_inode; 1520 struct inode *inode = NULL; 1521 struct ext4_iloc iloc; 1522 int inode_len, ino, ret, tag = tl->fc_tag; 1523 struct ext4_extent_header *eh; 1524 1525 memcpy(&fc_inode, val, sizeof(fc_inode)); 1526 1527 ino = le32_to_cpu(fc_inode.fc_ino); 1528 trace_ext4_fc_replay(sb, tag, ino, 0, 0); 1529 1530 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); 1531 if (!IS_ERR(inode)) { 1532 ext4_ext_clear_bb(inode); 1533 iput(inode); 1534 } 1535 inode = NULL; 1536 1537 ret = ext4_fc_record_modified_inode(sb, ino); 1538 if (ret) 1539 goto out; 1540 1541 raw_fc_inode = (struct ext4_inode *) 1542 (val + offsetof(struct ext4_fc_inode, fc_raw_inode)); 1543 ret = ext4_get_fc_inode_loc(sb, ino, &iloc); 1544 if (ret) 1545 goto out; 1546 1547 inode_len = tl->fc_len - sizeof(struct ext4_fc_inode); 1548 raw_inode = ext4_raw_inode(&iloc); 1549 1550 memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block)); 1551 memcpy(&raw_inode->i_generation, &raw_fc_inode->i_generation, 1552 inode_len - offsetof(struct ext4_inode, i_generation)); 1553 if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) { 1554 eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]); 1555 if (eh->eh_magic != EXT4_EXT_MAGIC) { 1556 memset(eh, 0, sizeof(*eh)); 1557 eh->eh_magic = EXT4_EXT_MAGIC; 1558 eh->eh_max = cpu_to_le16( 1559 (sizeof(raw_inode->i_block) - 1560 sizeof(struct ext4_extent_header)) 1561 / sizeof(struct ext4_extent)); 1562 } 1563 } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) { 1564 memcpy(raw_inode->i_block, raw_fc_inode->i_block, 1565 sizeof(raw_inode->i_block)); 1566 } 1567 1568 /* Immediately update the inode on disk. */ 1569 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh); 1570 if (ret) 1571 goto out; 1572 ret = sync_dirty_buffer(iloc.bh); 1573 if (ret) 1574 goto out; 1575 ret = ext4_mark_inode_used(sb, ino); 1576 if (ret) 1577 goto out; 1578 1579 /* Given that we just wrote the inode on disk, this SHOULD succeed. */ 1580 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); 1581 if (IS_ERR(inode)) { 1582 ext4_debug("Inode not found."); 1583 return -EFSCORRUPTED; 1584 } 1585 1586 /* 1587 * Our allocator could have made different decisions than before 1588 * crashing. This should be fixed but until then, we calculate 1589 * the number of blocks the inode. 1590 */ 1591 if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) 1592 ext4_ext_replay_set_iblocks(inode); 1593 1594 inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation); 1595 ext4_reset_inode_seed(inode); 1596 1597 ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode)); 1598 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh); 1599 sync_dirty_buffer(iloc.bh); 1600 brelse(iloc.bh); 1601 out: 1602 iput(inode); 1603 if (!ret) 1604 blkdev_issue_flush(sb->s_bdev); 1605 1606 return 0; 1607 } 1608 1609 /* 1610 * Dentry create replay function. 1611 * 1612 * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the 1613 * inode for which we are trying to create a dentry here, should already have 1614 * been replayed before we start here. 1615 */ 1616 static int ext4_fc_replay_create(struct super_block *sb, struct ext4_fc_tl *tl, 1617 u8 *val) 1618 { 1619 int ret = 0; 1620 struct inode *inode = NULL; 1621 struct inode *dir = NULL; 1622 struct dentry_info_args darg; 1623 1624 tl_to_darg(&darg, tl, val); 1625 1626 trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino, 1627 darg.parent_ino, darg.dname_len); 1628 1629 /* This takes care of update group descriptor and other metadata */ 1630 ret = ext4_mark_inode_used(sb, darg.ino); 1631 if (ret) 1632 goto out; 1633 1634 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); 1635 if (IS_ERR(inode)) { 1636 ext4_debug("inode %d not found.", darg.ino); 1637 inode = NULL; 1638 ret = -EINVAL; 1639 goto out; 1640 } 1641 1642 if (S_ISDIR(inode->i_mode)) { 1643 /* 1644 * If we are creating a directory, we need to make sure that the 1645 * dot and dot dot dirents are setup properly. 1646 */ 1647 dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL); 1648 if (IS_ERR(dir)) { 1649 ext4_debug("Dir %d not found.", darg.ino); 1650 goto out; 1651 } 1652 ret = ext4_init_new_dir(NULL, dir, inode); 1653 iput(dir); 1654 if (ret) { 1655 ret = 0; 1656 goto out; 1657 } 1658 } 1659 ret = ext4_fc_replay_link_internal(sb, &darg, inode); 1660 if (ret) 1661 goto out; 1662 set_nlink(inode, 1); 1663 ext4_mark_inode_dirty(NULL, inode); 1664 out: 1665 iput(inode); 1666 return ret; 1667 } 1668 1669 /* 1670 * Record physical disk regions which are in use as per fast commit area, 1671 * and used by inodes during replay phase. Our simple replay phase 1672 * allocator excludes these regions from allocation. 1673 */ 1674 int ext4_fc_record_regions(struct super_block *sb, int ino, 1675 ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay) 1676 { 1677 struct ext4_fc_replay_state *state; 1678 struct ext4_fc_alloc_region *region; 1679 1680 state = &EXT4_SB(sb)->s_fc_replay_state; 1681 /* 1682 * during replay phase, the fc_regions_valid may not same as 1683 * fc_regions_used, update it when do new additions. 1684 */ 1685 if (replay && state->fc_regions_used != state->fc_regions_valid) 1686 state->fc_regions_used = state->fc_regions_valid; 1687 if (state->fc_regions_used == state->fc_regions_size) { 1688 struct ext4_fc_alloc_region *fc_regions; 1689 1690 fc_regions = krealloc(state->fc_regions, 1691 sizeof(struct ext4_fc_alloc_region) * 1692 (state->fc_regions_size + 1693 EXT4_FC_REPLAY_REALLOC_INCREMENT), 1694 GFP_KERNEL); 1695 if (!fc_regions) 1696 return -ENOMEM; 1697 state->fc_regions_size += 1698 EXT4_FC_REPLAY_REALLOC_INCREMENT; 1699 state->fc_regions = fc_regions; 1700 } 1701 region = &state->fc_regions[state->fc_regions_used++]; 1702 region->ino = ino; 1703 region->lblk = lblk; 1704 region->pblk = pblk; 1705 region->len = len; 1706 1707 if (replay) 1708 state->fc_regions_valid++; 1709 1710 return 0; 1711 } 1712 1713 /* Replay add range tag */ 1714 static int ext4_fc_replay_add_range(struct super_block *sb, 1715 struct ext4_fc_tl *tl, u8 *val) 1716 { 1717 struct ext4_fc_add_range fc_add_ex; 1718 struct ext4_extent newex, *ex; 1719 struct inode *inode; 1720 ext4_lblk_t start, cur; 1721 int remaining, len; 1722 ext4_fsblk_t start_pblk; 1723 struct ext4_map_blocks map; 1724 struct ext4_ext_path *path = NULL; 1725 int ret; 1726 1727 memcpy(&fc_add_ex, val, sizeof(fc_add_ex)); 1728 ex = (struct ext4_extent *)&fc_add_ex.fc_ex; 1729 1730 trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE, 1731 le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block), 1732 ext4_ext_get_actual_len(ex)); 1733 1734 inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL); 1735 if (IS_ERR(inode)) { 1736 ext4_debug("Inode not found."); 1737 return 0; 1738 } 1739 1740 ret = ext4_fc_record_modified_inode(sb, inode->i_ino); 1741 if (ret) 1742 goto out; 1743 1744 start = le32_to_cpu(ex->ee_block); 1745 start_pblk = ext4_ext_pblock(ex); 1746 len = ext4_ext_get_actual_len(ex); 1747 1748 cur = start; 1749 remaining = len; 1750 ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n", 1751 start, start_pblk, len, ext4_ext_is_unwritten(ex), 1752 inode->i_ino); 1753 1754 while (remaining > 0) { 1755 map.m_lblk = cur; 1756 map.m_len = remaining; 1757 map.m_pblk = 0; 1758 ret = ext4_map_blocks(NULL, inode, &map, 0); 1759 1760 if (ret < 0) 1761 goto out; 1762 1763 if (ret == 0) { 1764 /* Range is not mapped */ 1765 path = ext4_find_extent(inode, cur, NULL, 0); 1766 if (IS_ERR(path)) 1767 goto out; 1768 memset(&newex, 0, sizeof(newex)); 1769 newex.ee_block = cpu_to_le32(cur); 1770 ext4_ext_store_pblock( 1771 &newex, start_pblk + cur - start); 1772 newex.ee_len = cpu_to_le16(map.m_len); 1773 if (ext4_ext_is_unwritten(ex)) 1774 ext4_ext_mark_unwritten(&newex); 1775 down_write(&EXT4_I(inode)->i_data_sem); 1776 ret = ext4_ext_insert_extent( 1777 NULL, inode, &path, &newex, 0); 1778 up_write((&EXT4_I(inode)->i_data_sem)); 1779 ext4_free_ext_path(path); 1780 if (ret) 1781 goto out; 1782 goto next; 1783 } 1784 1785 if (start_pblk + cur - start != map.m_pblk) { 1786 /* 1787 * Logical to physical mapping changed. This can happen 1788 * if this range was removed and then reallocated to 1789 * map to new physical blocks during a fast commit. 1790 */ 1791 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len, 1792 ext4_ext_is_unwritten(ex), 1793 start_pblk + cur - start); 1794 if (ret) 1795 goto out; 1796 /* 1797 * Mark the old blocks as free since they aren't used 1798 * anymore. We maintain an array of all the modified 1799 * inodes. In case these blocks are still used at either 1800 * a different logical range in the same inode or in 1801 * some different inode, we will mark them as allocated 1802 * at the end of the FC replay using our array of 1803 * modified inodes. 1804 */ 1805 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0); 1806 goto next; 1807 } 1808 1809 /* Range is mapped and needs a state change */ 1810 ext4_debug("Converting from %ld to %d %lld", 1811 map.m_flags & EXT4_MAP_UNWRITTEN, 1812 ext4_ext_is_unwritten(ex), map.m_pblk); 1813 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len, 1814 ext4_ext_is_unwritten(ex), map.m_pblk); 1815 if (ret) 1816 goto out; 1817 /* 1818 * We may have split the extent tree while toggling the state. 1819 * Try to shrink the extent tree now. 1820 */ 1821 ext4_ext_replay_shrink_inode(inode, start + len); 1822 next: 1823 cur += map.m_len; 1824 remaining -= map.m_len; 1825 } 1826 ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >> 1827 sb->s_blocksize_bits); 1828 out: 1829 iput(inode); 1830 return 0; 1831 } 1832 1833 /* Replay DEL_RANGE tag */ 1834 static int 1835 ext4_fc_replay_del_range(struct super_block *sb, struct ext4_fc_tl *tl, 1836 u8 *val) 1837 { 1838 struct inode *inode; 1839 struct ext4_fc_del_range lrange; 1840 struct ext4_map_blocks map; 1841 ext4_lblk_t cur, remaining; 1842 int ret; 1843 1844 memcpy(&lrange, val, sizeof(lrange)); 1845 cur = le32_to_cpu(lrange.fc_lblk); 1846 remaining = le32_to_cpu(lrange.fc_len); 1847 1848 trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE, 1849 le32_to_cpu(lrange.fc_ino), cur, remaining); 1850 1851 inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL); 1852 if (IS_ERR(inode)) { 1853 ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino)); 1854 return 0; 1855 } 1856 1857 ret = ext4_fc_record_modified_inode(sb, inode->i_ino); 1858 if (ret) 1859 goto out; 1860 1861 ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n", 1862 inode->i_ino, le32_to_cpu(lrange.fc_lblk), 1863 le32_to_cpu(lrange.fc_len)); 1864 while (remaining > 0) { 1865 map.m_lblk = cur; 1866 map.m_len = remaining; 1867 1868 ret = ext4_map_blocks(NULL, inode, &map, 0); 1869 if (ret < 0) 1870 goto out; 1871 if (ret > 0) { 1872 remaining -= ret; 1873 cur += ret; 1874 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0); 1875 } else { 1876 remaining -= map.m_len; 1877 cur += map.m_len; 1878 } 1879 } 1880 1881 down_write(&EXT4_I(inode)->i_data_sem); 1882 ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk), 1883 le32_to_cpu(lrange.fc_lblk) + 1884 le32_to_cpu(lrange.fc_len) - 1); 1885 up_write(&EXT4_I(inode)->i_data_sem); 1886 if (ret) 1887 goto out; 1888 ext4_ext_replay_shrink_inode(inode, 1889 i_size_read(inode) >> sb->s_blocksize_bits); 1890 ext4_mark_inode_dirty(NULL, inode); 1891 out: 1892 iput(inode); 1893 return 0; 1894 } 1895 1896 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb) 1897 { 1898 struct ext4_fc_replay_state *state; 1899 struct inode *inode; 1900 struct ext4_ext_path *path = NULL; 1901 struct ext4_map_blocks map; 1902 int i, ret, j; 1903 ext4_lblk_t cur, end; 1904 1905 state = &EXT4_SB(sb)->s_fc_replay_state; 1906 for (i = 0; i < state->fc_modified_inodes_used; i++) { 1907 inode = ext4_iget(sb, state->fc_modified_inodes[i], 1908 EXT4_IGET_NORMAL); 1909 if (IS_ERR(inode)) { 1910 ext4_debug("Inode %d not found.", 1911 state->fc_modified_inodes[i]); 1912 continue; 1913 } 1914 cur = 0; 1915 end = EXT_MAX_BLOCKS; 1916 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) { 1917 iput(inode); 1918 continue; 1919 } 1920 while (cur < end) { 1921 map.m_lblk = cur; 1922 map.m_len = end - cur; 1923 1924 ret = ext4_map_blocks(NULL, inode, &map, 0); 1925 if (ret < 0) 1926 break; 1927 1928 if (ret > 0) { 1929 path = ext4_find_extent(inode, map.m_lblk, NULL, 0); 1930 if (!IS_ERR(path)) { 1931 for (j = 0; j < path->p_depth; j++) 1932 ext4_mb_mark_bb(inode->i_sb, 1933 path[j].p_block, 1, 1); 1934 ext4_free_ext_path(path); 1935 } 1936 cur += ret; 1937 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, 1938 map.m_len, 1); 1939 } else { 1940 cur = cur + (map.m_len ? map.m_len : 1); 1941 } 1942 } 1943 iput(inode); 1944 } 1945 } 1946 1947 /* 1948 * Check if block is in excluded regions for block allocation. The simple 1949 * allocator that runs during replay phase is calls this function to see 1950 * if it is okay to use a block. 1951 */ 1952 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk) 1953 { 1954 int i; 1955 struct ext4_fc_replay_state *state; 1956 1957 state = &EXT4_SB(sb)->s_fc_replay_state; 1958 for (i = 0; i < state->fc_regions_valid; i++) { 1959 if (state->fc_regions[i].ino == 0 || 1960 state->fc_regions[i].len == 0) 1961 continue; 1962 if (in_range(blk, state->fc_regions[i].pblk, 1963 state->fc_regions[i].len)) 1964 return true; 1965 } 1966 return false; 1967 } 1968 1969 /* Cleanup function called after replay */ 1970 void ext4_fc_replay_cleanup(struct super_block *sb) 1971 { 1972 struct ext4_sb_info *sbi = EXT4_SB(sb); 1973 1974 sbi->s_mount_state &= ~EXT4_FC_REPLAY; 1975 kfree(sbi->s_fc_replay_state.fc_regions); 1976 kfree(sbi->s_fc_replay_state.fc_modified_inodes); 1977 } 1978 1979 static inline bool ext4_fc_tag_len_isvalid(struct ext4_fc_tl *tl, 1980 u8 *val, u8 *end) 1981 { 1982 if (val + tl->fc_len > end) 1983 return false; 1984 1985 /* Here only check ADD_RANGE/TAIL/HEAD which will read data when do 1986 * journal rescan before do CRC check. Other tags length check will 1987 * rely on CRC check. 1988 */ 1989 switch (tl->fc_tag) { 1990 case EXT4_FC_TAG_ADD_RANGE: 1991 return (sizeof(struct ext4_fc_add_range) == tl->fc_len); 1992 case EXT4_FC_TAG_TAIL: 1993 return (sizeof(struct ext4_fc_tail) <= tl->fc_len); 1994 case EXT4_FC_TAG_HEAD: 1995 return (sizeof(struct ext4_fc_head) == tl->fc_len); 1996 case EXT4_FC_TAG_DEL_RANGE: 1997 case EXT4_FC_TAG_LINK: 1998 case EXT4_FC_TAG_UNLINK: 1999 case EXT4_FC_TAG_CREAT: 2000 case EXT4_FC_TAG_INODE: 2001 case EXT4_FC_TAG_PAD: 2002 default: 2003 return true; 2004 } 2005 } 2006 2007 /* 2008 * Recovery Scan phase handler 2009 * 2010 * This function is called during the scan phase and is responsible 2011 * for doing following things: 2012 * - Make sure the fast commit area has valid tags for replay 2013 * - Count number of tags that need to be replayed by the replay handler 2014 * - Verify CRC 2015 * - Create a list of excluded blocks for allocation during replay phase 2016 * 2017 * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is 2018 * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP 2019 * to indicate that scan has finished and JBD2 can now start replay phase. 2020 * It returns a negative error to indicate that there was an error. At the end 2021 * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set 2022 * to indicate the number of tags that need to replayed during the replay phase. 2023 */ 2024 static int ext4_fc_replay_scan(journal_t *journal, 2025 struct buffer_head *bh, int off, 2026 tid_t expected_tid) 2027 { 2028 struct super_block *sb = journal->j_private; 2029 struct ext4_sb_info *sbi = EXT4_SB(sb); 2030 struct ext4_fc_replay_state *state; 2031 int ret = JBD2_FC_REPLAY_CONTINUE; 2032 struct ext4_fc_add_range ext; 2033 struct ext4_fc_tl tl; 2034 struct ext4_fc_tail tail; 2035 __u8 *start, *end, *cur, *val; 2036 struct ext4_fc_head head; 2037 struct ext4_extent *ex; 2038 2039 state = &sbi->s_fc_replay_state; 2040 2041 start = (u8 *)bh->b_data; 2042 end = (__u8 *)bh->b_data + journal->j_blocksize - 1; 2043 2044 if (state->fc_replay_expected_off == 0) { 2045 state->fc_cur_tag = 0; 2046 state->fc_replay_num_tags = 0; 2047 state->fc_crc = 0; 2048 state->fc_regions = NULL; 2049 state->fc_regions_valid = state->fc_regions_used = 2050 state->fc_regions_size = 0; 2051 /* Check if we can stop early */ 2052 if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag) 2053 != EXT4_FC_TAG_HEAD) 2054 return 0; 2055 } 2056 2057 if (off != state->fc_replay_expected_off) { 2058 ret = -EFSCORRUPTED; 2059 goto out_err; 2060 } 2061 2062 state->fc_replay_expected_off++; 2063 for (cur = start; cur < end - EXT4_FC_TAG_BASE_LEN; 2064 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) { 2065 ext4_fc_get_tl(&tl, cur); 2066 val = cur + EXT4_FC_TAG_BASE_LEN; 2067 if (!ext4_fc_tag_len_isvalid(&tl, val, end)) { 2068 ret = state->fc_replay_num_tags ? 2069 JBD2_FC_REPLAY_STOP : -ECANCELED; 2070 goto out_err; 2071 } 2072 ext4_debug("Scan phase, tag:%s, blk %lld\n", 2073 tag2str(tl.fc_tag), bh->b_blocknr); 2074 switch (tl.fc_tag) { 2075 case EXT4_FC_TAG_ADD_RANGE: 2076 memcpy(&ext, val, sizeof(ext)); 2077 ex = (struct ext4_extent *)&ext.fc_ex; 2078 ret = ext4_fc_record_regions(sb, 2079 le32_to_cpu(ext.fc_ino), 2080 le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex), 2081 ext4_ext_get_actual_len(ex), 0); 2082 if (ret < 0) 2083 break; 2084 ret = JBD2_FC_REPLAY_CONTINUE; 2085 fallthrough; 2086 case EXT4_FC_TAG_DEL_RANGE: 2087 case EXT4_FC_TAG_LINK: 2088 case EXT4_FC_TAG_UNLINK: 2089 case EXT4_FC_TAG_CREAT: 2090 case EXT4_FC_TAG_INODE: 2091 case EXT4_FC_TAG_PAD: 2092 state->fc_cur_tag++; 2093 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur, 2094 EXT4_FC_TAG_BASE_LEN + tl.fc_len); 2095 break; 2096 case EXT4_FC_TAG_TAIL: 2097 state->fc_cur_tag++; 2098 memcpy(&tail, val, sizeof(tail)); 2099 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur, 2100 EXT4_FC_TAG_BASE_LEN + 2101 offsetof(struct ext4_fc_tail, 2102 fc_crc)); 2103 if (le32_to_cpu(tail.fc_tid) == expected_tid && 2104 le32_to_cpu(tail.fc_crc) == state->fc_crc) { 2105 state->fc_replay_num_tags = state->fc_cur_tag; 2106 state->fc_regions_valid = 2107 state->fc_regions_used; 2108 } else { 2109 ret = state->fc_replay_num_tags ? 2110 JBD2_FC_REPLAY_STOP : -EFSBADCRC; 2111 } 2112 state->fc_crc = 0; 2113 break; 2114 case EXT4_FC_TAG_HEAD: 2115 memcpy(&head, val, sizeof(head)); 2116 if (le32_to_cpu(head.fc_features) & 2117 ~EXT4_FC_SUPPORTED_FEATURES) { 2118 ret = -EOPNOTSUPP; 2119 break; 2120 } 2121 if (le32_to_cpu(head.fc_tid) != expected_tid) { 2122 ret = JBD2_FC_REPLAY_STOP; 2123 break; 2124 } 2125 state->fc_cur_tag++; 2126 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur, 2127 EXT4_FC_TAG_BASE_LEN + tl.fc_len); 2128 break; 2129 default: 2130 ret = state->fc_replay_num_tags ? 2131 JBD2_FC_REPLAY_STOP : -ECANCELED; 2132 } 2133 if (ret < 0 || ret == JBD2_FC_REPLAY_STOP) 2134 break; 2135 } 2136 2137 out_err: 2138 trace_ext4_fc_replay_scan(sb, ret, off); 2139 return ret; 2140 } 2141 2142 /* 2143 * Main recovery path entry point. 2144 * The meaning of return codes is similar as above. 2145 */ 2146 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh, 2147 enum passtype pass, int off, tid_t expected_tid) 2148 { 2149 struct super_block *sb = journal->j_private; 2150 struct ext4_sb_info *sbi = EXT4_SB(sb); 2151 struct ext4_fc_tl tl; 2152 __u8 *start, *end, *cur, *val; 2153 int ret = JBD2_FC_REPLAY_CONTINUE; 2154 struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state; 2155 struct ext4_fc_tail tail; 2156 2157 if (pass == PASS_SCAN) { 2158 state->fc_current_pass = PASS_SCAN; 2159 return ext4_fc_replay_scan(journal, bh, off, expected_tid); 2160 } 2161 2162 if (state->fc_current_pass != pass) { 2163 state->fc_current_pass = pass; 2164 sbi->s_mount_state |= EXT4_FC_REPLAY; 2165 } 2166 if (!sbi->s_fc_replay_state.fc_replay_num_tags) { 2167 ext4_debug("Replay stops\n"); 2168 ext4_fc_set_bitmaps_and_counters(sb); 2169 return 0; 2170 } 2171 2172 #ifdef CONFIG_EXT4_DEBUG 2173 if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) { 2174 pr_warn("Dropping fc block %d because max_replay set\n", off); 2175 return JBD2_FC_REPLAY_STOP; 2176 } 2177 #endif 2178 2179 start = (u8 *)bh->b_data; 2180 end = (__u8 *)bh->b_data + journal->j_blocksize - 1; 2181 2182 for (cur = start; cur < end - EXT4_FC_TAG_BASE_LEN; 2183 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) { 2184 ext4_fc_get_tl(&tl, cur); 2185 val = cur + EXT4_FC_TAG_BASE_LEN; 2186 2187 if (state->fc_replay_num_tags == 0) { 2188 ret = JBD2_FC_REPLAY_STOP; 2189 ext4_fc_set_bitmaps_and_counters(sb); 2190 break; 2191 } 2192 2193 ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag)); 2194 state->fc_replay_num_tags--; 2195 switch (tl.fc_tag) { 2196 case EXT4_FC_TAG_LINK: 2197 ret = ext4_fc_replay_link(sb, &tl, val); 2198 break; 2199 case EXT4_FC_TAG_UNLINK: 2200 ret = ext4_fc_replay_unlink(sb, &tl, val); 2201 break; 2202 case EXT4_FC_TAG_ADD_RANGE: 2203 ret = ext4_fc_replay_add_range(sb, &tl, val); 2204 break; 2205 case EXT4_FC_TAG_CREAT: 2206 ret = ext4_fc_replay_create(sb, &tl, val); 2207 break; 2208 case EXT4_FC_TAG_DEL_RANGE: 2209 ret = ext4_fc_replay_del_range(sb, &tl, val); 2210 break; 2211 case EXT4_FC_TAG_INODE: 2212 ret = ext4_fc_replay_inode(sb, &tl, val); 2213 break; 2214 case EXT4_FC_TAG_PAD: 2215 trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0, 2216 tl.fc_len, 0); 2217 break; 2218 case EXT4_FC_TAG_TAIL: 2219 trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL, 2220 0, tl.fc_len, 0); 2221 memcpy(&tail, val, sizeof(tail)); 2222 WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid); 2223 break; 2224 case EXT4_FC_TAG_HEAD: 2225 break; 2226 default: 2227 trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0); 2228 ret = -ECANCELED; 2229 break; 2230 } 2231 if (ret < 0) 2232 break; 2233 ret = JBD2_FC_REPLAY_CONTINUE; 2234 } 2235 return ret; 2236 } 2237 2238 void ext4_fc_init(struct super_block *sb, journal_t *journal) 2239 { 2240 /* 2241 * We set replay callback even if fast commit disabled because we may 2242 * could still have fast commit blocks that need to be replayed even if 2243 * fast commit has now been turned off. 2244 */ 2245 journal->j_fc_replay_callback = ext4_fc_replay; 2246 if (!test_opt2(sb, JOURNAL_FAST_COMMIT)) 2247 return; 2248 journal->j_fc_cleanup_callback = ext4_fc_cleanup; 2249 } 2250 2251 static const char *fc_ineligible_reasons[] = { 2252 "Extended attributes changed", 2253 "Cross rename", 2254 "Journal flag changed", 2255 "Insufficient memory", 2256 "Swap boot", 2257 "Resize", 2258 "Dir renamed", 2259 "Falloc range op", 2260 "Data journalling", 2261 "FC Commit Failed" 2262 }; 2263 2264 int ext4_fc_info_show(struct seq_file *seq, void *v) 2265 { 2266 struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private); 2267 struct ext4_fc_stats *stats = &sbi->s_fc_stats; 2268 int i; 2269 2270 if (v != SEQ_START_TOKEN) 2271 return 0; 2272 2273 seq_printf(seq, 2274 "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n", 2275 stats->fc_num_commits, stats->fc_ineligible_commits, 2276 stats->fc_numblks, 2277 div_u64(stats->s_fc_avg_commit_time, 1000)); 2278 seq_puts(seq, "Ineligible reasons:\n"); 2279 for (i = 0; i < EXT4_FC_REASON_MAX; i++) 2280 seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i], 2281 stats->fc_ineligible_reason_count[i]); 2282 2283 return 0; 2284 } 2285 2286 int __init ext4_fc_init_dentry_cache(void) 2287 { 2288 ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update, 2289 SLAB_RECLAIM_ACCOUNT); 2290 2291 if (ext4_fc_dentry_cachep == NULL) 2292 return -ENOMEM; 2293 2294 return 0; 2295 } 2296 2297 void ext4_fc_destroy_dentry_cache(void) 2298 { 2299 kmem_cache_destroy(ext4_fc_dentry_cachep); 2300 } 2301