1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * fs/ext4/fast_commit.c 5 * 6 * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com> 7 * 8 * Ext4 fast commits routines. 9 */ 10 #include "ext4.h" 11 #include "ext4_jbd2.h" 12 #include "ext4_extents.h" 13 #include "mballoc.h" 14 15 /* 16 * Ext4 Fast Commits 17 * ----------------- 18 * 19 * Ext4 fast commits implement fine grained journalling for Ext4. 20 * 21 * Fast commits are organized as a log of tag-length-value (TLV) structs. (See 22 * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by 23 * TLV during the recovery phase. For the scenarios for which we currently 24 * don't have replay code, fast commit falls back to full commits. 25 * Fast commits record delta in one of the following three categories. 26 * 27 * (A) Directory entry updates: 28 * 29 * - EXT4_FC_TAG_UNLINK - records directory entry unlink 30 * - EXT4_FC_TAG_LINK - records directory entry link 31 * - EXT4_FC_TAG_CREAT - records inode and directory entry creation 32 * 33 * (B) File specific data range updates: 34 * 35 * - EXT4_FC_TAG_ADD_RANGE - records addition of new blocks to an inode 36 * - EXT4_FC_TAG_DEL_RANGE - records deletion of blocks from an inode 37 * 38 * (C) Inode metadata (mtime / ctime etc): 39 * 40 * - EXT4_FC_TAG_INODE - record the inode that should be replayed 41 * during recovery. Note that iblocks field is 42 * not replayed and instead derived during 43 * replay. 44 * Commit Operation 45 * ---------------- 46 * With fast commits, we maintain all the directory entry operations in the 47 * order in which they are issued in an in-memory queue. This queue is flushed 48 * to disk during the commit operation. We also maintain a list of inodes 49 * that need to be committed during a fast commit in another in memory queue of 50 * inodes. During the commit operation, we commit in the following order: 51 * 52 * [1] Lock inodes for any further data updates by setting COMMITTING state 53 * [2] Submit data buffers of all the inodes 54 * [3] Wait for [2] to complete 55 * [4] Commit all the directory entry updates in the fast commit space 56 * [5] Commit all the changed inode structures 57 * [6] Write tail tag (this tag ensures the atomicity, please read the following 58 * section for more details). 59 * [7] Wait for [4], [5] and [6] to complete. 60 * 61 * All the inode updates must call ext4_fc_start_update() before starting an 62 * update. If such an ongoing update is present, fast commit waits for it to 63 * complete. The completion of such an update is marked by 64 * ext4_fc_stop_update(). 65 * 66 * Fast Commit Ineligibility 67 * ------------------------- 68 * 69 * Not all operations are supported by fast commits today (e.g extended 70 * attributes). Fast commit ineligibility is marked by calling 71 * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back 72 * to full commit. 73 * 74 * Atomicity of commits 75 * -------------------- 76 * In order to guarantee atomicity during the commit operation, fast commit 77 * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail 78 * tag contains CRC of the contents and TID of the transaction after which 79 * this fast commit should be applied. Recovery code replays fast commit 80 * logs only if there's at least 1 valid tail present. For every fast commit 81 * operation, there is 1 tail. This means, we may end up with multiple tails 82 * in the fast commit space. Here's an example: 83 * 84 * - Create a new file A and remove existing file B 85 * - fsync() 86 * - Append contents to file A 87 * - Truncate file A 88 * - fsync() 89 * 90 * The fast commit space at the end of above operations would look like this: 91 * [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL] 92 * |<--- Fast Commit 1 --->|<--- Fast Commit 2 ---->| 93 * 94 * Replay code should thus check for all the valid tails in the FC area. 95 * 96 * Fast Commit Replay Idempotence 97 * ------------------------------ 98 * 99 * Fast commits tags are idempotent in nature provided the recovery code follows 100 * certain rules. The guiding principle that the commit path follows while 101 * committing is that it stores the result of a particular operation instead of 102 * storing the procedure. 103 * 104 * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a' 105 * was associated with inode 10. During fast commit, instead of storing this 106 * operation as a procedure "rename a to b", we store the resulting file system 107 * state as a "series" of outcomes: 108 * 109 * - Link dirent b to inode 10 110 * - Unlink dirent a 111 * - Inode <10> with valid refcount 112 * 113 * Now when recovery code runs, it needs "enforce" this state on the file 114 * system. This is what guarantees idempotence of fast commit replay. 115 * 116 * Let's take an example of a procedure that is not idempotent and see how fast 117 * commits make it idempotent. Consider following sequence of operations: 118 * 119 * rm A; mv B A; read A 120 * (x) (y) (z) 121 * 122 * (x), (y) and (z) are the points at which we can crash. If we store this 123 * sequence of operations as is then the replay is not idempotent. Let's say 124 * while in replay, we crash at (z). During the second replay, file A (which was 125 * actually created as a result of "mv B A" operation) would get deleted. Thus, 126 * file named A would be absent when we try to read A. So, this sequence of 127 * operations is not idempotent. However, as mentioned above, instead of storing 128 * the procedure fast commits store the outcome of each procedure. Thus the fast 129 * commit log for above procedure would be as follows: 130 * 131 * (Let's assume dirent A was linked to inode 10 and dirent B was linked to 132 * inode 11 before the replay) 133 * 134 * [Unlink A] [Link A to inode 11] [Unlink B] [Inode 11] 135 * (w) (x) (y) (z) 136 * 137 * If we crash at (z), we will have file A linked to inode 11. During the second 138 * replay, we will remove file A (inode 11). But we will create it back and make 139 * it point to inode 11. We won't find B, so we'll just skip that step. At this 140 * point, the refcount for inode 11 is not reliable, but that gets fixed by the 141 * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled 142 * similarly. Thus, by converting a non-idempotent procedure into a series of 143 * idempotent outcomes, fast commits ensured idempotence during the replay. 144 * 145 * TODOs 146 * ----- 147 * 148 * 0) Fast commit replay path hardening: Fast commit replay code should use 149 * journal handles to make sure all the updates it does during the replay 150 * path are atomic. With that if we crash during fast commit replay, after 151 * trying to do recovery again, we will find a file system where fast commit 152 * area is invalid (because new full commit would be found). In order to deal 153 * with that, fast commit replay code should ensure that the "FC_REPLAY" 154 * superblock state is persisted before starting the replay, so that after 155 * the crash, fast commit recovery code can look at that flag and perform 156 * fast commit recovery even if that area is invalidated by later full 157 * commits. 158 * 159 * 1) Fast commit's commit path locks the entire file system during fast 160 * commit. This has significant performance penalty. Instead of that, we 161 * should use ext4_fc_start/stop_update functions to start inode level 162 * updates from ext4_journal_start/stop. Once we do that we can drop file 163 * system locking during commit path. 164 * 165 * 2) Handle more ineligible cases. 166 */ 167 168 #include <trace/events/ext4.h> 169 static struct kmem_cache *ext4_fc_dentry_cachep; 170 171 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate) 172 { 173 BUFFER_TRACE(bh, ""); 174 if (uptodate) { 175 ext4_debug("%s: Block %lld up-to-date", 176 __func__, bh->b_blocknr); 177 set_buffer_uptodate(bh); 178 } else { 179 ext4_debug("%s: Block %lld not up-to-date", 180 __func__, bh->b_blocknr); 181 clear_buffer_uptodate(bh); 182 } 183 184 unlock_buffer(bh); 185 } 186 187 static inline void ext4_fc_reset_inode(struct inode *inode) 188 { 189 struct ext4_inode_info *ei = EXT4_I(inode); 190 191 ei->i_fc_lblk_start = 0; 192 ei->i_fc_lblk_len = 0; 193 } 194 195 void ext4_fc_init_inode(struct inode *inode) 196 { 197 struct ext4_inode_info *ei = EXT4_I(inode); 198 199 ext4_fc_reset_inode(inode); 200 ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING); 201 INIT_LIST_HEAD(&ei->i_fc_list); 202 INIT_LIST_HEAD(&ei->i_fc_dilist); 203 init_waitqueue_head(&ei->i_fc_wait); 204 atomic_set(&ei->i_fc_updates, 0); 205 } 206 207 /* This function must be called with sbi->s_fc_lock held. */ 208 static void ext4_fc_wait_committing_inode(struct inode *inode) 209 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock) 210 { 211 wait_queue_head_t *wq; 212 struct ext4_inode_info *ei = EXT4_I(inode); 213 214 #if (BITS_PER_LONG < 64) 215 DEFINE_WAIT_BIT(wait, &ei->i_state_flags, 216 EXT4_STATE_FC_COMMITTING); 217 wq = bit_waitqueue(&ei->i_state_flags, 218 EXT4_STATE_FC_COMMITTING); 219 #else 220 DEFINE_WAIT_BIT(wait, &ei->i_flags, 221 EXT4_STATE_FC_COMMITTING); 222 wq = bit_waitqueue(&ei->i_flags, 223 EXT4_STATE_FC_COMMITTING); 224 #endif 225 lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock); 226 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 227 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock); 228 schedule(); 229 finish_wait(wq, &wait.wq_entry); 230 } 231 232 static bool ext4_fc_disabled(struct super_block *sb) 233 { 234 return (!test_opt2(sb, JOURNAL_FAST_COMMIT) || 235 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)); 236 } 237 238 /* 239 * Inform Ext4's fast about start of an inode update 240 * 241 * This function is called by the high level call VFS callbacks before 242 * performing any inode update. This function blocks if there's an ongoing 243 * fast commit on the inode in question. 244 */ 245 void ext4_fc_start_update(struct inode *inode) 246 { 247 struct ext4_inode_info *ei = EXT4_I(inode); 248 249 if (ext4_fc_disabled(inode->i_sb)) 250 return; 251 252 restart: 253 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock); 254 if (list_empty(&ei->i_fc_list)) 255 goto out; 256 257 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) { 258 ext4_fc_wait_committing_inode(inode); 259 goto restart; 260 } 261 out: 262 atomic_inc(&ei->i_fc_updates); 263 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock); 264 } 265 266 /* 267 * Stop inode update and wake up waiting fast commits if any. 268 */ 269 void ext4_fc_stop_update(struct inode *inode) 270 { 271 struct ext4_inode_info *ei = EXT4_I(inode); 272 273 if (ext4_fc_disabled(inode->i_sb)) 274 return; 275 276 if (atomic_dec_and_test(&ei->i_fc_updates)) 277 wake_up_all(&ei->i_fc_wait); 278 } 279 280 /* 281 * Remove inode from fast commit list. If the inode is being committed 282 * we wait until inode commit is done. 283 */ 284 void ext4_fc_del(struct inode *inode) 285 { 286 struct ext4_inode_info *ei = EXT4_I(inode); 287 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 288 struct ext4_fc_dentry_update *fc_dentry; 289 290 if (ext4_fc_disabled(inode->i_sb)) 291 return; 292 293 restart: 294 spin_lock(&sbi->s_fc_lock); 295 if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) { 296 spin_unlock(&sbi->s_fc_lock); 297 return; 298 } 299 300 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) { 301 ext4_fc_wait_committing_inode(inode); 302 goto restart; 303 } 304 305 if (!list_empty(&ei->i_fc_list)) 306 list_del_init(&ei->i_fc_list); 307 308 /* 309 * Since this inode is getting removed, let's also remove all FC 310 * dentry create references, since it is not needed to log it anyways. 311 */ 312 if (list_empty(&ei->i_fc_dilist)) { 313 spin_unlock(&sbi->s_fc_lock); 314 return; 315 } 316 317 fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist); 318 WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT); 319 list_del_init(&fc_dentry->fcd_list); 320 list_del_init(&fc_dentry->fcd_dilist); 321 322 WARN_ON(!list_empty(&ei->i_fc_dilist)); 323 spin_unlock(&sbi->s_fc_lock); 324 325 release_dentry_name_snapshot(&fc_dentry->fcd_name); 326 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry); 327 328 return; 329 } 330 331 /* 332 * Mark file system as fast commit ineligible, and record latest 333 * ineligible transaction tid. This means until the recorded 334 * transaction, commit operation would result in a full jbd2 commit. 335 */ 336 void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle) 337 { 338 struct ext4_sb_info *sbi = EXT4_SB(sb); 339 tid_t tid; 340 bool has_transaction = true; 341 bool is_ineligible; 342 343 if (ext4_fc_disabled(sb)) 344 return; 345 346 if (handle && !IS_ERR(handle)) 347 tid = handle->h_transaction->t_tid; 348 else { 349 read_lock(&sbi->s_journal->j_state_lock); 350 if (sbi->s_journal->j_running_transaction) 351 tid = sbi->s_journal->j_running_transaction->t_tid; 352 else 353 has_transaction = false; 354 read_unlock(&sbi->s_journal->j_state_lock); 355 } 356 spin_lock(&sbi->s_fc_lock); 357 is_ineligible = ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 358 if (has_transaction && (!is_ineligible || tid_gt(tid, sbi->s_fc_ineligible_tid))) 359 sbi->s_fc_ineligible_tid = tid; 360 ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 361 spin_unlock(&sbi->s_fc_lock); 362 WARN_ON(reason >= EXT4_FC_REASON_MAX); 363 sbi->s_fc_stats.fc_ineligible_reason_count[reason]++; 364 } 365 366 /* 367 * Generic fast commit tracking function. If this is the first time this we are 368 * called after a full commit, we initialize fast commit fields and then call 369 * __fc_track_fn() with update = 0. If we have already been called after a full 370 * commit, we pass update = 1. Based on that, the track function can determine 371 * if it needs to track a field for the first time or if it needs to just 372 * update the previously tracked value. 373 * 374 * If enqueue is set, this function enqueues the inode in fast commit list. 375 */ 376 static int ext4_fc_track_template( 377 handle_t *handle, struct inode *inode, 378 int (*__fc_track_fn)(handle_t *handle, struct inode *, void *, bool), 379 void *args, int enqueue) 380 { 381 bool update = false; 382 struct ext4_inode_info *ei = EXT4_I(inode); 383 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 384 tid_t tid = 0; 385 int ret; 386 387 tid = handle->h_transaction->t_tid; 388 mutex_lock(&ei->i_fc_lock); 389 if (tid == ei->i_sync_tid) { 390 update = true; 391 } else { 392 ext4_fc_reset_inode(inode); 393 ei->i_sync_tid = tid; 394 } 395 ret = __fc_track_fn(handle, inode, args, update); 396 mutex_unlock(&ei->i_fc_lock); 397 398 if (!enqueue) 399 return ret; 400 401 spin_lock(&sbi->s_fc_lock); 402 if (list_empty(&EXT4_I(inode)->i_fc_list)) 403 list_add_tail(&EXT4_I(inode)->i_fc_list, 404 (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING || 405 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ? 406 &sbi->s_fc_q[FC_Q_STAGING] : 407 &sbi->s_fc_q[FC_Q_MAIN]); 408 spin_unlock(&sbi->s_fc_lock); 409 410 return ret; 411 } 412 413 struct __track_dentry_update_args { 414 struct dentry *dentry; 415 int op; 416 }; 417 418 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */ 419 static int __track_dentry_update(handle_t *handle, struct inode *inode, 420 void *arg, bool update) 421 { 422 struct ext4_fc_dentry_update *node; 423 struct ext4_inode_info *ei = EXT4_I(inode); 424 struct __track_dentry_update_args *dentry_update = 425 (struct __track_dentry_update_args *)arg; 426 struct dentry *dentry = dentry_update->dentry; 427 struct inode *dir = dentry->d_parent->d_inode; 428 struct super_block *sb = inode->i_sb; 429 struct ext4_sb_info *sbi = EXT4_SB(sb); 430 431 mutex_unlock(&ei->i_fc_lock); 432 433 if (IS_ENCRYPTED(dir)) { 434 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME, 435 handle); 436 mutex_lock(&ei->i_fc_lock); 437 return -EOPNOTSUPP; 438 } 439 440 node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS); 441 if (!node) { 442 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, handle); 443 mutex_lock(&ei->i_fc_lock); 444 return -ENOMEM; 445 } 446 447 node->fcd_op = dentry_update->op; 448 node->fcd_parent = dir->i_ino; 449 node->fcd_ino = inode->i_ino; 450 take_dentry_name_snapshot(&node->fcd_name, dentry); 451 INIT_LIST_HEAD(&node->fcd_dilist); 452 spin_lock(&sbi->s_fc_lock); 453 if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING || 454 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) 455 list_add_tail(&node->fcd_list, 456 &sbi->s_fc_dentry_q[FC_Q_STAGING]); 457 else 458 list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]); 459 460 /* 461 * This helps us keep a track of all fc_dentry updates which is part of 462 * this ext4 inode. So in case the inode is getting unlinked, before 463 * even we get a chance to fsync, we could remove all fc_dentry 464 * references while evicting the inode in ext4_fc_del(). 465 * Also with this, we don't need to loop over all the inodes in 466 * sbi->s_fc_q to get the corresponding inode in 467 * ext4_fc_commit_dentry_updates(). 468 */ 469 if (dentry_update->op == EXT4_FC_TAG_CREAT) { 470 WARN_ON(!list_empty(&ei->i_fc_dilist)); 471 list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist); 472 } 473 spin_unlock(&sbi->s_fc_lock); 474 mutex_lock(&ei->i_fc_lock); 475 476 return 0; 477 } 478 479 void __ext4_fc_track_unlink(handle_t *handle, 480 struct inode *inode, struct dentry *dentry) 481 { 482 struct __track_dentry_update_args args; 483 int ret; 484 485 args.dentry = dentry; 486 args.op = EXT4_FC_TAG_UNLINK; 487 488 ret = ext4_fc_track_template(handle, inode, __track_dentry_update, 489 (void *)&args, 0); 490 trace_ext4_fc_track_unlink(handle, inode, dentry, ret); 491 } 492 493 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry) 494 { 495 struct inode *inode = d_inode(dentry); 496 497 if (ext4_fc_disabled(inode->i_sb)) 498 return; 499 500 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 501 return; 502 503 __ext4_fc_track_unlink(handle, inode, dentry); 504 } 505 506 void __ext4_fc_track_link(handle_t *handle, 507 struct inode *inode, struct dentry *dentry) 508 { 509 struct __track_dentry_update_args args; 510 int ret; 511 512 args.dentry = dentry; 513 args.op = EXT4_FC_TAG_LINK; 514 515 ret = ext4_fc_track_template(handle, inode, __track_dentry_update, 516 (void *)&args, 0); 517 trace_ext4_fc_track_link(handle, inode, dentry, ret); 518 } 519 520 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry) 521 { 522 struct inode *inode = d_inode(dentry); 523 524 if (ext4_fc_disabled(inode->i_sb)) 525 return; 526 527 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 528 return; 529 530 __ext4_fc_track_link(handle, inode, dentry); 531 } 532 533 void __ext4_fc_track_create(handle_t *handle, struct inode *inode, 534 struct dentry *dentry) 535 { 536 struct __track_dentry_update_args args; 537 int ret; 538 539 args.dentry = dentry; 540 args.op = EXT4_FC_TAG_CREAT; 541 542 ret = ext4_fc_track_template(handle, inode, __track_dentry_update, 543 (void *)&args, 0); 544 trace_ext4_fc_track_create(handle, inode, dentry, ret); 545 } 546 547 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry) 548 { 549 struct inode *inode = d_inode(dentry); 550 551 if (ext4_fc_disabled(inode->i_sb)) 552 return; 553 554 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 555 return; 556 557 __ext4_fc_track_create(handle, inode, dentry); 558 } 559 560 /* __track_fn for inode tracking */ 561 static int __track_inode(handle_t *handle, struct inode *inode, void *arg, 562 bool update) 563 { 564 if (update) 565 return -EEXIST; 566 567 EXT4_I(inode)->i_fc_lblk_len = 0; 568 569 return 0; 570 } 571 572 void ext4_fc_track_inode(handle_t *handle, struct inode *inode) 573 { 574 int ret; 575 576 if (S_ISDIR(inode->i_mode)) 577 return; 578 579 if (ext4_fc_disabled(inode->i_sb)) 580 return; 581 582 if (ext4_should_journal_data(inode)) { 583 ext4_fc_mark_ineligible(inode->i_sb, 584 EXT4_FC_REASON_INODE_JOURNAL_DATA, handle); 585 return; 586 } 587 588 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 589 return; 590 591 ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1); 592 trace_ext4_fc_track_inode(handle, inode, ret); 593 } 594 595 struct __track_range_args { 596 ext4_lblk_t start, end; 597 }; 598 599 /* __track_fn for tracking data updates */ 600 static int __track_range(handle_t *handle, struct inode *inode, void *arg, 601 bool update) 602 { 603 struct ext4_inode_info *ei = EXT4_I(inode); 604 ext4_lblk_t oldstart; 605 struct __track_range_args *__arg = 606 (struct __track_range_args *)arg; 607 608 if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) { 609 ext4_debug("Special inode %ld being modified\n", inode->i_ino); 610 return -ECANCELED; 611 } 612 613 oldstart = ei->i_fc_lblk_start; 614 615 if (update && ei->i_fc_lblk_len > 0) { 616 ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start); 617 ei->i_fc_lblk_len = 618 max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) - 619 ei->i_fc_lblk_start + 1; 620 } else { 621 ei->i_fc_lblk_start = __arg->start; 622 ei->i_fc_lblk_len = __arg->end - __arg->start + 1; 623 } 624 625 return 0; 626 } 627 628 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start, 629 ext4_lblk_t end) 630 { 631 struct __track_range_args args; 632 int ret; 633 634 if (S_ISDIR(inode->i_mode)) 635 return; 636 637 if (ext4_fc_disabled(inode->i_sb)) 638 return; 639 640 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 641 return; 642 643 if (ext4_has_inline_data(inode)) { 644 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_XATTR, 645 handle); 646 return; 647 } 648 649 args.start = start; 650 args.end = end; 651 652 ret = ext4_fc_track_template(handle, inode, __track_range, &args, 1); 653 654 trace_ext4_fc_track_range(handle, inode, start, end, ret); 655 } 656 657 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail) 658 { 659 blk_opf_t write_flags = REQ_SYNC; 660 struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh; 661 662 /* Add REQ_FUA | REQ_PREFLUSH only its tail */ 663 if (test_opt(sb, BARRIER) && is_tail) 664 write_flags |= REQ_FUA | REQ_PREFLUSH; 665 lock_buffer(bh); 666 set_buffer_dirty(bh); 667 set_buffer_uptodate(bh); 668 bh->b_end_io = ext4_end_buffer_io_sync; 669 submit_bh(REQ_OP_WRITE | write_flags, bh); 670 EXT4_SB(sb)->s_fc_bh = NULL; 671 } 672 673 /* Ext4 commit path routines */ 674 675 /* 676 * Allocate len bytes on a fast commit buffer. 677 * 678 * During the commit time this function is used to manage fast commit 679 * block space. We don't split a fast commit log onto different 680 * blocks. So this function makes sure that if there's not enough space 681 * on the current block, the remaining space in the current block is 682 * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case, 683 * new block is from jbd2 and CRC is updated to reflect the padding 684 * we added. 685 */ 686 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc) 687 { 688 struct ext4_fc_tl tl; 689 struct ext4_sb_info *sbi = EXT4_SB(sb); 690 struct buffer_head *bh; 691 int bsize = sbi->s_journal->j_blocksize; 692 int ret, off = sbi->s_fc_bytes % bsize; 693 int remaining; 694 u8 *dst; 695 696 /* 697 * If 'len' is too long to fit in any block alongside a PAD tlv, then we 698 * cannot fulfill the request. 699 */ 700 if (len > bsize - EXT4_FC_TAG_BASE_LEN) 701 return NULL; 702 703 if (!sbi->s_fc_bh) { 704 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh); 705 if (ret) 706 return NULL; 707 sbi->s_fc_bh = bh; 708 } 709 dst = sbi->s_fc_bh->b_data + off; 710 711 /* 712 * Allocate the bytes in the current block if we can do so while still 713 * leaving enough space for a PAD tlv. 714 */ 715 remaining = bsize - EXT4_FC_TAG_BASE_LEN - off; 716 if (len <= remaining) { 717 sbi->s_fc_bytes += len; 718 return dst; 719 } 720 721 /* 722 * Else, terminate the current block with a PAD tlv, then allocate a new 723 * block and allocate the bytes at the start of that new block. 724 */ 725 726 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD); 727 tl.fc_len = cpu_to_le16(remaining); 728 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); 729 memset(dst + EXT4_FC_TAG_BASE_LEN, 0, remaining); 730 *crc = ext4_chksum(sbi, *crc, sbi->s_fc_bh->b_data, bsize); 731 732 ext4_fc_submit_bh(sb, false); 733 734 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh); 735 if (ret) 736 return NULL; 737 sbi->s_fc_bh = bh; 738 sbi->s_fc_bytes += bsize - off + len; 739 return sbi->s_fc_bh->b_data; 740 } 741 742 /* 743 * Complete a fast commit by writing tail tag. 744 * 745 * Writing tail tag marks the end of a fast commit. In order to guarantee 746 * atomicity, after writing tail tag, even if there's space remaining 747 * in the block, next commit shouldn't use it. That's why tail tag 748 * has the length as that of the remaining space on the block. 749 */ 750 static int ext4_fc_write_tail(struct super_block *sb, u32 crc) 751 { 752 struct ext4_sb_info *sbi = EXT4_SB(sb); 753 struct ext4_fc_tl tl; 754 struct ext4_fc_tail tail; 755 int off, bsize = sbi->s_journal->j_blocksize; 756 u8 *dst; 757 758 /* 759 * ext4_fc_reserve_space takes care of allocating an extra block if 760 * there's no enough space on this block for accommodating this tail. 761 */ 762 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc); 763 if (!dst) 764 return -ENOSPC; 765 766 off = sbi->s_fc_bytes % bsize; 767 768 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL); 769 tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail)); 770 sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize); 771 772 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); 773 dst += EXT4_FC_TAG_BASE_LEN; 774 tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid); 775 memcpy(dst, &tail.fc_tid, sizeof(tail.fc_tid)); 776 dst += sizeof(tail.fc_tid); 777 crc = ext4_chksum(sbi, crc, sbi->s_fc_bh->b_data, 778 dst - (u8 *)sbi->s_fc_bh->b_data); 779 tail.fc_crc = cpu_to_le32(crc); 780 memcpy(dst, &tail.fc_crc, sizeof(tail.fc_crc)); 781 dst += sizeof(tail.fc_crc); 782 memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */ 783 784 ext4_fc_submit_bh(sb, true); 785 786 return 0; 787 } 788 789 /* 790 * Adds tag, length, value and updates CRC. Returns true if tlv was added. 791 * Returns false if there's not enough space. 792 */ 793 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val, 794 u32 *crc) 795 { 796 struct ext4_fc_tl tl; 797 u8 *dst; 798 799 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc); 800 if (!dst) 801 return false; 802 803 tl.fc_tag = cpu_to_le16(tag); 804 tl.fc_len = cpu_to_le16(len); 805 806 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); 807 memcpy(dst + EXT4_FC_TAG_BASE_LEN, val, len); 808 809 return true; 810 } 811 812 /* Same as above, but adds dentry tlv. */ 813 static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc, 814 struct ext4_fc_dentry_update *fc_dentry) 815 { 816 struct ext4_fc_dentry_info fcd; 817 struct ext4_fc_tl tl; 818 int dlen = fc_dentry->fcd_name.name.len; 819 u8 *dst = ext4_fc_reserve_space(sb, 820 EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc); 821 822 if (!dst) 823 return false; 824 825 fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent); 826 fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino); 827 tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op); 828 tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen); 829 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); 830 dst += EXT4_FC_TAG_BASE_LEN; 831 memcpy(dst, &fcd, sizeof(fcd)); 832 dst += sizeof(fcd); 833 memcpy(dst, fc_dentry->fcd_name.name.name, dlen); 834 835 return true; 836 } 837 838 /* 839 * Writes inode in the fast commit space under TLV with tag @tag. 840 * Returns 0 on success, error on failure. 841 */ 842 static int ext4_fc_write_inode(struct inode *inode, u32 *crc) 843 { 844 struct ext4_inode_info *ei = EXT4_I(inode); 845 int inode_len = EXT4_GOOD_OLD_INODE_SIZE; 846 int ret; 847 struct ext4_iloc iloc; 848 struct ext4_fc_inode fc_inode; 849 struct ext4_fc_tl tl; 850 u8 *dst; 851 852 ret = ext4_get_inode_loc(inode, &iloc); 853 if (ret) 854 return ret; 855 856 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) 857 inode_len = EXT4_INODE_SIZE(inode->i_sb); 858 else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) 859 inode_len += ei->i_extra_isize; 860 861 fc_inode.fc_ino = cpu_to_le32(inode->i_ino); 862 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE); 863 tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino)); 864 865 ret = -ECANCELED; 866 dst = ext4_fc_reserve_space(inode->i_sb, 867 EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc); 868 if (!dst) 869 goto err; 870 871 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); 872 dst += EXT4_FC_TAG_BASE_LEN; 873 memcpy(dst, &fc_inode, sizeof(fc_inode)); 874 dst += sizeof(fc_inode); 875 memcpy(dst, (u8 *)ext4_raw_inode(&iloc), inode_len); 876 ret = 0; 877 err: 878 brelse(iloc.bh); 879 return ret; 880 } 881 882 /* 883 * Writes updated data ranges for the inode in question. Updates CRC. 884 * Returns 0 on success, error otherwise. 885 */ 886 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc) 887 { 888 ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size; 889 struct ext4_inode_info *ei = EXT4_I(inode); 890 struct ext4_map_blocks map; 891 struct ext4_fc_add_range fc_ext; 892 struct ext4_fc_del_range lrange; 893 struct ext4_extent *ex; 894 int ret; 895 896 mutex_lock(&ei->i_fc_lock); 897 if (ei->i_fc_lblk_len == 0) { 898 mutex_unlock(&ei->i_fc_lock); 899 return 0; 900 } 901 old_blk_size = ei->i_fc_lblk_start; 902 new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1; 903 ei->i_fc_lblk_len = 0; 904 mutex_unlock(&ei->i_fc_lock); 905 906 cur_lblk_off = old_blk_size; 907 ext4_debug("will try writing %d to %d for inode %ld\n", 908 cur_lblk_off, new_blk_size, inode->i_ino); 909 910 while (cur_lblk_off <= new_blk_size) { 911 map.m_lblk = cur_lblk_off; 912 map.m_len = new_blk_size - cur_lblk_off + 1; 913 ret = ext4_map_blocks(NULL, inode, &map, 0); 914 if (ret < 0) 915 return -ECANCELED; 916 917 if (map.m_len == 0) { 918 cur_lblk_off++; 919 continue; 920 } 921 922 if (ret == 0) { 923 lrange.fc_ino = cpu_to_le32(inode->i_ino); 924 lrange.fc_lblk = cpu_to_le32(map.m_lblk); 925 lrange.fc_len = cpu_to_le32(map.m_len); 926 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE, 927 sizeof(lrange), (u8 *)&lrange, crc)) 928 return -ENOSPC; 929 } else { 930 unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ? 931 EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN; 932 933 /* Limit the number of blocks in one extent */ 934 map.m_len = min(max, map.m_len); 935 936 fc_ext.fc_ino = cpu_to_le32(inode->i_ino); 937 ex = (struct ext4_extent *)&fc_ext.fc_ex; 938 ex->ee_block = cpu_to_le32(map.m_lblk); 939 ex->ee_len = cpu_to_le16(map.m_len); 940 ext4_ext_store_pblock(ex, map.m_pblk); 941 if (map.m_flags & EXT4_MAP_UNWRITTEN) 942 ext4_ext_mark_unwritten(ex); 943 else 944 ext4_ext_mark_initialized(ex); 945 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE, 946 sizeof(fc_ext), (u8 *)&fc_ext, crc)) 947 return -ENOSPC; 948 } 949 950 cur_lblk_off += map.m_len; 951 } 952 953 return 0; 954 } 955 956 957 /* Submit data for all the fast commit inodes */ 958 static int ext4_fc_submit_inode_data_all(journal_t *journal) 959 { 960 struct super_block *sb = journal->j_private; 961 struct ext4_sb_info *sbi = EXT4_SB(sb); 962 struct ext4_inode_info *ei; 963 int ret = 0; 964 965 spin_lock(&sbi->s_fc_lock); 966 list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { 967 ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING); 968 while (atomic_read(&ei->i_fc_updates)) { 969 DEFINE_WAIT(wait); 970 971 prepare_to_wait(&ei->i_fc_wait, &wait, 972 TASK_UNINTERRUPTIBLE); 973 if (atomic_read(&ei->i_fc_updates)) { 974 spin_unlock(&sbi->s_fc_lock); 975 schedule(); 976 spin_lock(&sbi->s_fc_lock); 977 } 978 finish_wait(&ei->i_fc_wait, &wait); 979 } 980 spin_unlock(&sbi->s_fc_lock); 981 ret = jbd2_submit_inode_data(journal, ei->jinode); 982 if (ret) 983 return ret; 984 spin_lock(&sbi->s_fc_lock); 985 } 986 spin_unlock(&sbi->s_fc_lock); 987 988 return ret; 989 } 990 991 /* Wait for completion of data for all the fast commit inodes */ 992 static int ext4_fc_wait_inode_data_all(journal_t *journal) 993 { 994 struct super_block *sb = journal->j_private; 995 struct ext4_sb_info *sbi = EXT4_SB(sb); 996 struct ext4_inode_info *pos, *n; 997 int ret = 0; 998 999 spin_lock(&sbi->s_fc_lock); 1000 list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { 1001 if (!ext4_test_inode_state(&pos->vfs_inode, 1002 EXT4_STATE_FC_COMMITTING)) 1003 continue; 1004 spin_unlock(&sbi->s_fc_lock); 1005 1006 ret = jbd2_wait_inode_data(journal, pos->jinode); 1007 if (ret) 1008 return ret; 1009 spin_lock(&sbi->s_fc_lock); 1010 } 1011 spin_unlock(&sbi->s_fc_lock); 1012 1013 return 0; 1014 } 1015 1016 /* Commit all the directory entry updates */ 1017 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc) 1018 __acquires(&sbi->s_fc_lock) 1019 __releases(&sbi->s_fc_lock) 1020 { 1021 struct super_block *sb = journal->j_private; 1022 struct ext4_sb_info *sbi = EXT4_SB(sb); 1023 struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n; 1024 struct inode *inode; 1025 struct ext4_inode_info *ei; 1026 int ret; 1027 1028 if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) 1029 return 0; 1030 list_for_each_entry_safe(fc_dentry, fc_dentry_n, 1031 &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) { 1032 if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) { 1033 spin_unlock(&sbi->s_fc_lock); 1034 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) { 1035 ret = -ENOSPC; 1036 goto lock_and_exit; 1037 } 1038 spin_lock(&sbi->s_fc_lock); 1039 continue; 1040 } 1041 /* 1042 * With fcd_dilist we need not loop in sbi->s_fc_q to get the 1043 * corresponding inode pointer 1044 */ 1045 WARN_ON(list_empty(&fc_dentry->fcd_dilist)); 1046 ei = list_first_entry(&fc_dentry->fcd_dilist, 1047 struct ext4_inode_info, i_fc_dilist); 1048 inode = &ei->vfs_inode; 1049 WARN_ON(inode->i_ino != fc_dentry->fcd_ino); 1050 1051 spin_unlock(&sbi->s_fc_lock); 1052 1053 /* 1054 * We first write the inode and then the create dirent. This 1055 * allows the recovery code to create an unnamed inode first 1056 * and then link it to a directory entry. This allows us 1057 * to use namei.c routines almost as is and simplifies 1058 * the recovery code. 1059 */ 1060 ret = ext4_fc_write_inode(inode, crc); 1061 if (ret) 1062 goto lock_and_exit; 1063 1064 ret = ext4_fc_write_inode_data(inode, crc); 1065 if (ret) 1066 goto lock_and_exit; 1067 1068 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) { 1069 ret = -ENOSPC; 1070 goto lock_and_exit; 1071 } 1072 1073 spin_lock(&sbi->s_fc_lock); 1074 } 1075 return 0; 1076 lock_and_exit: 1077 spin_lock(&sbi->s_fc_lock); 1078 return ret; 1079 } 1080 1081 static int ext4_fc_perform_commit(journal_t *journal) 1082 { 1083 struct super_block *sb = journal->j_private; 1084 struct ext4_sb_info *sbi = EXT4_SB(sb); 1085 struct ext4_inode_info *iter; 1086 struct ext4_fc_head head; 1087 struct inode *inode; 1088 struct blk_plug plug; 1089 int ret = 0; 1090 u32 crc = 0; 1091 1092 ret = ext4_fc_submit_inode_data_all(journal); 1093 if (ret) 1094 return ret; 1095 1096 ret = ext4_fc_wait_inode_data_all(journal); 1097 if (ret) 1098 return ret; 1099 1100 /* 1101 * If file system device is different from journal device, issue a cache 1102 * flush before we start writing fast commit blocks. 1103 */ 1104 if (journal->j_fs_dev != journal->j_dev) 1105 blkdev_issue_flush(journal->j_fs_dev); 1106 1107 blk_start_plug(&plug); 1108 if (sbi->s_fc_bytes == 0) { 1109 /* 1110 * Add a head tag only if this is the first fast commit 1111 * in this TID. 1112 */ 1113 head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES); 1114 head.fc_tid = cpu_to_le32( 1115 sbi->s_journal->j_running_transaction->t_tid); 1116 if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head), 1117 (u8 *)&head, &crc)) { 1118 ret = -ENOSPC; 1119 goto out; 1120 } 1121 } 1122 1123 spin_lock(&sbi->s_fc_lock); 1124 ret = ext4_fc_commit_dentry_updates(journal, &crc); 1125 if (ret) { 1126 spin_unlock(&sbi->s_fc_lock); 1127 goto out; 1128 } 1129 1130 list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { 1131 inode = &iter->vfs_inode; 1132 if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) 1133 continue; 1134 1135 spin_unlock(&sbi->s_fc_lock); 1136 ret = ext4_fc_write_inode_data(inode, &crc); 1137 if (ret) 1138 goto out; 1139 ret = ext4_fc_write_inode(inode, &crc); 1140 if (ret) 1141 goto out; 1142 spin_lock(&sbi->s_fc_lock); 1143 } 1144 spin_unlock(&sbi->s_fc_lock); 1145 1146 ret = ext4_fc_write_tail(sb, crc); 1147 1148 out: 1149 blk_finish_plug(&plug); 1150 return ret; 1151 } 1152 1153 static void ext4_fc_update_stats(struct super_block *sb, int status, 1154 u64 commit_time, int nblks, tid_t commit_tid) 1155 { 1156 struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats; 1157 1158 ext4_debug("Fast commit ended with status = %d for tid %u", 1159 status, commit_tid); 1160 if (status == EXT4_FC_STATUS_OK) { 1161 stats->fc_num_commits++; 1162 stats->fc_numblks += nblks; 1163 if (likely(stats->s_fc_avg_commit_time)) 1164 stats->s_fc_avg_commit_time = 1165 (commit_time + 1166 stats->s_fc_avg_commit_time * 3) / 4; 1167 else 1168 stats->s_fc_avg_commit_time = commit_time; 1169 } else if (status == EXT4_FC_STATUS_FAILED || 1170 status == EXT4_FC_STATUS_INELIGIBLE) { 1171 if (status == EXT4_FC_STATUS_FAILED) 1172 stats->fc_failed_commits++; 1173 stats->fc_ineligible_commits++; 1174 } else { 1175 stats->fc_skipped_commits++; 1176 } 1177 trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid); 1178 } 1179 1180 /* 1181 * The main commit entry point. Performs a fast commit for transaction 1182 * commit_tid if needed. If it's not possible to perform a fast commit 1183 * due to various reasons, we fall back to full commit. Returns 0 1184 * on success, error otherwise. 1185 */ 1186 int ext4_fc_commit(journal_t *journal, tid_t commit_tid) 1187 { 1188 struct super_block *sb = journal->j_private; 1189 struct ext4_sb_info *sbi = EXT4_SB(sb); 1190 int nblks = 0, ret, bsize = journal->j_blocksize; 1191 int subtid = atomic_read(&sbi->s_fc_subtid); 1192 int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0; 1193 ktime_t start_time, commit_time; 1194 1195 if (!test_opt2(sb, JOURNAL_FAST_COMMIT)) 1196 return jbd2_complete_transaction(journal, commit_tid); 1197 1198 trace_ext4_fc_commit_start(sb, commit_tid); 1199 1200 start_time = ktime_get(); 1201 1202 restart_fc: 1203 ret = jbd2_fc_begin_commit(journal, commit_tid); 1204 if (ret == -EALREADY) { 1205 /* There was an ongoing commit, check if we need to restart */ 1206 if (atomic_read(&sbi->s_fc_subtid) <= subtid && 1207 tid_gt(commit_tid, journal->j_commit_sequence)) 1208 goto restart_fc; 1209 ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0, 1210 commit_tid); 1211 return 0; 1212 } else if (ret) { 1213 /* 1214 * Commit couldn't start. Just update stats and perform a 1215 * full commit. 1216 */ 1217 ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0, 1218 commit_tid); 1219 return jbd2_complete_transaction(journal, commit_tid); 1220 } 1221 1222 /* 1223 * After establishing journal barrier via jbd2_fc_begin_commit(), check 1224 * if we are fast commit ineligible. 1225 */ 1226 if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) { 1227 status = EXT4_FC_STATUS_INELIGIBLE; 1228 goto fallback; 1229 } 1230 1231 fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize; 1232 ret = ext4_fc_perform_commit(journal); 1233 if (ret < 0) { 1234 status = EXT4_FC_STATUS_FAILED; 1235 goto fallback; 1236 } 1237 nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before; 1238 ret = jbd2_fc_wait_bufs(journal, nblks); 1239 if (ret < 0) { 1240 status = EXT4_FC_STATUS_FAILED; 1241 goto fallback; 1242 } 1243 atomic_inc(&sbi->s_fc_subtid); 1244 ret = jbd2_fc_end_commit(journal); 1245 /* 1246 * weight the commit time higher than the average time so we 1247 * don't react too strongly to vast changes in the commit time 1248 */ 1249 commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time)); 1250 ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid); 1251 return ret; 1252 1253 fallback: 1254 ret = jbd2_fc_end_commit_fallback(journal); 1255 ext4_fc_update_stats(sb, status, 0, 0, commit_tid); 1256 return ret; 1257 } 1258 1259 /* 1260 * Fast commit cleanup routine. This is called after every fast commit and 1261 * full commit. full is true if we are called after a full commit. 1262 */ 1263 static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid) 1264 { 1265 struct super_block *sb = journal->j_private; 1266 struct ext4_sb_info *sbi = EXT4_SB(sb); 1267 struct ext4_inode_info *iter, *iter_n; 1268 struct ext4_fc_dentry_update *fc_dentry; 1269 1270 if (full && sbi->s_fc_bh) 1271 sbi->s_fc_bh = NULL; 1272 1273 trace_ext4_fc_cleanup(journal, full, tid); 1274 jbd2_fc_release_bufs(journal); 1275 1276 spin_lock(&sbi->s_fc_lock); 1277 list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN], 1278 i_fc_list) { 1279 list_del_init(&iter->i_fc_list); 1280 ext4_clear_inode_state(&iter->vfs_inode, 1281 EXT4_STATE_FC_COMMITTING); 1282 if (tid_geq(tid, iter->i_sync_tid)) { 1283 ext4_fc_reset_inode(&iter->vfs_inode); 1284 } else if (full) { 1285 /* 1286 * We are called after a full commit, inode has been 1287 * modified while the commit was running. Re-enqueue 1288 * the inode into STAGING, which will then be splice 1289 * back into MAIN. This cannot happen during 1290 * fastcommit because the journal is locked all the 1291 * time in that case (and tid doesn't increase so 1292 * tid check above isn't reliable). 1293 */ 1294 list_add_tail(&EXT4_I(&iter->vfs_inode)->i_fc_list, 1295 &sbi->s_fc_q[FC_Q_STAGING]); 1296 } 1297 /* Make sure EXT4_STATE_FC_COMMITTING bit is clear */ 1298 smp_mb(); 1299 #if (BITS_PER_LONG < 64) 1300 wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING); 1301 #else 1302 wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING); 1303 #endif 1304 } 1305 1306 while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) { 1307 fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN], 1308 struct ext4_fc_dentry_update, 1309 fcd_list); 1310 list_del_init(&fc_dentry->fcd_list); 1311 list_del_init(&fc_dentry->fcd_dilist); 1312 spin_unlock(&sbi->s_fc_lock); 1313 1314 release_dentry_name_snapshot(&fc_dentry->fcd_name); 1315 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry); 1316 spin_lock(&sbi->s_fc_lock); 1317 } 1318 1319 list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING], 1320 &sbi->s_fc_dentry_q[FC_Q_MAIN]); 1321 list_splice_init(&sbi->s_fc_q[FC_Q_STAGING], 1322 &sbi->s_fc_q[FC_Q_MAIN]); 1323 1324 if (tid_geq(tid, sbi->s_fc_ineligible_tid)) { 1325 sbi->s_fc_ineligible_tid = 0; 1326 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 1327 } 1328 1329 if (full) 1330 sbi->s_fc_bytes = 0; 1331 spin_unlock(&sbi->s_fc_lock); 1332 trace_ext4_fc_stats(sb); 1333 } 1334 1335 /* Ext4 Replay Path Routines */ 1336 1337 /* Helper struct for dentry replay routines */ 1338 struct dentry_info_args { 1339 int parent_ino, dname_len, ino, inode_len; 1340 char *dname; 1341 }; 1342 1343 /* Same as struct ext4_fc_tl, but uses native endianness fields */ 1344 struct ext4_fc_tl_mem { 1345 u16 fc_tag; 1346 u16 fc_len; 1347 }; 1348 1349 static inline void tl_to_darg(struct dentry_info_args *darg, 1350 struct ext4_fc_tl_mem *tl, u8 *val) 1351 { 1352 struct ext4_fc_dentry_info fcd; 1353 1354 memcpy(&fcd, val, sizeof(fcd)); 1355 1356 darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino); 1357 darg->ino = le32_to_cpu(fcd.fc_ino); 1358 darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname); 1359 darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info); 1360 } 1361 1362 static inline void ext4_fc_get_tl(struct ext4_fc_tl_mem *tl, u8 *val) 1363 { 1364 struct ext4_fc_tl tl_disk; 1365 1366 memcpy(&tl_disk, val, EXT4_FC_TAG_BASE_LEN); 1367 tl->fc_len = le16_to_cpu(tl_disk.fc_len); 1368 tl->fc_tag = le16_to_cpu(tl_disk.fc_tag); 1369 } 1370 1371 /* Unlink replay function */ 1372 static int ext4_fc_replay_unlink(struct super_block *sb, 1373 struct ext4_fc_tl_mem *tl, u8 *val) 1374 { 1375 struct inode *inode, *old_parent; 1376 struct qstr entry; 1377 struct dentry_info_args darg; 1378 int ret = 0; 1379 1380 tl_to_darg(&darg, tl, val); 1381 1382 trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino, 1383 darg.parent_ino, darg.dname_len); 1384 1385 entry.name = darg.dname; 1386 entry.len = darg.dname_len; 1387 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); 1388 1389 if (IS_ERR(inode)) { 1390 ext4_debug("Inode %d not found", darg.ino); 1391 return 0; 1392 } 1393 1394 old_parent = ext4_iget(sb, darg.parent_ino, 1395 EXT4_IGET_NORMAL); 1396 if (IS_ERR(old_parent)) { 1397 ext4_debug("Dir with inode %d not found", darg.parent_ino); 1398 iput(inode); 1399 return 0; 1400 } 1401 1402 ret = __ext4_unlink(old_parent, &entry, inode, NULL); 1403 /* -ENOENT ok coz it might not exist anymore. */ 1404 if (ret == -ENOENT) 1405 ret = 0; 1406 iput(old_parent); 1407 iput(inode); 1408 return ret; 1409 } 1410 1411 static int ext4_fc_replay_link_internal(struct super_block *sb, 1412 struct dentry_info_args *darg, 1413 struct inode *inode) 1414 { 1415 struct inode *dir = NULL; 1416 struct dentry *dentry_dir = NULL, *dentry_inode = NULL; 1417 struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len); 1418 int ret = 0; 1419 1420 dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL); 1421 if (IS_ERR(dir)) { 1422 ext4_debug("Dir with inode %d not found.", darg->parent_ino); 1423 dir = NULL; 1424 goto out; 1425 } 1426 1427 dentry_dir = d_obtain_alias(dir); 1428 if (IS_ERR(dentry_dir)) { 1429 ext4_debug("Failed to obtain dentry"); 1430 dentry_dir = NULL; 1431 goto out; 1432 } 1433 1434 dentry_inode = d_alloc(dentry_dir, &qstr_dname); 1435 if (!dentry_inode) { 1436 ext4_debug("Inode dentry not created."); 1437 ret = -ENOMEM; 1438 goto out; 1439 } 1440 1441 ret = __ext4_link(dir, inode, dentry_inode); 1442 /* 1443 * It's possible that link already existed since data blocks 1444 * for the dir in question got persisted before we crashed OR 1445 * we replayed this tag and crashed before the entire replay 1446 * could complete. 1447 */ 1448 if (ret && ret != -EEXIST) { 1449 ext4_debug("Failed to link\n"); 1450 goto out; 1451 } 1452 1453 ret = 0; 1454 out: 1455 if (dentry_dir) { 1456 d_drop(dentry_dir); 1457 dput(dentry_dir); 1458 } else if (dir) { 1459 iput(dir); 1460 } 1461 if (dentry_inode) { 1462 d_drop(dentry_inode); 1463 dput(dentry_inode); 1464 } 1465 1466 return ret; 1467 } 1468 1469 /* Link replay function */ 1470 static int ext4_fc_replay_link(struct super_block *sb, 1471 struct ext4_fc_tl_mem *tl, u8 *val) 1472 { 1473 struct inode *inode; 1474 struct dentry_info_args darg; 1475 int ret = 0; 1476 1477 tl_to_darg(&darg, tl, val); 1478 trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino, 1479 darg.parent_ino, darg.dname_len); 1480 1481 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); 1482 if (IS_ERR(inode)) { 1483 ext4_debug("Inode not found."); 1484 return 0; 1485 } 1486 1487 ret = ext4_fc_replay_link_internal(sb, &darg, inode); 1488 iput(inode); 1489 return ret; 1490 } 1491 1492 /* 1493 * Record all the modified inodes during replay. We use this later to setup 1494 * block bitmaps correctly. 1495 */ 1496 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino) 1497 { 1498 struct ext4_fc_replay_state *state; 1499 int i; 1500 1501 state = &EXT4_SB(sb)->s_fc_replay_state; 1502 for (i = 0; i < state->fc_modified_inodes_used; i++) 1503 if (state->fc_modified_inodes[i] == ino) 1504 return 0; 1505 if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) { 1506 int *fc_modified_inodes; 1507 1508 fc_modified_inodes = krealloc(state->fc_modified_inodes, 1509 sizeof(int) * (state->fc_modified_inodes_size + 1510 EXT4_FC_REPLAY_REALLOC_INCREMENT), 1511 GFP_KERNEL); 1512 if (!fc_modified_inodes) 1513 return -ENOMEM; 1514 state->fc_modified_inodes = fc_modified_inodes; 1515 state->fc_modified_inodes_size += 1516 EXT4_FC_REPLAY_REALLOC_INCREMENT; 1517 } 1518 state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino; 1519 return 0; 1520 } 1521 1522 /* 1523 * Inode replay function 1524 */ 1525 static int ext4_fc_replay_inode(struct super_block *sb, 1526 struct ext4_fc_tl_mem *tl, u8 *val) 1527 { 1528 struct ext4_fc_inode fc_inode; 1529 struct ext4_inode *raw_inode; 1530 struct ext4_inode *raw_fc_inode; 1531 struct inode *inode = NULL; 1532 struct ext4_iloc iloc; 1533 int inode_len, ino, ret, tag = tl->fc_tag; 1534 struct ext4_extent_header *eh; 1535 size_t off_gen = offsetof(struct ext4_inode, i_generation); 1536 1537 memcpy(&fc_inode, val, sizeof(fc_inode)); 1538 1539 ino = le32_to_cpu(fc_inode.fc_ino); 1540 trace_ext4_fc_replay(sb, tag, ino, 0, 0); 1541 1542 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); 1543 if (!IS_ERR(inode)) { 1544 ext4_ext_clear_bb(inode); 1545 iput(inode); 1546 } 1547 inode = NULL; 1548 1549 ret = ext4_fc_record_modified_inode(sb, ino); 1550 if (ret) 1551 goto out; 1552 1553 raw_fc_inode = (struct ext4_inode *) 1554 (val + offsetof(struct ext4_fc_inode, fc_raw_inode)); 1555 ret = ext4_get_fc_inode_loc(sb, ino, &iloc); 1556 if (ret) 1557 goto out; 1558 1559 inode_len = tl->fc_len - sizeof(struct ext4_fc_inode); 1560 raw_inode = ext4_raw_inode(&iloc); 1561 1562 memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block)); 1563 memcpy((u8 *)raw_inode + off_gen, (u8 *)raw_fc_inode + off_gen, 1564 inode_len - off_gen); 1565 if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) { 1566 eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]); 1567 if (eh->eh_magic != EXT4_EXT_MAGIC) { 1568 memset(eh, 0, sizeof(*eh)); 1569 eh->eh_magic = EXT4_EXT_MAGIC; 1570 eh->eh_max = cpu_to_le16( 1571 (sizeof(raw_inode->i_block) - 1572 sizeof(struct ext4_extent_header)) 1573 / sizeof(struct ext4_extent)); 1574 } 1575 } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) { 1576 memcpy(raw_inode->i_block, raw_fc_inode->i_block, 1577 sizeof(raw_inode->i_block)); 1578 } 1579 1580 /* Immediately update the inode on disk. */ 1581 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh); 1582 if (ret) 1583 goto out; 1584 ret = sync_dirty_buffer(iloc.bh); 1585 if (ret) 1586 goto out; 1587 ret = ext4_mark_inode_used(sb, ino); 1588 if (ret) 1589 goto out; 1590 1591 /* Given that we just wrote the inode on disk, this SHOULD succeed. */ 1592 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); 1593 if (IS_ERR(inode)) { 1594 ext4_debug("Inode not found."); 1595 return -EFSCORRUPTED; 1596 } 1597 1598 /* 1599 * Our allocator could have made different decisions than before 1600 * crashing. This should be fixed but until then, we calculate 1601 * the number of blocks the inode. 1602 */ 1603 if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) 1604 ext4_ext_replay_set_iblocks(inode); 1605 1606 inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation); 1607 ext4_reset_inode_seed(inode); 1608 1609 ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode)); 1610 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh); 1611 sync_dirty_buffer(iloc.bh); 1612 brelse(iloc.bh); 1613 out: 1614 iput(inode); 1615 if (!ret) 1616 blkdev_issue_flush(sb->s_bdev); 1617 1618 return 0; 1619 } 1620 1621 /* 1622 * Dentry create replay function. 1623 * 1624 * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the 1625 * inode for which we are trying to create a dentry here, should already have 1626 * been replayed before we start here. 1627 */ 1628 static int ext4_fc_replay_create(struct super_block *sb, 1629 struct ext4_fc_tl_mem *tl, u8 *val) 1630 { 1631 int ret = 0; 1632 struct inode *inode = NULL; 1633 struct inode *dir = NULL; 1634 struct dentry_info_args darg; 1635 1636 tl_to_darg(&darg, tl, val); 1637 1638 trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino, 1639 darg.parent_ino, darg.dname_len); 1640 1641 /* This takes care of update group descriptor and other metadata */ 1642 ret = ext4_mark_inode_used(sb, darg.ino); 1643 if (ret) 1644 goto out; 1645 1646 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); 1647 if (IS_ERR(inode)) { 1648 ext4_debug("inode %d not found.", darg.ino); 1649 inode = NULL; 1650 ret = -EINVAL; 1651 goto out; 1652 } 1653 1654 if (S_ISDIR(inode->i_mode)) { 1655 /* 1656 * If we are creating a directory, we need to make sure that the 1657 * dot and dot dot dirents are setup properly. 1658 */ 1659 dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL); 1660 if (IS_ERR(dir)) { 1661 ext4_debug("Dir %d not found.", darg.ino); 1662 goto out; 1663 } 1664 ret = ext4_init_new_dir(NULL, dir, inode); 1665 iput(dir); 1666 if (ret) { 1667 ret = 0; 1668 goto out; 1669 } 1670 } 1671 ret = ext4_fc_replay_link_internal(sb, &darg, inode); 1672 if (ret) 1673 goto out; 1674 set_nlink(inode, 1); 1675 ext4_mark_inode_dirty(NULL, inode); 1676 out: 1677 iput(inode); 1678 return ret; 1679 } 1680 1681 /* 1682 * Record physical disk regions which are in use as per fast commit area, 1683 * and used by inodes during replay phase. Our simple replay phase 1684 * allocator excludes these regions from allocation. 1685 */ 1686 int ext4_fc_record_regions(struct super_block *sb, int ino, 1687 ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay) 1688 { 1689 struct ext4_fc_replay_state *state; 1690 struct ext4_fc_alloc_region *region; 1691 1692 state = &EXT4_SB(sb)->s_fc_replay_state; 1693 /* 1694 * during replay phase, the fc_regions_valid may not same as 1695 * fc_regions_used, update it when do new additions. 1696 */ 1697 if (replay && state->fc_regions_used != state->fc_regions_valid) 1698 state->fc_regions_used = state->fc_regions_valid; 1699 if (state->fc_regions_used == state->fc_regions_size) { 1700 struct ext4_fc_alloc_region *fc_regions; 1701 1702 fc_regions = krealloc(state->fc_regions, 1703 sizeof(struct ext4_fc_alloc_region) * 1704 (state->fc_regions_size + 1705 EXT4_FC_REPLAY_REALLOC_INCREMENT), 1706 GFP_KERNEL); 1707 if (!fc_regions) 1708 return -ENOMEM; 1709 state->fc_regions_size += 1710 EXT4_FC_REPLAY_REALLOC_INCREMENT; 1711 state->fc_regions = fc_regions; 1712 } 1713 region = &state->fc_regions[state->fc_regions_used++]; 1714 region->ino = ino; 1715 region->lblk = lblk; 1716 region->pblk = pblk; 1717 region->len = len; 1718 1719 if (replay) 1720 state->fc_regions_valid++; 1721 1722 return 0; 1723 } 1724 1725 /* Replay add range tag */ 1726 static int ext4_fc_replay_add_range(struct super_block *sb, 1727 struct ext4_fc_tl_mem *tl, u8 *val) 1728 { 1729 struct ext4_fc_add_range fc_add_ex; 1730 struct ext4_extent newex, *ex; 1731 struct inode *inode; 1732 ext4_lblk_t start, cur; 1733 int remaining, len; 1734 ext4_fsblk_t start_pblk; 1735 struct ext4_map_blocks map; 1736 struct ext4_ext_path *path = NULL; 1737 int ret; 1738 1739 memcpy(&fc_add_ex, val, sizeof(fc_add_ex)); 1740 ex = (struct ext4_extent *)&fc_add_ex.fc_ex; 1741 1742 trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE, 1743 le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block), 1744 ext4_ext_get_actual_len(ex)); 1745 1746 inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL); 1747 if (IS_ERR(inode)) { 1748 ext4_debug("Inode not found."); 1749 return 0; 1750 } 1751 1752 ret = ext4_fc_record_modified_inode(sb, inode->i_ino); 1753 if (ret) 1754 goto out; 1755 1756 start = le32_to_cpu(ex->ee_block); 1757 start_pblk = ext4_ext_pblock(ex); 1758 len = ext4_ext_get_actual_len(ex); 1759 1760 cur = start; 1761 remaining = len; 1762 ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n", 1763 start, start_pblk, len, ext4_ext_is_unwritten(ex), 1764 inode->i_ino); 1765 1766 while (remaining > 0) { 1767 map.m_lblk = cur; 1768 map.m_len = remaining; 1769 map.m_pblk = 0; 1770 ret = ext4_map_blocks(NULL, inode, &map, 0); 1771 1772 if (ret < 0) 1773 goto out; 1774 1775 if (ret == 0) { 1776 /* Range is not mapped */ 1777 path = ext4_find_extent(inode, cur, path, 0); 1778 if (IS_ERR(path)) 1779 goto out; 1780 memset(&newex, 0, sizeof(newex)); 1781 newex.ee_block = cpu_to_le32(cur); 1782 ext4_ext_store_pblock( 1783 &newex, start_pblk + cur - start); 1784 newex.ee_len = cpu_to_le16(map.m_len); 1785 if (ext4_ext_is_unwritten(ex)) 1786 ext4_ext_mark_unwritten(&newex); 1787 down_write(&EXT4_I(inode)->i_data_sem); 1788 path = ext4_ext_insert_extent(NULL, inode, 1789 path, &newex, 0); 1790 up_write((&EXT4_I(inode)->i_data_sem)); 1791 if (IS_ERR(path)) 1792 goto out; 1793 goto next; 1794 } 1795 1796 if (start_pblk + cur - start != map.m_pblk) { 1797 /* 1798 * Logical to physical mapping changed. This can happen 1799 * if this range was removed and then reallocated to 1800 * map to new physical blocks during a fast commit. 1801 */ 1802 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len, 1803 ext4_ext_is_unwritten(ex), 1804 start_pblk + cur - start); 1805 if (ret) 1806 goto out; 1807 /* 1808 * Mark the old blocks as free since they aren't used 1809 * anymore. We maintain an array of all the modified 1810 * inodes. In case these blocks are still used at either 1811 * a different logical range in the same inode or in 1812 * some different inode, we will mark them as allocated 1813 * at the end of the FC replay using our array of 1814 * modified inodes. 1815 */ 1816 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false); 1817 goto next; 1818 } 1819 1820 /* Range is mapped and needs a state change */ 1821 ext4_debug("Converting from %ld to %d %lld", 1822 map.m_flags & EXT4_MAP_UNWRITTEN, 1823 ext4_ext_is_unwritten(ex), map.m_pblk); 1824 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len, 1825 ext4_ext_is_unwritten(ex), map.m_pblk); 1826 if (ret) 1827 goto out; 1828 /* 1829 * We may have split the extent tree while toggling the state. 1830 * Try to shrink the extent tree now. 1831 */ 1832 ext4_ext_replay_shrink_inode(inode, start + len); 1833 next: 1834 cur += map.m_len; 1835 remaining -= map.m_len; 1836 } 1837 ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >> 1838 sb->s_blocksize_bits); 1839 out: 1840 ext4_free_ext_path(path); 1841 iput(inode); 1842 return 0; 1843 } 1844 1845 /* Replay DEL_RANGE tag */ 1846 static int 1847 ext4_fc_replay_del_range(struct super_block *sb, 1848 struct ext4_fc_tl_mem *tl, u8 *val) 1849 { 1850 struct inode *inode; 1851 struct ext4_fc_del_range lrange; 1852 struct ext4_map_blocks map; 1853 ext4_lblk_t cur, remaining; 1854 int ret; 1855 1856 memcpy(&lrange, val, sizeof(lrange)); 1857 cur = le32_to_cpu(lrange.fc_lblk); 1858 remaining = le32_to_cpu(lrange.fc_len); 1859 1860 trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE, 1861 le32_to_cpu(lrange.fc_ino), cur, remaining); 1862 1863 inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL); 1864 if (IS_ERR(inode)) { 1865 ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino)); 1866 return 0; 1867 } 1868 1869 ret = ext4_fc_record_modified_inode(sb, inode->i_ino); 1870 if (ret) 1871 goto out; 1872 1873 ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n", 1874 inode->i_ino, le32_to_cpu(lrange.fc_lblk), 1875 le32_to_cpu(lrange.fc_len)); 1876 while (remaining > 0) { 1877 map.m_lblk = cur; 1878 map.m_len = remaining; 1879 1880 ret = ext4_map_blocks(NULL, inode, &map, 0); 1881 if (ret < 0) 1882 goto out; 1883 if (ret > 0) { 1884 remaining -= ret; 1885 cur += ret; 1886 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false); 1887 } else { 1888 remaining -= map.m_len; 1889 cur += map.m_len; 1890 } 1891 } 1892 1893 down_write(&EXT4_I(inode)->i_data_sem); 1894 ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk), 1895 le32_to_cpu(lrange.fc_lblk) + 1896 le32_to_cpu(lrange.fc_len) - 1); 1897 up_write(&EXT4_I(inode)->i_data_sem); 1898 if (ret) 1899 goto out; 1900 ext4_ext_replay_shrink_inode(inode, 1901 i_size_read(inode) >> sb->s_blocksize_bits); 1902 ext4_mark_inode_dirty(NULL, inode); 1903 out: 1904 iput(inode); 1905 return 0; 1906 } 1907 1908 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb) 1909 { 1910 struct ext4_fc_replay_state *state; 1911 struct inode *inode; 1912 struct ext4_ext_path *path = NULL; 1913 struct ext4_map_blocks map; 1914 int i, ret, j; 1915 ext4_lblk_t cur, end; 1916 1917 state = &EXT4_SB(sb)->s_fc_replay_state; 1918 for (i = 0; i < state->fc_modified_inodes_used; i++) { 1919 inode = ext4_iget(sb, state->fc_modified_inodes[i], 1920 EXT4_IGET_NORMAL); 1921 if (IS_ERR(inode)) { 1922 ext4_debug("Inode %d not found.", 1923 state->fc_modified_inodes[i]); 1924 continue; 1925 } 1926 cur = 0; 1927 end = EXT_MAX_BLOCKS; 1928 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) { 1929 iput(inode); 1930 continue; 1931 } 1932 while (cur < end) { 1933 map.m_lblk = cur; 1934 map.m_len = end - cur; 1935 1936 ret = ext4_map_blocks(NULL, inode, &map, 0); 1937 if (ret < 0) 1938 break; 1939 1940 if (ret > 0) { 1941 path = ext4_find_extent(inode, map.m_lblk, path, 0); 1942 if (!IS_ERR(path)) { 1943 for (j = 0; j < path->p_depth; j++) 1944 ext4_mb_mark_bb(inode->i_sb, 1945 path[j].p_block, 1, true); 1946 } else { 1947 path = NULL; 1948 } 1949 cur += ret; 1950 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, 1951 map.m_len, true); 1952 } else { 1953 cur = cur + (map.m_len ? map.m_len : 1); 1954 } 1955 } 1956 iput(inode); 1957 } 1958 1959 ext4_free_ext_path(path); 1960 } 1961 1962 /* 1963 * Check if block is in excluded regions for block allocation. The simple 1964 * allocator that runs during replay phase is calls this function to see 1965 * if it is okay to use a block. 1966 */ 1967 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk) 1968 { 1969 int i; 1970 struct ext4_fc_replay_state *state; 1971 1972 state = &EXT4_SB(sb)->s_fc_replay_state; 1973 for (i = 0; i < state->fc_regions_valid; i++) { 1974 if (state->fc_regions[i].ino == 0 || 1975 state->fc_regions[i].len == 0) 1976 continue; 1977 if (in_range(blk, state->fc_regions[i].pblk, 1978 state->fc_regions[i].len)) 1979 return true; 1980 } 1981 return false; 1982 } 1983 1984 /* Cleanup function called after replay */ 1985 void ext4_fc_replay_cleanup(struct super_block *sb) 1986 { 1987 struct ext4_sb_info *sbi = EXT4_SB(sb); 1988 1989 sbi->s_mount_state &= ~EXT4_FC_REPLAY; 1990 kfree(sbi->s_fc_replay_state.fc_regions); 1991 kfree(sbi->s_fc_replay_state.fc_modified_inodes); 1992 } 1993 1994 static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi, 1995 int tag, int len) 1996 { 1997 switch (tag) { 1998 case EXT4_FC_TAG_ADD_RANGE: 1999 return len == sizeof(struct ext4_fc_add_range); 2000 case EXT4_FC_TAG_DEL_RANGE: 2001 return len == sizeof(struct ext4_fc_del_range); 2002 case EXT4_FC_TAG_CREAT: 2003 case EXT4_FC_TAG_LINK: 2004 case EXT4_FC_TAG_UNLINK: 2005 len -= sizeof(struct ext4_fc_dentry_info); 2006 return len >= 1 && len <= EXT4_NAME_LEN; 2007 case EXT4_FC_TAG_INODE: 2008 len -= sizeof(struct ext4_fc_inode); 2009 return len >= EXT4_GOOD_OLD_INODE_SIZE && 2010 len <= sbi->s_inode_size; 2011 case EXT4_FC_TAG_PAD: 2012 return true; /* padding can have any length */ 2013 case EXT4_FC_TAG_TAIL: 2014 return len >= sizeof(struct ext4_fc_tail); 2015 case EXT4_FC_TAG_HEAD: 2016 return len == sizeof(struct ext4_fc_head); 2017 } 2018 return false; 2019 } 2020 2021 /* 2022 * Recovery Scan phase handler 2023 * 2024 * This function is called during the scan phase and is responsible 2025 * for doing following things: 2026 * - Make sure the fast commit area has valid tags for replay 2027 * - Count number of tags that need to be replayed by the replay handler 2028 * - Verify CRC 2029 * - Create a list of excluded blocks for allocation during replay phase 2030 * 2031 * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is 2032 * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP 2033 * to indicate that scan has finished and JBD2 can now start replay phase. 2034 * It returns a negative error to indicate that there was an error. At the end 2035 * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set 2036 * to indicate the number of tags that need to replayed during the replay phase. 2037 */ 2038 static int ext4_fc_replay_scan(journal_t *journal, 2039 struct buffer_head *bh, int off, 2040 tid_t expected_tid) 2041 { 2042 struct super_block *sb = journal->j_private; 2043 struct ext4_sb_info *sbi = EXT4_SB(sb); 2044 struct ext4_fc_replay_state *state; 2045 int ret = JBD2_FC_REPLAY_CONTINUE; 2046 struct ext4_fc_add_range ext; 2047 struct ext4_fc_tl_mem tl; 2048 struct ext4_fc_tail tail; 2049 __u8 *start, *end, *cur, *val; 2050 struct ext4_fc_head head; 2051 struct ext4_extent *ex; 2052 2053 state = &sbi->s_fc_replay_state; 2054 2055 start = (u8 *)bh->b_data; 2056 end = start + journal->j_blocksize; 2057 2058 if (state->fc_replay_expected_off == 0) { 2059 state->fc_cur_tag = 0; 2060 state->fc_replay_num_tags = 0; 2061 state->fc_crc = 0; 2062 state->fc_regions = NULL; 2063 state->fc_regions_valid = state->fc_regions_used = 2064 state->fc_regions_size = 0; 2065 /* Check if we can stop early */ 2066 if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag) 2067 != EXT4_FC_TAG_HEAD) 2068 return 0; 2069 } 2070 2071 if (off != state->fc_replay_expected_off) { 2072 ret = -EFSCORRUPTED; 2073 goto out_err; 2074 } 2075 2076 state->fc_replay_expected_off++; 2077 for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN; 2078 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) { 2079 ext4_fc_get_tl(&tl, cur); 2080 val = cur + EXT4_FC_TAG_BASE_LEN; 2081 if (tl.fc_len > end - val || 2082 !ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) { 2083 ret = state->fc_replay_num_tags ? 2084 JBD2_FC_REPLAY_STOP : -ECANCELED; 2085 goto out_err; 2086 } 2087 ext4_debug("Scan phase, tag:%s, blk %lld\n", 2088 tag2str(tl.fc_tag), bh->b_blocknr); 2089 switch (tl.fc_tag) { 2090 case EXT4_FC_TAG_ADD_RANGE: 2091 memcpy(&ext, val, sizeof(ext)); 2092 ex = (struct ext4_extent *)&ext.fc_ex; 2093 ret = ext4_fc_record_regions(sb, 2094 le32_to_cpu(ext.fc_ino), 2095 le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex), 2096 ext4_ext_get_actual_len(ex), 0); 2097 if (ret < 0) 2098 break; 2099 ret = JBD2_FC_REPLAY_CONTINUE; 2100 fallthrough; 2101 case EXT4_FC_TAG_DEL_RANGE: 2102 case EXT4_FC_TAG_LINK: 2103 case EXT4_FC_TAG_UNLINK: 2104 case EXT4_FC_TAG_CREAT: 2105 case EXT4_FC_TAG_INODE: 2106 case EXT4_FC_TAG_PAD: 2107 state->fc_cur_tag++; 2108 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur, 2109 EXT4_FC_TAG_BASE_LEN + tl.fc_len); 2110 break; 2111 case EXT4_FC_TAG_TAIL: 2112 state->fc_cur_tag++; 2113 memcpy(&tail, val, sizeof(tail)); 2114 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur, 2115 EXT4_FC_TAG_BASE_LEN + 2116 offsetof(struct ext4_fc_tail, 2117 fc_crc)); 2118 if (le32_to_cpu(tail.fc_tid) == expected_tid && 2119 le32_to_cpu(tail.fc_crc) == state->fc_crc) { 2120 state->fc_replay_num_tags = state->fc_cur_tag; 2121 state->fc_regions_valid = 2122 state->fc_regions_used; 2123 } else { 2124 ret = state->fc_replay_num_tags ? 2125 JBD2_FC_REPLAY_STOP : -EFSBADCRC; 2126 } 2127 state->fc_crc = 0; 2128 break; 2129 case EXT4_FC_TAG_HEAD: 2130 memcpy(&head, val, sizeof(head)); 2131 if (le32_to_cpu(head.fc_features) & 2132 ~EXT4_FC_SUPPORTED_FEATURES) { 2133 ret = -EOPNOTSUPP; 2134 break; 2135 } 2136 if (le32_to_cpu(head.fc_tid) != expected_tid) { 2137 ret = JBD2_FC_REPLAY_STOP; 2138 break; 2139 } 2140 state->fc_cur_tag++; 2141 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur, 2142 EXT4_FC_TAG_BASE_LEN + tl.fc_len); 2143 break; 2144 default: 2145 ret = state->fc_replay_num_tags ? 2146 JBD2_FC_REPLAY_STOP : -ECANCELED; 2147 } 2148 if (ret < 0 || ret == JBD2_FC_REPLAY_STOP) 2149 break; 2150 } 2151 2152 out_err: 2153 trace_ext4_fc_replay_scan(sb, ret, off); 2154 return ret; 2155 } 2156 2157 /* 2158 * Main recovery path entry point. 2159 * The meaning of return codes is similar as above. 2160 */ 2161 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh, 2162 enum passtype pass, int off, tid_t expected_tid) 2163 { 2164 struct super_block *sb = journal->j_private; 2165 struct ext4_sb_info *sbi = EXT4_SB(sb); 2166 struct ext4_fc_tl_mem tl; 2167 __u8 *start, *end, *cur, *val; 2168 int ret = JBD2_FC_REPLAY_CONTINUE; 2169 struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state; 2170 struct ext4_fc_tail tail; 2171 2172 if (pass == PASS_SCAN) { 2173 state->fc_current_pass = PASS_SCAN; 2174 return ext4_fc_replay_scan(journal, bh, off, expected_tid); 2175 } 2176 2177 if (state->fc_current_pass != pass) { 2178 state->fc_current_pass = pass; 2179 sbi->s_mount_state |= EXT4_FC_REPLAY; 2180 } 2181 if (!sbi->s_fc_replay_state.fc_replay_num_tags) { 2182 ext4_debug("Replay stops\n"); 2183 ext4_fc_set_bitmaps_and_counters(sb); 2184 return 0; 2185 } 2186 2187 #ifdef CONFIG_EXT4_DEBUG 2188 if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) { 2189 pr_warn("Dropping fc block %d because max_replay set\n", off); 2190 return JBD2_FC_REPLAY_STOP; 2191 } 2192 #endif 2193 2194 start = (u8 *)bh->b_data; 2195 end = start + journal->j_blocksize; 2196 2197 for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN; 2198 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) { 2199 ext4_fc_get_tl(&tl, cur); 2200 val = cur + EXT4_FC_TAG_BASE_LEN; 2201 2202 if (state->fc_replay_num_tags == 0) { 2203 ret = JBD2_FC_REPLAY_STOP; 2204 ext4_fc_set_bitmaps_and_counters(sb); 2205 break; 2206 } 2207 2208 ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag)); 2209 state->fc_replay_num_tags--; 2210 switch (tl.fc_tag) { 2211 case EXT4_FC_TAG_LINK: 2212 ret = ext4_fc_replay_link(sb, &tl, val); 2213 break; 2214 case EXT4_FC_TAG_UNLINK: 2215 ret = ext4_fc_replay_unlink(sb, &tl, val); 2216 break; 2217 case EXT4_FC_TAG_ADD_RANGE: 2218 ret = ext4_fc_replay_add_range(sb, &tl, val); 2219 break; 2220 case EXT4_FC_TAG_CREAT: 2221 ret = ext4_fc_replay_create(sb, &tl, val); 2222 break; 2223 case EXT4_FC_TAG_DEL_RANGE: 2224 ret = ext4_fc_replay_del_range(sb, &tl, val); 2225 break; 2226 case EXT4_FC_TAG_INODE: 2227 ret = ext4_fc_replay_inode(sb, &tl, val); 2228 break; 2229 case EXT4_FC_TAG_PAD: 2230 trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0, 2231 tl.fc_len, 0); 2232 break; 2233 case EXT4_FC_TAG_TAIL: 2234 trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL, 2235 0, tl.fc_len, 0); 2236 memcpy(&tail, val, sizeof(tail)); 2237 WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid); 2238 break; 2239 case EXT4_FC_TAG_HEAD: 2240 break; 2241 default: 2242 trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0); 2243 ret = -ECANCELED; 2244 break; 2245 } 2246 if (ret < 0) 2247 break; 2248 ret = JBD2_FC_REPLAY_CONTINUE; 2249 } 2250 return ret; 2251 } 2252 2253 void ext4_fc_init(struct super_block *sb, journal_t *journal) 2254 { 2255 /* 2256 * We set replay callback even if fast commit disabled because we may 2257 * could still have fast commit blocks that need to be replayed even if 2258 * fast commit has now been turned off. 2259 */ 2260 journal->j_fc_replay_callback = ext4_fc_replay; 2261 if (!test_opt2(sb, JOURNAL_FAST_COMMIT)) 2262 return; 2263 journal->j_fc_cleanup_callback = ext4_fc_cleanup; 2264 } 2265 2266 static const char * const fc_ineligible_reasons[] = { 2267 [EXT4_FC_REASON_XATTR] = "Extended attributes changed", 2268 [EXT4_FC_REASON_CROSS_RENAME] = "Cross rename", 2269 [EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed", 2270 [EXT4_FC_REASON_NOMEM] = "Insufficient memory", 2271 [EXT4_FC_REASON_SWAP_BOOT] = "Swap boot", 2272 [EXT4_FC_REASON_RESIZE] = "Resize", 2273 [EXT4_FC_REASON_RENAME_DIR] = "Dir renamed", 2274 [EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op", 2275 [EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling", 2276 [EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename", 2277 }; 2278 2279 int ext4_fc_info_show(struct seq_file *seq, void *v) 2280 { 2281 struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private); 2282 struct ext4_fc_stats *stats = &sbi->s_fc_stats; 2283 int i; 2284 2285 if (v != SEQ_START_TOKEN) 2286 return 0; 2287 2288 seq_printf(seq, 2289 "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n", 2290 stats->fc_num_commits, stats->fc_ineligible_commits, 2291 stats->fc_numblks, 2292 div_u64(stats->s_fc_avg_commit_time, 1000)); 2293 seq_puts(seq, "Ineligible reasons:\n"); 2294 for (i = 0; i < EXT4_FC_REASON_MAX; i++) 2295 seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i], 2296 stats->fc_ineligible_reason_count[i]); 2297 2298 return 0; 2299 } 2300 2301 int __init ext4_fc_init_dentry_cache(void) 2302 { 2303 ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update, 2304 SLAB_RECLAIM_ACCOUNT); 2305 2306 if (ext4_fc_dentry_cachep == NULL) 2307 return -ENOMEM; 2308 2309 return 0; 2310 } 2311 2312 void ext4_fc_destroy_dentry_cache(void) 2313 { 2314 kmem_cache_destroy(ext4_fc_dentry_cachep); 2315 } 2316