1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * fs/ext4/fast_commit.c 5 * 6 * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com> 7 * 8 * Ext4 fast commits routines. 9 */ 10 #include "ext4.h" 11 #include "ext4_jbd2.h" 12 #include "ext4_extents.h" 13 #include "mballoc.h" 14 15 /* 16 * Ext4 Fast Commits 17 * ----------------- 18 * 19 * Ext4 fast commits implement fine grained journalling for Ext4. 20 * 21 * Fast commits are organized as a log of tag-length-value (TLV) structs. (See 22 * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by 23 * TLV during the recovery phase. For the scenarios for which we currently 24 * don't have replay code, fast commit falls back to full commits. 25 * Fast commits record delta in one of the following three categories. 26 * 27 * (A) Directory entry updates: 28 * 29 * - EXT4_FC_TAG_UNLINK - records directory entry unlink 30 * - EXT4_FC_TAG_LINK - records directory entry link 31 * - EXT4_FC_TAG_CREAT - records inode and directory entry creation 32 * 33 * (B) File specific data range updates: 34 * 35 * - EXT4_FC_TAG_ADD_RANGE - records addition of new blocks to an inode 36 * - EXT4_FC_TAG_DEL_RANGE - records deletion of blocks from an inode 37 * 38 * (C) Inode metadata (mtime / ctime etc): 39 * 40 * - EXT4_FC_TAG_INODE - record the inode that should be replayed 41 * during recovery. Note that iblocks field is 42 * not replayed and instead derived during 43 * replay. 44 * Commit Operation 45 * ---------------- 46 * With fast commits, we maintain all the directory entry operations in the 47 * order in which they are issued in an in-memory queue. This queue is flushed 48 * to disk during the commit operation. We also maintain a list of inodes 49 * that need to be committed during a fast commit in another in memory queue of 50 * inodes. During the commit operation, we commit in the following order: 51 * 52 * [1] Lock inodes for any further data updates by setting COMMITTING state 53 * [2] Submit data buffers of all the inodes 54 * [3] Wait for [2] to complete 55 * [4] Commit all the directory entry updates in the fast commit space 56 * [5] Commit all the changed inode structures 57 * [6] Write tail tag (this tag ensures the atomicity, please read the following 58 * section for more details). 59 * [7] Wait for [4], [5] and [6] to complete. 60 * 61 * All the inode updates must call ext4_fc_start_update() before starting an 62 * update. If such an ongoing update is present, fast commit waits for it to 63 * complete. The completion of such an update is marked by 64 * ext4_fc_stop_update(). 65 * 66 * Fast Commit Ineligibility 67 * ------------------------- 68 * 69 * Not all operations are supported by fast commits today (e.g extended 70 * attributes). Fast commit ineligibility is marked by calling 71 * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back 72 * to full commit. 73 * 74 * Atomicity of commits 75 * -------------------- 76 * In order to guarantee atomicity during the commit operation, fast commit 77 * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail 78 * tag contains CRC of the contents and TID of the transaction after which 79 * this fast commit should be applied. Recovery code replays fast commit 80 * logs only if there's at least 1 valid tail present. For every fast commit 81 * operation, there is 1 tail. This means, we may end up with multiple tails 82 * in the fast commit space. Here's an example: 83 * 84 * - Create a new file A and remove existing file B 85 * - fsync() 86 * - Append contents to file A 87 * - Truncate file A 88 * - fsync() 89 * 90 * The fast commit space at the end of above operations would look like this: 91 * [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL] 92 * |<--- Fast Commit 1 --->|<--- Fast Commit 2 ---->| 93 * 94 * Replay code should thus check for all the valid tails in the FC area. 95 * 96 * Fast Commit Replay Idempotence 97 * ------------------------------ 98 * 99 * Fast commits tags are idempotent in nature provided the recovery code follows 100 * certain rules. The guiding principle that the commit path follows while 101 * committing is that it stores the result of a particular operation instead of 102 * storing the procedure. 103 * 104 * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a' 105 * was associated with inode 10. During fast commit, instead of storing this 106 * operation as a procedure "rename a to b", we store the resulting file system 107 * state as a "series" of outcomes: 108 * 109 * - Link dirent b to inode 10 110 * - Unlink dirent a 111 * - Inode <10> with valid refcount 112 * 113 * Now when recovery code runs, it needs "enforce" this state on the file 114 * system. This is what guarantees idempotence of fast commit replay. 115 * 116 * Let's take an example of a procedure that is not idempotent and see how fast 117 * commits make it idempotent. Consider following sequence of operations: 118 * 119 * rm A; mv B A; read A 120 * (x) (y) (z) 121 * 122 * (x), (y) and (z) are the points at which we can crash. If we store this 123 * sequence of operations as is then the replay is not idempotent. Let's say 124 * while in replay, we crash at (z). During the second replay, file A (which was 125 * actually created as a result of "mv B A" operation) would get deleted. Thus, 126 * file named A would be absent when we try to read A. So, this sequence of 127 * operations is not idempotent. However, as mentioned above, instead of storing 128 * the procedure fast commits store the outcome of each procedure. Thus the fast 129 * commit log for above procedure would be as follows: 130 * 131 * (Let's assume dirent A was linked to inode 10 and dirent B was linked to 132 * inode 11 before the replay) 133 * 134 * [Unlink A] [Link A to inode 11] [Unlink B] [Inode 11] 135 * (w) (x) (y) (z) 136 * 137 * If we crash at (z), we will have file A linked to inode 11. During the second 138 * replay, we will remove file A (inode 11). But we will create it back and make 139 * it point to inode 11. We won't find B, so we'll just skip that step. At this 140 * point, the refcount for inode 11 is not reliable, but that gets fixed by the 141 * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled 142 * similarly. Thus, by converting a non-idempotent procedure into a series of 143 * idempotent outcomes, fast commits ensured idempotence during the replay. 144 * 145 * TODOs 146 * ----- 147 * 148 * 0) Fast commit replay path hardening: Fast commit replay code should use 149 * journal handles to make sure all the updates it does during the replay 150 * path are atomic. With that if we crash during fast commit replay, after 151 * trying to do recovery again, we will find a file system where fast commit 152 * area is invalid (because new full commit would be found). In order to deal 153 * with that, fast commit replay code should ensure that the "FC_REPLAY" 154 * superblock state is persisted before starting the replay, so that after 155 * the crash, fast commit recovery code can look at that flag and perform 156 * fast commit recovery even if that area is invalidated by later full 157 * commits. 158 * 159 * 1) Fast commit's commit path locks the entire file system during fast 160 * commit. This has significant performance penalty. Instead of that, we 161 * should use ext4_fc_start/stop_update functions to start inode level 162 * updates from ext4_journal_start/stop. Once we do that we can drop file 163 * system locking during commit path. 164 * 165 * 2) Handle more ineligible cases. 166 */ 167 168 #include <trace/events/ext4.h> 169 static struct kmem_cache *ext4_fc_dentry_cachep; 170 171 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate) 172 { 173 BUFFER_TRACE(bh, ""); 174 if (uptodate) { 175 ext4_debug("%s: Block %lld up-to-date", 176 __func__, bh->b_blocknr); 177 set_buffer_uptodate(bh); 178 } else { 179 ext4_debug("%s: Block %lld not up-to-date", 180 __func__, bh->b_blocknr); 181 clear_buffer_uptodate(bh); 182 } 183 184 unlock_buffer(bh); 185 } 186 187 static inline void ext4_fc_reset_inode(struct inode *inode) 188 { 189 struct ext4_inode_info *ei = EXT4_I(inode); 190 191 ei->i_fc_lblk_start = 0; 192 ei->i_fc_lblk_len = 0; 193 } 194 195 void ext4_fc_init_inode(struct inode *inode) 196 { 197 struct ext4_inode_info *ei = EXT4_I(inode); 198 199 ext4_fc_reset_inode(inode); 200 ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING); 201 INIT_LIST_HEAD(&ei->i_fc_list); 202 INIT_LIST_HEAD(&ei->i_fc_dilist); 203 init_waitqueue_head(&ei->i_fc_wait); 204 atomic_set(&ei->i_fc_updates, 0); 205 } 206 207 /* This function must be called with sbi->s_fc_lock held. */ 208 static void ext4_fc_wait_committing_inode(struct inode *inode) 209 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock) 210 { 211 wait_queue_head_t *wq; 212 struct ext4_inode_info *ei = EXT4_I(inode); 213 214 #if (BITS_PER_LONG < 64) 215 DEFINE_WAIT_BIT(wait, &ei->i_state_flags, 216 EXT4_STATE_FC_COMMITTING); 217 wq = bit_waitqueue(&ei->i_state_flags, 218 EXT4_STATE_FC_COMMITTING); 219 #else 220 DEFINE_WAIT_BIT(wait, &ei->i_flags, 221 EXT4_STATE_FC_COMMITTING); 222 wq = bit_waitqueue(&ei->i_flags, 223 EXT4_STATE_FC_COMMITTING); 224 #endif 225 lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock); 226 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 227 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock); 228 schedule(); 229 finish_wait(wq, &wait.wq_entry); 230 } 231 232 static bool ext4_fc_disabled(struct super_block *sb) 233 { 234 return (!test_opt2(sb, JOURNAL_FAST_COMMIT) || 235 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)); 236 } 237 238 /* 239 * Inform Ext4's fast about start of an inode update 240 * 241 * This function is called by the high level call VFS callbacks before 242 * performing any inode update. This function blocks if there's an ongoing 243 * fast commit on the inode in question. 244 */ 245 void ext4_fc_start_update(struct inode *inode) 246 { 247 struct ext4_inode_info *ei = EXT4_I(inode); 248 249 if (ext4_fc_disabled(inode->i_sb)) 250 return; 251 252 restart: 253 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock); 254 if (list_empty(&ei->i_fc_list)) 255 goto out; 256 257 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) { 258 ext4_fc_wait_committing_inode(inode); 259 goto restart; 260 } 261 out: 262 atomic_inc(&ei->i_fc_updates); 263 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock); 264 } 265 266 /* 267 * Stop inode update and wake up waiting fast commits if any. 268 */ 269 void ext4_fc_stop_update(struct inode *inode) 270 { 271 struct ext4_inode_info *ei = EXT4_I(inode); 272 273 if (ext4_fc_disabled(inode->i_sb)) 274 return; 275 276 if (atomic_dec_and_test(&ei->i_fc_updates)) 277 wake_up_all(&ei->i_fc_wait); 278 } 279 280 /* 281 * Remove inode from fast commit list. If the inode is being committed 282 * we wait until inode commit is done. 283 */ 284 void ext4_fc_del(struct inode *inode) 285 { 286 struct ext4_inode_info *ei = EXT4_I(inode); 287 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 288 struct ext4_fc_dentry_update *fc_dentry; 289 290 if (ext4_fc_disabled(inode->i_sb)) 291 return; 292 293 restart: 294 spin_lock(&sbi->s_fc_lock); 295 if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) { 296 spin_unlock(&sbi->s_fc_lock); 297 return; 298 } 299 300 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) { 301 ext4_fc_wait_committing_inode(inode); 302 goto restart; 303 } 304 305 if (!list_empty(&ei->i_fc_list)) 306 list_del_init(&ei->i_fc_list); 307 308 /* 309 * Since this inode is getting removed, let's also remove all FC 310 * dentry create references, since it is not needed to log it anyways. 311 */ 312 if (list_empty(&ei->i_fc_dilist)) { 313 spin_unlock(&sbi->s_fc_lock); 314 return; 315 } 316 317 fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist); 318 WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT); 319 list_del_init(&fc_dentry->fcd_list); 320 list_del_init(&fc_dentry->fcd_dilist); 321 322 WARN_ON(!list_empty(&ei->i_fc_dilist)); 323 spin_unlock(&sbi->s_fc_lock); 324 325 if (fc_dentry->fcd_name.name && 326 fc_dentry->fcd_name.len > DNAME_INLINE_LEN) 327 kfree(fc_dentry->fcd_name.name); 328 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry); 329 330 return; 331 } 332 333 /* 334 * Mark file system as fast commit ineligible, and record latest 335 * ineligible transaction tid. This means until the recorded 336 * transaction, commit operation would result in a full jbd2 commit. 337 */ 338 void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle) 339 { 340 struct ext4_sb_info *sbi = EXT4_SB(sb); 341 tid_t tid; 342 bool has_transaction = true; 343 bool is_ineligible; 344 345 if (ext4_fc_disabled(sb)) 346 return; 347 348 if (handle && !IS_ERR(handle)) 349 tid = handle->h_transaction->t_tid; 350 else { 351 read_lock(&sbi->s_journal->j_state_lock); 352 if (sbi->s_journal->j_running_transaction) 353 tid = sbi->s_journal->j_running_transaction->t_tid; 354 else 355 has_transaction = false; 356 read_unlock(&sbi->s_journal->j_state_lock); 357 } 358 spin_lock(&sbi->s_fc_lock); 359 is_ineligible = ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 360 if (has_transaction && (!is_ineligible || tid_gt(tid, sbi->s_fc_ineligible_tid))) 361 sbi->s_fc_ineligible_tid = tid; 362 ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 363 spin_unlock(&sbi->s_fc_lock); 364 WARN_ON(reason >= EXT4_FC_REASON_MAX); 365 sbi->s_fc_stats.fc_ineligible_reason_count[reason]++; 366 } 367 368 /* 369 * Generic fast commit tracking function. If this is the first time this we are 370 * called after a full commit, we initialize fast commit fields and then call 371 * __fc_track_fn() with update = 0. If we have already been called after a full 372 * commit, we pass update = 1. Based on that, the track function can determine 373 * if it needs to track a field for the first time or if it needs to just 374 * update the previously tracked value. 375 * 376 * If enqueue is set, this function enqueues the inode in fast commit list. 377 */ 378 static int ext4_fc_track_template( 379 handle_t *handle, struct inode *inode, 380 int (*__fc_track_fn)(handle_t *handle, struct inode *, void *, bool), 381 void *args, int enqueue) 382 { 383 bool update = false; 384 struct ext4_inode_info *ei = EXT4_I(inode); 385 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 386 tid_t tid = 0; 387 int ret; 388 389 tid = handle->h_transaction->t_tid; 390 mutex_lock(&ei->i_fc_lock); 391 if (tid == ei->i_sync_tid) { 392 update = true; 393 } else { 394 ext4_fc_reset_inode(inode); 395 ei->i_sync_tid = tid; 396 } 397 ret = __fc_track_fn(handle, inode, args, update); 398 mutex_unlock(&ei->i_fc_lock); 399 400 if (!enqueue) 401 return ret; 402 403 spin_lock(&sbi->s_fc_lock); 404 if (list_empty(&EXT4_I(inode)->i_fc_list)) 405 list_add_tail(&EXT4_I(inode)->i_fc_list, 406 (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING || 407 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ? 408 &sbi->s_fc_q[FC_Q_STAGING] : 409 &sbi->s_fc_q[FC_Q_MAIN]); 410 spin_unlock(&sbi->s_fc_lock); 411 412 return ret; 413 } 414 415 struct __track_dentry_update_args { 416 struct dentry *dentry; 417 int op; 418 }; 419 420 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */ 421 static int __track_dentry_update(handle_t *handle, struct inode *inode, 422 void *arg, bool update) 423 { 424 struct ext4_fc_dentry_update *node; 425 struct ext4_inode_info *ei = EXT4_I(inode); 426 struct __track_dentry_update_args *dentry_update = 427 (struct __track_dentry_update_args *)arg; 428 struct dentry *dentry = dentry_update->dentry; 429 struct inode *dir = dentry->d_parent->d_inode; 430 struct super_block *sb = inode->i_sb; 431 struct ext4_sb_info *sbi = EXT4_SB(sb); 432 433 mutex_unlock(&ei->i_fc_lock); 434 435 if (IS_ENCRYPTED(dir)) { 436 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME, 437 handle); 438 mutex_lock(&ei->i_fc_lock); 439 return -EOPNOTSUPP; 440 } 441 442 node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS); 443 if (!node) { 444 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, handle); 445 mutex_lock(&ei->i_fc_lock); 446 return -ENOMEM; 447 } 448 449 node->fcd_op = dentry_update->op; 450 node->fcd_parent = dir->i_ino; 451 node->fcd_ino = inode->i_ino; 452 if (dentry->d_name.len > DNAME_INLINE_LEN) { 453 node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS); 454 if (!node->fcd_name.name) { 455 kmem_cache_free(ext4_fc_dentry_cachep, node); 456 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, handle); 457 mutex_lock(&ei->i_fc_lock); 458 return -ENOMEM; 459 } 460 memcpy((u8 *)node->fcd_name.name, dentry->d_name.name, 461 dentry->d_name.len); 462 } else { 463 memcpy(node->fcd_iname, dentry->d_name.name, 464 dentry->d_name.len); 465 node->fcd_name.name = node->fcd_iname; 466 } 467 node->fcd_name.len = dentry->d_name.len; 468 INIT_LIST_HEAD(&node->fcd_dilist); 469 spin_lock(&sbi->s_fc_lock); 470 if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING || 471 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) 472 list_add_tail(&node->fcd_list, 473 &sbi->s_fc_dentry_q[FC_Q_STAGING]); 474 else 475 list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]); 476 477 /* 478 * This helps us keep a track of all fc_dentry updates which is part of 479 * this ext4 inode. So in case the inode is getting unlinked, before 480 * even we get a chance to fsync, we could remove all fc_dentry 481 * references while evicting the inode in ext4_fc_del(). 482 * Also with this, we don't need to loop over all the inodes in 483 * sbi->s_fc_q to get the corresponding inode in 484 * ext4_fc_commit_dentry_updates(). 485 */ 486 if (dentry_update->op == EXT4_FC_TAG_CREAT) { 487 WARN_ON(!list_empty(&ei->i_fc_dilist)); 488 list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist); 489 } 490 spin_unlock(&sbi->s_fc_lock); 491 mutex_lock(&ei->i_fc_lock); 492 493 return 0; 494 } 495 496 void __ext4_fc_track_unlink(handle_t *handle, 497 struct inode *inode, struct dentry *dentry) 498 { 499 struct __track_dentry_update_args args; 500 int ret; 501 502 args.dentry = dentry; 503 args.op = EXT4_FC_TAG_UNLINK; 504 505 ret = ext4_fc_track_template(handle, inode, __track_dentry_update, 506 (void *)&args, 0); 507 trace_ext4_fc_track_unlink(handle, inode, dentry, ret); 508 } 509 510 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry) 511 { 512 struct inode *inode = d_inode(dentry); 513 514 if (ext4_fc_disabled(inode->i_sb)) 515 return; 516 517 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 518 return; 519 520 __ext4_fc_track_unlink(handle, inode, dentry); 521 } 522 523 void __ext4_fc_track_link(handle_t *handle, 524 struct inode *inode, struct dentry *dentry) 525 { 526 struct __track_dentry_update_args args; 527 int ret; 528 529 args.dentry = dentry; 530 args.op = EXT4_FC_TAG_LINK; 531 532 ret = ext4_fc_track_template(handle, inode, __track_dentry_update, 533 (void *)&args, 0); 534 trace_ext4_fc_track_link(handle, inode, dentry, ret); 535 } 536 537 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry) 538 { 539 struct inode *inode = d_inode(dentry); 540 541 if (ext4_fc_disabled(inode->i_sb)) 542 return; 543 544 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 545 return; 546 547 __ext4_fc_track_link(handle, inode, dentry); 548 } 549 550 void __ext4_fc_track_create(handle_t *handle, struct inode *inode, 551 struct dentry *dentry) 552 { 553 struct __track_dentry_update_args args; 554 int ret; 555 556 args.dentry = dentry; 557 args.op = EXT4_FC_TAG_CREAT; 558 559 ret = ext4_fc_track_template(handle, inode, __track_dentry_update, 560 (void *)&args, 0); 561 trace_ext4_fc_track_create(handle, inode, dentry, ret); 562 } 563 564 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry) 565 { 566 struct inode *inode = d_inode(dentry); 567 568 if (ext4_fc_disabled(inode->i_sb)) 569 return; 570 571 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 572 return; 573 574 __ext4_fc_track_create(handle, inode, dentry); 575 } 576 577 /* __track_fn for inode tracking */ 578 static int __track_inode(handle_t *handle, struct inode *inode, void *arg, 579 bool update) 580 { 581 if (update) 582 return -EEXIST; 583 584 EXT4_I(inode)->i_fc_lblk_len = 0; 585 586 return 0; 587 } 588 589 void ext4_fc_track_inode(handle_t *handle, struct inode *inode) 590 { 591 int ret; 592 593 if (S_ISDIR(inode->i_mode)) 594 return; 595 596 if (ext4_fc_disabled(inode->i_sb)) 597 return; 598 599 if (ext4_should_journal_data(inode)) { 600 ext4_fc_mark_ineligible(inode->i_sb, 601 EXT4_FC_REASON_INODE_JOURNAL_DATA, handle); 602 return; 603 } 604 605 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 606 return; 607 608 ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1); 609 trace_ext4_fc_track_inode(handle, inode, ret); 610 } 611 612 struct __track_range_args { 613 ext4_lblk_t start, end; 614 }; 615 616 /* __track_fn for tracking data updates */ 617 static int __track_range(handle_t *handle, struct inode *inode, void *arg, 618 bool update) 619 { 620 struct ext4_inode_info *ei = EXT4_I(inode); 621 ext4_lblk_t oldstart; 622 struct __track_range_args *__arg = 623 (struct __track_range_args *)arg; 624 625 if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) { 626 ext4_debug("Special inode %ld being modified\n", inode->i_ino); 627 return -ECANCELED; 628 } 629 630 oldstart = ei->i_fc_lblk_start; 631 632 if (update && ei->i_fc_lblk_len > 0) { 633 ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start); 634 ei->i_fc_lblk_len = 635 max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) - 636 ei->i_fc_lblk_start + 1; 637 } else { 638 ei->i_fc_lblk_start = __arg->start; 639 ei->i_fc_lblk_len = __arg->end - __arg->start + 1; 640 } 641 642 return 0; 643 } 644 645 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start, 646 ext4_lblk_t end) 647 { 648 struct __track_range_args args; 649 int ret; 650 651 if (S_ISDIR(inode->i_mode)) 652 return; 653 654 if (ext4_fc_disabled(inode->i_sb)) 655 return; 656 657 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 658 return; 659 660 if (ext4_has_inline_data(inode)) { 661 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_XATTR, 662 handle); 663 return; 664 } 665 666 args.start = start; 667 args.end = end; 668 669 ret = ext4_fc_track_template(handle, inode, __track_range, &args, 1); 670 671 trace_ext4_fc_track_range(handle, inode, start, end, ret); 672 } 673 674 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail) 675 { 676 blk_opf_t write_flags = REQ_SYNC; 677 struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh; 678 679 /* Add REQ_FUA | REQ_PREFLUSH only its tail */ 680 if (test_opt(sb, BARRIER) && is_tail) 681 write_flags |= REQ_FUA | REQ_PREFLUSH; 682 lock_buffer(bh); 683 set_buffer_dirty(bh); 684 set_buffer_uptodate(bh); 685 bh->b_end_io = ext4_end_buffer_io_sync; 686 submit_bh(REQ_OP_WRITE | write_flags, bh); 687 EXT4_SB(sb)->s_fc_bh = NULL; 688 } 689 690 /* Ext4 commit path routines */ 691 692 /* 693 * Allocate len bytes on a fast commit buffer. 694 * 695 * During the commit time this function is used to manage fast commit 696 * block space. We don't split a fast commit log onto different 697 * blocks. So this function makes sure that if there's not enough space 698 * on the current block, the remaining space in the current block is 699 * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case, 700 * new block is from jbd2 and CRC is updated to reflect the padding 701 * we added. 702 */ 703 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc) 704 { 705 struct ext4_fc_tl tl; 706 struct ext4_sb_info *sbi = EXT4_SB(sb); 707 struct buffer_head *bh; 708 int bsize = sbi->s_journal->j_blocksize; 709 int ret, off = sbi->s_fc_bytes % bsize; 710 int remaining; 711 u8 *dst; 712 713 /* 714 * If 'len' is too long to fit in any block alongside a PAD tlv, then we 715 * cannot fulfill the request. 716 */ 717 if (len > bsize - EXT4_FC_TAG_BASE_LEN) 718 return NULL; 719 720 if (!sbi->s_fc_bh) { 721 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh); 722 if (ret) 723 return NULL; 724 sbi->s_fc_bh = bh; 725 } 726 dst = sbi->s_fc_bh->b_data + off; 727 728 /* 729 * Allocate the bytes in the current block if we can do so while still 730 * leaving enough space for a PAD tlv. 731 */ 732 remaining = bsize - EXT4_FC_TAG_BASE_LEN - off; 733 if (len <= remaining) { 734 sbi->s_fc_bytes += len; 735 return dst; 736 } 737 738 /* 739 * Else, terminate the current block with a PAD tlv, then allocate a new 740 * block and allocate the bytes at the start of that new block. 741 */ 742 743 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD); 744 tl.fc_len = cpu_to_le16(remaining); 745 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); 746 memset(dst + EXT4_FC_TAG_BASE_LEN, 0, remaining); 747 *crc = ext4_chksum(sbi, *crc, sbi->s_fc_bh->b_data, bsize); 748 749 ext4_fc_submit_bh(sb, false); 750 751 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh); 752 if (ret) 753 return NULL; 754 sbi->s_fc_bh = bh; 755 sbi->s_fc_bytes += bsize - off + len; 756 return sbi->s_fc_bh->b_data; 757 } 758 759 /* 760 * Complete a fast commit by writing tail tag. 761 * 762 * Writing tail tag marks the end of a fast commit. In order to guarantee 763 * atomicity, after writing tail tag, even if there's space remaining 764 * in the block, next commit shouldn't use it. That's why tail tag 765 * has the length as that of the remaining space on the block. 766 */ 767 static int ext4_fc_write_tail(struct super_block *sb, u32 crc) 768 { 769 struct ext4_sb_info *sbi = EXT4_SB(sb); 770 struct ext4_fc_tl tl; 771 struct ext4_fc_tail tail; 772 int off, bsize = sbi->s_journal->j_blocksize; 773 u8 *dst; 774 775 /* 776 * ext4_fc_reserve_space takes care of allocating an extra block if 777 * there's no enough space on this block for accommodating this tail. 778 */ 779 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc); 780 if (!dst) 781 return -ENOSPC; 782 783 off = sbi->s_fc_bytes % bsize; 784 785 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL); 786 tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail)); 787 sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize); 788 789 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); 790 dst += EXT4_FC_TAG_BASE_LEN; 791 tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid); 792 memcpy(dst, &tail.fc_tid, sizeof(tail.fc_tid)); 793 dst += sizeof(tail.fc_tid); 794 crc = ext4_chksum(sbi, crc, sbi->s_fc_bh->b_data, 795 dst - (u8 *)sbi->s_fc_bh->b_data); 796 tail.fc_crc = cpu_to_le32(crc); 797 memcpy(dst, &tail.fc_crc, sizeof(tail.fc_crc)); 798 dst += sizeof(tail.fc_crc); 799 memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */ 800 801 ext4_fc_submit_bh(sb, true); 802 803 return 0; 804 } 805 806 /* 807 * Adds tag, length, value and updates CRC. Returns true if tlv was added. 808 * Returns false if there's not enough space. 809 */ 810 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val, 811 u32 *crc) 812 { 813 struct ext4_fc_tl tl; 814 u8 *dst; 815 816 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc); 817 if (!dst) 818 return false; 819 820 tl.fc_tag = cpu_to_le16(tag); 821 tl.fc_len = cpu_to_le16(len); 822 823 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); 824 memcpy(dst + EXT4_FC_TAG_BASE_LEN, val, len); 825 826 return true; 827 } 828 829 /* Same as above, but adds dentry tlv. */ 830 static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc, 831 struct ext4_fc_dentry_update *fc_dentry) 832 { 833 struct ext4_fc_dentry_info fcd; 834 struct ext4_fc_tl tl; 835 int dlen = fc_dentry->fcd_name.len; 836 u8 *dst = ext4_fc_reserve_space(sb, 837 EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc); 838 839 if (!dst) 840 return false; 841 842 fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent); 843 fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino); 844 tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op); 845 tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen); 846 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); 847 dst += EXT4_FC_TAG_BASE_LEN; 848 memcpy(dst, &fcd, sizeof(fcd)); 849 dst += sizeof(fcd); 850 memcpy(dst, fc_dentry->fcd_name.name, dlen); 851 852 return true; 853 } 854 855 /* 856 * Writes inode in the fast commit space under TLV with tag @tag. 857 * Returns 0 on success, error on failure. 858 */ 859 static int ext4_fc_write_inode(struct inode *inode, u32 *crc) 860 { 861 struct ext4_inode_info *ei = EXT4_I(inode); 862 int inode_len = EXT4_GOOD_OLD_INODE_SIZE; 863 int ret; 864 struct ext4_iloc iloc; 865 struct ext4_fc_inode fc_inode; 866 struct ext4_fc_tl tl; 867 u8 *dst; 868 869 ret = ext4_get_inode_loc(inode, &iloc); 870 if (ret) 871 return ret; 872 873 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) 874 inode_len = EXT4_INODE_SIZE(inode->i_sb); 875 else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) 876 inode_len += ei->i_extra_isize; 877 878 fc_inode.fc_ino = cpu_to_le32(inode->i_ino); 879 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE); 880 tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino)); 881 882 ret = -ECANCELED; 883 dst = ext4_fc_reserve_space(inode->i_sb, 884 EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc); 885 if (!dst) 886 goto err; 887 888 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); 889 dst += EXT4_FC_TAG_BASE_LEN; 890 memcpy(dst, &fc_inode, sizeof(fc_inode)); 891 dst += sizeof(fc_inode); 892 memcpy(dst, (u8 *)ext4_raw_inode(&iloc), inode_len); 893 ret = 0; 894 err: 895 brelse(iloc.bh); 896 return ret; 897 } 898 899 /* 900 * Writes updated data ranges for the inode in question. Updates CRC. 901 * Returns 0 on success, error otherwise. 902 */ 903 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc) 904 { 905 ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size; 906 struct ext4_inode_info *ei = EXT4_I(inode); 907 struct ext4_map_blocks map; 908 struct ext4_fc_add_range fc_ext; 909 struct ext4_fc_del_range lrange; 910 struct ext4_extent *ex; 911 int ret; 912 913 mutex_lock(&ei->i_fc_lock); 914 if (ei->i_fc_lblk_len == 0) { 915 mutex_unlock(&ei->i_fc_lock); 916 return 0; 917 } 918 old_blk_size = ei->i_fc_lblk_start; 919 new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1; 920 ei->i_fc_lblk_len = 0; 921 mutex_unlock(&ei->i_fc_lock); 922 923 cur_lblk_off = old_blk_size; 924 ext4_debug("will try writing %d to %d for inode %ld\n", 925 cur_lblk_off, new_blk_size, inode->i_ino); 926 927 while (cur_lblk_off <= new_blk_size) { 928 map.m_lblk = cur_lblk_off; 929 map.m_len = new_blk_size - cur_lblk_off + 1; 930 ret = ext4_map_blocks(NULL, inode, &map, 0); 931 if (ret < 0) 932 return -ECANCELED; 933 934 if (map.m_len == 0) { 935 cur_lblk_off++; 936 continue; 937 } 938 939 if (ret == 0) { 940 lrange.fc_ino = cpu_to_le32(inode->i_ino); 941 lrange.fc_lblk = cpu_to_le32(map.m_lblk); 942 lrange.fc_len = cpu_to_le32(map.m_len); 943 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE, 944 sizeof(lrange), (u8 *)&lrange, crc)) 945 return -ENOSPC; 946 } else { 947 unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ? 948 EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN; 949 950 /* Limit the number of blocks in one extent */ 951 map.m_len = min(max, map.m_len); 952 953 fc_ext.fc_ino = cpu_to_le32(inode->i_ino); 954 ex = (struct ext4_extent *)&fc_ext.fc_ex; 955 ex->ee_block = cpu_to_le32(map.m_lblk); 956 ex->ee_len = cpu_to_le16(map.m_len); 957 ext4_ext_store_pblock(ex, map.m_pblk); 958 if (map.m_flags & EXT4_MAP_UNWRITTEN) 959 ext4_ext_mark_unwritten(ex); 960 else 961 ext4_ext_mark_initialized(ex); 962 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE, 963 sizeof(fc_ext), (u8 *)&fc_ext, crc)) 964 return -ENOSPC; 965 } 966 967 cur_lblk_off += map.m_len; 968 } 969 970 return 0; 971 } 972 973 974 /* Submit data for all the fast commit inodes */ 975 static int ext4_fc_submit_inode_data_all(journal_t *journal) 976 { 977 struct super_block *sb = journal->j_private; 978 struct ext4_sb_info *sbi = EXT4_SB(sb); 979 struct ext4_inode_info *ei; 980 int ret = 0; 981 982 spin_lock(&sbi->s_fc_lock); 983 list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { 984 ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING); 985 while (atomic_read(&ei->i_fc_updates)) { 986 DEFINE_WAIT(wait); 987 988 prepare_to_wait(&ei->i_fc_wait, &wait, 989 TASK_UNINTERRUPTIBLE); 990 if (atomic_read(&ei->i_fc_updates)) { 991 spin_unlock(&sbi->s_fc_lock); 992 schedule(); 993 spin_lock(&sbi->s_fc_lock); 994 } 995 finish_wait(&ei->i_fc_wait, &wait); 996 } 997 spin_unlock(&sbi->s_fc_lock); 998 ret = jbd2_submit_inode_data(journal, ei->jinode); 999 if (ret) 1000 return ret; 1001 spin_lock(&sbi->s_fc_lock); 1002 } 1003 spin_unlock(&sbi->s_fc_lock); 1004 1005 return ret; 1006 } 1007 1008 /* Wait for completion of data for all the fast commit inodes */ 1009 static int ext4_fc_wait_inode_data_all(journal_t *journal) 1010 { 1011 struct super_block *sb = journal->j_private; 1012 struct ext4_sb_info *sbi = EXT4_SB(sb); 1013 struct ext4_inode_info *pos, *n; 1014 int ret = 0; 1015 1016 spin_lock(&sbi->s_fc_lock); 1017 list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { 1018 if (!ext4_test_inode_state(&pos->vfs_inode, 1019 EXT4_STATE_FC_COMMITTING)) 1020 continue; 1021 spin_unlock(&sbi->s_fc_lock); 1022 1023 ret = jbd2_wait_inode_data(journal, pos->jinode); 1024 if (ret) 1025 return ret; 1026 spin_lock(&sbi->s_fc_lock); 1027 } 1028 spin_unlock(&sbi->s_fc_lock); 1029 1030 return 0; 1031 } 1032 1033 /* Commit all the directory entry updates */ 1034 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc) 1035 __acquires(&sbi->s_fc_lock) 1036 __releases(&sbi->s_fc_lock) 1037 { 1038 struct super_block *sb = journal->j_private; 1039 struct ext4_sb_info *sbi = EXT4_SB(sb); 1040 struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n; 1041 struct inode *inode; 1042 struct ext4_inode_info *ei; 1043 int ret; 1044 1045 if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) 1046 return 0; 1047 list_for_each_entry_safe(fc_dentry, fc_dentry_n, 1048 &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) { 1049 if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) { 1050 spin_unlock(&sbi->s_fc_lock); 1051 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) { 1052 ret = -ENOSPC; 1053 goto lock_and_exit; 1054 } 1055 spin_lock(&sbi->s_fc_lock); 1056 continue; 1057 } 1058 /* 1059 * With fcd_dilist we need not loop in sbi->s_fc_q to get the 1060 * corresponding inode pointer 1061 */ 1062 WARN_ON(list_empty(&fc_dentry->fcd_dilist)); 1063 ei = list_first_entry(&fc_dentry->fcd_dilist, 1064 struct ext4_inode_info, i_fc_dilist); 1065 inode = &ei->vfs_inode; 1066 WARN_ON(inode->i_ino != fc_dentry->fcd_ino); 1067 1068 spin_unlock(&sbi->s_fc_lock); 1069 1070 /* 1071 * We first write the inode and then the create dirent. This 1072 * allows the recovery code to create an unnamed inode first 1073 * and then link it to a directory entry. This allows us 1074 * to use namei.c routines almost as is and simplifies 1075 * the recovery code. 1076 */ 1077 ret = ext4_fc_write_inode(inode, crc); 1078 if (ret) 1079 goto lock_and_exit; 1080 1081 ret = ext4_fc_write_inode_data(inode, crc); 1082 if (ret) 1083 goto lock_and_exit; 1084 1085 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) { 1086 ret = -ENOSPC; 1087 goto lock_and_exit; 1088 } 1089 1090 spin_lock(&sbi->s_fc_lock); 1091 } 1092 return 0; 1093 lock_and_exit: 1094 spin_lock(&sbi->s_fc_lock); 1095 return ret; 1096 } 1097 1098 static int ext4_fc_perform_commit(journal_t *journal) 1099 { 1100 struct super_block *sb = journal->j_private; 1101 struct ext4_sb_info *sbi = EXT4_SB(sb); 1102 struct ext4_inode_info *iter; 1103 struct ext4_fc_head head; 1104 struct inode *inode; 1105 struct blk_plug plug; 1106 int ret = 0; 1107 u32 crc = 0; 1108 1109 ret = ext4_fc_submit_inode_data_all(journal); 1110 if (ret) 1111 return ret; 1112 1113 ret = ext4_fc_wait_inode_data_all(journal); 1114 if (ret) 1115 return ret; 1116 1117 /* 1118 * If file system device is different from journal device, issue a cache 1119 * flush before we start writing fast commit blocks. 1120 */ 1121 if (journal->j_fs_dev != journal->j_dev) 1122 blkdev_issue_flush(journal->j_fs_dev); 1123 1124 blk_start_plug(&plug); 1125 if (sbi->s_fc_bytes == 0) { 1126 /* 1127 * Add a head tag only if this is the first fast commit 1128 * in this TID. 1129 */ 1130 head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES); 1131 head.fc_tid = cpu_to_le32( 1132 sbi->s_journal->j_running_transaction->t_tid); 1133 if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head), 1134 (u8 *)&head, &crc)) { 1135 ret = -ENOSPC; 1136 goto out; 1137 } 1138 } 1139 1140 spin_lock(&sbi->s_fc_lock); 1141 ret = ext4_fc_commit_dentry_updates(journal, &crc); 1142 if (ret) { 1143 spin_unlock(&sbi->s_fc_lock); 1144 goto out; 1145 } 1146 1147 list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { 1148 inode = &iter->vfs_inode; 1149 if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) 1150 continue; 1151 1152 spin_unlock(&sbi->s_fc_lock); 1153 ret = ext4_fc_write_inode_data(inode, &crc); 1154 if (ret) 1155 goto out; 1156 ret = ext4_fc_write_inode(inode, &crc); 1157 if (ret) 1158 goto out; 1159 spin_lock(&sbi->s_fc_lock); 1160 } 1161 spin_unlock(&sbi->s_fc_lock); 1162 1163 ret = ext4_fc_write_tail(sb, crc); 1164 1165 out: 1166 blk_finish_plug(&plug); 1167 return ret; 1168 } 1169 1170 static void ext4_fc_update_stats(struct super_block *sb, int status, 1171 u64 commit_time, int nblks, tid_t commit_tid) 1172 { 1173 struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats; 1174 1175 ext4_debug("Fast commit ended with status = %d for tid %u", 1176 status, commit_tid); 1177 if (status == EXT4_FC_STATUS_OK) { 1178 stats->fc_num_commits++; 1179 stats->fc_numblks += nblks; 1180 if (likely(stats->s_fc_avg_commit_time)) 1181 stats->s_fc_avg_commit_time = 1182 (commit_time + 1183 stats->s_fc_avg_commit_time * 3) / 4; 1184 else 1185 stats->s_fc_avg_commit_time = commit_time; 1186 } else if (status == EXT4_FC_STATUS_FAILED || 1187 status == EXT4_FC_STATUS_INELIGIBLE) { 1188 if (status == EXT4_FC_STATUS_FAILED) 1189 stats->fc_failed_commits++; 1190 stats->fc_ineligible_commits++; 1191 } else { 1192 stats->fc_skipped_commits++; 1193 } 1194 trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid); 1195 } 1196 1197 /* 1198 * The main commit entry point. Performs a fast commit for transaction 1199 * commit_tid if needed. If it's not possible to perform a fast commit 1200 * due to various reasons, we fall back to full commit. Returns 0 1201 * on success, error otherwise. 1202 */ 1203 int ext4_fc_commit(journal_t *journal, tid_t commit_tid) 1204 { 1205 struct super_block *sb = journal->j_private; 1206 struct ext4_sb_info *sbi = EXT4_SB(sb); 1207 int nblks = 0, ret, bsize = journal->j_blocksize; 1208 int subtid = atomic_read(&sbi->s_fc_subtid); 1209 int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0; 1210 ktime_t start_time, commit_time; 1211 1212 if (!test_opt2(sb, JOURNAL_FAST_COMMIT)) 1213 return jbd2_complete_transaction(journal, commit_tid); 1214 1215 trace_ext4_fc_commit_start(sb, commit_tid); 1216 1217 start_time = ktime_get(); 1218 1219 restart_fc: 1220 ret = jbd2_fc_begin_commit(journal, commit_tid); 1221 if (ret == -EALREADY) { 1222 /* There was an ongoing commit, check if we need to restart */ 1223 if (atomic_read(&sbi->s_fc_subtid) <= subtid && 1224 tid_gt(commit_tid, journal->j_commit_sequence)) 1225 goto restart_fc; 1226 ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0, 1227 commit_tid); 1228 return 0; 1229 } else if (ret) { 1230 /* 1231 * Commit couldn't start. Just update stats and perform a 1232 * full commit. 1233 */ 1234 ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0, 1235 commit_tid); 1236 return jbd2_complete_transaction(journal, commit_tid); 1237 } 1238 1239 /* 1240 * After establishing journal barrier via jbd2_fc_begin_commit(), check 1241 * if we are fast commit ineligible. 1242 */ 1243 if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) { 1244 status = EXT4_FC_STATUS_INELIGIBLE; 1245 goto fallback; 1246 } 1247 1248 fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize; 1249 ret = ext4_fc_perform_commit(journal); 1250 if (ret < 0) { 1251 status = EXT4_FC_STATUS_FAILED; 1252 goto fallback; 1253 } 1254 nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before; 1255 ret = jbd2_fc_wait_bufs(journal, nblks); 1256 if (ret < 0) { 1257 status = EXT4_FC_STATUS_FAILED; 1258 goto fallback; 1259 } 1260 atomic_inc(&sbi->s_fc_subtid); 1261 ret = jbd2_fc_end_commit(journal); 1262 /* 1263 * weight the commit time higher than the average time so we 1264 * don't react too strongly to vast changes in the commit time 1265 */ 1266 commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time)); 1267 ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid); 1268 return ret; 1269 1270 fallback: 1271 ret = jbd2_fc_end_commit_fallback(journal); 1272 ext4_fc_update_stats(sb, status, 0, 0, commit_tid); 1273 return ret; 1274 } 1275 1276 /* 1277 * Fast commit cleanup routine. This is called after every fast commit and 1278 * full commit. full is true if we are called after a full commit. 1279 */ 1280 static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid) 1281 { 1282 struct super_block *sb = journal->j_private; 1283 struct ext4_sb_info *sbi = EXT4_SB(sb); 1284 struct ext4_inode_info *iter, *iter_n; 1285 struct ext4_fc_dentry_update *fc_dentry; 1286 1287 if (full && sbi->s_fc_bh) 1288 sbi->s_fc_bh = NULL; 1289 1290 trace_ext4_fc_cleanup(journal, full, tid); 1291 jbd2_fc_release_bufs(journal); 1292 1293 spin_lock(&sbi->s_fc_lock); 1294 list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN], 1295 i_fc_list) { 1296 list_del_init(&iter->i_fc_list); 1297 ext4_clear_inode_state(&iter->vfs_inode, 1298 EXT4_STATE_FC_COMMITTING); 1299 if (tid_geq(tid, iter->i_sync_tid)) { 1300 ext4_fc_reset_inode(&iter->vfs_inode); 1301 } else if (full) { 1302 /* 1303 * We are called after a full commit, inode has been 1304 * modified while the commit was running. Re-enqueue 1305 * the inode into STAGING, which will then be splice 1306 * back into MAIN. This cannot happen during 1307 * fastcommit because the journal is locked all the 1308 * time in that case (and tid doesn't increase so 1309 * tid check above isn't reliable). 1310 */ 1311 list_add_tail(&EXT4_I(&iter->vfs_inode)->i_fc_list, 1312 &sbi->s_fc_q[FC_Q_STAGING]); 1313 } 1314 /* Make sure EXT4_STATE_FC_COMMITTING bit is clear */ 1315 smp_mb(); 1316 #if (BITS_PER_LONG < 64) 1317 wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING); 1318 #else 1319 wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING); 1320 #endif 1321 } 1322 1323 while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) { 1324 fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN], 1325 struct ext4_fc_dentry_update, 1326 fcd_list); 1327 list_del_init(&fc_dentry->fcd_list); 1328 list_del_init(&fc_dentry->fcd_dilist); 1329 spin_unlock(&sbi->s_fc_lock); 1330 1331 if (fc_dentry->fcd_name.name && 1332 fc_dentry->fcd_name.len > DNAME_INLINE_LEN) 1333 kfree(fc_dentry->fcd_name.name); 1334 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry); 1335 spin_lock(&sbi->s_fc_lock); 1336 } 1337 1338 list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING], 1339 &sbi->s_fc_dentry_q[FC_Q_MAIN]); 1340 list_splice_init(&sbi->s_fc_q[FC_Q_STAGING], 1341 &sbi->s_fc_q[FC_Q_MAIN]); 1342 1343 if (tid_geq(tid, sbi->s_fc_ineligible_tid)) { 1344 sbi->s_fc_ineligible_tid = 0; 1345 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 1346 } 1347 1348 if (full) 1349 sbi->s_fc_bytes = 0; 1350 spin_unlock(&sbi->s_fc_lock); 1351 trace_ext4_fc_stats(sb); 1352 } 1353 1354 /* Ext4 Replay Path Routines */ 1355 1356 /* Helper struct for dentry replay routines */ 1357 struct dentry_info_args { 1358 int parent_ino, dname_len, ino, inode_len; 1359 char *dname; 1360 }; 1361 1362 /* Same as struct ext4_fc_tl, but uses native endianness fields */ 1363 struct ext4_fc_tl_mem { 1364 u16 fc_tag; 1365 u16 fc_len; 1366 }; 1367 1368 static inline void tl_to_darg(struct dentry_info_args *darg, 1369 struct ext4_fc_tl_mem *tl, u8 *val) 1370 { 1371 struct ext4_fc_dentry_info fcd; 1372 1373 memcpy(&fcd, val, sizeof(fcd)); 1374 1375 darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino); 1376 darg->ino = le32_to_cpu(fcd.fc_ino); 1377 darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname); 1378 darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info); 1379 } 1380 1381 static inline void ext4_fc_get_tl(struct ext4_fc_tl_mem *tl, u8 *val) 1382 { 1383 struct ext4_fc_tl tl_disk; 1384 1385 memcpy(&tl_disk, val, EXT4_FC_TAG_BASE_LEN); 1386 tl->fc_len = le16_to_cpu(tl_disk.fc_len); 1387 tl->fc_tag = le16_to_cpu(tl_disk.fc_tag); 1388 } 1389 1390 /* Unlink replay function */ 1391 static int ext4_fc_replay_unlink(struct super_block *sb, 1392 struct ext4_fc_tl_mem *tl, u8 *val) 1393 { 1394 struct inode *inode, *old_parent; 1395 struct qstr entry; 1396 struct dentry_info_args darg; 1397 int ret = 0; 1398 1399 tl_to_darg(&darg, tl, val); 1400 1401 trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino, 1402 darg.parent_ino, darg.dname_len); 1403 1404 entry.name = darg.dname; 1405 entry.len = darg.dname_len; 1406 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); 1407 1408 if (IS_ERR(inode)) { 1409 ext4_debug("Inode %d not found", darg.ino); 1410 return 0; 1411 } 1412 1413 old_parent = ext4_iget(sb, darg.parent_ino, 1414 EXT4_IGET_NORMAL); 1415 if (IS_ERR(old_parent)) { 1416 ext4_debug("Dir with inode %d not found", darg.parent_ino); 1417 iput(inode); 1418 return 0; 1419 } 1420 1421 ret = __ext4_unlink(old_parent, &entry, inode, NULL); 1422 /* -ENOENT ok coz it might not exist anymore. */ 1423 if (ret == -ENOENT) 1424 ret = 0; 1425 iput(old_parent); 1426 iput(inode); 1427 return ret; 1428 } 1429 1430 static int ext4_fc_replay_link_internal(struct super_block *sb, 1431 struct dentry_info_args *darg, 1432 struct inode *inode) 1433 { 1434 struct inode *dir = NULL; 1435 struct dentry *dentry_dir = NULL, *dentry_inode = NULL; 1436 struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len); 1437 int ret = 0; 1438 1439 dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL); 1440 if (IS_ERR(dir)) { 1441 ext4_debug("Dir with inode %d not found.", darg->parent_ino); 1442 dir = NULL; 1443 goto out; 1444 } 1445 1446 dentry_dir = d_obtain_alias(dir); 1447 if (IS_ERR(dentry_dir)) { 1448 ext4_debug("Failed to obtain dentry"); 1449 dentry_dir = NULL; 1450 goto out; 1451 } 1452 1453 dentry_inode = d_alloc(dentry_dir, &qstr_dname); 1454 if (!dentry_inode) { 1455 ext4_debug("Inode dentry not created."); 1456 ret = -ENOMEM; 1457 goto out; 1458 } 1459 1460 ret = __ext4_link(dir, inode, dentry_inode); 1461 /* 1462 * It's possible that link already existed since data blocks 1463 * for the dir in question got persisted before we crashed OR 1464 * we replayed this tag and crashed before the entire replay 1465 * could complete. 1466 */ 1467 if (ret && ret != -EEXIST) { 1468 ext4_debug("Failed to link\n"); 1469 goto out; 1470 } 1471 1472 ret = 0; 1473 out: 1474 if (dentry_dir) { 1475 d_drop(dentry_dir); 1476 dput(dentry_dir); 1477 } else if (dir) { 1478 iput(dir); 1479 } 1480 if (dentry_inode) { 1481 d_drop(dentry_inode); 1482 dput(dentry_inode); 1483 } 1484 1485 return ret; 1486 } 1487 1488 /* Link replay function */ 1489 static int ext4_fc_replay_link(struct super_block *sb, 1490 struct ext4_fc_tl_mem *tl, u8 *val) 1491 { 1492 struct inode *inode; 1493 struct dentry_info_args darg; 1494 int ret = 0; 1495 1496 tl_to_darg(&darg, tl, val); 1497 trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino, 1498 darg.parent_ino, darg.dname_len); 1499 1500 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); 1501 if (IS_ERR(inode)) { 1502 ext4_debug("Inode not found."); 1503 return 0; 1504 } 1505 1506 ret = ext4_fc_replay_link_internal(sb, &darg, inode); 1507 iput(inode); 1508 return ret; 1509 } 1510 1511 /* 1512 * Record all the modified inodes during replay. We use this later to setup 1513 * block bitmaps correctly. 1514 */ 1515 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino) 1516 { 1517 struct ext4_fc_replay_state *state; 1518 int i; 1519 1520 state = &EXT4_SB(sb)->s_fc_replay_state; 1521 for (i = 0; i < state->fc_modified_inodes_used; i++) 1522 if (state->fc_modified_inodes[i] == ino) 1523 return 0; 1524 if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) { 1525 int *fc_modified_inodes; 1526 1527 fc_modified_inodes = krealloc(state->fc_modified_inodes, 1528 sizeof(int) * (state->fc_modified_inodes_size + 1529 EXT4_FC_REPLAY_REALLOC_INCREMENT), 1530 GFP_KERNEL); 1531 if (!fc_modified_inodes) 1532 return -ENOMEM; 1533 state->fc_modified_inodes = fc_modified_inodes; 1534 state->fc_modified_inodes_size += 1535 EXT4_FC_REPLAY_REALLOC_INCREMENT; 1536 } 1537 state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino; 1538 return 0; 1539 } 1540 1541 /* 1542 * Inode replay function 1543 */ 1544 static int ext4_fc_replay_inode(struct super_block *sb, 1545 struct ext4_fc_tl_mem *tl, u8 *val) 1546 { 1547 struct ext4_fc_inode fc_inode; 1548 struct ext4_inode *raw_inode; 1549 struct ext4_inode *raw_fc_inode; 1550 struct inode *inode = NULL; 1551 struct ext4_iloc iloc; 1552 int inode_len, ino, ret, tag = tl->fc_tag; 1553 struct ext4_extent_header *eh; 1554 size_t off_gen = offsetof(struct ext4_inode, i_generation); 1555 1556 memcpy(&fc_inode, val, sizeof(fc_inode)); 1557 1558 ino = le32_to_cpu(fc_inode.fc_ino); 1559 trace_ext4_fc_replay(sb, tag, ino, 0, 0); 1560 1561 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); 1562 if (!IS_ERR(inode)) { 1563 ext4_ext_clear_bb(inode); 1564 iput(inode); 1565 } 1566 inode = NULL; 1567 1568 ret = ext4_fc_record_modified_inode(sb, ino); 1569 if (ret) 1570 goto out; 1571 1572 raw_fc_inode = (struct ext4_inode *) 1573 (val + offsetof(struct ext4_fc_inode, fc_raw_inode)); 1574 ret = ext4_get_fc_inode_loc(sb, ino, &iloc); 1575 if (ret) 1576 goto out; 1577 1578 inode_len = tl->fc_len - sizeof(struct ext4_fc_inode); 1579 raw_inode = ext4_raw_inode(&iloc); 1580 1581 memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block)); 1582 memcpy((u8 *)raw_inode + off_gen, (u8 *)raw_fc_inode + off_gen, 1583 inode_len - off_gen); 1584 if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) { 1585 eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]); 1586 if (eh->eh_magic != EXT4_EXT_MAGIC) { 1587 memset(eh, 0, sizeof(*eh)); 1588 eh->eh_magic = EXT4_EXT_MAGIC; 1589 eh->eh_max = cpu_to_le16( 1590 (sizeof(raw_inode->i_block) - 1591 sizeof(struct ext4_extent_header)) 1592 / sizeof(struct ext4_extent)); 1593 } 1594 } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) { 1595 memcpy(raw_inode->i_block, raw_fc_inode->i_block, 1596 sizeof(raw_inode->i_block)); 1597 } 1598 1599 /* Immediately update the inode on disk. */ 1600 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh); 1601 if (ret) 1602 goto out; 1603 ret = sync_dirty_buffer(iloc.bh); 1604 if (ret) 1605 goto out; 1606 ret = ext4_mark_inode_used(sb, ino); 1607 if (ret) 1608 goto out; 1609 1610 /* Given that we just wrote the inode on disk, this SHOULD succeed. */ 1611 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); 1612 if (IS_ERR(inode)) { 1613 ext4_debug("Inode not found."); 1614 return -EFSCORRUPTED; 1615 } 1616 1617 /* 1618 * Our allocator could have made different decisions than before 1619 * crashing. This should be fixed but until then, we calculate 1620 * the number of blocks the inode. 1621 */ 1622 if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) 1623 ext4_ext_replay_set_iblocks(inode); 1624 1625 inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation); 1626 ext4_reset_inode_seed(inode); 1627 1628 ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode)); 1629 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh); 1630 sync_dirty_buffer(iloc.bh); 1631 brelse(iloc.bh); 1632 out: 1633 iput(inode); 1634 if (!ret) 1635 blkdev_issue_flush(sb->s_bdev); 1636 1637 return 0; 1638 } 1639 1640 /* 1641 * Dentry create replay function. 1642 * 1643 * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the 1644 * inode for which we are trying to create a dentry here, should already have 1645 * been replayed before we start here. 1646 */ 1647 static int ext4_fc_replay_create(struct super_block *sb, 1648 struct ext4_fc_tl_mem *tl, u8 *val) 1649 { 1650 int ret = 0; 1651 struct inode *inode = NULL; 1652 struct inode *dir = NULL; 1653 struct dentry_info_args darg; 1654 1655 tl_to_darg(&darg, tl, val); 1656 1657 trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino, 1658 darg.parent_ino, darg.dname_len); 1659 1660 /* This takes care of update group descriptor and other metadata */ 1661 ret = ext4_mark_inode_used(sb, darg.ino); 1662 if (ret) 1663 goto out; 1664 1665 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); 1666 if (IS_ERR(inode)) { 1667 ext4_debug("inode %d not found.", darg.ino); 1668 inode = NULL; 1669 ret = -EINVAL; 1670 goto out; 1671 } 1672 1673 if (S_ISDIR(inode->i_mode)) { 1674 /* 1675 * If we are creating a directory, we need to make sure that the 1676 * dot and dot dot dirents are setup properly. 1677 */ 1678 dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL); 1679 if (IS_ERR(dir)) { 1680 ext4_debug("Dir %d not found.", darg.ino); 1681 goto out; 1682 } 1683 ret = ext4_init_new_dir(NULL, dir, inode); 1684 iput(dir); 1685 if (ret) { 1686 ret = 0; 1687 goto out; 1688 } 1689 } 1690 ret = ext4_fc_replay_link_internal(sb, &darg, inode); 1691 if (ret) 1692 goto out; 1693 set_nlink(inode, 1); 1694 ext4_mark_inode_dirty(NULL, inode); 1695 out: 1696 iput(inode); 1697 return ret; 1698 } 1699 1700 /* 1701 * Record physical disk regions which are in use as per fast commit area, 1702 * and used by inodes during replay phase. Our simple replay phase 1703 * allocator excludes these regions from allocation. 1704 */ 1705 int ext4_fc_record_regions(struct super_block *sb, int ino, 1706 ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay) 1707 { 1708 struct ext4_fc_replay_state *state; 1709 struct ext4_fc_alloc_region *region; 1710 1711 state = &EXT4_SB(sb)->s_fc_replay_state; 1712 /* 1713 * during replay phase, the fc_regions_valid may not same as 1714 * fc_regions_used, update it when do new additions. 1715 */ 1716 if (replay && state->fc_regions_used != state->fc_regions_valid) 1717 state->fc_regions_used = state->fc_regions_valid; 1718 if (state->fc_regions_used == state->fc_regions_size) { 1719 struct ext4_fc_alloc_region *fc_regions; 1720 1721 fc_regions = krealloc(state->fc_regions, 1722 sizeof(struct ext4_fc_alloc_region) * 1723 (state->fc_regions_size + 1724 EXT4_FC_REPLAY_REALLOC_INCREMENT), 1725 GFP_KERNEL); 1726 if (!fc_regions) 1727 return -ENOMEM; 1728 state->fc_regions_size += 1729 EXT4_FC_REPLAY_REALLOC_INCREMENT; 1730 state->fc_regions = fc_regions; 1731 } 1732 region = &state->fc_regions[state->fc_regions_used++]; 1733 region->ino = ino; 1734 region->lblk = lblk; 1735 region->pblk = pblk; 1736 region->len = len; 1737 1738 if (replay) 1739 state->fc_regions_valid++; 1740 1741 return 0; 1742 } 1743 1744 /* Replay add range tag */ 1745 static int ext4_fc_replay_add_range(struct super_block *sb, 1746 struct ext4_fc_tl_mem *tl, u8 *val) 1747 { 1748 struct ext4_fc_add_range fc_add_ex; 1749 struct ext4_extent newex, *ex; 1750 struct inode *inode; 1751 ext4_lblk_t start, cur; 1752 int remaining, len; 1753 ext4_fsblk_t start_pblk; 1754 struct ext4_map_blocks map; 1755 struct ext4_ext_path *path = NULL; 1756 int ret; 1757 1758 memcpy(&fc_add_ex, val, sizeof(fc_add_ex)); 1759 ex = (struct ext4_extent *)&fc_add_ex.fc_ex; 1760 1761 trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE, 1762 le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block), 1763 ext4_ext_get_actual_len(ex)); 1764 1765 inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL); 1766 if (IS_ERR(inode)) { 1767 ext4_debug("Inode not found."); 1768 return 0; 1769 } 1770 1771 ret = ext4_fc_record_modified_inode(sb, inode->i_ino); 1772 if (ret) 1773 goto out; 1774 1775 start = le32_to_cpu(ex->ee_block); 1776 start_pblk = ext4_ext_pblock(ex); 1777 len = ext4_ext_get_actual_len(ex); 1778 1779 cur = start; 1780 remaining = len; 1781 ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n", 1782 start, start_pblk, len, ext4_ext_is_unwritten(ex), 1783 inode->i_ino); 1784 1785 while (remaining > 0) { 1786 map.m_lblk = cur; 1787 map.m_len = remaining; 1788 map.m_pblk = 0; 1789 ret = ext4_map_blocks(NULL, inode, &map, 0); 1790 1791 if (ret < 0) 1792 goto out; 1793 1794 if (ret == 0) { 1795 /* Range is not mapped */ 1796 path = ext4_find_extent(inode, cur, path, 0); 1797 if (IS_ERR(path)) 1798 goto out; 1799 memset(&newex, 0, sizeof(newex)); 1800 newex.ee_block = cpu_to_le32(cur); 1801 ext4_ext_store_pblock( 1802 &newex, start_pblk + cur - start); 1803 newex.ee_len = cpu_to_le16(map.m_len); 1804 if (ext4_ext_is_unwritten(ex)) 1805 ext4_ext_mark_unwritten(&newex); 1806 down_write(&EXT4_I(inode)->i_data_sem); 1807 path = ext4_ext_insert_extent(NULL, inode, 1808 path, &newex, 0); 1809 up_write((&EXT4_I(inode)->i_data_sem)); 1810 if (IS_ERR(path)) 1811 goto out; 1812 goto next; 1813 } 1814 1815 if (start_pblk + cur - start != map.m_pblk) { 1816 /* 1817 * Logical to physical mapping changed. This can happen 1818 * if this range was removed and then reallocated to 1819 * map to new physical blocks during a fast commit. 1820 */ 1821 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len, 1822 ext4_ext_is_unwritten(ex), 1823 start_pblk + cur - start); 1824 if (ret) 1825 goto out; 1826 /* 1827 * Mark the old blocks as free since they aren't used 1828 * anymore. We maintain an array of all the modified 1829 * inodes. In case these blocks are still used at either 1830 * a different logical range in the same inode or in 1831 * some different inode, we will mark them as allocated 1832 * at the end of the FC replay using our array of 1833 * modified inodes. 1834 */ 1835 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false); 1836 goto next; 1837 } 1838 1839 /* Range is mapped and needs a state change */ 1840 ext4_debug("Converting from %ld to %d %lld", 1841 map.m_flags & EXT4_MAP_UNWRITTEN, 1842 ext4_ext_is_unwritten(ex), map.m_pblk); 1843 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len, 1844 ext4_ext_is_unwritten(ex), map.m_pblk); 1845 if (ret) 1846 goto out; 1847 /* 1848 * We may have split the extent tree while toggling the state. 1849 * Try to shrink the extent tree now. 1850 */ 1851 ext4_ext_replay_shrink_inode(inode, start + len); 1852 next: 1853 cur += map.m_len; 1854 remaining -= map.m_len; 1855 } 1856 ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >> 1857 sb->s_blocksize_bits); 1858 out: 1859 ext4_free_ext_path(path); 1860 iput(inode); 1861 return 0; 1862 } 1863 1864 /* Replay DEL_RANGE tag */ 1865 static int 1866 ext4_fc_replay_del_range(struct super_block *sb, 1867 struct ext4_fc_tl_mem *tl, u8 *val) 1868 { 1869 struct inode *inode; 1870 struct ext4_fc_del_range lrange; 1871 struct ext4_map_blocks map; 1872 ext4_lblk_t cur, remaining; 1873 int ret; 1874 1875 memcpy(&lrange, val, sizeof(lrange)); 1876 cur = le32_to_cpu(lrange.fc_lblk); 1877 remaining = le32_to_cpu(lrange.fc_len); 1878 1879 trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE, 1880 le32_to_cpu(lrange.fc_ino), cur, remaining); 1881 1882 inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL); 1883 if (IS_ERR(inode)) { 1884 ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino)); 1885 return 0; 1886 } 1887 1888 ret = ext4_fc_record_modified_inode(sb, inode->i_ino); 1889 if (ret) 1890 goto out; 1891 1892 ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n", 1893 inode->i_ino, le32_to_cpu(lrange.fc_lblk), 1894 le32_to_cpu(lrange.fc_len)); 1895 while (remaining > 0) { 1896 map.m_lblk = cur; 1897 map.m_len = remaining; 1898 1899 ret = ext4_map_blocks(NULL, inode, &map, 0); 1900 if (ret < 0) 1901 goto out; 1902 if (ret > 0) { 1903 remaining -= ret; 1904 cur += ret; 1905 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false); 1906 } else { 1907 remaining -= map.m_len; 1908 cur += map.m_len; 1909 } 1910 } 1911 1912 down_write(&EXT4_I(inode)->i_data_sem); 1913 ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk), 1914 le32_to_cpu(lrange.fc_lblk) + 1915 le32_to_cpu(lrange.fc_len) - 1); 1916 up_write(&EXT4_I(inode)->i_data_sem); 1917 if (ret) 1918 goto out; 1919 ext4_ext_replay_shrink_inode(inode, 1920 i_size_read(inode) >> sb->s_blocksize_bits); 1921 ext4_mark_inode_dirty(NULL, inode); 1922 out: 1923 iput(inode); 1924 return 0; 1925 } 1926 1927 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb) 1928 { 1929 struct ext4_fc_replay_state *state; 1930 struct inode *inode; 1931 struct ext4_ext_path *path = NULL; 1932 struct ext4_map_blocks map; 1933 int i, ret, j; 1934 ext4_lblk_t cur, end; 1935 1936 state = &EXT4_SB(sb)->s_fc_replay_state; 1937 for (i = 0; i < state->fc_modified_inodes_used; i++) { 1938 inode = ext4_iget(sb, state->fc_modified_inodes[i], 1939 EXT4_IGET_NORMAL); 1940 if (IS_ERR(inode)) { 1941 ext4_debug("Inode %d not found.", 1942 state->fc_modified_inodes[i]); 1943 continue; 1944 } 1945 cur = 0; 1946 end = EXT_MAX_BLOCKS; 1947 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) { 1948 iput(inode); 1949 continue; 1950 } 1951 while (cur < end) { 1952 map.m_lblk = cur; 1953 map.m_len = end - cur; 1954 1955 ret = ext4_map_blocks(NULL, inode, &map, 0); 1956 if (ret < 0) 1957 break; 1958 1959 if (ret > 0) { 1960 path = ext4_find_extent(inode, map.m_lblk, path, 0); 1961 if (!IS_ERR(path)) { 1962 for (j = 0; j < path->p_depth; j++) 1963 ext4_mb_mark_bb(inode->i_sb, 1964 path[j].p_block, 1, true); 1965 } else { 1966 path = NULL; 1967 } 1968 cur += ret; 1969 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, 1970 map.m_len, true); 1971 } else { 1972 cur = cur + (map.m_len ? map.m_len : 1); 1973 } 1974 } 1975 iput(inode); 1976 } 1977 1978 ext4_free_ext_path(path); 1979 } 1980 1981 /* 1982 * Check if block is in excluded regions for block allocation. The simple 1983 * allocator that runs during replay phase is calls this function to see 1984 * if it is okay to use a block. 1985 */ 1986 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk) 1987 { 1988 int i; 1989 struct ext4_fc_replay_state *state; 1990 1991 state = &EXT4_SB(sb)->s_fc_replay_state; 1992 for (i = 0; i < state->fc_regions_valid; i++) { 1993 if (state->fc_regions[i].ino == 0 || 1994 state->fc_regions[i].len == 0) 1995 continue; 1996 if (in_range(blk, state->fc_regions[i].pblk, 1997 state->fc_regions[i].len)) 1998 return true; 1999 } 2000 return false; 2001 } 2002 2003 /* Cleanup function called after replay */ 2004 void ext4_fc_replay_cleanup(struct super_block *sb) 2005 { 2006 struct ext4_sb_info *sbi = EXT4_SB(sb); 2007 2008 sbi->s_mount_state &= ~EXT4_FC_REPLAY; 2009 kfree(sbi->s_fc_replay_state.fc_regions); 2010 kfree(sbi->s_fc_replay_state.fc_modified_inodes); 2011 } 2012 2013 static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi, 2014 int tag, int len) 2015 { 2016 switch (tag) { 2017 case EXT4_FC_TAG_ADD_RANGE: 2018 return len == sizeof(struct ext4_fc_add_range); 2019 case EXT4_FC_TAG_DEL_RANGE: 2020 return len == sizeof(struct ext4_fc_del_range); 2021 case EXT4_FC_TAG_CREAT: 2022 case EXT4_FC_TAG_LINK: 2023 case EXT4_FC_TAG_UNLINK: 2024 len -= sizeof(struct ext4_fc_dentry_info); 2025 return len >= 1 && len <= EXT4_NAME_LEN; 2026 case EXT4_FC_TAG_INODE: 2027 len -= sizeof(struct ext4_fc_inode); 2028 return len >= EXT4_GOOD_OLD_INODE_SIZE && 2029 len <= sbi->s_inode_size; 2030 case EXT4_FC_TAG_PAD: 2031 return true; /* padding can have any length */ 2032 case EXT4_FC_TAG_TAIL: 2033 return len >= sizeof(struct ext4_fc_tail); 2034 case EXT4_FC_TAG_HEAD: 2035 return len == sizeof(struct ext4_fc_head); 2036 } 2037 return false; 2038 } 2039 2040 /* 2041 * Recovery Scan phase handler 2042 * 2043 * This function is called during the scan phase and is responsible 2044 * for doing following things: 2045 * - Make sure the fast commit area has valid tags for replay 2046 * - Count number of tags that need to be replayed by the replay handler 2047 * - Verify CRC 2048 * - Create a list of excluded blocks for allocation during replay phase 2049 * 2050 * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is 2051 * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP 2052 * to indicate that scan has finished and JBD2 can now start replay phase. 2053 * It returns a negative error to indicate that there was an error. At the end 2054 * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set 2055 * to indicate the number of tags that need to replayed during the replay phase. 2056 */ 2057 static int ext4_fc_replay_scan(journal_t *journal, 2058 struct buffer_head *bh, int off, 2059 tid_t expected_tid) 2060 { 2061 struct super_block *sb = journal->j_private; 2062 struct ext4_sb_info *sbi = EXT4_SB(sb); 2063 struct ext4_fc_replay_state *state; 2064 int ret = JBD2_FC_REPLAY_CONTINUE; 2065 struct ext4_fc_add_range ext; 2066 struct ext4_fc_tl_mem tl; 2067 struct ext4_fc_tail tail; 2068 __u8 *start, *end, *cur, *val; 2069 struct ext4_fc_head head; 2070 struct ext4_extent *ex; 2071 2072 state = &sbi->s_fc_replay_state; 2073 2074 start = (u8 *)bh->b_data; 2075 end = start + journal->j_blocksize; 2076 2077 if (state->fc_replay_expected_off == 0) { 2078 state->fc_cur_tag = 0; 2079 state->fc_replay_num_tags = 0; 2080 state->fc_crc = 0; 2081 state->fc_regions = NULL; 2082 state->fc_regions_valid = state->fc_regions_used = 2083 state->fc_regions_size = 0; 2084 /* Check if we can stop early */ 2085 if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag) 2086 != EXT4_FC_TAG_HEAD) 2087 return 0; 2088 } 2089 2090 if (off != state->fc_replay_expected_off) { 2091 ret = -EFSCORRUPTED; 2092 goto out_err; 2093 } 2094 2095 state->fc_replay_expected_off++; 2096 for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN; 2097 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) { 2098 ext4_fc_get_tl(&tl, cur); 2099 val = cur + EXT4_FC_TAG_BASE_LEN; 2100 if (tl.fc_len > end - val || 2101 !ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) { 2102 ret = state->fc_replay_num_tags ? 2103 JBD2_FC_REPLAY_STOP : -ECANCELED; 2104 goto out_err; 2105 } 2106 ext4_debug("Scan phase, tag:%s, blk %lld\n", 2107 tag2str(tl.fc_tag), bh->b_blocknr); 2108 switch (tl.fc_tag) { 2109 case EXT4_FC_TAG_ADD_RANGE: 2110 memcpy(&ext, val, sizeof(ext)); 2111 ex = (struct ext4_extent *)&ext.fc_ex; 2112 ret = ext4_fc_record_regions(sb, 2113 le32_to_cpu(ext.fc_ino), 2114 le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex), 2115 ext4_ext_get_actual_len(ex), 0); 2116 if (ret < 0) 2117 break; 2118 ret = JBD2_FC_REPLAY_CONTINUE; 2119 fallthrough; 2120 case EXT4_FC_TAG_DEL_RANGE: 2121 case EXT4_FC_TAG_LINK: 2122 case EXT4_FC_TAG_UNLINK: 2123 case EXT4_FC_TAG_CREAT: 2124 case EXT4_FC_TAG_INODE: 2125 case EXT4_FC_TAG_PAD: 2126 state->fc_cur_tag++; 2127 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur, 2128 EXT4_FC_TAG_BASE_LEN + tl.fc_len); 2129 break; 2130 case EXT4_FC_TAG_TAIL: 2131 state->fc_cur_tag++; 2132 memcpy(&tail, val, sizeof(tail)); 2133 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur, 2134 EXT4_FC_TAG_BASE_LEN + 2135 offsetof(struct ext4_fc_tail, 2136 fc_crc)); 2137 if (le32_to_cpu(tail.fc_tid) == expected_tid && 2138 le32_to_cpu(tail.fc_crc) == state->fc_crc) { 2139 state->fc_replay_num_tags = state->fc_cur_tag; 2140 state->fc_regions_valid = 2141 state->fc_regions_used; 2142 } else { 2143 ret = state->fc_replay_num_tags ? 2144 JBD2_FC_REPLAY_STOP : -EFSBADCRC; 2145 } 2146 state->fc_crc = 0; 2147 break; 2148 case EXT4_FC_TAG_HEAD: 2149 memcpy(&head, val, sizeof(head)); 2150 if (le32_to_cpu(head.fc_features) & 2151 ~EXT4_FC_SUPPORTED_FEATURES) { 2152 ret = -EOPNOTSUPP; 2153 break; 2154 } 2155 if (le32_to_cpu(head.fc_tid) != expected_tid) { 2156 ret = JBD2_FC_REPLAY_STOP; 2157 break; 2158 } 2159 state->fc_cur_tag++; 2160 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur, 2161 EXT4_FC_TAG_BASE_LEN + tl.fc_len); 2162 break; 2163 default: 2164 ret = state->fc_replay_num_tags ? 2165 JBD2_FC_REPLAY_STOP : -ECANCELED; 2166 } 2167 if (ret < 0 || ret == JBD2_FC_REPLAY_STOP) 2168 break; 2169 } 2170 2171 out_err: 2172 trace_ext4_fc_replay_scan(sb, ret, off); 2173 return ret; 2174 } 2175 2176 /* 2177 * Main recovery path entry point. 2178 * The meaning of return codes is similar as above. 2179 */ 2180 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh, 2181 enum passtype pass, int off, tid_t expected_tid) 2182 { 2183 struct super_block *sb = journal->j_private; 2184 struct ext4_sb_info *sbi = EXT4_SB(sb); 2185 struct ext4_fc_tl_mem tl; 2186 __u8 *start, *end, *cur, *val; 2187 int ret = JBD2_FC_REPLAY_CONTINUE; 2188 struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state; 2189 struct ext4_fc_tail tail; 2190 2191 if (pass == PASS_SCAN) { 2192 state->fc_current_pass = PASS_SCAN; 2193 return ext4_fc_replay_scan(journal, bh, off, expected_tid); 2194 } 2195 2196 if (state->fc_current_pass != pass) { 2197 state->fc_current_pass = pass; 2198 sbi->s_mount_state |= EXT4_FC_REPLAY; 2199 } 2200 if (!sbi->s_fc_replay_state.fc_replay_num_tags) { 2201 ext4_debug("Replay stops\n"); 2202 ext4_fc_set_bitmaps_and_counters(sb); 2203 return 0; 2204 } 2205 2206 #ifdef CONFIG_EXT4_DEBUG 2207 if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) { 2208 pr_warn("Dropping fc block %d because max_replay set\n", off); 2209 return JBD2_FC_REPLAY_STOP; 2210 } 2211 #endif 2212 2213 start = (u8 *)bh->b_data; 2214 end = start + journal->j_blocksize; 2215 2216 for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN; 2217 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) { 2218 ext4_fc_get_tl(&tl, cur); 2219 val = cur + EXT4_FC_TAG_BASE_LEN; 2220 2221 if (state->fc_replay_num_tags == 0) { 2222 ret = JBD2_FC_REPLAY_STOP; 2223 ext4_fc_set_bitmaps_and_counters(sb); 2224 break; 2225 } 2226 2227 ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag)); 2228 state->fc_replay_num_tags--; 2229 switch (tl.fc_tag) { 2230 case EXT4_FC_TAG_LINK: 2231 ret = ext4_fc_replay_link(sb, &tl, val); 2232 break; 2233 case EXT4_FC_TAG_UNLINK: 2234 ret = ext4_fc_replay_unlink(sb, &tl, val); 2235 break; 2236 case EXT4_FC_TAG_ADD_RANGE: 2237 ret = ext4_fc_replay_add_range(sb, &tl, val); 2238 break; 2239 case EXT4_FC_TAG_CREAT: 2240 ret = ext4_fc_replay_create(sb, &tl, val); 2241 break; 2242 case EXT4_FC_TAG_DEL_RANGE: 2243 ret = ext4_fc_replay_del_range(sb, &tl, val); 2244 break; 2245 case EXT4_FC_TAG_INODE: 2246 ret = ext4_fc_replay_inode(sb, &tl, val); 2247 break; 2248 case EXT4_FC_TAG_PAD: 2249 trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0, 2250 tl.fc_len, 0); 2251 break; 2252 case EXT4_FC_TAG_TAIL: 2253 trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL, 2254 0, tl.fc_len, 0); 2255 memcpy(&tail, val, sizeof(tail)); 2256 WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid); 2257 break; 2258 case EXT4_FC_TAG_HEAD: 2259 break; 2260 default: 2261 trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0); 2262 ret = -ECANCELED; 2263 break; 2264 } 2265 if (ret < 0) 2266 break; 2267 ret = JBD2_FC_REPLAY_CONTINUE; 2268 } 2269 return ret; 2270 } 2271 2272 void ext4_fc_init(struct super_block *sb, journal_t *journal) 2273 { 2274 /* 2275 * We set replay callback even if fast commit disabled because we may 2276 * could still have fast commit blocks that need to be replayed even if 2277 * fast commit has now been turned off. 2278 */ 2279 journal->j_fc_replay_callback = ext4_fc_replay; 2280 if (!test_opt2(sb, JOURNAL_FAST_COMMIT)) 2281 return; 2282 journal->j_fc_cleanup_callback = ext4_fc_cleanup; 2283 } 2284 2285 static const char * const fc_ineligible_reasons[] = { 2286 [EXT4_FC_REASON_XATTR] = "Extended attributes changed", 2287 [EXT4_FC_REASON_CROSS_RENAME] = "Cross rename", 2288 [EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed", 2289 [EXT4_FC_REASON_NOMEM] = "Insufficient memory", 2290 [EXT4_FC_REASON_SWAP_BOOT] = "Swap boot", 2291 [EXT4_FC_REASON_RESIZE] = "Resize", 2292 [EXT4_FC_REASON_RENAME_DIR] = "Dir renamed", 2293 [EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op", 2294 [EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling", 2295 [EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename", 2296 }; 2297 2298 int ext4_fc_info_show(struct seq_file *seq, void *v) 2299 { 2300 struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private); 2301 struct ext4_fc_stats *stats = &sbi->s_fc_stats; 2302 int i; 2303 2304 if (v != SEQ_START_TOKEN) 2305 return 0; 2306 2307 seq_printf(seq, 2308 "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n", 2309 stats->fc_num_commits, stats->fc_ineligible_commits, 2310 stats->fc_numblks, 2311 div_u64(stats->s_fc_avg_commit_time, 1000)); 2312 seq_puts(seq, "Ineligible reasons:\n"); 2313 for (i = 0; i < EXT4_FC_REASON_MAX; i++) 2314 seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i], 2315 stats->fc_ineligible_reason_count[i]); 2316 2317 return 0; 2318 } 2319 2320 int __init ext4_fc_init_dentry_cache(void) 2321 { 2322 ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update, 2323 SLAB_RECLAIM_ACCOUNT); 2324 2325 if (ext4_fc_dentry_cachep == NULL) 2326 return -ENOMEM; 2327 2328 return 0; 2329 } 2330 2331 void ext4_fc_destroy_dentry_cache(void) 2332 { 2333 kmem_cache_destroy(ext4_fc_dentry_cachep); 2334 } 2335