1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * fs/ext4/fast_commit.c 5 * 6 * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com> 7 * 8 * Ext4 fast commits routines. 9 */ 10 #include "ext4.h" 11 #include "ext4_jbd2.h" 12 #include "ext4_extents.h" 13 #include "mballoc.h" 14 15 #include <linux/lockdep.h> 16 /* 17 * Ext4 Fast Commits 18 * ----------------- 19 * 20 * Ext4 fast commits implement fine grained journalling for Ext4. 21 * 22 * Fast commits are organized as a log of tag-length-value (TLV) structs. (See 23 * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by 24 * TLV during the recovery phase. For the scenarios for which we currently 25 * don't have replay code, fast commit falls back to full commits. 26 * Fast commits record delta in one of the following three categories. 27 * 28 * (A) Directory entry updates: 29 * 30 * - EXT4_FC_TAG_UNLINK - records directory entry unlink 31 * - EXT4_FC_TAG_LINK - records directory entry link 32 * - EXT4_FC_TAG_CREAT - records inode and directory entry creation 33 * 34 * (B) File specific data range updates: 35 * 36 * - EXT4_FC_TAG_ADD_RANGE - records addition of new blocks to an inode 37 * - EXT4_FC_TAG_DEL_RANGE - records deletion of blocks from an inode 38 * 39 * (C) Inode metadata (mtime / ctime etc): 40 * 41 * - EXT4_FC_TAG_INODE - record the inode that should be replayed 42 * during recovery. Note that iblocks field is 43 * not replayed and instead derived during 44 * replay. 45 * Commit Operation 46 * ---------------- 47 * With fast commits, we maintain all the directory entry operations in the 48 * order in which they are issued in an in-memory queue. This queue is flushed 49 * to disk during the commit operation. We also maintain a list of inodes 50 * that need to be committed during a fast commit in another in memory queue of 51 * inodes. During the commit operation, we commit in the following order: 52 * 53 * [1] Prepare all the inodes to write out their data by setting 54 * "EXT4_STATE_FC_FLUSHING_DATA". This ensures that inode cannot be 55 * deleted while it is being flushed. 56 * [2] Flush data buffers to disk and clear "EXT4_STATE_FC_FLUSHING_DATA" 57 * state. 58 * [3] Lock the journal by calling jbd2_journal_lock_updates. This ensures that 59 * all the exsiting handles finish and no new handles can start. 60 * [4] Mark all the fast commit eligible inodes as undergoing fast commit 61 * by setting "EXT4_STATE_FC_COMMITTING" state. 62 * [5] Unlock the journal by calling jbd2_journal_unlock_updates. This allows 63 * starting of new handles. If new handles try to start an update on 64 * any of the inodes that are being committed, ext4_fc_track_inode() 65 * will block until those inodes have finished the fast commit. 66 * [6] Commit all the directory entry updates in the fast commit space. 67 * [7] Commit all the changed inodes in the fast commit space and clear 68 * "EXT4_STATE_FC_COMMITTING" for these inodes. 69 * [8] Write tail tag (this tag ensures the atomicity, please read the following 70 * section for more details). 71 * 72 * All the inode updates must be enclosed within jbd2_jounrnal_start() 73 * and jbd2_journal_stop() similar to JBD2 journaling. 74 * 75 * Fast Commit Ineligibility 76 * ------------------------- 77 * 78 * Not all operations are supported by fast commits today (e.g extended 79 * attributes). Fast commit ineligibility is marked by calling 80 * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back 81 * to full commit. 82 * 83 * Atomicity of commits 84 * -------------------- 85 * In order to guarantee atomicity during the commit operation, fast commit 86 * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail 87 * tag contains CRC of the contents and TID of the transaction after which 88 * this fast commit should be applied. Recovery code replays fast commit 89 * logs only if there's at least 1 valid tail present. For every fast commit 90 * operation, there is 1 tail. This means, we may end up with multiple tails 91 * in the fast commit space. Here's an example: 92 * 93 * - Create a new file A and remove existing file B 94 * - fsync() 95 * - Append contents to file A 96 * - Truncate file A 97 * - fsync() 98 * 99 * The fast commit space at the end of above operations would look like this: 100 * [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL] 101 * |<--- Fast Commit 1 --->|<--- Fast Commit 2 ---->| 102 * 103 * Replay code should thus check for all the valid tails in the FC area. 104 * 105 * Fast Commit Replay Idempotence 106 * ------------------------------ 107 * 108 * Fast commits tags are idempotent in nature provided the recovery code follows 109 * certain rules. The guiding principle that the commit path follows while 110 * committing is that it stores the result of a particular operation instead of 111 * storing the procedure. 112 * 113 * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a' 114 * was associated with inode 10. During fast commit, instead of storing this 115 * operation as a procedure "rename a to b", we store the resulting file system 116 * state as a "series" of outcomes: 117 * 118 * - Link dirent b to inode 10 119 * - Unlink dirent a 120 * - Inode <10> with valid refcount 121 * 122 * Now when recovery code runs, it needs "enforce" this state on the file 123 * system. This is what guarantees idempotence of fast commit replay. 124 * 125 * Let's take an example of a procedure that is not idempotent and see how fast 126 * commits make it idempotent. Consider following sequence of operations: 127 * 128 * rm A; mv B A; read A 129 * (x) (y) (z) 130 * 131 * (x), (y) and (z) are the points at which we can crash. If we store this 132 * sequence of operations as is then the replay is not idempotent. Let's say 133 * while in replay, we crash at (z). During the second replay, file A (which was 134 * actually created as a result of "mv B A" operation) would get deleted. Thus, 135 * file named A would be absent when we try to read A. So, this sequence of 136 * operations is not idempotent. However, as mentioned above, instead of storing 137 * the procedure fast commits store the outcome of each procedure. Thus the fast 138 * commit log for above procedure would be as follows: 139 * 140 * (Let's assume dirent A was linked to inode 10 and dirent B was linked to 141 * inode 11 before the replay) 142 * 143 * [Unlink A] [Link A to inode 11] [Unlink B] [Inode 11] 144 * (w) (x) (y) (z) 145 * 146 * If we crash at (z), we will have file A linked to inode 11. During the second 147 * replay, we will remove file A (inode 11). But we will create it back and make 148 * it point to inode 11. We won't find B, so we'll just skip that step. At this 149 * point, the refcount for inode 11 is not reliable, but that gets fixed by the 150 * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled 151 * similarly. Thus, by converting a non-idempotent procedure into a series of 152 * idempotent outcomes, fast commits ensured idempotence during the replay. 153 * 154 * Locking 155 * ------- 156 * sbi->s_fc_lock protects the fast commit inodes queue and the fast commit 157 * dentry queue. ei->i_fc_lock protects the fast commit related info in a given 158 * inode. Most of the code avoids acquiring both the locks, but if one must do 159 * that then sbi->s_fc_lock must be acquired before ei->i_fc_lock. 160 * 161 * TODOs 162 * ----- 163 * 164 * 0) Fast commit replay path hardening: Fast commit replay code should use 165 * journal handles to make sure all the updates it does during the replay 166 * path are atomic. With that if we crash during fast commit replay, after 167 * trying to do recovery again, we will find a file system where fast commit 168 * area is invalid (because new full commit would be found). In order to deal 169 * with that, fast commit replay code should ensure that the "FC_REPLAY" 170 * superblock state is persisted before starting the replay, so that after 171 * the crash, fast commit recovery code can look at that flag and perform 172 * fast commit recovery even if that area is invalidated by later full 173 * commits. 174 * 175 * 1) Handle more ineligible cases. 176 * 177 * 2) Change ext4_fc_commit() to lookup logical to physical mapping using extent 178 * status tree. This would get rid of the need to call ext4_fc_track_inode() 179 * before acquiring i_data_sem. To do that we would need to ensure that 180 * modified extents from the extent status tree are not evicted from memory. 181 */ 182 183 #include <trace/events/ext4.h> 184 static struct kmem_cache *ext4_fc_dentry_cachep; 185 186 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate) 187 { 188 BUFFER_TRACE(bh, ""); 189 if (uptodate) { 190 ext4_debug("%s: Block %lld up-to-date", 191 __func__, bh->b_blocknr); 192 set_buffer_uptodate(bh); 193 } else { 194 ext4_debug("%s: Block %lld not up-to-date", 195 __func__, bh->b_blocknr); 196 clear_buffer_uptodate(bh); 197 } 198 199 unlock_buffer(bh); 200 } 201 202 static inline void ext4_fc_reset_inode(struct inode *inode) 203 { 204 struct ext4_inode_info *ei = EXT4_I(inode); 205 206 ei->i_fc_lblk_start = 0; 207 ei->i_fc_lblk_len = 0; 208 } 209 210 void ext4_fc_init_inode(struct inode *inode) 211 { 212 struct ext4_inode_info *ei = EXT4_I(inode); 213 214 ext4_fc_reset_inode(inode); 215 ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING); 216 INIT_LIST_HEAD(&ei->i_fc_list); 217 INIT_LIST_HEAD(&ei->i_fc_dilist); 218 init_waitqueue_head(&ei->i_fc_wait); 219 } 220 221 static bool ext4_fc_disabled(struct super_block *sb) 222 { 223 return (!test_opt2(sb, JOURNAL_FAST_COMMIT) || 224 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)); 225 } 226 227 /* 228 * Remove inode from fast commit list. If the inode is being committed 229 * we wait until inode commit is done. 230 */ 231 void ext4_fc_del(struct inode *inode) 232 { 233 struct ext4_inode_info *ei = EXT4_I(inode); 234 struct ext4_fc_dentry_update *fc_dentry; 235 wait_queue_head_t *wq; 236 int alloc_ctx; 237 238 if (ext4_fc_disabled(inode->i_sb)) 239 return; 240 241 alloc_ctx = ext4_fc_lock(inode->i_sb); 242 if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) { 243 ext4_fc_unlock(inode->i_sb, alloc_ctx); 244 return; 245 } 246 247 /* 248 * Since ext4_fc_del is called from ext4_evict_inode while having a 249 * handle open, there is no need for us to wait here even if a fast 250 * commit is going on. That is because, if this inode is being 251 * committed, ext4_mark_inode_dirty would have waited for inode commit 252 * operation to finish before we come here. So, by the time we come 253 * here, inode's EXT4_STATE_FC_COMMITTING would have been cleared. So, 254 * we shouldn't see EXT4_STATE_FC_COMMITTING to be set on this inode 255 * here. 256 * 257 * We may come here without any handles open in the "no_delete" case of 258 * ext4_evict_inode as well. However, if that happens, we first mark the 259 * file system as fast commit ineligible anyway. So, even in that case, 260 * it is okay to remove the inode from the fc list. 261 */ 262 WARN_ON(ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING) 263 && !ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)); 264 while (ext4_test_inode_state(inode, EXT4_STATE_FC_FLUSHING_DATA)) { 265 #if (BITS_PER_LONG < 64) 266 DEFINE_WAIT_BIT(wait, &ei->i_state_flags, 267 EXT4_STATE_FC_FLUSHING_DATA); 268 wq = bit_waitqueue(&ei->i_state_flags, 269 EXT4_STATE_FC_FLUSHING_DATA); 270 #else 271 DEFINE_WAIT_BIT(wait, &ei->i_flags, 272 EXT4_STATE_FC_FLUSHING_DATA); 273 wq = bit_waitqueue(&ei->i_flags, 274 EXT4_STATE_FC_FLUSHING_DATA); 275 #endif 276 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 277 if (ext4_test_inode_state(inode, EXT4_STATE_FC_FLUSHING_DATA)) { 278 ext4_fc_unlock(inode->i_sb, alloc_ctx); 279 schedule(); 280 alloc_ctx = ext4_fc_lock(inode->i_sb); 281 } 282 finish_wait(wq, &wait.wq_entry); 283 } 284 list_del_init(&ei->i_fc_list); 285 286 /* 287 * Since this inode is getting removed, let's also remove all FC 288 * dentry create references, since it is not needed to log it anyways. 289 */ 290 if (list_empty(&ei->i_fc_dilist)) { 291 ext4_fc_unlock(inode->i_sb, alloc_ctx); 292 return; 293 } 294 295 fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist); 296 WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT); 297 list_del_init(&fc_dentry->fcd_list); 298 list_del_init(&fc_dentry->fcd_dilist); 299 300 WARN_ON(!list_empty(&ei->i_fc_dilist)); 301 ext4_fc_unlock(inode->i_sb, alloc_ctx); 302 303 release_dentry_name_snapshot(&fc_dentry->fcd_name); 304 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry); 305 } 306 307 /* 308 * Mark file system as fast commit ineligible, and record latest 309 * ineligible transaction tid. This means until the recorded 310 * transaction, commit operation would result in a full jbd2 commit. 311 */ 312 void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle) 313 { 314 struct ext4_sb_info *sbi = EXT4_SB(sb); 315 tid_t tid; 316 bool has_transaction = true; 317 bool is_ineligible; 318 int alloc_ctx; 319 320 if (ext4_fc_disabled(sb)) 321 return; 322 323 if (handle && !IS_ERR(handle)) 324 tid = handle->h_transaction->t_tid; 325 else { 326 read_lock(&sbi->s_journal->j_state_lock); 327 if (sbi->s_journal->j_running_transaction) 328 tid = sbi->s_journal->j_running_transaction->t_tid; 329 else 330 has_transaction = false; 331 read_unlock(&sbi->s_journal->j_state_lock); 332 } 333 alloc_ctx = ext4_fc_lock(sb); 334 is_ineligible = ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 335 if (has_transaction && (!is_ineligible || tid_gt(tid, sbi->s_fc_ineligible_tid))) 336 sbi->s_fc_ineligible_tid = tid; 337 ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 338 ext4_fc_unlock(sb, alloc_ctx); 339 WARN_ON(reason >= EXT4_FC_REASON_MAX); 340 sbi->s_fc_stats.fc_ineligible_reason_count[reason]++; 341 } 342 343 /* 344 * Generic fast commit tracking function. If this is the first time this we are 345 * called after a full commit, we initialize fast commit fields and then call 346 * __fc_track_fn() with update = 0. If we have already been called after a full 347 * commit, we pass update = 1. Based on that, the track function can determine 348 * if it needs to track a field for the first time or if it needs to just 349 * update the previously tracked value. 350 * 351 * If enqueue is set, this function enqueues the inode in fast commit list. 352 */ 353 static int ext4_fc_track_template( 354 handle_t *handle, struct inode *inode, 355 int (*__fc_track_fn)(handle_t *handle, struct inode *, void *, bool), 356 void *args, int enqueue) 357 { 358 bool update = false; 359 struct ext4_inode_info *ei = EXT4_I(inode); 360 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 361 tid_t tid = 0; 362 int alloc_ctx; 363 int ret; 364 365 tid = handle->h_transaction->t_tid; 366 spin_lock(&ei->i_fc_lock); 367 if (tid == ei->i_sync_tid) { 368 update = true; 369 } else { 370 ext4_fc_reset_inode(inode); 371 ei->i_sync_tid = tid; 372 } 373 ret = __fc_track_fn(handle, inode, args, update); 374 spin_unlock(&ei->i_fc_lock); 375 if (!enqueue) 376 return ret; 377 378 alloc_ctx = ext4_fc_lock(inode->i_sb); 379 if (list_empty(&EXT4_I(inode)->i_fc_list)) 380 list_add_tail(&EXT4_I(inode)->i_fc_list, 381 (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING || 382 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ? 383 &sbi->s_fc_q[FC_Q_STAGING] : 384 &sbi->s_fc_q[FC_Q_MAIN]); 385 ext4_fc_unlock(inode->i_sb, alloc_ctx); 386 387 return ret; 388 } 389 390 struct __track_dentry_update_args { 391 struct dentry *dentry; 392 int op; 393 }; 394 395 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */ 396 static int __track_dentry_update(handle_t *handle, struct inode *inode, 397 void *arg, bool update) 398 { 399 struct ext4_fc_dentry_update *node; 400 struct ext4_inode_info *ei = EXT4_I(inode); 401 struct __track_dentry_update_args *dentry_update = 402 (struct __track_dentry_update_args *)arg; 403 struct dentry *dentry = dentry_update->dentry; 404 struct inode *dir = dentry->d_parent->d_inode; 405 struct super_block *sb = inode->i_sb; 406 struct ext4_sb_info *sbi = EXT4_SB(sb); 407 int alloc_ctx; 408 409 spin_unlock(&ei->i_fc_lock); 410 411 if (IS_ENCRYPTED(dir)) { 412 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME, 413 handle); 414 spin_lock(&ei->i_fc_lock); 415 return -EOPNOTSUPP; 416 } 417 418 node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS); 419 if (!node) { 420 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, handle); 421 spin_lock(&ei->i_fc_lock); 422 return -ENOMEM; 423 } 424 425 node->fcd_op = dentry_update->op; 426 node->fcd_parent = dir->i_ino; 427 node->fcd_ino = inode->i_ino; 428 take_dentry_name_snapshot(&node->fcd_name, dentry); 429 INIT_LIST_HEAD(&node->fcd_dilist); 430 INIT_LIST_HEAD(&node->fcd_list); 431 alloc_ctx = ext4_fc_lock(sb); 432 if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING || 433 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) 434 list_add_tail(&node->fcd_list, 435 &sbi->s_fc_dentry_q[FC_Q_STAGING]); 436 else 437 list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]); 438 439 /* 440 * This helps us keep a track of all fc_dentry updates which is part of 441 * this ext4 inode. So in case the inode is getting unlinked, before 442 * even we get a chance to fsync, we could remove all fc_dentry 443 * references while evicting the inode in ext4_fc_del(). 444 * Also with this, we don't need to loop over all the inodes in 445 * sbi->s_fc_q to get the corresponding inode in 446 * ext4_fc_commit_dentry_updates(). 447 */ 448 if (dentry_update->op == EXT4_FC_TAG_CREAT) { 449 WARN_ON(!list_empty(&ei->i_fc_dilist)); 450 list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist); 451 } 452 ext4_fc_unlock(sb, alloc_ctx); 453 spin_lock(&ei->i_fc_lock); 454 455 return 0; 456 } 457 458 void __ext4_fc_track_unlink(handle_t *handle, 459 struct inode *inode, struct dentry *dentry) 460 { 461 struct __track_dentry_update_args args; 462 int ret; 463 464 args.dentry = dentry; 465 args.op = EXT4_FC_TAG_UNLINK; 466 467 ret = ext4_fc_track_template(handle, inode, __track_dentry_update, 468 (void *)&args, 0); 469 trace_ext4_fc_track_unlink(handle, inode, dentry, ret); 470 } 471 472 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry) 473 { 474 struct inode *inode = d_inode(dentry); 475 476 if (ext4_fc_disabled(inode->i_sb)) 477 return; 478 479 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 480 return; 481 482 __ext4_fc_track_unlink(handle, inode, dentry); 483 } 484 485 void __ext4_fc_track_link(handle_t *handle, 486 struct inode *inode, struct dentry *dentry) 487 { 488 struct __track_dentry_update_args args; 489 int ret; 490 491 args.dentry = dentry; 492 args.op = EXT4_FC_TAG_LINK; 493 494 ret = ext4_fc_track_template(handle, inode, __track_dentry_update, 495 (void *)&args, 0); 496 trace_ext4_fc_track_link(handle, inode, dentry, ret); 497 } 498 499 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry) 500 { 501 struct inode *inode = d_inode(dentry); 502 503 if (ext4_fc_disabled(inode->i_sb)) 504 return; 505 506 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 507 return; 508 509 __ext4_fc_track_link(handle, inode, dentry); 510 } 511 512 void __ext4_fc_track_create(handle_t *handle, struct inode *inode, 513 struct dentry *dentry) 514 { 515 struct __track_dentry_update_args args; 516 int ret; 517 518 args.dentry = dentry; 519 args.op = EXT4_FC_TAG_CREAT; 520 521 ret = ext4_fc_track_template(handle, inode, __track_dentry_update, 522 (void *)&args, 0); 523 trace_ext4_fc_track_create(handle, inode, dentry, ret); 524 } 525 526 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry) 527 { 528 struct inode *inode = d_inode(dentry); 529 530 if (ext4_fc_disabled(inode->i_sb)) 531 return; 532 533 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 534 return; 535 536 __ext4_fc_track_create(handle, inode, dentry); 537 } 538 539 /* __track_fn for inode tracking */ 540 static int __track_inode(handle_t *handle, struct inode *inode, void *arg, 541 bool update) 542 { 543 if (update) 544 return -EEXIST; 545 546 EXT4_I(inode)->i_fc_lblk_len = 0; 547 548 return 0; 549 } 550 551 void ext4_fc_track_inode(handle_t *handle, struct inode *inode) 552 { 553 struct ext4_inode_info *ei = EXT4_I(inode); 554 wait_queue_head_t *wq; 555 int ret; 556 557 if (S_ISDIR(inode->i_mode)) 558 return; 559 560 if (ext4_fc_disabled(inode->i_sb)) 561 return; 562 563 if (ext4_should_journal_data(inode)) { 564 ext4_fc_mark_ineligible(inode->i_sb, 565 EXT4_FC_REASON_INODE_JOURNAL_DATA, handle); 566 return; 567 } 568 569 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 570 return; 571 572 /* 573 * If we come here, we may sleep while waiting for the inode to 574 * commit. We shouldn't be holding i_data_sem when we go to sleep since 575 * the commit path needs to grab the lock while committing the inode. 576 */ 577 lockdep_assert_not_held(&ei->i_data_sem); 578 579 while (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) { 580 #if (BITS_PER_LONG < 64) 581 DEFINE_WAIT_BIT(wait, &ei->i_state_flags, 582 EXT4_STATE_FC_COMMITTING); 583 wq = bit_waitqueue(&ei->i_state_flags, 584 EXT4_STATE_FC_COMMITTING); 585 #else 586 DEFINE_WAIT_BIT(wait, &ei->i_flags, 587 EXT4_STATE_FC_COMMITTING); 588 wq = bit_waitqueue(&ei->i_flags, 589 EXT4_STATE_FC_COMMITTING); 590 #endif 591 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 592 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) 593 schedule(); 594 finish_wait(wq, &wait.wq_entry); 595 } 596 597 /* 598 * From this point on, this inode will not be committed either 599 * by fast or full commit as long as the handle is open. 600 */ 601 ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1); 602 trace_ext4_fc_track_inode(handle, inode, ret); 603 } 604 605 struct __track_range_args { 606 ext4_lblk_t start, end; 607 }; 608 609 /* __track_fn for tracking data updates */ 610 static int __track_range(handle_t *handle, struct inode *inode, void *arg, 611 bool update) 612 { 613 struct ext4_inode_info *ei = EXT4_I(inode); 614 ext4_lblk_t oldstart; 615 struct __track_range_args *__arg = 616 (struct __track_range_args *)arg; 617 618 if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) { 619 ext4_debug("Special inode %ld being modified\n", inode->i_ino); 620 return -ECANCELED; 621 } 622 623 oldstart = ei->i_fc_lblk_start; 624 625 if (update && ei->i_fc_lblk_len > 0) { 626 ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start); 627 ei->i_fc_lblk_len = 628 max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) - 629 ei->i_fc_lblk_start + 1; 630 } else { 631 ei->i_fc_lblk_start = __arg->start; 632 ei->i_fc_lblk_len = __arg->end - __arg->start + 1; 633 } 634 635 return 0; 636 } 637 638 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start, 639 ext4_lblk_t end) 640 { 641 struct __track_range_args args; 642 int ret; 643 644 if (S_ISDIR(inode->i_mode)) 645 return; 646 647 if (ext4_fc_disabled(inode->i_sb)) 648 return; 649 650 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) 651 return; 652 653 if (ext4_has_inline_data(inode)) { 654 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_XATTR, 655 handle); 656 return; 657 } 658 659 args.start = start; 660 args.end = end; 661 662 ret = ext4_fc_track_template(handle, inode, __track_range, &args, 1); 663 664 trace_ext4_fc_track_range(handle, inode, start, end, ret); 665 } 666 667 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail) 668 { 669 blk_opf_t write_flags = JBD2_JOURNAL_REQ_FLAGS; 670 struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh; 671 672 /* Add REQ_FUA | REQ_PREFLUSH only its tail */ 673 if (test_opt(sb, BARRIER) && is_tail) 674 write_flags |= REQ_FUA | REQ_PREFLUSH; 675 lock_buffer(bh); 676 set_buffer_dirty(bh); 677 set_buffer_uptodate(bh); 678 bh->b_end_io = ext4_end_buffer_io_sync; 679 submit_bh(REQ_OP_WRITE | write_flags, bh); 680 EXT4_SB(sb)->s_fc_bh = NULL; 681 } 682 683 /* Ext4 commit path routines */ 684 685 /* 686 * Allocate len bytes on a fast commit buffer. 687 * 688 * During the commit time this function is used to manage fast commit 689 * block space. We don't split a fast commit log onto different 690 * blocks. So this function makes sure that if there's not enough space 691 * on the current block, the remaining space in the current block is 692 * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case, 693 * new block is from jbd2 and CRC is updated to reflect the padding 694 * we added. 695 */ 696 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc) 697 { 698 struct ext4_fc_tl tl; 699 struct ext4_sb_info *sbi = EXT4_SB(sb); 700 struct buffer_head *bh; 701 int bsize = sbi->s_journal->j_blocksize; 702 int ret, off = sbi->s_fc_bytes % bsize; 703 int remaining; 704 u8 *dst; 705 706 /* 707 * If 'len' is too long to fit in any block alongside a PAD tlv, then we 708 * cannot fulfill the request. 709 */ 710 if (len > bsize - EXT4_FC_TAG_BASE_LEN) 711 return NULL; 712 713 if (!sbi->s_fc_bh) { 714 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh); 715 if (ret) 716 return NULL; 717 sbi->s_fc_bh = bh; 718 } 719 dst = sbi->s_fc_bh->b_data + off; 720 721 /* 722 * Allocate the bytes in the current block if we can do so while still 723 * leaving enough space for a PAD tlv. 724 */ 725 remaining = bsize - EXT4_FC_TAG_BASE_LEN - off; 726 if (len <= remaining) { 727 sbi->s_fc_bytes += len; 728 return dst; 729 } 730 731 /* 732 * Else, terminate the current block with a PAD tlv, then allocate a new 733 * block and allocate the bytes at the start of that new block. 734 */ 735 736 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD); 737 tl.fc_len = cpu_to_le16(remaining); 738 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); 739 memset(dst + EXT4_FC_TAG_BASE_LEN, 0, remaining); 740 *crc = ext4_chksum(*crc, sbi->s_fc_bh->b_data, bsize); 741 742 ext4_fc_submit_bh(sb, false); 743 744 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh); 745 if (ret) 746 return NULL; 747 sbi->s_fc_bh = bh; 748 sbi->s_fc_bytes += bsize - off + len; 749 return sbi->s_fc_bh->b_data; 750 } 751 752 /* 753 * Complete a fast commit by writing tail tag. 754 * 755 * Writing tail tag marks the end of a fast commit. In order to guarantee 756 * atomicity, after writing tail tag, even if there's space remaining 757 * in the block, next commit shouldn't use it. That's why tail tag 758 * has the length as that of the remaining space on the block. 759 */ 760 static int ext4_fc_write_tail(struct super_block *sb, u32 crc) 761 { 762 struct ext4_sb_info *sbi = EXT4_SB(sb); 763 struct ext4_fc_tl tl; 764 struct ext4_fc_tail tail; 765 int off, bsize = sbi->s_journal->j_blocksize; 766 u8 *dst; 767 768 /* 769 * ext4_fc_reserve_space takes care of allocating an extra block if 770 * there's no enough space on this block for accommodating this tail. 771 */ 772 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc); 773 if (!dst) 774 return -ENOSPC; 775 776 off = sbi->s_fc_bytes % bsize; 777 778 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL); 779 tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail)); 780 sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize); 781 782 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); 783 dst += EXT4_FC_TAG_BASE_LEN; 784 tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid); 785 memcpy(dst, &tail.fc_tid, sizeof(tail.fc_tid)); 786 dst += sizeof(tail.fc_tid); 787 crc = ext4_chksum(crc, sbi->s_fc_bh->b_data, 788 dst - (u8 *)sbi->s_fc_bh->b_data); 789 tail.fc_crc = cpu_to_le32(crc); 790 memcpy(dst, &tail.fc_crc, sizeof(tail.fc_crc)); 791 dst += sizeof(tail.fc_crc); 792 memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */ 793 794 ext4_fc_submit_bh(sb, true); 795 796 return 0; 797 } 798 799 /* 800 * Adds tag, length, value and updates CRC. Returns true if tlv was added. 801 * Returns false if there's not enough space. 802 */ 803 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val, 804 u32 *crc) 805 { 806 struct ext4_fc_tl tl; 807 u8 *dst; 808 809 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc); 810 if (!dst) 811 return false; 812 813 tl.fc_tag = cpu_to_le16(tag); 814 tl.fc_len = cpu_to_le16(len); 815 816 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); 817 memcpy(dst + EXT4_FC_TAG_BASE_LEN, val, len); 818 819 return true; 820 } 821 822 /* Same as above, but adds dentry tlv. */ 823 static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc, 824 struct ext4_fc_dentry_update *fc_dentry) 825 { 826 struct ext4_fc_dentry_info fcd; 827 struct ext4_fc_tl tl; 828 int dlen = fc_dentry->fcd_name.name.len; 829 u8 *dst = ext4_fc_reserve_space(sb, 830 EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc); 831 832 if (!dst) 833 return false; 834 835 fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent); 836 fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino); 837 tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op); 838 tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen); 839 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); 840 dst += EXT4_FC_TAG_BASE_LEN; 841 memcpy(dst, &fcd, sizeof(fcd)); 842 dst += sizeof(fcd); 843 memcpy(dst, fc_dentry->fcd_name.name.name, dlen); 844 845 return true; 846 } 847 848 /* 849 * Writes inode in the fast commit space under TLV with tag @tag. 850 * Returns 0 on success, error on failure. 851 */ 852 static int ext4_fc_write_inode(struct inode *inode, u32 *crc) 853 { 854 struct ext4_inode_info *ei = EXT4_I(inode); 855 int inode_len = EXT4_GOOD_OLD_INODE_SIZE; 856 int ret; 857 struct ext4_iloc iloc; 858 struct ext4_fc_inode fc_inode; 859 struct ext4_fc_tl tl; 860 u8 *dst; 861 862 ret = ext4_get_inode_loc(inode, &iloc); 863 if (ret) 864 return ret; 865 866 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) 867 inode_len = EXT4_INODE_SIZE(inode->i_sb); 868 else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) 869 inode_len += ei->i_extra_isize; 870 871 fc_inode.fc_ino = cpu_to_le32(inode->i_ino); 872 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE); 873 tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino)); 874 875 ret = -ECANCELED; 876 dst = ext4_fc_reserve_space(inode->i_sb, 877 EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc); 878 if (!dst) 879 goto err; 880 881 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); 882 dst += EXT4_FC_TAG_BASE_LEN; 883 memcpy(dst, &fc_inode, sizeof(fc_inode)); 884 dst += sizeof(fc_inode); 885 memcpy(dst, (u8 *)ext4_raw_inode(&iloc), inode_len); 886 ret = 0; 887 err: 888 brelse(iloc.bh); 889 return ret; 890 } 891 892 /* 893 * Writes updated data ranges for the inode in question. Updates CRC. 894 * Returns 0 on success, error otherwise. 895 */ 896 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc) 897 { 898 ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size; 899 struct ext4_inode_info *ei = EXT4_I(inode); 900 struct ext4_map_blocks map; 901 struct ext4_fc_add_range fc_ext; 902 struct ext4_fc_del_range lrange; 903 struct ext4_extent *ex; 904 int ret; 905 906 spin_lock(&ei->i_fc_lock); 907 if (ei->i_fc_lblk_len == 0) { 908 spin_unlock(&ei->i_fc_lock); 909 return 0; 910 } 911 old_blk_size = ei->i_fc_lblk_start; 912 new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1; 913 ei->i_fc_lblk_len = 0; 914 spin_unlock(&ei->i_fc_lock); 915 916 cur_lblk_off = old_blk_size; 917 ext4_debug("will try writing %d to %d for inode %ld\n", 918 cur_lblk_off, new_blk_size, inode->i_ino); 919 920 while (cur_lblk_off <= new_blk_size) { 921 map.m_lblk = cur_lblk_off; 922 map.m_len = new_blk_size - cur_lblk_off + 1; 923 ret = ext4_map_blocks(NULL, inode, &map, 924 EXT4_GET_BLOCKS_IO_SUBMIT | 925 EXT4_EX_NOCACHE); 926 if (ret < 0) 927 return -ECANCELED; 928 929 if (map.m_len == 0) { 930 cur_lblk_off++; 931 continue; 932 } 933 934 if (ret == 0) { 935 lrange.fc_ino = cpu_to_le32(inode->i_ino); 936 lrange.fc_lblk = cpu_to_le32(map.m_lblk); 937 lrange.fc_len = cpu_to_le32(map.m_len); 938 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE, 939 sizeof(lrange), (u8 *)&lrange, crc)) 940 return -ENOSPC; 941 } else { 942 unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ? 943 EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN; 944 945 /* Limit the number of blocks in one extent */ 946 map.m_len = min(max, map.m_len); 947 948 fc_ext.fc_ino = cpu_to_le32(inode->i_ino); 949 ex = (struct ext4_extent *)&fc_ext.fc_ex; 950 ex->ee_block = cpu_to_le32(map.m_lblk); 951 ex->ee_len = cpu_to_le16(map.m_len); 952 ext4_ext_store_pblock(ex, map.m_pblk); 953 if (map.m_flags & EXT4_MAP_UNWRITTEN) 954 ext4_ext_mark_unwritten(ex); 955 else 956 ext4_ext_mark_initialized(ex); 957 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE, 958 sizeof(fc_ext), (u8 *)&fc_ext, crc)) 959 return -ENOSPC; 960 } 961 962 cur_lblk_off += map.m_len; 963 } 964 965 return 0; 966 } 967 968 969 /* Flushes data of all the inodes in the commit queue. */ 970 static int ext4_fc_flush_data(journal_t *journal) 971 { 972 struct super_block *sb = journal->j_private; 973 struct ext4_sb_info *sbi = EXT4_SB(sb); 974 struct ext4_inode_info *ei; 975 int ret = 0; 976 977 list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { 978 ret = jbd2_submit_inode_data(journal, ei->jinode); 979 if (ret) 980 return ret; 981 } 982 983 list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { 984 ret = jbd2_wait_inode_data(journal, ei->jinode); 985 if (ret) 986 return ret; 987 } 988 989 return 0; 990 } 991 992 /* Commit all the directory entry updates */ 993 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc) 994 { 995 struct super_block *sb = journal->j_private; 996 struct ext4_sb_info *sbi = EXT4_SB(sb); 997 struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n; 998 struct inode *inode; 999 struct ext4_inode_info *ei; 1000 int ret; 1001 1002 if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) 1003 return 0; 1004 list_for_each_entry_safe(fc_dentry, fc_dentry_n, 1005 &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) { 1006 if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) { 1007 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) 1008 return -ENOSPC; 1009 continue; 1010 } 1011 /* 1012 * With fcd_dilist we need not loop in sbi->s_fc_q to get the 1013 * corresponding inode. Also, the corresponding inode could have been 1014 * deleted, in which case, we don't need to do anything. 1015 */ 1016 if (list_empty(&fc_dentry->fcd_dilist)) 1017 continue; 1018 ei = list_first_entry(&fc_dentry->fcd_dilist, 1019 struct ext4_inode_info, i_fc_dilist); 1020 inode = &ei->vfs_inode; 1021 WARN_ON(inode->i_ino != fc_dentry->fcd_ino); 1022 1023 /* 1024 * We first write the inode and then the create dirent. This 1025 * allows the recovery code to create an unnamed inode first 1026 * and then link it to a directory entry. This allows us 1027 * to use namei.c routines almost as is and simplifies 1028 * the recovery code. 1029 */ 1030 ret = ext4_fc_write_inode(inode, crc); 1031 if (ret) 1032 return ret; 1033 ret = ext4_fc_write_inode_data(inode, crc); 1034 if (ret) 1035 return ret; 1036 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) 1037 return -ENOSPC; 1038 } 1039 return 0; 1040 } 1041 1042 static int ext4_fc_perform_commit(journal_t *journal) 1043 { 1044 struct super_block *sb = journal->j_private; 1045 struct ext4_sb_info *sbi = EXT4_SB(sb); 1046 struct ext4_inode_info *iter; 1047 struct ext4_fc_head head; 1048 struct inode *inode; 1049 struct blk_plug plug; 1050 int ret = 0; 1051 u32 crc = 0; 1052 int alloc_ctx; 1053 1054 /* 1055 * Step 1: Mark all inodes on s_fc_q[MAIN] with 1056 * EXT4_STATE_FC_FLUSHING_DATA. This prevents these inodes from being 1057 * freed until the data flush is over. 1058 */ 1059 alloc_ctx = ext4_fc_lock(sb); 1060 list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { 1061 ext4_set_inode_state(&iter->vfs_inode, 1062 EXT4_STATE_FC_FLUSHING_DATA); 1063 } 1064 ext4_fc_unlock(sb, alloc_ctx); 1065 1066 /* Step 2: Flush data for all the eligible inodes. */ 1067 ret = ext4_fc_flush_data(journal); 1068 1069 /* 1070 * Step 3: Clear EXT4_STATE_FC_FLUSHING_DATA flag, before returning 1071 * any error from step 2. This ensures that waiters waiting on 1072 * EXT4_STATE_FC_FLUSHING_DATA can resume. 1073 */ 1074 alloc_ctx = ext4_fc_lock(sb); 1075 list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { 1076 ext4_clear_inode_state(&iter->vfs_inode, 1077 EXT4_STATE_FC_FLUSHING_DATA); 1078 #if (BITS_PER_LONG < 64) 1079 wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_FLUSHING_DATA); 1080 #else 1081 wake_up_bit(&iter->i_flags, EXT4_STATE_FC_FLUSHING_DATA); 1082 #endif 1083 } 1084 1085 /* 1086 * Make sure clearing of EXT4_STATE_FC_FLUSHING_DATA is visible before 1087 * the waiter checks the bit. Pairs with implicit barrier in 1088 * prepare_to_wait() in ext4_fc_del(). 1089 */ 1090 smp_mb(); 1091 ext4_fc_unlock(sb, alloc_ctx); 1092 1093 /* 1094 * If we encountered error in Step 2, return it now after clearing 1095 * EXT4_STATE_FC_FLUSHING_DATA bit. 1096 */ 1097 if (ret) 1098 return ret; 1099 1100 1101 /* Step 4: Mark all inodes as being committed. */ 1102 jbd2_journal_lock_updates(journal); 1103 /* 1104 * The journal is now locked. No more handles can start and all the 1105 * previous handles are now drained. We now mark the inodes on the 1106 * commit queue as being committed. 1107 */ 1108 alloc_ctx = ext4_fc_lock(sb); 1109 list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { 1110 ext4_set_inode_state(&iter->vfs_inode, 1111 EXT4_STATE_FC_COMMITTING); 1112 } 1113 ext4_fc_unlock(sb, alloc_ctx); 1114 jbd2_journal_unlock_updates(journal); 1115 1116 /* 1117 * Step 5: If file system device is different from journal device, 1118 * issue a cache flush before we start writing fast commit blocks. 1119 */ 1120 if (journal->j_fs_dev != journal->j_dev) 1121 blkdev_issue_flush(journal->j_fs_dev); 1122 1123 blk_start_plug(&plug); 1124 alloc_ctx = ext4_fc_lock(sb); 1125 /* Step 6: Write fast commit blocks to disk. */ 1126 if (sbi->s_fc_bytes == 0) { 1127 /* 1128 * Step 6.1: Add a head tag only if this is the first fast 1129 * commit in this TID. 1130 */ 1131 head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES); 1132 head.fc_tid = cpu_to_le32( 1133 sbi->s_journal->j_running_transaction->t_tid); 1134 if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head), 1135 (u8 *)&head, &crc)) { 1136 ret = -ENOSPC; 1137 goto out; 1138 } 1139 } 1140 1141 /* Step 6.2: Now write all the dentry updates. */ 1142 ret = ext4_fc_commit_dentry_updates(journal, &crc); 1143 if (ret) 1144 goto out; 1145 1146 /* Step 6.3: Now write all the changed inodes to disk. */ 1147 list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { 1148 inode = &iter->vfs_inode; 1149 if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) 1150 continue; 1151 1152 ret = ext4_fc_write_inode_data(inode, &crc); 1153 if (ret) 1154 goto out; 1155 ret = ext4_fc_write_inode(inode, &crc); 1156 if (ret) 1157 goto out; 1158 } 1159 /* Step 6.4: Finally write tail tag to conclude this fast commit. */ 1160 ret = ext4_fc_write_tail(sb, crc); 1161 1162 out: 1163 ext4_fc_unlock(sb, alloc_ctx); 1164 blk_finish_plug(&plug); 1165 return ret; 1166 } 1167 1168 static void ext4_fc_update_stats(struct super_block *sb, int status, 1169 u64 commit_time, int nblks, tid_t commit_tid) 1170 { 1171 struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats; 1172 1173 ext4_debug("Fast commit ended with status = %d for tid %u", 1174 status, commit_tid); 1175 if (status == EXT4_FC_STATUS_OK) { 1176 stats->fc_num_commits++; 1177 stats->fc_numblks += nblks; 1178 if (likely(stats->s_fc_avg_commit_time)) 1179 stats->s_fc_avg_commit_time = 1180 (commit_time + 1181 stats->s_fc_avg_commit_time * 3) / 4; 1182 else 1183 stats->s_fc_avg_commit_time = commit_time; 1184 } else if (status == EXT4_FC_STATUS_FAILED || 1185 status == EXT4_FC_STATUS_INELIGIBLE) { 1186 if (status == EXT4_FC_STATUS_FAILED) 1187 stats->fc_failed_commits++; 1188 stats->fc_ineligible_commits++; 1189 } else { 1190 stats->fc_skipped_commits++; 1191 } 1192 trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid); 1193 } 1194 1195 /* 1196 * The main commit entry point. Performs a fast commit for transaction 1197 * commit_tid if needed. If it's not possible to perform a fast commit 1198 * due to various reasons, we fall back to full commit. Returns 0 1199 * on success, error otherwise. 1200 */ 1201 int ext4_fc_commit(journal_t *journal, tid_t commit_tid) 1202 { 1203 struct super_block *sb = journal->j_private; 1204 struct ext4_sb_info *sbi = EXT4_SB(sb); 1205 int nblks = 0, ret, bsize = journal->j_blocksize; 1206 int subtid = atomic_read(&sbi->s_fc_subtid); 1207 int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0; 1208 ktime_t start_time, commit_time; 1209 int old_ioprio, journal_ioprio; 1210 1211 if (!test_opt2(sb, JOURNAL_FAST_COMMIT)) 1212 return jbd2_complete_transaction(journal, commit_tid); 1213 1214 trace_ext4_fc_commit_start(sb, commit_tid); 1215 1216 start_time = ktime_get(); 1217 old_ioprio = get_current_ioprio(); 1218 1219 restart_fc: 1220 ret = jbd2_fc_begin_commit(journal, commit_tid); 1221 if (ret == -EALREADY) { 1222 /* There was an ongoing commit, check if we need to restart */ 1223 if (atomic_read(&sbi->s_fc_subtid) <= subtid && 1224 tid_gt(commit_tid, journal->j_commit_sequence)) 1225 goto restart_fc; 1226 ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0, 1227 commit_tid); 1228 return 0; 1229 } else if (ret) { 1230 /* 1231 * Commit couldn't start. Just update stats and perform a 1232 * full commit. 1233 */ 1234 ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0, 1235 commit_tid); 1236 return jbd2_complete_transaction(journal, commit_tid); 1237 } 1238 1239 /* 1240 * After establishing journal barrier via jbd2_fc_begin_commit(), check 1241 * if we are fast commit ineligible. 1242 */ 1243 if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) { 1244 status = EXT4_FC_STATUS_INELIGIBLE; 1245 goto fallback; 1246 } 1247 1248 /* 1249 * Now that we know that this thread is going to do a fast commit, 1250 * elevate the priority to match that of the journal thread. 1251 */ 1252 if (journal->j_task->io_context) 1253 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 1254 else 1255 journal_ioprio = EXT4_DEF_JOURNAL_IOPRIO; 1256 set_task_ioprio(current, journal_ioprio); 1257 fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize; 1258 ret = ext4_fc_perform_commit(journal); 1259 if (ret < 0) { 1260 status = EXT4_FC_STATUS_FAILED; 1261 goto fallback; 1262 } 1263 nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before; 1264 ret = jbd2_fc_wait_bufs(journal, nblks); 1265 if (ret < 0) { 1266 status = EXT4_FC_STATUS_FAILED; 1267 goto fallback; 1268 } 1269 atomic_inc(&sbi->s_fc_subtid); 1270 ret = jbd2_fc_end_commit(journal); 1271 set_task_ioprio(current, old_ioprio); 1272 /* 1273 * weight the commit time higher than the average time so we 1274 * don't react too strongly to vast changes in the commit time 1275 */ 1276 commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time)); 1277 ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid); 1278 return ret; 1279 1280 fallback: 1281 set_task_ioprio(current, old_ioprio); 1282 ret = jbd2_fc_end_commit_fallback(journal); 1283 ext4_fc_update_stats(sb, status, 0, 0, commit_tid); 1284 return ret; 1285 } 1286 1287 /* 1288 * Fast commit cleanup routine. This is called after every fast commit and 1289 * full commit. full is true if we are called after a full commit. 1290 */ 1291 static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid) 1292 { 1293 struct super_block *sb = journal->j_private; 1294 struct ext4_sb_info *sbi = EXT4_SB(sb); 1295 struct ext4_inode_info *ei; 1296 struct ext4_fc_dentry_update *fc_dentry; 1297 int alloc_ctx; 1298 1299 if (full && sbi->s_fc_bh) 1300 sbi->s_fc_bh = NULL; 1301 1302 trace_ext4_fc_cleanup(journal, full, tid); 1303 jbd2_fc_release_bufs(journal); 1304 1305 alloc_ctx = ext4_fc_lock(sb); 1306 while (!list_empty(&sbi->s_fc_q[FC_Q_MAIN])) { 1307 ei = list_first_entry(&sbi->s_fc_q[FC_Q_MAIN], 1308 struct ext4_inode_info, 1309 i_fc_list); 1310 list_del_init(&ei->i_fc_list); 1311 ext4_clear_inode_state(&ei->vfs_inode, 1312 EXT4_STATE_FC_COMMITTING); 1313 if (tid_geq(tid, ei->i_sync_tid)) { 1314 ext4_fc_reset_inode(&ei->vfs_inode); 1315 } else if (full) { 1316 /* 1317 * We are called after a full commit, inode has been 1318 * modified while the commit was running. Re-enqueue 1319 * the inode into STAGING, which will then be splice 1320 * back into MAIN. This cannot happen during 1321 * fastcommit because the journal is locked all the 1322 * time in that case (and tid doesn't increase so 1323 * tid check above isn't reliable). 1324 */ 1325 list_add_tail(&ei->i_fc_list, 1326 &sbi->s_fc_q[FC_Q_STAGING]); 1327 } 1328 /* 1329 * Make sure clearing of EXT4_STATE_FC_COMMITTING is 1330 * visible before we send the wakeup. Pairs with implicit 1331 * barrier in prepare_to_wait() in ext4_fc_track_inode(). 1332 */ 1333 smp_mb(); 1334 #if (BITS_PER_LONG < 64) 1335 wake_up_bit(&ei->i_state_flags, EXT4_STATE_FC_COMMITTING); 1336 #else 1337 wake_up_bit(&ei->i_flags, EXT4_STATE_FC_COMMITTING); 1338 #endif 1339 } 1340 1341 while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) { 1342 fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN], 1343 struct ext4_fc_dentry_update, 1344 fcd_list); 1345 list_del_init(&fc_dentry->fcd_list); 1346 list_del_init(&fc_dentry->fcd_dilist); 1347 1348 release_dentry_name_snapshot(&fc_dentry->fcd_name); 1349 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry); 1350 } 1351 1352 list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING], 1353 &sbi->s_fc_dentry_q[FC_Q_MAIN]); 1354 list_splice_init(&sbi->s_fc_q[FC_Q_STAGING], 1355 &sbi->s_fc_q[FC_Q_MAIN]); 1356 1357 if (tid_geq(tid, sbi->s_fc_ineligible_tid)) { 1358 sbi->s_fc_ineligible_tid = 0; 1359 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 1360 } 1361 1362 if (full) 1363 sbi->s_fc_bytes = 0; 1364 ext4_fc_unlock(sb, alloc_ctx); 1365 trace_ext4_fc_stats(sb); 1366 } 1367 1368 /* Ext4 Replay Path Routines */ 1369 1370 /* Helper struct for dentry replay routines */ 1371 struct dentry_info_args { 1372 int parent_ino, dname_len, ino, inode_len; 1373 char *dname; 1374 }; 1375 1376 /* Same as struct ext4_fc_tl, but uses native endianness fields */ 1377 struct ext4_fc_tl_mem { 1378 u16 fc_tag; 1379 u16 fc_len; 1380 }; 1381 1382 static inline void tl_to_darg(struct dentry_info_args *darg, 1383 struct ext4_fc_tl_mem *tl, u8 *val) 1384 { 1385 struct ext4_fc_dentry_info fcd; 1386 1387 memcpy(&fcd, val, sizeof(fcd)); 1388 1389 darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino); 1390 darg->ino = le32_to_cpu(fcd.fc_ino); 1391 darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname); 1392 darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info); 1393 } 1394 1395 static inline void ext4_fc_get_tl(struct ext4_fc_tl_mem *tl, u8 *val) 1396 { 1397 struct ext4_fc_tl tl_disk; 1398 1399 memcpy(&tl_disk, val, EXT4_FC_TAG_BASE_LEN); 1400 tl->fc_len = le16_to_cpu(tl_disk.fc_len); 1401 tl->fc_tag = le16_to_cpu(tl_disk.fc_tag); 1402 } 1403 1404 /* Unlink replay function */ 1405 static int ext4_fc_replay_unlink(struct super_block *sb, 1406 struct ext4_fc_tl_mem *tl, u8 *val) 1407 { 1408 struct inode *inode, *old_parent; 1409 struct qstr entry; 1410 struct dentry_info_args darg; 1411 int ret = 0; 1412 1413 tl_to_darg(&darg, tl, val); 1414 1415 trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino, 1416 darg.parent_ino, darg.dname_len); 1417 1418 entry.name = darg.dname; 1419 entry.len = darg.dname_len; 1420 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); 1421 1422 if (IS_ERR(inode)) { 1423 ext4_debug("Inode %d not found", darg.ino); 1424 return 0; 1425 } 1426 1427 old_parent = ext4_iget(sb, darg.parent_ino, 1428 EXT4_IGET_NORMAL); 1429 if (IS_ERR(old_parent)) { 1430 ext4_debug("Dir with inode %d not found", darg.parent_ino); 1431 iput(inode); 1432 return 0; 1433 } 1434 1435 ret = __ext4_unlink(old_parent, &entry, inode, NULL); 1436 /* -ENOENT ok coz it might not exist anymore. */ 1437 if (ret == -ENOENT) 1438 ret = 0; 1439 iput(old_parent); 1440 iput(inode); 1441 return ret; 1442 } 1443 1444 static int ext4_fc_replay_link_internal(struct super_block *sb, 1445 struct dentry_info_args *darg, 1446 struct inode *inode) 1447 { 1448 struct inode *dir = NULL; 1449 struct dentry *dentry_dir = NULL, *dentry_inode = NULL; 1450 struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len); 1451 int ret = 0; 1452 1453 dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL); 1454 if (IS_ERR(dir)) { 1455 ext4_debug("Dir with inode %d not found.", darg->parent_ino); 1456 dir = NULL; 1457 goto out; 1458 } 1459 1460 dentry_dir = d_obtain_alias(dir); 1461 if (IS_ERR(dentry_dir)) { 1462 ext4_debug("Failed to obtain dentry"); 1463 dentry_dir = NULL; 1464 goto out; 1465 } 1466 1467 dentry_inode = d_alloc(dentry_dir, &qstr_dname); 1468 if (!dentry_inode) { 1469 ext4_debug("Inode dentry not created."); 1470 ret = -ENOMEM; 1471 goto out; 1472 } 1473 1474 ret = __ext4_link(dir, inode, dentry_inode); 1475 /* 1476 * It's possible that link already existed since data blocks 1477 * for the dir in question got persisted before we crashed OR 1478 * we replayed this tag and crashed before the entire replay 1479 * could complete. 1480 */ 1481 if (ret && ret != -EEXIST) { 1482 ext4_debug("Failed to link\n"); 1483 goto out; 1484 } 1485 1486 ret = 0; 1487 out: 1488 if (dentry_dir) { 1489 d_drop(dentry_dir); 1490 dput(dentry_dir); 1491 } else if (dir) { 1492 iput(dir); 1493 } 1494 if (dentry_inode) { 1495 d_drop(dentry_inode); 1496 dput(dentry_inode); 1497 } 1498 1499 return ret; 1500 } 1501 1502 /* Link replay function */ 1503 static int ext4_fc_replay_link(struct super_block *sb, 1504 struct ext4_fc_tl_mem *tl, u8 *val) 1505 { 1506 struct inode *inode; 1507 struct dentry_info_args darg; 1508 int ret = 0; 1509 1510 tl_to_darg(&darg, tl, val); 1511 trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino, 1512 darg.parent_ino, darg.dname_len); 1513 1514 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); 1515 if (IS_ERR(inode)) { 1516 ext4_debug("Inode not found."); 1517 return 0; 1518 } 1519 1520 ret = ext4_fc_replay_link_internal(sb, &darg, inode); 1521 iput(inode); 1522 return ret; 1523 } 1524 1525 /* 1526 * Record all the modified inodes during replay. We use this later to setup 1527 * block bitmaps correctly. 1528 */ 1529 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino) 1530 { 1531 struct ext4_fc_replay_state *state; 1532 int i; 1533 1534 state = &EXT4_SB(sb)->s_fc_replay_state; 1535 for (i = 0; i < state->fc_modified_inodes_used; i++) 1536 if (state->fc_modified_inodes[i] == ino) 1537 return 0; 1538 if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) { 1539 int *fc_modified_inodes; 1540 1541 fc_modified_inodes = krealloc(state->fc_modified_inodes, 1542 sizeof(int) * (state->fc_modified_inodes_size + 1543 EXT4_FC_REPLAY_REALLOC_INCREMENT), 1544 GFP_KERNEL); 1545 if (!fc_modified_inodes) 1546 return -ENOMEM; 1547 state->fc_modified_inodes = fc_modified_inodes; 1548 state->fc_modified_inodes_size += 1549 EXT4_FC_REPLAY_REALLOC_INCREMENT; 1550 } 1551 state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino; 1552 return 0; 1553 } 1554 1555 /* 1556 * Inode replay function 1557 */ 1558 static int ext4_fc_replay_inode(struct super_block *sb, 1559 struct ext4_fc_tl_mem *tl, u8 *val) 1560 { 1561 struct ext4_fc_inode fc_inode; 1562 struct ext4_inode *raw_inode; 1563 struct ext4_inode *raw_fc_inode; 1564 struct inode *inode = NULL; 1565 struct ext4_iloc iloc; 1566 int inode_len, ino, ret, tag = tl->fc_tag; 1567 struct ext4_extent_header *eh; 1568 size_t off_gen = offsetof(struct ext4_inode, i_generation); 1569 1570 memcpy(&fc_inode, val, sizeof(fc_inode)); 1571 1572 ino = le32_to_cpu(fc_inode.fc_ino); 1573 trace_ext4_fc_replay(sb, tag, ino, 0, 0); 1574 1575 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); 1576 if (!IS_ERR(inode)) { 1577 ext4_ext_clear_bb(inode); 1578 iput(inode); 1579 } 1580 inode = NULL; 1581 1582 ret = ext4_fc_record_modified_inode(sb, ino); 1583 if (ret) 1584 goto out; 1585 1586 raw_fc_inode = (struct ext4_inode *) 1587 (val + offsetof(struct ext4_fc_inode, fc_raw_inode)); 1588 ret = ext4_get_fc_inode_loc(sb, ino, &iloc); 1589 if (ret) 1590 goto out; 1591 1592 inode_len = tl->fc_len - sizeof(struct ext4_fc_inode); 1593 raw_inode = ext4_raw_inode(&iloc); 1594 1595 memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block)); 1596 memcpy((u8 *)raw_inode + off_gen, (u8 *)raw_fc_inode + off_gen, 1597 inode_len - off_gen); 1598 if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) { 1599 eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]); 1600 if (eh->eh_magic != EXT4_EXT_MAGIC) { 1601 memset(eh, 0, sizeof(*eh)); 1602 eh->eh_magic = EXT4_EXT_MAGIC; 1603 eh->eh_max = cpu_to_le16( 1604 (sizeof(raw_inode->i_block) - 1605 sizeof(struct ext4_extent_header)) 1606 / sizeof(struct ext4_extent)); 1607 } 1608 } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) { 1609 memcpy(raw_inode->i_block, raw_fc_inode->i_block, 1610 sizeof(raw_inode->i_block)); 1611 } 1612 1613 /* Immediately update the inode on disk. */ 1614 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh); 1615 if (ret) 1616 goto out; 1617 ret = sync_dirty_buffer(iloc.bh); 1618 if (ret) 1619 goto out; 1620 ret = ext4_mark_inode_used(sb, ino); 1621 if (ret) 1622 goto out; 1623 1624 /* Given that we just wrote the inode on disk, this SHOULD succeed. */ 1625 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); 1626 if (IS_ERR(inode)) { 1627 ext4_debug("Inode not found."); 1628 return -EFSCORRUPTED; 1629 } 1630 1631 /* 1632 * Our allocator could have made different decisions than before 1633 * crashing. This should be fixed but until then, we calculate 1634 * the number of blocks the inode. 1635 */ 1636 if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) 1637 ext4_ext_replay_set_iblocks(inode); 1638 1639 inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation); 1640 ext4_reset_inode_seed(inode); 1641 1642 ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode)); 1643 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh); 1644 sync_dirty_buffer(iloc.bh); 1645 brelse(iloc.bh); 1646 out: 1647 iput(inode); 1648 if (!ret) 1649 blkdev_issue_flush(sb->s_bdev); 1650 1651 return 0; 1652 } 1653 1654 /* 1655 * Dentry create replay function. 1656 * 1657 * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the 1658 * inode for which we are trying to create a dentry here, should already have 1659 * been replayed before we start here. 1660 */ 1661 static int ext4_fc_replay_create(struct super_block *sb, 1662 struct ext4_fc_tl_mem *tl, u8 *val) 1663 { 1664 int ret = 0; 1665 struct inode *inode = NULL; 1666 struct inode *dir = NULL; 1667 struct dentry_info_args darg; 1668 1669 tl_to_darg(&darg, tl, val); 1670 1671 trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino, 1672 darg.parent_ino, darg.dname_len); 1673 1674 /* This takes care of update group descriptor and other metadata */ 1675 ret = ext4_mark_inode_used(sb, darg.ino); 1676 if (ret) 1677 goto out; 1678 1679 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); 1680 if (IS_ERR(inode)) { 1681 ext4_debug("inode %d not found.", darg.ino); 1682 inode = NULL; 1683 ret = -EINVAL; 1684 goto out; 1685 } 1686 1687 if (S_ISDIR(inode->i_mode)) { 1688 /* 1689 * If we are creating a directory, we need to make sure that the 1690 * dot and dot dot dirents are setup properly. 1691 */ 1692 dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL); 1693 if (IS_ERR(dir)) { 1694 ext4_debug("Dir %d not found.", darg.ino); 1695 goto out; 1696 } 1697 ret = ext4_init_new_dir(NULL, dir, inode); 1698 iput(dir); 1699 if (ret) { 1700 ret = 0; 1701 goto out; 1702 } 1703 } 1704 ret = ext4_fc_replay_link_internal(sb, &darg, inode); 1705 if (ret) 1706 goto out; 1707 set_nlink(inode, 1); 1708 ext4_mark_inode_dirty(NULL, inode); 1709 out: 1710 iput(inode); 1711 return ret; 1712 } 1713 1714 /* 1715 * Record physical disk regions which are in use as per fast commit area, 1716 * and used by inodes during replay phase. Our simple replay phase 1717 * allocator excludes these regions from allocation. 1718 */ 1719 int ext4_fc_record_regions(struct super_block *sb, int ino, 1720 ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay) 1721 { 1722 struct ext4_fc_replay_state *state; 1723 struct ext4_fc_alloc_region *region; 1724 1725 state = &EXT4_SB(sb)->s_fc_replay_state; 1726 /* 1727 * during replay phase, the fc_regions_valid may not same as 1728 * fc_regions_used, update it when do new additions. 1729 */ 1730 if (replay && state->fc_regions_used != state->fc_regions_valid) 1731 state->fc_regions_used = state->fc_regions_valid; 1732 if (state->fc_regions_used == state->fc_regions_size) { 1733 struct ext4_fc_alloc_region *fc_regions; 1734 1735 fc_regions = krealloc(state->fc_regions, 1736 sizeof(struct ext4_fc_alloc_region) * 1737 (state->fc_regions_size + 1738 EXT4_FC_REPLAY_REALLOC_INCREMENT), 1739 GFP_KERNEL); 1740 if (!fc_regions) 1741 return -ENOMEM; 1742 state->fc_regions_size += 1743 EXT4_FC_REPLAY_REALLOC_INCREMENT; 1744 state->fc_regions = fc_regions; 1745 } 1746 region = &state->fc_regions[state->fc_regions_used++]; 1747 region->ino = ino; 1748 region->lblk = lblk; 1749 region->pblk = pblk; 1750 region->len = len; 1751 1752 if (replay) 1753 state->fc_regions_valid++; 1754 1755 return 0; 1756 } 1757 1758 /* Replay add range tag */ 1759 static int ext4_fc_replay_add_range(struct super_block *sb, 1760 struct ext4_fc_tl_mem *tl, u8 *val) 1761 { 1762 struct ext4_fc_add_range fc_add_ex; 1763 struct ext4_extent newex, *ex; 1764 struct inode *inode; 1765 ext4_lblk_t start, cur; 1766 int remaining, len; 1767 ext4_fsblk_t start_pblk; 1768 struct ext4_map_blocks map; 1769 struct ext4_ext_path *path = NULL; 1770 int ret; 1771 1772 memcpy(&fc_add_ex, val, sizeof(fc_add_ex)); 1773 ex = (struct ext4_extent *)&fc_add_ex.fc_ex; 1774 1775 trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE, 1776 le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block), 1777 ext4_ext_get_actual_len(ex)); 1778 1779 inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL); 1780 if (IS_ERR(inode)) { 1781 ext4_debug("Inode not found."); 1782 return 0; 1783 } 1784 1785 ret = ext4_fc_record_modified_inode(sb, inode->i_ino); 1786 if (ret) 1787 goto out; 1788 1789 start = le32_to_cpu(ex->ee_block); 1790 start_pblk = ext4_ext_pblock(ex); 1791 len = ext4_ext_get_actual_len(ex); 1792 1793 cur = start; 1794 remaining = len; 1795 ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n", 1796 start, start_pblk, len, ext4_ext_is_unwritten(ex), 1797 inode->i_ino); 1798 1799 while (remaining > 0) { 1800 map.m_lblk = cur; 1801 map.m_len = remaining; 1802 map.m_pblk = 0; 1803 ret = ext4_map_blocks(NULL, inode, &map, 0); 1804 1805 if (ret < 0) 1806 goto out; 1807 1808 if (ret == 0) { 1809 /* Range is not mapped */ 1810 path = ext4_find_extent(inode, cur, path, 0); 1811 if (IS_ERR(path)) 1812 goto out; 1813 memset(&newex, 0, sizeof(newex)); 1814 newex.ee_block = cpu_to_le32(cur); 1815 ext4_ext_store_pblock( 1816 &newex, start_pblk + cur - start); 1817 newex.ee_len = cpu_to_le16(map.m_len); 1818 if (ext4_ext_is_unwritten(ex)) 1819 ext4_ext_mark_unwritten(&newex); 1820 down_write(&EXT4_I(inode)->i_data_sem); 1821 path = ext4_ext_insert_extent(NULL, inode, 1822 path, &newex, 0); 1823 up_write((&EXT4_I(inode)->i_data_sem)); 1824 if (IS_ERR(path)) 1825 goto out; 1826 goto next; 1827 } 1828 1829 if (start_pblk + cur - start != map.m_pblk) { 1830 /* 1831 * Logical to physical mapping changed. This can happen 1832 * if this range was removed and then reallocated to 1833 * map to new physical blocks during a fast commit. 1834 */ 1835 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len, 1836 ext4_ext_is_unwritten(ex), 1837 start_pblk + cur - start); 1838 if (ret) 1839 goto out; 1840 /* 1841 * Mark the old blocks as free since they aren't used 1842 * anymore. We maintain an array of all the modified 1843 * inodes. In case these blocks are still used at either 1844 * a different logical range in the same inode or in 1845 * some different inode, we will mark them as allocated 1846 * at the end of the FC replay using our array of 1847 * modified inodes. 1848 */ 1849 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false); 1850 goto next; 1851 } 1852 1853 /* Range is mapped and needs a state change */ 1854 ext4_debug("Converting from %ld to %d %lld", 1855 map.m_flags & EXT4_MAP_UNWRITTEN, 1856 ext4_ext_is_unwritten(ex), map.m_pblk); 1857 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len, 1858 ext4_ext_is_unwritten(ex), map.m_pblk); 1859 if (ret) 1860 goto out; 1861 /* 1862 * We may have split the extent tree while toggling the state. 1863 * Try to shrink the extent tree now. 1864 */ 1865 ext4_ext_replay_shrink_inode(inode, start + len); 1866 next: 1867 cur += map.m_len; 1868 remaining -= map.m_len; 1869 } 1870 ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >> 1871 sb->s_blocksize_bits); 1872 out: 1873 ext4_free_ext_path(path); 1874 iput(inode); 1875 return 0; 1876 } 1877 1878 /* Replay DEL_RANGE tag */ 1879 static int 1880 ext4_fc_replay_del_range(struct super_block *sb, 1881 struct ext4_fc_tl_mem *tl, u8 *val) 1882 { 1883 struct inode *inode; 1884 struct ext4_fc_del_range lrange; 1885 struct ext4_map_blocks map; 1886 ext4_lblk_t cur, remaining; 1887 int ret; 1888 1889 memcpy(&lrange, val, sizeof(lrange)); 1890 cur = le32_to_cpu(lrange.fc_lblk); 1891 remaining = le32_to_cpu(lrange.fc_len); 1892 1893 trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE, 1894 le32_to_cpu(lrange.fc_ino), cur, remaining); 1895 1896 inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL); 1897 if (IS_ERR(inode)) { 1898 ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino)); 1899 return 0; 1900 } 1901 1902 ret = ext4_fc_record_modified_inode(sb, inode->i_ino); 1903 if (ret) 1904 goto out; 1905 1906 ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n", 1907 inode->i_ino, le32_to_cpu(lrange.fc_lblk), 1908 le32_to_cpu(lrange.fc_len)); 1909 while (remaining > 0) { 1910 map.m_lblk = cur; 1911 map.m_len = remaining; 1912 1913 ret = ext4_map_blocks(NULL, inode, &map, 0); 1914 if (ret < 0) 1915 goto out; 1916 if (ret > 0) { 1917 remaining -= ret; 1918 cur += ret; 1919 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false); 1920 } else { 1921 remaining -= map.m_len; 1922 cur += map.m_len; 1923 } 1924 } 1925 1926 down_write(&EXT4_I(inode)->i_data_sem); 1927 ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk), 1928 le32_to_cpu(lrange.fc_lblk) + 1929 le32_to_cpu(lrange.fc_len) - 1); 1930 up_write(&EXT4_I(inode)->i_data_sem); 1931 if (ret) 1932 goto out; 1933 ext4_ext_replay_shrink_inode(inode, 1934 i_size_read(inode) >> sb->s_blocksize_bits); 1935 ext4_mark_inode_dirty(NULL, inode); 1936 out: 1937 iput(inode); 1938 return 0; 1939 } 1940 1941 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb) 1942 { 1943 struct ext4_fc_replay_state *state; 1944 struct inode *inode; 1945 struct ext4_ext_path *path = NULL; 1946 struct ext4_map_blocks map; 1947 int i, ret, j; 1948 ext4_lblk_t cur, end; 1949 1950 state = &EXT4_SB(sb)->s_fc_replay_state; 1951 for (i = 0; i < state->fc_modified_inodes_used; i++) { 1952 inode = ext4_iget(sb, state->fc_modified_inodes[i], 1953 EXT4_IGET_NORMAL); 1954 if (IS_ERR(inode)) { 1955 ext4_debug("Inode %d not found.", 1956 state->fc_modified_inodes[i]); 1957 continue; 1958 } 1959 cur = 0; 1960 end = EXT_MAX_BLOCKS; 1961 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) { 1962 iput(inode); 1963 continue; 1964 } 1965 while (cur < end) { 1966 map.m_lblk = cur; 1967 map.m_len = end - cur; 1968 1969 ret = ext4_map_blocks(NULL, inode, &map, 0); 1970 if (ret < 0) 1971 break; 1972 1973 if (ret > 0) { 1974 path = ext4_find_extent(inode, map.m_lblk, path, 0); 1975 if (!IS_ERR(path)) { 1976 for (j = 0; j < path->p_depth; j++) 1977 ext4_mb_mark_bb(inode->i_sb, 1978 path[j].p_block, 1, true); 1979 } else { 1980 path = NULL; 1981 } 1982 cur += ret; 1983 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, 1984 map.m_len, true); 1985 } else { 1986 cur = cur + (map.m_len ? map.m_len : 1); 1987 } 1988 } 1989 iput(inode); 1990 } 1991 1992 ext4_free_ext_path(path); 1993 } 1994 1995 /* 1996 * Check if block is in excluded regions for block allocation. The simple 1997 * allocator that runs during replay phase is calls this function to see 1998 * if it is okay to use a block. 1999 */ 2000 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk) 2001 { 2002 int i; 2003 struct ext4_fc_replay_state *state; 2004 2005 state = &EXT4_SB(sb)->s_fc_replay_state; 2006 for (i = 0; i < state->fc_regions_valid; i++) { 2007 if (state->fc_regions[i].ino == 0 || 2008 state->fc_regions[i].len == 0) 2009 continue; 2010 if (in_range(blk, state->fc_regions[i].pblk, 2011 state->fc_regions[i].len)) 2012 return true; 2013 } 2014 return false; 2015 } 2016 2017 /* Cleanup function called after replay */ 2018 void ext4_fc_replay_cleanup(struct super_block *sb) 2019 { 2020 struct ext4_sb_info *sbi = EXT4_SB(sb); 2021 2022 sbi->s_mount_state &= ~EXT4_FC_REPLAY; 2023 kfree(sbi->s_fc_replay_state.fc_regions); 2024 kfree(sbi->s_fc_replay_state.fc_modified_inodes); 2025 } 2026 2027 static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi, 2028 int tag, int len) 2029 { 2030 switch (tag) { 2031 case EXT4_FC_TAG_ADD_RANGE: 2032 return len == sizeof(struct ext4_fc_add_range); 2033 case EXT4_FC_TAG_DEL_RANGE: 2034 return len == sizeof(struct ext4_fc_del_range); 2035 case EXT4_FC_TAG_CREAT: 2036 case EXT4_FC_TAG_LINK: 2037 case EXT4_FC_TAG_UNLINK: 2038 len -= sizeof(struct ext4_fc_dentry_info); 2039 return len >= 1 && len <= EXT4_NAME_LEN; 2040 case EXT4_FC_TAG_INODE: 2041 len -= sizeof(struct ext4_fc_inode); 2042 return len >= EXT4_GOOD_OLD_INODE_SIZE && 2043 len <= sbi->s_inode_size; 2044 case EXT4_FC_TAG_PAD: 2045 return true; /* padding can have any length */ 2046 case EXT4_FC_TAG_TAIL: 2047 return len >= sizeof(struct ext4_fc_tail); 2048 case EXT4_FC_TAG_HEAD: 2049 return len == sizeof(struct ext4_fc_head); 2050 } 2051 return false; 2052 } 2053 2054 /* 2055 * Recovery Scan phase handler 2056 * 2057 * This function is called during the scan phase and is responsible 2058 * for doing following things: 2059 * - Make sure the fast commit area has valid tags for replay 2060 * - Count number of tags that need to be replayed by the replay handler 2061 * - Verify CRC 2062 * - Create a list of excluded blocks for allocation during replay phase 2063 * 2064 * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is 2065 * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP 2066 * to indicate that scan has finished and JBD2 can now start replay phase. 2067 * It returns a negative error to indicate that there was an error. At the end 2068 * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set 2069 * to indicate the number of tags that need to replayed during the replay phase. 2070 */ 2071 static int ext4_fc_replay_scan(journal_t *journal, 2072 struct buffer_head *bh, int off, 2073 tid_t expected_tid) 2074 { 2075 struct super_block *sb = journal->j_private; 2076 struct ext4_sb_info *sbi = EXT4_SB(sb); 2077 struct ext4_fc_replay_state *state; 2078 int ret = JBD2_FC_REPLAY_CONTINUE; 2079 struct ext4_fc_add_range ext; 2080 struct ext4_fc_tl_mem tl; 2081 struct ext4_fc_tail tail; 2082 __u8 *start, *end, *cur, *val; 2083 struct ext4_fc_head head; 2084 struct ext4_extent *ex; 2085 2086 state = &sbi->s_fc_replay_state; 2087 2088 start = (u8 *)bh->b_data; 2089 end = start + journal->j_blocksize; 2090 2091 if (state->fc_replay_expected_off == 0) { 2092 state->fc_cur_tag = 0; 2093 state->fc_replay_num_tags = 0; 2094 state->fc_crc = 0; 2095 state->fc_regions = NULL; 2096 state->fc_regions_valid = state->fc_regions_used = 2097 state->fc_regions_size = 0; 2098 /* Check if we can stop early */ 2099 if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag) 2100 != EXT4_FC_TAG_HEAD) 2101 return 0; 2102 } 2103 2104 if (off != state->fc_replay_expected_off) { 2105 ret = -EFSCORRUPTED; 2106 goto out_err; 2107 } 2108 2109 state->fc_replay_expected_off++; 2110 for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN; 2111 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) { 2112 ext4_fc_get_tl(&tl, cur); 2113 val = cur + EXT4_FC_TAG_BASE_LEN; 2114 if (tl.fc_len > end - val || 2115 !ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) { 2116 ret = state->fc_replay_num_tags ? 2117 JBD2_FC_REPLAY_STOP : -ECANCELED; 2118 goto out_err; 2119 } 2120 ext4_debug("Scan phase, tag:%s, blk %lld\n", 2121 tag2str(tl.fc_tag), bh->b_blocknr); 2122 switch (tl.fc_tag) { 2123 case EXT4_FC_TAG_ADD_RANGE: 2124 memcpy(&ext, val, sizeof(ext)); 2125 ex = (struct ext4_extent *)&ext.fc_ex; 2126 ret = ext4_fc_record_regions(sb, 2127 le32_to_cpu(ext.fc_ino), 2128 le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex), 2129 ext4_ext_get_actual_len(ex), 0); 2130 if (ret < 0) 2131 break; 2132 ret = JBD2_FC_REPLAY_CONTINUE; 2133 fallthrough; 2134 case EXT4_FC_TAG_DEL_RANGE: 2135 case EXT4_FC_TAG_LINK: 2136 case EXT4_FC_TAG_UNLINK: 2137 case EXT4_FC_TAG_CREAT: 2138 case EXT4_FC_TAG_INODE: 2139 case EXT4_FC_TAG_PAD: 2140 state->fc_cur_tag++; 2141 state->fc_crc = ext4_chksum(state->fc_crc, cur, 2142 EXT4_FC_TAG_BASE_LEN + tl.fc_len); 2143 break; 2144 case EXT4_FC_TAG_TAIL: 2145 state->fc_cur_tag++; 2146 memcpy(&tail, val, sizeof(tail)); 2147 state->fc_crc = ext4_chksum(state->fc_crc, cur, 2148 EXT4_FC_TAG_BASE_LEN + 2149 offsetof(struct ext4_fc_tail, 2150 fc_crc)); 2151 if (le32_to_cpu(tail.fc_tid) == expected_tid && 2152 le32_to_cpu(tail.fc_crc) == state->fc_crc) { 2153 state->fc_replay_num_tags = state->fc_cur_tag; 2154 state->fc_regions_valid = 2155 state->fc_regions_used; 2156 } else { 2157 ret = state->fc_replay_num_tags ? 2158 JBD2_FC_REPLAY_STOP : -EFSBADCRC; 2159 } 2160 state->fc_crc = 0; 2161 break; 2162 case EXT4_FC_TAG_HEAD: 2163 memcpy(&head, val, sizeof(head)); 2164 if (le32_to_cpu(head.fc_features) & 2165 ~EXT4_FC_SUPPORTED_FEATURES) { 2166 ret = -EOPNOTSUPP; 2167 break; 2168 } 2169 if (le32_to_cpu(head.fc_tid) != expected_tid) { 2170 ret = JBD2_FC_REPLAY_STOP; 2171 break; 2172 } 2173 state->fc_cur_tag++; 2174 state->fc_crc = ext4_chksum(state->fc_crc, cur, 2175 EXT4_FC_TAG_BASE_LEN + tl.fc_len); 2176 break; 2177 default: 2178 ret = state->fc_replay_num_tags ? 2179 JBD2_FC_REPLAY_STOP : -ECANCELED; 2180 } 2181 if (ret < 0 || ret == JBD2_FC_REPLAY_STOP) 2182 break; 2183 } 2184 2185 out_err: 2186 trace_ext4_fc_replay_scan(sb, ret, off); 2187 return ret; 2188 } 2189 2190 /* 2191 * Main recovery path entry point. 2192 * The meaning of return codes is similar as above. 2193 */ 2194 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh, 2195 enum passtype pass, int off, tid_t expected_tid) 2196 { 2197 struct super_block *sb = journal->j_private; 2198 struct ext4_sb_info *sbi = EXT4_SB(sb); 2199 struct ext4_fc_tl_mem tl; 2200 __u8 *start, *end, *cur, *val; 2201 int ret = JBD2_FC_REPLAY_CONTINUE; 2202 struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state; 2203 struct ext4_fc_tail tail; 2204 2205 if (pass == PASS_SCAN) { 2206 state->fc_current_pass = PASS_SCAN; 2207 return ext4_fc_replay_scan(journal, bh, off, expected_tid); 2208 } 2209 2210 if (state->fc_current_pass != pass) { 2211 state->fc_current_pass = pass; 2212 sbi->s_mount_state |= EXT4_FC_REPLAY; 2213 } 2214 if (!sbi->s_fc_replay_state.fc_replay_num_tags) { 2215 ext4_debug("Replay stops\n"); 2216 ext4_fc_set_bitmaps_and_counters(sb); 2217 return 0; 2218 } 2219 2220 #ifdef CONFIG_EXT4_DEBUG 2221 if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) { 2222 pr_warn("Dropping fc block %d because max_replay set\n", off); 2223 return JBD2_FC_REPLAY_STOP; 2224 } 2225 #endif 2226 2227 start = (u8 *)bh->b_data; 2228 end = start + journal->j_blocksize; 2229 2230 for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN; 2231 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) { 2232 ext4_fc_get_tl(&tl, cur); 2233 val = cur + EXT4_FC_TAG_BASE_LEN; 2234 2235 if (state->fc_replay_num_tags == 0) { 2236 ret = JBD2_FC_REPLAY_STOP; 2237 ext4_fc_set_bitmaps_and_counters(sb); 2238 break; 2239 } 2240 2241 ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag)); 2242 state->fc_replay_num_tags--; 2243 switch (tl.fc_tag) { 2244 case EXT4_FC_TAG_LINK: 2245 ret = ext4_fc_replay_link(sb, &tl, val); 2246 break; 2247 case EXT4_FC_TAG_UNLINK: 2248 ret = ext4_fc_replay_unlink(sb, &tl, val); 2249 break; 2250 case EXT4_FC_TAG_ADD_RANGE: 2251 ret = ext4_fc_replay_add_range(sb, &tl, val); 2252 break; 2253 case EXT4_FC_TAG_CREAT: 2254 ret = ext4_fc_replay_create(sb, &tl, val); 2255 break; 2256 case EXT4_FC_TAG_DEL_RANGE: 2257 ret = ext4_fc_replay_del_range(sb, &tl, val); 2258 break; 2259 case EXT4_FC_TAG_INODE: 2260 ret = ext4_fc_replay_inode(sb, &tl, val); 2261 break; 2262 case EXT4_FC_TAG_PAD: 2263 trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0, 2264 tl.fc_len, 0); 2265 break; 2266 case EXT4_FC_TAG_TAIL: 2267 trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL, 2268 0, tl.fc_len, 0); 2269 memcpy(&tail, val, sizeof(tail)); 2270 WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid); 2271 break; 2272 case EXT4_FC_TAG_HEAD: 2273 break; 2274 default: 2275 trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0); 2276 ret = -ECANCELED; 2277 break; 2278 } 2279 if (ret < 0) 2280 break; 2281 ret = JBD2_FC_REPLAY_CONTINUE; 2282 } 2283 return ret; 2284 } 2285 2286 void ext4_fc_init(struct super_block *sb, journal_t *journal) 2287 { 2288 /* 2289 * We set replay callback even if fast commit disabled because we may 2290 * could still have fast commit blocks that need to be replayed even if 2291 * fast commit has now been turned off. 2292 */ 2293 journal->j_fc_replay_callback = ext4_fc_replay; 2294 if (!test_opt2(sb, JOURNAL_FAST_COMMIT)) 2295 return; 2296 journal->j_fc_cleanup_callback = ext4_fc_cleanup; 2297 } 2298 2299 static const char * const fc_ineligible_reasons[] = { 2300 [EXT4_FC_REASON_XATTR] = "Extended attributes changed", 2301 [EXT4_FC_REASON_CROSS_RENAME] = "Cross rename", 2302 [EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed", 2303 [EXT4_FC_REASON_NOMEM] = "Insufficient memory", 2304 [EXT4_FC_REASON_SWAP_BOOT] = "Swap boot", 2305 [EXT4_FC_REASON_RESIZE] = "Resize", 2306 [EXT4_FC_REASON_RENAME_DIR] = "Dir renamed", 2307 [EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op", 2308 [EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling", 2309 [EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename", 2310 [EXT4_FC_REASON_MIGRATE] = "Inode format migration", 2311 [EXT4_FC_REASON_VERITY] = "fs-verity enable", 2312 [EXT4_FC_REASON_MOVE_EXT] = "Move extents", 2313 }; 2314 2315 int ext4_fc_info_show(struct seq_file *seq, void *v) 2316 { 2317 struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private); 2318 struct ext4_fc_stats *stats = &sbi->s_fc_stats; 2319 int i; 2320 2321 if (v != SEQ_START_TOKEN) 2322 return 0; 2323 2324 seq_printf(seq, 2325 "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n", 2326 stats->fc_num_commits, stats->fc_ineligible_commits, 2327 stats->fc_numblks, 2328 div_u64(stats->s_fc_avg_commit_time, 1000)); 2329 seq_puts(seq, "Ineligible reasons:\n"); 2330 for (i = 0; i < EXT4_FC_REASON_MAX; i++) 2331 seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i], 2332 stats->fc_ineligible_reason_count[i]); 2333 2334 return 0; 2335 } 2336 2337 int __init ext4_fc_init_dentry_cache(void) 2338 { 2339 ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update, 2340 SLAB_RECLAIM_ACCOUNT); 2341 2342 if (ext4_fc_dentry_cachep == NULL) 2343 return -ENOMEM; 2344 2345 return 0; 2346 } 2347 2348 void ext4_fc_destroy_dentry_cache(void) 2349 { 2350 kmem_cache_destroy(ext4_fc_dentry_cachep); 2351 } 2352