xref: /linux/fs/ext4/fast_commit.c (revision 23b0f90ba871f096474e1c27c3d14f455189d2d9)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * fs/ext4/fast_commit.c
5  *
6  * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
7  *
8  * Ext4 fast commits routines.
9  */
10 #include "ext4.h"
11 #include "ext4_jbd2.h"
12 #include "ext4_extents.h"
13 #include "mballoc.h"
14 
15 #include <linux/lockdep.h>
16 /*
17  * Ext4 Fast Commits
18  * -----------------
19  *
20  * Ext4 fast commits implement fine grained journalling for Ext4.
21  *
22  * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
23  * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
24  * TLV during the recovery phase. For the scenarios for which we currently
25  * don't have replay code, fast commit falls back to full commits.
26  * Fast commits record delta in one of the following three categories.
27  *
28  * (A) Directory entry updates:
29  *
30  * - EXT4_FC_TAG_UNLINK		- records directory entry unlink
31  * - EXT4_FC_TAG_LINK		- records directory entry link
32  * - EXT4_FC_TAG_CREAT		- records inode and directory entry creation
33  *
34  * (B) File specific data range updates:
35  *
36  * - EXT4_FC_TAG_ADD_RANGE	- records addition of new blocks to an inode
37  * - EXT4_FC_TAG_DEL_RANGE	- records deletion of blocks from an inode
38  *
39  * (C) Inode metadata (mtime / ctime etc):
40  *
41  * - EXT4_FC_TAG_INODE		- record the inode that should be replayed
42  *				  during recovery. Note that iblocks field is
43  *				  not replayed and instead derived during
44  *				  replay.
45  * Commit Operation
46  * ----------------
47  * With fast commits, we maintain all the directory entry operations in the
48  * order in which they are issued in an in-memory queue. This queue is flushed
49  * to disk during the commit operation. We also maintain a list of inodes
50  * that need to be committed during a fast commit in another in memory queue of
51  * inodes. During the commit operation, we commit in the following order:
52  *
53  * [1] Prepare all the inodes to write out their data by setting
54  *     "EXT4_STATE_FC_FLUSHING_DATA". This ensures that inode cannot be
55  *     deleted while it is being flushed.
56  * [2] Flush data buffers to disk and clear "EXT4_STATE_FC_FLUSHING_DATA"
57  *     state.
58  * [3] Lock the journal by calling jbd2_journal_lock_updates. This ensures that
59  *     all the exsiting handles finish and no new handles can start.
60  * [4] Mark all the fast commit eligible inodes as undergoing fast commit
61  *     by setting "EXT4_STATE_FC_COMMITTING" state.
62  * [5] Unlock the journal by calling jbd2_journal_unlock_updates. This allows
63  *     starting of new handles. If new handles try to start an update on
64  *     any of the inodes that are being committed, ext4_fc_track_inode()
65  *     will block until those inodes have finished the fast commit.
66  * [6] Commit all the directory entry updates in the fast commit space.
67  * [7] Commit all the changed inodes in the fast commit space and clear
68  *     "EXT4_STATE_FC_COMMITTING" for these inodes.
69  * [8] Write tail tag (this tag ensures the atomicity, please read the following
70  *     section for more details).
71  *
72  * All the inode updates must be enclosed within jbd2_jounrnal_start()
73  * and jbd2_journal_stop() similar to JBD2 journaling.
74  *
75  * Fast Commit Ineligibility
76  * -------------------------
77  *
78  * Not all operations are supported by fast commits today (e.g extended
79  * attributes). Fast commit ineligibility is marked by calling
80  * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back
81  * to full commit.
82  *
83  * Atomicity of commits
84  * --------------------
85  * In order to guarantee atomicity during the commit operation, fast commit
86  * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
87  * tag contains CRC of the contents and TID of the transaction after which
88  * this fast commit should be applied. Recovery code replays fast commit
89  * logs only if there's at least 1 valid tail present. For every fast commit
90  * operation, there is 1 tail. This means, we may end up with multiple tails
91  * in the fast commit space. Here's an example:
92  *
93  * - Create a new file A and remove existing file B
94  * - fsync()
95  * - Append contents to file A
96  * - Truncate file A
97  * - fsync()
98  *
99  * The fast commit space at the end of above operations would look like this:
100  *      [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
101  *             |<---  Fast Commit 1   --->|<---      Fast Commit 2     ---->|
102  *
103  * Replay code should thus check for all the valid tails in the FC area.
104  *
105  * Fast Commit Replay Idempotence
106  * ------------------------------
107  *
108  * Fast commits tags are idempotent in nature provided the recovery code follows
109  * certain rules. The guiding principle that the commit path follows while
110  * committing is that it stores the result of a particular operation instead of
111  * storing the procedure.
112  *
113  * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
114  * was associated with inode 10. During fast commit, instead of storing this
115  * operation as a procedure "rename a to b", we store the resulting file system
116  * state as a "series" of outcomes:
117  *
118  * - Link dirent b to inode 10
119  * - Unlink dirent a
120  * - Inode <10> with valid refcount
121  *
122  * Now when recovery code runs, it needs "enforce" this state on the file
123  * system. This is what guarantees idempotence of fast commit replay.
124  *
125  * Let's take an example of a procedure that is not idempotent and see how fast
126  * commits make it idempotent. Consider following sequence of operations:
127  *
128  *     rm A;    mv B A;    read A
129  *  (x)     (y)        (z)
130  *
131  * (x), (y) and (z) are the points at which we can crash. If we store this
132  * sequence of operations as is then the replay is not idempotent. Let's say
133  * while in replay, we crash at (z). During the second replay, file A (which was
134  * actually created as a result of "mv B A" operation) would get deleted. Thus,
135  * file named A would be absent when we try to read A. So, this sequence of
136  * operations is not idempotent. However, as mentioned above, instead of storing
137  * the procedure fast commits store the outcome of each procedure. Thus the fast
138  * commit log for above procedure would be as follows:
139  *
140  * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
141  * inode 11 before the replay)
142  *
143  *    [Unlink A]   [Link A to inode 11]   [Unlink B]   [Inode 11]
144  * (w)          (x)                    (y)          (z)
145  *
146  * If we crash at (z), we will have file A linked to inode 11. During the second
147  * replay, we will remove file A (inode 11). But we will create it back and make
148  * it point to inode 11. We won't find B, so we'll just skip that step. At this
149  * point, the refcount for inode 11 is not reliable, but that gets fixed by the
150  * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
151  * similarly. Thus, by converting a non-idempotent procedure into a series of
152  * idempotent outcomes, fast commits ensured idempotence during the replay.
153  *
154  * Locking
155  * -------
156  * sbi->s_fc_lock protects the fast commit inodes queue and the fast commit
157  * dentry queue. ei->i_fc_lock protects the fast commit related info in a given
158  * inode. Most of the code avoids acquiring both the locks, but if one must do
159  * that then sbi->s_fc_lock must be acquired before ei->i_fc_lock.
160  *
161  * TODOs
162  * -----
163  *
164  * 0) Fast commit replay path hardening: Fast commit replay code should use
165  *    journal handles to make sure all the updates it does during the replay
166  *    path are atomic. With that if we crash during fast commit replay, after
167  *    trying to do recovery again, we will find a file system where fast commit
168  *    area is invalid (because new full commit would be found). In order to deal
169  *    with that, fast commit replay code should ensure that the "FC_REPLAY"
170  *    superblock state is persisted before starting the replay, so that after
171  *    the crash, fast commit recovery code can look at that flag and perform
172  *    fast commit recovery even if that area is invalidated by later full
173  *    commits.
174  *
175  * 1) Handle more ineligible cases.
176  *
177  * 2) Change ext4_fc_commit() to lookup logical to physical mapping using extent
178  *    status tree. This would get rid of the need to call ext4_fc_track_inode()
179  *    before acquiring i_data_sem. To do that we would need to ensure that
180  *    modified extents from the extent status tree are not evicted from memory.
181  */
182 
183 #include <trace/events/ext4.h>
184 static struct kmem_cache *ext4_fc_dentry_cachep;
185 
186 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
187 {
188 	BUFFER_TRACE(bh, "");
189 	if (uptodate) {
190 		ext4_debug("%s: Block %lld up-to-date",
191 			   __func__, bh->b_blocknr);
192 		set_buffer_uptodate(bh);
193 	} else {
194 		ext4_debug("%s: Block %lld not up-to-date",
195 			   __func__, bh->b_blocknr);
196 		clear_buffer_uptodate(bh);
197 	}
198 
199 	unlock_buffer(bh);
200 }
201 
202 static inline void ext4_fc_reset_inode(struct inode *inode)
203 {
204 	struct ext4_inode_info *ei = EXT4_I(inode);
205 
206 	ei->i_fc_lblk_start = 0;
207 	ei->i_fc_lblk_len = 0;
208 }
209 
210 void ext4_fc_init_inode(struct inode *inode)
211 {
212 	struct ext4_inode_info *ei = EXT4_I(inode);
213 
214 	ext4_fc_reset_inode(inode);
215 	ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
216 	INIT_LIST_HEAD(&ei->i_fc_list);
217 	INIT_LIST_HEAD(&ei->i_fc_dilist);
218 	init_waitqueue_head(&ei->i_fc_wait);
219 }
220 
221 static bool ext4_fc_disabled(struct super_block *sb)
222 {
223 	return (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
224 		(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY));
225 }
226 
227 /*
228  * Remove inode from fast commit list. If the inode is being committed
229  * we wait until inode commit is done.
230  */
231 void ext4_fc_del(struct inode *inode)
232 {
233 	struct ext4_inode_info *ei = EXT4_I(inode);
234 	struct ext4_fc_dentry_update *fc_dentry;
235 	wait_queue_head_t *wq;
236 	int alloc_ctx;
237 
238 	if (ext4_fc_disabled(inode->i_sb))
239 		return;
240 
241 	alloc_ctx = ext4_fc_lock(inode->i_sb);
242 	if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) {
243 		ext4_fc_unlock(inode->i_sb, alloc_ctx);
244 		return;
245 	}
246 
247 	/*
248 	 * Since ext4_fc_del is called from ext4_evict_inode while having a
249 	 * handle open, there is no need for us to wait here even if a fast
250 	 * commit is going on. That is because, if this inode is being
251 	 * committed, ext4_mark_inode_dirty would have waited for inode commit
252 	 * operation to finish before we come here. So, by the time we come
253 	 * here, inode's EXT4_STATE_FC_COMMITTING would have been cleared. So,
254 	 * we shouldn't see EXT4_STATE_FC_COMMITTING to be set on this inode
255 	 * here.
256 	 *
257 	 * We may come here without any handles open in the "no_delete" case of
258 	 * ext4_evict_inode as well. However, if that happens, we first mark the
259 	 * file system as fast commit ineligible anyway. So, even in that case,
260 	 * it is okay to remove the inode from the fc list.
261 	 */
262 	WARN_ON(ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)
263 		&& !ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE));
264 	while (ext4_test_inode_state(inode, EXT4_STATE_FC_FLUSHING_DATA)) {
265 #if (BITS_PER_LONG < 64)
266 		DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
267 				EXT4_STATE_FC_FLUSHING_DATA);
268 		wq = bit_waitqueue(&ei->i_state_flags,
269 				   EXT4_STATE_FC_FLUSHING_DATA);
270 #else
271 		DEFINE_WAIT_BIT(wait, &ei->i_flags,
272 				EXT4_STATE_FC_FLUSHING_DATA);
273 		wq = bit_waitqueue(&ei->i_flags,
274 				   EXT4_STATE_FC_FLUSHING_DATA);
275 #endif
276 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
277 		if (ext4_test_inode_state(inode, EXT4_STATE_FC_FLUSHING_DATA)) {
278 			ext4_fc_unlock(inode->i_sb, alloc_ctx);
279 			schedule();
280 			alloc_ctx = ext4_fc_lock(inode->i_sb);
281 		}
282 		finish_wait(wq, &wait.wq_entry);
283 	}
284 	list_del_init(&ei->i_fc_list);
285 
286 	/*
287 	 * Since this inode is getting removed, let's also remove all FC
288 	 * dentry create references, since it is not needed to log it anyways.
289 	 */
290 	if (list_empty(&ei->i_fc_dilist)) {
291 		ext4_fc_unlock(inode->i_sb, alloc_ctx);
292 		return;
293 	}
294 
295 	fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist);
296 	WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT);
297 	list_del_init(&fc_dentry->fcd_list);
298 	list_del_init(&fc_dentry->fcd_dilist);
299 
300 	WARN_ON(!list_empty(&ei->i_fc_dilist));
301 	ext4_fc_unlock(inode->i_sb, alloc_ctx);
302 
303 	release_dentry_name_snapshot(&fc_dentry->fcd_name);
304 	kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
305 }
306 
307 /*
308  * Mark file system as fast commit ineligible, and record latest
309  * ineligible transaction tid. This means until the recorded
310  * transaction, commit operation would result in a full jbd2 commit.
311  */
312 void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle)
313 {
314 	struct ext4_sb_info *sbi = EXT4_SB(sb);
315 	tid_t tid;
316 	bool has_transaction = true;
317 	bool is_ineligible;
318 	int alloc_ctx;
319 
320 	if (ext4_fc_disabled(sb))
321 		return;
322 
323 	if (handle && !IS_ERR(handle))
324 		tid = handle->h_transaction->t_tid;
325 	else {
326 		read_lock(&sbi->s_journal->j_state_lock);
327 		if (sbi->s_journal->j_running_transaction)
328 			tid = sbi->s_journal->j_running_transaction->t_tid;
329 		else
330 			has_transaction = false;
331 		read_unlock(&sbi->s_journal->j_state_lock);
332 	}
333 	alloc_ctx = ext4_fc_lock(sb);
334 	is_ineligible = ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
335 	if (has_transaction && (!is_ineligible || tid_gt(tid, sbi->s_fc_ineligible_tid)))
336 		sbi->s_fc_ineligible_tid = tid;
337 	ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
338 	ext4_fc_unlock(sb, alloc_ctx);
339 	WARN_ON(reason >= EXT4_FC_REASON_MAX);
340 	sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
341 }
342 
343 /*
344  * Generic fast commit tracking function. If this is the first time this we are
345  * called after a full commit, we initialize fast commit fields and then call
346  * __fc_track_fn() with update = 0. If we have already been called after a full
347  * commit, we pass update = 1. Based on that, the track function can determine
348  * if it needs to track a field for the first time or if it needs to just
349  * update the previously tracked value.
350  *
351  * If enqueue is set, this function enqueues the inode in fast commit list.
352  */
353 static int ext4_fc_track_template(
354 	handle_t *handle, struct inode *inode,
355 	int (*__fc_track_fn)(handle_t *handle, struct inode *, void *, bool),
356 	void *args, int enqueue)
357 {
358 	bool update = false;
359 	struct ext4_inode_info *ei = EXT4_I(inode);
360 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
361 	tid_t tid = 0;
362 	int alloc_ctx;
363 	int ret;
364 
365 	tid = handle->h_transaction->t_tid;
366 	spin_lock(&ei->i_fc_lock);
367 	if (tid == ei->i_sync_tid) {
368 		update = true;
369 	} else {
370 		ext4_fc_reset_inode(inode);
371 		ei->i_sync_tid = tid;
372 	}
373 	ret = __fc_track_fn(handle, inode, args, update);
374 	spin_unlock(&ei->i_fc_lock);
375 	if (!enqueue)
376 		return ret;
377 
378 	alloc_ctx = ext4_fc_lock(inode->i_sb);
379 	if (list_empty(&EXT4_I(inode)->i_fc_list))
380 		list_add_tail(&EXT4_I(inode)->i_fc_list,
381 				(sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
382 				 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ?
383 				&sbi->s_fc_q[FC_Q_STAGING] :
384 				&sbi->s_fc_q[FC_Q_MAIN]);
385 	ext4_fc_unlock(inode->i_sb, alloc_ctx);
386 
387 	return ret;
388 }
389 
390 struct __track_dentry_update_args {
391 	struct dentry *dentry;
392 	int op;
393 };
394 
395 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
396 static int __track_dentry_update(handle_t *handle, struct inode *inode,
397 				 void *arg, bool update)
398 {
399 	struct ext4_fc_dentry_update *node;
400 	struct ext4_inode_info *ei = EXT4_I(inode);
401 	struct __track_dentry_update_args *dentry_update =
402 		(struct __track_dentry_update_args *)arg;
403 	struct dentry *dentry = dentry_update->dentry;
404 	struct inode *dir = dentry->d_parent->d_inode;
405 	struct super_block *sb = inode->i_sb;
406 	struct ext4_sb_info *sbi = EXT4_SB(sb);
407 	int alloc_ctx;
408 
409 	spin_unlock(&ei->i_fc_lock);
410 
411 	if (IS_ENCRYPTED(dir)) {
412 		ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME,
413 					handle);
414 		spin_lock(&ei->i_fc_lock);
415 		return -EOPNOTSUPP;
416 	}
417 
418 	node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
419 	if (!node) {
420 		ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, handle);
421 		spin_lock(&ei->i_fc_lock);
422 		return -ENOMEM;
423 	}
424 
425 	node->fcd_op = dentry_update->op;
426 	node->fcd_parent = dir->i_ino;
427 	node->fcd_ino = inode->i_ino;
428 	take_dentry_name_snapshot(&node->fcd_name, dentry);
429 	INIT_LIST_HEAD(&node->fcd_dilist);
430 	INIT_LIST_HEAD(&node->fcd_list);
431 	alloc_ctx = ext4_fc_lock(sb);
432 	if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
433 		sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING)
434 		list_add_tail(&node->fcd_list,
435 				&sbi->s_fc_dentry_q[FC_Q_STAGING]);
436 	else
437 		list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
438 
439 	/*
440 	 * This helps us keep a track of all fc_dentry updates which is part of
441 	 * this ext4 inode. So in case the inode is getting unlinked, before
442 	 * even we get a chance to fsync, we could remove all fc_dentry
443 	 * references while evicting the inode in ext4_fc_del().
444 	 * Also with this, we don't need to loop over all the inodes in
445 	 * sbi->s_fc_q to get the corresponding inode in
446 	 * ext4_fc_commit_dentry_updates().
447 	 */
448 	if (dentry_update->op == EXT4_FC_TAG_CREAT) {
449 		WARN_ON(!list_empty(&ei->i_fc_dilist));
450 		list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist);
451 	}
452 	ext4_fc_unlock(sb, alloc_ctx);
453 	spin_lock(&ei->i_fc_lock);
454 
455 	return 0;
456 }
457 
458 void __ext4_fc_track_unlink(handle_t *handle,
459 		struct inode *inode, struct dentry *dentry)
460 {
461 	struct __track_dentry_update_args args;
462 	int ret;
463 
464 	args.dentry = dentry;
465 	args.op = EXT4_FC_TAG_UNLINK;
466 
467 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
468 					(void *)&args, 0);
469 	trace_ext4_fc_track_unlink(handle, inode, dentry, ret);
470 }
471 
472 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
473 {
474 	struct inode *inode = d_inode(dentry);
475 
476 	if (ext4_fc_disabled(inode->i_sb))
477 		return;
478 
479 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
480 		return;
481 
482 	__ext4_fc_track_unlink(handle, inode, dentry);
483 }
484 
485 void __ext4_fc_track_link(handle_t *handle,
486 	struct inode *inode, struct dentry *dentry)
487 {
488 	struct __track_dentry_update_args args;
489 	int ret;
490 
491 	args.dentry = dentry;
492 	args.op = EXT4_FC_TAG_LINK;
493 
494 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
495 					(void *)&args, 0);
496 	trace_ext4_fc_track_link(handle, inode, dentry, ret);
497 }
498 
499 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
500 {
501 	struct inode *inode = d_inode(dentry);
502 
503 	if (ext4_fc_disabled(inode->i_sb))
504 		return;
505 
506 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
507 		return;
508 
509 	__ext4_fc_track_link(handle, inode, dentry);
510 }
511 
512 void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
513 			  struct dentry *dentry)
514 {
515 	struct __track_dentry_update_args args;
516 	int ret;
517 
518 	args.dentry = dentry;
519 	args.op = EXT4_FC_TAG_CREAT;
520 
521 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
522 					(void *)&args, 0);
523 	trace_ext4_fc_track_create(handle, inode, dentry, ret);
524 }
525 
526 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
527 {
528 	struct inode *inode = d_inode(dentry);
529 
530 	if (ext4_fc_disabled(inode->i_sb))
531 		return;
532 
533 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
534 		return;
535 
536 	__ext4_fc_track_create(handle, inode, dentry);
537 }
538 
539 /* __track_fn for inode tracking */
540 static int __track_inode(handle_t *handle, struct inode *inode, void *arg,
541 			 bool update)
542 {
543 	if (update)
544 		return -EEXIST;
545 
546 	EXT4_I(inode)->i_fc_lblk_len = 0;
547 
548 	return 0;
549 }
550 
551 void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
552 {
553 	struct ext4_inode_info *ei = EXT4_I(inode);
554 	wait_queue_head_t *wq;
555 	int ret;
556 
557 	if (S_ISDIR(inode->i_mode))
558 		return;
559 
560 	if (ext4_fc_disabled(inode->i_sb))
561 		return;
562 
563 	if (ext4_should_journal_data(inode)) {
564 		ext4_fc_mark_ineligible(inode->i_sb,
565 					EXT4_FC_REASON_INODE_JOURNAL_DATA, handle);
566 		return;
567 	}
568 
569 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
570 		return;
571 
572 	/*
573 	 * If we come here, we may sleep while waiting for the inode to
574 	 * commit. We shouldn't be holding i_data_sem when we go to sleep since
575 	 * the commit path needs to grab the lock while committing the inode.
576 	 */
577 	lockdep_assert_not_held(&ei->i_data_sem);
578 
579 	while (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
580 #if (BITS_PER_LONG < 64)
581 		DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
582 				EXT4_STATE_FC_COMMITTING);
583 		wq = bit_waitqueue(&ei->i_state_flags,
584 				   EXT4_STATE_FC_COMMITTING);
585 #else
586 		DEFINE_WAIT_BIT(wait, &ei->i_flags,
587 				EXT4_STATE_FC_COMMITTING);
588 		wq = bit_waitqueue(&ei->i_flags,
589 				   EXT4_STATE_FC_COMMITTING);
590 #endif
591 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
592 		if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
593 			schedule();
594 		finish_wait(wq, &wait.wq_entry);
595 	}
596 
597 	/*
598 	 * From this point on, this inode will not be committed either
599 	 * by fast or full commit as long as the handle is open.
600 	 */
601 	ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
602 	trace_ext4_fc_track_inode(handle, inode, ret);
603 }
604 
605 struct __track_range_args {
606 	ext4_lblk_t start, end;
607 };
608 
609 /* __track_fn for tracking data updates */
610 static int __track_range(handle_t *handle, struct inode *inode, void *arg,
611 			 bool update)
612 {
613 	struct ext4_inode_info *ei = EXT4_I(inode);
614 	ext4_lblk_t oldstart;
615 	struct __track_range_args *__arg =
616 		(struct __track_range_args *)arg;
617 
618 	if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
619 		ext4_debug("Special inode %ld being modified\n", inode->i_ino);
620 		return -ECANCELED;
621 	}
622 
623 	oldstart = ei->i_fc_lblk_start;
624 
625 	if (update && ei->i_fc_lblk_len > 0) {
626 		ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
627 		ei->i_fc_lblk_len =
628 			max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
629 				ei->i_fc_lblk_start + 1;
630 	} else {
631 		ei->i_fc_lblk_start = __arg->start;
632 		ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
633 	}
634 
635 	return 0;
636 }
637 
638 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
639 			 ext4_lblk_t end)
640 {
641 	struct __track_range_args args;
642 	int ret;
643 
644 	if (S_ISDIR(inode->i_mode))
645 		return;
646 
647 	if (ext4_fc_disabled(inode->i_sb))
648 		return;
649 
650 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
651 		return;
652 
653 	if (ext4_has_inline_data(inode)) {
654 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_XATTR,
655 					handle);
656 		return;
657 	}
658 
659 	args.start = start;
660 	args.end = end;
661 
662 	ret = ext4_fc_track_template(handle, inode,  __track_range, &args, 1);
663 
664 	trace_ext4_fc_track_range(handle, inode, start, end, ret);
665 }
666 
667 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
668 {
669 	blk_opf_t write_flags = JBD2_JOURNAL_REQ_FLAGS;
670 	struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
671 
672 	/* Add REQ_FUA | REQ_PREFLUSH only its tail */
673 	if (test_opt(sb, BARRIER) && is_tail)
674 		write_flags |= REQ_FUA | REQ_PREFLUSH;
675 	lock_buffer(bh);
676 	set_buffer_dirty(bh);
677 	set_buffer_uptodate(bh);
678 	bh->b_end_io = ext4_end_buffer_io_sync;
679 	submit_bh(REQ_OP_WRITE | write_flags, bh);
680 	EXT4_SB(sb)->s_fc_bh = NULL;
681 }
682 
683 /* Ext4 commit path routines */
684 
685 /*
686  * Allocate len bytes on a fast commit buffer.
687  *
688  * During the commit time this function is used to manage fast commit
689  * block space. We don't split a fast commit log onto different
690  * blocks. So this function makes sure that if there's not enough space
691  * on the current block, the remaining space in the current block is
692  * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
693  * new block is from jbd2 and CRC is updated to reflect the padding
694  * we added.
695  */
696 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
697 {
698 	struct ext4_fc_tl tl;
699 	struct ext4_sb_info *sbi = EXT4_SB(sb);
700 	struct buffer_head *bh;
701 	int bsize = sbi->s_journal->j_blocksize;
702 	int ret, off = sbi->s_fc_bytes % bsize;
703 	int remaining;
704 	u8 *dst;
705 
706 	/*
707 	 * If 'len' is too long to fit in any block alongside a PAD tlv, then we
708 	 * cannot fulfill the request.
709 	 */
710 	if (len > bsize - EXT4_FC_TAG_BASE_LEN)
711 		return NULL;
712 
713 	if (!sbi->s_fc_bh) {
714 		ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
715 		if (ret)
716 			return NULL;
717 		sbi->s_fc_bh = bh;
718 	}
719 	dst = sbi->s_fc_bh->b_data + off;
720 
721 	/*
722 	 * Allocate the bytes in the current block if we can do so while still
723 	 * leaving enough space for a PAD tlv.
724 	 */
725 	remaining = bsize - EXT4_FC_TAG_BASE_LEN - off;
726 	if (len <= remaining) {
727 		sbi->s_fc_bytes += len;
728 		return dst;
729 	}
730 
731 	/*
732 	 * Else, terminate the current block with a PAD tlv, then allocate a new
733 	 * block and allocate the bytes at the start of that new block.
734 	 */
735 
736 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
737 	tl.fc_len = cpu_to_le16(remaining);
738 	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
739 	memset(dst + EXT4_FC_TAG_BASE_LEN, 0, remaining);
740 	*crc = ext4_chksum(*crc, sbi->s_fc_bh->b_data, bsize);
741 
742 	ext4_fc_submit_bh(sb, false);
743 
744 	ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
745 	if (ret)
746 		return NULL;
747 	sbi->s_fc_bh = bh;
748 	sbi->s_fc_bytes += bsize - off + len;
749 	return sbi->s_fc_bh->b_data;
750 }
751 
752 /*
753  * Complete a fast commit by writing tail tag.
754  *
755  * Writing tail tag marks the end of a fast commit. In order to guarantee
756  * atomicity, after writing tail tag, even if there's space remaining
757  * in the block, next commit shouldn't use it. That's why tail tag
758  * has the length as that of the remaining space on the block.
759  */
760 static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
761 {
762 	struct ext4_sb_info *sbi = EXT4_SB(sb);
763 	struct ext4_fc_tl tl;
764 	struct ext4_fc_tail tail;
765 	int off, bsize = sbi->s_journal->j_blocksize;
766 	u8 *dst;
767 
768 	/*
769 	 * ext4_fc_reserve_space takes care of allocating an extra block if
770 	 * there's no enough space on this block for accommodating this tail.
771 	 */
772 	dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc);
773 	if (!dst)
774 		return -ENOSPC;
775 
776 	off = sbi->s_fc_bytes % bsize;
777 
778 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
779 	tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail));
780 	sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
781 
782 	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
783 	dst += EXT4_FC_TAG_BASE_LEN;
784 	tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
785 	memcpy(dst, &tail.fc_tid, sizeof(tail.fc_tid));
786 	dst += sizeof(tail.fc_tid);
787 	crc = ext4_chksum(crc, sbi->s_fc_bh->b_data,
788 			  dst - (u8 *)sbi->s_fc_bh->b_data);
789 	tail.fc_crc = cpu_to_le32(crc);
790 	memcpy(dst, &tail.fc_crc, sizeof(tail.fc_crc));
791 	dst += sizeof(tail.fc_crc);
792 	memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */
793 
794 	ext4_fc_submit_bh(sb, true);
795 
796 	return 0;
797 }
798 
799 /*
800  * Adds tag, length, value and updates CRC. Returns true if tlv was added.
801  * Returns false if there's not enough space.
802  */
803 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
804 			   u32 *crc)
805 {
806 	struct ext4_fc_tl tl;
807 	u8 *dst;
808 
809 	dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc);
810 	if (!dst)
811 		return false;
812 
813 	tl.fc_tag = cpu_to_le16(tag);
814 	tl.fc_len = cpu_to_le16(len);
815 
816 	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
817 	memcpy(dst + EXT4_FC_TAG_BASE_LEN, val, len);
818 
819 	return true;
820 }
821 
822 /* Same as above, but adds dentry tlv. */
823 static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc,
824 				   struct ext4_fc_dentry_update *fc_dentry)
825 {
826 	struct ext4_fc_dentry_info fcd;
827 	struct ext4_fc_tl tl;
828 	int dlen = fc_dentry->fcd_name.name.len;
829 	u8 *dst = ext4_fc_reserve_space(sb,
830 			EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc);
831 
832 	if (!dst)
833 		return false;
834 
835 	fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent);
836 	fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino);
837 	tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op);
838 	tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
839 	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
840 	dst += EXT4_FC_TAG_BASE_LEN;
841 	memcpy(dst, &fcd, sizeof(fcd));
842 	dst += sizeof(fcd);
843 	memcpy(dst, fc_dentry->fcd_name.name.name, dlen);
844 
845 	return true;
846 }
847 
848 /*
849  * Writes inode in the fast commit space under TLV with tag @tag.
850  * Returns 0 on success, error on failure.
851  */
852 static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
853 {
854 	struct ext4_inode_info *ei = EXT4_I(inode);
855 	int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
856 	int ret;
857 	struct ext4_iloc iloc;
858 	struct ext4_fc_inode fc_inode;
859 	struct ext4_fc_tl tl;
860 	u8 *dst;
861 
862 	ret = ext4_get_inode_loc(inode, &iloc);
863 	if (ret)
864 		return ret;
865 
866 	if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
867 		inode_len = EXT4_INODE_SIZE(inode->i_sb);
868 	else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
869 		inode_len += ei->i_extra_isize;
870 
871 	fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
872 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
873 	tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
874 
875 	ret = -ECANCELED;
876 	dst = ext4_fc_reserve_space(inode->i_sb,
877 		EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc);
878 	if (!dst)
879 		goto err;
880 
881 	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
882 	dst += EXT4_FC_TAG_BASE_LEN;
883 	memcpy(dst, &fc_inode, sizeof(fc_inode));
884 	dst += sizeof(fc_inode);
885 	memcpy(dst, (u8 *)ext4_raw_inode(&iloc), inode_len);
886 	ret = 0;
887 err:
888 	brelse(iloc.bh);
889 	return ret;
890 }
891 
892 /*
893  * Writes updated data ranges for the inode in question. Updates CRC.
894  * Returns 0 on success, error otherwise.
895  */
896 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
897 {
898 	ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
899 	struct ext4_inode_info *ei = EXT4_I(inode);
900 	struct ext4_map_blocks map;
901 	struct ext4_fc_add_range fc_ext;
902 	struct ext4_fc_del_range lrange;
903 	struct ext4_extent *ex;
904 	int ret;
905 
906 	spin_lock(&ei->i_fc_lock);
907 	if (ei->i_fc_lblk_len == 0) {
908 		spin_unlock(&ei->i_fc_lock);
909 		return 0;
910 	}
911 	old_blk_size = ei->i_fc_lblk_start;
912 	new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
913 	ei->i_fc_lblk_len = 0;
914 	spin_unlock(&ei->i_fc_lock);
915 
916 	cur_lblk_off = old_blk_size;
917 	ext4_debug("will try writing %d to %d for inode %ld\n",
918 		   cur_lblk_off, new_blk_size, inode->i_ino);
919 
920 	while (cur_lblk_off <= new_blk_size) {
921 		map.m_lblk = cur_lblk_off;
922 		map.m_len = new_blk_size - cur_lblk_off + 1;
923 		ret = ext4_map_blocks(NULL, inode, &map,
924 				      EXT4_GET_BLOCKS_IO_SUBMIT |
925 				      EXT4_EX_NOCACHE);
926 		if (ret < 0)
927 			return -ECANCELED;
928 
929 		if (map.m_len == 0) {
930 			cur_lblk_off++;
931 			continue;
932 		}
933 
934 		if (ret == 0) {
935 			lrange.fc_ino = cpu_to_le32(inode->i_ino);
936 			lrange.fc_lblk = cpu_to_le32(map.m_lblk);
937 			lrange.fc_len = cpu_to_le32(map.m_len);
938 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
939 					    sizeof(lrange), (u8 *)&lrange, crc))
940 				return -ENOSPC;
941 		} else {
942 			unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ?
943 				EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN;
944 
945 			/* Limit the number of blocks in one extent */
946 			map.m_len = min(max, map.m_len);
947 
948 			fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
949 			ex = (struct ext4_extent *)&fc_ext.fc_ex;
950 			ex->ee_block = cpu_to_le32(map.m_lblk);
951 			ex->ee_len = cpu_to_le16(map.m_len);
952 			ext4_ext_store_pblock(ex, map.m_pblk);
953 			if (map.m_flags & EXT4_MAP_UNWRITTEN)
954 				ext4_ext_mark_unwritten(ex);
955 			else
956 				ext4_ext_mark_initialized(ex);
957 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
958 					    sizeof(fc_ext), (u8 *)&fc_ext, crc))
959 				return -ENOSPC;
960 		}
961 
962 		cur_lblk_off += map.m_len;
963 	}
964 
965 	return 0;
966 }
967 
968 
969 /* Flushes data of all the inodes in the commit queue. */
970 static int ext4_fc_flush_data(journal_t *journal)
971 {
972 	struct super_block *sb = journal->j_private;
973 	struct ext4_sb_info *sbi = EXT4_SB(sb);
974 	struct ext4_inode_info *ei;
975 	int ret = 0;
976 
977 	list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
978 		ret = jbd2_submit_inode_data(journal, ei->jinode);
979 		if (ret)
980 			return ret;
981 	}
982 
983 	list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
984 		ret = jbd2_wait_inode_data(journal, ei->jinode);
985 		if (ret)
986 			return ret;
987 	}
988 
989 	return 0;
990 }
991 
992 /* Commit all the directory entry updates */
993 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
994 {
995 	struct super_block *sb = journal->j_private;
996 	struct ext4_sb_info *sbi = EXT4_SB(sb);
997 	struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
998 	struct inode *inode;
999 	struct ext4_inode_info *ei;
1000 	int ret;
1001 
1002 	if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
1003 		return 0;
1004 	list_for_each_entry_safe(fc_dentry, fc_dentry_n,
1005 				 &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
1006 		if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
1007 			if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry))
1008 				return -ENOSPC;
1009 			continue;
1010 		}
1011 		/*
1012 		 * With fcd_dilist we need not loop in sbi->s_fc_q to get the
1013 		 * corresponding inode. Also, the corresponding inode could have been
1014 		 * deleted, in which case, we don't need to do anything.
1015 		 */
1016 		if (list_empty(&fc_dentry->fcd_dilist))
1017 			continue;
1018 		ei = list_first_entry(&fc_dentry->fcd_dilist,
1019 				struct ext4_inode_info, i_fc_dilist);
1020 		inode = &ei->vfs_inode;
1021 		WARN_ON(inode->i_ino != fc_dentry->fcd_ino);
1022 
1023 		/*
1024 		 * We first write the inode and then the create dirent. This
1025 		 * allows the recovery code to create an unnamed inode first
1026 		 * and then link it to a directory entry. This allows us
1027 		 * to use namei.c routines almost as is and simplifies
1028 		 * the recovery code.
1029 		 */
1030 		ret = ext4_fc_write_inode(inode, crc);
1031 		if (ret)
1032 			return ret;
1033 		ret = ext4_fc_write_inode_data(inode, crc);
1034 		if (ret)
1035 			return ret;
1036 		if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry))
1037 			return -ENOSPC;
1038 	}
1039 	return 0;
1040 }
1041 
1042 static int ext4_fc_perform_commit(journal_t *journal)
1043 {
1044 	struct super_block *sb = journal->j_private;
1045 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1046 	struct ext4_inode_info *iter;
1047 	struct ext4_fc_head head;
1048 	struct inode *inode;
1049 	struct blk_plug plug;
1050 	int ret = 0;
1051 	u32 crc = 0;
1052 	int alloc_ctx;
1053 
1054 	/*
1055 	 * Step 1: Mark all inodes on s_fc_q[MAIN] with
1056 	 * EXT4_STATE_FC_FLUSHING_DATA. This prevents these inodes from being
1057 	 * freed until the data flush is over.
1058 	 */
1059 	alloc_ctx = ext4_fc_lock(sb);
1060 	list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1061 		ext4_set_inode_state(&iter->vfs_inode,
1062 				     EXT4_STATE_FC_FLUSHING_DATA);
1063 	}
1064 	ext4_fc_unlock(sb, alloc_ctx);
1065 
1066 	/* Step 2: Flush data for all the eligible inodes. */
1067 	ret = ext4_fc_flush_data(journal);
1068 
1069 	/*
1070 	 * Step 3: Clear EXT4_STATE_FC_FLUSHING_DATA flag, before returning
1071 	 * any error from step 2. This ensures that waiters waiting on
1072 	 * EXT4_STATE_FC_FLUSHING_DATA can resume.
1073 	 */
1074 	alloc_ctx = ext4_fc_lock(sb);
1075 	list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1076 		ext4_clear_inode_state(&iter->vfs_inode,
1077 				       EXT4_STATE_FC_FLUSHING_DATA);
1078 #if (BITS_PER_LONG < 64)
1079 		wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_FLUSHING_DATA);
1080 #else
1081 		wake_up_bit(&iter->i_flags, EXT4_STATE_FC_FLUSHING_DATA);
1082 #endif
1083 	}
1084 
1085 	/*
1086 	 * Make sure clearing of EXT4_STATE_FC_FLUSHING_DATA is visible before
1087 	 * the waiter checks the bit. Pairs with implicit barrier in
1088 	 * prepare_to_wait() in ext4_fc_del().
1089 	 */
1090 	smp_mb();
1091 	ext4_fc_unlock(sb, alloc_ctx);
1092 
1093 	/*
1094 	 * If we encountered error in Step 2, return it now after clearing
1095 	 * EXT4_STATE_FC_FLUSHING_DATA bit.
1096 	 */
1097 	if (ret)
1098 		return ret;
1099 
1100 
1101 	/* Step 4: Mark all inodes as being committed. */
1102 	jbd2_journal_lock_updates(journal);
1103 	/*
1104 	 * The journal is now locked. No more handles can start and all the
1105 	 * previous handles are now drained. We now mark the inodes on the
1106 	 * commit queue as being committed.
1107 	 */
1108 	alloc_ctx = ext4_fc_lock(sb);
1109 	list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1110 		ext4_set_inode_state(&iter->vfs_inode,
1111 				     EXT4_STATE_FC_COMMITTING);
1112 	}
1113 	ext4_fc_unlock(sb, alloc_ctx);
1114 	jbd2_journal_unlock_updates(journal);
1115 
1116 	/*
1117 	 * Step 5: If file system device is different from journal device,
1118 	 * issue a cache flush before we start writing fast commit blocks.
1119 	 */
1120 	if (journal->j_fs_dev != journal->j_dev)
1121 		blkdev_issue_flush(journal->j_fs_dev);
1122 
1123 	blk_start_plug(&plug);
1124 	alloc_ctx = ext4_fc_lock(sb);
1125 	/* Step 6: Write fast commit blocks to disk. */
1126 	if (sbi->s_fc_bytes == 0) {
1127 		/*
1128 		 * Step 6.1: Add a head tag only if this is the first fast
1129 		 * commit in this TID.
1130 		 */
1131 		head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1132 		head.fc_tid = cpu_to_le32(
1133 			sbi->s_journal->j_running_transaction->t_tid);
1134 		if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1135 			(u8 *)&head, &crc)) {
1136 			ret = -ENOSPC;
1137 			goto out;
1138 		}
1139 	}
1140 
1141 	/* Step 6.2: Now write all the dentry updates. */
1142 	ret = ext4_fc_commit_dentry_updates(journal, &crc);
1143 	if (ret)
1144 		goto out;
1145 
1146 	/* Step 6.3: Now write all the changed inodes to disk. */
1147 	list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1148 		inode = &iter->vfs_inode;
1149 		if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1150 			continue;
1151 
1152 		ret = ext4_fc_write_inode_data(inode, &crc);
1153 		if (ret)
1154 			goto out;
1155 		ret = ext4_fc_write_inode(inode, &crc);
1156 		if (ret)
1157 			goto out;
1158 	}
1159 	/* Step 6.4: Finally write tail tag to conclude this fast commit. */
1160 	ret = ext4_fc_write_tail(sb, crc);
1161 
1162 out:
1163 	ext4_fc_unlock(sb, alloc_ctx);
1164 	blk_finish_plug(&plug);
1165 	return ret;
1166 }
1167 
1168 static void ext4_fc_update_stats(struct super_block *sb, int status,
1169 				 u64 commit_time, int nblks, tid_t commit_tid)
1170 {
1171 	struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats;
1172 
1173 	ext4_debug("Fast commit ended with status = %d for tid %u",
1174 			status, commit_tid);
1175 	if (status == EXT4_FC_STATUS_OK) {
1176 		stats->fc_num_commits++;
1177 		stats->fc_numblks += nblks;
1178 		if (likely(stats->s_fc_avg_commit_time))
1179 			stats->s_fc_avg_commit_time =
1180 				(commit_time +
1181 				 stats->s_fc_avg_commit_time * 3) / 4;
1182 		else
1183 			stats->s_fc_avg_commit_time = commit_time;
1184 	} else if (status == EXT4_FC_STATUS_FAILED ||
1185 		   status == EXT4_FC_STATUS_INELIGIBLE) {
1186 		if (status == EXT4_FC_STATUS_FAILED)
1187 			stats->fc_failed_commits++;
1188 		stats->fc_ineligible_commits++;
1189 	} else {
1190 		stats->fc_skipped_commits++;
1191 	}
1192 	trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid);
1193 }
1194 
1195 /*
1196  * The main commit entry point. Performs a fast commit for transaction
1197  * commit_tid if needed. If it's not possible to perform a fast commit
1198  * due to various reasons, we fall back to full commit. Returns 0
1199  * on success, error otherwise.
1200  */
1201 int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1202 {
1203 	struct super_block *sb = journal->j_private;
1204 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1205 	int nblks = 0, ret, bsize = journal->j_blocksize;
1206 	int subtid = atomic_read(&sbi->s_fc_subtid);
1207 	int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0;
1208 	ktime_t start_time, commit_time;
1209 	int old_ioprio, journal_ioprio;
1210 
1211 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
1212 		return jbd2_complete_transaction(journal, commit_tid);
1213 
1214 	trace_ext4_fc_commit_start(sb, commit_tid);
1215 
1216 	start_time = ktime_get();
1217 	old_ioprio = get_current_ioprio();
1218 
1219 restart_fc:
1220 	ret = jbd2_fc_begin_commit(journal, commit_tid);
1221 	if (ret == -EALREADY) {
1222 		/* There was an ongoing commit, check if we need to restart */
1223 		if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1224 		    tid_gt(commit_tid, journal->j_commit_sequence))
1225 			goto restart_fc;
1226 		ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0,
1227 				commit_tid);
1228 		return 0;
1229 	} else if (ret) {
1230 		/*
1231 		 * Commit couldn't start. Just update stats and perform a
1232 		 * full commit.
1233 		 */
1234 		ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0,
1235 				commit_tid);
1236 		return jbd2_complete_transaction(journal, commit_tid);
1237 	}
1238 
1239 	/*
1240 	 * After establishing journal barrier via jbd2_fc_begin_commit(), check
1241 	 * if we are fast commit ineligible.
1242 	 */
1243 	if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) {
1244 		status = EXT4_FC_STATUS_INELIGIBLE;
1245 		goto fallback;
1246 	}
1247 
1248 	/*
1249 	 * Now that we know that this thread is going to do a fast commit,
1250 	 * elevate the priority to match that of the journal thread.
1251 	 */
1252 	if (journal->j_task->io_context)
1253 		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
1254 	else
1255 		journal_ioprio = EXT4_DEF_JOURNAL_IOPRIO;
1256 	set_task_ioprio(current, journal_ioprio);
1257 	fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1258 	ret = ext4_fc_perform_commit(journal);
1259 	if (ret < 0) {
1260 		status = EXT4_FC_STATUS_FAILED;
1261 		goto fallback;
1262 	}
1263 	nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1264 	ret = jbd2_fc_wait_bufs(journal, nblks);
1265 	if (ret < 0) {
1266 		status = EXT4_FC_STATUS_FAILED;
1267 		goto fallback;
1268 	}
1269 	atomic_inc(&sbi->s_fc_subtid);
1270 	ret = jbd2_fc_end_commit(journal);
1271 	set_task_ioprio(current, old_ioprio);
1272 	/*
1273 	 * weight the commit time higher than the average time so we
1274 	 * don't react too strongly to vast changes in the commit time
1275 	 */
1276 	commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1277 	ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid);
1278 	return ret;
1279 
1280 fallback:
1281 	set_task_ioprio(current, old_ioprio);
1282 	ret = jbd2_fc_end_commit_fallback(journal);
1283 	ext4_fc_update_stats(sb, status, 0, 0, commit_tid);
1284 	return ret;
1285 }
1286 
1287 /*
1288  * Fast commit cleanup routine. This is called after every fast commit and
1289  * full commit. full is true if we are called after a full commit.
1290  */
1291 static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid)
1292 {
1293 	struct super_block *sb = journal->j_private;
1294 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1295 	struct ext4_inode_info *ei;
1296 	struct ext4_fc_dentry_update *fc_dentry;
1297 	int alloc_ctx;
1298 
1299 	if (full && sbi->s_fc_bh)
1300 		sbi->s_fc_bh = NULL;
1301 
1302 	trace_ext4_fc_cleanup(journal, full, tid);
1303 	jbd2_fc_release_bufs(journal);
1304 
1305 	alloc_ctx = ext4_fc_lock(sb);
1306 	while (!list_empty(&sbi->s_fc_q[FC_Q_MAIN])) {
1307 		ei = list_first_entry(&sbi->s_fc_q[FC_Q_MAIN],
1308 					struct ext4_inode_info,
1309 					i_fc_list);
1310 		list_del_init(&ei->i_fc_list);
1311 		ext4_clear_inode_state(&ei->vfs_inode,
1312 				       EXT4_STATE_FC_COMMITTING);
1313 		if (tid_geq(tid, ei->i_sync_tid)) {
1314 			ext4_fc_reset_inode(&ei->vfs_inode);
1315 		} else if (full) {
1316 			/*
1317 			 * We are called after a full commit, inode has been
1318 			 * modified while the commit was running. Re-enqueue
1319 			 * the inode into STAGING, which will then be splice
1320 			 * back into MAIN. This cannot happen during
1321 			 * fastcommit because the journal is locked all the
1322 			 * time in that case (and tid doesn't increase so
1323 			 * tid check above isn't reliable).
1324 			 */
1325 			list_add_tail(&ei->i_fc_list,
1326 				      &sbi->s_fc_q[FC_Q_STAGING]);
1327 		}
1328 		/*
1329 		 * Make sure clearing of EXT4_STATE_FC_COMMITTING is
1330 		 * visible before we send the wakeup. Pairs with implicit
1331 		 * barrier in prepare_to_wait() in ext4_fc_track_inode().
1332 		 */
1333 		smp_mb();
1334 #if (BITS_PER_LONG < 64)
1335 		wake_up_bit(&ei->i_state_flags, EXT4_STATE_FC_COMMITTING);
1336 #else
1337 		wake_up_bit(&ei->i_flags, EXT4_STATE_FC_COMMITTING);
1338 #endif
1339 	}
1340 
1341 	while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1342 		fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1343 					     struct ext4_fc_dentry_update,
1344 					     fcd_list);
1345 		list_del_init(&fc_dentry->fcd_list);
1346 		list_del_init(&fc_dentry->fcd_dilist);
1347 
1348 		release_dentry_name_snapshot(&fc_dentry->fcd_name);
1349 		kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1350 	}
1351 
1352 	list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1353 				&sbi->s_fc_dentry_q[FC_Q_MAIN]);
1354 	list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1355 				&sbi->s_fc_q[FC_Q_MAIN]);
1356 
1357 	if (tid_geq(tid, sbi->s_fc_ineligible_tid)) {
1358 		sbi->s_fc_ineligible_tid = 0;
1359 		ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1360 	}
1361 
1362 	if (full)
1363 		sbi->s_fc_bytes = 0;
1364 	ext4_fc_unlock(sb, alloc_ctx);
1365 	trace_ext4_fc_stats(sb);
1366 }
1367 
1368 /* Ext4 Replay Path Routines */
1369 
1370 /* Helper struct for dentry replay routines */
1371 struct dentry_info_args {
1372 	int parent_ino, dname_len, ino, inode_len;
1373 	char *dname;
1374 };
1375 
1376 /* Same as struct ext4_fc_tl, but uses native endianness fields */
1377 struct ext4_fc_tl_mem {
1378 	u16 fc_tag;
1379 	u16 fc_len;
1380 };
1381 
1382 static inline void tl_to_darg(struct dentry_info_args *darg,
1383 			      struct ext4_fc_tl_mem *tl, u8 *val)
1384 {
1385 	struct ext4_fc_dentry_info fcd;
1386 
1387 	memcpy(&fcd, val, sizeof(fcd));
1388 
1389 	darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
1390 	darg->ino = le32_to_cpu(fcd.fc_ino);
1391 	darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname);
1392 	darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info);
1393 }
1394 
1395 static inline void ext4_fc_get_tl(struct ext4_fc_tl_mem *tl, u8 *val)
1396 {
1397 	struct ext4_fc_tl tl_disk;
1398 
1399 	memcpy(&tl_disk, val, EXT4_FC_TAG_BASE_LEN);
1400 	tl->fc_len = le16_to_cpu(tl_disk.fc_len);
1401 	tl->fc_tag = le16_to_cpu(tl_disk.fc_tag);
1402 }
1403 
1404 /* Unlink replay function */
1405 static int ext4_fc_replay_unlink(struct super_block *sb,
1406 				 struct ext4_fc_tl_mem *tl, u8 *val)
1407 {
1408 	struct inode *inode, *old_parent;
1409 	struct qstr entry;
1410 	struct dentry_info_args darg;
1411 	int ret = 0;
1412 
1413 	tl_to_darg(&darg, tl, val);
1414 
1415 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1416 			darg.parent_ino, darg.dname_len);
1417 
1418 	entry.name = darg.dname;
1419 	entry.len = darg.dname_len;
1420 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1421 
1422 	if (IS_ERR(inode)) {
1423 		ext4_debug("Inode %d not found", darg.ino);
1424 		return 0;
1425 	}
1426 
1427 	old_parent = ext4_iget(sb, darg.parent_ino,
1428 				EXT4_IGET_NORMAL);
1429 	if (IS_ERR(old_parent)) {
1430 		ext4_debug("Dir with inode %d not found", darg.parent_ino);
1431 		iput(inode);
1432 		return 0;
1433 	}
1434 
1435 	ret = __ext4_unlink(old_parent, &entry, inode, NULL);
1436 	/* -ENOENT ok coz it might not exist anymore. */
1437 	if (ret == -ENOENT)
1438 		ret = 0;
1439 	iput(old_parent);
1440 	iput(inode);
1441 	return ret;
1442 }
1443 
1444 static int ext4_fc_replay_link_internal(struct super_block *sb,
1445 				struct dentry_info_args *darg,
1446 				struct inode *inode)
1447 {
1448 	struct inode *dir = NULL;
1449 	struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1450 	struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1451 	int ret = 0;
1452 
1453 	dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1454 	if (IS_ERR(dir)) {
1455 		ext4_debug("Dir with inode %d not found.", darg->parent_ino);
1456 		dir = NULL;
1457 		goto out;
1458 	}
1459 
1460 	dentry_dir = d_obtain_alias(dir);
1461 	if (IS_ERR(dentry_dir)) {
1462 		ext4_debug("Failed to obtain dentry");
1463 		dentry_dir = NULL;
1464 		goto out;
1465 	}
1466 
1467 	dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1468 	if (!dentry_inode) {
1469 		ext4_debug("Inode dentry not created.");
1470 		ret = -ENOMEM;
1471 		goto out;
1472 	}
1473 
1474 	ret = __ext4_link(dir, inode, dentry_inode);
1475 	/*
1476 	 * It's possible that link already existed since data blocks
1477 	 * for the dir in question got persisted before we crashed OR
1478 	 * we replayed this tag and crashed before the entire replay
1479 	 * could complete.
1480 	 */
1481 	if (ret && ret != -EEXIST) {
1482 		ext4_debug("Failed to link\n");
1483 		goto out;
1484 	}
1485 
1486 	ret = 0;
1487 out:
1488 	if (dentry_dir) {
1489 		d_drop(dentry_dir);
1490 		dput(dentry_dir);
1491 	} else if (dir) {
1492 		iput(dir);
1493 	}
1494 	if (dentry_inode) {
1495 		d_drop(dentry_inode);
1496 		dput(dentry_inode);
1497 	}
1498 
1499 	return ret;
1500 }
1501 
1502 /* Link replay function */
1503 static int ext4_fc_replay_link(struct super_block *sb,
1504 			       struct ext4_fc_tl_mem *tl, u8 *val)
1505 {
1506 	struct inode *inode;
1507 	struct dentry_info_args darg;
1508 	int ret = 0;
1509 
1510 	tl_to_darg(&darg, tl, val);
1511 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1512 			darg.parent_ino, darg.dname_len);
1513 
1514 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1515 	if (IS_ERR(inode)) {
1516 		ext4_debug("Inode not found.");
1517 		return 0;
1518 	}
1519 
1520 	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1521 	iput(inode);
1522 	return ret;
1523 }
1524 
1525 /*
1526  * Record all the modified inodes during replay. We use this later to setup
1527  * block bitmaps correctly.
1528  */
1529 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1530 {
1531 	struct ext4_fc_replay_state *state;
1532 	int i;
1533 
1534 	state = &EXT4_SB(sb)->s_fc_replay_state;
1535 	for (i = 0; i < state->fc_modified_inodes_used; i++)
1536 		if (state->fc_modified_inodes[i] == ino)
1537 			return 0;
1538 	if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1539 		int *fc_modified_inodes;
1540 
1541 		fc_modified_inodes = krealloc(state->fc_modified_inodes,
1542 				sizeof(int) * (state->fc_modified_inodes_size +
1543 				EXT4_FC_REPLAY_REALLOC_INCREMENT),
1544 				GFP_KERNEL);
1545 		if (!fc_modified_inodes)
1546 			return -ENOMEM;
1547 		state->fc_modified_inodes = fc_modified_inodes;
1548 		state->fc_modified_inodes_size +=
1549 			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1550 	}
1551 	state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1552 	return 0;
1553 }
1554 
1555 /*
1556  * Inode replay function
1557  */
1558 static int ext4_fc_replay_inode(struct super_block *sb,
1559 				struct ext4_fc_tl_mem *tl, u8 *val)
1560 {
1561 	struct ext4_fc_inode fc_inode;
1562 	struct ext4_inode *raw_inode;
1563 	struct ext4_inode *raw_fc_inode;
1564 	struct inode *inode = NULL;
1565 	struct ext4_iloc iloc;
1566 	int inode_len, ino, ret, tag = tl->fc_tag;
1567 	struct ext4_extent_header *eh;
1568 	size_t off_gen = offsetof(struct ext4_inode, i_generation);
1569 
1570 	memcpy(&fc_inode, val, sizeof(fc_inode));
1571 
1572 	ino = le32_to_cpu(fc_inode.fc_ino);
1573 	trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1574 
1575 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1576 	if (!IS_ERR(inode)) {
1577 		ext4_ext_clear_bb(inode);
1578 		iput(inode);
1579 	}
1580 	inode = NULL;
1581 
1582 	ret = ext4_fc_record_modified_inode(sb, ino);
1583 	if (ret)
1584 		goto out;
1585 
1586 	raw_fc_inode = (struct ext4_inode *)
1587 		(val + offsetof(struct ext4_fc_inode, fc_raw_inode));
1588 	ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1589 	if (ret)
1590 		goto out;
1591 
1592 	inode_len = tl->fc_len - sizeof(struct ext4_fc_inode);
1593 	raw_inode = ext4_raw_inode(&iloc);
1594 
1595 	memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1596 	memcpy((u8 *)raw_inode + off_gen, (u8 *)raw_fc_inode + off_gen,
1597 	       inode_len - off_gen);
1598 	if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1599 		eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1600 		if (eh->eh_magic != EXT4_EXT_MAGIC) {
1601 			memset(eh, 0, sizeof(*eh));
1602 			eh->eh_magic = EXT4_EXT_MAGIC;
1603 			eh->eh_max = cpu_to_le16(
1604 				(sizeof(raw_inode->i_block) -
1605 				 sizeof(struct ext4_extent_header))
1606 				 / sizeof(struct ext4_extent));
1607 		}
1608 	} else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1609 		memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1610 			sizeof(raw_inode->i_block));
1611 	}
1612 
1613 	/* Immediately update the inode on disk. */
1614 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1615 	if (ret)
1616 		goto out;
1617 	ret = sync_dirty_buffer(iloc.bh);
1618 	if (ret)
1619 		goto out;
1620 	ret = ext4_mark_inode_used(sb, ino);
1621 	if (ret)
1622 		goto out;
1623 
1624 	/* Given that we just wrote the inode on disk, this SHOULD succeed. */
1625 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1626 	if (IS_ERR(inode)) {
1627 		ext4_debug("Inode not found.");
1628 		return -EFSCORRUPTED;
1629 	}
1630 
1631 	/*
1632 	 * Our allocator could have made different decisions than before
1633 	 * crashing. This should be fixed but until then, we calculate
1634 	 * the number of blocks the inode.
1635 	 */
1636 	if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
1637 		ext4_ext_replay_set_iblocks(inode);
1638 
1639 	inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1640 	ext4_reset_inode_seed(inode);
1641 
1642 	ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1643 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1644 	sync_dirty_buffer(iloc.bh);
1645 	brelse(iloc.bh);
1646 out:
1647 	iput(inode);
1648 	if (!ret)
1649 		blkdev_issue_flush(sb->s_bdev);
1650 
1651 	return 0;
1652 }
1653 
1654 /*
1655  * Dentry create replay function.
1656  *
1657  * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1658  * inode for which we are trying to create a dentry here, should already have
1659  * been replayed before we start here.
1660  */
1661 static int ext4_fc_replay_create(struct super_block *sb,
1662 				 struct ext4_fc_tl_mem *tl, u8 *val)
1663 {
1664 	int ret = 0;
1665 	struct inode *inode = NULL;
1666 	struct inode *dir = NULL;
1667 	struct dentry_info_args darg;
1668 
1669 	tl_to_darg(&darg, tl, val);
1670 
1671 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1672 			darg.parent_ino, darg.dname_len);
1673 
1674 	/* This takes care of update group descriptor and other metadata */
1675 	ret = ext4_mark_inode_used(sb, darg.ino);
1676 	if (ret)
1677 		goto out;
1678 
1679 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1680 	if (IS_ERR(inode)) {
1681 		ext4_debug("inode %d not found.", darg.ino);
1682 		inode = NULL;
1683 		ret = -EINVAL;
1684 		goto out;
1685 	}
1686 
1687 	if (S_ISDIR(inode->i_mode)) {
1688 		/*
1689 		 * If we are creating a directory, we need to make sure that the
1690 		 * dot and dot dot dirents are setup properly.
1691 		 */
1692 		dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1693 		if (IS_ERR(dir)) {
1694 			ext4_debug("Dir %d not found.", darg.ino);
1695 			goto out;
1696 		}
1697 		ret = ext4_init_new_dir(NULL, dir, inode);
1698 		iput(dir);
1699 		if (ret) {
1700 			ret = 0;
1701 			goto out;
1702 		}
1703 	}
1704 	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1705 	if (ret)
1706 		goto out;
1707 	set_nlink(inode, 1);
1708 	ext4_mark_inode_dirty(NULL, inode);
1709 out:
1710 	iput(inode);
1711 	return ret;
1712 }
1713 
1714 /*
1715  * Record physical disk regions which are in use as per fast commit area,
1716  * and used by inodes during replay phase. Our simple replay phase
1717  * allocator excludes these regions from allocation.
1718  */
1719 int ext4_fc_record_regions(struct super_block *sb, int ino,
1720 		ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay)
1721 {
1722 	struct ext4_fc_replay_state *state;
1723 	struct ext4_fc_alloc_region *region;
1724 
1725 	state = &EXT4_SB(sb)->s_fc_replay_state;
1726 	/*
1727 	 * during replay phase, the fc_regions_valid may not same as
1728 	 * fc_regions_used, update it when do new additions.
1729 	 */
1730 	if (replay && state->fc_regions_used != state->fc_regions_valid)
1731 		state->fc_regions_used = state->fc_regions_valid;
1732 	if (state->fc_regions_used == state->fc_regions_size) {
1733 		struct ext4_fc_alloc_region *fc_regions;
1734 
1735 		fc_regions = krealloc(state->fc_regions,
1736 				      sizeof(struct ext4_fc_alloc_region) *
1737 				      (state->fc_regions_size +
1738 				       EXT4_FC_REPLAY_REALLOC_INCREMENT),
1739 				      GFP_KERNEL);
1740 		if (!fc_regions)
1741 			return -ENOMEM;
1742 		state->fc_regions_size +=
1743 			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1744 		state->fc_regions = fc_regions;
1745 	}
1746 	region = &state->fc_regions[state->fc_regions_used++];
1747 	region->ino = ino;
1748 	region->lblk = lblk;
1749 	region->pblk = pblk;
1750 	region->len = len;
1751 
1752 	if (replay)
1753 		state->fc_regions_valid++;
1754 
1755 	return 0;
1756 }
1757 
1758 /* Replay add range tag */
1759 static int ext4_fc_replay_add_range(struct super_block *sb,
1760 				    struct ext4_fc_tl_mem *tl, u8 *val)
1761 {
1762 	struct ext4_fc_add_range fc_add_ex;
1763 	struct ext4_extent newex, *ex;
1764 	struct inode *inode;
1765 	ext4_lblk_t start, cur;
1766 	int remaining, len;
1767 	ext4_fsblk_t start_pblk;
1768 	struct ext4_map_blocks map;
1769 	struct ext4_ext_path *path = NULL;
1770 	int ret;
1771 
1772 	memcpy(&fc_add_ex, val, sizeof(fc_add_ex));
1773 	ex = (struct ext4_extent *)&fc_add_ex.fc_ex;
1774 
1775 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1776 		le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block),
1777 		ext4_ext_get_actual_len(ex));
1778 
1779 	inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL);
1780 	if (IS_ERR(inode)) {
1781 		ext4_debug("Inode not found.");
1782 		return 0;
1783 	}
1784 
1785 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1786 	if (ret)
1787 		goto out;
1788 
1789 	start = le32_to_cpu(ex->ee_block);
1790 	start_pblk = ext4_ext_pblock(ex);
1791 	len = ext4_ext_get_actual_len(ex);
1792 
1793 	cur = start;
1794 	remaining = len;
1795 	ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1796 		  start, start_pblk, len, ext4_ext_is_unwritten(ex),
1797 		  inode->i_ino);
1798 
1799 	while (remaining > 0) {
1800 		map.m_lblk = cur;
1801 		map.m_len = remaining;
1802 		map.m_pblk = 0;
1803 		ret = ext4_map_blocks(NULL, inode, &map, 0);
1804 
1805 		if (ret < 0)
1806 			goto out;
1807 
1808 		if (ret == 0) {
1809 			/* Range is not mapped */
1810 			path = ext4_find_extent(inode, cur, path, 0);
1811 			if (IS_ERR(path))
1812 				goto out;
1813 			memset(&newex, 0, sizeof(newex));
1814 			newex.ee_block = cpu_to_le32(cur);
1815 			ext4_ext_store_pblock(
1816 				&newex, start_pblk + cur - start);
1817 			newex.ee_len = cpu_to_le16(map.m_len);
1818 			if (ext4_ext_is_unwritten(ex))
1819 				ext4_ext_mark_unwritten(&newex);
1820 			down_write(&EXT4_I(inode)->i_data_sem);
1821 			path = ext4_ext_insert_extent(NULL, inode,
1822 						      path, &newex, 0);
1823 			up_write((&EXT4_I(inode)->i_data_sem));
1824 			if (IS_ERR(path))
1825 				goto out;
1826 			goto next;
1827 		}
1828 
1829 		if (start_pblk + cur - start != map.m_pblk) {
1830 			/*
1831 			 * Logical to physical mapping changed. This can happen
1832 			 * if this range was removed and then reallocated to
1833 			 * map to new physical blocks during a fast commit.
1834 			 */
1835 			ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1836 					ext4_ext_is_unwritten(ex),
1837 					start_pblk + cur - start);
1838 			if (ret)
1839 				goto out;
1840 			/*
1841 			 * Mark the old blocks as free since they aren't used
1842 			 * anymore. We maintain an array of all the modified
1843 			 * inodes. In case these blocks are still used at either
1844 			 * a different logical range in the same inode or in
1845 			 * some different inode, we will mark them as allocated
1846 			 * at the end of the FC replay using our array of
1847 			 * modified inodes.
1848 			 */
1849 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false);
1850 			goto next;
1851 		}
1852 
1853 		/* Range is mapped and needs a state change */
1854 		ext4_debug("Converting from %ld to %d %lld",
1855 				map.m_flags & EXT4_MAP_UNWRITTEN,
1856 			ext4_ext_is_unwritten(ex), map.m_pblk);
1857 		ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1858 					ext4_ext_is_unwritten(ex), map.m_pblk);
1859 		if (ret)
1860 			goto out;
1861 		/*
1862 		 * We may have split the extent tree while toggling the state.
1863 		 * Try to shrink the extent tree now.
1864 		 */
1865 		ext4_ext_replay_shrink_inode(inode, start + len);
1866 next:
1867 		cur += map.m_len;
1868 		remaining -= map.m_len;
1869 	}
1870 	ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1871 					sb->s_blocksize_bits);
1872 out:
1873 	ext4_free_ext_path(path);
1874 	iput(inode);
1875 	return 0;
1876 }
1877 
1878 /* Replay DEL_RANGE tag */
1879 static int
1880 ext4_fc_replay_del_range(struct super_block *sb,
1881 			 struct ext4_fc_tl_mem *tl, u8 *val)
1882 {
1883 	struct inode *inode;
1884 	struct ext4_fc_del_range lrange;
1885 	struct ext4_map_blocks map;
1886 	ext4_lblk_t cur, remaining;
1887 	int ret;
1888 
1889 	memcpy(&lrange, val, sizeof(lrange));
1890 	cur = le32_to_cpu(lrange.fc_lblk);
1891 	remaining = le32_to_cpu(lrange.fc_len);
1892 
1893 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1894 		le32_to_cpu(lrange.fc_ino), cur, remaining);
1895 
1896 	inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL);
1897 	if (IS_ERR(inode)) {
1898 		ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino));
1899 		return 0;
1900 	}
1901 
1902 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1903 	if (ret)
1904 		goto out;
1905 
1906 	ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n",
1907 			inode->i_ino, le32_to_cpu(lrange.fc_lblk),
1908 			le32_to_cpu(lrange.fc_len));
1909 	while (remaining > 0) {
1910 		map.m_lblk = cur;
1911 		map.m_len = remaining;
1912 
1913 		ret = ext4_map_blocks(NULL, inode, &map, 0);
1914 		if (ret < 0)
1915 			goto out;
1916 		if (ret > 0) {
1917 			remaining -= ret;
1918 			cur += ret;
1919 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false);
1920 		} else {
1921 			remaining -= map.m_len;
1922 			cur += map.m_len;
1923 		}
1924 	}
1925 
1926 	down_write(&EXT4_I(inode)->i_data_sem);
1927 	ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk),
1928 				le32_to_cpu(lrange.fc_lblk) +
1929 				le32_to_cpu(lrange.fc_len) - 1);
1930 	up_write(&EXT4_I(inode)->i_data_sem);
1931 	if (ret)
1932 		goto out;
1933 	ext4_ext_replay_shrink_inode(inode,
1934 		i_size_read(inode) >> sb->s_blocksize_bits);
1935 	ext4_mark_inode_dirty(NULL, inode);
1936 out:
1937 	iput(inode);
1938 	return 0;
1939 }
1940 
1941 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1942 {
1943 	struct ext4_fc_replay_state *state;
1944 	struct inode *inode;
1945 	struct ext4_ext_path *path = NULL;
1946 	struct ext4_map_blocks map;
1947 	int i, ret, j;
1948 	ext4_lblk_t cur, end;
1949 
1950 	state = &EXT4_SB(sb)->s_fc_replay_state;
1951 	for (i = 0; i < state->fc_modified_inodes_used; i++) {
1952 		inode = ext4_iget(sb, state->fc_modified_inodes[i],
1953 			EXT4_IGET_NORMAL);
1954 		if (IS_ERR(inode)) {
1955 			ext4_debug("Inode %d not found.",
1956 				state->fc_modified_inodes[i]);
1957 			continue;
1958 		}
1959 		cur = 0;
1960 		end = EXT_MAX_BLOCKS;
1961 		if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) {
1962 			iput(inode);
1963 			continue;
1964 		}
1965 		while (cur < end) {
1966 			map.m_lblk = cur;
1967 			map.m_len = end - cur;
1968 
1969 			ret = ext4_map_blocks(NULL, inode, &map, 0);
1970 			if (ret < 0)
1971 				break;
1972 
1973 			if (ret > 0) {
1974 				path = ext4_find_extent(inode, map.m_lblk, path, 0);
1975 				if (!IS_ERR(path)) {
1976 					for (j = 0; j < path->p_depth; j++)
1977 						ext4_mb_mark_bb(inode->i_sb,
1978 							path[j].p_block, 1, true);
1979 				} else {
1980 					path = NULL;
1981 				}
1982 				cur += ret;
1983 				ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1984 							map.m_len, true);
1985 			} else {
1986 				cur = cur + (map.m_len ? map.m_len : 1);
1987 			}
1988 		}
1989 		iput(inode);
1990 	}
1991 
1992 	ext4_free_ext_path(path);
1993 }
1994 
1995 /*
1996  * Check if block is in excluded regions for block allocation. The simple
1997  * allocator that runs during replay phase is calls this function to see
1998  * if it is okay to use a block.
1999  */
2000 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
2001 {
2002 	int i;
2003 	struct ext4_fc_replay_state *state;
2004 
2005 	state = &EXT4_SB(sb)->s_fc_replay_state;
2006 	for (i = 0; i < state->fc_regions_valid; i++) {
2007 		if (state->fc_regions[i].ino == 0 ||
2008 			state->fc_regions[i].len == 0)
2009 			continue;
2010 		if (in_range(blk, state->fc_regions[i].pblk,
2011 					state->fc_regions[i].len))
2012 			return true;
2013 	}
2014 	return false;
2015 }
2016 
2017 /* Cleanup function called after replay */
2018 void ext4_fc_replay_cleanup(struct super_block *sb)
2019 {
2020 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2021 
2022 	sbi->s_mount_state &= ~EXT4_FC_REPLAY;
2023 	kfree(sbi->s_fc_replay_state.fc_regions);
2024 	kfree(sbi->s_fc_replay_state.fc_modified_inodes);
2025 }
2026 
2027 static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi,
2028 				      int tag, int len)
2029 {
2030 	switch (tag) {
2031 	case EXT4_FC_TAG_ADD_RANGE:
2032 		return len == sizeof(struct ext4_fc_add_range);
2033 	case EXT4_FC_TAG_DEL_RANGE:
2034 		return len == sizeof(struct ext4_fc_del_range);
2035 	case EXT4_FC_TAG_CREAT:
2036 	case EXT4_FC_TAG_LINK:
2037 	case EXT4_FC_TAG_UNLINK:
2038 		len -= sizeof(struct ext4_fc_dentry_info);
2039 		return len >= 1 && len <= EXT4_NAME_LEN;
2040 	case EXT4_FC_TAG_INODE:
2041 		len -= sizeof(struct ext4_fc_inode);
2042 		return len >= EXT4_GOOD_OLD_INODE_SIZE &&
2043 			len <= sbi->s_inode_size;
2044 	case EXT4_FC_TAG_PAD:
2045 		return true; /* padding can have any length */
2046 	case EXT4_FC_TAG_TAIL:
2047 		return len >= sizeof(struct ext4_fc_tail);
2048 	case EXT4_FC_TAG_HEAD:
2049 		return len == sizeof(struct ext4_fc_head);
2050 	}
2051 	return false;
2052 }
2053 
2054 /*
2055  * Recovery Scan phase handler
2056  *
2057  * This function is called during the scan phase and is responsible
2058  * for doing following things:
2059  * - Make sure the fast commit area has valid tags for replay
2060  * - Count number of tags that need to be replayed by the replay handler
2061  * - Verify CRC
2062  * - Create a list of excluded blocks for allocation during replay phase
2063  *
2064  * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
2065  * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
2066  * to indicate that scan has finished and JBD2 can now start replay phase.
2067  * It returns a negative error to indicate that there was an error. At the end
2068  * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
2069  * to indicate the number of tags that need to replayed during the replay phase.
2070  */
2071 static int ext4_fc_replay_scan(journal_t *journal,
2072 				struct buffer_head *bh, int off,
2073 				tid_t expected_tid)
2074 {
2075 	struct super_block *sb = journal->j_private;
2076 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2077 	struct ext4_fc_replay_state *state;
2078 	int ret = JBD2_FC_REPLAY_CONTINUE;
2079 	struct ext4_fc_add_range ext;
2080 	struct ext4_fc_tl_mem tl;
2081 	struct ext4_fc_tail tail;
2082 	__u8 *start, *end, *cur, *val;
2083 	struct ext4_fc_head head;
2084 	struct ext4_extent *ex;
2085 
2086 	state = &sbi->s_fc_replay_state;
2087 
2088 	start = (u8 *)bh->b_data;
2089 	end = start + journal->j_blocksize;
2090 
2091 	if (state->fc_replay_expected_off == 0) {
2092 		state->fc_cur_tag = 0;
2093 		state->fc_replay_num_tags = 0;
2094 		state->fc_crc = 0;
2095 		state->fc_regions = NULL;
2096 		state->fc_regions_valid = state->fc_regions_used =
2097 			state->fc_regions_size = 0;
2098 		/* Check if we can stop early */
2099 		if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
2100 			!= EXT4_FC_TAG_HEAD)
2101 			return 0;
2102 	}
2103 
2104 	if (off != state->fc_replay_expected_off) {
2105 		ret = -EFSCORRUPTED;
2106 		goto out_err;
2107 	}
2108 
2109 	state->fc_replay_expected_off++;
2110 	for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2111 	     cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2112 		ext4_fc_get_tl(&tl, cur);
2113 		val = cur + EXT4_FC_TAG_BASE_LEN;
2114 		if (tl.fc_len > end - val ||
2115 		    !ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) {
2116 			ret = state->fc_replay_num_tags ?
2117 				JBD2_FC_REPLAY_STOP : -ECANCELED;
2118 			goto out_err;
2119 		}
2120 		ext4_debug("Scan phase, tag:%s, blk %lld\n",
2121 			   tag2str(tl.fc_tag), bh->b_blocknr);
2122 		switch (tl.fc_tag) {
2123 		case EXT4_FC_TAG_ADD_RANGE:
2124 			memcpy(&ext, val, sizeof(ext));
2125 			ex = (struct ext4_extent *)&ext.fc_ex;
2126 			ret = ext4_fc_record_regions(sb,
2127 				le32_to_cpu(ext.fc_ino),
2128 				le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
2129 				ext4_ext_get_actual_len(ex), 0);
2130 			if (ret < 0)
2131 				break;
2132 			ret = JBD2_FC_REPLAY_CONTINUE;
2133 			fallthrough;
2134 		case EXT4_FC_TAG_DEL_RANGE:
2135 		case EXT4_FC_TAG_LINK:
2136 		case EXT4_FC_TAG_UNLINK:
2137 		case EXT4_FC_TAG_CREAT:
2138 		case EXT4_FC_TAG_INODE:
2139 		case EXT4_FC_TAG_PAD:
2140 			state->fc_cur_tag++;
2141 			state->fc_crc = ext4_chksum(state->fc_crc, cur,
2142 				EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2143 			break;
2144 		case EXT4_FC_TAG_TAIL:
2145 			state->fc_cur_tag++;
2146 			memcpy(&tail, val, sizeof(tail));
2147 			state->fc_crc = ext4_chksum(state->fc_crc, cur,
2148 						EXT4_FC_TAG_BASE_LEN +
2149 						offsetof(struct ext4_fc_tail,
2150 						fc_crc));
2151 			if (le32_to_cpu(tail.fc_tid) == expected_tid &&
2152 				le32_to_cpu(tail.fc_crc) == state->fc_crc) {
2153 				state->fc_replay_num_tags = state->fc_cur_tag;
2154 				state->fc_regions_valid =
2155 					state->fc_regions_used;
2156 			} else {
2157 				ret = state->fc_replay_num_tags ?
2158 					JBD2_FC_REPLAY_STOP : -EFSBADCRC;
2159 			}
2160 			state->fc_crc = 0;
2161 			break;
2162 		case EXT4_FC_TAG_HEAD:
2163 			memcpy(&head, val, sizeof(head));
2164 			if (le32_to_cpu(head.fc_features) &
2165 				~EXT4_FC_SUPPORTED_FEATURES) {
2166 				ret = -EOPNOTSUPP;
2167 				break;
2168 			}
2169 			if (le32_to_cpu(head.fc_tid) != expected_tid) {
2170 				ret = JBD2_FC_REPLAY_STOP;
2171 				break;
2172 			}
2173 			state->fc_cur_tag++;
2174 			state->fc_crc = ext4_chksum(state->fc_crc, cur,
2175 				EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2176 			break;
2177 		default:
2178 			ret = state->fc_replay_num_tags ?
2179 				JBD2_FC_REPLAY_STOP : -ECANCELED;
2180 		}
2181 		if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2182 			break;
2183 	}
2184 
2185 out_err:
2186 	trace_ext4_fc_replay_scan(sb, ret, off);
2187 	return ret;
2188 }
2189 
2190 /*
2191  * Main recovery path entry point.
2192  * The meaning of return codes is similar as above.
2193  */
2194 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2195 				enum passtype pass, int off, tid_t expected_tid)
2196 {
2197 	struct super_block *sb = journal->j_private;
2198 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2199 	struct ext4_fc_tl_mem tl;
2200 	__u8 *start, *end, *cur, *val;
2201 	int ret = JBD2_FC_REPLAY_CONTINUE;
2202 	struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2203 	struct ext4_fc_tail tail;
2204 
2205 	if (pass == PASS_SCAN) {
2206 		state->fc_current_pass = PASS_SCAN;
2207 		return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2208 	}
2209 
2210 	if (state->fc_current_pass != pass) {
2211 		state->fc_current_pass = pass;
2212 		sbi->s_mount_state |= EXT4_FC_REPLAY;
2213 	}
2214 	if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2215 		ext4_debug("Replay stops\n");
2216 		ext4_fc_set_bitmaps_and_counters(sb);
2217 		return 0;
2218 	}
2219 
2220 #ifdef CONFIG_EXT4_DEBUG
2221 	if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2222 		pr_warn("Dropping fc block %d because max_replay set\n", off);
2223 		return JBD2_FC_REPLAY_STOP;
2224 	}
2225 #endif
2226 
2227 	start = (u8 *)bh->b_data;
2228 	end = start + journal->j_blocksize;
2229 
2230 	for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2231 	     cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2232 		ext4_fc_get_tl(&tl, cur);
2233 		val = cur + EXT4_FC_TAG_BASE_LEN;
2234 
2235 		if (state->fc_replay_num_tags == 0) {
2236 			ret = JBD2_FC_REPLAY_STOP;
2237 			ext4_fc_set_bitmaps_and_counters(sb);
2238 			break;
2239 		}
2240 
2241 		ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag));
2242 		state->fc_replay_num_tags--;
2243 		switch (tl.fc_tag) {
2244 		case EXT4_FC_TAG_LINK:
2245 			ret = ext4_fc_replay_link(sb, &tl, val);
2246 			break;
2247 		case EXT4_FC_TAG_UNLINK:
2248 			ret = ext4_fc_replay_unlink(sb, &tl, val);
2249 			break;
2250 		case EXT4_FC_TAG_ADD_RANGE:
2251 			ret = ext4_fc_replay_add_range(sb, &tl, val);
2252 			break;
2253 		case EXT4_FC_TAG_CREAT:
2254 			ret = ext4_fc_replay_create(sb, &tl, val);
2255 			break;
2256 		case EXT4_FC_TAG_DEL_RANGE:
2257 			ret = ext4_fc_replay_del_range(sb, &tl, val);
2258 			break;
2259 		case EXT4_FC_TAG_INODE:
2260 			ret = ext4_fc_replay_inode(sb, &tl, val);
2261 			break;
2262 		case EXT4_FC_TAG_PAD:
2263 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2264 					     tl.fc_len, 0);
2265 			break;
2266 		case EXT4_FC_TAG_TAIL:
2267 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL,
2268 					     0, tl.fc_len, 0);
2269 			memcpy(&tail, val, sizeof(tail));
2270 			WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid);
2271 			break;
2272 		case EXT4_FC_TAG_HEAD:
2273 			break;
2274 		default:
2275 			trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0);
2276 			ret = -ECANCELED;
2277 			break;
2278 		}
2279 		if (ret < 0)
2280 			break;
2281 		ret = JBD2_FC_REPLAY_CONTINUE;
2282 	}
2283 	return ret;
2284 }
2285 
2286 void ext4_fc_init(struct super_block *sb, journal_t *journal)
2287 {
2288 	/*
2289 	 * We set replay callback even if fast commit disabled because we may
2290 	 * could still have fast commit blocks that need to be replayed even if
2291 	 * fast commit has now been turned off.
2292 	 */
2293 	journal->j_fc_replay_callback = ext4_fc_replay;
2294 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2295 		return;
2296 	journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2297 }
2298 
2299 static const char * const fc_ineligible_reasons[] = {
2300 	[EXT4_FC_REASON_XATTR] = "Extended attributes changed",
2301 	[EXT4_FC_REASON_CROSS_RENAME] = "Cross rename",
2302 	[EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed",
2303 	[EXT4_FC_REASON_NOMEM] = "Insufficient memory",
2304 	[EXT4_FC_REASON_SWAP_BOOT] = "Swap boot",
2305 	[EXT4_FC_REASON_RESIZE] = "Resize",
2306 	[EXT4_FC_REASON_RENAME_DIR] = "Dir renamed",
2307 	[EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op",
2308 	[EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling",
2309 	[EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename",
2310 	[EXT4_FC_REASON_MIGRATE] = "Inode format migration",
2311 	[EXT4_FC_REASON_VERITY] = "fs-verity enable",
2312 	[EXT4_FC_REASON_MOVE_EXT] = "Move extents",
2313 };
2314 
2315 int ext4_fc_info_show(struct seq_file *seq, void *v)
2316 {
2317 	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2318 	struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2319 	int i;
2320 
2321 	if (v != SEQ_START_TOKEN)
2322 		return 0;
2323 
2324 	seq_printf(seq,
2325 		"fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2326 		   stats->fc_num_commits, stats->fc_ineligible_commits,
2327 		   stats->fc_numblks,
2328 		   div_u64(stats->s_fc_avg_commit_time, 1000));
2329 	seq_puts(seq, "Ineligible reasons:\n");
2330 	for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2331 		seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2332 			stats->fc_ineligible_reason_count[i]);
2333 
2334 	return 0;
2335 }
2336 
2337 int __init ext4_fc_init_dentry_cache(void)
2338 {
2339 	ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2340 					   SLAB_RECLAIM_ACCOUNT);
2341 
2342 	if (ext4_fc_dentry_cachep == NULL)
2343 		return -ENOMEM;
2344 
2345 	return 0;
2346 }
2347 
2348 void ext4_fc_destroy_dentry_cache(void)
2349 {
2350 	kmem_cache_destroy(ext4_fc_dentry_cachep);
2351 }
2352