xref: /linux/fs/ext4/extents_status.c (revision ff5599816711d2e67da2d7561fd36ac48debd433)
1 /*
2  *  fs/ext4/extents_status.c
3  *
4  * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
5  * Modified by
6  *	Allison Henderson <achender@linux.vnet.ibm.com>
7  *	Hugh Dickins <hughd@google.com>
8  *	Zheng Liu <wenqing.lz@taobao.com>
9  *
10  * Ext4 extents status tree core functions.
11  */
12 #include <linux/rbtree.h>
13 #include <linux/list_sort.h>
14 #include "ext4.h"
15 #include "extents_status.h"
16 #include "ext4_extents.h"
17 
18 #include <trace/events/ext4.h>
19 
20 /*
21  * According to previous discussion in Ext4 Developer Workshop, we
22  * will introduce a new structure called io tree to track all extent
23  * status in order to solve some problems that we have met
24  * (e.g. Reservation space warning), and provide extent-level locking.
25  * Delay extent tree is the first step to achieve this goal.  It is
26  * original built by Yongqiang Yang.  At that time it is called delay
27  * extent tree, whose goal is only track delayed extents in memory to
28  * simplify the implementation of fiemap and bigalloc, and introduce
29  * lseek SEEK_DATA/SEEK_HOLE support.  That is why it is still called
30  * delay extent tree at the first commit.  But for better understand
31  * what it does, it has been rename to extent status tree.
32  *
33  * Step1:
34  * Currently the first step has been done.  All delayed extents are
35  * tracked in the tree.  It maintains the delayed extent when a delayed
36  * allocation is issued, and the delayed extent is written out or
37  * invalidated.  Therefore the implementation of fiemap and bigalloc
38  * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
39  *
40  * The following comment describes the implemenmtation of extent
41  * status tree and future works.
42  *
43  * Step2:
44  * In this step all extent status are tracked by extent status tree.
45  * Thus, we can first try to lookup a block mapping in this tree before
46  * finding it in extent tree.  Hence, single extent cache can be removed
47  * because extent status tree can do a better job.  Extents in status
48  * tree are loaded on-demand.  Therefore, the extent status tree may not
49  * contain all of the extents in a file.  Meanwhile we define a shrinker
50  * to reclaim memory from extent status tree because fragmented extent
51  * tree will make status tree cost too much memory.  written/unwritten/-
52  * hole extents in the tree will be reclaimed by this shrinker when we
53  * are under high memory pressure.  Delayed extents will not be
54  * reclimed because fiemap, bigalloc, and seek_data/hole need it.
55  */
56 
57 /*
58  * Extent status tree implementation for ext4.
59  *
60  *
61  * ==========================================================================
62  * Extent status tree tracks all extent status.
63  *
64  * 1. Why we need to implement extent status tree?
65  *
66  * Without extent status tree, ext4 identifies a delayed extent by looking
67  * up page cache, this has several deficiencies - complicated, buggy,
68  * and inefficient code.
69  *
70  * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
71  * block or a range of blocks are belonged to a delayed extent.
72  *
73  * Let us have a look at how they do without extent status tree.
74  *   --	FIEMAP
75  *	FIEMAP looks up page cache to identify delayed allocations from holes.
76  *
77  *   --	SEEK_HOLE/DATA
78  *	SEEK_HOLE/DATA has the same problem as FIEMAP.
79  *
80  *   --	bigalloc
81  *	bigalloc looks up page cache to figure out if a block is
82  *	already under delayed allocation or not to determine whether
83  *	quota reserving is needed for the cluster.
84  *
85  *   --	writeout
86  *	Writeout looks up whole page cache to see if a buffer is
87  *	mapped, If there are not very many delayed buffers, then it is
88  *	time comsuming.
89  *
90  * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
91  * bigalloc and writeout can figure out if a block or a range of
92  * blocks is under delayed allocation(belonged to a delayed extent) or
93  * not by searching the extent tree.
94  *
95  *
96  * ==========================================================================
97  * 2. Ext4 extent status tree impelmentation
98  *
99  *   --	extent
100  *	A extent is a range of blocks which are contiguous logically and
101  *	physically.  Unlike extent in extent tree, this extent in ext4 is
102  *	a in-memory struct, there is no corresponding on-disk data.  There
103  *	is no limit on length of extent, so an extent can contain as many
104  *	blocks as they are contiguous logically and physically.
105  *
106  *   --	extent status tree
107  *	Every inode has an extent status tree and all allocation blocks
108  *	are added to the tree with different status.  The extent in the
109  *	tree are ordered by logical block no.
110  *
111  *   --	operations on a extent status tree
112  *	There are three important operations on a delayed extent tree: find
113  *	next extent, adding a extent(a range of blocks) and removing a extent.
114  *
115  *   --	race on a extent status tree
116  *	Extent status tree is protected by inode->i_es_lock.
117  *
118  *   --	memory consumption
119  *      Fragmented extent tree will make extent status tree cost too much
120  *      memory.  Hence, we will reclaim written/unwritten/hole extents from
121  *      the tree under a heavy memory pressure.
122  *
123  *
124  * ==========================================================================
125  * 3. Performance analysis
126  *
127  *   --	overhead
128  *	1. There is a cache extent for write access, so if writes are
129  *	not very random, adding space operaions are in O(1) time.
130  *
131  *   --	gain
132  *	2. Code is much simpler, more readable, more maintainable and
133  *	more efficient.
134  *
135  *
136  * ==========================================================================
137  * 4. TODO list
138  *
139  *   -- Refactor delayed space reservation
140  *
141  *   -- Extent-level locking
142  */
143 
144 static struct kmem_cache *ext4_es_cachep;
145 
146 static int __es_insert_extent(struct inode *inode, struct extent_status *newes);
147 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
148 			      ext4_lblk_t end);
149 static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
150 				       int nr_to_scan);
151 
152 int __init ext4_init_es(void)
153 {
154 	ext4_es_cachep = kmem_cache_create("ext4_extent_status",
155 					   sizeof(struct extent_status),
156 					   0, (SLAB_RECLAIM_ACCOUNT), NULL);
157 	if (ext4_es_cachep == NULL)
158 		return -ENOMEM;
159 	return 0;
160 }
161 
162 void ext4_exit_es(void)
163 {
164 	if (ext4_es_cachep)
165 		kmem_cache_destroy(ext4_es_cachep);
166 }
167 
168 void ext4_es_init_tree(struct ext4_es_tree *tree)
169 {
170 	tree->root = RB_ROOT;
171 	tree->cache_es = NULL;
172 }
173 
174 #ifdef ES_DEBUG__
175 static void ext4_es_print_tree(struct inode *inode)
176 {
177 	struct ext4_es_tree *tree;
178 	struct rb_node *node;
179 
180 	printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
181 	tree = &EXT4_I(inode)->i_es_tree;
182 	node = rb_first(&tree->root);
183 	while (node) {
184 		struct extent_status *es;
185 		es = rb_entry(node, struct extent_status, rb_node);
186 		printk(KERN_DEBUG " [%u/%u) %llu %llx",
187 		       es->es_lblk, es->es_len,
188 		       ext4_es_pblock(es), ext4_es_status(es));
189 		node = rb_next(node);
190 	}
191 	printk(KERN_DEBUG "\n");
192 }
193 #else
194 #define ext4_es_print_tree(inode)
195 #endif
196 
197 static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
198 {
199 	BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
200 	return es->es_lblk + es->es_len - 1;
201 }
202 
203 /*
204  * search through the tree for an delayed extent with a given offset.  If
205  * it can't be found, try to find next extent.
206  */
207 static struct extent_status *__es_tree_search(struct rb_root *root,
208 					      ext4_lblk_t lblk)
209 {
210 	struct rb_node *node = root->rb_node;
211 	struct extent_status *es = NULL;
212 
213 	while (node) {
214 		es = rb_entry(node, struct extent_status, rb_node);
215 		if (lblk < es->es_lblk)
216 			node = node->rb_left;
217 		else if (lblk > ext4_es_end(es))
218 			node = node->rb_right;
219 		else
220 			return es;
221 	}
222 
223 	if (es && lblk < es->es_lblk)
224 		return es;
225 
226 	if (es && lblk > ext4_es_end(es)) {
227 		node = rb_next(&es->rb_node);
228 		return node ? rb_entry(node, struct extent_status, rb_node) :
229 			      NULL;
230 	}
231 
232 	return NULL;
233 }
234 
235 /*
236  * ext4_es_find_delayed_extent_range: find the 1st delayed extent covering
237  * @es->lblk if it exists, otherwise, the next extent after @es->lblk.
238  *
239  * @inode: the inode which owns delayed extents
240  * @lblk: the offset where we start to search
241  * @end: the offset where we stop to search
242  * @es: delayed extent that we found
243  */
244 void ext4_es_find_delayed_extent_range(struct inode *inode,
245 				 ext4_lblk_t lblk, ext4_lblk_t end,
246 				 struct extent_status *es)
247 {
248 	struct ext4_es_tree *tree = NULL;
249 	struct extent_status *es1 = NULL;
250 	struct rb_node *node;
251 
252 	BUG_ON(es == NULL);
253 	BUG_ON(end < lblk);
254 	trace_ext4_es_find_delayed_extent_range_enter(inode, lblk);
255 
256 	read_lock(&EXT4_I(inode)->i_es_lock);
257 	tree = &EXT4_I(inode)->i_es_tree;
258 
259 	/* find extent in cache firstly */
260 	es->es_lblk = es->es_len = es->es_pblk = 0;
261 	if (tree->cache_es) {
262 		es1 = tree->cache_es;
263 		if (in_range(lblk, es1->es_lblk, es1->es_len)) {
264 			es_debug("%u cached by [%u/%u) %llu %llx\n",
265 				 lblk, es1->es_lblk, es1->es_len,
266 				 ext4_es_pblock(es1), ext4_es_status(es1));
267 			goto out;
268 		}
269 	}
270 
271 	es1 = __es_tree_search(&tree->root, lblk);
272 
273 out:
274 	if (es1 && !ext4_es_is_delayed(es1)) {
275 		while ((node = rb_next(&es1->rb_node)) != NULL) {
276 			es1 = rb_entry(node, struct extent_status, rb_node);
277 			if (es1->es_lblk > end) {
278 				es1 = NULL;
279 				break;
280 			}
281 			if (ext4_es_is_delayed(es1))
282 				break;
283 		}
284 	}
285 
286 	if (es1 && ext4_es_is_delayed(es1)) {
287 		tree->cache_es = es1;
288 		es->es_lblk = es1->es_lblk;
289 		es->es_len = es1->es_len;
290 		es->es_pblk = es1->es_pblk;
291 	}
292 
293 	read_unlock(&EXT4_I(inode)->i_es_lock);
294 
295 	trace_ext4_es_find_delayed_extent_range_exit(inode, es);
296 }
297 
298 static struct extent_status *
299 ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len,
300 		     ext4_fsblk_t pblk)
301 {
302 	struct extent_status *es;
303 	es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
304 	if (es == NULL)
305 		return NULL;
306 	es->es_lblk = lblk;
307 	es->es_len = len;
308 	es->es_pblk = pblk;
309 
310 	/*
311 	 * We don't count delayed extent because we never try to reclaim them
312 	 */
313 	if (!ext4_es_is_delayed(es)) {
314 		EXT4_I(inode)->i_es_lru_nr++;
315 		percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt);
316 	}
317 
318 	return es;
319 }
320 
321 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
322 {
323 	/* Decrease the lru counter when this es is not delayed */
324 	if (!ext4_es_is_delayed(es)) {
325 		BUG_ON(EXT4_I(inode)->i_es_lru_nr == 0);
326 		EXT4_I(inode)->i_es_lru_nr--;
327 		percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt);
328 	}
329 
330 	kmem_cache_free(ext4_es_cachep, es);
331 }
332 
333 /*
334  * Check whether or not two extents can be merged
335  * Condition:
336  *  - logical block number is contiguous
337  *  - physical block number is contiguous
338  *  - status is equal
339  */
340 static int ext4_es_can_be_merged(struct extent_status *es1,
341 				 struct extent_status *es2)
342 {
343 	if (ext4_es_status(es1) != ext4_es_status(es2))
344 		return 0;
345 
346 	if (((__u64) es1->es_len) + es2->es_len > 0xFFFFFFFFULL)
347 		return 0;
348 
349 	if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
350 		return 0;
351 
352 	if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
353 	    (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
354 		return 1;
355 
356 	if (ext4_es_is_hole(es1))
357 		return 1;
358 
359 	/* we need to check delayed extent is without unwritten status */
360 	if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
361 		return 1;
362 
363 	return 0;
364 }
365 
366 static struct extent_status *
367 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
368 {
369 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
370 	struct extent_status *es1;
371 	struct rb_node *node;
372 
373 	node = rb_prev(&es->rb_node);
374 	if (!node)
375 		return es;
376 
377 	es1 = rb_entry(node, struct extent_status, rb_node);
378 	if (ext4_es_can_be_merged(es1, es)) {
379 		es1->es_len += es->es_len;
380 		rb_erase(&es->rb_node, &tree->root);
381 		ext4_es_free_extent(inode, es);
382 		es = es1;
383 	}
384 
385 	return es;
386 }
387 
388 static struct extent_status *
389 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
390 {
391 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
392 	struct extent_status *es1;
393 	struct rb_node *node;
394 
395 	node = rb_next(&es->rb_node);
396 	if (!node)
397 		return es;
398 
399 	es1 = rb_entry(node, struct extent_status, rb_node);
400 	if (ext4_es_can_be_merged(es, es1)) {
401 		es->es_len += es1->es_len;
402 		rb_erase(node, &tree->root);
403 		ext4_es_free_extent(inode, es1);
404 	}
405 
406 	return es;
407 }
408 
409 #ifdef ES_AGGRESSIVE_TEST
410 static void ext4_es_insert_extent_ext_check(struct inode *inode,
411 					    struct extent_status *es)
412 {
413 	struct ext4_ext_path *path = NULL;
414 	struct ext4_extent *ex;
415 	ext4_lblk_t ee_block;
416 	ext4_fsblk_t ee_start;
417 	unsigned short ee_len;
418 	int depth, ee_status, es_status;
419 
420 	path = ext4_ext_find_extent(inode, es->es_lblk, NULL);
421 	if (IS_ERR(path))
422 		return;
423 
424 	depth = ext_depth(inode);
425 	ex = path[depth].p_ext;
426 
427 	if (ex) {
428 
429 		ee_block = le32_to_cpu(ex->ee_block);
430 		ee_start = ext4_ext_pblock(ex);
431 		ee_len = ext4_ext_get_actual_len(ex);
432 
433 		ee_status = ext4_ext_is_uninitialized(ex) ? 1 : 0;
434 		es_status = ext4_es_is_unwritten(es) ? 1 : 0;
435 
436 		/*
437 		 * Make sure ex and es are not overlap when we try to insert
438 		 * a delayed/hole extent.
439 		 */
440 		if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
441 			if (in_range(es->es_lblk, ee_block, ee_len)) {
442 				pr_warn("ES insert assertation failed for "
443 					"inode: %lu we can find an extent "
444 					"at block [%d/%d/%llu/%c], but we "
445 					"want to add an delayed/hole extent "
446 					"[%d/%d/%llu/%llx]\n",
447 					inode->i_ino, ee_block, ee_len,
448 					ee_start, ee_status ? 'u' : 'w',
449 					es->es_lblk, es->es_len,
450 					ext4_es_pblock(es), ext4_es_status(es));
451 			}
452 			goto out;
453 		}
454 
455 		/*
456 		 * We don't check ee_block == es->es_lblk, etc. because es
457 		 * might be a part of whole extent, vice versa.
458 		 */
459 		if (es->es_lblk < ee_block ||
460 		    ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
461 			pr_warn("ES insert assertation failed for inode: %lu "
462 				"ex_status [%d/%d/%llu/%c] != "
463 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
464 				ee_block, ee_len, ee_start,
465 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
466 				ext4_es_pblock(es), es_status ? 'u' : 'w');
467 			goto out;
468 		}
469 
470 		if (ee_status ^ es_status) {
471 			pr_warn("ES insert assertation failed for inode: %lu "
472 				"ex_status [%d/%d/%llu/%c] != "
473 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
474 				ee_block, ee_len, ee_start,
475 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
476 				ext4_es_pblock(es), es_status ? 'u' : 'w');
477 		}
478 	} else {
479 		/*
480 		 * We can't find an extent on disk.  So we need to make sure
481 		 * that we don't want to add an written/unwritten extent.
482 		 */
483 		if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
484 			pr_warn("ES insert assertation failed for inode: %lu "
485 				"can't find an extent at block %d but we want "
486 				"to add an written/unwritten extent "
487 				"[%d/%d/%llu/%llx]\n", inode->i_ino,
488 				es->es_lblk, es->es_lblk, es->es_len,
489 				ext4_es_pblock(es), ext4_es_status(es));
490 		}
491 	}
492 out:
493 	if (path) {
494 		ext4_ext_drop_refs(path);
495 		kfree(path);
496 	}
497 }
498 
499 static void ext4_es_insert_extent_ind_check(struct inode *inode,
500 					    struct extent_status *es)
501 {
502 	struct ext4_map_blocks map;
503 	int retval;
504 
505 	/*
506 	 * Here we call ext4_ind_map_blocks to lookup a block mapping because
507 	 * 'Indirect' structure is defined in indirect.c.  So we couldn't
508 	 * access direct/indirect tree from outside.  It is too dirty to define
509 	 * this function in indirect.c file.
510 	 */
511 
512 	map.m_lblk = es->es_lblk;
513 	map.m_len = es->es_len;
514 
515 	retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
516 	if (retval > 0) {
517 		if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
518 			/*
519 			 * We want to add a delayed/hole extent but this
520 			 * block has been allocated.
521 			 */
522 			pr_warn("ES insert assertation failed for inode: %lu "
523 				"We can find blocks but we want to add a "
524 				"delayed/hole extent [%d/%d/%llu/%llx]\n",
525 				inode->i_ino, es->es_lblk, es->es_len,
526 				ext4_es_pblock(es), ext4_es_status(es));
527 			return;
528 		} else if (ext4_es_is_written(es)) {
529 			if (retval != es->es_len) {
530 				pr_warn("ES insert assertation failed for "
531 					"inode: %lu retval %d != es_len %d\n",
532 					inode->i_ino, retval, es->es_len);
533 				return;
534 			}
535 			if (map.m_pblk != ext4_es_pblock(es)) {
536 				pr_warn("ES insert assertation failed for "
537 					"inode: %lu m_pblk %llu != "
538 					"es_pblk %llu\n",
539 					inode->i_ino, map.m_pblk,
540 					ext4_es_pblock(es));
541 				return;
542 			}
543 		} else {
544 			/*
545 			 * We don't need to check unwritten extent because
546 			 * indirect-based file doesn't have it.
547 			 */
548 			BUG_ON(1);
549 		}
550 	} else if (retval == 0) {
551 		if (ext4_es_is_written(es)) {
552 			pr_warn("ES insert assertation failed for inode: %lu "
553 				"We can't find the block but we want to add "
554 				"an written extent [%d/%d/%llu/%llx]\n",
555 				inode->i_ino, es->es_lblk, es->es_len,
556 				ext4_es_pblock(es), ext4_es_status(es));
557 			return;
558 		}
559 	}
560 }
561 
562 static inline void ext4_es_insert_extent_check(struct inode *inode,
563 					       struct extent_status *es)
564 {
565 	/*
566 	 * We don't need to worry about the race condition because
567 	 * caller takes i_data_sem locking.
568 	 */
569 	BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
570 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
571 		ext4_es_insert_extent_ext_check(inode, es);
572 	else
573 		ext4_es_insert_extent_ind_check(inode, es);
574 }
575 #else
576 static inline void ext4_es_insert_extent_check(struct inode *inode,
577 					       struct extent_status *es)
578 {
579 }
580 #endif
581 
582 static int __es_insert_extent(struct inode *inode, struct extent_status *newes)
583 {
584 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
585 	struct rb_node **p = &tree->root.rb_node;
586 	struct rb_node *parent = NULL;
587 	struct extent_status *es;
588 
589 	while (*p) {
590 		parent = *p;
591 		es = rb_entry(parent, struct extent_status, rb_node);
592 
593 		if (newes->es_lblk < es->es_lblk) {
594 			if (ext4_es_can_be_merged(newes, es)) {
595 				/*
596 				 * Here we can modify es_lblk directly
597 				 * because it isn't overlapped.
598 				 */
599 				es->es_lblk = newes->es_lblk;
600 				es->es_len += newes->es_len;
601 				if (ext4_es_is_written(es) ||
602 				    ext4_es_is_unwritten(es))
603 					ext4_es_store_pblock(es,
604 							     newes->es_pblk);
605 				es = ext4_es_try_to_merge_left(inode, es);
606 				goto out;
607 			}
608 			p = &(*p)->rb_left;
609 		} else if (newes->es_lblk > ext4_es_end(es)) {
610 			if (ext4_es_can_be_merged(es, newes)) {
611 				es->es_len += newes->es_len;
612 				es = ext4_es_try_to_merge_right(inode, es);
613 				goto out;
614 			}
615 			p = &(*p)->rb_right;
616 		} else {
617 			BUG_ON(1);
618 			return -EINVAL;
619 		}
620 	}
621 
622 	es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len,
623 				  newes->es_pblk);
624 	if (!es)
625 		return -ENOMEM;
626 	rb_link_node(&es->rb_node, parent, p);
627 	rb_insert_color(&es->rb_node, &tree->root);
628 
629 out:
630 	tree->cache_es = es;
631 	return 0;
632 }
633 
634 /*
635  * ext4_es_insert_extent() adds a space to a extent status tree.
636  *
637  * ext4_es_insert_extent is called by ext4_da_write_begin and
638  * ext4_es_remove_extent.
639  *
640  * Return 0 on success, error code on failure.
641  */
642 int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
643 			  ext4_lblk_t len, ext4_fsblk_t pblk,
644 			  unsigned long long status)
645 {
646 	struct extent_status newes;
647 	ext4_lblk_t end = lblk + len - 1;
648 	int err = 0;
649 
650 	es_debug("add [%u/%u) %llu %llx to extent status tree of inode %lu\n",
651 		 lblk, len, pblk, status, inode->i_ino);
652 
653 	if (!len)
654 		return 0;
655 
656 	BUG_ON(end < lblk);
657 
658 	newes.es_lblk = lblk;
659 	newes.es_len = len;
660 	ext4_es_store_pblock(&newes, pblk);
661 	ext4_es_store_status(&newes, status);
662 	trace_ext4_es_insert_extent(inode, &newes);
663 
664 	ext4_es_insert_extent_check(inode, &newes);
665 
666 	write_lock(&EXT4_I(inode)->i_es_lock);
667 	err = __es_remove_extent(inode, lblk, end);
668 	if (err != 0)
669 		goto error;
670 	err = __es_insert_extent(inode, &newes);
671 
672 error:
673 	write_unlock(&EXT4_I(inode)->i_es_lock);
674 
675 	ext4_es_print_tree(inode);
676 
677 	return err;
678 }
679 
680 /*
681  * ext4_es_lookup_extent() looks up an extent in extent status tree.
682  *
683  * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
684  *
685  * Return: 1 on found, 0 on not
686  */
687 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
688 			  struct extent_status *es)
689 {
690 	struct ext4_es_tree *tree;
691 	struct extent_status *es1 = NULL;
692 	struct rb_node *node;
693 	int found = 0;
694 
695 	trace_ext4_es_lookup_extent_enter(inode, lblk);
696 	es_debug("lookup extent in block %u\n", lblk);
697 
698 	tree = &EXT4_I(inode)->i_es_tree;
699 	read_lock(&EXT4_I(inode)->i_es_lock);
700 
701 	/* find extent in cache firstly */
702 	es->es_lblk = es->es_len = es->es_pblk = 0;
703 	if (tree->cache_es) {
704 		es1 = tree->cache_es;
705 		if (in_range(lblk, es1->es_lblk, es1->es_len)) {
706 			es_debug("%u cached by [%u/%u)\n",
707 				 lblk, es1->es_lblk, es1->es_len);
708 			found = 1;
709 			goto out;
710 		}
711 	}
712 
713 	node = tree->root.rb_node;
714 	while (node) {
715 		es1 = rb_entry(node, struct extent_status, rb_node);
716 		if (lblk < es1->es_lblk)
717 			node = node->rb_left;
718 		else if (lblk > ext4_es_end(es1))
719 			node = node->rb_right;
720 		else {
721 			found = 1;
722 			break;
723 		}
724 	}
725 
726 out:
727 	if (found) {
728 		BUG_ON(!es1);
729 		es->es_lblk = es1->es_lblk;
730 		es->es_len = es1->es_len;
731 		es->es_pblk = es1->es_pblk;
732 	}
733 
734 	read_unlock(&EXT4_I(inode)->i_es_lock);
735 
736 	trace_ext4_es_lookup_extent_exit(inode, es, found);
737 	return found;
738 }
739 
740 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
741 			      ext4_lblk_t end)
742 {
743 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
744 	struct rb_node *node;
745 	struct extent_status *es;
746 	struct extent_status orig_es;
747 	ext4_lblk_t len1, len2;
748 	ext4_fsblk_t block;
749 	int err = 0;
750 
751 	es = __es_tree_search(&tree->root, lblk);
752 	if (!es)
753 		goto out;
754 	if (es->es_lblk > end)
755 		goto out;
756 
757 	/* Simply invalidate cache_es. */
758 	tree->cache_es = NULL;
759 
760 	orig_es.es_lblk = es->es_lblk;
761 	orig_es.es_len = es->es_len;
762 	orig_es.es_pblk = es->es_pblk;
763 
764 	len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
765 	len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
766 	if (len1 > 0)
767 		es->es_len = len1;
768 	if (len2 > 0) {
769 		if (len1 > 0) {
770 			struct extent_status newes;
771 
772 			newes.es_lblk = end + 1;
773 			newes.es_len = len2;
774 			if (ext4_es_is_written(&orig_es) ||
775 			    ext4_es_is_unwritten(&orig_es)) {
776 				block = ext4_es_pblock(&orig_es) +
777 					orig_es.es_len - len2;
778 				ext4_es_store_pblock(&newes, block);
779 			}
780 			ext4_es_store_status(&newes, ext4_es_status(&orig_es));
781 			err = __es_insert_extent(inode, &newes);
782 			if (err) {
783 				es->es_lblk = orig_es.es_lblk;
784 				es->es_len = orig_es.es_len;
785 				goto out;
786 			}
787 		} else {
788 			es->es_lblk = end + 1;
789 			es->es_len = len2;
790 			if (ext4_es_is_written(es) ||
791 			    ext4_es_is_unwritten(es)) {
792 				block = orig_es.es_pblk + orig_es.es_len - len2;
793 				ext4_es_store_pblock(es, block);
794 			}
795 		}
796 		goto out;
797 	}
798 
799 	if (len1 > 0) {
800 		node = rb_next(&es->rb_node);
801 		if (node)
802 			es = rb_entry(node, struct extent_status, rb_node);
803 		else
804 			es = NULL;
805 	}
806 
807 	while (es && ext4_es_end(es) <= end) {
808 		node = rb_next(&es->rb_node);
809 		rb_erase(&es->rb_node, &tree->root);
810 		ext4_es_free_extent(inode, es);
811 		if (!node) {
812 			es = NULL;
813 			break;
814 		}
815 		es = rb_entry(node, struct extent_status, rb_node);
816 	}
817 
818 	if (es && es->es_lblk < end + 1) {
819 		ext4_lblk_t orig_len = es->es_len;
820 
821 		len1 = ext4_es_end(es) - end;
822 		es->es_lblk = end + 1;
823 		es->es_len = len1;
824 		if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
825 			block = es->es_pblk + orig_len - len1;
826 			ext4_es_store_pblock(es, block);
827 		}
828 	}
829 
830 out:
831 	return err;
832 }
833 
834 /*
835  * ext4_es_remove_extent() removes a space from a extent status tree.
836  *
837  * Return 0 on success, error code on failure.
838  */
839 int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
840 			  ext4_lblk_t len)
841 {
842 	ext4_lblk_t end;
843 	int err = 0;
844 
845 	trace_ext4_es_remove_extent(inode, lblk, len);
846 	es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
847 		 lblk, len, inode->i_ino);
848 
849 	if (!len)
850 		return err;
851 
852 	end = lblk + len - 1;
853 	BUG_ON(end < lblk);
854 
855 	write_lock(&EXT4_I(inode)->i_es_lock);
856 	err = __es_remove_extent(inode, lblk, end);
857 	write_unlock(&EXT4_I(inode)->i_es_lock);
858 	ext4_es_print_tree(inode);
859 	return err;
860 }
861 
862 int ext4_es_zeroout(struct inode *inode, struct ext4_extent *ex)
863 {
864 	ext4_lblk_t  ee_block;
865 	ext4_fsblk_t ee_pblock;
866 	unsigned int ee_len;
867 
868 	ee_block  = le32_to_cpu(ex->ee_block);
869 	ee_len    = ext4_ext_get_actual_len(ex);
870 	ee_pblock = ext4_ext_pblock(ex);
871 
872 	if (ee_len == 0)
873 		return 0;
874 
875 	return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
876 				     EXTENT_STATUS_WRITTEN);
877 }
878 
879 static int ext4_inode_touch_time_cmp(void *priv, struct list_head *a,
880 				     struct list_head *b)
881 {
882 	struct ext4_inode_info *eia, *eib;
883 	eia = list_entry(a, struct ext4_inode_info, i_es_lru);
884 	eib = list_entry(b, struct ext4_inode_info, i_es_lru);
885 
886 	if (eia->i_touch_when == eib->i_touch_when)
887 		return 0;
888 	if (time_after(eia->i_touch_when, eib->i_touch_when))
889 		return 1;
890 	else
891 		return -1;
892 }
893 
894 static int ext4_es_shrink(struct shrinker *shrink, struct shrink_control *sc)
895 {
896 	struct ext4_sb_info *sbi = container_of(shrink,
897 					struct ext4_sb_info, s_es_shrinker);
898 	struct ext4_inode_info *ei;
899 	struct list_head *cur, *tmp;
900 	LIST_HEAD(skiped);
901 	int nr_to_scan = sc->nr_to_scan;
902 	int ret, nr_shrunk = 0;
903 
904 	ret = percpu_counter_read_positive(&sbi->s_extent_cache_cnt);
905 	trace_ext4_es_shrink_enter(sbi->s_sb, nr_to_scan, ret);
906 
907 	if (!nr_to_scan)
908 		return ret;
909 
910 	spin_lock(&sbi->s_es_lru_lock);
911 
912 	/*
913 	 * If the inode that is at the head of LRU list is newer than
914 	 * last_sorted time, that means that we need to sort this list.
915 	 */
916 	ei = list_first_entry(&sbi->s_es_lru, struct ext4_inode_info, i_es_lru);
917 	if (sbi->s_es_last_sorted < ei->i_touch_when) {
918 		list_sort(NULL, &sbi->s_es_lru, ext4_inode_touch_time_cmp);
919 		sbi->s_es_last_sorted = jiffies;
920 	}
921 
922 	list_for_each_safe(cur, tmp, &sbi->s_es_lru) {
923 		/*
924 		 * If we have already reclaimed all extents from extent
925 		 * status tree, just stop the loop immediately.
926 		 */
927 		if (percpu_counter_read_positive(&sbi->s_extent_cache_cnt) == 0)
928 			break;
929 
930 		ei = list_entry(cur, struct ext4_inode_info, i_es_lru);
931 
932 		/* Skip the inode that is newer than the last_sorted time */
933 		if (sbi->s_es_last_sorted < ei->i_touch_when) {
934 			list_move_tail(cur, &skiped);
935 			continue;
936 		}
937 
938 		if (ei->i_es_lru_nr == 0)
939 			continue;
940 
941 		write_lock(&ei->i_es_lock);
942 		ret = __es_try_to_reclaim_extents(ei, nr_to_scan);
943 		if (ei->i_es_lru_nr == 0)
944 			list_del_init(&ei->i_es_lru);
945 		write_unlock(&ei->i_es_lock);
946 
947 		nr_shrunk += ret;
948 		nr_to_scan -= ret;
949 		if (nr_to_scan == 0)
950 			break;
951 	}
952 
953 	/* Move the newer inodes into the tail of the LRU list. */
954 	list_splice_tail(&skiped, &sbi->s_es_lru);
955 	spin_unlock(&sbi->s_es_lru_lock);
956 
957 	ret = percpu_counter_read_positive(&sbi->s_extent_cache_cnt);
958 	trace_ext4_es_shrink_exit(sbi->s_sb, nr_shrunk, ret);
959 	return ret;
960 }
961 
962 void ext4_es_register_shrinker(struct ext4_sb_info *sbi)
963 {
964 	INIT_LIST_HEAD(&sbi->s_es_lru);
965 	spin_lock_init(&sbi->s_es_lru_lock);
966 	sbi->s_es_last_sorted = 0;
967 	sbi->s_es_shrinker.shrink = ext4_es_shrink;
968 	sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
969 	register_shrinker(&sbi->s_es_shrinker);
970 }
971 
972 void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
973 {
974 	unregister_shrinker(&sbi->s_es_shrinker);
975 }
976 
977 void ext4_es_lru_add(struct inode *inode)
978 {
979 	struct ext4_inode_info *ei = EXT4_I(inode);
980 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
981 
982 	ei->i_touch_when = jiffies;
983 
984 	if (!list_empty(&ei->i_es_lru))
985 		return;
986 
987 	spin_lock(&sbi->s_es_lru_lock);
988 	if (list_empty(&ei->i_es_lru))
989 		list_add_tail(&ei->i_es_lru, &sbi->s_es_lru);
990 	spin_unlock(&sbi->s_es_lru_lock);
991 }
992 
993 void ext4_es_lru_del(struct inode *inode)
994 {
995 	struct ext4_inode_info *ei = EXT4_I(inode);
996 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
997 
998 	spin_lock(&sbi->s_es_lru_lock);
999 	if (!list_empty(&ei->i_es_lru))
1000 		list_del_init(&ei->i_es_lru);
1001 	spin_unlock(&sbi->s_es_lru_lock);
1002 }
1003 
1004 static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
1005 				       int nr_to_scan)
1006 {
1007 	struct inode *inode = &ei->vfs_inode;
1008 	struct ext4_es_tree *tree = &ei->i_es_tree;
1009 	struct rb_node *node;
1010 	struct extent_status *es;
1011 	int nr_shrunk = 0;
1012 
1013 	if (ei->i_es_lru_nr == 0)
1014 		return 0;
1015 
1016 	node = rb_first(&tree->root);
1017 	while (node != NULL) {
1018 		es = rb_entry(node, struct extent_status, rb_node);
1019 		node = rb_next(&es->rb_node);
1020 		/*
1021 		 * We can't reclaim delayed extent from status tree because
1022 		 * fiemap, bigallic, and seek_data/hole need to use it.
1023 		 */
1024 		if (!ext4_es_is_delayed(es)) {
1025 			rb_erase(&es->rb_node, &tree->root);
1026 			ext4_es_free_extent(inode, es);
1027 			nr_shrunk++;
1028 			if (--nr_to_scan == 0)
1029 				break;
1030 		}
1031 	}
1032 	tree->cache_es = NULL;
1033 	return nr_shrunk;
1034 }
1035